xref: /openbmc/linux/fs/fs-writeback.c (revision 455b2864686d3591b3b2f39eb46290c95f76471f)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int for_kupdate:1;
40 	unsigned int range_cyclic:1;
41 	unsigned int for_background:1;
42 
43 	struct list_head list;		/* pending work list */
44 	struct completion *done;	/* set if the caller waits */
45 };
46 
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54 
55 #define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)
56 
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61 
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 	return !list_empty(&bdi->work_list);
72 }
73 
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75 		struct wb_writeback_work *work)
76 {
77 	trace_writeback_queue(bdi, work);
78 
79 	spin_lock(&bdi->wb_lock);
80 	list_add_tail(&work->list, &bdi->work_list);
81 	spin_unlock(&bdi->wb_lock);
82 
83 	/*
84 	 * If the default thread isn't there, make sure we add it. When
85 	 * it gets created and wakes up, we'll run this work.
86 	 */
87 	if (unlikely(!bdi->wb.task)) {
88 		trace_writeback_nothread(bdi, work);
89 		wake_up_process(default_backing_dev_info.wb.task);
90 	} else {
91 		struct bdi_writeback *wb = &bdi->wb;
92 
93 		if (wb->task)
94 			wake_up_process(wb->task);
95 	}
96 }
97 
98 static void
99 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
100 		bool range_cyclic, bool for_background)
101 {
102 	struct wb_writeback_work *work;
103 
104 	/*
105 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
106 	 * wakeup the thread for old dirty data writeback
107 	 */
108 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
109 	if (!work) {
110 		if (bdi->wb.task) {
111 			trace_writeback_nowork(bdi);
112 			wake_up_process(bdi->wb.task);
113 		}
114 		return;
115 	}
116 
117 	work->sync_mode	= WB_SYNC_NONE;
118 	work->nr_pages	= nr_pages;
119 	work->range_cyclic = range_cyclic;
120 	work->for_background = for_background;
121 
122 	bdi_queue_work(bdi, work);
123 }
124 
125 /**
126  * bdi_start_writeback - start writeback
127  * @bdi: the backing device to write from
128  * @nr_pages: the number of pages to write
129  *
130  * Description:
131  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
132  *   started when this function returns, we make no guarentees on
133  *   completion. Caller need not hold sb s_umount semaphore.
134  *
135  */
136 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
137 {
138 	__bdi_start_writeback(bdi, nr_pages, true, false);
139 }
140 
141 /**
142  * bdi_start_background_writeback - start background writeback
143  * @bdi: the backing device to write from
144  *
145  * Description:
146  *   This does WB_SYNC_NONE background writeback. The IO is only
147  *   started when this function returns, we make no guarentees on
148  *   completion. Caller need not hold sb s_umount semaphore.
149  */
150 void bdi_start_background_writeback(struct backing_dev_info *bdi)
151 {
152 	__bdi_start_writeback(bdi, LONG_MAX, true, true);
153 }
154 
155 /*
156  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
157  * furthest end of its superblock's dirty-inode list.
158  *
159  * Before stamping the inode's ->dirtied_when, we check to see whether it is
160  * already the most-recently-dirtied inode on the b_dirty list.  If that is
161  * the case then the inode must have been redirtied while it was being written
162  * out and we don't reset its dirtied_when.
163  */
164 static void redirty_tail(struct inode *inode)
165 {
166 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
167 
168 	if (!list_empty(&wb->b_dirty)) {
169 		struct inode *tail;
170 
171 		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
172 		if (time_before(inode->dirtied_when, tail->dirtied_when))
173 			inode->dirtied_when = jiffies;
174 	}
175 	list_move(&inode->i_list, &wb->b_dirty);
176 }
177 
178 /*
179  * requeue inode for re-scanning after bdi->b_io list is exhausted.
180  */
181 static void requeue_io(struct inode *inode)
182 {
183 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
184 
185 	list_move(&inode->i_list, &wb->b_more_io);
186 }
187 
188 static void inode_sync_complete(struct inode *inode)
189 {
190 	/*
191 	 * Prevent speculative execution through spin_unlock(&inode_lock);
192 	 */
193 	smp_mb();
194 	wake_up_bit(&inode->i_state, __I_SYNC);
195 }
196 
197 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
198 {
199 	bool ret = time_after(inode->dirtied_when, t);
200 #ifndef CONFIG_64BIT
201 	/*
202 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
203 	 * It _appears_ to be in the future, but is actually in distant past.
204 	 * This test is necessary to prevent such wrapped-around relative times
205 	 * from permanently stopping the whole bdi writeback.
