1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 enum writeback_sync_modes sync_mode; 39 unsigned int for_kupdate:1; 40 unsigned int range_cyclic:1; 41 unsigned int for_background:1; 42 43 struct list_head list; /* pending work list */ 44 struct completion *done; /* set if the caller waits */ 45 }; 46 47 /* 48 * Include the creation of the trace points after defining the 49 * wb_writeback_work structure so that the definition remains local to this 50 * file. 51 */ 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/writeback.h> 54 55 /* 56 * We don't actually have pdflush, but this one is exported though /proc... 57 */ 58 int nr_pdflush_threads; 59 60 /** 61 * writeback_in_progress - determine whether there is writeback in progress 62 * @bdi: the device's backing_dev_info structure. 63 * 64 * Determine whether there is writeback waiting to be handled against a 65 * backing device. 66 */ 67 int writeback_in_progress(struct backing_dev_info *bdi) 68 { 69 return test_bit(BDI_writeback_running, &bdi->state); 70 } 71 72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 73 { 74 struct super_block *sb = inode->i_sb; 75 76 if (strcmp(sb->s_type->name, "bdev") == 0) 77 return inode->i_mapping->backing_dev_info; 78 79 return sb->s_bdi; 80 } 81 82 static inline struct inode *wb_inode(struct list_head *head) 83 { 84 return list_entry(head, struct inode, i_wb_list); 85 } 86 87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 88 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 89 { 90 if (bdi->wb.task) { 91 wake_up_process(bdi->wb.task); 92 } else { 93 /* 94 * The bdi thread isn't there, wake up the forker thread which 95 * will create and run it. 96 */ 97 wake_up_process(default_backing_dev_info.wb.task); 98 } 99 } 100 101 static void bdi_queue_work(struct backing_dev_info *bdi, 102 struct wb_writeback_work *work) 103 { 104 trace_writeback_queue(bdi, work); 105 106 spin_lock_bh(&bdi->wb_lock); 107 list_add_tail(&work->list, &bdi->work_list); 108 if (!bdi->wb.task) 109 trace_writeback_nothread(bdi, work); 110 bdi_wakeup_flusher(bdi); 111 spin_unlock_bh(&bdi->wb_lock); 112 } 113 114 static void 115 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 116 bool range_cyclic) 117 { 118 struct wb_writeback_work *work; 119 120 /* 121 * This is WB_SYNC_NONE writeback, so if allocation fails just 122 * wakeup the thread for old dirty data writeback 123 */ 124 work = kzalloc(sizeof(*work), GFP_ATOMIC); 125 if (!work) { 126 if (bdi->wb.task) { 127 trace_writeback_nowork(bdi); 128 wake_up_process(bdi->wb.task); 129 } 130 return; 131 } 132 133 work->sync_mode = WB_SYNC_NONE; 134 work->nr_pages = nr_pages; 135 work->range_cyclic = range_cyclic; 136 137 bdi_queue_work(bdi, work); 138 } 139 140 /** 141 * bdi_start_writeback - start writeback 142 * @bdi: the backing device to write from 143 * @nr_pages: the number of pages to write 144 * 145 * Description: 146 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 147 * started when this function returns, we make no guarantees on 148 * completion. Caller need not hold sb s_umount semaphore. 149 * 150 */ 151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 152 { 153 __bdi_start_writeback(bdi, nr_pages, true); 154 } 155 156 /** 157 * bdi_start_background_writeback - start background writeback 158 * @bdi: the backing device to write from 159 * 160 * Description: 161 * This makes sure WB_SYNC_NONE background writeback happens. When 162 * this function returns, it is only guaranteed that for given BDI 163 * some IO is happening if we are over background dirty threshold. 164 * Caller need not hold sb s_umount semaphore. 165 */ 166 void bdi_start_background_writeback(struct backing_dev_info *bdi) 167 { 168 /* 169 * We just wake up the flusher thread. It will perform background 170 * writeback as soon as there is no other work to do. 171 */ 172 trace_writeback_wake_background(bdi); 173 spin_lock_bh(&bdi->wb_lock); 174 bdi_wakeup_flusher(bdi); 175 spin_unlock_bh(&bdi->wb_lock); 176 } 177 178 /* 179 * Remove the inode from the writeback list it is on. 180 */ 181 void inode_wb_list_del(struct inode *inode) 182 { 183 spin_lock(&inode_wb_list_lock); 184 list_del_init(&inode->i_wb_list); 185 spin_unlock(&inode_wb_list_lock); 186 } 187 188 189 /* 190 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 191 * furthest end of its superblock's dirty-inode list. 192 * 193 * Before stamping the inode's ->dirtied_when, we check to see whether it is 194 * already the most-recently-dirtied inode on the b_dirty list. If that is 195 * the case then the inode must have been redirtied while it was being written 196 * out and we don't reset its dirtied_when. 197 */ 198 static void redirty_tail(struct inode *inode) 199 { 200 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 201 202 assert_spin_locked(&inode_wb_list_lock); 203 if (!list_empty(&wb->b_dirty)) { 204 struct inode *tail; 205 206 tail = wb_inode(wb->b_dirty.next); 207 if (time_before(inode->dirtied_when, tail->dirtied_when)) 208 inode->dirtied_when = jiffies; 209 } 210 list_move(&inode->i_wb_list, &wb->b_dirty); 211 } 212 213 /* 214 * requeue inode for re-scanning after bdi->b_io list is exhausted. 