1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 unsigned long *older_than_this; 46 enum writeback_sync_modes sync_mode; 47 unsigned int tagged_writepages:1; 48 unsigned int for_kupdate:1; 49 unsigned int range_cyclic:1; 50 unsigned int for_background:1; 51 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 52 unsigned int auto_free:1; /* free on completion */ 53 enum wb_reason reason; /* why was writeback initiated? */ 54 55 struct list_head list; /* pending work list */ 56 struct wb_completion *done; /* set if the caller waits */ 57 }; 58 59 /* 60 * If an inode is constantly having its pages dirtied, but then the 61 * updates stop dirtytime_expire_interval seconds in the past, it's 62 * possible for the worst case time between when an inode has its 63 * timestamps updated and when they finally get written out to be two 64 * dirtytime_expire_intervals. We set the default to 12 hours (in 65 * seconds), which means most of the time inodes will have their 66 * timestamps written to disk after 12 hours, but in the worst case a 67 * few inodes might not their timestamps updated for 24 hours. 68 */ 69 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 70 71 static inline struct inode *wb_inode(struct list_head *head) 72 { 73 return list_entry(head, struct inode, i_io_list); 74 } 75 76 /* 77 * Include the creation of the trace points after defining the 78 * wb_writeback_work structure and inline functions so that the definition 79 * remains local to this file. 80 */ 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/writeback.h> 83 84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 85 86 static bool wb_io_lists_populated(struct bdi_writeback *wb) 87 { 88 if (wb_has_dirty_io(wb)) { 89 return false; 90 } else { 91 set_bit(WB_has_dirty_io, &wb->state); 92 WARN_ON_ONCE(!wb->avg_write_bandwidth); 93 atomic_long_add(wb->avg_write_bandwidth, 94 &wb->bdi->tot_write_bandwidth); 95 return true; 96 } 97 } 98 99 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 100 { 101 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 102 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 103 clear_bit(WB_has_dirty_io, &wb->state); 104 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 105 &wb->bdi->tot_write_bandwidth) < 0); 106 } 107 } 108 109 /** 110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 111 * @inode: inode to be moved 112 * @wb: target bdi_writeback 113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 114 * 115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 116 * Returns %true if @inode is the first occupant of the !dirty_time IO 117 * lists; otherwise, %false. 118 */ 119 static bool inode_io_list_move_locked(struct inode *inode, 120 struct bdi_writeback *wb, 121 struct list_head *head) 122 { 123 assert_spin_locked(&wb->list_lock); 124 125 list_move(&inode->i_io_list, head); 126 127 /* dirty_time doesn't count as dirty_io until expiration */ 128 if (head != &wb->b_dirty_time) 129 return wb_io_lists_populated(wb); 130 131 wb_io_lists_depopulated(wb); 132 return false; 133 } 134 135 /** 136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 137 * @inode: inode to be removed 138 * @wb: bdi_writeback @inode is being removed from 139 * 140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 141 * clear %WB_has_dirty_io if all are empty afterwards. 142 */ 143 static void inode_io_list_del_locked(struct inode *inode, 144 struct bdi_writeback *wb) 145 { 146 assert_spin_locked(&wb->list_lock); 147 assert_spin_locked(&inode->i_lock); 148 149 inode->i_state &= ~I_SYNC_QUEUED; 150 list_del_init(&inode->i_io_list); 151 wb_io_lists_depopulated(wb); 152 } 153 154 static void wb_wakeup(struct bdi_writeback *wb) 155 { 156 spin_lock_bh(&wb->work_lock); 157 if (test_bit(WB_registered, &wb->state)) 158 mod_delayed_work(bdi_wq, &wb->dwork, 0); 159 spin_unlock_bh(&wb->work_lock); 160 } 161 162 static void finish_writeback_work(struct bdi_writeback *wb, 163 struct wb_writeback_work *work) 164 { 165 struct wb_completion *done = work->done; 166 167 if (work->auto_free) 168 kfree(work); 169 if (done) { 170 wait_queue_head_t *waitq = done->waitq; 171 172 /* @done can't be accessed after the following dec */ 173 if (atomic_dec_and_test(&done->cnt)) 174 wake_up_all(waitq); 175 } 176 } 177 178 static void wb_queue_work(struct bdi_writeback *wb, 179 struct wb_writeback_work *work) 180 { 181 trace_writeback_queue(wb, work); 182 183 if (work->done) 184 atomic_inc(&work->done->cnt); 185 186 spin_lock_bh(&wb->work_lock); 187 188 if (test_bit(WB_registered, &wb->state)) { 189 list_add_tail(&work->list, &wb->work_list); 190 mod_delayed_work(bdi_wq, &wb->dwork, 0); 191 } else 192 finish_writeback_work(wb, work); 193 194 spin_unlock_bh(&wb->work_lock); 195 } 196 197 /** 198 * wb_wait_for_completion - wait for completion of bdi_writeback_works 199 * @done: target wb_completion 200 * 201 * Wait for one or more work items issued to @bdi with their ->done field 202 * set to @done, which should have been initialized with 203 * DEFINE_WB_COMPLETION(). This function returns after all such work items 204 * are completed. Work items which are waited upon aren't freed 205 * automatically on completion. 206 */ 207 void wb_wait_for_completion(struct wb_completion *done) 208 { 209 atomic_dec(&done->cnt); /* put down the initial count */ 210 wait_event(*done->waitq, !atomic_read(&done->cnt)); 211 } 212 213 #ifdef CONFIG_CGROUP_WRITEBACK 214 215 /* 216 * Parameters for foreign inode detection, see wbc_detach_inode() to see 217 * how they're used. 218 * 219 * These paramters are inherently heuristical as the detection target 220 * itself is fuzzy. All we want to do is detaching an inode from the 221 * current owner if it's being written to by some other cgroups too much. 222 * 223 * The current cgroup writeback is built on the assumption that multiple 224 * cgroups writing to the same inode concurrently is very rare and a mode 225 * of operation which isn't well supported. As such, the goal is not 226 * taking too long when a different cgroup takes over an inode while 227 * avoiding too aggressive flip-flops from occasional foreign writes. 228 * 229 * We record, very roughly, 2s worth of IO time history and if more than 230 * half of that is foreign, trigger the switch. The recording is quantized 231 * to 16 slots. To avoid tiny writes from swinging the decision too much, 232 * writes smaller than 1/8 of avg size are ignored. 233 */ 234 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 235 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 236 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 237 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 238 239 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 240 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 241 /* each slot's duration is 2s / 16 */ 242 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 243 /* if foreign slots >= 8, switch */ 244 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 245 /* one round can affect upto 5 slots */ 246 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 247 248 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 249 static struct workqueue_struct *isw_wq; 250 251 void __inode_attach_wb(struct inode *inode, struct page *page) 252 { 253 struct backing_dev_info *bdi = inode_to_bdi(inode); 254 struct bdi_writeback *wb = NULL; 255 256 if (inode_cgwb_enabled(inode)) { 257 struct cgroup_subsys_state *memcg_css; 258 259 if (page) { 260 memcg_css = mem_cgroup_css_from_page(page); 261 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 262 } else { 263 /* must pin memcg_css, see wb_get_create() */ 264 memcg_css = task_get_css(current, memory_cgrp_id); 265 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 266 css_put(memcg_css); 267 } 268 } 269 270 if (!wb) 271 wb = &bdi->wb; 272 273 /* 274 * There may be multiple instances of this function racing to 275 * update the same inode. Use cmpxchg() to tell the winner. 276 */ 277 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 278 wb_put(wb); 279 } 280 EXPORT_SYMBOL_GPL(__inode_attach_wb); 281 282 /** 283 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 284 * @inode: inode of interest with i_lock held 285 * 286 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 287 * held on entry and is released on return. The returned wb is guaranteed 288 * to stay @inode's associated wb until its list_lock is released. 289 */ 290 static struct bdi_writeback * 291 locked_inode_to_wb_and_lock_list(struct inode *inode) 292 __releases(&inode->i_lock) 293 __acquires(&wb->list_lock) 294 { 295 while (true) { 296 struct bdi_writeback *wb = inode_to_wb(inode); 297 298 /* 299 * inode_to_wb() association is protected by both 300 * @inode->i_lock and @wb->list_lock but list_lock nests 301 * outside i_lock. Drop i_lock and verify that the 302 * association hasn't changed after acquiring list_lock. 303 */ 304 wb_get(wb); 305 spin_unlock(&inode->i_lock); 306 spin_lock(&wb->list_lock); 307 308 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 309 if (likely(wb == inode->i_wb)) { 310 wb_put(wb); /* @inode already has ref */ 311 return wb; 312 } 313 314 spin_unlock(&wb->list_lock); 315 wb_put(wb); 316 cpu_relax(); 317 spin_lock(&inode->i_lock); 318 } 319 } 320 321 /** 322 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 323 * @inode: inode of interest 324 * 325 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 326 * on entry. 327 */ 328 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 329 __acquires(&wb->list_lock) 330 { 331 spin_lock(&inode->i_lock); 332 return locked_inode_to_wb_and_lock_list(inode); 333 } 334 335 struct inode_switch_wbs_context { 336 struct inode *inode; 337 struct bdi_writeback *new_wb; 338 339 struct rcu_head rcu_head; 340 struct work_struct work; 341 }; 342 343 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 344 { 345 down_write(&bdi->wb_switch_rwsem); 346 } 347 348 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 349 { 350 up_write(&bdi->wb_switch_rwsem); 351 } 352 353 static void inode_switch_wbs_work_fn(struct work_struct *work) 354 { 355 struct inode_switch_wbs_context *isw = 356 container_of(work, struct inode_switch_wbs_context, work); 357 struct inode *inode = isw->inode; 358 struct backing_dev_info *bdi = inode_to_bdi(inode); 359 struct address_space *mapping = inode->i_mapping; 360 struct bdi_writeback *old_wb = inode->i_wb; 361 struct bdi_writeback *new_wb = isw->new_wb; 362 XA_STATE(xas, &mapping->i_pages, 0); 363 struct page *page; 364 bool switched = false; 365 366 /* 367 * If @inode switches cgwb membership while sync_inodes_sb() is 368 * being issued, sync_inodes_sb() might miss it. Synchronize. 