206 	 */
207 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
208 #endif
209 	return ret;
210 }
211 
212 /*
213  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
214  */
215 static void move_expired_inodes(struct list_head *delaying_queue,
216 			       struct list_head *dispatch_queue,
217 				unsigned long *older_than_this)
218 {
219 	LIST_HEAD(tmp);
220 	struct list_head *pos, *node;
221 	struct super_block *sb = NULL;
222 	struct inode *inode;
223 	int do_sb_sort = 0;
224 
225 	while (!list_empty(delaying_queue)) {
226 		inode = list_entry(delaying_queue->prev, struct inode, i_list);
227 		if (older_than_this &&
228 		    inode_dirtied_after(inode, *older_than_this))
229 			break;
230 		if (sb && sb != inode->i_sb)
231 			do_sb_sort = 1;
232 		sb = inode->i_sb;
233 		list_move(&inode->i_list, &tmp);
234 	}
235 
236 	/* just one sb in list, splice to dispatch_queue and we're done */
237 	if (!do_sb_sort) {
238 		list_splice(&tmp, dispatch_queue);
239 		return;
240 	}
241 
242 	/* Move inodes from one superblock together */
243 	while (!list_empty(&tmp)) {
244 		inode = list_entry(tmp.prev, struct inode, i_list);
245 		sb = inode->i_sb;
246 		list_for_each_prev_safe(pos, node, &tmp) {
247 			inode = list_entry(pos, struct inode, i_list);
248 			if (inode->i_sb == sb)
249 				list_move(&inode->i_list, dispatch_queue);
250 		}
251 	}
252 }
253 
254 /*
255  * Queue all expired dirty inodes for io, eldest first.
256  */
257 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
258 {
259 	list_splice_init(&wb->b_more_io, wb->b_io.prev);
260 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
261 }
262 
263 static int write_inode(struct inode *inode, struct writeback_control *wbc)
264 {
265 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
266 		return inode->i_sb->s_op->write_inode(inode, wbc);
267 	return 0;
268 }
269 
270 /*
271  * Wait for writeback on an inode to complete.
272  */
273 static void inode_wait_for_writeback(struct inode *inode)
274 {
275 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
276 	wait_queue_head_t *wqh;
277 
278 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
279 	 while (inode->i_state & I_SYNC) {
280 		spin_unlock(&inode_lock);
281 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
282 		spin_lock(&inode_lock);
283 	}
284 }
285 
286 /*
287  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
288  * caller has ref on the inode (either via __iget or via syscall against an fd)
289  * or the inode has I_WILL_FREE set (via generic_forget_inode)
290  *
291  * If `wait' is set, wait on the writeout.
292  *
293  * The whole writeout design is quite complex and fragile.  We want to avoid
294  * starvation of particular inodes when others are being redirtied, prevent
295  * livelocks, etc.
296  *
297  * Called under inode_lock.
298  */
299 static int
300 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
301 {
302 	struct address_space *mapping = inode->i_mapping;
303 	unsigned dirty;
304 	int ret;
305 
306 	if (!atomic_read(&inode->i_count))
307 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
308 	else
309 		WARN_ON(inode->i_state & I_WILL_FREE);
310 
311 	if (inode->i_state & I_SYNC) {
312 		/*
313 		 * If this inode is locked for writeback and we are not doing
314 		 * writeback-for-data-integrity, move it to b_more_io so that
315 		 * writeback can proceed with the other inodes on s_io.
316 		 *
317 		 * We'll have another go at writing back this inode when we
318 		 * completed a full scan of b_io.
319 		 */
320 		if (wbc->sync_mode != WB_SYNC_ALL) {
321 			requeue_io(inode);
322 			return 0;
323 		}
324 
325 		/*
326 		 * It's a data-integrity sync.  We must wait.
327 		 */
328 		inode_wait_for_writeback(inode);
329 	}
330 
331 	BUG_ON(inode->i_state & I_SYNC);
332 
333 	/* Set I_SYNC, reset I_DIRTY_PAGES */
334 	inode->i_state |= I_SYNC;
335 	inode->i_state &= ~I_DIRTY_PAGES;
336 	spin_unlock(&inode_lock);
337 
338 	ret = do_writepages(mapping, wbc);
339 
340 	/*
341 	 * Make sure to wait on the data before writing out the metadata.
342 	 * This is important for filesystems that modify metadata on data
343 	 * I/O completion.
