1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 enum writeback_sync_modes sync_mode; 39 unsigned int for_kupdate:1; 40 unsigned int range_cyclic:1; 41 unsigned int for_background:1; 42 43 struct list_head list; /* pending work list */ 44 struct completion *done; /* set if the caller waits */ 45 }; 46 47 /* 48 * Include the creation of the trace points after defining the 49 * wb_writeback_work structure so that the definition remains local to this 50 * file. 51 */ 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/writeback.h> 54 55 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 56 57 /* 58 * We don't actually have pdflush, but this one is exported though /proc... 59 */ 60 int nr_pdflush_threads; 61 62 /** 63 * writeback_in_progress - determine whether there is writeback in progress 64 * @bdi: the device's backing_dev_info structure. 65 * 66 * Determine whether there is writeback waiting to be handled against a 67 * backing device. 68 */ 69 int writeback_in_progress(struct backing_dev_info *bdi) 70 { 71 return !list_empty(&bdi->work_list); 72 } 73 74 static void bdi_queue_work(struct backing_dev_info *bdi, 75 struct wb_writeback_work *work) 76 { 77 trace_writeback_queue(bdi, work); 78 79 spin_lock(&bdi->wb_lock); 80 list_add_tail(&work->list, &bdi->work_list); 81 spin_unlock(&bdi->wb_lock); 82 83 /* 84 * If the default thread isn't there, make sure we add it. When 85 * it gets created and wakes up, we'll run this work. 86 */ 87 if (unlikely(!bdi->wb.task)) { 88 trace_writeback_nothread(bdi, work); 89 wake_up_process(default_backing_dev_info.wb.task); 90 } else { 91 struct bdi_writeback *wb = &bdi->wb; 92 93 if (wb->task) 94 wake_up_process(wb->task); 95 } 96 } 97 98 static void 99 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 100 bool range_cyclic, bool for_background) 101 { 102 struct wb_writeback_work *work; 103 104 /* 105 * This is WB_SYNC_NONE writeback, so if allocation fails just 106 * wakeup the thread for old dirty data writeback 107 */ 108 work = kzalloc(sizeof(*work), GFP_ATOMIC); 109 if (!work) { 110 if (bdi->wb.task) { 111 trace_writeback_nowork(bdi); 112 wake_up_process(bdi->wb.task); 113 } 114 return; 115 } 116 117 work->sync_mode = WB_SYNC_NONE; 118 work->nr_pages = nr_pages; 119 work->range_cyclic = range_cyclic; 120 work->for_background = for_background; 121 122 bdi_queue_work(bdi, work); 123 } 124 125 /** 126 * bdi_start_writeback - start writeback 127 * @bdi: the backing device to write from 128 * @nr_pages: the number of pages to write 129 * 130 * Description: 131 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 132 * started when this function returns, we make no guarentees on 133 * completion. Caller need not hold sb s_umount semaphore. 134 * 135 */ 136 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 137 { 138 __bdi_start_writeback(bdi, nr_pages, true, false); 139 } 140 141 /** 142 * bdi_start_background_writeback - start background writeback 143 * @bdi: the backing device to write from 144 * 145 * Description: 146 * This does WB_SYNC_NONE background writeback. The IO is only 147 * started when this function returns, we make no guarentees on 148 * completion. Caller need not hold sb s_umount semaphore. 149 */ 150 void bdi_start_background_writeback(struct backing_dev_info *bdi) 151 { 152 __bdi_start_writeback(bdi, LONG_MAX, true, true); 153 } 154 155 /* 156 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 157 * furthest end of its superblock's dirty-inode list. 158 * 159 * Before stamping the inode's ->dirtied_when, we check to see whether it is 160 * already the most-recently-dirtied inode on the b_dirty list. If that is 161 * the case then the inode must have been redirtied while it was being written 162 * out and we don't reset its dirtied_when. 163 */ 164 static void redirty_tail(struct inode *inode) 165 { 166 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 167 168 if (!list_empty(&wb->b_dirty)) { 169 struct inode *tail; 170 171 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 172 if (time_before(inode->dirtied_when, tail->dirtied_when)) 173 inode->dirtied_when = jiffies; 174 } 175 list_move(&inode->i_list, &wb->b_dirty); 176 } 177 178 /* 179 * requeue inode for re-scanning after bdi->b_io list is exhausted. 