1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include "internal.h" 30 31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 32 33 /* 34 * We don't actually have pdflush, but this one is exported though /proc... 35 */ 36 int nr_pdflush_threads; 37 38 /* 39 * Passed into wb_writeback(), essentially a subset of writeback_control 40 */ 41 struct wb_writeback_work { 42 long nr_pages; 43 struct super_block *sb; 44 enum writeback_sync_modes sync_mode; 45 unsigned int for_kupdate:1; 46 unsigned int range_cyclic:1; 47 unsigned int for_background:1; 48 49 struct list_head list; /* pending work list */ 50 struct completion *done; /* set if the caller waits */ 51 }; 52 53 /** 54 * writeback_in_progress - determine whether there is writeback in progress 55 * @bdi: the device's backing_dev_info structure. 56 * 57 * Determine whether there is writeback waiting to be handled against a 58 * backing device. 59 */ 60 int writeback_in_progress(struct backing_dev_info *bdi) 61 { 62 return !list_empty(&bdi->work_list); 63 } 64 65 static void bdi_queue_work(struct backing_dev_info *bdi, 66 struct wb_writeback_work *work) 67 { 68 spin_lock(&bdi->wb_lock); 69 list_add_tail(&work->list, &bdi->work_list); 70 spin_unlock(&bdi->wb_lock); 71 72 /* 73 * If the default thread isn't there, make sure we add it. When 74 * it gets created and wakes up, we'll run this work. 75 */ 76 if (unlikely(!bdi->wb.task)) { 77 wake_up_process(default_backing_dev_info.wb.task); 78 } else { 79 struct bdi_writeback *wb = &bdi->wb; 80 81 if (wb->task) 82 wake_up_process(wb->task); 83 } 84 } 85 86 static void 87 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 88 bool range_cyclic, bool for_background) 89 { 90 struct wb_writeback_work *work; 91 92 /* 93 * This is WB_SYNC_NONE writeback, so if allocation fails just 94 * wakeup the thread for old dirty data writeback 95 */ 96 work = kzalloc(sizeof(*work), GFP_ATOMIC); 97 if (!work) { 98 if (bdi->wb.task) 99 wake_up_process(bdi->wb.task); 100 return; 101 } 102 103 work->sync_mode = WB_SYNC_NONE; 104 work->nr_pages = nr_pages; 105 work->range_cyclic = range_cyclic; 106 work->for_background = for_background; 107 108 bdi_queue_work(bdi, work); 109 } 110 111 /** 112 * bdi_start_writeback - start writeback 113 * @bdi: the backing device to write from 114 * @nr_pages: the number of pages to write 115 * 116 * Description: 117 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 118 * started when this function returns, we make no guarentees on 119 * completion. Caller need not hold sb s_umount semaphore. 120 * 121 */ 122 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 123 { 124 __bdi_start_writeback(bdi, nr_pages, true, false); 125 } 126 127 /** 128 * bdi_start_background_writeback - start background writeback 129 * @bdi: the backing device to write from 130 * 131 * Description: 132 * This does WB_SYNC_NONE background writeback. The IO is only 133 * started when this function returns, we make no guarentees on 134 * completion. Caller need not hold sb s_umount semaphore. 135 */ 136 void bdi_start_background_writeback(struct backing_dev_info *bdi) 137 { 138 __bdi_start_writeback(bdi, LONG_MAX, true, true); 139 } 140 141 /* 142 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 143 * furthest end of its superblock's dirty-inode list. 144 * 145 * Before stamping the inode's ->dirtied_when, we check to see whether it is 146 * already the most-recently-dirtied inode on the b_dirty list. If that is 147 * the case then the inode must have been redirtied while it was being written 148 * out and we don't reset its dirtied_when. 149 */ 150 static void redirty_tail(struct inode *inode) 151 { 152 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 153 154 if (!list_empty(&wb->b_dirty)) { 155 struct inode *tail; 156 157 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 158 if (time_before(inode->dirtied_when, tail->dirtied_when)) 159 inode->dirtied_when = jiffies; 160 } 161 list_move(&inode->i_list, &wb->b_dirty); 162 } 163 164 /* 165 * requeue inode for re-scanning after bdi->b_io list is exhausted. 