xref: /openbmc/linux/fs/fs-writeback.c (revision d46db3d58233be4be980eb1e42eebe7808bcabab)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * The maximum number of pages to writeout in a single bdi flush/kupdate
34  * operation.  We do this so we don't hold I_SYNC against an inode for
35  * enormous amounts of time, which would block a userspace task which has
36  * been forced to throttle against that inode.  Also, the code reevaluates
37  * the dirty each time it has written this many pages.
38  */
39 #define MAX_WRITEBACK_PAGES     1024L
40 
41 /*
42  * Passed into wb_writeback(), essentially a subset of writeback_control
43  */
44 struct wb_writeback_work {
45 	long nr_pages;
46 	struct super_block *sb;
47 	unsigned long *older_than_this;
48 	enum writeback_sync_modes sync_mode;
49 	unsigned int tagged_writepages:1;
50 	unsigned int for_kupdate:1;
51 	unsigned int range_cyclic:1;
52 	unsigned int for_background:1;
53 
54 	struct list_head list;		/* pending work list */
55 	struct completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * Include the creation of the trace points after defining the
60  * wb_writeback_work structure so that the definition remains local to this
61  * file.
62  */
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/writeback.h>
65 
66 /*
67  * We don't actually have pdflush, but this one is exported though /proc...
68  */
69 int nr_pdflush_threads;
70 
71 /**
72  * writeback_in_progress - determine whether there is writeback in progress
73  * @bdi: the device's backing_dev_info structure.
74  *
75  * Determine whether there is writeback waiting to be handled against a
76  * backing device.
77  */
78 int writeback_in_progress(struct backing_dev_info *bdi)
79 {
80 	return test_bit(BDI_writeback_running, &bdi->state);
81 }
82 
83 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
84 {
85 	struct super_block *sb = inode->i_sb;
86 
87 	if (strcmp(sb->s_type->name, "bdev") == 0)
88 		return inode->i_mapping->backing_dev_info;
89 
90 	return sb->s_bdi;
91 }
92 
93 static inline struct inode *wb_inode(struct list_head *head)
94 {
95 	return list_entry(head, struct inode, i_wb_list);
96 }
97 
98 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
99 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
100 {
101 	if (bdi->wb.task) {
102 		wake_up_process(bdi->wb.task);
103 	} else {
104 		/*
105 		 * The bdi thread isn't there, wake up the forker thread which
106 		 * will create and run it.
107 		 */
108 		wake_up_process(default_backing_dev_info.wb.task);
109 	}
110 }
111 
112 static void bdi_queue_work(struct backing_dev_info *bdi,
113 			   struct wb_writeback_work *work)
114 {
115 	trace_writeback_queue(bdi, work);
116 
117 	spin_lock_bh(&bdi->wb_lock);
118 	list_add_tail(&work->list, &bdi->work_list);
119 	if (!bdi->wb.task)
120 		trace_writeback_nothread(bdi, work);
121 	bdi_wakeup_flusher(bdi);
122 	spin_unlock_bh(&bdi->wb_lock);
123 }
124 
125 static void
126 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
127 		      bool range_cyclic)
128 {
129 	struct wb_writeback_work *work;
130 
131 	/*
132 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
133 	 * wakeup the thread for old dirty data writeback
134 	 */
135 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
136 	if (!work) {
137 		if (bdi->wb.task) {
138 			trace_writeback_nowork(bdi);
139 			wake_up_process(bdi->wb.task);
140 		}
141 		return;
142 	}
143 
144 	work->sync_mode	= WB_SYNC_NONE;
145 	work->nr_pages	= nr_pages;
146 	work->range_cyclic = range_cyclic;
147 
148 	bdi_queue_work(bdi, work);
149 }
150 
151 /**
152  * bdi_start_writeback - start writeback
153  * @bdi: the backing device to write from
154  * @nr_pages: the number of pages to write
155  *
156  * Description:
157  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
158  *   started when this function returns, we make no guarantees on
159  *   completion. Caller need not hold sb s_umount semaphore.
160  *
161  */
162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
163 {
164 	__bdi_start_writeback(bdi, nr_pages, true);
165 }
166 
167 /**
168  * bdi_start_background_writeback - start background writeback
169  * @bdi: the backing device to write from
170  *
171  * Description:
172  *   This makes sure WB_SYNC_NONE background writeback happens. When
173  *   this function returns, it is only guaranteed that for given BDI
174  *   some IO is happening if we are over background dirty threshold.
175  *   Caller need not hold sb s_umount semaphore.
176  */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179 	/*
180 	 * We just wake up the flusher thread. It will perform background
181 	 * writeback as soon as there is no other work to do.
182 	 */
183 	trace_writeback_wake_background(bdi);
184 	spin_lock_bh(&bdi->wb_lock);
185 	bdi_wakeup_flusher(bdi);
186 	spin_unlock_bh(&bdi->wb_lock);
187 }
188 
189 /*
190  * Remove the inode from the writeback list it is on.
191  */
192 void inode_wb_list_del(struct inode *inode)
193 {
194 	struct backing_dev_info *bdi = inode_to_bdi(inode);
195 
196 	spin_lock(&bdi->wb.list_lock);
197 	list_del_init(&inode->i_wb_list);
198 	spin_unlock(&bdi->wb.list_lock);
199 }
200 
201 /*
202  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203  * furthest end of its superblock's dirty-inode list.
204  *
205  * Before stamping the inode's ->dirtied_when, we check to see whether it is
206  * already the most-recently-dirtied inode on the b_dirty list.  If that is
207  * the case then the inode must have been redirtied while it was being written
208  * out and we don't reset its dirtied_when.
