xref: /openbmc/linux/fs/f2fs/segment.h (revision 76178cc7d5eb6dc881c3fccab882802e5d16f790)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
23 
24 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
26 
27 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
28 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
29 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
30 
31 #define IS_CURSEG(sbi, seg)						\
32 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
33 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
34 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
35 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
36 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
37 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
38 
39 #define IS_CURSEC(sbi, secno)						\
40 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
41 	  (sbi)->segs_per_sec) ||	\
42 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
43 	  (sbi)->segs_per_sec) ||	\
44 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
45 	  (sbi)->segs_per_sec) ||	\
46 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
47 	  (sbi)->segs_per_sec) ||	\
48 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
49 	  (sbi)->segs_per_sec) ||	\
50 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
51 	  (sbi)->segs_per_sec))	\
52 
53 #define MAIN_BLKADDR(sbi)						\
54 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
55 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
56 #define SEG0_BLKADDR(sbi)						\
57 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
58 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
59 
60 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
61 #define MAIN_SECS(sbi)	((sbi)->total_sections)
62 
63 #define TOTAL_SEGS(sbi)							\
64 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
65 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
66 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
67 
68 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
69 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
70 					(sbi)->log_blocks_per_seg))
71 
72 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
73 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
74 
75 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
76 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
77 
78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
80 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
82 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
83 
84 #define GET_SEGNO(sbi, blk_addr)					\
85 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
86 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
87 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
88 #define BLKS_PER_SEC(sbi)					\
89 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
90 #define GET_SEC_FROM_SEG(sbi, segno)				\
91 	((segno) / (sbi)->segs_per_sec)
92 #define GET_SEG_FROM_SEC(sbi, secno)				\
93 	((secno) * (sbi)->segs_per_sec)
94 #define GET_ZONE_FROM_SEC(sbi, secno)				\
95 	((secno) / (sbi)->secs_per_zone)
96 #define GET_ZONE_FROM_SEG(sbi, segno)				\
97 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
98 
99 #define GET_SUM_BLOCK(sbi, segno)				\
100 	((sbi)->sm_info->ssa_blkaddr + (segno))
101 
102 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
104 
105 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
106 	((segno) % (sit_i)->sents_per_block)
107 #define SIT_BLOCK_OFFSET(segno)					\
108 	((segno) / SIT_ENTRY_PER_BLOCK)
109 #define	START_SEGNO(segno)		\
110 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111 #define SIT_BLK_CNT(sbi)			\
112 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
113 #define f2fs_bitmap_size(nr)			\
114 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
115 
116 #define SECTOR_FROM_BLOCK(blk_addr)					\
117 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118 #define SECTOR_TO_BLOCK(sectors)					\
119 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
120 
121 /*
122  * indicate a block allocation direction: RIGHT and LEFT.
123  * RIGHT means allocating new sections towards the end of volume.
124  * LEFT means the opposite direction.
125  */
126 enum {
127 	ALLOC_RIGHT = 0,
128 	ALLOC_LEFT
129 };
130 
131 /*
132  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133  * LFS writes data sequentially with cleaning operations.
134  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
135  */
136 enum {
137 	LFS = 0,
138 	SSR
139 };
140 
141 /*
142  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143  * GC_CB is based on cost-benefit algorithm.
144  * GC_GREEDY is based on greedy algorithm.
145  */
146 enum {
147 	GC_CB = 0,
148 	GC_GREEDY,
149 	ALLOC_NEXT,
150 	FLUSH_DEVICE,
151 	MAX_GC_POLICY,
152 };
153 
154 /*
155  * BG_GC means the background cleaning job.
156  * FG_GC means the on-demand cleaning job.
157  * FORCE_FG_GC means on-demand cleaning job in background.
