xref: /openbmc/linux/fs/f2fs/segment.h (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13 
14 /* constant macro */
15 #define NULL_SEGNO			((unsigned int)(~0))
16 #define NULL_SECNO			((unsigned int)(~0))
17 
18 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19 
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
23 
24 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
26 
27 #define IS_CURSEG(sbi, seg)						\
28 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
29 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
30 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
33 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34 
35 #define IS_CURSEC(sbi, secno)						\
36 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
37 	  sbi->segs_per_sec) ||	\
38 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
39 	  sbi->segs_per_sec) ||	\
40 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
41 	  sbi->segs_per_sec) ||	\
42 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
43 	  sbi->segs_per_sec) ||	\
44 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
45 	  sbi->segs_per_sec) ||	\
46 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
47 	  sbi->segs_per_sec))	\
48 
49 #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
51 
52 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi)	(sbi->total_sections)
54 
55 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57 
58 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
60 					sbi->log_blocks_per_seg))
61 
62 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
63 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64 
65 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
66 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67 
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
70 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
72 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73 
74 #define GET_SEGNO(sbi, blk_addr)					\
75 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
76 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
77 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno)					\
79 	((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
81 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82 
83 #define GET_SUM_BLOCK(sbi, segno)				\
84 	((sbi->sm_info->ssa_blkaddr) + segno)
85 
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88 
89 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
90 	(segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno)					\
92 	(segno / SIT_ENTRY_PER_BLOCK)
93 #define	START_SEGNO(segno)		\
94 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi)			\
96 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr)			\
98 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
99 
100 #define SECTOR_FROM_BLOCK(blk_addr)					\
101 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors)					\
103 	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi)						\
105 	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106 
107 /*
108  * indicate a block allocation direction: RIGHT and LEFT.
109  * RIGHT means allocating new sections towards the end of volume.
110  * LEFT means the opposite direction.
111  */
112 enum {
113 	ALLOC_RIGHT = 0,
114 	ALLOC_LEFT
115 };
116 
117 /*
118  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119  * LFS writes data sequentially with cleaning operations.
120  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121  */
122 enum {
123 	LFS = 0,
124 	SSR
125 };
126 
127 /*
128  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129  * GC_CB is based on cost-benefit algorithm.
130  * GC_GREEDY is based on greedy algorithm.
131  */
132 enum {
133 	GC_CB = 0,
134 	GC_GREEDY
135 };
136 
137 /*
138  * BG_GC means the background cleaning job.
139  * FG_GC means the on-demand cleaning job.
140  */
141 enum {
142 	BG_GC = 0,
143 	FG_GC
144 };
145 
146 /* for a function parameter to select a victim segment */
147 struct victim_sel_policy {
148 	int alloc_mode;			/* LFS or SSR */
149 	int gc_mode;			/* GC_CB or GC_GREEDY */
150 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
151 	unsigned int max_search;	/* maximum # of segments to search */
152 	unsigned int offset;		/* last scanned bitmap offset */
153 	unsigned int ofs_unit;		/* bitmap search unit */
154 	unsigned int min_cost;		/* minimum cost */
155 	unsigned int min_segno;		/* segment # having min. cost */
156 };
157 
158 struct seg_entry {
159 	unsigned short valid_blocks;	/* # of valid blocks */
160 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
161 	/*
162 	 * # of valid blocks and the validity bitmap stored in the the last
163 	 * checkpoint pack. This information is used by the SSR mode.
164 	 */
165 	unsigned short ckpt_valid_blocks;
166 	unsigned char *ckpt_valid_map;
167 	unsigned char *discard_map;
168 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
169 	unsigned long long mtime;	/* modification time of the segment */
170 };
171 
172 struct sec_entry {
173 	unsigned int valid_blocks;	/* # of valid blocks in a section */
174 };
175 
176 struct segment_allocation {
177 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
178 };
179 
180 /*
181  * this value is set in page as a private data which indicate that
182  * the page is atomically written, and it is in inmem_pages list.