344 	 */
345 	if (wbc->sync_mode == WB_SYNC_ALL) {
346 		int err = filemap_fdatawait(mapping);
347 		if (ret == 0)
348 			ret = err;
349 	}
350 
351 	/*
352 	 * Some filesystems may redirty the inode during the writeback
353 	 * due to delalloc, clear dirty metadata flags right before
354 	 * write_inode()
355 	 */
356 	spin_lock(&inode_lock);
357 	dirty = inode->i_state & I_DIRTY;
358 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
359 	spin_unlock(&inode_lock);
360 	/* Don't write the inode if only I_DIRTY_PAGES was set */
361 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
362 		int err = write_inode(inode, wbc);
363 		if (ret == 0)
364 			ret = err;
365 	}
366 
367 	spin_lock(&inode_lock);
368 	inode->i_state &= ~I_SYNC;
369 	if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
370 		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
371 			/*
372 			 * More pages get dirtied by a fast dirtier.
373 			 */
374 			goto select_queue;
375 		} else if (inode->i_state & I_DIRTY) {
376 			/*
377 			 * At least XFS will redirty the inode during the
378 			 * writeback (delalloc) and on io completion (isize).
379 			 */
380 			redirty_tail(inode);
381 		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
382 			/*
383 			 * We didn't write back all the pages.  nfs_writepages()
384 			 * sometimes bales out without doing anything. Redirty
385 			 * the inode; Move it from b_io onto b_more_io/b_dirty.
386 			 */
387 			/*
388 			 * akpm: if the caller was the kupdate function we put
389 			 * this inode at the head of b_dirty so it gets first
390 			 * consideration.  Otherwise, move it to the tail, for
391 			 * the reasons described there.  I'm not really sure
392 			 * how much sense this makes.  Presumably I had a good
393 			 * reasons for doing it this way, and I'd rather not
394 			 * muck with it at present.
395 			 */
396 			if (wbc->for_kupdate) {
397 				/*
398 				 * For the kupdate function we move the inode
399 				 * to b_more_io so it will get more writeout as
400 				 * soon as the queue becomes uncongested.
401 				 */
402 				inode->i_state |= I_DIRTY_PAGES;
403 select_queue:
404 				if (wbc->nr_to_write <= 0) {
405 					/*
406 					 * slice used up: queue for next turn
407 					 */
408 					requeue_io(inode);
409 				} else {
410 					/*
411 					 * somehow blocked: retry later
412 					 */
413 					redirty_tail(inode);
414 				}
415 			} else {
416 				/*
417 				 * Otherwise fully redirty the inode so that
418 				 * other inodes on this superblock will get some
419 				 * writeout.  Otherwise heavy writing to one
420 				 * file would indefinitely suspend writeout of
421 				 * all the other files.
422 				 */
423 				inode->i_state |= I_DIRTY_PAGES;
424 				redirty_tail(inode);
425 			}
426 		} else if (atomic_read(&inode->i_count)) {
427 			/*
428 			 * The inode is clean, inuse
429 			 */
430 			list_move(&inode->i_list, &inode_in_use);
431 		} else {
432 			/*
433 			 * The inode is clean, unused
434 			 */
435 			list_move(&inode->i_list, &inode_unused);
436 		}
437 	}
438 	inode_sync_complete(inode);
439 	return ret;
440 }
441 
442 /*
443  * For background writeback the caller does not have the sb pinned
444  * before calling writeback. So make sure that we do pin it, so it doesn't
445  * go away while we are writing inodes from it.
446  */
447 static bool pin_sb_for_writeback(struct super_block *sb)
448 {
449 	spin_lock(&sb_lock);
450 	if (list_empty(&sb->s_instances)) {
451 		spin_unlock(&sb_lock);
452 		return false;
453 	}
454 
455 	sb->s_count++;
456 	spin_unlock(&sb_lock);
457 
458 	if (down_read_trylock(&sb->s_umount)) {
459 		if (sb->s_root)
460 			return true;
461 		up_read(&sb->s_umount);
462 	}
463 
464 	put_super(sb);
465 	return false;
466 }
467 
468 /*
469  * Write a portion of b_io inodes which belong to @sb.
470  *
471  * If @only_this_sb is true, then find and write all such
472  * inodes. Otherwise write only ones which go sequentially
473  * in reverse order.
474  *
475  * Return 1, if the caller writeback routine should be
476  * interrupted. Otherwise return 0.
477  */
478 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
479 		struct writeback_control *wbc, bool only_this_sb)
480 {
481 	while (!list_empty(&wb->b_io)) {
482 		long pages_skipped;
483 		struct inode *inode = list_entry(wb->b_io.prev,
484 						 struct inode, i_list);
485 
486 		if (inode->i_sb != sb) {
487 			if (only_this_sb) {
488 				/*
489 				 * We only want to write back data for this
490 				 * superblock, move all inodes not belonging
491 				 * to it back onto the dirty list.
492 				 */
493 				redirty_tail(inode);
494 				continue;
495 			}
496 
497 			/*
498 			 * The inode belongs to a different superblock.