369 */ 370 down_read(&bdi->wb_switch_rwsem); 371 372 /* 373 * By the time control reaches here, RCU grace period has passed 374 * since I_WB_SWITCH assertion and all wb stat update transactions 375 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 376 * synchronizing against the i_pages lock. 377 * 378 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 379 * gives us exclusion against all wb related operations on @inode 380 * including IO list manipulations and stat updates. 381 */ 382 if (old_wb < new_wb) { 383 spin_lock(&old_wb->list_lock); 384 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 385 } else { 386 spin_lock(&new_wb->list_lock); 387 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 388 } 389 spin_lock(&inode->i_lock); 390 xa_lock_irq(&mapping->i_pages); 391 392 /* 393 * Once I_FREEING is visible under i_lock, the eviction path owns 394 * the inode and we shouldn't modify ->i_io_list. 395 */ 396 if (unlikely(inode->i_state & I_FREEING)) 397 goto skip_switch; 398 399 trace_inode_switch_wbs(inode, old_wb, new_wb); 400 401 /* 402 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 403 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 404 * pages actually under writeback. 405 */ 406 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 407 if (PageDirty(page)) { 408 dec_wb_stat(old_wb, WB_RECLAIMABLE); 409 inc_wb_stat(new_wb, WB_RECLAIMABLE); 410 } 411 } 412 413 xas_set(&xas, 0); 414 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 415 WARN_ON_ONCE(!PageWriteback(page)); 416 dec_wb_stat(old_wb, WB_WRITEBACK); 417 inc_wb_stat(new_wb, WB_WRITEBACK); 418 } 419 420 wb_get(new_wb); 421 422 /* 423 * Transfer to @new_wb's IO list if necessary. The specific list 424 * @inode was on is ignored and the inode is put on ->b_dirty which 425 * is always correct including from ->b_dirty_time. The transfer 426 * preserves @inode->dirtied_when ordering. 427 */ 428 if (!list_empty(&inode->i_io_list)) { 429 struct inode *pos; 430 431 inode_io_list_del_locked(inode, old_wb); 432 inode->i_wb = new_wb; 433 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 434 if (time_after_eq(inode->dirtied_when, 435 pos->dirtied_when)) 436 break; 437 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 438 } else { 439 inode->i_wb = new_wb; 440 } 441 442 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 443 inode->i_wb_frn_winner = 0; 444 inode->i_wb_frn_avg_time = 0; 445 inode->i_wb_frn_history = 0; 446 switched = true; 447 skip_switch: 448 /* 449 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 450 * ensures that the new wb is visible if they see !I_WB_SWITCH. 451 */ 452 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 453 454 xa_unlock_irq(&mapping->i_pages); 455 spin_unlock(&inode->i_lock); 456 spin_unlock(&new_wb->list_lock); 457 spin_unlock(&old_wb->list_lock); 458 459 up_read(&bdi->wb_switch_rwsem); 460 461 if (switched) { 462 wb_wakeup(new_wb); 463 wb_put(old_wb); 464 } 465 wb_put(new_wb); 466 467 iput(inode); 468 kfree(isw); 469 470 atomic_dec(&isw_nr_in_flight); 471 } 472 473 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 474 { 475 struct inode_switch_wbs_context *isw = container_of(rcu_head, 476 struct inode_switch_wbs_context, rcu_head); 477 478 /* needs to grab bh-unsafe locks, bounce to work item */ 479 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 480 queue_work(isw_wq, &isw->work); 481 } 482 483 /** 484 * inode_switch_wbs - change the wb association of an inode 485 * @inode: target inode 486 * @new_wb_id: ID of the new wb 487 * 488 * Switch @inode's wb association to the wb identified by @new_wb_id. The 489 * switching is performed asynchronously and may fail silently. 490 */ 491 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 492 { 493 struct backing_dev_info *bdi = inode_to_bdi(inode); 494 struct cgroup_subsys_state *memcg_css; 495 struct inode_switch_wbs_context *isw; 496 497 /* noop if seems to be already in progress */ 498 if (inode->i_state & I_WB_SWITCH) 499 return; 500 501 /* avoid queueing a new switch if too many are already in flight */ 502 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 503 return; 504 505 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 506 if (!isw) 507 return; 508 509 /* find and pin the new wb */ 510 rcu_read_lock(); 511 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 512 if (memcg_css) 513 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 514 rcu_read_unlock(); 515 if (!isw->new_wb) 516 goto out_free; 517 518 /* while holding I_WB_SWITCH, no one else can update the association */ 519 spin_lock(&inode->i_lock); 520 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 521 inode->i_state & (I_WB_SWITCH | I_FREEING) || 522 inode_to_wb(inode) == isw->new_wb) { 523 spin_unlock(&inode->i_lock); 524 goto out_free; 525 } 526 inode->i_state |= I_WB_SWITCH; 527 __iget(inode); 528 spin_unlock(&inode->i_lock); 529 530 isw->inode = inode; 531 532 /* 533 * In addition to synchronizing among switchers, I_WB_SWITCH tells 534 * the RCU protected stat update paths to grab the i_page 535 * lock so that stat transfer can synchronize against them. 536 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 537 */ 538 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 539 540 atomic_inc(&isw_nr_in_flight); 541 return; 542 543 out_free: 544 if (isw->new_wb) 545 wb_put(isw->new_wb); 546 kfree(isw); 547 } 548 549 /** 550 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 551 * @wbc: writeback_control of interest 552 * @inode: target inode 553 * 554 * @inode is locked and about to be written back under the control of @wbc. 555 * Record @inode's writeback context into @wbc and unlock the i_lock. On 556 * writeback completion, wbc_detach_inode() should be called. This is used 557 * to track the cgroup writeback context. 558 */ 559 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 560 struct inode *inode) 561 { 562 if (!inode_cgwb_enabled(inode)) { 563 spin_unlock(&inode->i_lock); 564 return; 565 } 566 567 wbc->wb = inode_to_wb(inode); 568 wbc->inode = inode; 569 570 wbc->wb_id = wbc->wb->memcg_css->id; 571 wbc->wb_lcand_id = inode->i_wb_frn_winner; 572 wbc->wb_tcand_id = 0; 573 wbc->wb_bytes = 0; 574 wbc->wb_lcand_bytes = 0; 575 wbc->wb_tcand_bytes = 0; 576 577 wb_get(wbc->wb); 578 spin_unlock(&inode->i_lock); 579 580 /* 581 * A dying wb indicates that either the blkcg associated with the 582 * memcg changed or the associated memcg is dying. In the first 583 * case, a replacement wb should already be available and we should 584 * refresh the wb immediately. In the second case, trying to 585 * refresh will keep failing. 586 */ 587 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 588 inode_switch_wbs(inode, wbc->wb_id); 589 } 590 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 591 592 /** 593 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 594 * @wbc: writeback_control of the just finished writeback 595 * 596 * To be called after a writeback attempt of an inode finishes and undoes 597 * wbc_attach_and_unlock_inode(). Can be called under any context. 598 * 599 * As concurrent write sharing of an inode is expected to be very rare and 600 * memcg only tracks page ownership on first-use basis severely confining 601 * the usefulness of such sharing, cgroup writeback tracks ownership 602 * per-inode. While the support for concurrent write sharing of an inode 603 * is deemed unnecessary, an inode being written to by different cgroups at 604 * different points in time is a lot more common, and, more importantly, 605 * charging only by first-use can too readily lead to grossly incorrect 606 * behaviors (single foreign page can lead to gigabytes of writeback to be 607 * incorrectly attributed). 608 * 609 * To resolve this issue, cgroup writeback detects the majority dirtier of 610 * an inode and transfers the ownership to it. To avoid unnnecessary 611 * oscillation, the detection mechanism keeps track of history and gives 612 * out the switch verdict only if the foreign usage pattern is stable over 613 * a certain amount of time and/or writeback attempts. 614 * 615 * On each writeback attempt, @wbc tries to detect the majority writer 616 * using Boyer-Moore majority vote algorithm. In addition to the byte 617 * count from the majority voting, it also counts the bytes written for the 618 * current wb and the last round's winner wb (max of last round's current 619 * wb, the winner from two rounds ago, and the last round's majority 620 * candidate). Keeping track of the historical winner helps the algorithm 621 * to semi-reliably detect the most active writer even when it's not the 622 * absolute majority. 623 * 624 * Once the winner of the round is determined, whether the winner is 625 * foreign or not and how much IO time the round consumed is recorded in 626 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 627 * over a certain threshold, the switch verdict is given. 628 */ 629 void wbc_detach_inode(struct writeback_control *wbc) 630 { 631 struct bdi_writeback *wb = wbc->wb; 632 struct inode *inode = wbc->inode; 633 unsigned long avg_time, max_bytes, max_time; 634 u16 history; 635 int max_id; 636 637 if (!wb) 638 return; 639 640 history = inode->i_wb_frn_history; 641 avg_time = inode->i_wb_frn_avg_time; 642 643 /* pick the winner of this round */ 644 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 645 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 646 max_id = wbc->wb_id; 647 max_bytes = wbc->wb_bytes; 648 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 649 max_id = wbc->wb_lcand_id; 650 max_bytes = wbc->wb_lcand_bytes; 651 } else { 652 max_id = wbc->wb_tcand_id; 653 max_bytes = wbc->wb_tcand_bytes; 654 } 655 656 /* 657 * Calculate the amount of IO time the winner consumed and fold it 658 * into the running average kept per inode. If the consumed IO 659 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 660 * deciding whether to switch or not. This is to prevent one-off 661 * small dirtiers from skewing the verdict. 