183  */
184 #define ATOMIC_WRITTEN_PAGE		0x0000ffff
185 
186 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
187 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
188 
189 struct inmem_pages {
190 	struct list_head list;
191 	struct page *page;
192 };
193 
194 struct sit_info {
195 	const struct segment_allocation *s_ops;
196 
197 	block_t sit_base_addr;		/* start block address of SIT area */
198 	block_t sit_blocks;		/* # of blocks used by SIT area */
199 	block_t written_valid_blocks;	/* # of valid blocks in main area */
200 	char *sit_bitmap;		/* SIT bitmap pointer */
201 	unsigned int bitmap_size;	/* SIT bitmap size */
202 
203 	unsigned long *tmp_map;			/* bitmap for temporal use */
204 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
205 	unsigned int dirty_sentries;		/* # of dirty sentries */
206 	unsigned int sents_per_block;		/* # of SIT entries per block */
207 	struct mutex sentry_lock;		/* to protect SIT cache */
208 	struct seg_entry *sentries;		/* SIT segment-level cache */
209 	struct sec_entry *sec_entries;		/* SIT section-level cache */
210 
211 	/* for cost-benefit algorithm in cleaning procedure */
212 	unsigned long long elapsed_time;	/* elapsed time after mount */
213 	unsigned long long mounted_time;	/* mount time */
214 	unsigned long long min_mtime;		/* min. modification time */
215 	unsigned long long max_mtime;		/* max. modification time */
216 };
217 
218 struct free_segmap_info {
219 	unsigned int start_segno;	/* start segment number logically */
220 	unsigned int free_segments;	/* # of free segments */
221 	unsigned int free_sections;	/* # of free sections */
222 	spinlock_t segmap_lock;		/* free segmap lock */
223 	unsigned long *free_segmap;	/* free segment bitmap */
224 	unsigned long *free_secmap;	/* free section bitmap */
225 };
226 
227 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
228 enum dirty_type {
229 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
230 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
231 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
232 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
233 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
234 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
235 	DIRTY,			/* to count # of dirty segments */
236 	PRE,			/* to count # of entirely obsolete segments */
237 	NR_DIRTY_TYPE
238 };
239 
240 struct dirty_seglist_info {
241 	const struct victim_selection *v_ops;	/* victim selction operation */
242 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
243 	struct mutex seglist_lock;		/* lock for segment bitmaps */
244 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
245 	unsigned long *victim_secmap;		/* background GC victims */
246 };
247 
248 /* victim selection function for cleaning and SSR */
249 struct victim_selection {
250 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
251 							int, int, char);
252 };
253 
254 /* for active log information */
255 struct curseg_info {
256 	struct mutex curseg_mutex;		/* lock for consistency */
257 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
258 	unsigned char alloc_type;		/* current allocation type */
259 	unsigned int segno;			/* current segment number */
260 	unsigned short next_blkoff;		/* next block offset to write */
261 	unsigned int zone;			/* current zone number */
262 	unsigned int next_segno;		/* preallocated segment */
263 };
264 
265 struct sit_entry_set {
266 	struct list_head set_list;	/* link with all sit sets */
267 	unsigned int start_segno;	/* start segno of sits in set */
268 	unsigned int entry_cnt;		/* the # of sit entries in set */
269 };
270 
271 /*
272  * inline functions
273  */
274 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
275 {
276 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
277 }
278 
279 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
280 						unsigned int segno)
281 {
282 	struct sit_info *sit_i = SIT_I(sbi);
283 	return &sit_i->sentries[segno];
284 }
285 
286 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
287 						unsigned int segno)
288 {
289 	struct sit_info *sit_i = SIT_I(sbi);
290 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
291 }
292 
293 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
294 				unsigned int segno, int section)
295 {
296 	/*
297 	 * In order to get # of valid blocks in a section instantly from many
298 	 * segments, f2fs manages two counting structures separately.
