xref: /openbmc/linux/fs/f2fs/segment.c (revision f08142bc3a60f5af632ba48dc2fef8797043086d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	clear_inode_flag(fi->cow_inode, FI_COW_FILE);
196 	iput(fi->cow_inode);
197 	fi->cow_inode = NULL;
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	stat_dec_atomic_inode(inode);
203 
204 	if (clean) {
205 		truncate_inode_pages_final(inode->i_mapping);
206 		f2fs_i_size_write(inode, fi->original_i_size);
207 	}
208 }
209 
210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
211 			block_t new_addr, block_t *old_addr, bool recover)
212 {
213 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 	struct dnode_of_data dn;
215 	struct node_info ni;
216 	int err;
217 
218 retry:
219 	set_new_dnode(&dn, inode, NULL, NULL, 0);
220 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
221 	if (err) {
222 		if (err == -ENOMEM) {
223 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
224 			goto retry;
225 		}
226 		return err;
227 	}
228 
229 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
230 	if (err) {
231 		f2fs_put_dnode(&dn);
232 		return err;
233 	}
234 
235 	if (recover) {
236 		/* dn.data_blkaddr is always valid */
237 		if (!__is_valid_data_blkaddr(new_addr)) {
238 			if (new_addr == NULL_ADDR)
239 				dec_valid_block_count(sbi, inode, 1);
240 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
241 			f2fs_update_data_blkaddr(&dn, new_addr);
242 		} else {
243 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
244 				new_addr, ni.version, true, true);
245 		}
246 	} else {
247 		blkcnt_t count = 1;
248 
249 		*old_addr = dn.data_blkaddr;
250 		f2fs_truncate_data_blocks_range(&dn, 1);
251 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
252 		inc_valid_block_count(sbi, inode, &count);
253 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
254 					ni.version, true, false);
255 	}
256 
257 	f2fs_put_dnode(&dn);
258 	return 0;
259 }
260 
261 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
262 					bool revoke)
263 {
264 	struct revoke_entry *cur, *tmp;
265 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
266 
267 	list_for_each_entry_safe(cur, tmp, head, list) {
268 		if (revoke)
269 			__replace_atomic_write_block(inode, cur->index,
270 						cur->old_addr, NULL, true);
271 
272 		list_del(&cur->list);
273 		kmem_cache_free(revoke_entry_slab, cur);
274 	}
275 
276 	if (!revoke && truncate)
277 		f2fs_do_truncate_blocks(inode, 0, false);
278 }
279 
280 static int __f2fs_commit_atomic_write(struct inode *inode)
281 {
282 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
283 	struct f2fs_inode_info *fi = F2FS_I(inode);
284 	struct inode *cow_inode = fi->cow_inode;
285 	struct revoke_entry *new;
286 	struct list_head revoke_list;
287 	block_t blkaddr;
288 	struct dnode_of_data dn;
289 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
290 	pgoff_t off = 0, blen, index;
291 	int ret = 0, i;
292 
293 	INIT_LIST_HEAD(&revoke_list);
294 
295 	while (len) {
296 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
297 
298 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
299 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
300 		if (ret && ret != -ENOENT) {
301 			goto out;
302 		} else if (ret == -ENOENT) {
303 			ret = 0;
304 			if (dn.max_level == 0)
305 				goto out;
306 			goto next;
307 		}
308 
309 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
310 				len);
311 		index = off;
312 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
313 			blkaddr = f2fs_data_blkaddr(&dn);
314 
315 			if (!__is_valid_data_blkaddr(blkaddr)) {
316 				continue;
317 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
318 					DATA_GENERIC_ENHANCE)) {
319 				f2fs_put_dnode(&dn);
320 				ret = -EFSCORRUPTED;
321 				f2fs_handle_error(sbi,
322 						ERROR_INVALID_BLKADDR);
323 				goto out;
324 			}
325 
326 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
327 							true, NULL);
328 
329 			ret = __replace_atomic_write_block(inode, index, blkaddr,
330 							&new->old_addr, false);
331 			if (ret) {
332 				f2fs_put_dnode(&dn);
333 				kmem_cache_free(revoke_entry_slab, new);
334 				goto out;
335 			}
336 
337 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
338 			new->index = index;
339 			list_add_tail(&new->list, &revoke_list);
340 		}
341 		f2fs_put_dnode(&dn);
342 next:
343 		off += blen;
344 		len -= blen;
345 	}
346 
347 out:
348 	if (ret) {
349 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
350 	} else {
351 		sbi->committed_atomic_block += fi->atomic_write_cnt;
352 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
353 	}
354 
355 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
356 
357 	return ret;
358 }
359 
360 int f2fs_commit_atomic_write(struct inode *inode)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
363 	struct f2fs_inode_info *fi = F2FS_I(inode);
364 	int err;
365 
366 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
367 	if (err)
368 		return err;
369 
370 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
371 	f2fs_lock_op(sbi);
372 
373 	err = __f2fs_commit_atomic_write(inode);
374 
375 	f2fs_unlock_op(sbi);
376 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
377 
378 	return err;
379 }
380 
381 /*
382  * This function balances dirty node and dentry pages.