499 			 * Bounce back to the caller to unpin this and
500 			 * pin the next superblock.
501 			 */
502 			return 0;
503 		}
504 
505 		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
506 			requeue_io(inode);
507 			continue;
508 		}
509 		/*
510 		 * Was this inode dirtied after sync_sb_inodes was called?
511 		 * This keeps sync from extra jobs and livelock.
512 		 */
513 		if (inode_dirtied_after(inode, wbc->wb_start))
514 			return 1;
515 
516 		BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
517 		__iget(inode);
518 		pages_skipped = wbc->pages_skipped;
519 		writeback_single_inode(inode, wbc);
520 		if (wbc->pages_skipped != pages_skipped) {
521 			/*
522 			 * writeback is not making progress due to locked
523 			 * buffers.  Skip this inode for now.
524 			 */
525 			redirty_tail(inode);
526 		}
527 		spin_unlock(&inode_lock);
528 		iput(inode);
529 		cond_resched();
530 		spin_lock(&inode_lock);
531 		if (wbc->nr_to_write <= 0) {
532 			wbc->more_io = 1;
533 			return 1;
534 		}
535 		if (!list_empty(&wb->b_more_io))
536 			wbc->more_io = 1;
537 	}
538 	/* b_io is empty */
539 	return 1;
540 }
541 
542 void writeback_inodes_wb(struct bdi_writeback *wb,
543 		struct writeback_control *wbc)
544 {
545 	int ret = 0;
546 
547 	wbc->wb_start = jiffies; /* livelock avoidance */
548 	spin_lock(&inode_lock);
549 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
550 		queue_io(wb, wbc->older_than_this);
551 
552 	while (!list_empty(&wb->b_io)) {
553 		struct inode *inode = list_entry(wb->b_io.prev,
554 						 struct inode, i_list);
555 		struct super_block *sb = inode->i_sb;
556 
557 		if (!pin_sb_for_writeback(sb)) {
558 			requeue_io(inode);
559 			continue;
560 		}
561 		ret = writeback_sb_inodes(sb, wb, wbc, false);
562 		drop_super(sb);
563 
564 		if (ret)
565 			break;
566 	}
567 	spin_unlock(&inode_lock);
568 	/* Leave any unwritten inodes on b_io */
569 }
570 
571 static void __writeback_inodes_sb(struct super_block *sb,
572 		struct bdi_writeback *wb, struct writeback_control *wbc)
573 {
574 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
575 
576 	wbc->wb_start = jiffies; /* livelock avoidance */
577 	spin_lock(&inode_lock);
578 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
579 		queue_io(wb, wbc->older_than_this);
580 	writeback_sb_inodes(sb, wb, wbc, true);
581 	spin_unlock(&inode_lock);
582 }
583 
584 /*
585  * The maximum number of pages to writeout in a single bdi flush/kupdate
586  * operation.  We do this so we don't hold I_SYNC against an inode for
587  * enormous amounts of time, which would block a userspace task which has
588  * been forced to throttle against that inode.  Also, the code reevaluates
589  * the dirty each time it has written this many pages.
590  */
591 #define MAX_WRITEBACK_PAGES     1024
592 
593 static inline bool over_bground_thresh(void)
594 {
595 	unsigned long background_thresh, dirty_thresh;
596 
597 	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
598 
599 	return (global_page_state(NR_FILE_DIRTY) +
600 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
601 }
602 
603 /*
604  * Explicit flushing or periodic writeback of "old" data.
605  *
606  * Define "old": the first time one of an inode's pages is dirtied, we mark the
607  * dirtying-time in the inode's address_space.  So this periodic writeback code
608  * just walks the superblock inode list, writing back any inodes which are
609  * older than a specific point in time.
610  *
611  * Try to run once per dirty_writeback_interval.  But if a writeback event
612  * takes longer than a dirty_writeback_interval interval, then leave a
613  * one-second gap.
614  *
615  * older_than_this takes precedence over nr_to_write.  So we'll only write back
616  * all dirty pages if they are all attached to "old" mappings.