215 */ 216 static void requeue_io(struct inode *inode) 217 { 218 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 219 220 assert_spin_locked(&inode_wb_list_lock); 221 list_move(&inode->i_wb_list, &wb->b_more_io); 222 } 223 224 static void inode_sync_complete(struct inode *inode) 225 { 226 /* 227 * Prevent speculative execution through 228 * spin_unlock(&inode_wb_list_lock); 229 */ 230 231 smp_mb(); 232 wake_up_bit(&inode->i_state, __I_SYNC); 233 } 234 235 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 236 { 237 bool ret = time_after(inode->dirtied_when, t); 238 #ifndef CONFIG_64BIT 239 /* 240 * For inodes being constantly redirtied, dirtied_when can get stuck. 241 * It _appears_ to be in the future, but is actually in distant past. 242 * This test is necessary to prevent such wrapped-around relative times 243 * from permanently stopping the whole bdi writeback. 244 */ 245 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 246 #endif 247 return ret; 248 } 249 250 /* 251 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 252 */ 253 static void move_expired_inodes(struct list_head *delaying_queue, 254 struct list_head *dispatch_queue, 255 unsigned long *older_than_this) 256 { 257 LIST_HEAD(tmp); 258 struct list_head *pos, *node; 259 struct super_block *sb = NULL; 260 struct inode *inode; 261 int do_sb_sort = 0; 262 263 while (!list_empty(delaying_queue)) { 264 inode = wb_inode(delaying_queue->prev); 265 if (older_than_this && 266 inode_dirtied_after(inode, *older_than_this)) 267 break; 268 if (sb && sb != inode->i_sb) 269 do_sb_sort = 1; 270 sb = inode->i_sb; 271 list_move(&inode->i_wb_list, &tmp); 272 } 273 274 /* just one sb in list, splice to dispatch_queue and we're done */ 275 if (!do_sb_sort) { 276 list_splice(&tmp, dispatch_queue); 277 return; 278 } 279 280 /* Move inodes from one superblock together */ 281 while (!list_empty(&tmp)) { 282 sb = wb_inode(tmp.prev)->i_sb; 283 list_for_each_prev_safe(pos, node, &tmp) { 284 inode = wb_inode(pos); 285 if (inode->i_sb == sb) 286 list_move(&inode->i_wb_list, dispatch_queue); 287 } 288 } 289 } 290 291 /* 292 * Queue all expired dirty inodes for io, eldest first. 293 * Before 294 * newly dirtied b_dirty b_io b_more_io 295 * =============> gf edc BA 296 * After 297 * newly dirtied b_dirty b_io b_more_io 298 * =============> g fBAedc 299 * | 300 * +--> dequeue for IO 301 */ 302 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 303 { 304 assert_spin_locked(&inode_wb_list_lock); 305 list_splice_init(&wb->b_more_io, &wb->b_io); 306 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 307 } 308 309 static int write_inode(struct inode *inode, struct writeback_control *wbc) 310 { 311 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 312 return inode->i_sb->s_op->write_inode(inode, wbc); 313 return 0; 314 } 315 316 /* 317 * Wait for writeback on an inode to complete. 318 */ 319 static void inode_wait_for_writeback(struct inode *inode) 320 { 321 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 322 wait_queue_head_t *wqh; 323 324 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 325 while (inode->i_state & I_SYNC) { 326 spin_unlock(&inode->i_lock); 327 spin_unlock(&inode_wb_list_lock); 328 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 329 spin_lock(&inode_wb_list_lock); 330 spin_lock(&inode->i_lock); 331 } 332 } 333 334 /* 335 * Write out an inode's dirty pages. Called under inode_wb_list_lock and 336 * inode->i_lock. Either the caller has an active reference on the inode or 337 * the inode has I_WILL_FREE set. 338 * 339 * If `wait' is set, wait on the writeout. 340 * 341 * The whole writeout design is quite complex and fragile. We want to avoid 342 * starvation of particular inodes when others are being redirtied, prevent 343 * livelocks, etc. 344 */ 345 static int 346 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 347 { 348 struct address_space *mapping = inode->i_mapping; 349 unsigned dirty; 350 int ret; 351 352 assert_spin_locked(&inode_wb_list_lock); 353 assert_spin_locked(&inode->i_lock); 354 355 if (!atomic_read(&inode->i_count)) 356 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 357 else 358 WARN_ON(inode->i_state & I_WILL_FREE); 359 360 if (inode->i_state & I_SYNC) { 361 /* 362 * If this inode is locked for writeback and we are not doing 363 * writeback-for-data-integrity, move it to b_more_io so that 364 * writeback can proceed with the other inodes on s_io. 365 * 366 * We'll have another go at writing back this inode when we 367 * completed a full scan of b_io. 368 */ 369 if (wbc->sync_mode != WB_SYNC_ALL) { 370 requeue_io(inode); 371 return 0; 372 } 373 374 /* 375 * It's a data-integrity sync. We must wait. 376 */ 377 inode_wait_for_writeback(inode); 378 } 379 380 BUG_ON(inode->i_state & I_SYNC); 381 382 /* Set I_SYNC, reset I_DIRTY_PAGES */ 383 inode->i_state |= I_SYNC; 384 inode->i_state &= ~I_DIRTY_PAGES; 385 spin_unlock(&inode->i_lock); 386 spin_unlock(&inode_wb_list_lock); 387 388 ret = do_writepages(mapping, wbc); 389 390 /* 391 * Make sure to wait on the data before writing out the metadata. 