180 */ 181 static void requeue_io(struct inode *inode) 182 { 183 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 184 185 list_move(&inode->i_list, &wb->b_more_io); 186 } 187 188 static void inode_sync_complete(struct inode *inode) 189 { 190 /* 191 * Prevent speculative execution through spin_unlock(&inode_lock); 192 */ 193 smp_mb(); 194 wake_up_bit(&inode->i_state, __I_SYNC); 195 } 196 197 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 198 { 199 bool ret = time_after(inode->dirtied_when, t); 200 #ifndef CONFIG_64BIT 201 /* 202 * For inodes being constantly redirtied, dirtied_when can get stuck. 203 * It _appears_ to be in the future, but is actually in distant past. 204 * This test is necessary to prevent such wrapped-around relative times 205 * from permanently stopping the whole bdi writeback. 206 */ 207 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 208 #endif 209 return ret; 210 } 211 212 /* 213 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 214 */ 215 static void move_expired_inodes(struct list_head *delaying_queue, 216 struct list_head *dispatch_queue, 217 unsigned long *older_than_this) 218 { 219 LIST_HEAD(tmp); 220 struct list_head *pos, *node; 221 struct super_block *sb = NULL; 222 struct inode *inode; 223 int do_sb_sort = 0; 224 225 while (!list_empty(delaying_queue)) { 226 inode = list_entry(delaying_queue->prev, struct inode, i_list); 227 if (older_than_this && 228 inode_dirtied_after(inode, *older_than_this)) 229 break; 230 if (sb && sb != inode->i_sb) 231 do_sb_sort = 1; 232 sb = inode->i_sb; 233 list_move(&inode->i_list, &tmp); 234 } 235 236 /* just one sb in list, splice to dispatch_queue and we're done */ 237 if (!do_sb_sort) { 238 list_splice(&tmp, dispatch_queue); 239 return; 240 } 241 242 /* Move inodes from one superblock together */ 243 while (!list_empty(&tmp)) { 244 inode = list_entry(tmp.prev, struct inode, i_list); 245 sb = inode->i_sb; 246 list_for_each_prev_safe(pos, node, &tmp) { 247 inode = list_entry(pos, struct inode, i_list); 248 if (inode->i_sb == sb) 249 list_move(&inode->i_list, dispatch_queue); 250 } 251 } 252 } 253 254 /* 255 * Queue all expired dirty inodes for io, eldest first. 256 */ 257 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 258 { 259 list_splice_init(&wb->b_more_io, wb->b_io.prev); 260 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 261 } 262 263 static int write_inode(struct inode *inode, struct writeback_control *wbc) 264 { 265 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 266 return inode->i_sb->s_op->write_inode(inode, wbc); 267 return 0; 268 } 269 270 /* 271 * Wait for writeback on an inode to complete. 272 */ 273 static void inode_wait_for_writeback(struct inode *inode) 274 { 275 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 276 wait_queue_head_t *wqh; 277 278 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 279 while (inode->i_state & I_SYNC) { 280 spin_unlock(&inode_lock); 281 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 282 spin_lock(&inode_lock); 283 } 284 } 285 286 /* 287 * Write out an inode's dirty pages. Called under inode_lock. Either the 288 * caller has ref on the inode (either via __iget or via syscall against an fd) 289 * or the inode has I_WILL_FREE set (via generic_forget_inode) 290 * 291 * If `wait' is set, wait on the writeout. 292 * 293 * The whole writeout design is quite complex and fragile. We want to avoid 294 * starvation of particular inodes when others are being redirtied, prevent 295 * livelocks, etc. 296 * 297 * Called under inode_lock. 298 */ 299 static int 300 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 301 { 302 struct address_space *mapping = inode->i_mapping; 303 unsigned dirty; 304 int ret; 305 306 if (!atomic_read(&inode->i_count)) 307 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 308 else 309 WARN_ON(inode->i_state & I_WILL_FREE); 310 311 if (inode->i_state & I_SYNC) { 312 /* 313 * If this inode is locked for writeback and we are not doing 314 * writeback-for-data-integrity, move it to b_more_io so that 315 * writeback can proceed with the other inodes on s_io. 316 * 317 * We'll have another go at writing back this inode when we 318 * completed a full scan of b_io. 319 */ 320 if (wbc->sync_mode != WB_SYNC_ALL) { 321 requeue_io(inode); 322 return 0; 323 } 324 325 /* 326 * It's a data-integrity sync. We must wait. 327 */ 328 inode_wait_for_writeback(inode); 329 } 330 331 BUG_ON(inode->i_state & I_SYNC); 332 333 /* Set I_SYNC, reset I_DIRTY_PAGES */ 334 inode->i_state |= I_SYNC; 335 inode->i_state &= ~I_DIRTY_PAGES; 336 spin_unlock(&inode_lock); 337 338 ret = do_writepages(mapping, wbc); 339 340 /* 341 * Make sure to wait on the data before writing out the metadata. 