158  */
159 enum {
160 	BG_GC = 0,
161 	FG_GC,
162 	FORCE_FG_GC,
163 };
164 
165 /* for a function parameter to select a victim segment */
166 struct victim_sel_policy {
167 	int alloc_mode;			/* LFS or SSR */
168 	int gc_mode;			/* GC_CB or GC_GREEDY */
169 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
170 	unsigned int max_search;	/* maximum # of segments to search */
171 	unsigned int offset;		/* last scanned bitmap offset */
172 	unsigned int ofs_unit;		/* bitmap search unit */
173 	unsigned int min_cost;		/* minimum cost */
174 	unsigned int min_segno;		/* segment # having min. cost */
175 };
176 
177 struct seg_entry {
178 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
179 	unsigned int valid_blocks:10;	/* # of valid blocks */
180 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
181 	unsigned int padding:6;		/* padding */
182 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
183 #ifdef CONFIG_F2FS_CHECK_FS
184 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
185 #endif
186 	/*
187 	 * # of valid blocks and the validity bitmap stored in the the last
188 	 * checkpoint pack. This information is used by the SSR mode.
189 	 */
190 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
191 	unsigned char *discard_map;
192 	unsigned long long mtime;	/* modification time of the segment */
193 };
194 
195 struct sec_entry {
196 	unsigned int valid_blocks;	/* # of valid blocks in a section */
197 };
198 
199 struct segment_allocation {
200 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
201 };
202 
203 /*
204  * this value is set in page as a private data which indicate that
205  * the page is atomically written, and it is in inmem_pages list.
206  */
207 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
208 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
209 
210 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
211 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
212 #define IS_DUMMY_WRITTEN_PAGE(page)			\
213 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
214 
215 #define MAX_SKIP_GC_COUNT			16
216 
217 struct inmem_pages {
218 	struct list_head list;
219 	struct page *page;
220 	block_t old_addr;		/* for revoking when fail to commit */
221 };
222 
223 struct sit_info {
224 	const struct segment_allocation *s_ops;
225 
226 	block_t sit_base_addr;		/* start block address of SIT area */
227 	block_t sit_blocks;		/* # of blocks used by SIT area */
228 	block_t written_valid_blocks;	/* # of valid blocks in main area */
229 	char *bitmap;			/* all bitmaps pointer */
230 	char *sit_bitmap;		/* SIT bitmap pointer */
231 #ifdef CONFIG_F2FS_CHECK_FS
232 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
233 
234 	/* bitmap of segments to be ignored by GC in case of errors */
235 	unsigned long *invalid_segmap;
236 #endif
237 	unsigned int bitmap_size;	/* SIT bitmap size */
238 
239 	unsigned long *tmp_map;			/* bitmap for temporal use */
240 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
241 	unsigned int dirty_sentries;		/* # of dirty sentries */
242 	unsigned int sents_per_block;		/* # of SIT entries per block */
243 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
244 	struct seg_entry *sentries;		/* SIT segment-level cache */
245 	struct sec_entry *sec_entries;		/* SIT section-level cache */
246 
247 	/* for cost-benefit algorithm in cleaning procedure */
248 	unsigned long long elapsed_time;	/* elapsed time after mount */
249 	unsigned long long mounted_time;	/* mount time */
250 	unsigned long long min_mtime;		/* min. modification time */
251 	unsigned long long max_mtime;		/* max. modification time */
252 
253 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
254 };
255 
256 struct free_segmap_info {
257 	unsigned int start_segno;	/* start segment number logically */
258 	unsigned int free_segments;	/* # of free segments */
259 	unsigned int free_sections;	/* # of free sections */
260 	spinlock_t segmap_lock;		/* free segmap lock */
261 	unsigned long *free_segmap;	/* free segment bitmap */
262 	unsigned long *free_secmap;	/* free section bitmap */
263 };
264 
265 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
266 enum dirty_type {
267 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
268 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
269 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
270 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
271 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
272 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
273 	DIRTY,			/* to count # of dirty segments */
274 	PRE,			/* to count # of entirely obsolete segments */
275 	NR_DIRTY_TYPE
276 };
277 
278 struct dirty_seglist_info {
279 	const struct victim_selection *v_ops;	/* victim selction operation */
280 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
281 	struct mutex seglist_lock;		/* lock for segment bitmaps */
282 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
283 	unsigned long *victim_secmap;		/* background GC victims */
284 };
285 
286 /* victim selection function for cleaning and SSR */
287 struct victim_selection {
