xref: /openbmc/linux/fs/f2fs/segment.h (revision 7b525dd01365c6764018e374d391c92466be1b7a)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13 
14 /* constant macro */
15 #define NULL_SEGNO			((unsigned int)(~0))
16 #define NULL_SECNO			((unsigned int)(~0))
17 
18 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
20 
21 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22 
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
26 
27 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
29 
30 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
33 
34 #define IS_CURSEG(sbi, seg)						\
35 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
36 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
37 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
38 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
39 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
40 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
41 
42 #define IS_CURSEC(sbi, secno)						\
43 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
44 	  (sbi)->segs_per_sec) ||	\
45 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
46 	  (sbi)->segs_per_sec) ||	\
47 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
48 	  (sbi)->segs_per_sec) ||	\
49 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
50 	  (sbi)->segs_per_sec) ||	\
51 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
52 	  (sbi)->segs_per_sec) ||	\
53 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
54 	  (sbi)->segs_per_sec))	\
55 
56 #define MAIN_BLKADDR(sbi)						\
57 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
58 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
59 #define SEG0_BLKADDR(sbi)						\
60 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
61 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
62 
63 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
64 #define MAIN_SECS(sbi)	((sbi)->total_sections)
65 
66 #define TOTAL_SEGS(sbi)							\
67 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
68 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
69 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
70 
71 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
72 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
73 					(sbi)->log_blocks_per_seg))
74 
75 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
76 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
77 
78 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
79 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
80 
81 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
82 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
83 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
84 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
85 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
86 
87 #define GET_SEGNO(sbi, blk_addr)					\
88 	((!is_valid_blkaddr(blk_addr)) ?			\
89 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
90 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
91 #define BLKS_PER_SEC(sbi)					\
92 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
93 #define GET_SEC_FROM_SEG(sbi, segno)				\
94 	((segno) / (sbi)->segs_per_sec)
95 #define GET_SEG_FROM_SEC(sbi, secno)				\
96 	((secno) * (sbi)->segs_per_sec)
97 #define GET_ZONE_FROM_SEC(sbi, secno)				\
98 	((secno) / (sbi)->secs_per_zone)
99 #define GET_ZONE_FROM_SEG(sbi, segno)				\
100 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
101 
102 #define GET_SUM_BLOCK(sbi, segno)				\
103 	((sbi)->sm_info->ssa_blkaddr + (segno))
104 
105 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
106 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
107 
108 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
109 	((segno) % (sit_i)->sents_per_block)
110 #define SIT_BLOCK_OFFSET(segno)					\
111 	((segno) / SIT_ENTRY_PER_BLOCK)
112 #define	START_SEGNO(segno)		\
113 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
114 #define SIT_BLK_CNT(sbi)			\
115 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
116 #define f2fs_bitmap_size(nr)			\
117 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
118 
119 #define SECTOR_FROM_BLOCK(blk_addr)					\
120 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
121 #define SECTOR_TO_BLOCK(sectors)					\
122 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
123 
124 /*
125  * indicate a block allocation direction: RIGHT and LEFT.
126  * RIGHT means allocating new sections towards the end of volume.
127  * LEFT means the opposite direction.
128  */
129 enum {
130 	ALLOC_RIGHT = 0,
131 	ALLOC_LEFT
132 };
133 
134 /*
135  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
136  * LFS writes data sequentially with cleaning operations.
137  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
138  */
139 enum {
140 	LFS = 0,
141 	SSR
142 };
143 
144 /*
145  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
146  * GC_CB is based on cost-benefit algorithm.
147  * GC_GREEDY is based on greedy algorithm.
148  */
149 enum {
150 	GC_CB = 0,
151 	GC_GREEDY,
152 	ALLOC_NEXT,
153 	FLUSH_DEVICE,
154 	MAX_GC_POLICY,
155 };
156 
157 /*
158  * BG_GC means the background cleaning job.
159  * FG_GC means the on-demand cleaning job.
160  * FORCE_FG_GC means on-demand cleaning job in background.