209  */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212 	assert_spin_locked(&wb->list_lock);
213 	if (!list_empty(&wb->b_dirty)) {
214 		struct inode *tail;
215 
216 		tail = wb_inode(wb->b_dirty.next);
217 		if (time_before(inode->dirtied_when, tail->dirtied_when))
218 			inode->dirtied_when = jiffies;
219 	}
220 	list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222 
223 /*
224  * requeue inode for re-scanning after bdi->b_io list is exhausted.
225  */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228 	assert_spin_locked(&wb->list_lock);
229 	list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231 
232 static void inode_sync_complete(struct inode *inode)
233 {
234 	/*
235 	 * Prevent speculative execution through
236 	 * spin_unlock(&wb->list_lock);
237 	 */
238 
239 	smp_mb();
240 	wake_up_bit(&inode->i_state, __I_SYNC);
241 }
242 
243 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
244 {
245 	bool ret = time_after(inode->dirtied_when, t);
246 #ifndef CONFIG_64BIT
247 	/*
248 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
249 	 * It _appears_ to be in the future, but is actually in distant past.
250 	 * This test is necessary to prevent such wrapped-around relative times
251 	 * from permanently stopping the whole bdi writeback.
252 	 */
253 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
254 #endif
255 	return ret;
256 }
257 
258 /*
259  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
260  */
261 static int move_expired_inodes(struct list_head *delaying_queue,
262 			       struct list_head *dispatch_queue,
263 			       unsigned long *older_than_this)
264 {
265 	LIST_HEAD(tmp);
266 	struct list_head *pos, *node;
267 	struct super_block *sb = NULL;
268 	struct inode *inode;
269 	int do_sb_sort = 0;
270 	int moved = 0;
271 
272 	while (!list_empty(delaying_queue)) {
273 		inode = wb_inode(delaying_queue->prev);
274 		if (older_than_this &&
275 		    inode_dirtied_after(inode, *older_than_this))
276 			break;
277 		if (sb && sb != inode->i_sb)
278 			do_sb_sort = 1;
279 		sb = inode->i_sb;
280 		list_move(&inode->i_wb_list, &tmp);
281 		moved++;
282 	}
283 
284 	/* just one sb in list, splice to dispatch_queue and we're done */
285 	if (!do_sb_sort) {
286 		list_splice(&tmp, dispatch_queue);
287 		goto out;
288 	}
289 
290 	/* Move inodes from one superblock together */
291 	while (!list_empty(&tmp)) {
292 		sb = wb_inode(tmp.prev)->i_sb;
293 		list_for_each_prev_safe(pos, node, &tmp) {
294 			inode = wb_inode(pos);
295 			if (inode->i_sb == sb)
296 				list_move(&inode->i_wb_list, dispatch_queue);
297 		}
298 	}
299 out:
300 	return moved;
301 }
302 
303 /*
304  * Queue all expired dirty inodes for io, eldest first.
305  * Before
306  *         newly dirtied     b_dirty    b_io    b_more_io
307  *         =============>    gf         edc     BA
308  * After
309  *         newly dirtied     b_dirty    b_io    b_more_io
310  *         =============>    g          fBAedc
311  *                                           |
312  *                                           +--> dequeue for IO
313  */
314 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
315 {
316 	int moved;
317 	assert_spin_locked(&wb->list_lock);
318 	list_splice_init(&wb->b_more_io, &wb->b_io);
319 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
320 	trace_writeback_queue_io(wb, older_than_this, moved);
321 }
322 
323 static int write_inode(struct inode *inode, struct writeback_control *wbc)
324 {
325 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
326 		return inode->i_sb->s_op->write_inode(inode, wbc);
327 	return 0;
328 }
329 
330 /*
331  * Wait for writeback on an inode to complete.
332  */
333 static void inode_wait_for_writeback(struct inode *inode,
334 				     struct bdi_writeback *wb)
335 {
336 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
337 	wait_queue_head_t *wqh;
338 
339 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
340 	while (inode->i_state & I_SYNC) {
341 		spin_unlock(&inode->i_lock);
342 		spin_unlock(&wb->list_lock);
343 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
344 		spin_lock(&wb->list_lock);
345 		spin_lock(&inode->i_lock);
346 	}
347 }
348 
349 /*
350  * Write out an inode's dirty pages.  Called under wb->list_lock and
351  * inode->i_lock.  Either the caller has an active reference on the inode or
352  * the inode has I_WILL_FREE set.
353  *
354  * If `wait' is set, wait on the writeout.
355  *
356  * The whole writeout design is quite complex and fragile.  We want to avoid
357  * starvation of particular inodes when others are being redirtied, prevent
358  * livelocks, etc.
359  */
360 static int
361 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
362 		       struct writeback_control *wbc)
363 {
364 	struct address_space *mapping = inode->i_mapping;
365 	long nr_to_write = wbc->nr_to_write;
366 	unsigned dirty;
367 	int ret;
368 
369 	assert_spin_locked(&wb->list_lock);
370 	assert_spin_locked(&inode->i_lock);
371 
372 	if (!atomic_read(&inode->i_count))
373 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
374 	else
375 		WARN_ON(inode->i_state & I_WILL_FREE);
376 
377 	if (inode->i_state & I_SYNC) {
378 		/*
379 		 * If this inode is locked for writeback and we are not doing
380 		 * writeback-for-data-integrity, move it to b_more_io so that
381 		 * writeback can proceed with the other inodes on s_io.
382 		 *
383 		 * We'll have another go at writing back this inode when we
384 		 * completed a full scan of b_io.
