xref: /openbmc/linux/fs/fs-writeback.c (revision 082439004b31adc146e96e5f1c574dd2b57dcd93)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
30 
31 #define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)
32 
33 /*
34  * We don't actually have pdflush, but this one is exported though /proc...
35  */
36 int nr_pdflush_threads;
37 
38 /*
39  * Passed into wb_writeback(), essentially a subset of writeback_control
40  */
41 struct wb_writeback_work {
42 	long nr_pages;
43 	struct super_block *sb;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int for_kupdate:1;
46 	unsigned int range_cyclic:1;
47 	unsigned int for_background:1;
48 
49 	struct list_head list;		/* pending work list */
50 	struct completion *done;	/* set if the caller waits */
51 };
52 
53 /**
54  * writeback_in_progress - determine whether there is writeback in progress
55  * @bdi: the device's backing_dev_info structure.
56  *
57  * Determine whether there is writeback waiting to be handled against a
58  * backing device.
59  */
60 int writeback_in_progress(struct backing_dev_info *bdi)
61 {
62 	return !list_empty(&bdi->work_list);
63 }
64 
65 static void bdi_queue_work(struct backing_dev_info *bdi,
66 		struct wb_writeback_work *work)
67 {
68 	spin_lock(&bdi->wb_lock);
69 	list_add_tail(&work->list, &bdi->work_list);
70 	spin_unlock(&bdi->wb_lock);
71 
72 	/*
73 	 * If the default thread isn't there, make sure we add it. When
74 	 * it gets created and wakes up, we'll run this work.
75 	 */
76 	if (unlikely(!bdi->wb.task)) {
77 		wake_up_process(default_backing_dev_info.wb.task);
78 	} else {
79 		struct bdi_writeback *wb = &bdi->wb;
80 
81 		if (wb->task)
82 			wake_up_process(wb->task);
83 	}
84 }
85 
86 static void
87 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
88 		bool range_cyclic, bool for_background)
89 {
90 	struct wb_writeback_work *work;
91 
92 	/*
93 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
94 	 * wakeup the thread for old dirty data writeback
95 	 */
96 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
97 	if (!work) {
98 		if (bdi->wb.task)
99 			wake_up_process(bdi->wb.task);
100 		return;
101 	}
102 
103 	work->sync_mode	= WB_SYNC_NONE;
104 	work->nr_pages	= nr_pages;
105 	work->range_cyclic = range_cyclic;
106 	work->for_background = for_background;
107 
108 	bdi_queue_work(bdi, work);
109 }
110 
111 /**
112  * bdi_start_writeback - start writeback
113  * @bdi: the backing device to write from
114  * @nr_pages: the number of pages to write
115  *
116  * Description:
117  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
118  *   started when this function returns, we make no guarentees on
119  *   completion. Caller need not hold sb s_umount semaphore.
120  *
121  */
122 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
123 {
124 	__bdi_start_writeback(bdi, nr_pages, true, false);
125 }
126 
127 /**
128  * bdi_start_background_writeback - start background writeback
129  * @bdi: the backing device to write from
130  *
131  * Description:
132  *   This does WB_SYNC_NONE background writeback. The IO is only
133  *   started when this function returns, we make no guarentees on
134  *   completion. Caller need not hold sb s_umount semaphore.
135  */
136 void bdi_start_background_writeback(struct backing_dev_info *bdi)
137 {
138 	__bdi_start_writeback(bdi, LONG_MAX, true, true);
139 }
140 
141 /*
142  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
143  * furthest end of its superblock's dirty-inode list.
144  *
145  * Before stamping the inode's ->dirtied_when, we check to see whether it is
146  * already the most-recently-dirtied inode on the b_dirty list.  If that is
147  * the case then the inode must have been redirtied while it was being written
148  * out and we don't reset its dirtied_when.
149  */
150 static void redirty_tail(struct inode *inode)
151 {
152 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
153 
154 	if (!list_empty(&wb->b_dirty)) {
155 		struct inode *tail;
156 
157 		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
158 		if (time_before(inode->dirtied_when, tail->dirtied_when))
159 			inode->dirtied_when = jiffies;
160 	}
161 	list_move(&inode->i_list, &wb->b_dirty);
162 }
163 
164 /*
165  * requeue inode for re-scanning after bdi->b_io list is exhausted.
166  */
167 static void requeue_io(struct inode *inode)
168 {
169 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
170 
171 	list_move(&inode->i_list, &wb->b_more_io);
172 }
173 
174 static void inode_sync_complete(struct inode *inode)
175 {
176 	/*
177 	 * Prevent speculative execution through spin_unlock(&inode_lock);
178 	 */
179 	smp_mb();
180 	wake_up_bit(&inode->i_state, __I_SYNC);
181 }
182 
183 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
184 {
185 	bool ret = time_after(inode->dirtied_when, t);
186 #ifndef CONFIG_64BIT
187 	/*
188 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
189 	 * It _appears_ to be in the future, but is actually in distant past.