617  */
618 static long wb_writeback(struct bdi_writeback *wb,
619 			 struct wb_writeback_work *work)
620 {
621 	struct writeback_control wbc = {
622 		.sync_mode		= work->sync_mode,
623 		.older_than_this	= NULL,
624 		.for_kupdate		= work->for_kupdate,
625 		.for_background		= work->for_background,
626 		.range_cyclic		= work->range_cyclic,
627 	};
628 	unsigned long oldest_jif;
629 	long wrote = 0;
630 	struct inode *inode;
631 
632 	if (wbc.for_kupdate) {
633 		wbc.older_than_this = &oldest_jif;
634 		oldest_jif = jiffies -
635 				msecs_to_jiffies(dirty_expire_interval * 10);
636 	}
637 	if (!wbc.range_cyclic) {
638 		wbc.range_start = 0;
639 		wbc.range_end = LLONG_MAX;
640 	}
641 
642 	for (;;) {
643 		/*
644 		 * Stop writeback when nr_pages has been consumed
645 		 */
646 		if (work->nr_pages <= 0)
647 			break;
648 
649 		/*
650 		 * For background writeout, stop when we are below the
651 		 * background dirty threshold
652 		 */
653 		if (work->for_background && !over_bground_thresh())
654 			break;
655 
656 		wbc.more_io = 0;
657 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
658 		wbc.pages_skipped = 0;
659 		if (work->sb)
660 			__writeback_inodes_sb(work->sb, wb, &wbc);
661 		else
662 			writeback_inodes_wb(wb, &wbc);
663 		work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
664 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
665 
666 		/*
667 		 * If we consumed everything, see if we have more
668 		 */
669 		if (wbc.nr_to_write <= 0)
670 			continue;
671 		/*
672 		 * Didn't write everything and we don't have more IO, bail
673 		 */
674 		if (!wbc.more_io)
675 			break;
676 		/*
677 		 * Did we write something? Try for more
678 		 */
679 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
680 			continue;
681 		/*
682 		 * Nothing written. Wait for some inode to
683 		 * become available for writeback. Otherwise
684 		 * we'll just busyloop.
685 		 */
686 		spin_lock(&inode_lock);
687 		if (!list_empty(&wb->b_more_io))  {
688 			inode = list_entry(wb->b_more_io.prev,
689 						struct inode, i_list);
690 			inode_wait_for_writeback(inode);
691 		}
692 		spin_unlock(&inode_lock);
693 	}
694 
695 	return wrote;
696 }
697 
698 /*
699  * Return the next wb_writeback_work struct that hasn't been processed yet.
700  */
701 static struct wb_writeback_work *
702 get_next_work_item(struct backing_dev_info *bdi, struct bdi_writeback *wb)
703 {
704 	struct wb_writeback_work *work = NULL;
705 
706 	spin_lock(&bdi->wb_lock);
707 	if (!list_empty(&bdi->work_list)) {
708 		work = list_entry(bdi->work_list.next,
709 				  struct wb_writeback_work, list);
710 		list_del_init(&work->list);
711 	}
712 	spin_unlock(&bdi->wb_lock);
713 	return work;
714 }
715 
716 static long wb_check_old_data_flush(struct bdi_writeback *wb)
717 {
718 	unsigned long expired;
719 	long nr_pages;
720 
721 	/*
722 	 * When set to zero, disable periodic writeback
723 	 */
724 	if (!dirty_writeback_interval)
725 		return 0;
726 
727 	expired = wb->last_old_flush +
728 			msecs_to_jiffies(dirty_writeback_interval * 10);
729 	if (time_before(jiffies, expired))
730 		return 0;
731 
732 	wb->last_old_flush = jiffies;
733 	nr_pages = global_page_state(NR_FILE_DIRTY) +
734 			global_page_state(NR_UNSTABLE_NFS) +
735 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
736 
737 	if (nr_pages) {
738 		struct wb_writeback_work work = {
739 			.nr_pages	= nr_pages,
740 			.sync_mode	= WB_SYNC_NONE,
741 			.for_kupdate	= 1,
742 			.range_cyclic	= 1,
743 		};
744 
745 		return wb_writeback(wb, &work);
746 	}
747 
748 	return 0;
749 }
750 
751 /*
752  * Retrieve work items and do the writeback they describe
753  */
754 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
755 {
756 	struct backing_dev_info *bdi = wb->bdi;
757 	struct wb_writeback_work *work;
758 	long wrote = 0;
759 
760 	while ((work = get_next_work_item(bdi, wb)) != NULL) {
761 		/*
762 		 * Override sync mode, in case we must wait for completion
763 		 * because this thread is exiting now.
764 		 */
765 		if (force_wait)
766 			work->sync_mode = WB_SYNC_ALL;
767 
768 		trace_writeback_exec(bdi, work);
769 
770 		wrote += wb_writeback(wb, work);
771 
772 		/*
773 		 * Notify the caller of completion if this is a synchronous
774 		 * work item, otherwise just free it.
775 		 */
776 		if (work->done)
777 			complete(work->done);
778 		else
779 			kfree(work);
780 	}
781 
782 	/*
783 	 * Check for periodic writeback, kupdated() style
784 	 */
785 	wrote += wb_check_old_data_flush(wb);
786 
787 	return wrote;
788 }
789 
790 /*
791  * Handle writeback of dirty data for the device backed by this bdi. Also
792  * wakes up periodically and does kupdated style flushing.