161  */
162 enum {
163 	BG_GC = 0,
164 	FG_GC,
165 	FORCE_FG_GC,
166 };
167 
168 /* for a function parameter to select a victim segment */
169 struct victim_sel_policy {
170 	int alloc_mode;			/* LFS or SSR */
171 	int gc_mode;			/* GC_CB or GC_GREEDY */
172 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
173 	unsigned int max_search;	/* maximum # of segments to search */
174 	unsigned int offset;		/* last scanned bitmap offset */
175 	unsigned int ofs_unit;		/* bitmap search unit */
176 	unsigned int min_cost;		/* minimum cost */
177 	unsigned int min_segno;		/* segment # having min. cost */
178 };
179 
180 struct seg_entry {
181 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
182 	unsigned int valid_blocks:10;	/* # of valid blocks */
183 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
184 	unsigned int padding:6;		/* padding */
185 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
186 #ifdef CONFIG_F2FS_CHECK_FS
187 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
188 #endif
189 	/*
190 	 * # of valid blocks and the validity bitmap stored in the the last
191 	 * checkpoint pack. This information is used by the SSR mode.
192 	 */
193 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
194 	unsigned char *discard_map;
195 	unsigned long long mtime;	/* modification time of the segment */
196 };
197 
198 struct sec_entry {
199 	unsigned int valid_blocks;	/* # of valid blocks in a section */
200 };
201 
202 struct segment_allocation {
203 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204 };
205 
206 /*
207  * this value is set in page as a private data which indicate that
208  * the page is atomically written, and it is in inmem_pages list.
209  */
210 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
211 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
212 
213 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
214 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
215 #define IS_DUMMY_WRITTEN_PAGE(page)			\
216 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
217 
218 struct inmem_pages {
219 	struct list_head list;
220 	struct page *page;
221 	block_t old_addr;		/* for revoking when fail to commit */
222 };
223 
224 struct sit_info {
225 	const struct segment_allocation *s_ops;
226 
227 	block_t sit_base_addr;		/* start block address of SIT area */
228 	block_t sit_blocks;		/* # of blocks used by SIT area */
229 	block_t written_valid_blocks;	/* # of valid blocks in main area */
230 	char *sit_bitmap;		/* SIT bitmap pointer */
231 #ifdef CONFIG_F2FS_CHECK_FS
232 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
233 #endif
234 	unsigned int bitmap_size;	/* SIT bitmap size */
235 
236 	unsigned long *tmp_map;			/* bitmap for temporal use */
237 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
238 	unsigned int dirty_sentries;		/* # of dirty sentries */
239 	unsigned int sents_per_block;		/* # of SIT entries per block */
240 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
241 	struct seg_entry *sentries;		/* SIT segment-level cache */
242 	struct sec_entry *sec_entries;		/* SIT section-level cache */
243 
244 	/* for cost-benefit algorithm in cleaning procedure */
245 	unsigned long long elapsed_time;	/* elapsed time after mount */
246 	unsigned long long mounted_time;	/* mount time */
247 	unsigned long long min_mtime;		/* min. modification time */
248 	unsigned long long max_mtime;		/* max. modification time */
249 
250 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
251 };
252 
253 struct free_segmap_info {
254 	unsigned int start_segno;	/* start segment number logically */
255 	unsigned int free_segments;	/* # of free segments */
256 	unsigned int free_sections;	/* # of free sections */
257 	spinlock_t segmap_lock;		/* free segmap lock */
258 	unsigned long *free_segmap;	/* free segment bitmap */
259 	unsigned long *free_secmap;	/* free section bitmap */
260 };
261 
262 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
263 enum dirty_type {
264 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
265 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
266 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
267 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
268 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
269 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
270 	DIRTY,			/* to count # of dirty segments */
271 	PRE,			/* to count # of entirely obsolete segments */
272 	NR_DIRTY_TYPE
273 };
274 
275 struct dirty_seglist_info {
276 	const struct victim_selection *v_ops;	/* victim selction operation */
277 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
278 	struct mutex seglist_lock;		/* lock for segment bitmaps */
279 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
280 	unsigned long *victim_secmap;		/* background GC victims */
281 };
282 
283 /* victim selection function for cleaning and SSR */