190 	 * This test is necessary to prevent such wrapped-around relative times
191 	 * from permanently stopping the whole bdi writeback.
192 	 */
193 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
194 #endif
195 	return ret;
196 }
197 
198 /*
199  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
200  */
201 static void move_expired_inodes(struct list_head *delaying_queue,
202 			       struct list_head *dispatch_queue,
203 				unsigned long *older_than_this)
204 {
205 	LIST_HEAD(tmp);
206 	struct list_head *pos, *node;
207 	struct super_block *sb = NULL;
208 	struct inode *inode;
209 	int do_sb_sort = 0;
210 
211 	while (!list_empty(delaying_queue)) {
212 		inode = list_entry(delaying_queue->prev, struct inode, i_list);
213 		if (older_than_this &&
214 		    inode_dirtied_after(inode, *older_than_this))
215 			break;
216 		if (sb && sb != inode->i_sb)
217 			do_sb_sort = 1;
218 		sb = inode->i_sb;
219 		list_move(&inode->i_list, &tmp);
220 	}
221 
222 	/* just one sb in list, splice to dispatch_queue and we're done */
223 	if (!do_sb_sort) {
224 		list_splice(&tmp, dispatch_queue);
225 		return;
226 	}
227 
228 	/* Move inodes from one superblock together */
229 	while (!list_empty(&tmp)) {
230 		inode = list_entry(tmp.prev, struct inode, i_list);
231 		sb = inode->i_sb;
232 		list_for_each_prev_safe(pos, node, &tmp) {
233 			inode = list_entry(pos, struct inode, i_list);
234 			if (inode->i_sb == sb)
235 				list_move(&inode->i_list, dispatch_queue);
236 		}
237 	}
238 }
239 
240 /*
241  * Queue all expired dirty inodes for io, eldest first.
242  */
243 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
244 {
245 	list_splice_init(&wb->b_more_io, wb->b_io.prev);
246 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
247 }
248 
249 static int write_inode(struct inode *inode, struct writeback_control *wbc)
250 {
251 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
252 		return inode->i_sb->s_op->write_inode(inode, wbc);
253 	return 0;
254 }
255 
256 /*
257  * Wait for writeback on an inode to complete.
258  */
259 static void inode_wait_for_writeback(struct inode *inode)
260 {
261 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
262 	wait_queue_head_t *wqh;
263 
264 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
265 	 while (inode->i_state & I_SYNC) {
266 		spin_unlock(&inode_lock);
267 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
268 		spin_lock(&inode_lock);
269 	}
270 }
271 
272 /*
273  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
274  * caller has ref on the inode (either via __iget or via syscall against an fd)
275  * or the inode has I_WILL_FREE set (via generic_forget_inode)
276  *
277  * If `wait' is set, wait on the writeout.
278  *
279  * The whole writeout design is quite complex and fragile.  We want to avoid
280  * starvation of particular inodes when others are being redirtied, prevent
281  * livelocks, etc.
282  *
283  * Called under inode_lock.
284  */
285 static int
286 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
287 {
288 	struct address_space *mapping = inode->i_mapping;
289 	unsigned dirty;
290 	int ret;
291 
292 	if (!atomic_read(&inode->i_count))
293 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
294 	else
295 		WARN_ON(inode->i_state & I_WILL_FREE);
296 
297 	if (inode->i_state & I_SYNC) {
298 		/*
299 		 * If this inode is locked for writeback and we are not doing
300 		 * writeback-for-data-integrity, move it to b_more_io so that
301 		 * writeback can proceed with the other inodes on s_io.
302 		 *
303 		 * We'll have another go at writing back this inode when we
304 		 * completed a full scan of b_io.
305 		 */
306 		if (wbc->sync_mode != WB_SYNC_ALL) {
307 			requeue_io(inode);
308 			return 0;
309 		}
310 
311 		/*
312 		 * It's a data-integrity sync.  We must wait.
313 		 */
314 		inode_wait_for_writeback(inode);
315 	}
316 
317 	BUG_ON(inode->i_state & I_SYNC);
318 
319 	/* Set I_SYNC, reset I_DIRTY_PAGES */
320 	inode->i_state |= I_SYNC;
321 	inode->i_state &= ~I_DIRTY_PAGES;
322 	spin_unlock(&inode_lock);
323 
324 	ret = do_writepages(mapping, wbc);
325 
326 	/*
327 	 * Make sure to wait on the data before writing out the metadata.