662 */ 663 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 664 wb->avg_write_bandwidth); 665 if (avg_time) 666 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 667 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 668 else 669 avg_time = max_time; /* immediate catch up on first run */ 670 671 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 672 int slots; 673 674 /* 675 * The switch verdict is reached if foreign wb's consume 676 * more than a certain proportion of IO time in a 677 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 678 * history mask where each bit represents one sixteenth of 679 * the period. Determine the number of slots to shift into 680 * history from @max_time. 681 */ 682 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 683 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 684 history <<= slots; 685 if (wbc->wb_id != max_id) 686 history |= (1U << slots) - 1; 687 688 if (history) 689 trace_inode_foreign_history(inode, wbc, history); 690 691 /* 692 * Switch if the current wb isn't the consistent winner. 693 * If there are multiple closely competing dirtiers, the 694 * inode may switch across them repeatedly over time, which 695 * is okay. The main goal is avoiding keeping an inode on 696 * the wrong wb for an extended period of time. 697 */ 698 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 699 inode_switch_wbs(inode, max_id); 700 } 701 702 /* 703 * Multiple instances of this function may race to update the 704 * following fields but we don't mind occassional inaccuracies. 705 */ 706 inode->i_wb_frn_winner = max_id; 707 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 708 inode->i_wb_frn_history = history; 709 710 wb_put(wbc->wb); 711 wbc->wb = NULL; 712 } 713 EXPORT_SYMBOL_GPL(wbc_detach_inode); 714 715 /** 716 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 717 * @wbc: writeback_control of the writeback in progress 718 * @page: page being written out 719 * @bytes: number of bytes being written out 720 * 721 * @bytes from @page are about to written out during the writeback 722 * controlled by @wbc. Keep the book for foreign inode detection. See 723 * wbc_detach_inode(). 724 */ 725 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 726 size_t bytes) 727 { 728 struct cgroup_subsys_state *css; 729 int id; 730 731 /* 732 * pageout() path doesn't attach @wbc to the inode being written 733 * out. This is intentional as we don't want the function to block 734 * behind a slow cgroup. Ultimately, we want pageout() to kick off 735 * regular writeback instead of writing things out itself. 736 */ 737 if (!wbc->wb || wbc->no_cgroup_owner) 738 return; 739 740 css = mem_cgroup_css_from_page(page); 741 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 742 if (!(css->flags & CSS_ONLINE)) 743 return; 744 745 id = css->id; 746 747 if (id == wbc->wb_id) { 748 wbc->wb_bytes += bytes; 749 return; 750 } 751 752 if (id == wbc->wb_lcand_id) 753 wbc->wb_lcand_bytes += bytes; 754 755 /* Boyer-Moore majority vote algorithm */ 756 if (!wbc->wb_tcand_bytes) 757 wbc->wb_tcand_id = id; 758 if (id == wbc->wb_tcand_id) 759 wbc->wb_tcand_bytes += bytes; 760 else 761 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 762 } 763 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 764 765 /** 766 * inode_congested - test whether an inode is congested 767 * @inode: inode to test for congestion (may be NULL) 768 * @cong_bits: mask of WB_[a]sync_congested bits to test 769 * 770 * Tests whether @inode is congested. @cong_bits is the mask of congestion 771 * bits to test and the return value is the mask of set bits. 772 * 773 * If cgroup writeback is enabled for @inode, the congestion state is 774 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 775 * associated with @inode is congested; otherwise, the root wb's congestion 776 * state is used. 777 * 778 * @inode is allowed to be NULL as this function is often called on 779 * mapping->host which is NULL for the swapper space. 780 */ 781 int inode_congested(struct inode *inode, int cong_bits) 782 { 783 /* 784 * Once set, ->i_wb never becomes NULL while the inode is alive. 785 * Start transaction iff ->i_wb is visible. 786 */ 787 if (inode && inode_to_wb_is_valid(inode)) { 788 struct bdi_writeback *wb; 789 struct wb_lock_cookie lock_cookie = {}; 790 bool congested; 791 792 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 793 congested = wb_congested(wb, cong_bits); 794 unlocked_inode_to_wb_end(inode, &lock_cookie); 795 return congested; 796 } 797 798 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 799 } 800 EXPORT_SYMBOL_GPL(inode_congested); 801 802 /** 803 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 804 * @wb: target bdi_writeback to split @nr_pages to 805 * @nr_pages: number of pages to write for the whole bdi 806 * 807 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 808 * relation to the total write bandwidth of all wb's w/ dirty inodes on 809 * @wb->bdi. 810 */ 811 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 812 { 813 unsigned long this_bw = wb->avg_write_bandwidth; 814 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 815 816 if (nr_pages == LONG_MAX) 817 return LONG_MAX; 818 819 /* 820 * This may be called on clean wb's and proportional distribution 821 * may not make sense, just use the original @nr_pages in those 822 * cases. In general, we wanna err on the side of writing more. 823 */ 824 if (!tot_bw || this_bw >= tot_bw) 825 return nr_pages; 826 else 827 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 828 } 829 830 /** 831 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 832 * @bdi: target backing_dev_info 833 * @base_work: wb_writeback_work to issue 834 * @skip_if_busy: skip wb's which already have writeback in progress 835 * 836 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 837 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 838 * distributed to the busy wbs according to each wb's proportion in the 839 * total active write bandwidth of @bdi. 840 */ 841 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 842 struct wb_writeback_work *base_work, 843 bool skip_if_busy) 844 { 845 struct bdi_writeback *last_wb = NULL; 846 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 847 struct bdi_writeback, bdi_node); 848 849 might_sleep(); 850 restart: 851 rcu_read_lock(); 852 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 853 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 854 struct wb_writeback_work fallback_work; 855 struct wb_writeback_work *work; 856 long nr_pages; 857 858 if (last_wb) { 859 wb_put(last_wb); 860 last_wb = NULL; 861 } 862 863 /* SYNC_ALL writes out I_DIRTY_TIME too */ 864 if (!wb_has_dirty_io(wb) && 865 (base_work->sync_mode == WB_SYNC_NONE || 866 list_empty(&wb->b_dirty_time))) 867 continue; 868 if (skip_if_busy && writeback_in_progress(wb)) 869 continue; 870 871 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 872 873 work = kmalloc(sizeof(*work), GFP_ATOMIC); 874 if (work) { 875 *work = *base_work; 876 work->nr_pages = nr_pages; 877 work->auto_free = 1; 878 wb_queue_work(wb, work); 879 continue; 880 } 881 882 /* alloc failed, execute synchronously using on-stack fallback */ 883 work = &fallback_work; 884 *work = *base_work; 885 work->nr_pages = nr_pages; 886 work->auto_free = 0; 887 work->done = &fallback_work_done; 888 889 wb_queue_work(wb, work); 890 891 /* 892 * Pin @wb so that it stays on @bdi->wb_list. This allows 893 * continuing iteration from @wb after dropping and 894 * regrabbing rcu read lock. 895 */ 896 wb_get(wb); 897 last_wb = wb; 898 899 rcu_read_unlock(); 900 wb_wait_for_completion(&fallback_work_done); 901 goto restart; 902 } 903 rcu_read_unlock(); 904 905 if (last_wb) 906 wb_put(last_wb); 907 } 908 909 /** 910 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 911 * @bdi_id: target bdi id 912 * @memcg_id: target memcg css id 913 * @nr: number of pages to write, 0 for best-effort dirty flushing 914 * @reason: reason why some writeback work initiated 915 * @done: target wb_completion 916 * 917 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 918 * with the specified parameters. 919 */ 920 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, 921 enum wb_reason reason, struct wb_completion *done) 922 { 923 struct backing_dev_info *bdi; 924 struct cgroup_subsys_state *memcg_css; 925 struct bdi_writeback *wb; 926 struct wb_writeback_work *work; 927 int ret; 928 929 /* lookup bdi and memcg */ 930 bdi = bdi_get_by_id(bdi_id); 931 if (!bdi) 932 return -ENOENT; 933 934 rcu_read_lock(); 935 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 936 if (memcg_css && !css_tryget(memcg_css)) 937 memcg_css = NULL; 938 rcu_read_unlock(); 939 if (!memcg_css) { 940 ret = -ENOENT; 941 goto out_bdi_put; 942 } 943 944 /* 945 * And find the associated wb. If the wb isn't there already 946 * there's nothing to flush, don't create one. 947 */ 948 wb = wb_get_lookup(bdi, memcg_css); 949 if (!wb) { 950 ret = -ENOENT; 951 goto out_css_put; 952 } 953 954 /* 955 * If @nr is zero, the caller is attempting to write out most of 956 * the currently dirty pages. Let's take the current dirty page 957 * count and inflate it by 25% which should be large enough to 958 * flush out most dirty pages while avoiding getting livelocked by 959 * concurrent dirtiers. 960 */ 961 if (!nr) { 962 unsigned long filepages, headroom, dirty, writeback; 963 964 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, 965 &writeback); 966 nr = dirty * 10 / 8; 967 } 968 969 /* issue the writeback work */ 970 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 971 if (work) { 972 work->nr_pages = nr; 973 work->sync_mode = WB_SYNC_NONE; 974 work->range_cyclic = 1; 975 work->reason = reason; 976 work->done = done; 977 work->auto_free = 1; 978 wb_queue_work(wb, work); 979 ret = 0; 980 } else { 981 ret = -ENOMEM; 982 } 983 984 wb_put(wb); 985 out_css_put: 986 css_put(memcg_css); 987 out_bdi_put: 988 bdi_put(bdi); 989 return ret; 990 } 991 992 /** 993 * cgroup_writeback_umount - flush inode wb switches for umount 994 * 995 * This function is called when a super_block is about to be destroyed and 996 * flushes in-flight inode wb switches. An inode wb switch goes through 997 * RCU and then workqueue, so the two need to be flushed in order to ensure 998 * that all previously scheduled switches are finished. As wb switches are 999 * rare occurrences and synchronize_rcu() can take a while, perform 1000 * flushing iff wb switches are in flight. 