342 * This is important for filesystems that modify metadata on data 343 * I/O completion. 344 */ 345 if (wbc->sync_mode == WB_SYNC_ALL) { 346 int err = filemap_fdatawait(mapping); 347 if (ret == 0) 348 ret = err; 349 } 350 351 /* 352 * Some filesystems may redirty the inode during the writeback 353 * due to delalloc, clear dirty metadata flags right before 354 * write_inode() 355 */ 356 spin_lock(&inode_lock); 357 dirty = inode->i_state & I_DIRTY; 358 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 359 spin_unlock(&inode_lock); 360 /* Don't write the inode if only I_DIRTY_PAGES was set */ 361 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 362 int err = write_inode(inode, wbc); 363 if (ret == 0) 364 ret = err; 365 } 366 367 spin_lock(&inode_lock); 368 inode->i_state &= ~I_SYNC; 369 if (!(inode->i_state & (I_FREEING | I_CLEAR))) { 370 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { 371 /* 372 * More pages get dirtied by a fast dirtier. 373 */ 374 goto select_queue; 375 } else if (inode->i_state & I_DIRTY) { 376 /* 377 * At least XFS will redirty the inode during the 378 * writeback (delalloc) and on io completion (isize). 379 */ 380 redirty_tail(inode); 381 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 382 /* 383 * We didn't write back all the pages. nfs_writepages() 384 * sometimes bales out without doing anything. Redirty 385 * the inode; Move it from b_io onto b_more_io/b_dirty. 386 */ 387 /* 388 * akpm: if the caller was the kupdate function we put 389 * this inode at the head of b_dirty so it gets first 390 * consideration. Otherwise, move it to the tail, for 391 * the reasons described there. I'm not really sure 392 * how much sense this makes. Presumably I had a good 393 * reasons for doing it this way, and I'd rather not 394 * muck with it at present. 395 */ 396 if (wbc->for_kupdate) { 397 /* 398 * For the kupdate function we move the inode 399 * to b_more_io so it will get more writeout as 400 * soon as the queue becomes uncongested. 401 */ 402 inode->i_state |= I_DIRTY_PAGES; 403 select_queue: 404 if (wbc->nr_to_write <= 0) { 405 /* 406 * slice used up: queue for next turn 407 */ 408 requeue_io(inode); 409 } else { 410 /* 411 * somehow blocked: retry later 412 */ 413 redirty_tail(inode); 414 } 415 } else { 416 /* 417 * Otherwise fully redirty the inode so that 418 * other inodes on this superblock will get some 419 * writeout. Otherwise heavy writing to one 420 * file would indefinitely suspend writeout of 421 * all the other files. 422 */ 423 inode->i_state |= I_DIRTY_PAGES; 424 redirty_tail(inode); 425 } 426 } else if (atomic_read(&inode->i_count)) { 427 /* 428 * The inode is clean, inuse 429 */ 430 list_move(&inode->i_list, &inode_in_use); 431 } else { 432 /* 433 * The inode is clean, unused 434 */ 435 list_move(&inode->i_list, &inode_unused); 436 } 437 } 438 inode_sync_complete(inode); 439 return ret; 440 } 441 442 /* 443 * For background writeback the caller does not have the sb pinned 444 * before calling writeback. So make sure that we do pin it, so it doesn't 445 * go away while we are writing inodes from it. 446 */ 447 static bool pin_sb_for_writeback(struct super_block *sb) 448 { 449 spin_lock(&sb_lock); 450 if (list_empty(&sb->s_instances)) { 451 spin_unlock(&sb_lock); 452 return false; 453 } 454 455 sb->s_count++; 456 spin_unlock(&sb_lock); 457 458 if (down_read_trylock(&sb->s_umount)) { 459 if (sb->s_root) 460 return true; 461 up_read(&sb->s_umount); 462 } 463 464 put_super(sb); 465 return false; 466 } 467 468 /* 469 * Write a portion of b_io inodes which belong to @sb. 470 * 471 * If @only_this_sb is true, then find and write all such 472 * inodes. Otherwise write only ones which go sequentially 473 * in reverse order. 