383  * In addition, it controls garbage collection.
384  */
385 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
386 {
387 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
388 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
389 
390 	/* balance_fs_bg is able to be pending */
391 	if (need && excess_cached_nats(sbi))
392 		f2fs_balance_fs_bg(sbi, false);
393 
394 	if (!f2fs_is_checkpoint_ready(sbi))
395 		return;
396 
397 	/*
398 	 * We should do GC or end up with checkpoint, if there are so many dirty
399 	 * dir/node pages without enough free segments.
400 	 */
401 	if (has_not_enough_free_secs(sbi, 0, 0)) {
402 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
403 					sbi->gc_thread->f2fs_gc_task) {
404 			DEFINE_WAIT(wait);
405 
406 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
407 						TASK_UNINTERRUPTIBLE);
408 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
409 			io_schedule();
410 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
411 		} else {
412 			struct f2fs_gc_control gc_control = {
413 				.victim_segno = NULL_SEGNO,
414 				.init_gc_type = BG_GC,
415 				.no_bg_gc = true,
416 				.should_migrate_blocks = false,
417 				.err_gc_skipped = false,
418 				.nr_free_secs = 1 };
419 			f2fs_down_write(&sbi->gc_lock);
420 			f2fs_gc(sbi, &gc_control);
421 		}
422 	}
423 }
424 
425 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
426 {
427 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
428 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
429 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
430 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
431 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
432 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
433 	unsigned int threshold = sbi->blocks_per_seg * factor *
434 					DEFAULT_DIRTY_THRESHOLD;
435 	unsigned int global_threshold = threshold * 3 / 2;
436 
437 	if (dents >= threshold || qdata >= threshold ||
438 		nodes >= threshold || meta >= threshold ||
439 		imeta >= threshold)
440 		return true;
441 	return dents + qdata + nodes + meta + imeta >  global_threshold;
442 }
443 
444 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
445 {
446 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
447 		return;
448 
449 	/* try to shrink extent cache when there is no enough memory */
450 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
451 		f2fs_shrink_read_extent_tree(sbi,
452 				READ_EXTENT_CACHE_SHRINK_NUMBER);
453 
454 	/* try to shrink age extent cache when there is no enough memory */
455 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
456 		f2fs_shrink_age_extent_tree(sbi,
457 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
458 
459 	/* check the # of cached NAT entries */
460 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
461 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
462 
463 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
464 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
465 	else
466 		f2fs_build_free_nids(sbi, false, false);
467 
468 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
469 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
470 		goto do_sync;
471 
472 	/* there is background inflight IO or foreground operation recently */
473 	if (is_inflight_io(sbi, REQ_TIME) ||
474 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
475 		return;
476 
477 	/* exceed periodical checkpoint timeout threshold */
478 	if (f2fs_time_over(sbi, CP_TIME))
479 		goto do_sync;
480 
481 	/* checkpoint is the only way to shrink partial cached entries */
482 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
483 		f2fs_available_free_memory(sbi, INO_ENTRIES))
484 		return;
485 
486 do_sync:
487 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
488 		struct blk_plug plug;
489 
490 		mutex_lock(&sbi->flush_lock);
491 
492 		blk_start_plug(&plug);
493 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
494 		blk_finish_plug(&plug);
495 
496 		mutex_unlock(&sbi->flush_lock);
497 	}
498 	f2fs_sync_fs(sbi->sb, 1);