1001 */ 1002 void cgroup_writeback_umount(void) 1003 { 1004 if (atomic_read(&isw_nr_in_flight)) { 1005 /* 1006 * Use rcu_barrier() to wait for all pending callbacks to 1007 * ensure that all in-flight wb switches are in the workqueue. 1008 */ 1009 rcu_barrier(); 1010 flush_workqueue(isw_wq); 1011 } 1012 } 1013 1014 static int __init cgroup_writeback_init(void) 1015 { 1016 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1017 if (!isw_wq) 1018 return -ENOMEM; 1019 return 0; 1020 } 1021 fs_initcall(cgroup_writeback_init); 1022 1023 #else /* CONFIG_CGROUP_WRITEBACK */ 1024 1025 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1026 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1027 1028 static struct bdi_writeback * 1029 locked_inode_to_wb_and_lock_list(struct inode *inode) 1030 __releases(&inode->i_lock) 1031 __acquires(&wb->list_lock) 1032 { 1033 struct bdi_writeback *wb = inode_to_wb(inode); 1034 1035 spin_unlock(&inode->i_lock); 1036 spin_lock(&wb->list_lock); 1037 return wb; 1038 } 1039 1040 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1041 __acquires(&wb->list_lock) 1042 { 1043 struct bdi_writeback *wb = inode_to_wb(inode); 1044 1045 spin_lock(&wb->list_lock); 1046 return wb; 1047 } 1048 1049 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1050 { 1051 return nr_pages; 1052 } 1053 1054 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1055 struct wb_writeback_work *base_work, 1056 bool skip_if_busy) 1057 { 1058 might_sleep(); 1059 1060 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1061 base_work->auto_free = 0; 1062 wb_queue_work(&bdi->wb, base_work); 1063 } 1064 } 1065 1066 #endif /* CONFIG_CGROUP_WRITEBACK */ 1067 1068 /* 1069 * Add in the number of potentially dirty inodes, because each inode 1070 * write can dirty pagecache in the underlying blockdev. 1071 */ 1072 static unsigned long get_nr_dirty_pages(void) 1073 { 1074 return global_node_page_state(NR_FILE_DIRTY) + 1075 get_nr_dirty_inodes(); 1076 } 1077 1078 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1079 { 1080 if (!wb_has_dirty_io(wb)) 1081 return; 1082 1083 /* 1084 * All callers of this function want to start writeback of all 1085 * dirty pages. Places like vmscan can call this at a very 1086 * high frequency, causing pointless allocations of tons of 1087 * work items and keeping the flusher threads busy retrieving 1088 * that work. Ensure that we only allow one of them pending and 1089 * inflight at the time. 1090 */ 1091 if (test_bit(WB_start_all, &wb->state) || 1092 test_and_set_bit(WB_start_all, &wb->state)) 1093 return; 1094 1095 wb->start_all_reason = reason; 1096 wb_wakeup(wb); 1097 } 1098 1099 /** 1100 * wb_start_background_writeback - start background writeback 1101 * @wb: bdi_writback to write from 1102 * 1103 * Description: 1104 * This makes sure WB_SYNC_NONE background writeback happens. When 1105 * this function returns, it is only guaranteed that for given wb 1106 * some IO is happening if we are over background dirty threshold. 1107 * Caller need not hold sb s_umount semaphore. 1108 */ 1109 void wb_start_background_writeback(struct bdi_writeback *wb) 1110 { 1111 /* 1112 * We just wake up the flusher thread. It will perform background 1113 * writeback as soon as there is no other work to do. 1114 */ 1115 trace_writeback_wake_background(wb); 1116 wb_wakeup(wb); 1117 } 1118 1119 /* 1120 * Remove the inode from the writeback list it is on. 1121 */ 1122 void inode_io_list_del(struct inode *inode) 1123 { 1124 struct bdi_writeback *wb; 1125 1126 wb = inode_to_wb_and_lock_list(inode); 1127 spin_lock(&inode->i_lock); 1128 inode_io_list_del_locked(inode, wb); 1129 spin_unlock(&inode->i_lock); 1130 spin_unlock(&wb->list_lock); 1131 } 1132 EXPORT_SYMBOL(inode_io_list_del); 1133 1134 /* 1135 * mark an inode as under writeback on the sb 1136 */ 1137 void sb_mark_inode_writeback(struct inode *inode) 1138 { 1139 struct super_block *sb = inode->i_sb; 1140 unsigned long flags; 1141 1142 if (list_empty(&inode->i_wb_list)) { 1143 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1144 if (list_empty(&inode->i_wb_list)) { 1145 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1146 trace_sb_mark_inode_writeback(inode); 1147 } 1148 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1149 } 1150 } 1151 1152 /* 1153 * clear an inode as under writeback on the sb 1154 */ 1155 void sb_clear_inode_writeback(struct inode *inode) 1156 { 1157 struct super_block *sb = inode->i_sb; 1158 unsigned long flags; 1159 1160 if (!list_empty(&inode->i_wb_list)) { 1161 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1162 if (!list_empty(&inode->i_wb_list)) { 1163 list_del_init(&inode->i_wb_list); 1164 trace_sb_clear_inode_writeback(inode); 1165 } 1166 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1167 } 1168 } 1169 1170 /* 1171 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1172 * furthest end of its superblock's dirty-inode list. 1173 * 1174 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1175 * already the most-recently-dirtied inode on the b_dirty list. If that is 1176 * the case then the inode must have been redirtied while it was being written 1177 * out and we don't reset its dirtied_when. 1178 */ 1179 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1180 { 1181 assert_spin_locked(&inode->i_lock); 1182 1183 if (!list_empty(&wb->b_dirty)) { 1184 struct inode *tail; 1185 1186 tail = wb_inode(wb->b_dirty.next); 1187 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1188 inode->dirtied_when = jiffies; 1189 } 1190 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1191 inode->i_state &= ~I_SYNC_QUEUED; 1192 } 1193 1194 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1195 { 1196 spin_lock(&inode->i_lock); 1197 redirty_tail_locked(inode, wb); 1198 spin_unlock(&inode->i_lock); 1199 } 1200 1201 /* 1202 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1203 */ 1204 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1205 { 1206 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1207 } 1208 1209 static void inode_sync_complete(struct inode *inode) 1210 { 1211 inode->i_state &= ~I_SYNC; 1212 /* If inode is clean an unused, put it into LRU now... */ 1213 inode_add_lru(inode); 1214 /* Waiters must see I_SYNC cleared before being woken up */ 1215 smp_mb(); 1216 wake_up_bit(&inode->i_state, __I_SYNC); 1217 } 1218 1219 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1220 { 1221 bool ret = time_after(inode->dirtied_when, t); 1222 #ifndef CONFIG_64BIT 1223 /* 1224 * For inodes being constantly redirtied, dirtied_when can get stuck. 1225 * It _appears_ to be in the future, but is actually in distant past. 1226 * This test is necessary to prevent such wrapped-around relative times 1227 * from permanently stopping the whole bdi writeback. 1228 */ 1229 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1230 #endif 1231 return ret; 1232 } 1233 1234 #define EXPIRE_DIRTY_ATIME 0x0001 1235 1236 /* 1237 * Move expired (dirtied before work->older_than_this) dirty inodes from 1238 * @delaying_queue to @dispatch_queue. 1239 */ 1240 static int move_expired_inodes(struct list_head *delaying_queue, 1241 struct list_head *dispatch_queue, 1242 int flags, 1243 struct wb_writeback_work *work) 1244 { 1245 unsigned long *older_than_this = NULL; 1246 unsigned long expire_time; 1247 LIST_HEAD(tmp); 1248 struct list_head *pos, *node; 1249 struct super_block *sb = NULL; 1250 struct inode *inode; 1251 int do_sb_sort = 0; 1252 int moved = 0; 1253 1254 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1255 older_than_this = work->older_than_this; 1256 else if (!work->for_sync) { 1257 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1258 older_than_this = &expire_time; 1259 } 1260 while (!list_empty(delaying_queue)) { 1261 inode = wb_inode(delaying_queue->prev); 1262 if (older_than_this && 1263 inode_dirtied_after(inode, *older_than_this)) 1264 break; 1265 list_move(&inode->i_io_list, &tmp); 1266 moved++; 1267 spin_lock(&inode->i_lock); 1268 if (flags & EXPIRE_DIRTY_ATIME) 1269 inode->i_state |= I_DIRTY_TIME_EXPIRED; 1270 inode->i_state |= I_SYNC_QUEUED; 1271 spin_unlock(&inode->i_lock); 1272 if (sb_is_blkdev_sb(inode->i_sb)) 1273 continue; 1274 if (sb && sb != inode->i_sb) 1275 do_sb_sort = 1; 1276 sb = inode->i_sb; 1277 } 1278 1279 /* just one sb in list, splice to dispatch_queue and we're done */ 1280 if (!do_sb_sort) { 1281 list_splice(&tmp, dispatch_queue); 1282 goto out; 1283 } 1284 1285 /* Move inodes from one superblock together */ 1286 while (!list_empty(&tmp)) { 1287 sb = wb_inode(tmp.prev)->i_sb; 1288 list_for_each_prev_safe(pos, node, &tmp) { 1289 inode = wb_inode(pos); 1290 if (inode->i_sb == sb) 1291 list_move(&inode->i_io_list, dispatch_queue); 1292 } 1293 } 1294 out: 1295 return moved; 1296 } 1297 1298 /* 1299 * Queue all expired dirty inodes for io, eldest first. 