474 * 475 * Return 1, if the caller writeback routine should be 476 * interrupted. Otherwise return 0. 477 */ 478 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, 479 struct writeback_control *wbc, bool only_this_sb) 480 { 481 while (!list_empty(&wb->b_io)) { 482 long pages_skipped; 483 struct inode *inode = list_entry(wb->b_io.prev, 484 struct inode, i_list); 485 486 if (inode->i_sb != sb) { 487 if (only_this_sb) { 488 /* 489 * We only want to write back data for this 490 * superblock, move all inodes not belonging 491 * to it back onto the dirty list. 492 */ 493 redirty_tail(inode); 494 continue; 495 } 496 497 /* 498 * The inode belongs to a different superblock. 499 * Bounce back to the caller to unpin this and 500 * pin the next superblock. 501 */ 502 return 0; 503 } 504 505 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 506 requeue_io(inode); 507 continue; 508 } 509 /* 510 * Was this inode dirtied after sync_sb_inodes was called? 511 * This keeps sync from extra jobs and livelock. 512 */ 513 if (inode_dirtied_after(inode, wbc->wb_start)) 514 return 1; 515 516 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); 517 __iget(inode); 518 pages_skipped = wbc->pages_skipped; 519 writeback_single_inode(inode, wbc); 520 if (wbc->pages_skipped != pages_skipped) { 521 /* 522 * writeback is not making progress due to locked 523 * buffers. Skip this inode for now. 524 */ 525 redirty_tail(inode); 526 } 527 spin_unlock(&inode_lock); 528 iput(inode); 529 cond_resched(); 530 spin_lock(&inode_lock); 531 if (wbc->nr_to_write <= 0) { 532 wbc->more_io = 1; 533 return 1; 534 } 535 if (!list_empty(&wb->b_more_io)) 536 wbc->more_io = 1; 537 } 538 /* b_io is empty */ 539 return 1; 540 } 541 542 void writeback_inodes_wb(struct bdi_writeback *wb, 543 struct writeback_control *wbc) 544 { 545 int ret = 0; 546 547 wbc->wb_start = jiffies; /* livelock avoidance */ 548 spin_lock(&inode_lock); 549 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 550 queue_io(wb, wbc->older_than_this); 551 552 while (!list_empty(&wb->b_io)) { 553 struct inode *inode = list_entry(wb->b_io.prev, 554 struct inode, i_list); 555 struct super_block *sb = inode->i_sb; 556 557 if (!pin_sb_for_writeback(sb)) { 558 requeue_io(inode); 559 continue; 560 } 561 ret = writeback_sb_inodes(sb, wb, wbc, false); 562 drop_super(sb); 563 564 if (ret) 565 break; 566 } 567 spin_unlock(&inode_lock); 568 /* Leave any unwritten inodes on b_io */ 569 } 570 571 static void __writeback_inodes_sb(struct super_block *sb, 572 struct bdi_writeback *wb, struct writeback_control *wbc) 573 { 574 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 575 576 wbc->wb_start = jiffies; /* livelock avoidance */ 577 spin_lock(&inode_lock); 578 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 579 queue_io(wb, wbc->older_than_this); 580 writeback_sb_inodes(sb, wb, wbc, true); 581 spin_unlock(&inode_lock); 582 } 583 584 /* 585 * The maximum number of pages to writeout in a single bdi flush/kupdate 586 * operation. We do this so we don't hold I_SYNC against an inode for 587 * enormous amounts of time, which would block a userspace task which has 588 * been forced to throttle against that inode. Also, the code reevaluates 589 * the dirty each time it has written this many pages. 590 */ 591 #define MAX_WRITEBACK_PAGES 1024 592 593 static inline bool over_bground_thresh(void) 594 { 595 unsigned long background_thresh, dirty_thresh; 596 597 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 598 599 return (global_page_state(NR_FILE_DIRTY) + 600 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 601 } 602 603 /* 604 * Explicit flushing or periodic writeback of "old" data. 605 * 606 * Define "old": the first time one of an inode's pages is dirtied, we mark the 607 * dirtying-time in the inode's address_space. So this periodic writeback code 608 * just walks the superblock inode list, writing back any inodes which are 609 * older than a specific point in time. 610 * 611 * Try to run once per dirty_writeback_interval. But if a writeback event 612 * takes longer than a dirty_writeback_interval interval, then leave a 613 * one-second gap. 614 * 615 * older_than_this takes precedence over nr_to_write. So we'll only write back 616 * all dirty pages if they are all attached to "old" mappings. 