288 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
289 							int, int, char);
290 };
291 
292 /* for active log information */
293 struct curseg_info {
294 	struct mutex curseg_mutex;		/* lock for consistency */
295 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
296 	struct rw_semaphore journal_rwsem;	/* protect journal area */
297 	struct f2fs_journal *journal;		/* cached journal info */
298 	unsigned char alloc_type;		/* current allocation type */
299 	unsigned int segno;			/* current segment number */
300 	unsigned short next_blkoff;		/* next block offset to write */
301 	unsigned int zone;			/* current zone number */
302 	unsigned int next_segno;		/* preallocated segment */
303 };
304 
305 struct sit_entry_set {
306 	struct list_head set_list;	/* link with all sit sets */
307 	unsigned int start_segno;	/* start segno of sits in set */
308 	unsigned int entry_cnt;		/* the # of sit entries in set */
309 };
310 
311 /*
312  * inline functions
313  */
314 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
315 {
316 	if (type == CURSEG_COLD_DATA_PINNED)
317 		type = CURSEG_COLD_DATA;
318 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
319 }
320 
321 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
322 						unsigned int segno)
323 {
324 	struct sit_info *sit_i = SIT_I(sbi);
325 	return &sit_i->sentries[segno];
326 }
327 
328 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
329 						unsigned int segno)
330 {
331 	struct sit_info *sit_i = SIT_I(sbi);
332 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
333 }
334 
335 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
336 				unsigned int segno, bool use_section)
337 {
338 	/*
339 	 * In order to get # of valid blocks in a section instantly from many
340 	 * segments, f2fs manages two counting structures separately.
341 	 */
342 	if (use_section && __is_large_section(sbi))
343 		return get_sec_entry(sbi, segno)->valid_blocks;
344 	else
345 		return get_seg_entry(sbi, segno)->valid_blocks;
346 }
347 
348 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
349 				unsigned int segno)
350 {
351 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
352 }
353 
354 static inline void seg_info_from_raw_sit(struct seg_entry *se,
355 					struct f2fs_sit_entry *rs)
356 {
357 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
358 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
359 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
360 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
361 #ifdef CONFIG_F2FS_CHECK_FS
362 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
363 #endif
364 	se->type = GET_SIT_TYPE(rs);
365 	se->mtime = le64_to_cpu(rs->mtime);
366 }
367 
368 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
369 					struct f2fs_sit_entry *rs)
370 {
371 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
372 					se->valid_blocks;
373 	rs->vblocks = cpu_to_le16(raw_vblocks);
374 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
375 	rs->mtime = cpu_to_le64(se->mtime);
376 }
377 
378 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
379 				struct page *page, unsigned int start)
380 {
381 	struct f2fs_sit_block *raw_sit;
382 	struct seg_entry *se;
383 	struct f2fs_sit_entry *rs;
384 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
385 					(unsigned long)MAIN_SEGS(sbi));
386 	int i;
387 
388 	raw_sit = (struct f2fs_sit_block *)page_address(page);
389 	memset(raw_sit, 0, PAGE_SIZE);
390 	for (i = 0; i < end - start; i++) {
391 		rs = &raw_sit->entries[i];
392 		se = get_seg_entry(sbi, start + i);
393 		__seg_info_to_raw_sit(se, rs);
394 	}
395 }
396 
397 static inline void seg_info_to_raw_sit(struct seg_entry *se,
398 					struct f2fs_sit_entry *rs)
399 {
400 	__seg_info_to_raw_sit(se, rs);
401 
402 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
403 	se->ckpt_valid_blocks = se->valid_blocks;
404 }
405 
406 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
407 		unsigned int max, unsigned int segno)
408 {
409 	unsigned int ret;
410 	spin_lock(&free_i->segmap_lock);
411 	ret = find_next_bit(free_i->free_segmap, max, segno);
412 	spin_unlock(&free_i->segmap_lock);
413 	return ret;
414 }
415 
416 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
417 {
418 	struct free_segmap_info *free_i = FREE_I(sbi);
419 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
420 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
421 	unsigned int next;
422 
423 	spin_lock(&free_i->segmap_lock);
424 	clear_bit(segno, free_i->free_segmap);
425 	free_i->free_segments++;
426 
427 	next = find_next_bit(free_i->free_segmap,
428 			start_segno + sbi->segs_per_sec, start_segno);
429 	if (next >= start_segno + sbi->segs_per_sec) {
430 		clear_bit(secno, free_i->free_secmap);
431 		free_i->free_sections++;
432 	}
433 	spin_unlock(&free_i->segmap_lock);
434 }
435 
436 static inline void __set_inuse(struct f2fs_sb_info *sbi,
437 		unsigned int segno)
438 {
439 	struct free_segmap_info *free_i = FREE_I(sbi);
440 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
441 
442 	set_bit(segno, free_i->free_segmap);
443 	free_i->free_segments--;