328 	 * This is important for filesystems that modify metadata on data
329 	 * I/O completion.
330 	 */
331 	if (wbc->sync_mode == WB_SYNC_ALL) {
332 		int err = filemap_fdatawait(mapping);
333 		if (ret == 0)
334 			ret = err;
335 	}
336 
337 	/*
338 	 * Some filesystems may redirty the inode during the writeback
339 	 * due to delalloc, clear dirty metadata flags right before
340 	 * write_inode()
341 	 */
342 	spin_lock(&inode_lock);
343 	dirty = inode->i_state & I_DIRTY;
344 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
345 	spin_unlock(&inode_lock);
346 	/* Don't write the inode if only I_DIRTY_PAGES was set */
347 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
348 		int err = write_inode(inode, wbc);
349 		if (ret == 0)
350 			ret = err;
351 	}
352 
353 	spin_lock(&inode_lock);
354 	inode->i_state &= ~I_SYNC;
355 	if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
356 		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
357 			/*
358 			 * More pages get dirtied by a fast dirtier.
359 			 */
360 			goto select_queue;
361 		} else if (inode->i_state & I_DIRTY) {
362 			/*
363 			 * At least XFS will redirty the inode during the
364 			 * writeback (delalloc) and on io completion (isize).
365 			 */
366 			redirty_tail(inode);
367 		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
368 			/*
369 			 * We didn't write back all the pages.  nfs_writepages()
370 			 * sometimes bales out without doing anything. Redirty
371 			 * the inode; Move it from b_io onto b_more_io/b_dirty.
372 			 */
373 			/*
374 			 * akpm: if the caller was the kupdate function we put
375 			 * this inode at the head of b_dirty so it gets first
376 			 * consideration.  Otherwise, move it to the tail, for
377 			 * the reasons described there.  I'm not really sure
378 			 * how much sense this makes.  Presumably I had a good
379 			 * reasons for doing it this way, and I'd rather not
380 			 * muck with it at present.
381 			 */
382 			if (wbc->for_kupdate) {
383 				/*
384 				 * For the kupdate function we move the inode
385 				 * to b_more_io so it will get more writeout as
386 				 * soon as the queue becomes uncongested.
387 				 */
388 				inode->i_state |= I_DIRTY_PAGES;
389 select_queue:
390 				if (wbc->nr_to_write <= 0) {
391 					/*
392 					 * slice used up: queue for next turn
393 					 */
394 					requeue_io(inode);
395 				} else {
396 					/*
397 					 * somehow blocked: retry later
398 					 */
399 					redirty_tail(inode);
400 				}
401 			} else {
402 				/*
403 				 * Otherwise fully redirty the inode so that
404 				 * other inodes on this superblock will get some
405 				 * writeout.  Otherwise heavy writing to one
406 				 * file would indefinitely suspend writeout of
407 				 * all the other files.
408 				 */
409 				inode->i_state |= I_DIRTY_PAGES;
410 				redirty_tail(inode);
411 			}
412 		} else if (atomic_read(&inode->i_count)) {
413 			/*
414 			 * The inode is clean, inuse
415 			 */
416 			list_move(&inode->i_list, &inode_in_use);
417 		} else {
418 			/*
419 			 * The inode is clean, unused
420 			 */
421 			list_move(&inode->i_list, &inode_unused);
422 		}
423 	}
424 	inode_sync_complete(inode);
425 	return ret;
426 }
427 
428 /*
429  * For background writeback the caller does not have the sb pinned
430  * before calling writeback. So make sure that we do pin it, so it doesn't
431  * go away while we are writing inodes from it.
432  */
433 static bool pin_sb_for_writeback(struct super_block *sb)
434 {
435 	spin_lock(&sb_lock);
436 	if (list_empty(&sb->s_instances)) {
437 		spin_unlock(&sb_lock);
438 		return false;
439 	}
440 
441 	sb->s_count++;
442 	spin_unlock(&sb_lock);
443 
444 	if (down_read_trylock(&sb->s_umount)) {
445 		if (sb->s_root)
446 			return true;
447 		up_read(&sb->s_umount);
448 	}
449 
450 	put_super(sb);
451 	return false;
452 }
453 
454 /*
455  * Write a portion of b_io inodes which belong to @sb.
456  *
457  * If @only_this_sb is true, then find and write all such
458  * inodes. Otherwise write only ones which go sequentially
459  * in reverse order.
460  *
461  * Return 1, if the caller writeback routine should be
462  * interrupted. Otherwise return 0.