166 */ 167 static void requeue_io(struct inode *inode) 168 { 169 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 170 171 list_move(&inode->i_list, &wb->b_more_io); 172 } 173 174 static void inode_sync_complete(struct inode *inode) 175 { 176 /* 177 * Prevent speculative execution through spin_unlock(&inode_lock); 178 */ 179 smp_mb(); 180 wake_up_bit(&inode->i_state, __I_SYNC); 181 } 182 183 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 184 { 185 bool ret = time_after(inode->dirtied_when, t); 186 #ifndef CONFIG_64BIT 187 /* 188 * For inodes being constantly redirtied, dirtied_when can get stuck. 189 * It _appears_ to be in the future, but is actually in distant past. 190 * This test is necessary to prevent such wrapped-around relative times 191 * from permanently stopping the whole bdi writeback. 192 */ 193 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 194 #endif 195 return ret; 196 } 197 198 /* 199 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 200 */ 201 static void move_expired_inodes(struct list_head *delaying_queue, 202 struct list_head *dispatch_queue, 203 unsigned long *older_than_this) 204 { 205 LIST_HEAD(tmp); 206 struct list_head *pos, *node; 207 struct super_block *sb = NULL; 208 struct inode *inode; 209 int do_sb_sort = 0; 210 211 while (!list_empty(delaying_queue)) { 212 inode = list_entry(delaying_queue->prev, struct inode, i_list); 213 if (older_than_this && 214 inode_dirtied_after(inode, *older_than_this)) 215 break; 216 if (sb && sb != inode->i_sb) 217 do_sb_sort = 1; 218 sb = inode->i_sb; 219 list_move(&inode->i_list, &tmp); 220 } 221 222 /* just one sb in list, splice to dispatch_queue and we're done */ 223 if (!do_sb_sort) { 224 list_splice(&tmp, dispatch_queue); 225 return; 226 } 227 228 /* Move inodes from one superblock together */ 229 while (!list_empty(&tmp)) { 230 inode = list_entry(tmp.prev, struct inode, i_list); 231 sb = inode->i_sb; 232 list_for_each_prev_safe(pos, node, &tmp) { 233 inode = list_entry(pos, struct inode, i_list); 234 if (inode->i_sb == sb) 235 list_move(&inode->i_list, dispatch_queue); 236 } 237 } 238 } 239 240 /* 241 * Queue all expired dirty inodes for io, eldest first. 242 */ 243 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 244 { 245 list_splice_init(&wb->b_more_io, wb->b_io.prev); 246 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 247 } 248 249 static int write_inode(struct inode *inode, struct writeback_control *wbc) 250 { 251 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 252 return inode->i_sb->s_op->write_inode(inode, wbc); 253 return 0; 254 } 255 256 /* 257 * Wait for writeback on an inode to complete. 258 */ 259 static void inode_wait_for_writeback(struct inode *inode) 260 { 261 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 262 wait_queue_head_t *wqh; 263 264 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 265 while (inode->i_state & I_SYNC) { 266 spin_unlock(&inode_lock); 267 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 268 spin_lock(&inode_lock); 269 } 270 } 271 272 /* 273 * Write out an inode's dirty pages. Called under inode_lock. Either the 274 * caller has ref on the inode (either via __iget or via syscall against an fd) 275 * or the inode has I_WILL_FREE set (via generic_forget_inode) 276 * 277 * If `wait' is set, wait on the writeout. 278 * 279 * The whole writeout design is quite complex and fragile. We want to avoid 280 * starvation of particular inodes when others are being redirtied, prevent 281 * livelocks, etc. 282 * 283 * Called under inode_lock. 284 */ 285 static int 286 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 287 { 288 struct address_space *mapping = inode->i_mapping; 289 unsigned dirty; 290 int ret; 291 292 if (!atomic_read(&inode->i_count)) 293 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 294 else 295 WARN_ON(inode->i_state & I_WILL_FREE); 296 297 if (inode->i_state & I_SYNC) { 298 /* 299 * If this inode is locked for writeback and we are not doing 300 * writeback-for-data-integrity, move it to b_more_io so that 301 * writeback can proceed with the other inodes on s_io. 302 * 303 * We'll have another go at writing back this inode when we 304 * completed a full scan of b_io. 305 */ 306 if (wbc->sync_mode != WB_SYNC_ALL) { 307 requeue_io(inode); 308 return 0; 309 } 310 311 /* 312 * It's a data-integrity sync. We must wait. 313 */ 314 inode_wait_for_writeback(inode); 315 } 316 317 BUG_ON(inode->i_state & I_SYNC); 318 319 /* Set I_SYNC, reset I_DIRTY_PAGES */ 320 inode->i_state |= I_SYNC; 321 inode->i_state &= ~I_DIRTY_PAGES; 322 spin_unlock(&inode_lock); 323 324 ret = do_writepages(mapping, wbc); 325 326 /* 327 * Make sure to wait on the data before writing out the metadata. 