385 		 */
386 		if (wbc->sync_mode != WB_SYNC_ALL) {
387 			requeue_io(inode, wb);
388 			trace_writeback_single_inode_requeue(inode, wbc,
389 							     nr_to_write);
390 			return 0;
391 		}
392 
393 		/*
394 		 * It's a data-integrity sync.  We must wait.
395 		 */
396 		inode_wait_for_writeback(inode, wb);
397 	}
398 
399 	BUG_ON(inode->i_state & I_SYNC);
400 
401 	/* Set I_SYNC, reset I_DIRTY_PAGES */
402 	inode->i_state |= I_SYNC;
403 	inode->i_state &= ~I_DIRTY_PAGES;
404 	spin_unlock(&inode->i_lock);
405 	spin_unlock(&wb->list_lock);
406 
407 	ret = do_writepages(mapping, wbc);
408 
409 	/*
410 	 * Make sure to wait on the data before writing out the metadata.
411 	 * This is important for filesystems that modify metadata on data
412 	 * I/O completion.
413 	 */
414 	if (wbc->sync_mode == WB_SYNC_ALL) {
415 		int err = filemap_fdatawait(mapping);
416 		if (ret == 0)
417 			ret = err;
418 	}
419 
420 	/*
421 	 * Some filesystems may redirty the inode during the writeback
422 	 * due to delalloc, clear dirty metadata flags right before
423 	 * write_inode()
424 	 */
425 	spin_lock(&inode->i_lock);
426 	dirty = inode->i_state & I_DIRTY;
427 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
428 	spin_unlock(&inode->i_lock);
429 	/* Don't write the inode if only I_DIRTY_PAGES was set */
430 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
431 		int err = write_inode(inode, wbc);
432 		if (ret == 0)
433 			ret = err;
434 	}
435 
436 	spin_lock(&wb->list_lock);
437 	spin_lock(&inode->i_lock);
438 	inode->i_state &= ~I_SYNC;
439 	if (!(inode->i_state & I_FREEING)) {
440 		/*
441 		 * Sync livelock prevention. Each inode is tagged and synced in
442 		 * one shot. If still dirty, it will be redirty_tail()'ed below.
443 		 * Update the dirty time to prevent enqueue and sync it again.
444 		 */
445 		if ((inode->i_state & I_DIRTY) &&
446 		    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
447 			inode->dirtied_when = jiffies;
448 
449 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
450 			/*
451 			 * We didn't write back all the pages.  nfs_writepages()
452 			 * sometimes bales out without doing anything.
453 			 */
454 			inode->i_state |= I_DIRTY_PAGES;
455 			if (wbc->nr_to_write <= 0) {
456 				/*
457 				 * slice used up: queue for next turn
458 				 */
459 				requeue_io(inode, wb);
460 			} else {
461 				/*
462 				 * Writeback blocked by something other than
463 				 * congestion. Delay the inode for some time to
464 				 * avoid spinning on the CPU (100% iowait)
465 				 * retrying writeback of the dirty page/inode
466 				 * that cannot be performed immediately.
467 				 */
468 				redirty_tail(inode, wb);
469 			}
470 		} else if (inode->i_state & I_DIRTY) {
471 			/*
472 			 * Filesystems can dirty the inode during writeback
473 			 * operations, such as delayed allocation during
474 			 * submission or metadata updates after data IO
475 			 * completion.
476 			 */
477 			redirty_tail(inode, wb);
478 		} else {
479 			/*
480 			 * The inode is clean.  At this point we either have
481 			 * a reference to the inode or it's on it's way out.
482 			 * No need to add it back to the LRU.
483 			 */
484 			list_del_init(&inode->i_wb_list);
485 		}
486 	}
487 	inode_sync_complete(inode);
488 	trace_writeback_single_inode(inode, wbc, nr_to_write);
489 	return ret;
490 }
491 
492 /*
493  * For background writeback the caller does not have the sb pinned
494  * before calling writeback. So make sure that we do pin it, so it doesn't
495  * go away while we are writing inodes from it.
496  */
497 static bool pin_sb_for_writeback(struct super_block *sb)
498 {
499 	spin_lock(&sb_lock);
500 	if (list_empty(&sb->s_instances)) {
501 		spin_unlock(&sb_lock);
502 		return false;
503 	}
504 
505 	sb->s_count++;
506 	spin_unlock(&sb_lock);
507 
508 	if (down_read_trylock(&sb->s_umount)) {
509 		if (sb->s_root)
510 			return true;
511 		up_read(&sb->s_umount);
512 	}
513 
514 	put_super(sb);
515 	return false;
516 }
517 
518 static long writeback_chunk_size(struct wb_writeback_work *work)
519 {
520 	long pages;
521 
522 	/*
523 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
524 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
525 	 * here avoids calling into writeback_inodes_wb() more than once.
526 	 *
527 	 * The intended call sequence for WB_SYNC_ALL writeback is:
528 	 *
529 	 *      wb_writeback()
530 	 *          writeback_sb_inodes()       <== called only once
531 	 *              write_cache_pages()     <== called once for each inode
532 	 *                   (quickly) tag currently dirty pages
533 	 *                   (maybe slowly) sync all tagged pages
534 	 */
535 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
536 		pages = LONG_MAX;
537 	else
538 		pages = min(MAX_WRITEBACK_PAGES, work->nr_pages);
539 
540 	return pages;
541 }
542 
543 /*
544  * Write a portion of b_io inodes which belong to @sb.
545  *
546  * If @only_this_sb is true, then find and write all such
547  * inodes. Otherwise write only ones which go sequentially
548  * in reverse order.