463  */
464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
465 		struct writeback_control *wbc, bool only_this_sb)
466 {
467 	while (!list_empty(&wb->b_io)) {
468 		long pages_skipped;
469 		struct inode *inode = list_entry(wb->b_io.prev,
470 						 struct inode, i_list);
471 
472 		if (inode->i_sb != sb) {
473 			if (only_this_sb) {
474 				/*
475 				 * We only want to write back data for this
476 				 * superblock, move all inodes not belonging
477 				 * to it back onto the dirty list.
478 				 */
479 				redirty_tail(inode);
480 				continue;
481 			}
482 
483 			/*
484 			 * The inode belongs to a different superblock.
485 			 * Bounce back to the caller to unpin this and
486 			 * pin the next superblock.
487 			 */
488 			return 0;
489 		}
490 
491 		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
492 			requeue_io(inode);
493 			continue;
494 		}
495 		/*
496 		 * Was this inode dirtied after sync_sb_inodes was called?
497 		 * This keeps sync from extra jobs and livelock.
498 		 */
499 		if (inode_dirtied_after(inode, wbc->wb_start))
500 			return 1;
501 
502 		BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
503 		__iget(inode);
504 		pages_skipped = wbc->pages_skipped;
505 		writeback_single_inode(inode, wbc);
506 		if (wbc->pages_skipped != pages_skipped) {
507 			/*
508 			 * writeback is not making progress due to locked
509 			 * buffers.  Skip this inode for now.
510 			 */
511 			redirty_tail(inode);
512 		}
513 		spin_unlock(&inode_lock);
514 		iput(inode);
515 		cond_resched();
516 		spin_lock(&inode_lock);
517 		if (wbc->nr_to_write <= 0) {
518 			wbc->more_io = 1;
519 			return 1;
520 		}
521 		if (!list_empty(&wb->b_more_io))
522 			wbc->more_io = 1;
523 	}
524 	/* b_io is empty */
525 	return 1;
526 }
527 
528 void writeback_inodes_wb(struct bdi_writeback *wb,
529 		struct writeback_control *wbc)
530 {
531 	int ret = 0;
532 
533 	wbc->wb_start = jiffies; /* livelock avoidance */
534 	spin_lock(&inode_lock);
535 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
536 		queue_io(wb, wbc->older_than_this);
537 
538 	while (!list_empty(&wb->b_io)) {
539 		struct inode *inode = list_entry(wb->b_io.prev,
540 						 struct inode, i_list);
541 		struct super_block *sb = inode->i_sb;
542 
543 		if (!pin_sb_for_writeback(sb)) {
544 			requeue_io(inode);
545 			continue;
546 		}
547 		ret = writeback_sb_inodes(sb, wb, wbc, false);
548 		drop_super(sb);
549 
550 		if (ret)
551 			break;
552 	}
553 	spin_unlock(&inode_lock);
554 	/* Leave any unwritten inodes on b_io */
555 }
556 
557 static void __writeback_inodes_sb(struct super_block *sb,
558 		struct bdi_writeback *wb, struct writeback_control *wbc)
559 {
560 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
561 
562 	wbc->wb_start = jiffies; /* livelock avoidance */
563 	spin_lock(&inode_lock);
564 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
565 		queue_io(wb, wbc->older_than_this);
566 	writeback_sb_inodes(sb, wb, wbc, true);
567 	spin_unlock(&inode_lock);
568 }
569 
570 /*
571  * The maximum number of pages to writeout in a single bdi flush/kupdate
572  * operation.  We do this so we don't hold I_SYNC against an inode for
573  * enormous amounts of time, which would block a userspace task which has
574  * been forced to throttle against that inode.  Also, the code reevaluates
575  * the dirty each time it has written this many pages.
576  */
577 #define MAX_WRITEBACK_PAGES     1024
578 
579 static inline bool over_bground_thresh(void)
580 {
581 	unsigned long background_thresh, dirty_thresh;
582 
583 	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
584 
585 	return (global_page_state(NR_FILE_DIRTY) +
586 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
587 }
588 
589 /*
590  * Explicit flushing or periodic writeback of "old" data.
591  *
592  * Define "old": the first time one of an inode's pages is dirtied, we mark the
593  * dirtying-time in the inode's address_space.  So this periodic writeback code
594  * just walks the superblock inode list, writing back any inodes which are
595  * older than a specific point in time.
596  *
597  * Try to run once per dirty_writeback_interval.  But if a writeback event
598  * takes longer than a dirty_writeback_interval interval, then leave a
599  * one-second gap.
600  *
601  * older_than_this takes precedence over nr_to_write.  So we'll only write back
602  * all dirty pages if they are all attached to "old" mappings.