328 * This is important for filesystems that modify metadata on data 329 * I/O completion. 330 */ 331 if (wbc->sync_mode == WB_SYNC_ALL) { 332 int err = filemap_fdatawait(mapping); 333 if (ret == 0) 334 ret = err; 335 } 336 337 /* 338 * Some filesystems may redirty the inode during the writeback 339 * due to delalloc, clear dirty metadata flags right before 340 * write_inode() 341 */ 342 spin_lock(&inode_lock); 343 dirty = inode->i_state & I_DIRTY; 344 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 345 spin_unlock(&inode_lock); 346 /* Don't write the inode if only I_DIRTY_PAGES was set */ 347 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 348 int err = write_inode(inode, wbc); 349 if (ret == 0) 350 ret = err; 351 } 352 353 spin_lock(&inode_lock); 354 inode->i_state &= ~I_SYNC; 355 if (!(inode->i_state & (I_FREEING | I_CLEAR))) { 356 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { 357 /* 358 * More pages get dirtied by a fast dirtier. 359 */ 360 goto select_queue; 361 } else if (inode->i_state & I_DIRTY) { 362 /* 363 * At least XFS will redirty the inode during the 364 * writeback (delalloc) and on io completion (isize). 365 */ 366 redirty_tail(inode); 367 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 368 /* 369 * We didn't write back all the pages. nfs_writepages() 370 * sometimes bales out without doing anything. Redirty 371 * the inode; Move it from b_io onto b_more_io/b_dirty. 372 */ 373 /* 374 * akpm: if the caller was the kupdate function we put 375 * this inode at the head of b_dirty so it gets first 376 * consideration. Otherwise, move it to the tail, for 377 * the reasons described there. I'm not really sure 378 * how much sense this makes. Presumably I had a good 379 * reasons for doing it this way, and I'd rather not 380 * muck with it at present. 381 */ 382 if (wbc->for_kupdate) { 383 /* 384 * For the kupdate function we move the inode 385 * to b_more_io so it will get more writeout as 386 * soon as the queue becomes uncongested. 387 */ 388 inode->i_state |= I_DIRTY_PAGES; 389 select_queue: 390 if (wbc->nr_to_write <= 0) { 391 /* 392 * slice used up: queue for next turn 393 */ 394 requeue_io(inode); 395 } else { 396 /* 397 * somehow blocked: retry later 398 */ 399 redirty_tail(inode); 400 } 401 } else { 402 /* 403 * Otherwise fully redirty the inode so that 404 * other inodes on this superblock will get some 405 * writeout. Otherwise heavy writing to one 406 * file would indefinitely suspend writeout of 407 * all the other files. 408 */ 409 inode->i_state |= I_DIRTY_PAGES; 410 redirty_tail(inode); 411 } 412 } else if (atomic_read(&inode->i_count)) { 413 /* 414 * The inode is clean, inuse 415 */ 416 list_move(&inode->i_list, &inode_in_use); 417 } else { 418 /* 419 * The inode is clean, unused 420 */ 421 list_move(&inode->i_list, &inode_unused); 422 } 423 } 424 inode_sync_complete(inode); 425 return ret; 426 } 427 428 /* 429 * For background writeback the caller does not have the sb pinned 430 * before calling writeback. So make sure that we do pin it, so it doesn't 431 * go away while we are writing inodes from it. 432 */ 433 static bool pin_sb_for_writeback(struct super_block *sb) 434 { 435 spin_lock(&sb_lock); 436 if (list_empty(&sb->s_instances)) { 437 spin_unlock(&sb_lock); 438 return false; 439 } 440 441 sb->s_count++; 442 spin_unlock(&sb_lock); 443 444 if (down_read_trylock(&sb->s_umount)) { 445 if (sb->s_root) 446 return true; 447 up_read(&sb->s_umount); 448 } 449 450 put_super(sb); 451 return false; 452 } 453 454 /* 455 * Write a portion of b_io inodes which belong to @sb. 456 * 457 * If @only_this_sb is true, then find and write all such 458 * inodes. Otherwise write only ones which go sequentially 459 * in reverse order. 