617 */ 618 static long wb_writeback(struct bdi_writeback *wb, 619 struct wb_writeback_work *work) 620 { 621 struct writeback_control wbc = { 622 .sync_mode = work->sync_mode, 623 .older_than_this = NULL, 624 .for_kupdate = work->for_kupdate, 625 .for_background = work->for_background, 626 .range_cyclic = work->range_cyclic, 627 }; 628 unsigned long oldest_jif; 629 long wrote = 0; 630 struct inode *inode; 631 632 if (wbc.for_kupdate) { 633 wbc.older_than_this = &oldest_jif; 634 oldest_jif = jiffies - 635 msecs_to_jiffies(dirty_expire_interval * 10); 636 } 637 if (!wbc.range_cyclic) { 638 wbc.range_start = 0; 639 wbc.range_end = LLONG_MAX; 640 } 641 642 for (;;) { 643 /* 644 * Stop writeback when nr_pages has been consumed 645 */ 646 if (work->nr_pages <= 0) 647 break; 648 649 /* 650 * For background writeout, stop when we are below the 651 * background dirty threshold 652 */ 653 if (work->for_background && !over_bground_thresh()) 654 break; 655 656 wbc.more_io = 0; 657 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 658 wbc.pages_skipped = 0; 659 if (work->sb) 660 __writeback_inodes_sb(work->sb, wb, &wbc); 661 else 662 writeback_inodes_wb(wb, &wbc); 663 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 664 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 665 666 /* 667 * If we consumed everything, see if we have more 668 */ 669 if (wbc.nr_to_write <= 0) 670 continue; 671 /* 672 * Didn't write everything and we don't have more IO, bail 673 */ 674 if (!wbc.more_io) 675 break; 676 /* 677 * Did we write something? Try for more 678 */ 679 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 680 continue; 681 /* 682 * Nothing written. Wait for some inode to 683 * become available for writeback. Otherwise 684 * we'll just busyloop. 685 */ 686 spin_lock(&inode_lock); 687 if (!list_empty(&wb->b_more_io)) { 688 inode = list_entry(wb->b_more_io.prev, 689 struct inode, i_list); 690 inode_wait_for_writeback(inode); 691 } 692 spin_unlock(&inode_lock); 693 } 694 695 return wrote; 696 } 697 698 /* 699 * Return the next wb_writeback_work struct that hasn't been processed yet. 700 */ 701 static struct wb_writeback_work * 702 get_next_work_item(struct backing_dev_info *bdi, struct bdi_writeback *wb) 703 { 704 struct wb_writeback_work *work = NULL; 705 706 spin_lock(&bdi->wb_lock); 707 if (!list_empty(&bdi->work_list)) { 708 work = list_entry(bdi->work_list.next, 709 struct wb_writeback_work, list); 710 list_del_init(&work->list); 711 } 712 spin_unlock(&bdi->wb_lock); 713 return work; 714 } 715 716 static long wb_check_old_data_flush(struct bdi_writeback *wb) 717 { 718 unsigned long expired; 719 long nr_pages; 720 721 /* 722 * When set to zero, disable periodic writeback 723 */ 724 if (!dirty_writeback_interval) 725 return 0; 726 727 expired = wb->last_old_flush + 728 msecs_to_jiffies(dirty_writeback_interval * 10); 729 if (time_before(jiffies, expired)) 730 return 0; 731 732 wb->last_old_flush = jiffies; 733 nr_pages = global_page_state(NR_FILE_DIRTY) + 734 global_page_state(NR_UNSTABLE_NFS) + 735 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 736 737 if (nr_pages) { 738 struct wb_writeback_work work = { 739 .nr_pages = nr_pages, 740 .sync_mode = WB_SYNC_NONE, 741 .for_kupdate = 1, 742 .range_cyclic = 1, 743 }; 744 745 return wb_writeback(wb, &work); 746 } 747 748 return 0; 749 } 750 751 /* 752 * Retrieve work items and do the writeback they describe 753 */ 754 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 755 { 756 struct backing_dev_info *bdi = wb->bdi; 757 struct wb_writeback_work *work; 758 long wrote = 0; 759 760 while ((work = get_next_work_item(bdi, wb)) != NULL) { 761 /* 762 * Override sync mode, in case we must wait for completion 763 * because this thread is exiting now. 764 */ 765 if (force_wait) 766 work->sync_mode = WB_SYNC_ALL; 767 768 trace_writeback_exec(bdi, work); 769 770 wrote += wb_writeback(wb, work); 771 772 /* 773 * Notify the caller of completion if this is a synchronous 774 * work item, otherwise just free it. 775 */ 776 if (work->done) 777 complete(work->done); 778 else 779 kfree(work); 780 } 781 782 /* 783 * Check for periodic writeback, kupdated() style 784 */ 785 wrote += wb_check_old_data_flush(wb); 786 787 return wrote; 788 } 789 790 /* 791 * Handle writeback of dirty data for the device backed by this bdi. Also 792 * wakes up periodically and does kupdated style flushing. 