499 	stat_inc_bg_cp_count(sbi->stat_info);
500 }
501 
502 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
503 				struct block_device *bdev)
504 {
505 	int ret = blkdev_issue_flush(bdev);
506 
507 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
508 				test_opt(sbi, FLUSH_MERGE), ret);
509 	return ret;
510 }
511 
512 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
513 {
514 	int ret = 0;
515 	int i;
516 
517 	if (!f2fs_is_multi_device(sbi))
518 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
519 
520 	for (i = 0; i < sbi->s_ndevs; i++) {
521 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
522 			continue;
523 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
524 		if (ret)
525 			break;
526 	}
527 	return ret;
528 }
529 
530 static int issue_flush_thread(void *data)
531 {
532 	struct f2fs_sb_info *sbi = data;
533 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
534 	wait_queue_head_t *q = &fcc->flush_wait_queue;
535 repeat:
536 	if (kthread_should_stop())
537 		return 0;
538 
539 	if (!llist_empty(&fcc->issue_list)) {
540 		struct flush_cmd *cmd, *next;
541 		int ret;
542 
543 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
544 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
545 
546 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
547 
548 		ret = submit_flush_wait(sbi, cmd->ino);
549 		atomic_inc(&fcc->issued_flush);
550 
551 		llist_for_each_entry_safe(cmd, next,
552 					  fcc->dispatch_list, llnode) {
553 			cmd->ret = ret;
554 			complete(&cmd->wait);
555 		}
556 		fcc->dispatch_list = NULL;
557 	}
558 
559 	wait_event_interruptible(*q,
560 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
561 	goto repeat;
562 }
563 
564 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
565 {
566 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
567 	struct flush_cmd cmd;
568 	int ret;
569 
570 	if (test_opt(sbi, NOBARRIER))
571 		return 0;
572 
573 	if (!test_opt(sbi, FLUSH_MERGE)) {
574 		atomic_inc(&fcc->queued_flush);
575 		ret = submit_flush_wait(sbi, ino);
576 		atomic_dec(&fcc->queued_flush);
577 		atomic_inc(&fcc->issued_flush);
578 		return ret;
579 	}
580 
581 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
582 	    f2fs_is_multi_device(sbi)) {
583 		ret = submit_flush_wait(sbi, ino);
584 		atomic_dec(&fcc->queued_flush);
585 
586 		atomic_inc(&fcc->issued_flush);
587 		return ret;
588 	}
589 
590 	cmd.ino = ino;
591 	init_completion(&cmd.wait);
592 
593 	llist_add(&cmd.llnode, &fcc->issue_list);
594 
595 	/*
596 	 * update issue_list before we wake up issue_flush thread, this
597 	 * smp_mb() pairs with another barrier in ___wait_event(), see
598 	 * more details in comments of waitqueue_active().
599 	 */
600 	smp_mb();
601 
602 	if (waitqueue_active(&fcc->flush_wait_queue))
603 		wake_up(&fcc->flush_wait_queue);
604 
605 	if (fcc->f2fs_issue_flush) {
606 		wait_for_completion(&cmd.wait);
607 		atomic_dec(&fcc->queued_flush);
608 	} else {
609 		struct llist_node *list;
610 
611 		list = llist_del_all(&fcc->issue_list);
612 		if (!list) {
613 			wait_for_completion(&cmd.wait);
614 			atomic_dec(&fcc->queued_flush);
615 		} else {
616 			struct flush_cmd *tmp, *next;
617 
618 			ret = submit_flush_wait(sbi, ino);
619 
620 			llist_for_each_entry_safe(tmp, next, list, llnode) {
621 				if (tmp == &cmd) {
622 					cmd.ret = ret;
623 					atomic_dec(&fcc->queued_flush);
624 					continue;
625 				}
626 				tmp->ret = ret;
627 				complete(&tmp->wait);
628 			}
629 		}
630 	}
631 
632 	return cmd.ret;
633 }
634 
635 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
636 {
637 	dev_t dev = sbi->sb->s_bdev->bd_dev;
638 	struct flush_cmd_control *fcc;
639 
640 	if (SM_I(sbi)->fcc_info) {
641 		fcc = SM_I(sbi)->fcc_info;
642 		if (fcc->f2fs_issue_flush)
643 			return 0;
644 		goto init_thread;
645 	}
646 
647 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
648 	if (!fcc)
649 		return -ENOMEM;
650 	atomic_set(&fcc->issued_flush, 0);
651 	atomic_set(&fcc->queued_flush, 0);
652 	init_waitqueue_head(&fcc->flush_wait_queue);
653 	init_llist_head(&fcc->issue_list);