460 * 461 * Return 1, if the caller writeback routine should be 462 * interrupted. Otherwise return 0. 463 */ 464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, 465 struct writeback_control *wbc, bool only_this_sb) 466 { 467 while (!list_empty(&wb->b_io)) { 468 long pages_skipped; 469 struct inode *inode = list_entry(wb->b_io.prev, 470 struct inode, i_list); 471 472 if (inode->i_sb != sb) { 473 if (only_this_sb) { 474 /* 475 * We only want to write back data for this 476 * superblock, move all inodes not belonging 477 * to it back onto the dirty list. 478 */ 479 redirty_tail(inode); 480 continue; 481 } 482 483 /* 484 * The inode belongs to a different superblock. 485 * Bounce back to the caller to unpin this and 486 * pin the next superblock. 487 */ 488 return 0; 489 } 490 491 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 492 requeue_io(inode); 493 continue; 494 } 495 /* 496 * Was this inode dirtied after sync_sb_inodes was called? 497 * This keeps sync from extra jobs and livelock. 498 */ 499 if (inode_dirtied_after(inode, wbc->wb_start)) 500 return 1; 501 502 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); 503 __iget(inode); 504 pages_skipped = wbc->pages_skipped; 505 writeback_single_inode(inode, wbc); 506 if (wbc->pages_skipped != pages_skipped) { 507 /* 508 * writeback is not making progress due to locked 509 * buffers. Skip this inode for now. 510 */ 511 redirty_tail(inode); 512 } 513 spin_unlock(&inode_lock); 514 iput(inode); 515 cond_resched(); 516 spin_lock(&inode_lock); 517 if (wbc->nr_to_write <= 0) { 518 wbc->more_io = 1; 519 return 1; 520 } 521 if (!list_empty(&wb->b_more_io)) 522 wbc->more_io = 1; 523 } 524 /* b_io is empty */ 525 return 1; 526 } 527 528 void writeback_inodes_wb(struct bdi_writeback *wb, 529 struct writeback_control *wbc) 530 { 531 int ret = 0; 532 533 wbc->wb_start = jiffies; /* livelock avoidance */ 534 spin_lock(&inode_lock); 535 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 536 queue_io(wb, wbc->older_than_this); 537 538 while (!list_empty(&wb->b_io)) { 539 struct inode *inode = list_entry(wb->b_io.prev, 540 struct inode, i_list); 541 struct super_block *sb = inode->i_sb; 542 543 if (!pin_sb_for_writeback(sb)) { 544 requeue_io(inode); 545 continue; 546 } 547 ret = writeback_sb_inodes(sb, wb, wbc, false); 548 drop_super(sb); 549 550 if (ret) 551 break; 552 } 553 spin_unlock(&inode_lock); 554 /* Leave any unwritten inodes on b_io */ 555 } 556 557 static void __writeback_inodes_sb(struct super_block *sb, 558 struct bdi_writeback *wb, struct writeback_control *wbc) 559 { 560 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 561 562 wbc->wb_start = jiffies; /* livelock avoidance */ 563 spin_lock(&inode_lock); 564 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 565 queue_io(wb, wbc->older_than_this); 566 writeback_sb_inodes(sb, wb, wbc, true); 567 spin_unlock(&inode_lock); 568 } 569 570 /* 571 * The maximum number of pages to writeout in a single bdi flush/kupdate 572 * operation. We do this so we don't hold I_SYNC against an inode for 573 * enormous amounts of time, which would block a userspace task which has 574 * been forced to throttle against that inode. Also, the code reevaluates 575 * the dirty each time it has written this many pages. 576 */ 577 #define MAX_WRITEBACK_PAGES 1024 578 579 static inline bool over_bground_thresh(void) 580 { 581 unsigned long background_thresh, dirty_thresh; 582 583 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 584 585 return (global_page_state(NR_FILE_DIRTY) + 586 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 587 } 588 589 /* 590 * Explicit flushing or periodic writeback of "old" data. 591 * 592 * Define "old": the first time one of an inode's pages is dirtied, we mark the 593 * dirtying-time in the inode's address_space. So this periodic writeback code 594 * just walks the superblock inode list, writing back any inodes which are 595 * older than a specific point in time. 596 * 597 * Try to run once per dirty_writeback_interval. But if a writeback event 598 * takes longer than a dirty_writeback_interval interval, then leave a 599 * one-second gap. 600 * 601 * older_than_this takes precedence over nr_to_write. So we'll only write back 602 * all dirty pages if they are all attached to "old" mappings. 