793 */ 794 int bdi_writeback_thread(void *data) 795 { 796 struct bdi_writeback *wb = data; 797 struct backing_dev_info *bdi = wb->bdi; 798 unsigned long last_active = jiffies; 799 unsigned long wait_jiffies = -1UL; 800 long pages_written; 801 802 /* 803 * Add us to the active bdi_list 804 */ 805 spin_lock_bh(&bdi_lock); 806 list_add_rcu(&bdi->bdi_list, &bdi_list); 807 spin_unlock_bh(&bdi_lock); 808 809 current->flags |= PF_FLUSHER | PF_SWAPWRITE; 810 set_freezable(); 811 812 /* 813 * Our parent may run at a different priority, just set us to normal 814 */ 815 set_user_nice(current, 0); 816 817 /* 818 * Clear pending bit and wakeup anybody waiting to tear us down 819 */ 820 clear_bit(BDI_pending, &bdi->state); 821 smp_mb__after_clear_bit(); 822 wake_up_bit(&bdi->state, BDI_pending); 823 824 trace_writeback_thread_start(bdi); 825 826 while (!kthread_should_stop()) { 827 pages_written = wb_do_writeback(wb, 0); 828 829 trace_writeback_pages_written(pages_written); 830 831 if (pages_written) 832 last_active = jiffies; 833 else if (wait_jiffies != -1UL) { 834 unsigned long max_idle; 835 836 /* 837 * Longest period of inactivity that we tolerate. If we 838 * see dirty data again later, the task will get 839 * recreated automatically. 840 */ 841 max_idle = max(5UL * 60 * HZ, wait_jiffies); 842 if (time_after(jiffies, max_idle + last_active)) 843 break; 844 } 845 846 if (dirty_writeback_interval) { 847 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10); 848 schedule_timeout_interruptible(wait_jiffies); 849 } else { 850 set_current_state(TASK_INTERRUPTIBLE); 851 if (list_empty_careful(&wb->bdi->work_list) && 852 !kthread_should_stop()) 853 schedule(); 854 __set_current_state(TASK_RUNNING); 855 } 856 857 try_to_freeze(); 858 } 859 860 wb->task = NULL; 861 862 /* 863 * Flush any work that raced with us exiting. No new work 864 * will be added, since this bdi isn't discoverable anymore. 865 */ 866 if (!list_empty(&bdi->work_list)) 867 wb_do_writeback(wb, 1); 868 869 trace_writeback_thread_stop(bdi); 870 return 0; 871 } 872 873 874 /* 875 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 876 * the whole world. 877 */ 878 void wakeup_flusher_threads(long nr_pages) 879 { 880 struct backing_dev_info *bdi; 881 882 if (!nr_pages) { 883 nr_pages = global_page_state(NR_FILE_DIRTY) + 884 global_page_state(NR_UNSTABLE_NFS); 885 } 886 887 rcu_read_lock(); 888 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 889 if (!bdi_has_dirty_io(bdi)) 890 continue; 891 __bdi_start_writeback(bdi, nr_pages, false, false); 892 } 893 rcu_read_unlock(); 894 } 895 896 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 897 { 898 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 899 struct dentry *dentry; 900 const char *name = "?"; 901 902 dentry = d_find_alias(inode); 903 if (dentry) { 904 spin_lock(&dentry->d_lock); 905 name = (const char *) dentry->d_name.name; 906 } 907 printk(KERN_DEBUG 908 "%s(%d): dirtied inode %lu (%s) on %s\n", 909 current->comm, task_pid_nr(current), inode->i_ino, 910 name, inode->i_sb->s_id); 911 if (dentry) { 912 spin_unlock(&dentry->d_lock); 913 dput(dentry); 914 } 915 } 916 } 917 918 /** 919 * __mark_inode_dirty - internal function 920 * @inode: inode to mark 921 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 922 * Mark an inode as dirty. Callers should use mark_inode_dirty or 923 * mark_inode_dirty_sync. 924 * 925 * Put the inode on the super block's dirty list. 926 * 927 * CAREFUL! We mark it dirty unconditionally, but move it onto the 928 * dirty list only if it is hashed or if it refers to a blockdev. 929 * If it was not hashed, it will never be added to the dirty list 930 * even if it is later hashed, as it will have been marked dirty already. 931 * 932 * In short, make sure you hash any inodes _before_ you start marking 933 * them dirty. 934 * 935 * This function *must* be atomic for the I_DIRTY_PAGES case - 936 * set_page_dirty() is called under spinlock in several places. 