299 	 */
300 	if (section > 1)
301 		return get_sec_entry(sbi, segno)->valid_blocks;
302 	else
303 		return get_seg_entry(sbi, segno)->valid_blocks;
304 }
305 
306 static inline void seg_info_from_raw_sit(struct seg_entry *se,
307 					struct f2fs_sit_entry *rs)
308 {
309 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
310 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
311 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
312 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
313 	se->type = GET_SIT_TYPE(rs);
314 	se->mtime = le64_to_cpu(rs->mtime);
315 }
316 
317 static inline void seg_info_to_raw_sit(struct seg_entry *se,
318 					struct f2fs_sit_entry *rs)
319 {
320 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
321 					se->valid_blocks;
322 	rs->vblocks = cpu_to_le16(raw_vblocks);
323 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
324 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
325 	se->ckpt_valid_blocks = se->valid_blocks;
326 	rs->mtime = cpu_to_le64(se->mtime);
327 }
328 
329 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
330 		unsigned int max, unsigned int segno)
331 {
332 	unsigned int ret;
333 	spin_lock(&free_i->segmap_lock);
334 	ret = find_next_bit(free_i->free_segmap, max, segno);
335 	spin_unlock(&free_i->segmap_lock);
336 	return ret;
337 }
338 
339 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
340 {
341 	struct free_segmap_info *free_i = FREE_I(sbi);
342 	unsigned int secno = segno / sbi->segs_per_sec;
343 	unsigned int start_segno = secno * sbi->segs_per_sec;
344 	unsigned int next;
345 
346 	spin_lock(&free_i->segmap_lock);
347 	clear_bit(segno, free_i->free_segmap);
348 	free_i->free_segments++;
349 
350 	next = find_next_bit(free_i->free_segmap,
351 			start_segno + sbi->segs_per_sec, start_segno);
352 	if (next >= start_segno + sbi->segs_per_sec) {
353 		clear_bit(secno, free_i->free_secmap);
354 		free_i->free_sections++;
355 	}
356 	spin_unlock(&free_i->segmap_lock);
357 }
358 
359 static inline void __set_inuse(struct f2fs_sb_info *sbi,
360 		unsigned int segno)
361 {
362 	struct free_segmap_info *free_i = FREE_I(sbi);
363 	unsigned int secno = segno / sbi->segs_per_sec;
364 	set_bit(segno, free_i->free_segmap);
365 	free_i->free_segments--;
366 	if (!test_and_set_bit(secno, free_i->free_secmap))
367 		free_i->free_sections--;
368 }
369 
370 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
371 		unsigned int segno)
372 {
373 	struct free_segmap_info *free_i = FREE_I(sbi);
374 	unsigned int secno = segno / sbi->segs_per_sec;
375 	unsigned int start_segno = secno * sbi->segs_per_sec;
376 	unsigned int next;
377 
378 	spin_lock(&free_i->segmap_lock);
379 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
380 		free_i->free_segments++;
381 
382 		next = find_next_bit(free_i->free_segmap,
383 				start_segno + sbi->segs_per_sec, start_segno);
384 		if (next >= start_segno + sbi->segs_per_sec) {
385 			if (test_and_clear_bit(secno, free_i->free_secmap))
386 				free_i->free_sections++;
387 		}
388 	}
389 	spin_unlock(&free_i->segmap_lock);
390 }
391 
392 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
393 		unsigned int segno)
394 {
395 	struct free_segmap_info *free_i = FREE_I(sbi);
396 	unsigned int secno = segno / sbi->segs_per_sec;
397 	spin_lock(&free_i->segmap_lock);
398 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
399 		free_i->free_segments--;
400 		if (!test_and_set_bit(secno, free_i->free_secmap))
401 			free_i->free_sections--;
402 	}
403 	spin_unlock(&free_i->segmap_lock);
404 }
405 
406 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
407 		void *dst_addr)
408 {
409 	struct sit_info *sit_i = SIT_I(sbi);
410 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
411 }
412 
413 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
414 {
415 	return SIT_I(sbi)->written_valid_blocks;
416 }
417 
418 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
419 {
420 	return FREE_I(sbi)->free_segments;
421 }
422 
423 static inline int reserved_segments(struct f2fs_sb_info *sbi)
424 {
425 	return SM_I(sbi)->reserved_segments;
426 }
427 
428 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
429 {
430 	return FREE_I(sbi)->free_sections;
431 }
432 
433 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
434 {
435 	return DIRTY_I(sbi)->nr_dirty[PRE];
436 }
437 
438 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
439 {
440 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