392 * This is important for filesystems that modify metadata on data 393 * I/O completion. 394 */ 395 if (wbc->sync_mode == WB_SYNC_ALL) { 396 int err = filemap_fdatawait(mapping); 397 if (ret == 0) 398 ret = err; 399 } 400 401 /* 402 * Some filesystems may redirty the inode during the writeback 403 * due to delalloc, clear dirty metadata flags right before 404 * write_inode() 405 */ 406 spin_lock(&inode->i_lock); 407 dirty = inode->i_state & I_DIRTY; 408 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 409 spin_unlock(&inode->i_lock); 410 /* Don't write the inode if only I_DIRTY_PAGES was set */ 411 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 412 int err = write_inode(inode, wbc); 413 if (ret == 0) 414 ret = err; 415 } 416 417 spin_lock(&inode_wb_list_lock); 418 spin_lock(&inode->i_lock); 419 inode->i_state &= ~I_SYNC; 420 if (!(inode->i_state & I_FREEING)) { 421 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 422 /* 423 * We didn't write back all the pages. nfs_writepages() 424 * sometimes bales out without doing anything. 425 */ 426 inode->i_state |= I_DIRTY_PAGES; 427 if (wbc->nr_to_write <= 0) { 428 /* 429 * slice used up: queue for next turn 430 */ 431 requeue_io(inode); 432 } else { 433 /* 434 * Writeback blocked by something other than 435 * congestion. Delay the inode for some time to 436 * avoid spinning on the CPU (100% iowait) 437 * retrying writeback of the dirty page/inode 438 * that cannot be performed immediately. 439 */ 440 redirty_tail(inode); 441 } 442 } else if (inode->i_state & I_DIRTY) { 443 /* 444 * Filesystems can dirty the inode during writeback 445 * operations, such as delayed allocation during 446 * submission or metadata updates after data IO 447 * completion. 448 */ 449 redirty_tail(inode); 450 } else { 451 /* 452 * The inode is clean. At this point we either have 453 * a reference to the inode or it's on it's way out. 454 * No need to add it back to the LRU. 455 */ 456 list_del_init(&inode->i_wb_list); 457 } 458 } 459 inode_sync_complete(inode); 460 return ret; 461 } 462 463 /* 464 * For background writeback the caller does not have the sb pinned 465 * before calling writeback. So make sure that we do pin it, so it doesn't 466 * go away while we are writing inodes from it. 467 */ 468 static bool pin_sb_for_writeback(struct super_block *sb) 469 { 470 spin_lock(&sb_lock); 471 if (list_empty(&sb->s_instances)) { 472 spin_unlock(&sb_lock); 473 return false; 474 } 475 476 sb->s_count++; 477 spin_unlock(&sb_lock); 478 479 if (down_read_trylock(&sb->s_umount)) { 480 if (sb->s_root) 481 return true; 482 up_read(&sb->s_umount); 483 } 484 485 put_super(sb); 486 return false; 487 } 488 489 /* 490 * Write a portion of b_io inodes which belong to @sb. 491 * 492 * If @only_this_sb is true, then find and write all such 493 * inodes. Otherwise write only ones which go sequentially 494 * in reverse order. 495 * 496 * Return 1, if the caller writeback routine should be 497 * interrupted. Otherwise return 0. 498 */ 499 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, 500 struct writeback_control *wbc, bool only_this_sb) 501 { 502 while (!list_empty(&wb->b_io)) { 503 long pages_skipped; 504 struct inode *inode = wb_inode(wb->b_io.prev); 505 506 if (inode->i_sb != sb) { 507 if (only_this_sb) { 508 /* 509 * We only want to write back data for this 510 * superblock, move all inodes not belonging 511 * to it back onto the dirty list. 512 */ 513 redirty_tail(inode); 514 continue; 515 } 516 517 /* 518 * The inode belongs to a different superblock. 519 * Bounce back to the caller to unpin this and 520 * pin the next superblock. 521 */ 522 return 0; 523 } 524 525 /* 526 * Don't bother with new inodes or inodes beeing freed, first 527 * kind does not need peridic writeout yet, and for the latter 528 * kind writeout is handled by the freer. 529 */ 530 spin_lock(&inode->i_lock); 531 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 532 spin_unlock(&inode->i_lock); 533 requeue_io(inode); 534 continue; 535 } 536 537 /* 538 * Was this inode dirtied after sync_sb_inodes was called? 