1300 * Before 1301 * newly dirtied b_dirty b_io b_more_io 1302 * =============> gf edc BA 1303 * After 1304 * newly dirtied b_dirty b_io b_more_io 1305 * =============> g fBAedc 1306 * | 1307 * +--> dequeue for IO 1308 */ 1309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1310 { 1311 int moved; 1312 1313 assert_spin_locked(&wb->list_lock); 1314 list_splice_init(&wb->b_more_io, &wb->b_io); 1315 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1316 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1317 EXPIRE_DIRTY_ATIME, work); 1318 if (moved) 1319 wb_io_lists_populated(wb); 1320 trace_writeback_queue_io(wb, work, moved); 1321 } 1322 1323 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1324 { 1325 int ret; 1326 1327 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1328 trace_writeback_write_inode_start(inode, wbc); 1329 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1330 trace_writeback_write_inode(inode, wbc); 1331 return ret; 1332 } 1333 return 0; 1334 } 1335 1336 /* 1337 * Wait for writeback on an inode to complete. Called with i_lock held. 1338 * Caller must make sure inode cannot go away when we drop i_lock. 1339 */ 1340 static void __inode_wait_for_writeback(struct inode *inode) 1341 __releases(inode->i_lock) 1342 __acquires(inode->i_lock) 1343 { 1344 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1345 wait_queue_head_t *wqh; 1346 1347 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1348 while (inode->i_state & I_SYNC) { 1349 spin_unlock(&inode->i_lock); 1350 __wait_on_bit(wqh, &wq, bit_wait, 1351 TASK_UNINTERRUPTIBLE); 1352 spin_lock(&inode->i_lock); 1353 } 1354 } 1355 1356 /* 1357 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1358 */ 1359 void inode_wait_for_writeback(struct inode *inode) 1360 { 1361 spin_lock(&inode->i_lock); 1362 __inode_wait_for_writeback(inode); 1363 spin_unlock(&inode->i_lock); 1364 } 1365 1366 /* 1367 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1368 * held and drops it. It is aimed for callers not holding any inode reference 1369 * so once i_lock is dropped, inode can go away. 1370 */ 1371 static void inode_sleep_on_writeback(struct inode *inode) 1372 __releases(inode->i_lock) 1373 { 1374 DEFINE_WAIT(wait); 1375 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1376 int sleep; 1377 1378 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1379 sleep = inode->i_state & I_SYNC; 1380 spin_unlock(&inode->i_lock); 1381 if (sleep) 1382 schedule(); 1383 finish_wait(wqh, &wait); 1384 } 1385 1386 /* 1387 * Find proper writeback list for the inode depending on its current state and 1388 * possibly also change of its state while we were doing writeback. Here we 1389 * handle things such as livelock prevention or fairness of writeback among 1390 * inodes. This function can be called only by flusher thread - noone else 1391 * processes all inodes in writeback lists and requeueing inodes behind flusher 1392 * thread's back can have unexpected consequences. 1393 */ 1394 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1395 struct writeback_control *wbc) 1396 { 1397 if (inode->i_state & I_FREEING) 1398 return; 1399 1400 /* 1401 * Sync livelock prevention. Each inode is tagged and synced in one 1402 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1403 * the dirty time to prevent enqueue and sync it again. 1404 */ 1405 if ((inode->i_state & I_DIRTY) && 1406 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1407 inode->dirtied_when = jiffies; 1408 1409 if (wbc->pages_skipped) { 1410 /* 1411 * writeback is not making progress due to locked 1412 * buffers. Skip this inode for now. 1413 */ 1414 redirty_tail_locked(inode, wb); 1415 return; 1416 } 1417 1418 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1419 /* 1420 * We didn't write back all the pages. nfs_writepages() 1421 * sometimes bales out without doing anything. 1422 */ 1423 if (wbc->nr_to_write <= 0) { 1424 /* Slice used up. Queue for next turn. */ 1425 requeue_io(inode, wb); 1426 } else { 1427 /* 1428 * Writeback blocked by something other than 1429 * congestion. Delay the inode for some time to 1430 * avoid spinning on the CPU (100% iowait) 1431 * retrying writeback of the dirty page/inode 1432 * that cannot be performed immediately. 1433 */ 1434 redirty_tail_locked(inode, wb); 1435 } 1436 } else if (inode->i_state & I_DIRTY) { 1437 /* 1438 * Filesystems can dirty the inode during writeback operations, 1439 * such as delayed allocation during submission or metadata 1440 * updates after data IO completion. 1441 */ 1442 redirty_tail_locked(inode, wb); 1443 } else if (inode->i_state & I_DIRTY_TIME) { 1444 inode->dirtied_when = jiffies; 1445 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1446 inode->i_state &= ~I_SYNC_QUEUED; 1447 } else { 1448 /* The inode is clean. Remove from writeback lists. */ 1449 inode_io_list_del_locked(inode, wb); 1450 } 1451 } 1452 1453 /* 1454 * Write out an inode and its dirty pages. Do not update the writeback list 1455 * linkage. That is left to the caller. The caller is also responsible for 1456 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1457 */ 1458 static int 1459 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1460 { 1461 struct address_space *mapping = inode->i_mapping; 1462 long nr_to_write = wbc->nr_to_write; 1463 unsigned dirty; 1464 int ret; 1465 1466 WARN_ON(!(inode->i_state & I_SYNC)); 1467 1468 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1469 1470 ret = do_writepages(mapping, wbc); 1471 1472 /* 1473 * Make sure to wait on the data before writing out the metadata. 1474 * This is important for filesystems that modify metadata on data 1475 * I/O completion. We don't do it for sync(2) writeback because it has a 1476 * separate, external IO completion path and ->sync_fs for guaranteeing 1477 * inode metadata is written back correctly. 1478 */ 1479 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1480 int err = filemap_fdatawait(mapping); 1481 if (ret == 0) 1482 ret = err; 1483 } 1484 1485 /* 1486 * Some filesystems may redirty the inode during the writeback 1487 * due to delalloc, clear dirty metadata flags right before 1488 * write_inode() 1489 */ 1490 spin_lock(&inode->i_lock); 1491 1492 dirty = inode->i_state & I_DIRTY; 1493 if (inode->i_state & I_DIRTY_TIME) { 1494 if ((dirty & I_DIRTY_INODE) || 1495 wbc->sync_mode == WB_SYNC_ALL || 1496 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1497 unlikely(time_after(jiffies, 1498 (inode->dirtied_time_when + 1499 dirtytime_expire_interval * HZ)))) { 1500 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1501 trace_writeback_lazytime(inode); 1502 } 1503 } else 1504 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1505 inode->i_state &= ~dirty; 1506 1507 /* 1508 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1509 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1510 * either they see the I_DIRTY bits cleared or we see the dirtied 1511 * inode. 1512 * 1513 * I_DIRTY_PAGES is always cleared together above even if @mapping 1514 * still has dirty pages. The flag is reinstated after smp_mb() if 1515 * necessary. This guarantees that either __mark_inode_dirty() 1516 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1517 */ 1518 smp_mb(); 1519 1520 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1521 inode->i_state |= I_DIRTY_PAGES; 1522 1523 spin_unlock(&inode->i_lock); 1524 1525 if (dirty & I_DIRTY_TIME) 1526 mark_inode_dirty_sync(inode); 1527 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1528 if (dirty & ~I_DIRTY_PAGES) { 1529 int err = write_inode(inode, wbc); 1530 if (ret == 0) 1531 ret = err; 1532 } 1533 trace_writeback_single_inode(inode, wbc, nr_to_write); 1534 return ret; 1535 } 1536 1537 /* 1538 * Write out an inode's dirty pages. Either the caller has an active reference 1539 * on the inode or the inode has I_WILL_FREE set. 1540 * 1541 * This function is designed to be called for writing back one inode which 1542 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1543 * and does more profound writeback list handling in writeback_sb_inodes(). 1544 */ 1545 static int writeback_single_inode(struct inode *inode, 1546 struct writeback_control *wbc) 1547 { 1548 struct bdi_writeback *wb; 1549 int ret = 0; 1550 1551 spin_lock(&inode->i_lock); 1552 if (!atomic_read(&inode->i_count)) 1553 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1554 else 1555 WARN_ON(inode->i_state & I_WILL_FREE); 1556 1557 if (inode->i_state & I_SYNC) { 1558 if (wbc->sync_mode != WB_SYNC_ALL) 1559 goto out; 1560 /* 1561 * It's a data-integrity sync. We must wait. Since callers hold 1562 * inode reference or inode has I_WILL_FREE set, it cannot go 1563 * away under us. 1564 */ 1565 __inode_wait_for_writeback(inode); 1566 } 1567 WARN_ON(inode->i_state & I_SYNC); 1568 /* 1569 * Skip inode if it is clean and we have no outstanding writeback in 1570 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1571 * function since flusher thread may be doing for example sync in 1572 * parallel and if we move the inode, it could get skipped. So here we 1573 * make sure inode is on some writeback list and leave it there unless 1574 * we have completely cleaned the inode. 1575 */ 1576 if (!(inode->i_state & I_DIRTY_ALL) && 1577 (wbc->sync_mode != WB_SYNC_ALL || 1578 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1579 goto out; 1580 inode->i_state |= I_SYNC; 1581 wbc_attach_and_unlock_inode(wbc, inode); 1582 1583 ret = __writeback_single_inode(inode, wbc); 1584 1585 wbc_detach_inode(wbc); 1586 1587 wb = inode_to_wb_and_lock_list(inode); 1588 spin_lock(&inode->i_lock); 1589 /* 1590 * If inode is clean, remove it from writeback lists. Otherwise don't 1591 * touch it. See comment above for explanation. 1592 */ 1593 if (!(inode->i_state & I_DIRTY_ALL)) 1594 inode_io_list_del_locked(inode, wb); 1595 spin_unlock(&wb->list_lock); 1596 inode_sync_complete(inode); 1597 out: 1598 spin_unlock(&inode->i_lock); 1599 return ret; 1600 } 1601 1602 static long writeback_chunk_size(struct bdi_writeback *wb, 1603 struct wb_writeback_work *work) 1604 { 1605 long pages; 1606 1607 /* 1608 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1609 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1610 * here avoids calling into writeback_inodes_wb() more than once. 1611 * 1612 * The intended call sequence for WB_SYNC_ALL writeback is: 1613 * 1614 * wb_writeback() 1615 * writeback_sb_inodes() <== called only once 1616 * write_cache_pages() <== called once for each inode 1617 * (quickly) tag currently dirty pages 1618 * (maybe slowly) sync all tagged pages 1619 */ 1620 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1621 pages = LONG_MAX; 1622 else { 1623 pages = min(wb->avg_write_bandwidth / 2, 1624 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1625 pages = min(pages, work->nr_pages); 1626 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1627 MIN_WRITEBACK_PAGES); 1628 } 1629 1630 return pages; 1631 } 1632 1633 /* 1634 * Write a portion of b_io inodes which belong to @sb. 1635 * 1636 * Return the number of pages and/or inodes written. 