444 	if (!test_and_set_bit(secno, free_i->free_secmap))
445 		free_i->free_sections--;
446 }
447 
448 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
449 		unsigned int segno)
450 {
451 	struct free_segmap_info *free_i = FREE_I(sbi);
452 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
453 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
454 	unsigned int next;
455 
456 	spin_lock(&free_i->segmap_lock);
457 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
458 		free_i->free_segments++;
459 
460 		if (IS_CURSEC(sbi, secno))
461 			goto skip_free;
462 		next = find_next_bit(free_i->free_segmap,
463 				start_segno + sbi->segs_per_sec, start_segno);
464 		if (next >= start_segno + sbi->segs_per_sec) {
465 			if (test_and_clear_bit(secno, free_i->free_secmap))
466 				free_i->free_sections++;
467 		}
468 	}
469 skip_free:
470 	spin_unlock(&free_i->segmap_lock);
471 }
472 
473 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
474 		unsigned int segno)
475 {
476 	struct free_segmap_info *free_i = FREE_I(sbi);
477 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
478 
479 	spin_lock(&free_i->segmap_lock);
480 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
481 		free_i->free_segments--;
482 		if (!test_and_set_bit(secno, free_i->free_secmap))
483 			free_i->free_sections--;
484 	}
485 	spin_unlock(&free_i->segmap_lock);
486 }
487 
488 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
489 		void *dst_addr)
490 {
491 	struct sit_info *sit_i = SIT_I(sbi);
492 
493 #ifdef CONFIG_F2FS_CHECK_FS
494 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
495 						sit_i->bitmap_size))
496 		f2fs_bug_on(sbi, 1);
497 #endif
498 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
499 }
500 
501 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
502 {
503 	return SIT_I(sbi)->written_valid_blocks;
504 }
505 
506 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
507 {
508 	return FREE_I(sbi)->free_segments;
509 }
510 
511 static inline int reserved_segments(struct f2fs_sb_info *sbi)
512 {
513 	return SM_I(sbi)->reserved_segments;
514 }
515 
516 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
517 {
518 	return FREE_I(sbi)->free_sections;
519 }
520 
521 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
522 {
523 	return DIRTY_I(sbi)->nr_dirty[PRE];
524 }
525 
526 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
527 {
528 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
529 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
530 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
531 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
532 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
533 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
534 }
535 
536 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
537 {
538 	return SM_I(sbi)->ovp_segments;
539 }
540 
541 static inline int reserved_sections(struct f2fs_sb_info *sbi)
542 {
543 	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
544 }
545 
546 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
547 {
548 	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
549 					get_pages(sbi, F2FS_DIRTY_DENTS);
550 	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
551 	unsigned int segno, left_blocks;
552 	int i;
553 
554 	/* check current node segment */
555 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
556 		segno = CURSEG_I(sbi, i)->segno;
557 		left_blocks = sbi->blocks_per_seg -
558 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
559 
560 		if (node_blocks > left_blocks)
561 			return false;
562 	}
563 
564 	/* check current data segment */
565 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
566 	left_blocks = sbi->blocks_per_seg -
567 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
568 	if (dent_blocks > left_blocks)
569 		return false;
570 	return true;
571 }
572 
573 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
574 					int freed, int needed)
575 {
576 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
577 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
578 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
579 
580 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
581 		return false;
582 
583 	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
584 			has_curseg_enough_space(sbi))
585 		return false;
586 	return (free_sections(sbi) + freed) <=
587 		(node_secs + 2 * dent_secs + imeta_secs +
588 		reserved_sections(sbi) + needed);
589 }
590 
591 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
592 {
593 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
594 		return true;
595 	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
596 		return true;
597 	return false;
598 }
599 
600 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
601 {
602 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
603 }
604 
605 static inline int utilization(struct f2fs_sb_info *sbi)
606 {
607 	return div_u64((u64)valid_user_blocks(sbi) * 100,
608 					sbi->user_block_count);
609 }
610 
611 /*
612  * Sometimes f2fs may be better to drop out-of-place update policy.