539 * This keeps sync from extra jobs and livelock. 540 */ 541 if (inode_dirtied_after(inode, wbc->wb_start)) { 542 spin_unlock(&inode->i_lock); 543 return 1; 544 } 545 546 __iget(inode); 547 548 pages_skipped = wbc->pages_skipped; 549 writeback_single_inode(inode, wbc); 550 if (wbc->pages_skipped != pages_skipped) { 551 /* 552 * writeback is not making progress due to locked 553 * buffers. Skip this inode for now. 554 */ 555 redirty_tail(inode); 556 } 557 spin_unlock(&inode->i_lock); 558 spin_unlock(&inode_wb_list_lock); 559 iput(inode); 560 cond_resched(); 561 spin_lock(&inode_wb_list_lock); 562 if (wbc->nr_to_write <= 0) { 563 wbc->more_io = 1; 564 return 1; 565 } 566 if (!list_empty(&wb->b_more_io)) 567 wbc->more_io = 1; 568 } 569 /* b_io is empty */ 570 return 1; 571 } 572 573 void writeback_inodes_wb(struct bdi_writeback *wb, 574 struct writeback_control *wbc) 575 { 576 int ret = 0; 577 578 if (!wbc->wb_start) 579 wbc->wb_start = jiffies; /* livelock avoidance */ 580 spin_lock(&inode_wb_list_lock); 581 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 582 queue_io(wb, wbc->older_than_this); 583 584 while (!list_empty(&wb->b_io)) { 585 struct inode *inode = wb_inode(wb->b_io.prev); 586 struct super_block *sb = inode->i_sb; 587 588 if (!pin_sb_for_writeback(sb)) { 589 requeue_io(inode); 590 continue; 591 } 592 ret = writeback_sb_inodes(sb, wb, wbc, false); 593 drop_super(sb); 594 595 if (ret) 596 break; 597 } 598 spin_unlock(&inode_wb_list_lock); 599 /* Leave any unwritten inodes on b_io */ 600 } 601 602 static void __writeback_inodes_sb(struct super_block *sb, 603 struct bdi_writeback *wb, struct writeback_control *wbc) 604 { 605 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 606 607 spin_lock(&inode_wb_list_lock); 608 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 609 queue_io(wb, wbc->older_than_this); 610 writeback_sb_inodes(sb, wb, wbc, true); 611 spin_unlock(&inode_wb_list_lock); 612 } 613 614 /* 615 * The maximum number of pages to writeout in a single bdi flush/kupdate 616 * operation. We do this so we don't hold I_SYNC against an inode for 617 * enormous amounts of time, which would block a userspace task which has 618 * been forced to throttle against that inode. Also, the code reevaluates 619 * the dirty each time it has written this many pages. 620 */ 621 #define MAX_WRITEBACK_PAGES 1024 622 623 static inline bool over_bground_thresh(void) 624 { 625 unsigned long background_thresh, dirty_thresh; 626 627 global_dirty_limits(&background_thresh, &dirty_thresh); 628 629 return (global_page_state(NR_FILE_DIRTY) + 630 global_page_state(NR_UNSTABLE_NFS) > background_thresh); 631 } 632 633 /* 634 * Explicit flushing or periodic writeback of "old" data. 635 * 636 * Define "old": the first time one of an inode's pages is dirtied, we mark the 637 * dirtying-time in the inode's address_space. So this periodic writeback code 638 * just walks the superblock inode list, writing back any inodes which are 639 * older than a specific point in time. 640 * 641 * Try to run once per dirty_writeback_interval. But if a writeback event 642 * takes longer than a dirty_writeback_interval interval, then leave a 643 * one-second gap. 644 * 645 * older_than_this takes precedence over nr_to_write. So we'll only write back 646 * all dirty pages if they are all attached to "old" mappings. 647 */ 648 static long wb_writeback(struct bdi_writeback *wb, 649 struct wb_writeback_work *work) 650 { 651 struct writeback_control wbc = { 652 .sync_mode = work->sync_mode, 653 .older_than_this = NULL, 654 .for_kupdate = work->for_kupdate, 655 .for_background = work->for_background, 656 .range_cyclic = work->range_cyclic, 657 }; 658 unsigned long oldest_jif; 659 long wrote = 0; 660 long write_chunk; 661 struct inode *inode; 662 663 if (wbc.for_kupdate) { 664 wbc.older_than_this = &oldest_jif; 665 oldest_jif = jiffies - 666 msecs_to_jiffies(dirty_expire_interval * 10); 667 } 668 if (!wbc.range_cyclic) { 669 wbc.range_start = 0; 670 wbc.range_end = LLONG_MAX; 671 } 672 673 /* 674 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 675 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 676 * here avoids calling into writeback_inodes_wb() more than once. 677 * 678 * The intended call sequence for WB_SYNC_ALL writeback is: 679 * 680 * wb_writeback() 681 * __writeback_inodes_sb() <== called only once 682 * write_cache_pages() <== called once for each inode 683 * (quickly) tag currently dirty pages 684 * (maybe slowly) sync all tagged pages 685 */ 686 if (wbc.sync_mode == WB_SYNC_NONE) 687 write_chunk = MAX_WRITEBACK_PAGES; 688 else 689 write_chunk = LONG_MAX; 690 691 wbc.wb_start = jiffies; /* livelock avoidance */ 692 for (;;) { 693 /* 694 * Stop writeback when nr_pages has been consumed 