441 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
442 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
443 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
444 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
445 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
446 }
447 
448 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
449 {
450 	return SM_I(sbi)->ovp_segments;
451 }
452 
453 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
454 {
455 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
456 }
457 
458 static inline int reserved_sections(struct f2fs_sb_info *sbi)
459 {
460 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
461 }
462 
463 static inline bool need_SSR(struct f2fs_sb_info *sbi)
464 {
465 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
466 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
467 	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
468 						reserved_sections(sbi) + 1);
469 }
470 
471 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
472 {
473 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
474 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
475 
476 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
477 		return false;
478 
479 	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
480 						reserved_sections(sbi));
481 }
482 
483 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
484 {
485 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
486 }
487 
488 static inline int utilization(struct f2fs_sb_info *sbi)
489 {
490 	return div_u64((u64)valid_user_blocks(sbi) * 100,
491 					sbi->user_block_count);
492 }
493 
494 /*
495  * Sometimes f2fs may be better to drop out-of-place update policy.
496  * And, users can control the policy through sysfs entries.
497  * There are five policies with triggering conditions as follows.
498  * F2FS_IPU_FORCE - all the time,
499  * F2FS_IPU_SSR - if SSR mode is activated,
500  * F2FS_IPU_UTIL - if FS utilization is over threashold,
501  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
502  *                     threashold,
503  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
504  *                     storages. IPU will be triggered only if the # of dirty
505  *                     pages over min_fsync_blocks.
506  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
507  */
508 #define DEF_MIN_IPU_UTIL	70
509 #define DEF_MIN_FSYNC_BLOCKS	8
510 
511 enum {
512 	F2FS_IPU_FORCE,
513 	F2FS_IPU_SSR,
514 	F2FS_IPU_UTIL,
515 	F2FS_IPU_SSR_UTIL,
516 	F2FS_IPU_FSYNC,
517 };
518 
519 static inline bool need_inplace_update(struct inode *inode)
520 {
521 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
522 	unsigned int policy = SM_I(sbi)->ipu_policy;
523 
524 	/* IPU can be done only for the user data */
525 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
526 		return false;
527 
528 	if (policy & (0x1 << F2FS_IPU_FORCE))
529 		return true;
530 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
531 		return true;
532 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
533 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
534 		return true;
535 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
536 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
537 		return true;
538 
539 	/* this is only set during fdatasync */
540 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
541 			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
542 		return true;
543 
544 	return false;
545 }
546 
547 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
548 		int type)
549 {
550 	struct curseg_info *curseg = CURSEG_I(sbi, type);
551 	return curseg->segno;
552 }
553 
554 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
555 		int type)
556 {
557 	struct curseg_info *curseg = CURSEG_I(sbi, type);
558 	return curseg->alloc_type;
559 }
560 
561 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
562 {
563 	struct curseg_info *curseg = CURSEG_I(sbi, type);
564 	return curseg->next_blkoff;
565 }
566 
567 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
568 {
569 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
570 }
571 
572 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
573 {
574 	f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
575 					|| blk_addr >= MAX_BLKADDR(sbi));
576 }
577 
578 /*
579  * Summary block is always treated as an invalid block
580  */