284 struct victim_selection {
285 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
286 							int, int, char);
287 };
288 
289 /* for active log information */
290 struct curseg_info {
291 	struct mutex curseg_mutex;		/* lock for consistency */
292 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
293 	struct rw_semaphore journal_rwsem;	/* protect journal area */
294 	struct f2fs_journal *journal;		/* cached journal info */
295 	unsigned char alloc_type;		/* current allocation type */
296 	unsigned int segno;			/* current segment number */
297 	unsigned short next_blkoff;		/* next block offset to write */
298 	unsigned int zone;			/* current zone number */
299 	unsigned int next_segno;		/* preallocated segment */
300 };
301 
302 struct sit_entry_set {
303 	struct list_head set_list;	/* link with all sit sets */
304 	unsigned int start_segno;	/* start segno of sits in set */
305 	unsigned int entry_cnt;		/* the # of sit entries in set */
306 };
307 
308 /*
309  * inline functions
310  */
311 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
312 {
313 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
314 }
315 
316 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
317 						unsigned int segno)
318 {
319 	struct sit_info *sit_i = SIT_I(sbi);
320 	return &sit_i->sentries[segno];
321 }
322 
323 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
324 						unsigned int segno)
325 {
326 	struct sit_info *sit_i = SIT_I(sbi);
327 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
328 }
329 
330 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
331 				unsigned int segno, bool use_section)
332 {
333 	/*
334 	 * In order to get # of valid blocks in a section instantly from many
335 	 * segments, f2fs manages two counting structures separately.
336 	 */
337 	if (use_section && sbi->segs_per_sec > 1)
338 		return get_sec_entry(sbi, segno)->valid_blocks;
339 	else
340 		return get_seg_entry(sbi, segno)->valid_blocks;
341 }
342 
343 static inline void seg_info_from_raw_sit(struct seg_entry *se,
344 					struct f2fs_sit_entry *rs)
345 {
346 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
347 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
348 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
349 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
350 #ifdef CONFIG_F2FS_CHECK_FS
351 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352 #endif
353 	se->type = GET_SIT_TYPE(rs);
354 	se->mtime = le64_to_cpu(rs->mtime);
355 }
356 
357 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
358 					struct f2fs_sit_entry *rs)
359 {
360 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
361 					se->valid_blocks;
362 	rs->vblocks = cpu_to_le16(raw_vblocks);
363 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
364 	rs->mtime = cpu_to_le64(se->mtime);
365 }
366 
367 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
368 				struct page *page, unsigned int start)
369 {
370 	struct f2fs_sit_block *raw_sit;
371 	struct seg_entry *se;
372 	struct f2fs_sit_entry *rs;
373 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
374 					(unsigned long)MAIN_SEGS(sbi));
375 	int i;
376 
377 	raw_sit = (struct f2fs_sit_block *)page_address(page);
378 	memset(raw_sit, 0, PAGE_SIZE);
379 	for (i = 0; i < end - start; i++) {
380 		rs = &raw_sit->entries[i];
381 		se = get_seg_entry(sbi, start + i);
382 		__seg_info_to_raw_sit(se, rs);
383 	}
384 }
385 
386 static inline void seg_info_to_raw_sit(struct seg_entry *se,
387 					struct f2fs_sit_entry *rs)
388 {
389 	__seg_info_to_raw_sit(se, rs);
390 
391 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
392 	se->ckpt_valid_blocks = se->valid_blocks;
393 }
394 
395 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
396 		unsigned int max, unsigned int segno)
397 {
398 	unsigned int ret;
399 	spin_lock(&free_i->segmap_lock);
400 	ret = find_next_bit(free_i->free_segmap, max, segno);
401 	spin_unlock(&free_i->segmap_lock);
402 	return ret;
403 }
404 
405 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
406 {
407 	struct free_segmap_info *free_i = FREE_I(sbi);
408 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
409 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
410 	unsigned int next;
411 
412 	spin_lock(&free_i->segmap_lock);
413 	clear_bit(segno, free_i->free_segmap);
414 	free_i->free_segments++;
415 
416 	next = find_next_bit(free_i->free_segmap,
417 			start_segno + sbi->segs_per_sec, start_segno);
418 	if (next >= start_segno + sbi->segs_per_sec) {
419 		clear_bit(secno, free_i->free_secmap);
420 		free_i->free_sections++;
421 	}
422 	spin_unlock(&free_i->segmap_lock);
423 }
424 
425 static inline void __set_inuse(struct f2fs_sb_info *sbi,
426 		unsigned int segno)
427 {
428 	struct free_segmap_info *free_i = FREE_I(sbi);
429 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