695 */ 696 if (work->nr_pages <= 0) 697 break; 698 699 /* 700 * Background writeout and kupdate-style writeback may 701 * run forever. Stop them if there is other work to do 702 * so that e.g. sync can proceed. They'll be restarted 703 * after the other works are all done. 704 */ 705 if ((work->for_background || work->for_kupdate) && 706 !list_empty(&wb->bdi->work_list)) 707 break; 708 709 /* 710 * For background writeout, stop when we are below the 711 * background dirty threshold 712 */ 713 if (work->for_background && !over_bground_thresh()) 714 break; 715 716 wbc.more_io = 0; 717 wbc.nr_to_write = write_chunk; 718 wbc.pages_skipped = 0; 719 720 trace_wbc_writeback_start(&wbc, wb->bdi); 721 if (work->sb) 722 __writeback_inodes_sb(work->sb, wb, &wbc); 723 else 724 writeback_inodes_wb(wb, &wbc); 725 trace_wbc_writeback_written(&wbc, wb->bdi); 726 727 work->nr_pages -= write_chunk - wbc.nr_to_write; 728 wrote += write_chunk - wbc.nr_to_write; 729 730 /* 731 * If we consumed everything, see if we have more 732 */ 733 if (wbc.nr_to_write <= 0) 734 continue; 735 /* 736 * Didn't write everything and we don't have more IO, bail 737 */ 738 if (!wbc.more_io) 739 break; 740 /* 741 * Did we write something? Try for more 742 */ 743 if (wbc.nr_to_write < write_chunk) 744 continue; 745 /* 746 * Nothing written. Wait for some inode to 747 * become available for writeback. Otherwise 748 * we'll just busyloop. 749 */ 750 spin_lock(&inode_wb_list_lock); 751 if (!list_empty(&wb->b_more_io)) { 752 inode = wb_inode(wb->b_more_io.prev); 753 trace_wbc_writeback_wait(&wbc, wb->bdi); 754 spin_lock(&inode->i_lock); 755 inode_wait_for_writeback(inode); 756 spin_unlock(&inode->i_lock); 757 } 758 spin_unlock(&inode_wb_list_lock); 759 } 760 761 return wrote; 762 } 763 764 /* 765 * Return the next wb_writeback_work struct that hasn't been processed yet. 766 */ 767 static struct wb_writeback_work * 768 get_next_work_item(struct backing_dev_info *bdi) 769 { 770 struct wb_writeback_work *work = NULL; 771 772 spin_lock_bh(&bdi->wb_lock); 773 if (!list_empty(&bdi->work_list)) { 774 work = list_entry(bdi->work_list.next, 775 struct wb_writeback_work, list); 776 list_del_init(&work->list); 777 } 778 spin_unlock_bh(&bdi->wb_lock); 779 return work; 780 } 781 782 /* 783 * Add in the number of potentially dirty inodes, because each inode 784 * write can dirty pagecache in the underlying blockdev. 785 */ 786 static unsigned long get_nr_dirty_pages(void) 787 { 788 return global_page_state(NR_FILE_DIRTY) + 789 global_page_state(NR_UNSTABLE_NFS) + 790 get_nr_dirty_inodes(); 791 } 792 793 static long wb_check_background_flush(struct bdi_writeback *wb) 794 { 795 if (over_bground_thresh()) { 796 797 struct wb_writeback_work work = { 798 .nr_pages = LONG_MAX, 799 .sync_mode = WB_SYNC_NONE, 800 .for_background = 1, 801 .range_cyclic = 1, 802 }; 803 804 return wb_writeback(wb, &work); 805 } 806 807 return 0; 808 } 809 810 static long wb_check_old_data_flush(struct bdi_writeback *wb) 811 { 812 unsigned long expired; 813 long nr_pages; 814 815 /* 816 * When set to zero, disable periodic writeback 817 */ 818 if (!dirty_writeback_interval) 819 return 0; 820 821 expired = wb->last_old_flush + 822 msecs_to_jiffies(dirty_writeback_interval * 10); 823 if (time_before(jiffies, expired)) 824 return 0; 825 826 wb->last_old_flush = jiffies; 827 nr_pages = get_nr_dirty_pages(); 828 829 if (nr_pages) { 830 struct wb_writeback_work work = { 831 .nr_pages = nr_pages, 832 .sync_mode = WB_SYNC_NONE, 833 .for_kupdate = 1, 834 .range_cyclic = 1, 835 }; 836 837 return wb_writeback(wb, &work); 838 } 839 840 return 0; 841 } 842 843 /* 844 * Retrieve work items and do the writeback they describe 845 */ 846 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 847 { 848 struct backing_dev_info *bdi = wb->bdi; 849 struct wb_writeback_work *work; 850 long wrote = 0; 851 852 set_bit(BDI_writeback_running, &wb->bdi->state); 853 while ((work = get_next_work_item(bdi)) != NULL) { 854 /* 855 * Override sync mode, in case we must wait for completion 856 * because this thread is exiting now. 857 */ 858 if (force_wait) 859 work->sync_mode = WB_SYNC_ALL; 860 861 trace_writeback_exec(bdi, work); 862 863 wrote += wb_writeback(wb, work); 864 865 /* 866 * Notify the caller of completion if this is a synchronous 867 * work item, otherwise just free it. 868 */ 869 if (work->done) 870 complete(work->done); 871 else 872 kfree(work); 873 } 874 875 /* 876 * Check for periodic writeback, kupdated() style 877 */ 878 wrote += wb_check_old_data_flush(wb); 879 wrote += wb_check_background_flush(wb); 880 clear_bit(BDI_writeback_running, &wb->bdi->state); 881 882 return wrote; 883 } 884 885 /* 886 * Handle writeback of dirty data for the device backed by this bdi. Also 887 * wakes up periodically and does kupdated style flushing. 