603  */
604 static long wb_writeback(struct bdi_writeback *wb,
605 			 struct wb_writeback_work *work)
606 {
607 	struct writeback_control wbc = {
608 		.sync_mode		= work->sync_mode,
609 		.older_than_this	= NULL,
610 		.for_kupdate		= work->for_kupdate,
611 		.for_background		= work->for_background,
612 		.range_cyclic		= work->range_cyclic,
613 	};
614 	unsigned long oldest_jif;
615 	long wrote = 0;
616 	struct inode *inode;
617 
618 	if (wbc.for_kupdate) {
619 		wbc.older_than_this = &oldest_jif;
620 		oldest_jif = jiffies -
621 				msecs_to_jiffies(dirty_expire_interval * 10);
622 	}
623 	if (!wbc.range_cyclic) {
624 		wbc.range_start = 0;
625 		wbc.range_end = LLONG_MAX;
626 	}
627 
628 	for (;;) {
629 		/*
630 		 * Stop writeback when nr_pages has been consumed
631 		 */
632 		if (work->nr_pages <= 0)
633 			break;
634 
635 		/*
636 		 * For background writeout, stop when we are below the
637 		 * background dirty threshold
638 		 */
639 		if (work->for_background && !over_bground_thresh())
640 			break;
641 
642 		wbc.more_io = 0;
643 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
644 		wbc.pages_skipped = 0;
645 		if (work->sb)
646 			__writeback_inodes_sb(work->sb, wb, &wbc);
647 		else
648 			writeback_inodes_wb(wb, &wbc);
649 		work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
650 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
651 
652 		/*
653 		 * If we consumed everything, see if we have more
654 		 */
655 		if (wbc.nr_to_write <= 0)
656 			continue;
657 		/*
658 		 * Didn't write everything and we don't have more IO, bail
659 		 */
660 		if (!wbc.more_io)
661 			break;
662 		/*
663 		 * Did we write something? Try for more
664 		 */
665 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
666 			continue;
667 		/*
668 		 * Nothing written. Wait for some inode to
669 		 * become available for writeback. Otherwise
670 		 * we'll just busyloop.
671 		 */
672 		spin_lock(&inode_lock);
673 		if (!list_empty(&wb->b_more_io))  {
674 			inode = list_entry(wb->b_more_io.prev,
675 						struct inode, i_list);
676 			inode_wait_for_writeback(inode);
677 		}
678 		spin_unlock(&inode_lock);
679 	}
680 
681 	return wrote;
682 }
683 
684 /*
685  * Return the next wb_writeback_work struct that hasn't been processed yet.
686  */
687 static struct wb_writeback_work *
688 get_next_work_item(struct backing_dev_info *bdi, struct bdi_writeback *wb)
689 {
690 	struct wb_writeback_work *work = NULL;
691 
692 	spin_lock(&bdi->wb_lock);
693 	if (!list_empty(&bdi->work_list)) {
694 		work = list_entry(bdi->work_list.next,
695 				  struct wb_writeback_work, list);
696 		list_del_init(&work->list);
697 	}
698 	spin_unlock(&bdi->wb_lock);
699 	return work;
700 }
701 
702 static long wb_check_old_data_flush(struct bdi_writeback *wb)
703 {
704 	unsigned long expired;
705 	long nr_pages;
706 
707 	/*
708 	 * When set to zero, disable periodic writeback
709 	 */
710 	if (!dirty_writeback_interval)
711 		return 0;
712 
713 	expired = wb->last_old_flush +
714 			msecs_to_jiffies(dirty_writeback_interval * 10);
715 	if (time_before(jiffies, expired))
716 		return 0;
717 
718 	wb->last_old_flush = jiffies;
719 	nr_pages = global_page_state(NR_FILE_DIRTY) +
720 			global_page_state(NR_UNSTABLE_NFS) +
721 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
722 
723 	if (nr_pages) {
724 		struct wb_writeback_work work = {
725 			.nr_pages	= nr_pages,
726 			.sync_mode	= WB_SYNC_NONE,
727 			.for_kupdate	= 1,
728 			.range_cyclic	= 1,
729 		};
730 
731 		return wb_writeback(wb, &work);
732 	}
733 
734 	return 0;
735 }
736 
737 /*
738  * Retrieve work items and do the writeback they describe
739  */
740 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
741 {
742 	struct backing_dev_info *bdi = wb->bdi;
743 	struct wb_writeback_work *work;
744 	long wrote = 0;
745 
746 	while ((work = get_next_work_item(bdi, wb)) != NULL) {
747 		/*
748 		 * Override sync mode, in case we must wait for completion
749 		 * because this thread is exiting now.
750 		 */
751 		if (force_wait)
752 			work->sync_mode = WB_SYNC_ALL;
753 
754 		wrote += wb_writeback(wb, work);
755 
756 		/*
757 		 * Notify the caller of completion if this is a synchronous
758 		 * work item, otherwise just free it.