603 */ 604 static long wb_writeback(struct bdi_writeback *wb, 605 struct wb_writeback_work *work) 606 { 607 struct writeback_control wbc = { 608 .sync_mode = work->sync_mode, 609 .older_than_this = NULL, 610 .for_kupdate = work->for_kupdate, 611 .for_background = work->for_background, 612 .range_cyclic = work->range_cyclic, 613 }; 614 unsigned long oldest_jif; 615 long wrote = 0; 616 struct inode *inode; 617 618 if (wbc.for_kupdate) { 619 wbc.older_than_this = &oldest_jif; 620 oldest_jif = jiffies - 621 msecs_to_jiffies(dirty_expire_interval * 10); 622 } 623 if (!wbc.range_cyclic) { 624 wbc.range_start = 0; 625 wbc.range_end = LLONG_MAX; 626 } 627 628 for (;;) { 629 /* 630 * Stop writeback when nr_pages has been consumed 631 */ 632 if (work->nr_pages <= 0) 633 break; 634 635 /* 636 * For background writeout, stop when we are below the 637 * background dirty threshold 638 */ 639 if (work->for_background && !over_bground_thresh()) 640 break; 641 642 wbc.more_io = 0; 643 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 644 wbc.pages_skipped = 0; 645 if (work->sb) 646 __writeback_inodes_sb(work->sb, wb, &wbc); 647 else 648 writeback_inodes_wb(wb, &wbc); 649 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 650 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 651 652 /* 653 * If we consumed everything, see if we have more 654 */ 655 if (wbc.nr_to_write <= 0) 656 continue; 657 /* 658 * Didn't write everything and we don't have more IO, bail 659 */ 660 if (!wbc.more_io) 661 break; 662 /* 663 * Did we write something? Try for more 664 */ 665 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 666 continue; 667 /* 668 * Nothing written. Wait for some inode to 669 * become available for writeback. Otherwise 670 * we'll just busyloop. 671 */ 672 spin_lock(&inode_lock); 673 if (!list_empty(&wb->b_more_io)) { 674 inode = list_entry(wb->b_more_io.prev, 675 struct inode, i_list); 676 inode_wait_for_writeback(inode); 677 } 678 spin_unlock(&inode_lock); 679 } 680 681 return wrote; 682 } 683 684 /* 685 * Return the next wb_writeback_work struct that hasn't been processed yet. 686 */ 687 static struct wb_writeback_work * 688 get_next_work_item(struct backing_dev_info *bdi, struct bdi_writeback *wb) 689 { 690 struct wb_writeback_work *work = NULL; 691 692 spin_lock(&bdi->wb_lock); 693 if (!list_empty(&bdi->work_list)) { 694 work = list_entry(bdi->work_list.next, 695 struct wb_writeback_work, list); 696 list_del_init(&work->list); 697 } 698 spin_unlock(&bdi->wb_lock); 699 return work; 700 } 701 702 static long wb_check_old_data_flush(struct bdi_writeback *wb) 703 { 704 unsigned long expired; 705 long nr_pages; 706 707 /* 708 * When set to zero, disable periodic writeback 709 */ 710 if (!dirty_writeback_interval) 711 return 0; 712 713 expired = wb->last_old_flush + 714 msecs_to_jiffies(dirty_writeback_interval * 10); 715 if (time_before(jiffies, expired)) 716 return 0; 717 718 wb->last_old_flush = jiffies; 719 nr_pages = global_page_state(NR_FILE_DIRTY) + 720 global_page_state(NR_UNSTABLE_NFS) + 721 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 722 723 if (nr_pages) { 724 struct wb_writeback_work work = { 725 .nr_pages = nr_pages, 726 .sync_mode = WB_SYNC_NONE, 727 .for_kupdate = 1, 728 .range_cyclic = 1, 729 }; 730 731 return wb_writeback(wb, &work); 732 } 733 734 return 0; 735 } 736 737 /* 738 * Retrieve work items and do the writeback they describe 739 */ 740 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 741 { 742 struct backing_dev_info *bdi = wb->bdi; 743 struct wb_writeback_work *work; 744 long wrote = 0; 745 746 while ((work = get_next_work_item(bdi, wb)) != NULL) { 747 /* 748 * Override sync mode, in case we must wait for completion 749 * because this thread is exiting now. 750 */ 751 if (force_wait) 752 work->sync_mode = WB_SYNC_ALL; 753 754 wrote += wb_writeback(wb, work); 755 756 /* 757 * Notify the caller of completion if this is a synchronous 758 * work item, otherwise just free it. 759 */ 760 if (work->done) 761 complete(work->done); 762 else 763 kfree(work); 764 } 765 766 /* 767 * Check for periodic writeback, kupdated() style 768 */ 769 wrote += wb_check_old_data_flush(wb); 770 771 return wrote; 772 } 773 774 /* 775 * Handle writeback of dirty data for the device backed by this bdi. Also 776 * wakes up periodically and does kupdated style flushing. 