549  *
550  * Return the number of pages and/or inodes written.
551  */
552 static long writeback_sb_inodes(struct super_block *sb,
553 				struct bdi_writeback *wb,
554 				struct wb_writeback_work *work)
555 {
556 	struct writeback_control wbc = {
557 		.sync_mode		= work->sync_mode,
558 		.tagged_writepages	= work->tagged_writepages,
559 		.for_kupdate		= work->for_kupdate,
560 		.for_background		= work->for_background,
561 		.range_cyclic		= work->range_cyclic,
562 		.range_start		= 0,
563 		.range_end		= LLONG_MAX,
564 	};
565 	unsigned long start_time = jiffies;
566 	long write_chunk;
567 	long wrote = 0;  /* count both pages and inodes */
568 
569 	while (!list_empty(&wb->b_io)) {
570 		struct inode *inode = wb_inode(wb->b_io.prev);
571 
572 		if (inode->i_sb != sb) {
573 			if (work->sb) {
574 				/*
575 				 * We only want to write back data for this
576 				 * superblock, move all inodes not belonging
577 				 * to it back onto the dirty list.
578 				 */
579 				redirty_tail(inode, wb);
580 				continue;
581 			}
582 
583 			/*
584 			 * The inode belongs to a different superblock.
585 			 * Bounce back to the caller to unpin this and
586 			 * pin the next superblock.
587 			 */
588 			break;
589 		}
590 
591 		/*
592 		 * Don't bother with new inodes or inodes beeing freed, first
593 		 * kind does not need peridic writeout yet, and for the latter
594 		 * kind writeout is handled by the freer.
595 		 */
596 		spin_lock(&inode->i_lock);
597 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
598 			spin_unlock(&inode->i_lock);
599 			requeue_io(inode, wb);
600 			continue;
601 		}
602 		__iget(inode);
603 		write_chunk = writeback_chunk_size(work);
604 		wbc.nr_to_write = write_chunk;
605 		wbc.pages_skipped = 0;
606 
607 		writeback_single_inode(inode, wb, &wbc);
608 
609 		work->nr_pages -= write_chunk - wbc.nr_to_write;
610 		wrote += write_chunk - wbc.nr_to_write;
611 		if (!(inode->i_state & I_DIRTY))
612 			wrote++;
613 		if (wbc.pages_skipped) {
614 			/*
615 			 * writeback is not making progress due to locked
616 			 * buffers.  Skip this inode for now.
617 			 */
618 			redirty_tail(inode, wb);
619 		}
620 		spin_unlock(&inode->i_lock);
621 		spin_unlock(&wb->list_lock);
622 		iput(inode);
623 		cond_resched();
624 		spin_lock(&wb->list_lock);
625 		/*
626 		 * bail out to wb_writeback() often enough to check
627 		 * background threshold and other termination conditions.
628 		 */
629 		if (wrote) {
630 			if (time_is_before_jiffies(start_time + HZ / 10UL))
631 				break;
632 			if (work->nr_pages <= 0)
633 				break;
634 		}
635 	}
636 	return wrote;
637 }
638 
639 static long __writeback_inodes_wb(struct bdi_writeback *wb,
640 				  struct wb_writeback_work *work)
641 {
642 	unsigned long start_time = jiffies;
643 	long wrote = 0;
644 
645 	while (!list_empty(&wb->b_io)) {
646 		struct inode *inode = wb_inode(wb->b_io.prev);
647 		struct super_block *sb = inode->i_sb;
648 
649 		if (!pin_sb_for_writeback(sb)) {
650 			requeue_io(inode, wb);
651 			continue;
652 		}
653 		wrote += writeback_sb_inodes(sb, wb, work);
654 		drop_super(sb);
655 
656 		/* refer to the same tests at the end of writeback_sb_inodes */
657 		if (wrote) {
658 			if (time_is_before_jiffies(start_time + HZ / 10UL))
659 				break;
660 			if (work->nr_pages <= 0)
661 				break;
662 		}
663 	}
664 	/* Leave any unwritten inodes on b_io */
665 	return wrote;
666 }
667 
668 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages)
669 {
670 	struct wb_writeback_work work = {
671 		.nr_pages	= nr_pages,
672 		.sync_mode	= WB_SYNC_NONE,
673 		.range_cyclic	= 1,
674 	};
675 
676 	spin_lock(&wb->list_lock);
677 	if (list_empty(&wb->b_io))
678 		queue_io(wb, NULL);
679 	__writeback_inodes_wb(wb, &work);
680 	spin_unlock(&wb->list_lock);
681 
682 	return nr_pages - work.nr_pages;
683 }
684 
685 static inline bool over_bground_thresh(void)
686 {
687 	unsigned long background_thresh, dirty_thresh;
688 
689 	global_dirty_limits(&background_thresh, &dirty_thresh);
690 
691 	return (global_page_state(NR_FILE_DIRTY) +
692 		global_page_state(NR_UNSTABLE_NFS) > background_thresh);
693 }
694 
695 /*
696  * Explicit flushing or periodic writeback of "old" data.
697  *
698  * Define "old": the first time one of an inode's pages is dirtied, we mark the
699  * dirtying-time in the inode's address_space.  So this periodic writeback code
700  * just walks the superblock inode list, writing back any inodes which are
701  * older than a specific point in time.
702  *
703  * Try to run once per dirty_writeback_interval.  But if a writeback event
704  * takes longer than a dirty_writeback_interval interval, then leave a
705  * one-second gap.
706  *
707  * older_than_this takes precedence over nr_to_write.  So we'll only write back
708  * all dirty pages if they are all attached to "old" mappings.