759 		 */
760 		if (work->done)
761 			complete(work->done);
762 		else
763 			kfree(work);
764 	}
765 
766 	/*
767 	 * Check for periodic writeback, kupdated() style
768 	 */
769 	wrote += wb_check_old_data_flush(wb);
770 
771 	return wrote;
772 }
773 
774 /*
775  * Handle writeback of dirty data for the device backed by this bdi. Also
776  * wakes up periodically and does kupdated style flushing.
777  */
778 int bdi_writeback_thread(void *data)
779 {
780 	struct bdi_writeback *wb = data;
781 	struct backing_dev_info *bdi = wb->bdi;
782 	unsigned long last_active = jiffies;
783 	unsigned long wait_jiffies = -1UL;
784 	long pages_written;
785 
786 	/*
787 	 * Add us to the active bdi_list
788 	 */
789 	spin_lock_bh(&bdi_lock);
790 	list_add_rcu(&bdi->bdi_list, &bdi_list);
791 	spin_unlock_bh(&bdi_lock);
792 
793 	current->flags |= PF_FLUSHER | PF_SWAPWRITE;
794 	set_freezable();
795 
796 	/*
797 	 * Our parent may run at a different priority, just set us to normal
798 	 */
799 	set_user_nice(current, 0);
800 
801 	/*
802 	 * Clear pending bit and wakeup anybody waiting to tear us down
803 	 */
804 	clear_bit(BDI_pending, &bdi->state);
805 	smp_mb__after_clear_bit();
806 	wake_up_bit(&bdi->state, BDI_pending);
807 
808 	while (!kthread_should_stop()) {
809 		pages_written = wb_do_writeback(wb, 0);
810 
811 		if (pages_written)
812 			last_active = jiffies;
813 		else if (wait_jiffies != -1UL) {
814 			unsigned long max_idle;
815 
816 			/*
817 			 * Longest period of inactivity that we tolerate. If we
818 			 * see dirty data again later, the task will get
819 			 * recreated automatically.
820 			 */
821 			max_idle = max(5UL * 60 * HZ, wait_jiffies);
822 			if (time_after(jiffies, max_idle + last_active))
823 				break;
824 		}
825 
826 		if (dirty_writeback_interval) {
827 			wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
828 			schedule_timeout_interruptible(wait_jiffies);
829 		} else {
830 			set_current_state(TASK_INTERRUPTIBLE);
831 			if (list_empty_careful(&wb->bdi->work_list) &&
832 			    !kthread_should_stop())
833 				schedule();
834 			__set_current_state(TASK_RUNNING);
835 		}
836 
837 		try_to_freeze();
838 	}
839 
840 	wb->task = NULL;
841 
842 	/*
843 	 * Flush any work that raced with us exiting. No new work
844 	 * will be added, since this bdi isn't discoverable anymore.
845 	 */
846 	if (!list_empty(&bdi->work_list))
847 		wb_do_writeback(wb, 1);
848 	return 0;
849 }
850 
851 
852 /*
853  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
854  * the whole world.
855  */
856 void wakeup_flusher_threads(long nr_pages)
857 {
858 	struct backing_dev_info *bdi;
859 
860 	if (!nr_pages) {
861 		nr_pages = global_page_state(NR_FILE_DIRTY) +
862 				global_page_state(NR_UNSTABLE_NFS);
863 	}
864 
865 	rcu_read_lock();
866 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
867 		if (!bdi_has_dirty_io(bdi))
868 			continue;
869 		__bdi_start_writeback(bdi, nr_pages, false, false);
870 	}
871 	rcu_read_unlock();
872 }
873 
874 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
875 {
876 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
877 		struct dentry *dentry;
878 		const char *name = "?";
879 
880 		dentry = d_find_alias(inode);
881 		if (dentry) {
882 			spin_lock(&dentry->d_lock);
883 			name = (const char *) dentry->d_name.name;
884 		}
885 		printk(KERN_DEBUG
886 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
887 		       current->comm, task_pid_nr(current), inode->i_ino,
888 		       name, inode->i_sb->s_id);
889 		if (dentry) {
890 			spin_unlock(&dentry->d_lock);
891 			dput(dentry);
892 		}
893 	}
894 }
895 
896 /**
897  *	__mark_inode_dirty -	internal function
898  *	@inode: inode to mark
899  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
900  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
901  *  	mark_inode_dirty_sync.
902  *
903  * Put the inode on the super block's dirty list.
904  *
905  * CAREFUL! We mark it dirty unconditionally, but move it onto the
906  * dirty list only if it is hashed or if it refers to a blockdev.
907  * If it was not hashed, it will never be added to the dirty list
908  * even if it is later hashed, as it will have been marked dirty already.