654 	SM_I(sbi)->fcc_info = fcc;
655 	if (!test_opt(sbi, FLUSH_MERGE))
656 		return 0;
657 
658 init_thread:
659 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
660 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
661 	if (IS_ERR(fcc->f2fs_issue_flush)) {
662 		int err = PTR_ERR(fcc->f2fs_issue_flush);
663 
664 		fcc->f2fs_issue_flush = NULL;
665 		return err;
666 	}
667 
668 	return 0;
669 }
670 
671 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
672 {
673 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
674 
675 	if (fcc && fcc->f2fs_issue_flush) {
676 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
677 
678 		fcc->f2fs_issue_flush = NULL;
679 		kthread_stop(flush_thread);
680 	}
681 	if (free) {
682 		kfree(fcc);
683 		SM_I(sbi)->fcc_info = NULL;
684 	}
685 }
686 
687 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
688 {
689 	int ret = 0, i;
690 
691 	if (!f2fs_is_multi_device(sbi))
692 		return 0;
693 
694 	if (test_opt(sbi, NOBARRIER))
695 		return 0;
696 
697 	for (i = 1; i < sbi->s_ndevs; i++) {
698 		int count = DEFAULT_RETRY_IO_COUNT;
699 
700 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
701 			continue;
702 
703 		do {
704 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
705 			if (ret)
706 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
707 		} while (ret && --count);
708 
709 		if (ret) {
710 			f2fs_stop_checkpoint(sbi, false,
711 					STOP_CP_REASON_FLUSH_FAIL);
712 			break;
713 		}
714 
715 		spin_lock(&sbi->dev_lock);
716 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
717 		spin_unlock(&sbi->dev_lock);
718 	}
719 
720 	return ret;
721 }
722 
723 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
724 		enum dirty_type dirty_type)
725 {
726 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
727 
728 	/* need not be added */
729 	if (IS_CURSEG(sbi, segno))
730 		return;
731 
732 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
733 		dirty_i->nr_dirty[dirty_type]++;
734 
735 	if (dirty_type == DIRTY) {
736 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
737 		enum dirty_type t = sentry->type;
738 
739 		if (unlikely(t >= DIRTY)) {
740 			f2fs_bug_on(sbi, 1);
741 			return;
742 		}
743 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
744 			dirty_i->nr_dirty[t]++;
745 
746 		if (__is_large_section(sbi)) {
747 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
748 			block_t valid_blocks =
749 				get_valid_blocks(sbi, segno, true);
750 
751 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
752 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
753 
754 			if (!IS_CURSEC(sbi, secno))
755 				set_bit(secno, dirty_i->dirty_secmap);
756 		}
757 	}
758 }
759 
760 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
761 		enum dirty_type dirty_type)
762 {
763 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
764 	block_t valid_blocks;
765 
766 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
767 		dirty_i->nr_dirty[dirty_type]--;
768 
769 	if (dirty_type == DIRTY) {
770 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
771 		enum dirty_type t = sentry->type;
772 
773 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
774 			dirty_i->nr_dirty[t]--;
775 
776 		valid_blocks = get_valid_blocks(sbi, segno, true);
777 		if (valid_blocks == 0) {
778 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
779 						dirty_i->victim_secmap);
780 #ifdef CONFIG_F2FS_CHECK_FS
781 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
782 #endif
783 		}
784 		if (__is_large_section(sbi)) {
785 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
786 
787 			if (!valid_blocks ||
788 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
789 				clear_bit(secno, dirty_i->dirty_secmap);
790 				return;
791 			}
792 
793 			if (!IS_CURSEC(sbi, secno))
794 				set_bit(secno, dirty_i->dirty_secmap);
795 		}
796 	}
797 }
798 
799 /*
800  * Should not occur error such as -ENOMEM.
801  * Adding dirty entry into seglist is not critical operation.
802  * If a given segment is one of current working segments, it won't be added.