709  */
710 static long wb_writeback(struct bdi_writeback *wb,
711 			 struct wb_writeback_work *work)
712 {
713 	long nr_pages = work->nr_pages;
714 	unsigned long oldest_jif;
715 	struct inode *inode;
716 	long progress;
717 
718 	oldest_jif = jiffies;
719 	work->older_than_this = &oldest_jif;
720 
721 	spin_lock(&wb->list_lock);
722 	for (;;) {
723 		/*
724 		 * Stop writeback when nr_pages has been consumed
725 		 */
726 		if (work->nr_pages <= 0)
727 			break;
728 
729 		/*
730 		 * Background writeout and kupdate-style writeback may
731 		 * run forever. Stop them if there is other work to do
732 		 * so that e.g. sync can proceed. They'll be restarted
733 		 * after the other works are all done.
734 		 */
735 		if ((work->for_background || work->for_kupdate) &&
736 		    !list_empty(&wb->bdi->work_list))
737 			break;
738 
739 		/*
740 		 * For background writeout, stop when we are below the
741 		 * background dirty threshold
742 		 */
743 		if (work->for_background && !over_bground_thresh())
744 			break;
745 
746 		if (work->for_kupdate) {
747 			oldest_jif = jiffies -
748 				msecs_to_jiffies(dirty_expire_interval * 10);
749 			work->older_than_this = &oldest_jif;
750 		}
751 
752 		trace_writeback_start(wb->bdi, work);
753 		if (list_empty(&wb->b_io))
754 			queue_io(wb, work->older_than_this);
755 		if (work->sb)
756 			progress = writeback_sb_inodes(work->sb, wb, work);
757 		else
758 			progress = __writeback_inodes_wb(wb, work);
759 		trace_writeback_written(wb->bdi, work);
760 
761 		/*
762 		 * Did we write something? Try for more
763 		 *
764 		 * Dirty inodes are moved to b_io for writeback in batches.
765 		 * The completion of the current batch does not necessarily
766 		 * mean the overall work is done. So we keep looping as long
767 		 * as made some progress on cleaning pages or inodes.
768 		 */
769 		if (progress)
770 			continue;
771 		/*
772 		 * No more inodes for IO, bail
773 		 */
774 		if (list_empty(&wb->b_more_io))
775 			break;
776 		/*
777 		 * Nothing written. Wait for some inode to
778 		 * become available for writeback. Otherwise
779 		 * we'll just busyloop.
780 		 */
781 		if (!list_empty(&wb->b_more_io))  {
782 			trace_writeback_wait(wb->bdi, work);
783 			inode = wb_inode(wb->b_more_io.prev);
784 			spin_lock(&inode->i_lock);
785 			inode_wait_for_writeback(inode, wb);
786 			spin_unlock(&inode->i_lock);
787 		}
788 	}
789 	spin_unlock(&wb->list_lock);
790 
791 	return nr_pages - work->nr_pages;
792 }
793 
794 /*
795  * Return the next wb_writeback_work struct that hasn't been processed yet.
796  */
797 static struct wb_writeback_work *
798 get_next_work_item(struct backing_dev_info *bdi)
799 {
800 	struct wb_writeback_work *work = NULL;
801 
802 	spin_lock_bh(&bdi->wb_lock);
803 	if (!list_empty(&bdi->work_list)) {
804 		work = list_entry(bdi->work_list.next,
805 				  struct wb_writeback_work, list);
806 		list_del_init(&work->list);
807 	}
808 	spin_unlock_bh(&bdi->wb_lock);
809 	return work;
810 }
811 
812 /*
813  * Add in the number of potentially dirty inodes, because each inode
814  * write can dirty pagecache in the underlying blockdev.
815  */
816 static unsigned long get_nr_dirty_pages(void)
817 {
818 	return global_page_state(NR_FILE_DIRTY) +
819 		global_page_state(NR_UNSTABLE_NFS) +
820 		get_nr_dirty_inodes();
821 }
822 
823 static long wb_check_background_flush(struct bdi_writeback *wb)
824 {
825 	if (over_bground_thresh()) {
826 
827 		struct wb_writeback_work work = {
828 			.nr_pages	= LONG_MAX,
829 			.sync_mode	= WB_SYNC_NONE,
830 			.for_background	= 1,
831 			.range_cyclic	= 1,
832 		};
833 
834 		return wb_writeback(wb, &work);
835 	}
836 
837 	return 0;
838 }
839 
840 static long wb_check_old_data_flush(struct bdi_writeback *wb)
841 {
842 	unsigned long expired;
843 	long nr_pages;
844 
845 	/*
846 	 * When set to zero, disable periodic writeback
847 	 */
848 	if (!dirty_writeback_interval)
849 		return 0;
850 
851 	expired = wb->last_old_flush +
852 			msecs_to_jiffies(dirty_writeback_interval * 10);
853 	if (time_before(jiffies, expired))
854 		return 0;
855 
856 	wb->last_old_flush = jiffies;
857 	nr_pages = get_nr_dirty_pages();
858 
859 	if (nr_pages) {
860 		struct wb_writeback_work work = {
861 			.nr_pages	= nr_pages,
862 			.sync_mode	= WB_SYNC_NONE,
863 			.for_kupdate	= 1,
864 			.range_cyclic	= 1,
865 		};
866 
867 		return wb_writeback(wb, &work);
868 	}
869 
870 	return 0;
871 }
872 
873 /*
874  * Retrieve work items and do the writeback they describe
875  */
876 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
877 {
878 	struct backing_dev_info *bdi = wb->bdi;
879 	struct wb_writeback_work *work;
880 	long wrote = 0;
881 
882 	set_bit(BDI_writeback_running, &wb->bdi->state);
883 	while ((work = get_next_work_item(bdi)) != NULL) {
884 		/*
885 		 * Override sync mode, in case we must wait for completion
886 		 * because this thread is exiting now.