613  * And, users can control the policy through sysfs entries.
614  * There are five policies with triggering conditions as follows.
615  * F2FS_IPU_FORCE - all the time,
616  * F2FS_IPU_SSR - if SSR mode is activated,
617  * F2FS_IPU_UTIL - if FS utilization is over threashold,
618  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
619  *                     threashold,
620  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
621  *                     storages. IPU will be triggered only if the # of dirty
622  *                     pages over min_fsync_blocks.
623  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
624  */
625 #define DEF_MIN_IPU_UTIL	70
626 #define DEF_MIN_FSYNC_BLOCKS	8
627 #define DEF_MIN_HOT_BLOCKS	16
628 
629 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
630 
631 enum {
632 	F2FS_IPU_FORCE,
633 	F2FS_IPU_SSR,
634 	F2FS_IPU_UTIL,
635 	F2FS_IPU_SSR_UTIL,
636 	F2FS_IPU_FSYNC,
637 	F2FS_IPU_ASYNC,
638 };
639 
640 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
641 		int type)
642 {
643 	struct curseg_info *curseg = CURSEG_I(sbi, type);
644 	return curseg->segno;
645 }
646 
647 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
648 		int type)
649 {
650 	struct curseg_info *curseg = CURSEG_I(sbi, type);
651 	return curseg->alloc_type;
652 }
653 
654 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
655 {
656 	struct curseg_info *curseg = CURSEG_I(sbi, type);
657 	return curseg->next_blkoff;
658 }
659 
660 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
661 {
662 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
663 }
664 
665 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
666 {
667 	struct f2fs_sb_info *sbi = fio->sbi;
668 
669 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
670 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
671 					META_GENERIC : DATA_GENERIC);
672 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
673 					META_GENERIC : DATA_GENERIC_ENHANCE);
674 }
675 
676 /*
677  * Summary block is always treated as an invalid block
678  */
679 static inline int check_block_count(struct f2fs_sb_info *sbi,
680 		int segno, struct f2fs_sit_entry *raw_sit)
681 {
682 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
683 	int valid_blocks = 0;
684 	int cur_pos = 0, next_pos;
685 
686 	/* check bitmap with valid block count */
687 	do {
688 		if (is_valid) {
689 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
690 					sbi->blocks_per_seg,
691 					cur_pos);
692 			valid_blocks += next_pos - cur_pos;
693 		} else
694 			next_pos = find_next_bit_le(&raw_sit->valid_map,
695 					sbi->blocks_per_seg,
696 					cur_pos);
697 		cur_pos = next_pos;
698 		is_valid = !is_valid;
699 	} while (cur_pos < sbi->blocks_per_seg);
700 
701 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
702 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
703 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
704 		set_sbi_flag(sbi, SBI_NEED_FSCK);
705 		return -EFSCORRUPTED;
706 	}
707 
708 	/* check segment usage, and check boundary of a given segment number */
709 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
710 					|| segno > TOTAL_SEGS(sbi) - 1)) {
711 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
712 			 GET_SIT_VBLOCKS(raw_sit), segno);
713 		set_sbi_flag(sbi, SBI_NEED_FSCK);
714 		return -EFSCORRUPTED;
715 	}
716 	return 0;
717 }
718 
719 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
720 						unsigned int start)
721 {
722 	struct sit_info *sit_i = SIT_I(sbi);
723 	unsigned int offset = SIT_BLOCK_OFFSET(start);
724 	block_t blk_addr = sit_i->sit_base_addr + offset;
725 
726 	check_seg_range(sbi, start);
727 
728 #ifdef CONFIG_F2FS_CHECK_FS
729 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
730 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
731 		f2fs_bug_on(sbi, 1);
732 #endif
733 
734 	/* calculate sit block address */