581 static inline void check_block_count(struct f2fs_sb_info *sbi,
582 		int segno, struct f2fs_sit_entry *raw_sit)
583 {
584 #ifdef CONFIG_F2FS_CHECK_FS
585 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
586 	int valid_blocks = 0;
587 	int cur_pos = 0, next_pos;
588 
589 	/* check bitmap with valid block count */
590 	do {
591 		if (is_valid) {
592 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
593 					sbi->blocks_per_seg,
594 					cur_pos);
595 			valid_blocks += next_pos - cur_pos;
596 		} else
597 			next_pos = find_next_bit_le(&raw_sit->valid_map,
598 					sbi->blocks_per_seg,
599 					cur_pos);
600 		cur_pos = next_pos;
601 		is_valid = !is_valid;
602 	} while (cur_pos < sbi->blocks_per_seg);
603 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
604 #endif
605 	/* check segment usage, and check boundary of a given segment number */
606 	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
607 					|| segno > TOTAL_SEGS(sbi) - 1);
608 }
609 
610 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
611 						unsigned int start)
612 {
613 	struct sit_info *sit_i = SIT_I(sbi);
614 	unsigned int offset = SIT_BLOCK_OFFSET(start);
615 	block_t blk_addr = sit_i->sit_base_addr + offset;
616 
617 	check_seg_range(sbi, start);
618 
619 	/* calculate sit block address */
620 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
621 		blk_addr += sit_i->sit_blocks;
622 
623 	return blk_addr;
624 }
625 
626 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
627 						pgoff_t block_addr)
628 {
629 	struct sit_info *sit_i = SIT_I(sbi);
630 	block_addr -= sit_i->sit_base_addr;
631 	if (block_addr < sit_i->sit_blocks)
632 		block_addr += sit_i->sit_blocks;
633 	else
634 		block_addr -= sit_i->sit_blocks;
635 
636 	return block_addr + sit_i->sit_base_addr;
637 }
638 
639 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
640 {
641 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
642 
643 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
644 }
645 
646 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
647 {
648 	struct sit_info *sit_i = SIT_I(sbi);
649 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
650 						sit_i->mounted_time;
651 }
652 
653 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
654 			unsigned int ofs_in_node, unsigned char version)
655 {
656 	sum->nid = cpu_to_le32(nid);
657 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
658 	sum->version = version;
659 }
660 
661 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
662 {
663 	return __start_cp_addr(sbi) +
664 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
665 }
666 
667 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
668 {
669 	return __start_cp_addr(sbi) +
670 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
671 				- (base + 1) + type;
672 }
673 
674 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
675 {
676 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
677 		return true;
678 	return false;
679 }
680 
681 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
682 {
683 	struct block_device *bdev = sbi->sb->s_bdev;
684 	struct request_queue *q = bdev_get_queue(bdev);
685 	return SECTOR_TO_BLOCK(queue_max_sectors(q));
686 }
687 
688 /*
689  * It is very important to gather dirty pages and write at once, so that we can
690  * submit a big bio without interfering other data writes.
691  * By default, 512 pages for directory data,
692  * 512 pages (2MB) * 3 for three types of nodes, and
693  * max_bio_blocks for meta are set.
694  */
695 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
696 {
697 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
698 		return 0;
699 
700 	if (type == DATA)
701 		return sbi->blocks_per_seg;
702 	else if (type == NODE)
703 		return 3 * sbi->blocks_per_seg;
704 	else if (type == META)
705 		return MAX_BIO_BLOCKS(sbi);
706 	else
707 		return 0;
708 }
709 
710 /*
711  * When writing pages, it'd better align nr_to_write for segment size.
712  */
713 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
714 					struct writeback_control *wbc)
715 {
716 	long nr_to_write, desired;
717 
718 	if (wbc->sync_mode != WB_SYNC_NONE)
719 		return 0;
720 
721 	nr_to_write = wbc->nr_to_write;
722 
723 	if (type == DATA)
724 		desired = 4096;
725 	else if (type == NODE)
726 		desired = 3 * max_hw_blocks(sbi);
727 	else
728 		desired = MAX_BIO_BLOCKS(sbi);
729 
730 	wbc->nr_to_write = desired;
731 	return desired - nr_to_write;
732 }
733