1637 * 1638 * NOTE! This is called with wb->list_lock held, and will 1639 * unlock and relock that for each inode it ends up doing 1640 * IO for. 1641 */ 1642 static long writeback_sb_inodes(struct super_block *sb, 1643 struct bdi_writeback *wb, 1644 struct wb_writeback_work *work) 1645 { 1646 struct writeback_control wbc = { 1647 .sync_mode = work->sync_mode, 1648 .tagged_writepages = work->tagged_writepages, 1649 .for_kupdate = work->for_kupdate, 1650 .for_background = work->for_background, 1651 .for_sync = work->for_sync, 1652 .range_cyclic = work->range_cyclic, 1653 .range_start = 0, 1654 .range_end = LLONG_MAX, 1655 }; 1656 unsigned long start_time = jiffies; 1657 long write_chunk; 1658 long wrote = 0; /* count both pages and inodes */ 1659 1660 while (!list_empty(&wb->b_io)) { 1661 struct inode *inode = wb_inode(wb->b_io.prev); 1662 struct bdi_writeback *tmp_wb; 1663 1664 if (inode->i_sb != sb) { 1665 if (work->sb) { 1666 /* 1667 * We only want to write back data for this 1668 * superblock, move all inodes not belonging 1669 * to it back onto the dirty list. 1670 */ 1671 redirty_tail(inode, wb); 1672 continue; 1673 } 1674 1675 /* 1676 * The inode belongs to a different superblock. 1677 * Bounce back to the caller to unpin this and 1678 * pin the next superblock. 1679 */ 1680 break; 1681 } 1682 1683 /* 1684 * Don't bother with new inodes or inodes being freed, first 1685 * kind does not need periodic writeout yet, and for the latter 1686 * kind writeout is handled by the freer. 1687 */ 1688 spin_lock(&inode->i_lock); 1689 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1690 redirty_tail_locked(inode, wb); 1691 spin_unlock(&inode->i_lock); 1692 continue; 1693 } 1694 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1695 /* 1696 * If this inode is locked for writeback and we are not 1697 * doing writeback-for-data-integrity, move it to 1698 * b_more_io so that writeback can proceed with the 1699 * other inodes on s_io. 1700 * 1701 * We'll have another go at writing back this inode 1702 * when we completed a full scan of b_io. 1703 */ 1704 spin_unlock(&inode->i_lock); 1705 requeue_io(inode, wb); 1706 trace_writeback_sb_inodes_requeue(inode); 1707 continue; 1708 } 1709 spin_unlock(&wb->list_lock); 1710 1711 /* 1712 * We already requeued the inode if it had I_SYNC set and we 1713 * are doing WB_SYNC_NONE writeback. So this catches only the 1714 * WB_SYNC_ALL case. 1715 */ 1716 if (inode->i_state & I_SYNC) { 1717 /* Wait for I_SYNC. This function drops i_lock... */ 1718 inode_sleep_on_writeback(inode); 1719 /* Inode may be gone, start again */ 1720 spin_lock(&wb->list_lock); 1721 continue; 1722 } 1723 inode->i_state |= I_SYNC; 1724 wbc_attach_and_unlock_inode(&wbc, inode); 1725 1726 write_chunk = writeback_chunk_size(wb, work); 1727 wbc.nr_to_write = write_chunk; 1728 wbc.pages_skipped = 0; 1729 1730 /* 1731 * We use I_SYNC to pin the inode in memory. While it is set 1732 * evict_inode() will wait so the inode cannot be freed. 1733 */ 1734 __writeback_single_inode(inode, &wbc); 1735 1736 wbc_detach_inode(&wbc); 1737 work->nr_pages -= write_chunk - wbc.nr_to_write; 1738 wrote += write_chunk - wbc.nr_to_write; 1739 1740 if (need_resched()) { 1741 /* 1742 * We're trying to balance between building up a nice 1743 * long list of IOs to improve our merge rate, and 1744 * getting those IOs out quickly for anyone throttling 1745 * in balance_dirty_pages(). cond_resched() doesn't 1746 * unplug, so get our IOs out the door before we 1747 * give up the CPU. 1748 */ 1749 blk_flush_plug(current); 1750 cond_resched(); 1751 } 1752 1753 /* 1754 * Requeue @inode if still dirty. Be careful as @inode may 1755 * have been switched to another wb in the meantime. 1756 */ 1757 tmp_wb = inode_to_wb_and_lock_list(inode); 1758 spin_lock(&inode->i_lock); 1759 if (!(inode->i_state & I_DIRTY_ALL)) 1760 wrote++; 1761 requeue_inode(inode, tmp_wb, &wbc); 1762 inode_sync_complete(inode); 1763 spin_unlock(&inode->i_lock); 1764 1765 if (unlikely(tmp_wb != wb)) { 1766 spin_unlock(&tmp_wb->list_lock); 1767 spin_lock(&wb->list_lock); 1768 } 1769 1770 /* 1771 * bail out to wb_writeback() often enough to check 1772 * background threshold and other termination conditions. 1773 */ 1774 if (wrote) { 1775 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1776 break; 1777 if (work->nr_pages <= 0) 1778 break; 1779 } 1780 } 1781 return wrote; 1782 } 1783 1784 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1785 struct wb_writeback_work *work) 1786 { 1787 unsigned long start_time = jiffies; 1788 long wrote = 0; 1789 1790 while (!list_empty(&wb->b_io)) { 1791 struct inode *inode = wb_inode(wb->b_io.prev); 1792 struct super_block *sb = inode->i_sb; 1793 1794 if (!trylock_super(sb)) { 1795 /* 1796 * trylock_super() may fail consistently due to 1797 * s_umount being grabbed by someone else. Don't use 1798 * requeue_io() to avoid busy retrying the inode/sb. 1799 */ 1800 redirty_tail(inode, wb); 1801 continue; 1802 } 1803 wrote += writeback_sb_inodes(sb, wb, work); 1804 up_read(&sb->s_umount); 1805 1806 /* refer to the same tests at the end of writeback_sb_inodes */ 1807 if (wrote) { 1808 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1809 break; 1810 if (work->nr_pages <= 0) 1811 break; 1812 } 1813 } 1814 /* Leave any unwritten inodes on b_io */ 1815 return wrote; 1816 } 1817 1818 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1819 enum wb_reason reason) 1820 { 1821 struct wb_writeback_work work = { 1822 .nr_pages = nr_pages, 1823 .sync_mode = WB_SYNC_NONE, 1824 .range_cyclic = 1, 1825 .reason = reason, 1826 }; 1827 struct blk_plug plug; 1828 1829 blk_start_plug(&plug); 1830 spin_lock(&wb->list_lock); 1831 if (list_empty(&wb->b_io)) 1832 queue_io(wb, &work); 1833 __writeback_inodes_wb(wb, &work); 1834 spin_unlock(&wb->list_lock); 1835 blk_finish_plug(&plug); 1836 1837 return nr_pages - work.nr_pages; 1838 } 1839 1840 /* 1841 * Explicit flushing or periodic writeback of "old" data. 1842 * 1843 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1844 * dirtying-time in the inode's address_space. So this periodic writeback code 1845 * just walks the superblock inode list, writing back any inodes which are 1846 * older than a specific point in time. 1847 * 1848 * Try to run once per dirty_writeback_interval. But if a writeback event 1849 * takes longer than a dirty_writeback_interval interval, then leave a 1850 * one-second gap. 1851 * 1852 * older_than_this takes precedence over nr_to_write. So we'll only write back 1853 * all dirty pages if they are all attached to "old" mappings. 1854 */ 1855 static long wb_writeback(struct bdi_writeback *wb, 1856 struct wb_writeback_work *work) 1857 { 1858 unsigned long wb_start = jiffies; 1859 long nr_pages = work->nr_pages; 1860 unsigned long oldest_jif; 1861 struct inode *inode; 1862 long progress; 1863 struct blk_plug plug; 1864 1865 oldest_jif = jiffies; 1866 work->older_than_this = &oldest_jif; 1867 1868 blk_start_plug(&plug); 1869 spin_lock(&wb->list_lock); 1870 for (;;) { 1871 /* 1872 * Stop writeback when nr_pages has been consumed 1873 */ 1874 if (work->nr_pages <= 0) 1875 break; 1876 1877 /* 1878 * Background writeout and kupdate-style writeback may 1879 * run forever. Stop them if there is other work to do 1880 * so that e.g. sync can proceed. They'll be restarted 1881 * after the other works are all done. 1882 */ 1883 if ((work->for_background || work->for_kupdate) && 1884 !list_empty(&wb->work_list)) 1885 break; 1886 1887 /* 1888 * For background writeout, stop when we are below the 1889 * background dirty threshold 1890 */ 1891 if (work->for_background && !wb_over_bg_thresh(wb)) 1892 break; 1893 1894 /* 1895 * Kupdate and background works are special and we want to 1896 * include all inodes that need writing. Livelock avoidance is 1897 * handled by these works yielding to any other work so we are 1898 * safe. 1899 */ 1900 if (work->for_kupdate) { 1901 oldest_jif = jiffies - 1902 msecs_to_jiffies(dirty_expire_interval * 10); 1903 } else if (work->for_background) 1904 oldest_jif = jiffies; 1905 1906 trace_writeback_start(wb, work); 1907 if (list_empty(&wb->b_io)) 1908 queue_io(wb, work); 1909 if (work->sb) 1910 progress = writeback_sb_inodes(work->sb, wb, work); 1911 else 1912 progress = __writeback_inodes_wb(wb, work); 1913 trace_writeback_written(wb, work); 1914 1915 wb_update_bandwidth(wb, wb_start); 1916 1917 /* 1918 * Did we write something? Try for more 1919 * 1920 * Dirty inodes are moved to b_io for writeback in batches. 1921 * The completion of the current batch does not necessarily 1922 * mean the overall work is done. So we keep looping as long 1923 * as made some progress on cleaning pages or inodes. 1924 */ 1925 if (progress) 1926 continue; 1927 /* 1928 * No more inodes for IO, bail 1929 */ 1930 if (list_empty(&wb->b_more_io)) 1931 break; 1932 /* 1933 * Nothing written. Wait for some inode to 1934 * become available for writeback. Otherwise 1935 * we'll just busyloop. 