793  */
794 int bdi_writeback_thread(void *data)
795 {
796 	struct bdi_writeback *wb = data;
797 	struct backing_dev_info *bdi = wb->bdi;
798 	unsigned long last_active = jiffies;
799 	unsigned long wait_jiffies = -1UL;
800 	long pages_written;
801 
802 	/*
803 	 * Add us to the active bdi_list
804 	 */
805 	spin_lock_bh(&bdi_lock);
806 	list_add_rcu(&bdi->bdi_list, &bdi_list);
807 	spin_unlock_bh(&bdi_lock);
808 
809 	current->flags |= PF_FLUSHER | PF_SWAPWRITE;
810 	set_freezable();
811 
812 	/*
813 	 * Our parent may run at a different priority, just set us to normal
814 	 */
815 	set_user_nice(current, 0);
816 
817 	/*
818 	 * Clear pending bit and wakeup anybody waiting to tear us down
819 	 */
820 	clear_bit(BDI_pending, &bdi->state);
821 	smp_mb__after_clear_bit();
822 	wake_up_bit(&bdi->state, BDI_pending);
823 
824 	trace_writeback_thread_start(bdi);
825 
826 	while (!kthread_should_stop()) {
827 		pages_written = wb_do_writeback(wb, 0);
828 
829 		trace_writeback_pages_written(pages_written);
830 
831 		if (pages_written)
832 			last_active = jiffies;
833 		else if (wait_jiffies != -1UL) {
834 			unsigned long max_idle;
835 
836 			/*
837 			 * Longest period of inactivity that we tolerate. If we
838 			 * see dirty data again later, the task will get
839 			 * recreated automatically.
840 			 */
841 			max_idle = max(5UL * 60 * HZ, wait_jiffies);
842 			if (time_after(jiffies, max_idle + last_active))
843 				break;
844 		}
845 
846 		if (dirty_writeback_interval) {
847 			wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
848 			schedule_timeout_interruptible(wait_jiffies);
849 		} else {
850 			set_current_state(TASK_INTERRUPTIBLE);
851 			if (list_empty_careful(&wb->bdi->work_list) &&
852 			    !kthread_should_stop())
853 				schedule();
854 			__set_current_state(TASK_RUNNING);
855 		}
856 
857 		try_to_freeze();
858 	}
859 
860 	wb->task = NULL;
861 
862 	/*
863 	 * Flush any work that raced with us exiting. No new work
864 	 * will be added, since this bdi isn't discoverable anymore.
865 	 */
866 	if (!list_empty(&bdi->work_list))
867 		wb_do_writeback(wb, 1);
868 
869 	trace_writeback_thread_stop(bdi);
870 	return 0;
871 }
872 
873 
874 /*
875  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
876  * the whole world.
877  */
878 void wakeup_flusher_threads(long nr_pages)
879 {
880 	struct backing_dev_info *bdi;
881 
882 	if (!nr_pages) {
883 		nr_pages = global_page_state(NR_FILE_DIRTY) +
884 				global_page_state(NR_UNSTABLE_NFS);
885 	}
886 
887 	rcu_read_lock();
888 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
889 		if (!bdi_has_dirty_io(bdi))
890 			continue;
891 		__bdi_start_writeback(bdi, nr_pages, false, false);
892 	}
893 	rcu_read_unlock();
894 }
895 
896 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
897 {
898 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
899 		struct dentry *dentry;
900 		const char *name = "?";
901 
902 		dentry = d_find_alias(inode);
903 		if (dentry) {
904 			spin_lock(&dentry->d_lock);
905 			name = (const char *) dentry->d_name.name;
906 		}
907 		printk(KERN_DEBUG
908 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
909 		       current->comm, task_pid_nr(current), inode->i_ino,
910 		       name, inode->i_sb->s_id);
911 		if (dentry) {
912 			spin_unlock(&dentry->d_lock);
913 			dput(dentry);
914 		}
915 	}
916 }
917 
918 /**
919  *	__mark_inode_dirty -	internal function
920  *	@inode: inode to mark
921  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
922  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
923  *  	mark_inode_dirty_sync.
924  *
925  * Put the inode on the super block's dirty list.
926  *
927  * CAREFUL! We mark it dirty unconditionally, but move it onto the
928  * dirty list only if it is hashed or if it refers to a blockdev.
929  * If it was not hashed, it will never be added to the dirty list
930  * even if it is later hashed, as it will have been marked dirty already.
931  *
932  * In short, make sure you hash any inodes _before_ you start marking
933  * them dirty.