887 		 */
888 		if (force_wait)
889 			work->sync_mode = WB_SYNC_ALL;
890 
891 		trace_writeback_exec(bdi, work);
892 
893 		wrote += wb_writeback(wb, work);
894 
895 		/*
896 		 * Notify the caller of completion if this is a synchronous
897 		 * work item, otherwise just free it.
898 		 */
899 		if (work->done)
900 			complete(work->done);
901 		else
902 			kfree(work);
903 	}
904 
905 	/*
906 	 * Check for periodic writeback, kupdated() style
907 	 */
908 	wrote += wb_check_old_data_flush(wb);
909 	wrote += wb_check_background_flush(wb);
910 	clear_bit(BDI_writeback_running, &wb->bdi->state);
911 
912 	return wrote;
913 }
914 
915 /*
916  * Handle writeback of dirty data for the device backed by this bdi. Also
917  * wakes up periodically and does kupdated style flushing.
918  */
919 int bdi_writeback_thread(void *data)
920 {
921 	struct bdi_writeback *wb = data;
922 	struct backing_dev_info *bdi = wb->bdi;
923 	long pages_written;
924 
925 	current->flags |= PF_SWAPWRITE;
926 	set_freezable();
927 	wb->last_active = jiffies;
928 
929 	/*
930 	 * Our parent may run at a different priority, just set us to normal
931 	 */
932 	set_user_nice(current, 0);
933 
934 	trace_writeback_thread_start(bdi);
935 
936 	while (!kthread_should_stop()) {
937 		/*
938 		 * Remove own delayed wake-up timer, since we are already awake
939 		 * and we'll take care of the preriodic write-back.
940 		 */
941 		del_timer(&wb->wakeup_timer);
942 
943 		pages_written = wb_do_writeback(wb, 0);
944 
945 		trace_writeback_pages_written(pages_written);
946 
947 		if (pages_written)
948 			wb->last_active = jiffies;
949 
950 		set_current_state(TASK_INTERRUPTIBLE);
951 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
952 			__set_current_state(TASK_RUNNING);
953 			continue;
954 		}
955 
956 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
957 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
958 		else {
959 			/*
960 			 * We have nothing to do, so can go sleep without any
961 			 * timeout and save power. When a work is queued or
962 			 * something is made dirty - we will be woken up.
963 			 */
964 			schedule();
965 		}
966 
967 		try_to_freeze();
968 	}
969 
970 	/* Flush any work that raced with us exiting */
971 	if (!list_empty(&bdi->work_list))
972 		wb_do_writeback(wb, 1);
973 
974 	trace_writeback_thread_stop(bdi);
975 	return 0;
976 }
977 
978 
979 /*
980  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
981  * the whole world.
982  */
983 void wakeup_flusher_threads(long nr_pages)
984 {
985 	struct backing_dev_info *bdi;
986 
987 	if (!nr_pages) {
988 		nr_pages = global_page_state(NR_FILE_DIRTY) +
989 				global_page_state(NR_UNSTABLE_NFS);
990 	}
991 
992 	rcu_read_lock();
993 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
994 		if (!bdi_has_dirty_io(bdi))
995 			continue;
996 		__bdi_start_writeback(bdi, nr_pages, false);
997 	}
998 	rcu_read_unlock();
999 }
1000 
1001 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1002 {
1003 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1004 		struct dentry *dentry;
1005 		const char *name = "?";
1006 
1007 		dentry = d_find_alias(inode);
1008 		if (dentry) {
1009 			spin_lock(&dentry->d_lock);
1010 			name = (const char *) dentry->d_name.name;
1011 		}
1012 		printk(KERN_DEBUG
1013 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1014 		       current->comm, task_pid_nr(current), inode->i_ino,
1015 		       name, inode->i_sb->s_id);
1016 		if (dentry) {
1017 			spin_unlock(&dentry->d_lock);
1018 			dput(dentry);
1019 		}
1020 	}
1021 }
1022 
1023 /**
1024  *	__mark_inode_dirty -	internal function
1025  *	@inode: inode to mark
1026  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1027  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1028  *  	mark_inode_dirty_sync.
1029  *
1030  * Put the inode on the super block's dirty list.
1031  *
1032  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1033  * dirty list only if it is hashed or if it refers to a blockdev.
1034  * If it was not hashed, it will never be added to the dirty list
1035  * even if it is later hashed, as it will have been marked dirty already.
1036  *
1037  * In short, make sure you hash any inodes _before_ you start marking
1038  * them dirty.
1039  *
1040  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1041  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1042  * the kernel-internal blockdev inode represents the dirtying time of the
1043  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1044  * page->mapping->host, so the page-dirtying time is recorded in the internal
1045  * blockdev inode.