430 
431 	set_bit(segno, free_i->free_segmap);
432 	free_i->free_segments--;
433 	if (!test_and_set_bit(secno, free_i->free_secmap))
434 		free_i->free_sections--;
435 }
436 
437 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
438 		unsigned int segno)
439 {
440 	struct free_segmap_info *free_i = FREE_I(sbi);
441 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
442 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
443 	unsigned int next;
444 
445 	spin_lock(&free_i->segmap_lock);
446 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
447 		free_i->free_segments++;
448 
449 		next = find_next_bit(free_i->free_segmap,
450 				start_segno + sbi->segs_per_sec, start_segno);
451 		if (next >= start_segno + sbi->segs_per_sec) {
452 			if (test_and_clear_bit(secno, free_i->free_secmap))
453 				free_i->free_sections++;
454 		}
455 	}
456 	spin_unlock(&free_i->segmap_lock);
457 }
458 
459 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
460 		unsigned int segno)
461 {
462 	struct free_segmap_info *free_i = FREE_I(sbi);
463 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
464 
465 	spin_lock(&free_i->segmap_lock);
466 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
467 		free_i->free_segments--;
468 		if (!test_and_set_bit(secno, free_i->free_secmap))
469 			free_i->free_sections--;
470 	}
471 	spin_unlock(&free_i->segmap_lock);
472 }
473 
474 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
475 		void *dst_addr)
476 {
477 	struct sit_info *sit_i = SIT_I(sbi);
478 
479 #ifdef CONFIG_F2FS_CHECK_FS
480 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
481 						sit_i->bitmap_size))
482 		f2fs_bug_on(sbi, 1);
483 #endif
484 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
485 }
486 
487 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
488 {
489 	return SIT_I(sbi)->written_valid_blocks;
490 }
491 
492 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
493 {
494 	return FREE_I(sbi)->free_segments;
495 }
496 
497 static inline int reserved_segments(struct f2fs_sb_info *sbi)
498 {
499 	return SM_I(sbi)->reserved_segments;
500 }
501 
502 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
503 {
504 	return FREE_I(sbi)->free_sections;
505 }
506 
507 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
508 {
509 	return DIRTY_I(sbi)->nr_dirty[PRE];
510 }
511 
512 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
513 {
514 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
515 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
516 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
517 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
518 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
519 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
520 }
521 
522 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
523 {
524 	return SM_I(sbi)->ovp_segments;
525 }
526 
527 static inline int reserved_sections(struct f2fs_sb_info *sbi)
528 {
529 	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
530 }
531 
532 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
533 {
534 	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
535 					get_pages(sbi, F2FS_DIRTY_DENTS);
536 	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
537 	unsigned int segno, left_blocks;
538 	int i;
539 
540 	/* check current node segment */
541 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
542 		segno = CURSEG_I(sbi, i)->segno;
543 		left_blocks = sbi->blocks_per_seg -
544 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
545 
546 		if (node_blocks > left_blocks)
547 			return false;
548 	}
549 
550 	/* check current data segment */
551 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
552 	left_blocks = sbi->blocks_per_seg -
553 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
554 	if (dent_blocks > left_blocks)
555 		return false;
556 	return true;
557 }
558 
559 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
560 					int freed, int needed)
561 {
562 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
563 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
564 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
565 
566 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
567 		return false;
568 
569 	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
570 			has_curseg_enough_space(sbi))
571 		return false;
572 	return (free_sections(sbi) + freed) <=
573 		(node_secs + 2 * dent_secs + imeta_secs +
574 		reserved_sections(sbi) + needed);
575 }
576 
577 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
578 {
579 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
580 }
581 
582 static inline int utilization(struct f2fs_sb_info *sbi)
583 {
584 	return div_u64((u64)valid_user_blocks(sbi) * 100,
585 					sbi->user_block_count);
586 }
587 
588 /*
589  * Sometimes f2fs may be better to drop out-of-place update policy.