735 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
736 		blk_addr += sit_i->sit_blocks;
737 
738 	return blk_addr;
739 }
740 
741 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
742 						pgoff_t block_addr)
743 {
744 	struct sit_info *sit_i = SIT_I(sbi);
745 	block_addr -= sit_i->sit_base_addr;
746 	if (block_addr < sit_i->sit_blocks)
747 		block_addr += sit_i->sit_blocks;
748 	else
749 		block_addr -= sit_i->sit_blocks;
750 
751 	return block_addr + sit_i->sit_base_addr;
752 }
753 
754 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
755 {
756 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
757 
758 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
759 #ifdef CONFIG_F2FS_CHECK_FS
760 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
761 #endif
762 }
763 
764 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
765 						bool base_time)
766 {
767 	struct sit_info *sit_i = SIT_I(sbi);
768 	time64_t diff, now = ktime_get_real_seconds();
769 
770 	if (now >= sit_i->mounted_time)
771 		return sit_i->elapsed_time + now - sit_i->mounted_time;
772 
773 	/* system time is set to the past */
774 	if (!base_time) {
775 		diff = sit_i->mounted_time - now;
776 		if (sit_i->elapsed_time >= diff)
777 			return sit_i->elapsed_time - diff;
778 		return 0;
779 	}
780 	return sit_i->elapsed_time;
781 }
782 
783 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
784 			unsigned int ofs_in_node, unsigned char version)
785 {
786 	sum->nid = cpu_to_le32(nid);
787 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
788 	sum->version = version;
789 }
790 
791 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
792 {
793 	return __start_cp_addr(sbi) +
794 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
795 }
796 
797 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
798 {
799 	return __start_cp_addr(sbi) +
800 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
801 				- (base + 1) + type;
802 }
803 
804 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
805 {
806 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
807 		return true;
808 	return false;
809 }
810 
811 /*
812  * It is very important to gather dirty pages and write at once, so that we can
813  * submit a big bio without interfering other data writes.
814  * By default, 512 pages for directory data,
815  * 512 pages (2MB) * 8 for nodes, and
816  * 256 pages * 8 for meta are set.
817  */
818 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
819 {
820 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
821 		return 0;
822 
823 	if (type == DATA)
824 		return sbi->blocks_per_seg;
825 	else if (type == NODE)
826 		return 8 * sbi->blocks_per_seg;
827 	else if (type == META)
828 		return 8 * BIO_MAX_PAGES;
829 	else
830 		return 0;
831 }
832 
833 /*
834  * When writing pages, it'd better align nr_to_write for segment size.
835  */
836 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
837 					struct writeback_control *wbc)
838 {
839 	long nr_to_write, desired;
840 
841 	if (wbc->sync_mode != WB_SYNC_NONE)
842 		return 0;
843 
844 	nr_to_write = wbc->nr_to_write;
845 	desired = BIO_MAX_PAGES;
846 	if (type == NODE)
847 		desired <<= 1;
848 
849 	wbc->nr_to_write = desired;
850 	return desired - nr_to_write;
851 }
852 
853 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
854 {
855 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
856 	bool wakeup = false;
857 	int i;
858 
859 	if (force)
860 		goto wake_up;
861 
862 	mutex_lock(&dcc->cmd_lock);
863 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
864 		if (i + 1 < dcc->discard_granularity)
865 			break;
866 		if (!list_empty(&dcc->pend_list[i])) {
867 			wakeup = true;
868 			break;
869 		}
870 	}
871 	mutex_unlock(&dcc->cmd_lock);
872 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
873 		return;
874 wake_up:
875 	dcc->discard_wake = 1;
876 	wake_up_interruptible_all(&dcc->discard_wait_queue);
877 }
878