1046  */
1047 void __mark_inode_dirty(struct inode *inode, int flags)
1048 {
1049 	struct super_block *sb = inode->i_sb;
1050 	struct backing_dev_info *bdi = NULL;
1051 
1052 	/*
1053 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1054 	 * dirty the inode itself
1055 	 */
1056 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1057 		if (sb->s_op->dirty_inode)
1058 			sb->s_op->dirty_inode(inode, flags);
1059 	}
1060 
1061 	/*
1062 	 * make sure that changes are seen by all cpus before we test i_state
1063 	 * -- mikulas
1064 	 */
1065 	smp_mb();
1066 
1067 	/* avoid the locking if we can */
1068 	if ((inode->i_state & flags) == flags)
1069 		return;
1070 
1071 	if (unlikely(block_dump))
1072 		block_dump___mark_inode_dirty(inode);
1073 
1074 	spin_lock(&inode->i_lock);
1075 	if ((inode->i_state & flags) != flags) {
1076 		const int was_dirty = inode->i_state & I_DIRTY;
1077 
1078 		inode->i_state |= flags;
1079 
1080 		/*
1081 		 * If the inode is being synced, just update its dirty state.
1082 		 * The unlocker will place the inode on the appropriate
1083 		 * superblock list, based upon its state.
1084 		 */
1085 		if (inode->i_state & I_SYNC)
1086 			goto out_unlock_inode;
1087 
1088 		/*
1089 		 * Only add valid (hashed) inodes to the superblock's
1090 		 * dirty list.  Add blockdev inodes as well.
1091 		 */
1092 		if (!S_ISBLK(inode->i_mode)) {
1093 			if (inode_unhashed(inode))
1094 				goto out_unlock_inode;
1095 		}
1096 		if (inode->i_state & I_FREEING)
1097 			goto out_unlock_inode;
1098 
1099 		/*
1100 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1101 		 * reposition it (that would break b_dirty time-ordering).
1102 		 */
1103 		if (!was_dirty) {
1104 			bool wakeup_bdi = false;
1105 			bdi = inode_to_bdi(inode);
1106 
1107 			if (bdi_cap_writeback_dirty(bdi)) {
1108 				WARN(!test_bit(BDI_registered, &bdi->state),
1109 				     "bdi-%s not registered\n", bdi->name);
1110 
1111 				/*
1112 				 * If this is the first dirty inode for this
1113 				 * bdi, we have to wake-up the corresponding
1114 				 * bdi thread to make sure background
1115 				 * write-back happens later.
1116 				 */
1117 				if (!wb_has_dirty_io(&bdi->wb))
1118 					wakeup_bdi = true;
1119 			}
1120 
1121 			spin_unlock(&inode->i_lock);
1122 			spin_lock(&bdi->wb.list_lock);
1123 			inode->dirtied_when = jiffies;
1124 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1125 			spin_unlock(&bdi->wb.list_lock);
1126 
1127 			if (wakeup_bdi)
1128 				bdi_wakeup_thread_delayed(bdi);
1129 			return;
1130 		}
1131 	}
1132 out_unlock_inode:
1133 	spin_unlock(&inode->i_lock);
1134 
1135 }
1136 EXPORT_SYMBOL(__mark_inode_dirty);
1137 
1138 /*
1139  * Write out a superblock's list of dirty inodes.  A wait will be performed
1140  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1141  *
1142  * If older_than_this is non-NULL, then only write out inodes which
1143  * had their first dirtying at a time earlier than *older_than_this.
1144  *
1145  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1146  * This function assumes that the blockdev superblock's inodes are backed by
1147  * a variety of queues, so all inodes are searched.  For other superblocks,
1148  * assume that all inodes are backed by the same queue.
1149  *
1150  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1151  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1152  * on the writer throttling path, and we get decent balancing between many
1153  * throttled threads: we don't want them all piling up on inode_sync_wait.
1154  */
1155 static void wait_sb_inodes(struct super_block *sb)
1156 {
1157 	struct inode *inode, *old_inode = NULL;
1158 
1159 	/*
1160 	 * We need to be protected against the filesystem going from
1161 	 * r/o to r/w or vice versa.
1162 	 */
1163 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1164 
1165 	spin_lock(&inode_sb_list_lock);
1166 
1167 	/*
1168 	 * Data integrity sync. Must wait for all pages under writeback,
1169 	 * because there may have been pages dirtied before our sync
1170 	 * call, but which had writeout started before we write it out.
1171 	 * In which case, the inode may not be on the dirty list, but
1172 	 * we still have to wait for that writeout.
1173 	 */
1174 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1175 		struct address_space *mapping = inode->i_mapping;
1176 
1177 		spin_lock(&inode->i_lock);
1178 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1179 		    (mapping->nrpages == 0)) {
1180 			spin_unlock(&inode->i_lock);
1181 			continue;
1182 		}
1183 		__iget(inode);
1184 		spin_unlock(&inode->i_lock);
1185 		spin_unlock(&inode_sb_list_lock);
1186 
1187 		/*
1188 		 * We hold a reference to 'inode' so it couldn't have been
1189 		 * removed from s_inodes list while we dropped the
1190 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1191 		 * be holding the last reference and we cannot iput it under
1192 		 * inode_sb_list_lock. So we keep the reference and iput it
1193 		 * later.
1194 		 */
1195 		iput(old_inode);
1196 		old_inode = inode;
1197 
1198 		filemap_fdatawait(mapping);
1199 
1200 		cond_resched();
1201 
1202 		spin_lock(&inode_sb_list_lock);
1203 	}
1204 	spin_unlock(&inode_sb_list_lock);
1205 	iput(old_inode);
1206 }
1207 
1208 /**
1209  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1210  * @sb: the superblock
1211  * @nr: the number of pages to write
1212  *
1213  * Start writeback on some inodes on this super_block. No guarantees are made
1214  * on how many (if any) will be written, and this function does not wait
1215  * for IO completion of submitted IO.