590  * And, users can control the policy through sysfs entries.
591  * There are five policies with triggering conditions as follows.
592  * F2FS_IPU_FORCE - all the time,
593  * F2FS_IPU_SSR - if SSR mode is activated,
594  * F2FS_IPU_UTIL - if FS utilization is over threashold,
595  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
596  *                     threashold,
597  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
598  *                     storages. IPU will be triggered only if the # of dirty
599  *                     pages over min_fsync_blocks.
600  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
601  */
602 #define DEF_MIN_IPU_UTIL	70
603 #define DEF_MIN_FSYNC_BLOCKS	8
604 #define DEF_MIN_HOT_BLOCKS	16
605 
606 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
607 
608 enum {
609 	F2FS_IPU_FORCE,
610 	F2FS_IPU_SSR,
611 	F2FS_IPU_UTIL,
612 	F2FS_IPU_SSR_UTIL,
613 	F2FS_IPU_FSYNC,
614 	F2FS_IPU_ASYNC,
615 };
616 
617 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
618 		int type)
619 {
620 	struct curseg_info *curseg = CURSEG_I(sbi, type);
621 	return curseg->segno;
622 }
623 
624 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
625 		int type)
626 {
627 	struct curseg_info *curseg = CURSEG_I(sbi, type);
628 	return curseg->alloc_type;
629 }
630 
631 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
632 {
633 	struct curseg_info *curseg = CURSEG_I(sbi, type);
634 	return curseg->next_blkoff;
635 }
636 
637 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
638 {
639 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
640 }
641 
642 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
643 {
644 	struct f2fs_sb_info *sbi = fio->sbi;
645 
646 	if (PAGE_TYPE_OF_BIO(fio->type) == META &&
647 				(!is_read_io(fio->op) || fio->is_meta))
648 		BUG_ON(blk_addr < SEG0_BLKADDR(sbi) ||
649 				blk_addr >= MAIN_BLKADDR(sbi));
650 	else
651 		BUG_ON(blk_addr < MAIN_BLKADDR(sbi) ||
652 				blk_addr >= MAX_BLKADDR(sbi));
653 }
654 
655 /*
656  * Summary block is always treated as an invalid block
657  */
658 static inline int check_block_count(struct f2fs_sb_info *sbi,
659 		int segno, struct f2fs_sit_entry *raw_sit)
660 {
661 #ifdef CONFIG_F2FS_CHECK_FS
662 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
663 	int valid_blocks = 0;
664 	int cur_pos = 0, next_pos;
665 
666 	/* check bitmap with valid block count */
667 	do {
668 		if (is_valid) {
669 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
670 					sbi->blocks_per_seg,
671 					cur_pos);
672 			valid_blocks += next_pos - cur_pos;
673 		} else
674 			next_pos = find_next_bit_le(&raw_sit->valid_map,
675 					sbi->blocks_per_seg,
676 					cur_pos);
677 		cur_pos = next_pos;
678 		is_valid = !is_valid;
679 	} while (cur_pos < sbi->blocks_per_seg);
680 
681 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
682 		f2fs_msg(sbi->sb, KERN_ERR,
683 				"Mismatch valid blocks %d vs. %d",
684 					GET_SIT_VBLOCKS(raw_sit), valid_blocks);
685 		set_sbi_flag(sbi, SBI_NEED_FSCK);
686 		return -EINVAL;
687 	}
688 #endif
689 	/* check segment usage, and check boundary of a given segment number */
690 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
691 					|| segno > TOTAL_SEGS(sbi) - 1)) {
692 		f2fs_msg(sbi->sb, KERN_ERR,
693 				"Wrong valid blocks %d or segno %u",
694 					GET_SIT_VBLOCKS(raw_sit), segno);
695 		set_sbi_flag(sbi, SBI_NEED_FSCK);
696 		return -EINVAL;
697 	}
698 	return 0;
699 }
700 
701 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
702 						unsigned int start)
703 {
704 	struct sit_info *sit_i = SIT_I(sbi);
705 	unsigned int offset = SIT_BLOCK_OFFSET(start);
706 	block_t blk_addr = sit_i->sit_base_addr + offset;
707 
708 	check_seg_range(sbi, start);
709 
710 #ifdef CONFIG_F2FS_CHECK_FS