1936 */ 1937 trace_writeback_wait(wb, work); 1938 inode = wb_inode(wb->b_more_io.prev); 1939 spin_lock(&inode->i_lock); 1940 spin_unlock(&wb->list_lock); 1941 /* This function drops i_lock... */ 1942 inode_sleep_on_writeback(inode); 1943 spin_lock(&wb->list_lock); 1944 } 1945 spin_unlock(&wb->list_lock); 1946 blk_finish_plug(&plug); 1947 1948 return nr_pages - work->nr_pages; 1949 } 1950 1951 /* 1952 * Return the next wb_writeback_work struct that hasn't been processed yet. 1953 */ 1954 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1955 { 1956 struct wb_writeback_work *work = NULL; 1957 1958 spin_lock_bh(&wb->work_lock); 1959 if (!list_empty(&wb->work_list)) { 1960 work = list_entry(wb->work_list.next, 1961 struct wb_writeback_work, list); 1962 list_del_init(&work->list); 1963 } 1964 spin_unlock_bh(&wb->work_lock); 1965 return work; 1966 } 1967 1968 static long wb_check_background_flush(struct bdi_writeback *wb) 1969 { 1970 if (wb_over_bg_thresh(wb)) { 1971 1972 struct wb_writeback_work work = { 1973 .nr_pages = LONG_MAX, 1974 .sync_mode = WB_SYNC_NONE, 1975 .for_background = 1, 1976 .range_cyclic = 1, 1977 .reason = WB_REASON_BACKGROUND, 1978 }; 1979 1980 return wb_writeback(wb, &work); 1981 } 1982 1983 return 0; 1984 } 1985 1986 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1987 { 1988 unsigned long expired; 1989 long nr_pages; 1990 1991 /* 1992 * When set to zero, disable periodic writeback 1993 */ 1994 if (!dirty_writeback_interval) 1995 return 0; 1996 1997 expired = wb->last_old_flush + 1998 msecs_to_jiffies(dirty_writeback_interval * 10); 1999 if (time_before(jiffies, expired)) 2000 return 0; 2001 2002 wb->last_old_flush = jiffies; 2003 nr_pages = get_nr_dirty_pages(); 2004 2005 if (nr_pages) { 2006 struct wb_writeback_work work = { 2007 .nr_pages = nr_pages, 2008 .sync_mode = WB_SYNC_NONE, 2009 .for_kupdate = 1, 2010 .range_cyclic = 1, 2011 .reason = WB_REASON_PERIODIC, 2012 }; 2013 2014 return wb_writeback(wb, &work); 2015 } 2016 2017 return 0; 2018 } 2019 2020 static long wb_check_start_all(struct bdi_writeback *wb) 2021 { 2022 long nr_pages; 2023 2024 if (!test_bit(WB_start_all, &wb->state)) 2025 return 0; 2026 2027 nr_pages = get_nr_dirty_pages(); 2028 if (nr_pages) { 2029 struct wb_writeback_work work = { 2030 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2031 .sync_mode = WB_SYNC_NONE, 2032 .range_cyclic = 1, 2033 .reason = wb->start_all_reason, 2034 }; 2035 2036 nr_pages = wb_writeback(wb, &work); 2037 } 2038 2039 clear_bit(WB_start_all, &wb->state); 2040 return nr_pages; 2041 } 2042 2043 2044 /* 2045 * Retrieve work items and do the writeback they describe 2046 */ 2047 static long wb_do_writeback(struct bdi_writeback *wb) 2048 { 2049 struct wb_writeback_work *work; 2050 long wrote = 0; 2051 2052 set_bit(WB_writeback_running, &wb->state); 2053 while ((work = get_next_work_item(wb)) != NULL) { 2054 trace_writeback_exec(wb, work); 2055 wrote += wb_writeback(wb, work); 2056 finish_writeback_work(wb, work); 2057 } 2058 2059 /* 2060 * Check for a flush-everything request 2061 */ 2062 wrote += wb_check_start_all(wb); 2063 2064 /* 2065 * Check for periodic writeback, kupdated() style 2066 */ 2067 wrote += wb_check_old_data_flush(wb); 2068 wrote += wb_check_background_flush(wb); 2069 clear_bit(WB_writeback_running, &wb->state); 2070 2071 return wrote; 2072 } 2073 2074 /* 2075 * Handle writeback of dirty data for the device backed by this bdi. Also 2076 * reschedules periodically and does kupdated style flushing. 2077 */ 2078 void wb_workfn(struct work_struct *work) 2079 { 2080 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2081 struct bdi_writeback, dwork); 2082 long pages_written; 2083 2084 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2085 current->flags |= PF_SWAPWRITE; 2086 2087 if (likely(!current_is_workqueue_rescuer() || 2088 !test_bit(WB_registered, &wb->state))) { 2089 /* 2090 * The normal path. Keep writing back @wb until its 2091 * work_list is empty. Note that this path is also taken 2092 * if @wb is shutting down even when we're running off the 2093 * rescuer as work_list needs to be drained. 2094 */ 2095 do { 2096 pages_written = wb_do_writeback(wb); 2097 trace_writeback_pages_written(pages_written); 2098 } while (!list_empty(&wb->work_list)); 2099 } else { 2100 /* 2101 * bdi_wq can't get enough workers and we're running off 2102 * the emergency worker. Don't hog it. Hopefully, 1024 is 2103 * enough for efficient IO. 2104 */ 2105 pages_written = writeback_inodes_wb(wb, 1024, 2106 WB_REASON_FORKER_THREAD); 2107 trace_writeback_pages_written(pages_written); 2108 } 2109 2110 if (!list_empty(&wb->work_list)) 2111 wb_wakeup(wb); 2112 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2113 wb_wakeup_delayed(wb); 2114 2115 current->flags &= ~PF_SWAPWRITE; 2116 } 2117 2118 /* 2119 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2120 * write back the whole world. 2121 */ 2122 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2123 enum wb_reason reason) 2124 { 2125 struct bdi_writeback *wb; 2126 2127 if (!bdi_has_dirty_io(bdi)) 2128 return; 2129 2130 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2131 wb_start_writeback(wb, reason); 2132 } 2133 2134 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2135 enum wb_reason reason) 2136 { 2137 rcu_read_lock(); 2138 __wakeup_flusher_threads_bdi(bdi, reason); 2139 rcu_read_unlock(); 2140 } 2141 2142 /* 2143 * Wakeup the flusher threads to start writeback of all currently dirty pages 2144 */ 2145 void wakeup_flusher_threads(enum wb_reason reason) 2146 { 2147 struct backing_dev_info *bdi; 2148 2149 /* 2150 * If we are expecting writeback progress we must submit plugged IO. 2151 */ 2152 if (blk_needs_flush_plug(current)) 2153 blk_schedule_flush_plug(current); 2154 2155 rcu_read_lock(); 2156 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2157 __wakeup_flusher_threads_bdi(bdi, reason); 2158 rcu_read_unlock(); 2159 } 2160 2161 /* 2162 * Wake up bdi's periodically to make sure dirtytime inodes gets 2163 * written back periodically. We deliberately do *not* check the 2164 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2165 * kernel to be constantly waking up once there are any dirtytime 2166 * inodes on the system. So instead we define a separate delayed work 2167 * function which gets called much more rarely. (By default, only 2168 * once every 12 hours.) 2169 * 2170 * If there is any other write activity going on in the file system, 2171 * this function won't be necessary. But if the only thing that has 2172 * happened on the file system is a dirtytime inode caused by an atime 2173 * update, we need this infrastructure below to make sure that inode 2174 * eventually gets pushed out to disk. 2175 */ 2176 static void wakeup_dirtytime_writeback(struct work_struct *w); 2177 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2178 2179 static void wakeup_dirtytime_writeback(struct work_struct *w) 2180 { 2181 struct backing_dev_info *bdi; 2182 2183 rcu_read_lock(); 2184 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2185 struct bdi_writeback *wb; 2186 2187 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2188 if (!list_empty(&wb->b_dirty_time)) 2189 wb_wakeup(wb); 2190 } 2191 rcu_read_unlock(); 2192 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2193 } 2194 2195 static int __init start_dirtytime_writeback(void) 2196 { 2197 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2198 return 0; 2199 } 2200 __initcall(start_dirtytime_writeback); 2201 2202 int dirtytime_interval_handler(struct ctl_table *table, int write, 2203 void __user *buffer, size_t *lenp, loff_t *ppos) 2204 { 2205 int ret; 2206 2207 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2208 if (ret == 0 && write) 2209 mod_delayed_work(system_wq, &dirtytime_work, 0); 2210 return ret; 2211 } 2212 2213 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2214 { 2215 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2216 struct dentry *dentry; 2217 const char *name = "?"; 2218 2219 dentry = d_find_alias(inode); 2220 if (dentry) { 2221 spin_lock(&dentry->d_lock); 2222 name = (const char *) dentry->d_name.name; 2223 } 2224 printk(KERN_DEBUG 2225 "%s(%d): dirtied inode %lu (%s) on %s\n", 2226 current->comm, task_pid_nr(current), inode->i_ino, 2227 name, inode->i_sb->s_id); 2228 if (dentry) { 2229 spin_unlock(&dentry->d_lock); 2230 dput(dentry); 2231 } 2232 } 2233 } 2234 2235 /** 2236 * __mark_inode_dirty - internal function 2237 * 2238 * @inode: inode to mark 2239 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2240 * 2241 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2242 * mark_inode_dirty_sync. 2243 * 2244 * Put the inode on the super block's dirty list. 2245 * 2246 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2247 * dirty list only if it is hashed or if it refers to a blockdev. 2248 * If it was not hashed, it will never be added to the dirty list 2249 * even if it is later hashed, as it will have been marked dirty already. 2250 * 2251 * In short, make sure you hash any inodes _before_ you start marking 2252 * them dirty. 2253 * 2254 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2255 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2256 * the kernel-internal blockdev inode represents the dirtying time of the 2257 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2258 * page->mapping->host, so the page-dirtying time is recorded in the internal 2259 * blockdev inode. 2260 */ 2261 void __mark_inode_dirty(struct inode *inode, int flags) 2262 { 2263 struct super_block *sb = inode->i_sb; 2264 int dirtytime; 2265 2266 trace_writeback_mark_inode_dirty(inode, flags); 2267 2268 /* 2269 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2270 * dirty the inode itself 2271 */ 2272 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2273 trace_writeback_dirty_inode_start(inode, flags); 2274 2275 if (sb->s_op->dirty_inode) 2276 sb->s_op->dirty_inode(inode, flags); 2277 2278 trace_writeback_dirty_inode(inode, flags); 2279 } 2280 if (flags & I_DIRTY_INODE) 2281 flags &= ~I_DIRTY_TIME; 2282 dirtytime = flags & I_DIRTY_TIME; 2283 2284 /* 2285 * Paired with smp_mb() in __writeback_single_inode() for the 2286 * following lockless i_state test. See there for details. 2287 */ 2288 smp_mb(); 2289 2290 if (((inode->i_state & flags) == flags) || 2291 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2292 return; 2293 2294 if (unlikely(block_dump)) 2295 block_dump___mark_inode_dirty(inode); 2296 2297 spin_lock(&inode->i_lock); 2298 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2299 goto out_unlock_inode; 2300 if ((inode->i_state & flags) != flags) { 2301 const int was_dirty = inode->i_state & I_DIRTY; 2302 2303 inode_attach_wb(inode, NULL); 2304 2305 if (flags & I_DIRTY_INODE) 2306 inode->i_state &= ~I_DIRTY_TIME; 2307 inode->i_state |= flags; 2308 2309 /* 2310 * If the inode is queued for writeback by flush worker, just 2311 * update its dirty state. Once the flush worker is done with 2312 * the inode it will place it on the appropriate superblock 2313 * list, based upon its state. 