1216  */
1217 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1218 {
1219 	DECLARE_COMPLETION_ONSTACK(done);
1220 	struct wb_writeback_work work = {
1221 		.sb			= sb,
1222 		.sync_mode		= WB_SYNC_NONE,
1223 		.tagged_writepages	= 1,
1224 		.done			= &done,
1225 		.nr_pages		= nr,
1226 	};
1227 
1228 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1229 	bdi_queue_work(sb->s_bdi, &work);
1230 	wait_for_completion(&done);
1231 }
1232 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1233 
1234 /**
1235  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1236  * @sb: the superblock
1237  *
1238  * Start writeback on some inodes on this super_block. No guarantees are made
1239  * on how many (if any) will be written, and this function does not wait
1240  * for IO completion of submitted IO.
1241  */
1242 void writeback_inodes_sb(struct super_block *sb)
1243 {
1244 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1245 }
1246 EXPORT_SYMBOL(writeback_inodes_sb);
1247 
1248 /**
1249  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1250  * @sb: the superblock
1251  *
1252  * Invoke writeback_inodes_sb if no writeback is currently underway.
1253  * Returns 1 if writeback was started, 0 if not.
1254  */
1255 int writeback_inodes_sb_if_idle(struct super_block *sb)
1256 {
1257 	if (!writeback_in_progress(sb->s_bdi)) {
1258 		down_read(&sb->s_umount);
1259 		writeback_inodes_sb(sb);
1260 		up_read(&sb->s_umount);
1261 		return 1;
1262 	} else
1263 		return 0;
1264 }
1265 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1266 
1267 /**
1268  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1269  * @sb: the superblock
1270  * @nr: the number of pages to write
1271  *
1272  * Invoke writeback_inodes_sb if no writeback is currently underway.
1273  * Returns 1 if writeback was started, 0 if not.
1274  */
1275 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1276 				   unsigned long nr)
1277 {
1278 	if (!writeback_in_progress(sb->s_bdi)) {
1279 		down_read(&sb->s_umount);
1280 		writeback_inodes_sb_nr(sb, nr);
1281 		up_read(&sb->s_umount);
1282 		return 1;
1283 	} else
1284 		return 0;
1285 }
1286 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1287 
1288 /**
1289  * sync_inodes_sb	-	sync sb inode pages
1290  * @sb: the superblock
1291  *
1292  * This function writes and waits on any dirty inode belonging to this
1293  * super_block.
1294  */
1295 void sync_inodes_sb(struct super_block *sb)
1296 {
1297 	DECLARE_COMPLETION_ONSTACK(done);
1298 	struct wb_writeback_work work = {
1299 		.sb		= sb,
1300 		.sync_mode	= WB_SYNC_ALL,
1301 		.nr_pages	= LONG_MAX,
1302 		.range_cyclic	= 0,
1303 		.done		= &done,
1304 	};
1305 
1306 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1307 
1308 	bdi_queue_work(sb->s_bdi, &work);
1309 	wait_for_completion(&done);
1310 
1311 	wait_sb_inodes(sb);
1312 }
1313 EXPORT_SYMBOL(sync_inodes_sb);
1314 
1315 /**
1316  * write_inode_now	-	write an inode to disk
1317  * @inode: inode to write to disk
1318  * @sync: whether the write should be synchronous or not
1319  *
1320  * This function commits an inode to disk immediately if it is dirty. This is
1321  * primarily needed by knfsd.
1322  *
1323  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1324  */
1325 int write_inode_now(struct inode *inode, int sync)
1326 {
1327 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1328 	int ret;
1329 	struct writeback_control wbc = {
1330 		.nr_to_write = LONG_MAX,
1331 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1332 		.range_start = 0,
1333 		.range_end = LLONG_MAX,
1334 	};
1335 
1336 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1337 		wbc.nr_to_write = 0;
1338 
1339 	might_sleep();
1340 	spin_lock(&wb->list_lock);
1341 	spin_lock(&inode->i_lock);
1342 	ret = writeback_single_inode(inode, wb, &wbc);
1343 	spin_unlock(&inode->i_lock);
1344 	spin_unlock(&wb->list_lock);
1345 	if (sync)
1346 		inode_sync_wait(inode);
1347 	return ret;
1348 }
1349 EXPORT_SYMBOL(write_inode_now);
1350 
1351 /**
1352  * sync_inode - write an inode and its pages to disk.
1353  * @inode: the inode to sync
1354  * @wbc: controls the writeback mode
1355  *
1356  * sync_inode() will write an inode and its pages to disk.  It will also
1357  * correctly update the inode on its superblock's dirty inode lists and will
1358  * update inode->i_state.
1359  *
1360  * The caller must have a ref on the inode.
1361  */
1362 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1363 {
1364 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1365 	int ret;
1366 
1367 	spin_lock(&wb->list_lock);
1368 	spin_lock(&inode->i_lock);
1369 	ret = writeback_single_inode(inode, wb, wbc);
1370 	spin_unlock(&inode->i_lock);
1371 	spin_unlock(&wb->list_lock);
1372 	return ret;
1373 }
1374 EXPORT_SYMBOL(sync_inode);
1375 
1376 /**
1377  * sync_inode_metadata - write an inode to disk
1378  * @inode: the inode to sync
1379  * @wait: wait for I/O to complete.
1380  *
1381  * Write an inode to disk and adjust its dirty state after completion.
1382  *
1383  * Note: only writes the actual inode, no associated data or other metadata.
1384  */
1385 int sync_inode_metadata(struct inode *inode, int wait)
1386 {
1387 	struct writeback_control wbc = {
1388 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1389 		.nr_to_write = 0, /* metadata-only */
1390 	};
1391 
1392 	return sync_inode(inode, &wbc);
1393 }
1394 EXPORT_SYMBOL(sync_inode_metadata);
1395