888 */ 889 int bdi_writeback_thread(void *data) 890 { 891 struct bdi_writeback *wb = data; 892 struct backing_dev_info *bdi = wb->bdi; 893 long pages_written; 894 895 current->flags |= PF_SWAPWRITE; 896 set_freezable(); 897 wb->last_active = jiffies; 898 899 /* 900 * Our parent may run at a different priority, just set us to normal 901 */ 902 set_user_nice(current, 0); 903 904 trace_writeback_thread_start(bdi); 905 906 while (!kthread_should_stop()) { 907 /* 908 * Remove own delayed wake-up timer, since we are already awake 909 * and we'll take care of the preriodic write-back. 910 */ 911 del_timer(&wb->wakeup_timer); 912 913 pages_written = wb_do_writeback(wb, 0); 914 915 trace_writeback_pages_written(pages_written); 916 917 if (pages_written) 918 wb->last_active = jiffies; 919 920 set_current_state(TASK_INTERRUPTIBLE); 921 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 922 __set_current_state(TASK_RUNNING); 923 continue; 924 } 925 926 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 927 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 928 else { 929 /* 930 * We have nothing to do, so can go sleep without any 931 * timeout and save power. When a work is queued or 932 * something is made dirty - we will be woken up. 933 */ 934 schedule(); 935 } 936 937 try_to_freeze(); 938 } 939 940 /* Flush any work that raced with us exiting */ 941 if (!list_empty(&bdi->work_list)) 942 wb_do_writeback(wb, 1); 943 944 trace_writeback_thread_stop(bdi); 945 return 0; 946 } 947 948 949 /* 950 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 951 * the whole world. 952 */ 953 void wakeup_flusher_threads(long nr_pages) 954 { 955 struct backing_dev_info *bdi; 956 957 if (!nr_pages) { 958 nr_pages = global_page_state(NR_FILE_DIRTY) + 959 global_page_state(NR_UNSTABLE_NFS); 960 } 961 962 rcu_read_lock(); 963 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 964 if (!bdi_has_dirty_io(bdi)) 965 continue; 966 __bdi_start_writeback(bdi, nr_pages, false); 967 } 968 rcu_read_unlock(); 969 } 970 971 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 972 { 973 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 974 struct dentry *dentry; 975 const char *name = "?"; 976 977 dentry = d_find_alias(inode); 978 if (dentry) { 979 spin_lock(&dentry->d_lock); 980 name = (const char *) dentry->d_name.name; 981 } 982 printk(KERN_DEBUG 983 "%s(%d): dirtied inode %lu (%s) on %s\n", 984 current->comm, task_pid_nr(current), inode->i_ino, 985 name, inode->i_sb->s_id); 986 if (dentry) { 987 spin_unlock(&dentry->d_lock); 988 dput(dentry); 989 } 990 } 991 } 992 993 /** 994 * __mark_inode_dirty - internal function 995 * @inode: inode to mark 996 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 997 * Mark an inode as dirty. Callers should use mark_inode_dirty or 998 * mark_inode_dirty_sync. 999 * 1000 * Put the inode on the super block's dirty list. 1001 * 1002 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1003 * dirty list only if it is hashed or if it refers to a blockdev. 1004 * If it was not hashed, it will never be added to the dirty list 1005 * even if it is later hashed, as it will have been marked dirty already. 1006 * 1007 * In short, make sure you hash any inodes _before_ you start marking 1008 * them dirty. 1009 * 1010 * This function *must* be atomic for the I_DIRTY_PAGES case - 1011 * set_page_dirty() is called under spinlock in several places. 1012 * 1013 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1014 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1015 * the kernel-internal blockdev inode represents the dirtying time of the 1016 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1017 * page->mapping->host, so the page-dirtying time is recorded in the internal 1018 * blockdev inode. 1019 */ 1020 void __mark_inode_dirty(struct inode *inode, int flags) 1021 { 1022 struct super_block *sb = inode->i_sb; 1023 struct backing_dev_info *bdi = NULL; 1024 1025 /* 1026 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1027 * dirty the inode itself 1028 */ 1029 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1030 if (sb->s_op->dirty_inode) 1031 sb->s_op->dirty_inode(inode); 1032 } 1033 1034 /* 1035 * make sure that changes are seen by all cpus before we test i_state 1036 * -- mikulas 1037 */ 1038 smp_mb(); 1039 1040 /* avoid the locking if we can */ 1041 if ((inode->i_state & flags) == flags) 1042 return; 1043 1044 if (unlikely(block_dump)) 1045 block_dump___mark_inode_dirty(inode); 1046 1047 spin_lock(&inode->i_lock); 1048 if ((inode->i_state & flags) != flags) { 1049 const int was_dirty = inode->i_state & I_DIRTY; 1050 1051 inode->i_state |= flags; 1052 1053 /* 1054 * If the inode is being synced, just update its dirty state. 