777 */ 778 int bdi_writeback_thread(void *data) 779 { 780 struct bdi_writeback *wb = data; 781 struct backing_dev_info *bdi = wb->bdi; 782 unsigned long last_active = jiffies; 783 unsigned long wait_jiffies = -1UL; 784 long pages_written; 785 786 /* 787 * Add us to the active bdi_list 788 */ 789 spin_lock_bh(&bdi_lock); 790 list_add_rcu(&bdi->bdi_list, &bdi_list); 791 spin_unlock_bh(&bdi_lock); 792 793 current->flags |= PF_FLUSHER | PF_SWAPWRITE; 794 set_freezable(); 795 796 /* 797 * Our parent may run at a different priority, just set us to normal 798 */ 799 set_user_nice(current, 0); 800 801 /* 802 * Clear pending bit and wakeup anybody waiting to tear us down 803 */ 804 clear_bit(BDI_pending, &bdi->state); 805 smp_mb__after_clear_bit(); 806 wake_up_bit(&bdi->state, BDI_pending); 807 808 while (!kthread_should_stop()) { 809 pages_written = wb_do_writeback(wb, 0); 810 811 if (pages_written) 812 last_active = jiffies; 813 else if (wait_jiffies != -1UL) { 814 unsigned long max_idle; 815 816 /* 817 * Longest period of inactivity that we tolerate. If we 818 * see dirty data again later, the task will get 819 * recreated automatically. 820 */ 821 max_idle = max(5UL * 60 * HZ, wait_jiffies); 822 if (time_after(jiffies, max_idle + last_active)) 823 break; 824 } 825 826 if (dirty_writeback_interval) { 827 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10); 828 schedule_timeout_interruptible(wait_jiffies); 829 } else { 830 set_current_state(TASK_INTERRUPTIBLE); 831 if (list_empty_careful(&wb->bdi->work_list) && 832 !kthread_should_stop()) 833 schedule(); 834 __set_current_state(TASK_RUNNING); 835 } 836 837 try_to_freeze(); 838 } 839 840 wb->task = NULL; 841 842 /* 843 * Flush any work that raced with us exiting. No new work 844 * will be added, since this bdi isn't discoverable anymore. 845 */ 846 if (!list_empty(&bdi->work_list)) 847 wb_do_writeback(wb, 1); 848 return 0; 849 } 850 851 852 /* 853 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 854 * the whole world. 855 */ 856 void wakeup_flusher_threads(long nr_pages) 857 { 858 struct backing_dev_info *bdi; 859 860 if (!nr_pages) { 861 nr_pages = global_page_state(NR_FILE_DIRTY) + 862 global_page_state(NR_UNSTABLE_NFS); 863 } 864 865 rcu_read_lock(); 866 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 867 if (!bdi_has_dirty_io(bdi)) 868 continue; 869 __bdi_start_writeback(bdi, nr_pages, false, false); 870 } 871 rcu_read_unlock(); 872 } 873 874 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 875 { 876 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 877 struct dentry *dentry; 878 const char *name = "?"; 879 880 dentry = d_find_alias(inode); 881 if (dentry) { 882 spin_lock(&dentry->d_lock); 883 name = (const char *) dentry->d_name.name; 884 } 885 printk(KERN_DEBUG 886 "%s(%d): dirtied inode %lu (%s) on %s\n", 887 current->comm, task_pid_nr(current), inode->i_ino, 888 name, inode->i_sb->s_id); 889 if (dentry) { 890 spin_unlock(&dentry->d_lock); 891 dput(dentry); 892 } 893 } 894 } 895 896 /** 897 * __mark_inode_dirty - internal function 898 * @inode: inode to mark 899 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 900 * Mark an inode as dirty. Callers should use mark_inode_dirty or 901 * mark_inode_dirty_sync. 902 * 903 * Put the inode on the super block's dirty list. 904 * 905 * CAREFUL! We mark it dirty unconditionally, but move it onto the 906 * dirty list only if it is hashed or if it refers to a blockdev. 907 * If it was not hashed, it will never be added to the dirty list 908 * even if it is later hashed, as it will have been marked dirty already. 909 * 910 * In short, make sure you hash any inodes _before_ you start marking 911 * them dirty. 912 * 913 * This function *must* be atomic for the I_DIRTY_PAGES case - 914 * set_page_dirty() is called under spinlock in several places. 