937 * 938 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 939 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 940 * the kernel-internal blockdev inode represents the dirtying time of the 941 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 942 * page->mapping->host, so the page-dirtying time is recorded in the internal 943 * blockdev inode. 944 */ 945 void __mark_inode_dirty(struct inode *inode, int flags) 946 { 947 struct super_block *sb = inode->i_sb; 948 949 /* 950 * Don't do this for I_DIRTY_PAGES - that doesn't actually 951 * dirty the inode itself 952 */ 953 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 954 if (sb->s_op->dirty_inode) 955 sb->s_op->dirty_inode(inode); 956 } 957 958 /* 959 * make sure that changes are seen by all cpus before we test i_state 960 * -- mikulas 961 */ 962 smp_mb(); 963 964 /* avoid the locking if we can */ 965 if ((inode->i_state & flags) == flags) 966 return; 967 968 if (unlikely(block_dump)) 969 block_dump___mark_inode_dirty(inode); 970 971 spin_lock(&inode_lock); 972 if ((inode->i_state & flags) != flags) { 973 const int was_dirty = inode->i_state & I_DIRTY; 974 975 inode->i_state |= flags; 976 977 /* 978 * If the inode is being synced, just update its dirty state. 979 * The unlocker will place the inode on the appropriate 980 * superblock list, based upon its state. 981 */ 982 if (inode->i_state & I_SYNC) 983 goto out; 984 985 /* 986 * Only add valid (hashed) inodes to the superblock's 987 * dirty list. Add blockdev inodes as well. 988 */ 989 if (!S_ISBLK(inode->i_mode)) { 990 if (hlist_unhashed(&inode->i_hash)) 991 goto out; 992 } 993 if (inode->i_state & (I_FREEING|I_CLEAR)) 994 goto out; 995 996 /* 997 * If the inode was already on b_dirty/b_io/b_more_io, don't 998 * reposition it (that would break b_dirty time-ordering). 999 */ 1000 if (!was_dirty) { 1001 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1002 struct backing_dev_info *bdi = wb->bdi; 1003 1004 if (bdi_cap_writeback_dirty(bdi) && 1005 !test_bit(BDI_registered, &bdi->state)) { 1006 WARN_ON(1); 1007 printk(KERN_ERR "bdi-%s not registered\n", 1008 bdi->name); 1009 } 1010 1011 inode->dirtied_when = jiffies; 1012 list_move(&inode->i_list, &wb->b_dirty); 1013 } 1014 } 1015 out: 1016 spin_unlock(&inode_lock); 1017 } 1018 EXPORT_SYMBOL(__mark_inode_dirty); 1019 1020 /* 1021 * Write out a superblock's list of dirty inodes. A wait will be performed 1022 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1023 * 1024 * If older_than_this is non-NULL, then only write out inodes which 1025 * had their first dirtying at a time earlier than *older_than_this. 1026 * 1027 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1028 * This function assumes that the blockdev superblock's inodes are backed by 1029 * a variety of queues, so all inodes are searched. For other superblocks, 1030 * assume that all inodes are backed by the same queue. 1031 * 1032 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1033 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1034 * on the writer throttling path, and we get decent balancing between many 1035 * throttled threads: we don't want them all piling up on inode_sync_wait. 1036 */ 1037 static void wait_sb_inodes(struct super_block *sb) 1038 { 1039 struct inode *inode, *old_inode = NULL; 1040 1041 /* 1042 * We need to be protected against the filesystem going from 1043 * r/o to r/w or vice versa. 1044 */ 1045 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1046 1047 spin_lock(&inode_lock); 1048 1049 /* 1050 * Data integrity sync. Must wait for all pages under writeback, 1051 * because there may have been pages dirtied before our sync 1052 * call, but which had writeout started before we write it out. 1053 * In which case, the inode may not be on the dirty list, but 1054 * we still have to wait for that writeout. 1055 */ 1056 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1057 struct address_space *mapping; 1058 1059 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 1060 continue; 1061 mapping = inode->i_mapping; 1062 if (mapping->nrpages == 0) 1063 continue; 1064 __iget(inode); 1065 spin_unlock(&inode_lock); 1066 /* 1067 * We hold a reference to 'inode' so it couldn't have 1068 * been removed from s_inodes list while we dropped the 1069 * inode_lock. We cannot iput the inode now as we can 1070 * be holding the last reference and we cannot iput it 1071 * under inode_lock. So we keep the reference and iput 1072 * it later. 