1055 * The unlocker will place the inode on the appropriate 1056 * superblock list, based upon its state. 1057 */ 1058 if (inode->i_state & I_SYNC) 1059 goto out_unlock_inode; 1060 1061 /* 1062 * Only add valid (hashed) inodes to the superblock's 1063 * dirty list. Add blockdev inodes as well. 1064 */ 1065 if (!S_ISBLK(inode->i_mode)) { 1066 if (inode_unhashed(inode)) 1067 goto out_unlock_inode; 1068 } 1069 if (inode->i_state & I_FREEING) 1070 goto out_unlock_inode; 1071 1072 /* 1073 * If the inode was already on b_dirty/b_io/b_more_io, don't 1074 * reposition it (that would break b_dirty time-ordering). 1075 */ 1076 if (!was_dirty) { 1077 bool wakeup_bdi = false; 1078 bdi = inode_to_bdi(inode); 1079 1080 if (bdi_cap_writeback_dirty(bdi)) { 1081 WARN(!test_bit(BDI_registered, &bdi->state), 1082 "bdi-%s not registered\n", bdi->name); 1083 1084 /* 1085 * If this is the first dirty inode for this 1086 * bdi, we have to wake-up the corresponding 1087 * bdi thread to make sure background 1088 * write-back happens later. 1089 */ 1090 if (!wb_has_dirty_io(&bdi->wb)) 1091 wakeup_bdi = true; 1092 } 1093 1094 spin_unlock(&inode->i_lock); 1095 spin_lock(&inode_wb_list_lock); 1096 inode->dirtied_when = jiffies; 1097 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1098 spin_unlock(&inode_wb_list_lock); 1099 1100 if (wakeup_bdi) 1101 bdi_wakeup_thread_delayed(bdi); 1102 return; 1103 } 1104 } 1105 out_unlock_inode: 1106 spin_unlock(&inode->i_lock); 1107 1108 } 1109 EXPORT_SYMBOL(__mark_inode_dirty); 1110 1111 /* 1112 * Write out a superblock's list of dirty inodes. A wait will be performed 1113 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1114 * 1115 * If older_than_this is non-NULL, then only write out inodes which 1116 * had their first dirtying at a time earlier than *older_than_this. 1117 * 1118 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1119 * This function assumes that the blockdev superblock's inodes are backed by 1120 * a variety of queues, so all inodes are searched. For other superblocks, 1121 * assume that all inodes are backed by the same queue. 1122 * 1123 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1124 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1125 * on the writer throttling path, and we get decent balancing between many 1126 * throttled threads: we don't want them all piling up on inode_sync_wait. 1127 */ 1128 static void wait_sb_inodes(struct super_block *sb) 1129 { 1130 struct inode *inode, *old_inode = NULL; 1131 1132 /* 1133 * We need to be protected against the filesystem going from 1134 * r/o to r/w or vice versa. 1135 */ 1136 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1137 1138 spin_lock(&inode_sb_list_lock); 1139 1140 /* 1141 * Data integrity sync. Must wait for all pages under writeback, 1142 * because there may have been pages dirtied before our sync 1143 * call, but which had writeout started before we write it out. 1144 * In which case, the inode may not be on the dirty list, but 1145 * we still have to wait for that writeout. 1146 */ 1147 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1148 struct address_space *mapping = inode->i_mapping; 1149 1150 spin_lock(&inode->i_lock); 1151 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1152 (mapping->nrpages == 0)) { 1153 spin_unlock(&inode->i_lock); 1154 continue; 1155 } 1156 __iget(inode); 1157 spin_unlock(&inode->i_lock); 1158 spin_unlock(&inode_sb_list_lock); 1159 1160 /* 1161 * We hold a reference to 'inode' so it couldn't have been 1162 * removed from s_inodes list while we dropped the 1163 * inode_sb_list_lock. We cannot iput the inode now as we can 1164 * be holding the last reference and we cannot iput it under 1165 * inode_sb_list_lock. So we keep the reference and iput it 1166 * later. 1167 */ 1168 iput(old_inode); 1169 old_inode = inode; 1170 1171 filemap_fdatawait(mapping); 1172 1173 cond_resched(); 1174 1175 spin_lock(&inode_sb_list_lock); 1176 } 1177 spin_unlock(&inode_sb_list_lock); 1178 iput(old_inode); 1179 } 1180 1181 /** 1182 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1183 * @sb: the superblock 1184 * @nr: the number of pages to write 1185 * 1186 * Start writeback on some inodes on this super_block. No guarantees are made 1187 * on how many (if any) will be written, and this function does not wait 1188 * for IO completion of submitted IO. 1189 */ 1190 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr) 1191 { 1192 DECLARE_COMPLETION_ONSTACK(done); 1193 struct wb_writeback_work work = { 1194 .sb = sb, 1195 .sync_mode = WB_SYNC_NONE, 1196 .done = &done, 1197 .nr_pages = nr, 1198 }; 1199 1200 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1201 bdi_queue_work(sb->s_bdi, &work); 1202 wait_for_completion(&done); 1203 } 1204 