803  */
804 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
805 {
806 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
807 	unsigned short valid_blocks, ckpt_valid_blocks;
808 	unsigned int usable_blocks;
809 
810 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
811 		return;
812 
813 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
814 	mutex_lock(&dirty_i->seglist_lock);
815 
816 	valid_blocks = get_valid_blocks(sbi, segno, false);
817 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
818 
819 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
820 		ckpt_valid_blocks == usable_blocks)) {
821 		__locate_dirty_segment(sbi, segno, PRE);
822 		__remove_dirty_segment(sbi, segno, DIRTY);
823 	} else if (valid_blocks < usable_blocks) {
824 		__locate_dirty_segment(sbi, segno, DIRTY);
825 	} else {
826 		/* Recovery routine with SSR needs this */
827 		__remove_dirty_segment(sbi, segno, DIRTY);
828 	}
829 
830 	mutex_unlock(&dirty_i->seglist_lock);
831 }
832 
833 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
834 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
835 {
836 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
837 	unsigned int segno;
838 
839 	mutex_lock(&dirty_i->seglist_lock);
840 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
841 		if (get_valid_blocks(sbi, segno, false))
842 			continue;
843 		if (IS_CURSEG(sbi, segno))
844 			continue;
845 		__locate_dirty_segment(sbi, segno, PRE);
846 		__remove_dirty_segment(sbi, segno, DIRTY);
847 	}
848 	mutex_unlock(&dirty_i->seglist_lock);
849 }
850 
851 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
852 {
853 	int ovp_hole_segs =
854 		(overprovision_segments(sbi) - reserved_segments(sbi));
855 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
856 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
857 	block_t holes[2] = {0, 0};	/* DATA and NODE */
858 	block_t unusable;
859 	struct seg_entry *se;
860 	unsigned int segno;
861 
862 	mutex_lock(&dirty_i->seglist_lock);
863 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
864 		se = get_seg_entry(sbi, segno);
865 		if (IS_NODESEG(se->type))
866 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
867 							se->valid_blocks;
868 		else
869 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
870 							se->valid_blocks;
871 	}
872 	mutex_unlock(&dirty_i->seglist_lock);
873 
874 	unusable = max(holes[DATA], holes[NODE]);
875 	if (unusable > ovp_holes)
876 		return unusable - ovp_holes;
877 	return 0;
878 }
879 
880 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
881 {
882 	int ovp_hole_segs =
883 		(overprovision_segments(sbi) - reserved_segments(sbi));
884 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
885 		return -EAGAIN;
886 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
887 		dirty_segments(sbi) > ovp_hole_segs)
888 		return -EAGAIN;
889 	return 0;
890 }
891 
892 /* This is only used by SBI_CP_DISABLED */
893 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
894 {
895 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
896 	unsigned int segno = 0;
897 
898 	mutex_lock(&dirty_i->seglist_lock);
899 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
900 		if (get_valid_blocks(sbi, segno, false))
901 			continue;
902 		if (get_ckpt_valid_blocks(sbi, segno, false))
903 			continue;
904 		mutex_unlock(&dirty_i->seglist_lock);
905 		return segno;
906 	}
907 	mutex_unlock(&dirty_i->seglist_lock);
908 	return NULL_SEGNO;
909 }
910 
911 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
912 		struct block_device *bdev, block_t lstart,
913 		block_t start, block_t len)
914 {
915 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
916 	struct list_head *pend_list;
917 	struct discard_cmd *dc;
918 
919 	f2fs_bug_on(sbi, !len);
920 
921 	pend_list = &dcc->pend_list[plist_idx(len)];
922 
923 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
924 	INIT_LIST_HEAD(&dc->list);
925 	dc->bdev = bdev;
926 	dc->lstart = lstart;
927 	dc->start = start;
928 	dc->len = len;
929 	dc->ref = 0;
930 	dc->state = D_PREP;
931 	dc->queued = 0;
932 	dc->error = 0;
933 	init_completion(&dc->wait);
934 	list_add_tail(&dc->list, pend_list);
935 	spin_lock_init(&dc->lock);