909  *
910  * In short, make sure you hash any inodes _before_ you start marking
911  * them dirty.
912  *
913  * This function *must* be atomic for the I_DIRTY_PAGES case -
914  * set_page_dirty() is called under spinlock in several places.
915  *
916  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
917  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
918  * the kernel-internal blockdev inode represents the dirtying time of the
919  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
920  * page->mapping->host, so the page-dirtying time is recorded in the internal
921  * blockdev inode.
922  */
923 void __mark_inode_dirty(struct inode *inode, int flags)
924 {
925 	struct super_block *sb = inode->i_sb;
926 
927 	/*
928 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
929 	 * dirty the inode itself
930 	 */
931 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
932 		if (sb->s_op->dirty_inode)
933 			sb->s_op->dirty_inode(inode);
934 	}
935 
936 	/*
937 	 * make sure that changes are seen by all cpus before we test i_state
938 	 * -- mikulas
939 	 */
940 	smp_mb();
941 
942 	/* avoid the locking if we can */
943 	if ((inode->i_state & flags) == flags)
944 		return;
945 
946 	if (unlikely(block_dump))
947 		block_dump___mark_inode_dirty(inode);
948 
949 	spin_lock(&inode_lock);
950 	if ((inode->i_state & flags) != flags) {
951 		const int was_dirty = inode->i_state & I_DIRTY;
952 
953 		inode->i_state |= flags;
954 
955 		/*
956 		 * If the inode is being synced, just update its dirty state.
957 		 * The unlocker will place the inode on the appropriate
958 		 * superblock list, based upon its state.
959 		 */
960 		if (inode->i_state & I_SYNC)
961 			goto out;
962 
963 		/*
964 		 * Only add valid (hashed) inodes to the superblock's
965 		 * dirty list.  Add blockdev inodes as well.
966 		 */
967 		if (!S_ISBLK(inode->i_mode)) {
968 			if (hlist_unhashed(&inode->i_hash))
969 				goto out;
970 		}
971 		if (inode->i_state & (I_FREEING|I_CLEAR))
972 			goto out;
973 
974 		/*
975 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
976 		 * reposition it (that would break b_dirty time-ordering).
977 		 */
978 		if (!was_dirty) {
979 			struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
980 			struct backing_dev_info *bdi = wb->bdi;
981 
982 			if (bdi_cap_writeback_dirty(bdi) &&
983 			    !test_bit(BDI_registered, &bdi->state)) {
984 				WARN_ON(1);
985 				printk(KERN_ERR "bdi-%s not registered\n",
986 								bdi->name);
987 			}
988 
989 			inode->dirtied_when = jiffies;
990 			list_move(&inode->i_list, &wb->b_dirty);
991 		}
992 	}
993 out:
994 	spin_unlock(&inode_lock);
995 }
996 EXPORT_SYMBOL(__mark_inode_dirty);
997 
998 /*
999  * Write out a superblock's list of dirty inodes.  A wait will be performed
1000  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1001  *
1002  * If older_than_this is non-NULL, then only write out inodes which
1003  * had their first dirtying at a time earlier than *older_than_this.
1004  *
1005  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1006  * This function assumes that the blockdev superblock's inodes are backed by
1007  * a variety of queues, so all inodes are searched.  For other superblocks,
1008  * assume that all inodes are backed by the same queue.
1009  *
1010  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1011  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1012  * on the writer throttling path, and we get decent balancing between many
1013  * throttled threads: we don't want them all piling up on inode_sync_wait.
1014  */
1015 static void wait_sb_inodes(struct super_block *sb)
1016 {
1017 	struct inode *inode, *old_inode = NULL;
1018 
1019 	/*
1020 	 * We need to be protected against the filesystem going from
1021 	 * r/o to r/w or vice versa.
1022 	 */
1023 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1024 
1025 	spin_lock(&inode_lock);
1026 
1027 	/*
1028 	 * Data integrity sync. Must wait for all pages under writeback,
1029 	 * because there may have been pages dirtied before our sync
1030 	 * call, but which had writeout started before we write it out.
1031 	 * In which case, the inode may not be on the dirty list, but
1032 	 * we still have to wait for that writeout.
1033 	 */
1034 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1035 		struct address_space *mapping;
1036 
1037 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1038 			continue;
1039 		mapping = inode->i_mapping;
1040 		if (mapping->nrpages == 0)
1041 			continue;
1042 		__iget(inode);
1043 		spin_unlock(&inode_lock);
1044 		/*
1045 		 * We hold a reference to 'inode' so it couldn't have
1046 		 * been removed from s_inodes list while we dropped the
1047 		 * inode_lock.  We cannot iput the inode now as we can
1048 		 * be holding the last reference and we cannot iput it
1049 		 * under inode_lock. So we keep the reference and iput
1050 		 * it later.