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1205 1206 /** 1207 * writeback_inodes_sb - writeback dirty inodes from given super_block 1208 * @sb: the superblock 1209 * 1210 * Start writeback on some inodes on this super_block. No guarantees are made 1211 * on how many (if any) will be written, and this function does not wait 1212 * for IO completion of submitted IO. 1213 */ 1214 void writeback_inodes_sb(struct super_block *sb) 1215 { 1216 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages()); 1217 } 1218 EXPORT_SYMBOL(writeback_inodes_sb); 1219 1220 /** 1221 * writeback_inodes_sb_if_idle - start writeback if none underway 1222 * @sb: the superblock 1223 * 1224 * Invoke writeback_inodes_sb if no writeback is currently underway. 1225 * Returns 1 if writeback was started, 0 if not. 1226 */ 1227 int writeback_inodes_sb_if_idle(struct super_block *sb) 1228 { 1229 if (!writeback_in_progress(sb->s_bdi)) { 1230 down_read(&sb->s_umount); 1231 writeback_inodes_sb(sb); 1232 up_read(&sb->s_umount); 1233 return 1; 1234 } else 1235 return 0; 1236 } 1237 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1238 1239 /** 1240 * writeback_inodes_sb_if_idle - start writeback if none underway 1241 * @sb: the superblock 1242 * @nr: the number of pages to write 1243 * 1244 * Invoke writeback_inodes_sb if no writeback is currently underway. 1245 * Returns 1 if writeback was started, 0 if not. 1246 */ 1247 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1248 unsigned long nr) 1249 { 1250 if (!writeback_in_progress(sb->s_bdi)) { 1251 down_read(&sb->s_umount); 1252 writeback_inodes_sb_nr(sb, nr); 1253 up_read(&sb->s_umount); 1254 return 1; 1255 } else 1256 return 0; 1257 } 1258 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1259 1260 /** 1261 * sync_inodes_sb - sync sb inode pages 1262 * @sb: the superblock 1263 * 1264 * This function writes and waits on any dirty inode belonging to this 1265 * super_block. 1266 */ 1267 void sync_inodes_sb(struct super_block *sb) 1268 { 1269 DECLARE_COMPLETION_ONSTACK(done); 1270 struct wb_writeback_work work = { 1271 .sb = sb, 1272 .sync_mode = WB_SYNC_ALL, 1273 .nr_pages = LONG_MAX, 1274 .range_cyclic = 0, 1275 .done = &done, 1276 }; 1277 1278 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1279 1280 bdi_queue_work(sb->s_bdi, &work); 1281 wait_for_completion(&done); 1282 1283 wait_sb_inodes(sb); 1284 } 1285 EXPORT_SYMBOL(sync_inodes_sb); 1286 1287 /** 1288 * write_inode_now - write an inode to disk 1289 * @inode: inode to write to disk 1290 * @sync: whether the write should be synchronous or not 1291 * 1292 * This function commits an inode to disk immediately if it is dirty. This is 1293 * primarily needed by knfsd. 1294 * 1295 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1296 */ 1297 int write_inode_now(struct inode *inode, int sync) 1298 { 1299 int ret; 1300 struct writeback_control wbc = { 1301 .nr_to_write = LONG_MAX, 1302 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1303 .range_start = 0, 1304 .range_end = LLONG_MAX, 1305 }; 1306 1307 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1308 wbc.nr_to_write = 0; 1309 1310 might_sleep(); 1311 spin_lock(&inode_wb_list_lock); 1312 spin_lock(&inode->i_lock); 1313 ret = writeback_single_inode(inode, &wbc); 1314 spin_unlock(&inode->i_lock); 1315 spin_unlock(&inode_wb_list_lock); 1316 if (sync) 1317 inode_sync_wait(inode); 1318 return ret; 1319 } 1320 EXPORT_SYMBOL(write_inode_now); 1321 1322 /** 1323 * sync_inode - write an inode and its pages to disk. 1324 * @inode: the inode to sync 1325 * @wbc: controls the writeback mode 1326 * 1327 * sync_inode() will write an inode and its pages to disk. It will also 1328 * correctly update the inode on its superblock's dirty inode lists and will 1329 * update inode->i_state. 1330 * 1331 * The caller must have a ref on the inode. 1332 */ 1333 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1334 { 1335 int ret; 1336 1337 spin_lock(&inode_wb_list_lock); 1338 spin_lock(&inode->i_lock); 1339 ret = writeback_single_inode(inode, wbc); 1340 spin_unlock(&inode->i_lock); 1341 spin_unlock(&inode_wb_list_lock); 1342 return ret; 1343 } 1344 EXPORT_SYMBOL(sync_inode); 1345 1346 /** 1347 * sync_inode_metadata - write an inode to disk 1348 * @inode: the inode to sync 1349 * @wait: wait for I/O to complete. 1350 * 1351 * Write an inode to disk and adjust its dirty state after completion. 1352 * 1353 * Note: only writes the actual inode, no associated data or other metadata. 1354 */ 1355 int sync_inode_metadata(struct inode *inode, int wait) 1356 { 1357 struct writeback_control wbc = { 1358 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1359 .nr_to_write = 0, /* metadata-only */ 1360 }; 1361 1362 return sync_inode(inode, &wbc); 1363 } 1364 EXPORT_SYMBOL(sync_inode_metadata); 1365