934  *
935  * This function *must* be atomic for the I_DIRTY_PAGES case -
936  * set_page_dirty() is called under spinlock in several places.
937  *
938  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
939  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
940  * the kernel-internal blockdev inode represents the dirtying time of the
941  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
942  * page->mapping->host, so the page-dirtying time is recorded in the internal
943  * blockdev inode.
944  */
945 void __mark_inode_dirty(struct inode *inode, int flags)
946 {
947 	struct super_block *sb = inode->i_sb;
948 
949 	/*
950 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
951 	 * dirty the inode itself
952 	 */
953 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
954 		if (sb->s_op->dirty_inode)
955 			sb->s_op->dirty_inode(inode);
956 	}
957 
958 	/*
959 	 * make sure that changes are seen by all cpus before we test i_state
960 	 * -- mikulas
961 	 */
962 	smp_mb();
963 
964 	/* avoid the locking if we can */
965 	if ((inode->i_state & flags) == flags)
966 		return;
967 
968 	if (unlikely(block_dump))
969 		block_dump___mark_inode_dirty(inode);
970 
971 	spin_lock(&inode_lock);
972 	if ((inode->i_state & flags) != flags) {
973 		const int was_dirty = inode->i_state & I_DIRTY;
974 
975 		inode->i_state |= flags;
976 
977 		/*
978 		 * If the inode is being synced, just update its dirty state.
979 		 * The unlocker will place the inode on the appropriate
980 		 * superblock list, based upon its state.
981 		 */
982 		if (inode->i_state & I_SYNC)
983 			goto out;
984 
985 		/*
986 		 * Only add valid (hashed) inodes to the superblock's
987 		 * dirty list.  Add blockdev inodes as well.
988 		 */
989 		if (!S_ISBLK(inode->i_mode)) {
990 			if (hlist_unhashed(&inode->i_hash))
991 				goto out;
992 		}
993 		if (inode->i_state & (I_FREEING|I_CLEAR))
994 			goto out;
995 
996 		/*
997 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
998 		 * reposition it (that would break b_dirty time-ordering).
999 		 */
1000 		if (!was_dirty) {
1001 			struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1002 			struct backing_dev_info *bdi = wb->bdi;
1003 
1004 			if (bdi_cap_writeback_dirty(bdi) &&
1005 			    !test_bit(BDI_registered, &bdi->state)) {
1006 				WARN_ON(1);
1007 				printk(KERN_ERR "bdi-%s not registered\n",
1008 								bdi->name);
1009 			}
1010 
1011 			inode->dirtied_when = jiffies;
1012 			list_move(&inode->i_list, &wb->b_dirty);
1013 		}
1014 	}
1015 out:
1016 	spin_unlock(&inode_lock);
1017 }
1018 EXPORT_SYMBOL(__mark_inode_dirty);
1019 
1020 /*
1021  * Write out a superblock's list of dirty inodes.  A wait will be performed
1022  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1023  *
1024  * If older_than_this is non-NULL, then only write out inodes which
1025  * had their first dirtying at a time earlier than *older_than_this.
1026  *
1027  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1028  * This function assumes that the blockdev superblock's inodes are backed by
1029  * a variety of queues, so all inodes are searched.  For other superblocks,
1030  * assume that all inodes are backed by the same queue.
1031  *
1032  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1033  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1034  * on the writer throttling path, and we get decent balancing between many
1035  * throttled threads: we don't want them all piling up on inode_sync_wait.
1036  */
1037 static void wait_sb_inodes(struct super_block *sb)
1038 {
1039 	struct inode *inode, *old_inode = NULL;
1040 
1041 	/*
1042 	 * We need to be protected against the filesystem going from
1043 	 * r/o to r/w or vice versa.
1044 	 */
1045 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1046 
1047 	spin_lock(&inode_lock);
1048 
1049 	/*
1050 	 * Data integrity sync. Must wait for all pages under writeback,
1051 	 * because there may have been pages dirtied before our sync
1052 	 * call, but which had writeout started before we write it out.
1053 	 * In which case, the inode may not be on the dirty list, but
1054 	 * we still have to wait for that writeout.
1055 	 */
1056 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1057 		struct address_space *mapping;
1058 
1059 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1060 			continue;
1061 		mapping = inode->i_mapping;
1062 		if (mapping->nrpages == 0)
1063 			continue;
1064 		__iget(inode);
1065 		spin_unlock(&inode_lock);
1066 		/*
1067 		 * We hold a reference to 'inode' so it couldn't have
1068 		 * been removed from s_inodes list while we dropped the
1069 		 * inode_lock.  We cannot iput the inode now as we can
1070 		 * be holding the last reference and we cannot iput it
1071 		 * under inode_lock. So we keep the reference and iput
1072 		 * it later.