1051 		 */
1052 		iput(old_inode);
1053 		old_inode = inode;
1054 
1055 		filemap_fdatawait(mapping);
1056 
1057 		cond_resched();
1058 
1059 		spin_lock(&inode_lock);
1060 	}
1061 	spin_unlock(&inode_lock);
1062 	iput(old_inode);
1063 }
1064 
1065 /**
1066  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1067  * @sb: the superblock
1068  *
1069  * Start writeback on some inodes on this super_block. No guarantees are made
1070  * on how many (if any) will be written, and this function does not wait
1071  * for IO completion of submitted IO. The number of pages submitted is
1072  * returned.
1073  */
1074 void writeback_inodes_sb(struct super_block *sb)
1075 {
1076 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1077 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1078 	DECLARE_COMPLETION_ONSTACK(done);
1079 	struct wb_writeback_work work = {
1080 		.sb		= sb,
1081 		.sync_mode	= WB_SYNC_NONE,
1082 		.done		= &done,
1083 	};
1084 
1085 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1086 
1087 	work.nr_pages = nr_dirty + nr_unstable +
1088 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1089 
1090 	bdi_queue_work(sb->s_bdi, &work);
1091 	wait_for_completion(&done);
1092 }
1093 EXPORT_SYMBOL(writeback_inodes_sb);
1094 
1095 /**
1096  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1097  * @sb: the superblock
1098  *
1099  * Invoke writeback_inodes_sb if no writeback is currently underway.
1100  * Returns 1 if writeback was started, 0 if not.
1101  */
1102 int writeback_inodes_sb_if_idle(struct super_block *sb)
1103 {
1104 	if (!writeback_in_progress(sb->s_bdi)) {
1105 		down_read(&sb->s_umount);
1106 		writeback_inodes_sb(sb);
1107 		up_read(&sb->s_umount);
1108 		return 1;
1109 	} else
1110 		return 0;
1111 }
1112 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1113 
1114 /**
1115  * sync_inodes_sb	-	sync sb inode pages
1116  * @sb: the superblock
1117  *
1118  * This function writes and waits on any dirty inode belonging to this
1119  * super_block. The number of pages synced is returned.
1120  */
1121 void sync_inodes_sb(struct super_block *sb)
1122 {
1123 	DECLARE_COMPLETION_ONSTACK(done);
1124 	struct wb_writeback_work work = {
1125 		.sb		= sb,
1126 		.sync_mode	= WB_SYNC_ALL,
1127 		.nr_pages	= LONG_MAX,
1128 		.range_cyclic	= 0,
1129 		.done		= &done,
1130 	};
1131 
1132 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1133 
1134 	bdi_queue_work(sb->s_bdi, &work);
1135 	wait_for_completion(&done);
1136 
1137 	wait_sb_inodes(sb);
1138 }
1139 EXPORT_SYMBOL(sync_inodes_sb);
1140 
1141 /**
1142  * write_inode_now	-	write an inode to disk
1143  * @inode: inode to write to disk
1144  * @sync: whether the write should be synchronous or not
1145  *
1146  * This function commits an inode to disk immediately if it is dirty. This is
1147  * primarily needed by knfsd.
1148  *
1149  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1150  */
1151 int write_inode_now(struct inode *inode, int sync)
1152 {
1153 	int ret;
1154 	struct writeback_control wbc = {
1155 		.nr_to_write = LONG_MAX,
1156 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1157 		.range_start = 0,
1158 		.range_end = LLONG_MAX,
1159 	};
1160 
1161 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1162 		wbc.nr_to_write = 0;
1163 
1164 	might_sleep();
1165 	spin_lock(&inode_lock);
1166 	ret = writeback_single_inode(inode, &wbc);
1167 	spin_unlock(&inode_lock);
1168 	if (sync)
1169 		inode_sync_wait(inode);
1170 	return ret;
1171 }
1172 EXPORT_SYMBOL(write_inode_now);
1173 
1174 /**
1175  * sync_inode - write an inode and its pages to disk.
1176  * @inode: the inode to sync
1177  * @wbc: controls the writeback mode
1178  *
1179  * sync_inode() will write an inode and its pages to disk.  It will also
1180  * correctly update the inode on its superblock's dirty inode lists and will
1181  * update inode->i_state.
1182  *
1183  * The caller must have a ref on the inode.
1184  */
1185 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1186 {
1187 	int ret;
1188 
1189 	spin_lock(&inode_lock);
1190 	ret = writeback_single_inode(inode, wbc);
1191 	spin_unlock(&inode_lock);
1192 	return ret;
1193 }
1194 EXPORT_SYMBOL(sync_inode);
1195