915 * 916 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 917 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 918 * the kernel-internal blockdev inode represents the dirtying time of the 919 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 920 * page->mapping->host, so the page-dirtying time is recorded in the internal 921 * blockdev inode. 922 */ 923 void __mark_inode_dirty(struct inode *inode, int flags) 924 { 925 struct super_block *sb = inode->i_sb; 926 927 /* 928 * Don't do this for I_DIRTY_PAGES - that doesn't actually 929 * dirty the inode itself 930 */ 931 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 932 if (sb->s_op->dirty_inode) 933 sb->s_op->dirty_inode(inode); 934 } 935 936 /* 937 * make sure that changes are seen by all cpus before we test i_state 938 * -- mikulas 939 */ 940 smp_mb(); 941 942 /* avoid the locking if we can */ 943 if ((inode->i_state & flags) == flags) 944 return; 945 946 if (unlikely(block_dump)) 947 block_dump___mark_inode_dirty(inode); 948 949 spin_lock(&inode_lock); 950 if ((inode->i_state & flags) != flags) { 951 const int was_dirty = inode->i_state & I_DIRTY; 952 953 inode->i_state |= flags; 954 955 /* 956 * If the inode is being synced, just update its dirty state. 957 * The unlocker will place the inode on the appropriate 958 * superblock list, based upon its state. 959 */ 960 if (inode->i_state & I_SYNC) 961 goto out; 962 963 /* 964 * Only add valid (hashed) inodes to the superblock's 965 * dirty list. Add blockdev inodes as well. 966 */ 967 if (!S_ISBLK(inode->i_mode)) { 968 if (hlist_unhashed(&inode->i_hash)) 969 goto out; 970 } 971 if (inode->i_state & (I_FREEING|I_CLEAR)) 972 goto out; 973 974 /* 975 * If the inode was already on b_dirty/b_io/b_more_io, don't 976 * reposition it (that would break b_dirty time-ordering). 977 */ 978 if (!was_dirty) { 979 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 980 struct backing_dev_info *bdi = wb->bdi; 981 982 if (bdi_cap_writeback_dirty(bdi) && 983 !test_bit(BDI_registered, &bdi->state)) { 984 WARN_ON(1); 985 printk(KERN_ERR "bdi-%s not registered\n", 986 bdi->name); 987 } 988 989 inode->dirtied_when = jiffies; 990 list_move(&inode->i_list, &wb->b_dirty); 991 } 992 } 993 out: 994 spin_unlock(&inode_lock); 995 } 996 EXPORT_SYMBOL(__mark_inode_dirty); 997 998 /* 999 * Write out a superblock's list of dirty inodes. A wait will be performed 1000 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1001 * 1002 * If older_than_this is non-NULL, then only write out inodes which 1003 * had their first dirtying at a time earlier than *older_than_this. 1004 * 1005 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1006 * This function assumes that the blockdev superblock's inodes are backed by 1007 * a variety of queues, so all inodes are searched. For other superblocks, 1008 * assume that all inodes are backed by the same queue. 1009 * 1010 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1011 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1012 * on the writer throttling path, and we get decent balancing between many 1013 * throttled threads: we don't want them all piling up on inode_sync_wait. 1014 */ 1015 static void wait_sb_inodes(struct super_block *sb) 1016 { 1017 struct inode *inode, *old_inode = NULL; 1018 1019 /* 1020 * We need to be protected against the filesystem going from 1021 * r/o to r/w or vice versa. 1022 */ 1023 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1024 1025 spin_lock(&inode_lock); 1026 1027 /* 1028 * Data integrity sync. Must wait for all pages under writeback, 1029 * because there may have been pages dirtied before our sync 1030 * call, but which had writeout started before we write it out. 1031 * In which case, the inode may not be on the dirty list, but 1032 * we still have to wait for that writeout. 1033 */ 1034 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1035 struct address_space *mapping; 1036 1037 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 1038 continue; 1039 mapping = inode->i_mapping; 1040 if (mapping->nrpages == 0) 1041 continue; 1042 __iget(inode); 1043 spin_unlock(&inode_lock); 1044 /* 1045 * We hold a reference to 'inode' so it couldn't have 1046 * been removed from s_inodes list while we dropped the 1047 * inode_lock. We cannot iput the inode now as we can 1048 * be holding the last reference and we cannot iput it 1049 * under inode_lock. So we keep the reference and iput 1050 * it later. 