1073 		 */
1074 		iput(old_inode);
1075 		old_inode = inode;
1076 
1077 		filemap_fdatawait(mapping);
1078 
1079 		cond_resched();
1080 
1081 		spin_lock(&inode_lock);
1082 	}
1083 	spin_unlock(&inode_lock);
1084 	iput(old_inode);
1085 }
1086 
1087 /**
1088  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1089  * @sb: the superblock
1090  *
1091  * Start writeback on some inodes on this super_block. No guarantees are made
1092  * on how many (if any) will be written, and this function does not wait
1093  * for IO completion of submitted IO. The number of pages submitted is
1094  * returned.
1095  */
1096 void writeback_inodes_sb(struct super_block *sb)
1097 {
1098 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1099 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1100 	DECLARE_COMPLETION_ONSTACK(done);
1101 	struct wb_writeback_work work = {
1102 		.sb		= sb,
1103 		.sync_mode	= WB_SYNC_NONE,
1104 		.done		= &done,
1105 	};
1106 
1107 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1108 
1109 	work.nr_pages = nr_dirty + nr_unstable +
1110 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1111 
1112 	bdi_queue_work(sb->s_bdi, &work);
1113 	wait_for_completion(&done);
1114 }
1115 EXPORT_SYMBOL(writeback_inodes_sb);
1116 
1117 /**
1118  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1119  * @sb: the superblock
1120  *
1121  * Invoke writeback_inodes_sb if no writeback is currently underway.
1122  * Returns 1 if writeback was started, 0 if not.
1123  */
1124 int writeback_inodes_sb_if_idle(struct super_block *sb)
1125 {
1126 	if (!writeback_in_progress(sb->s_bdi)) {
1127 		down_read(&sb->s_umount);
1128 		writeback_inodes_sb(sb);
1129 		up_read(&sb->s_umount);
1130 		return 1;
1131 	} else
1132 		return 0;
1133 }
1134 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1135 
1136 /**
1137  * sync_inodes_sb	-	sync sb inode pages
1138  * @sb: the superblock
1139  *
1140  * This function writes and waits on any dirty inode belonging to this
1141  * super_block. The number of pages synced is returned.
1142  */
1143 void sync_inodes_sb(struct super_block *sb)
1144 {
1145 	DECLARE_COMPLETION_ONSTACK(done);
1146 	struct wb_writeback_work work = {
1147 		.sb		= sb,
1148 		.sync_mode	= WB_SYNC_ALL,
1149 		.nr_pages	= LONG_MAX,
1150 		.range_cyclic	= 0,
1151 		.done		= &done,
1152 	};
1153 
1154 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1155 
1156 	bdi_queue_work(sb->s_bdi, &work);
1157 	wait_for_completion(&done);
1158 
1159 	wait_sb_inodes(sb);
1160 }
1161 EXPORT_SYMBOL(sync_inodes_sb);
1162 
1163 /**
1164  * write_inode_now	-	write an inode to disk
1165  * @inode: inode to write to disk
1166  * @sync: whether the write should be synchronous or not
1167  *
1168  * This function commits an inode to disk immediately if it is dirty. This is
1169  * primarily needed by knfsd.
1170  *
1171  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1172  */
1173 int write_inode_now(struct inode *inode, int sync)
1174 {
1175 	int ret;
1176 	struct writeback_control wbc = {
1177 		.nr_to_write = LONG_MAX,
1178 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1179 		.range_start = 0,
1180 		.range_end = LLONG_MAX,
1181 	};
1182 
1183 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1184 		wbc.nr_to_write = 0;
1185 
1186 	might_sleep();
1187 	spin_lock(&inode_lock);
1188 	ret = writeback_single_inode(inode, &wbc);
1189 	spin_unlock(&inode_lock);
1190 	if (sync)
1191 		inode_sync_wait(inode);
1192 	return ret;
1193 }
1194 EXPORT_SYMBOL(write_inode_now);
1195 
1196 /**
1197  * sync_inode - write an inode and its pages to disk.
1198  * @inode: the inode to sync
1199  * @wbc: controls the writeback mode
1200  *
1201  * sync_inode() will write an inode and its pages to disk.  It will also
1202  * correctly update the inode on its superblock's dirty inode lists and will
1203  * update inode->i_state.
1204  *
1205  * The caller must have a ref on the inode.
1206  */
1207 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1208 {
1209 	int ret;
1210 
1211 	spin_lock(&inode_lock);
1212 	ret = writeback_single_inode(inode, wbc);
1213 	spin_unlock(&inode_lock);
1214 	return ret;
1215 }
1216 EXPORT_SYMBOL(sync_inode);
1217