711 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
712 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
713 		f2fs_bug_on(sbi, 1);
714 #endif
715 
716 	/* calculate sit block address */
717 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
718 		blk_addr += sit_i->sit_blocks;
719 
720 	return blk_addr;
721 }
722 
723 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
724 						pgoff_t block_addr)
725 {
726 	struct sit_info *sit_i = SIT_I(sbi);
727 	block_addr -= sit_i->sit_base_addr;
728 	if (block_addr < sit_i->sit_blocks)
729 		block_addr += sit_i->sit_blocks;
730 	else
731 		block_addr -= sit_i->sit_blocks;
732 
733 	return block_addr + sit_i->sit_base_addr;
734 }
735 
736 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
737 {
738 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
739 
740 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
741 #ifdef CONFIG_F2FS_CHECK_FS
742 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
743 #endif
744 }
745 
746 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
747 {
748 	struct sit_info *sit_i = SIT_I(sbi);
749 	time64_t now = ktime_get_real_seconds();
750 
751 	return sit_i->elapsed_time + now - sit_i->mounted_time;
752 }
753 
754 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
755 			unsigned int ofs_in_node, unsigned char version)
756 {
757 	sum->nid = cpu_to_le32(nid);
758 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
759 	sum->version = version;
760 }
761 
762 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
763 {
764 	return __start_cp_addr(sbi) +
765 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
766 }
767 
768 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
769 {
770 	return __start_cp_addr(sbi) +
771 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
772 				- (base + 1) + type;
773 }
774 
775 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
776 {
777 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
778 		return true;
779 	return false;
780 }
781 
782 /*
783  * It is very important to gather dirty pages and write at once, so that we can
784  * submit a big bio without interfering other data writes.
785  * By default, 512 pages for directory data,
786  * 512 pages (2MB) * 8 for nodes, and
787  * 256 pages * 8 for meta are set.
788  */
789 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
790 {
791 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
792 		return 0;
793 
794 	if (type == DATA)
795 		return sbi->blocks_per_seg;
796 	else if (type == NODE)
797 		return 8 * sbi->blocks_per_seg;
798 	else if (type == META)
799 		return 8 * BIO_MAX_PAGES;
800 	else
801 		return 0;
802 }
803 
804 /*
805  * When writing pages, it'd better align nr_to_write for segment size.
806  */
807 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
808 					struct writeback_control *wbc)
809 {
810 	long nr_to_write, desired;
811 
812 	if (wbc->sync_mode != WB_SYNC_NONE)
813 		return 0;
814 
815 	nr_to_write = wbc->nr_to_write;
816 	desired = BIO_MAX_PAGES;
817 	if (type == NODE)
818 		desired <<= 1;
819 
820 	wbc->nr_to_write = desired;
821 	return desired - nr_to_write;
822 }
823 
824 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
825 {
826 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
827 	bool wakeup = false;
828 	int i;
829 
830 	if (force)
831 		goto wake_up;
832 
833 	mutex_lock(&dcc->cmd_lock);
834 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
835 		if (i + 1 < dcc->discard_granularity)
836 			break;
837 		if (!list_empty(&dcc->pend_list[i])) {
838 			wakeup = true;
839 			break;
840 		}
841 	}
842 	mutex_unlock(&dcc->cmd_lock);
843 	if (!wakeup)
844 		return;
845 wake_up:
846 	dcc->discard_wake = 1;
847 	wake_up_interruptible_all(&dcc->discard_wait_queue);
848 }
849