1051 */ 1052 iput(old_inode); 1053 old_inode = inode; 1054 1055 filemap_fdatawait(mapping); 1056 1057 cond_resched(); 1058 1059 spin_lock(&inode_lock); 1060 } 1061 spin_unlock(&inode_lock); 1062 iput(old_inode); 1063 } 1064 1065 /** 1066 * writeback_inodes_sb - writeback dirty inodes from given super_block 1067 * @sb: the superblock 1068 * 1069 * Start writeback on some inodes on this super_block. No guarantees are made 1070 * on how many (if any) will be written, and this function does not wait 1071 * for IO completion of submitted IO. The number of pages submitted is 1072 * returned. 1073 */ 1074 void writeback_inodes_sb(struct super_block *sb) 1075 { 1076 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1077 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1078 DECLARE_COMPLETION_ONSTACK(done); 1079 struct wb_writeback_work work = { 1080 .sb = sb, 1081 .sync_mode = WB_SYNC_NONE, 1082 .done = &done, 1083 }; 1084 1085 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1086 1087 work.nr_pages = nr_dirty + nr_unstable + 1088 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1089 1090 bdi_queue_work(sb->s_bdi, &work); 1091 wait_for_completion(&done); 1092 } 1093 EXPORT_SYMBOL(writeback_inodes_sb); 1094 1095 /** 1096 * writeback_inodes_sb_if_idle - start writeback if none underway 1097 * @sb: the superblock 1098 * 1099 * Invoke writeback_inodes_sb if no writeback is currently underway. 1100 * Returns 1 if writeback was started, 0 if not. 1101 */ 1102 int writeback_inodes_sb_if_idle(struct super_block *sb) 1103 { 1104 if (!writeback_in_progress(sb->s_bdi)) { 1105 down_read(&sb->s_umount); 1106 writeback_inodes_sb(sb); 1107 up_read(&sb->s_umount); 1108 return 1; 1109 } else 1110 return 0; 1111 } 1112 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1113 1114 /** 1115 * sync_inodes_sb - sync sb inode pages 1116 * @sb: the superblock 1117 * 1118 * This function writes and waits on any dirty inode belonging to this 1119 * super_block. The number of pages synced is returned. 1120 */ 1121 void sync_inodes_sb(struct super_block *sb) 1122 { 1123 DECLARE_COMPLETION_ONSTACK(done); 1124 struct wb_writeback_work work = { 1125 .sb = sb, 1126 .sync_mode = WB_SYNC_ALL, 1127 .nr_pages = LONG_MAX, 1128 .range_cyclic = 0, 1129 .done = &done, 1130 }; 1131 1132 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1133 1134 bdi_queue_work(sb->s_bdi, &work); 1135 wait_for_completion(&done); 1136 1137 wait_sb_inodes(sb); 1138 } 1139 EXPORT_SYMBOL(sync_inodes_sb); 1140 1141 /** 1142 * write_inode_now - write an inode to disk 1143 * @inode: inode to write to disk 1144 * @sync: whether the write should be synchronous or not 1145 * 1146 * This function commits an inode to disk immediately if it is dirty. This is 1147 * primarily needed by knfsd. 1148 * 1149 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1150 */ 1151 int write_inode_now(struct inode *inode, int sync) 1152 { 1153 int ret; 1154 struct writeback_control wbc = { 1155 .nr_to_write = LONG_MAX, 1156 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1157 .range_start = 0, 1158 .range_end = LLONG_MAX, 1159 }; 1160 1161 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1162 wbc.nr_to_write = 0; 1163 1164 might_sleep(); 1165 spin_lock(&inode_lock); 1166 ret = writeback_single_inode(inode, &wbc); 1167 spin_unlock(&inode_lock); 1168 if (sync) 1169 inode_sync_wait(inode); 1170 return ret; 1171 } 1172 EXPORT_SYMBOL(write_inode_now); 1173 1174 /** 1175 * sync_inode - write an inode and its pages to disk. 1176 * @inode: the inode to sync 1177 * @wbc: controls the writeback mode 1178 * 1179 * sync_inode() will write an inode and its pages to disk. It will also 1180 * correctly update the inode on its superblock's dirty inode lists and will 1181 * update inode->i_state. 1182 * 1183 * The caller must have a ref on the inode. 1184 */ 1185 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1186 { 1187 int ret; 1188 1189 spin_lock(&inode_lock); 1190 ret = writeback_single_inode(inode, wbc); 1191 spin_unlock(&inode_lock); 1192 return ret; 1193 } 1194 EXPORT_SYMBOL(sync_inode); 1195