2314 */ 2315 if (inode->i_state & I_SYNC_QUEUED) 2316 goto out_unlock_inode; 2317 2318 /* 2319 * Only add valid (hashed) inodes to the superblock's 2320 * dirty list. Add blockdev inodes as well. 2321 */ 2322 if (!S_ISBLK(inode->i_mode)) { 2323 if (inode_unhashed(inode)) 2324 goto out_unlock_inode; 2325 } 2326 if (inode->i_state & I_FREEING) 2327 goto out_unlock_inode; 2328 2329 /* 2330 * If the inode was already on b_dirty/b_io/b_more_io, don't 2331 * reposition it (that would break b_dirty time-ordering). 2332 */ 2333 if (!was_dirty) { 2334 struct bdi_writeback *wb; 2335 struct list_head *dirty_list; 2336 bool wakeup_bdi = false; 2337 2338 wb = locked_inode_to_wb_and_lock_list(inode); 2339 2340 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2341 !test_bit(WB_registered, &wb->state), 2342 "bdi-%s not registered\n", bdi_dev_name(wb->bdi)); 2343 2344 inode->dirtied_when = jiffies; 2345 if (dirtytime) 2346 inode->dirtied_time_when = jiffies; 2347 2348 if (inode->i_state & I_DIRTY) 2349 dirty_list = &wb->b_dirty; 2350 else 2351 dirty_list = &wb->b_dirty_time; 2352 2353 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2354 dirty_list); 2355 2356 spin_unlock(&wb->list_lock); 2357 trace_writeback_dirty_inode_enqueue(inode); 2358 2359 /* 2360 * If this is the first dirty inode for this bdi, 2361 * we have to wake-up the corresponding bdi thread 2362 * to make sure background write-back happens 2363 * later. 2364 */ 2365 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2366 wb_wakeup_delayed(wb); 2367 return; 2368 } 2369 } 2370 out_unlock_inode: 2371 spin_unlock(&inode->i_lock); 2372 } 2373 EXPORT_SYMBOL(__mark_inode_dirty); 2374 2375 /* 2376 * The @s_sync_lock is used to serialise concurrent sync operations 2377 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2378 * Concurrent callers will block on the s_sync_lock rather than doing contending 2379 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2380 * has been issued up to the time this function is enter is guaranteed to be 2381 * completed by the time we have gained the lock and waited for all IO that is 2382 * in progress regardless of the order callers are granted the lock. 2383 */ 2384 static void wait_sb_inodes(struct super_block *sb) 2385 { 2386 LIST_HEAD(sync_list); 2387 2388 /* 2389 * We need to be protected against the filesystem going from 2390 * r/o to r/w or vice versa. 2391 */ 2392 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2393 2394 mutex_lock(&sb->s_sync_lock); 2395 2396 /* 2397 * Splice the writeback list onto a temporary list to avoid waiting on 2398 * inodes that have started writeback after this point. 2399 * 2400 * Use rcu_read_lock() to keep the inodes around until we have a 2401 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2402 * the local list because inodes can be dropped from either by writeback 2403 * completion. 2404 */ 2405 rcu_read_lock(); 2406 spin_lock_irq(&sb->s_inode_wblist_lock); 2407 list_splice_init(&sb->s_inodes_wb, &sync_list); 2408 2409 /* 2410 * Data integrity sync. Must wait for all pages under writeback, because 2411 * there may have been pages dirtied before our sync call, but which had 2412 * writeout started before we write it out. In which case, the inode 2413 * may not be on the dirty list, but we still have to wait for that 2414 * writeout. 2415 */ 2416 while (!list_empty(&sync_list)) { 2417 struct inode *inode = list_first_entry(&sync_list, struct inode, 2418 i_wb_list); 2419 struct address_space *mapping = inode->i_mapping; 2420 2421 /* 2422 * Move each inode back to the wb list before we drop the lock 2423 * to preserve consistency between i_wb_list and the mapping 2424 * writeback tag. Writeback completion is responsible to remove 2425 * the inode from either list once the writeback tag is cleared. 2426 */ 2427 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2428 2429 /* 2430 * The mapping can appear untagged while still on-list since we 2431 * do not have the mapping lock. Skip it here, wb completion 2432 * will remove it. 2433 */ 2434 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2435 continue; 2436 2437 spin_unlock_irq(&sb->s_inode_wblist_lock); 2438 2439 spin_lock(&inode->i_lock); 2440 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2441 spin_unlock(&inode->i_lock); 2442 2443 spin_lock_irq(&sb->s_inode_wblist_lock); 2444 continue; 2445 } 2446 __iget(inode); 2447 spin_unlock(&inode->i_lock); 2448 rcu_read_unlock(); 2449 2450 /* 2451 * We keep the error status of individual mapping so that 2452 * applications can catch the writeback error using fsync(2). 2453 * See filemap_fdatawait_keep_errors() for details. 2454 */ 2455 filemap_fdatawait_keep_errors(mapping); 2456 2457 cond_resched(); 2458 2459 iput(inode); 2460 2461 rcu_read_lock(); 2462 spin_lock_irq(&sb->s_inode_wblist_lock); 2463 } 2464 spin_unlock_irq(&sb->s_inode_wblist_lock); 2465 rcu_read_unlock(); 2466 mutex_unlock(&sb->s_sync_lock); 2467 } 2468 2469 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2470 enum wb_reason reason, bool skip_if_busy) 2471 { 2472 struct backing_dev_info *bdi = sb->s_bdi; 2473 DEFINE_WB_COMPLETION(done, bdi); 2474 struct wb_writeback_work work = { 2475 .sb = sb, 2476 .sync_mode = WB_SYNC_NONE, 2477 .tagged_writepages = 1, 2478 .done = &done, 2479 .nr_pages = nr, 2480 .reason = reason, 2481 }; 2482 2483 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2484 return; 2485 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2486 2487 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2488 wb_wait_for_completion(&done); 2489 } 2490 2491 /** 2492 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2493 * @sb: the superblock 2494 * @nr: the number of pages to write 2495 * @reason: reason why some writeback work initiated 2496 * 2497 * Start writeback on some inodes on this super_block. No guarantees are made 2498 * on how many (if any) will be written, and this function does not wait 2499 * for IO completion of submitted IO. 2500 */ 2501 void writeback_inodes_sb_nr(struct super_block *sb, 2502 unsigned long nr, 2503 enum wb_reason reason) 2504 { 2505 __writeback_inodes_sb_nr(sb, nr, reason, false); 2506 } 2507 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2508 2509 /** 2510 * writeback_inodes_sb - writeback dirty inodes from given super_block 2511 * @sb: the superblock 2512 * @reason: reason why some writeback work was initiated 2513 * 2514 * Start writeback on some inodes on this super_block. No guarantees are made 2515 * on how many (if any) will be written, and this function does not wait 2516 * for IO completion of submitted IO. 2517 */ 2518 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2519 { 2520 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2521 } 2522 EXPORT_SYMBOL(writeback_inodes_sb); 2523 2524 /** 2525 * try_to_writeback_inodes_sb - try to start writeback if none underway 2526 * @sb: the superblock 2527 * @reason: reason why some writeback work was initiated 2528 * 2529 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2530 */ 2531 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2532 { 2533 if (!down_read_trylock(&sb->s_umount)) 2534 return; 2535 2536 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2537 up_read(&sb->s_umount); 2538 } 2539 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2540 2541 /** 2542 * sync_inodes_sb - sync sb inode pages 2543 * @sb: the superblock 2544 * 2545 * This function writes and waits on any dirty inode belonging to this 2546 * super_block. 2547 */ 2548 void sync_inodes_sb(struct super_block *sb) 2549 { 2550 struct backing_dev_info *bdi = sb->s_bdi; 2551 DEFINE_WB_COMPLETION(done, bdi); 2552 struct wb_writeback_work work = { 2553 .sb = sb, 2554 .sync_mode = WB_SYNC_ALL, 2555 .nr_pages = LONG_MAX, 2556 .range_cyclic = 0, 2557 .done = &done, 2558 .reason = WB_REASON_SYNC, 2559 .for_sync = 1, 2560 }; 2561 2562 /* 2563 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2564 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2565 * bdi_has_dirty() need to be written out too. 2566 */ 2567 if (bdi == &noop_backing_dev_info) 2568 return; 2569 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2570 2571 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2572 bdi_down_write_wb_switch_rwsem(bdi); 2573 bdi_split_work_to_wbs(bdi, &work, false); 2574 wb_wait_for_completion(&done); 2575 bdi_up_write_wb_switch_rwsem(bdi); 2576 2577 wait_sb_inodes(sb); 2578 } 2579 EXPORT_SYMBOL(sync_inodes_sb); 2580 2581 /** 2582 * write_inode_now - write an inode to disk 2583 * @inode: inode to write to disk 2584 * @sync: whether the write should be synchronous or not 2585 * 2586 * This function commits an inode to disk immediately if it is dirty. This is 2587 * primarily needed by knfsd. 2588 * 2589 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2590 */ 2591 int write_inode_now(struct inode *inode, int sync) 2592 { 2593 struct writeback_control wbc = { 2594 .nr_to_write = LONG_MAX, 2595 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2596 .range_start = 0, 2597 .range_end = LLONG_MAX, 2598 }; 2599 2600 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2601 wbc.nr_to_write = 0; 2602 2603 might_sleep(); 2604 return writeback_single_inode(inode, &wbc); 2605 } 2606 EXPORT_SYMBOL(write_inode_now); 2607 2608 /** 2609 * sync_inode - write an inode and its pages to disk. 2610 * @inode: the inode to sync 2611 * @wbc: controls the writeback mode 2612 * 2613 * sync_inode() will write an inode and its pages to disk. It will also 2614 * correctly update the inode on its superblock's dirty inode lists and will 2615 * update inode->i_state. 2616 * 2617 * The caller must have a ref on the inode. 2618 */ 2619 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2620 { 2621 return writeback_single_inode(inode, wbc); 2622 } 2623 EXPORT_SYMBOL(sync_inode); 2624 2625 /** 2626 * sync_inode_metadata - write an inode to disk 2627 * @inode: the inode to sync 2628 * @wait: wait for I/O to complete. 2629 * 2630 * Write an inode to disk and adjust its dirty state after completion. 2631 * 2632 * Note: only writes the actual inode, no associated data or other metadata. 2633 */ 2634 int sync_inode_metadata(struct inode *inode, int wait) 2635 { 2636 struct writeback_control wbc = { 2637 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2638 .nr_to_write = 0, /* metadata-only */ 2639 }; 2640 2641 return sync_inode(inode, &wbc); 2642 } 2643 EXPORT_SYMBOL(sync_inode_metadata); 2644