1073 */ 1074 iput(old_inode); 1075 old_inode = inode; 1076 1077 filemap_fdatawait(mapping); 1078 1079 cond_resched(); 1080 1081 spin_lock(&inode_lock); 1082 } 1083 spin_unlock(&inode_lock); 1084 iput(old_inode); 1085 } 1086 1087 /** 1088 * writeback_inodes_sb - writeback dirty inodes from given super_block 1089 * @sb: the superblock 1090 * 1091 * Start writeback on some inodes on this super_block. No guarantees are made 1092 * on how many (if any) will be written, and this function does not wait 1093 * for IO completion of submitted IO. The number of pages submitted is 1094 * returned. 1095 */ 1096 void writeback_inodes_sb(struct super_block *sb) 1097 { 1098 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1099 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1100 DECLARE_COMPLETION_ONSTACK(done); 1101 struct wb_writeback_work work = { 1102 .sb = sb, 1103 .sync_mode = WB_SYNC_NONE, 1104 .done = &done, 1105 }; 1106 1107 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1108 1109 work.nr_pages = nr_dirty + nr_unstable + 1110 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1111 1112 bdi_queue_work(sb->s_bdi, &work); 1113 wait_for_completion(&done); 1114 } 1115 EXPORT_SYMBOL(writeback_inodes_sb); 1116 1117 /** 1118 * writeback_inodes_sb_if_idle - start writeback if none underway 1119 * @sb: the superblock 1120 * 1121 * Invoke writeback_inodes_sb if no writeback is currently underway. 1122 * Returns 1 if writeback was started, 0 if not. 1123 */ 1124 int writeback_inodes_sb_if_idle(struct super_block *sb) 1125 { 1126 if (!writeback_in_progress(sb->s_bdi)) { 1127 down_read(&sb->s_umount); 1128 writeback_inodes_sb(sb); 1129 up_read(&sb->s_umount); 1130 return 1; 1131 } else 1132 return 0; 1133 } 1134 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1135 1136 /** 1137 * sync_inodes_sb - sync sb inode pages 1138 * @sb: the superblock 1139 * 1140 * This function writes and waits on any dirty inode belonging to this 1141 * super_block. The number of pages synced is returned. 1142 */ 1143 void sync_inodes_sb(struct super_block *sb) 1144 { 1145 DECLARE_COMPLETION_ONSTACK(done); 1146 struct wb_writeback_work work = { 1147 .sb = sb, 1148 .sync_mode = WB_SYNC_ALL, 1149 .nr_pages = LONG_MAX, 1150 .range_cyclic = 0, 1151 .done = &done, 1152 }; 1153 1154 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1155 1156 bdi_queue_work(sb->s_bdi, &work); 1157 wait_for_completion(&done); 1158 1159 wait_sb_inodes(sb); 1160 } 1161 EXPORT_SYMBOL(sync_inodes_sb); 1162 1163 /** 1164 * write_inode_now - write an inode to disk 1165 * @inode: inode to write to disk 1166 * @sync: whether the write should be synchronous or not 1167 * 1168 * This function commits an inode to disk immediately if it is dirty. This is 1169 * primarily needed by knfsd. 1170 * 1171 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1172 */ 1173 int write_inode_now(struct inode *inode, int sync) 1174 { 1175 int ret; 1176 struct writeback_control wbc = { 1177 .nr_to_write = LONG_MAX, 1178 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1179 .range_start = 0, 1180 .range_end = LLONG_MAX, 1181 }; 1182 1183 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1184 wbc.nr_to_write = 0; 1185 1186 might_sleep(); 1187 spin_lock(&inode_lock); 1188 ret = writeback_single_inode(inode, &wbc); 1189 spin_unlock(&inode_lock); 1190 if (sync) 1191 inode_sync_wait(inode); 1192 return ret; 1193 } 1194 EXPORT_SYMBOL(write_inode_now); 1195 1196 /** 1197 * sync_inode - write an inode and its pages to disk. 1198 * @inode: the inode to sync 1199 * @wbc: controls the writeback mode 1200 * 1201 * sync_inode() will write an inode and its pages to disk. It will also 1202 * correctly update the inode on its superblock's dirty inode lists and will 1203 * update inode->i_state. 1204 * 1205 * The caller must have a ref on the inode. 1206 */ 1207 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1208 { 1209 int ret; 1210 1211 spin_lock(&inode_lock); 1212 ret = writeback_single_inode(inode, wbc); 1213 spin_unlock(&inode_lock); 1214 return ret; 1215 } 1216 EXPORT_SYMBOL(sync_inode); 1217