936 	dc->bio_ref = 0;
937 	atomic_inc(&dcc->discard_cmd_cnt);
938 	dcc->undiscard_blks += len;
939 
940 	return dc;
941 }
942 
943 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
944 				struct block_device *bdev, block_t lstart,
945 				block_t start, block_t len,
946 				struct rb_node *parent, struct rb_node **p,
947 				bool leftmost)
948 {
949 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
950 	struct discard_cmd *dc;
951 
952 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
953 
954 	rb_link_node(&dc->rb_node, parent, p);
955 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
956 
957 	return dc;
958 }
959 
960 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
961 							struct discard_cmd *dc)
962 {
963 	if (dc->state == D_DONE)
964 		atomic_sub(dc->queued, &dcc->queued_discard);
965 
966 	list_del(&dc->list);
967 	rb_erase_cached(&dc->rb_node, &dcc->root);
968 	dcc->undiscard_blks -= dc->len;
969 
970 	kmem_cache_free(discard_cmd_slab, dc);
971 
972 	atomic_dec(&dcc->discard_cmd_cnt);
973 }
974 
975 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
976 							struct discard_cmd *dc)
977 {
978 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
979 	unsigned long flags;
980 
981 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
982 
983 	spin_lock_irqsave(&dc->lock, flags);
984 	if (dc->bio_ref) {
985 		spin_unlock_irqrestore(&dc->lock, flags);
986 		return;
987 	}
988 	spin_unlock_irqrestore(&dc->lock, flags);
989 
990 	f2fs_bug_on(sbi, dc->ref);
991 
992 	if (dc->error == -EOPNOTSUPP)
993 		dc->error = 0;
994 
995 	if (dc->error)
996 		printk_ratelimited(
997 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
998 			KERN_INFO, sbi->sb->s_id,
999 			dc->lstart, dc->start, dc->len, dc->error);
1000 	__detach_discard_cmd(dcc, dc);
1001 }
1002 
1003 static void f2fs_submit_discard_endio(struct bio *bio)
1004 {
1005 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1006 	unsigned long flags;
1007 
1008 	spin_lock_irqsave(&dc->lock, flags);
1009 	if (!dc->error)
1010 		dc->error = blk_status_to_errno(bio->bi_status);
1011 	dc->bio_ref--;
1012 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1013 		dc->state = D_DONE;
1014 		complete_all(&dc->wait);
1015 	}
1016 	spin_unlock_irqrestore(&dc->lock, flags);
1017 	bio_put(bio);
1018 }
1019 
1020 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1021 				block_t start, block_t end)
1022 {
1023 #ifdef CONFIG_F2FS_CHECK_FS
1024 	struct seg_entry *sentry;
1025 	unsigned int segno;
1026 	block_t blk = start;
1027 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1028 	unsigned long *map;
1029 
1030 	while (blk < end) {
1031 		segno = GET_SEGNO(sbi, blk);
1032 		sentry = get_seg_entry(sbi, segno);
1033 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1034 
1035 		if (end < START_BLOCK(sbi, segno + 1))
1036 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1037 		else
1038 			size = max_blocks;
1039 		map = (unsigned long *)(sentry->cur_valid_map);
1040 		offset = __find_rev_next_bit(map, size, offset);
1041 		f2fs_bug_on(sbi, offset != size);
1042 		blk = START_BLOCK(sbi, segno + 1);
1043 	}
1044 #endif
1045 }
1046 
1047 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1048 				struct discard_policy *dpolicy,
1049 				int discard_type, unsigned int granularity)
1050 {
1051 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1052 
1053 	/* common policy */
1054 	dpolicy->type = discard_type;
1055 	dpolicy->sync = true;
1056 	dpolicy->ordered = false;
1057 	dpolicy->granularity = granularity;
1058 
1059 	dpolicy->max_requests = dcc->max_discard_request;
1060 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1061 	dpolicy->timeout = false;
1062 
1063 	if (discard_type == DPOLICY_BG) {
1064 		dpolicy->min_interval = dcc->min_discard_issue_time;
1065 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1066 		dpolicy->max_interval = dcc->max_discard_issue_time;
1067 		dpolicy->io_aware = true;
1068 		dpolicy->sync = false;
1069 		dpolicy->ordered = true;
1070 		if (utilization(sbi) > dcc->discard_urgent_util) {
1071 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1072 			if (atomic_read(&dcc->discard_cmd_cnt))
1073 				dpolicy->max_interval =
1074 					dcc->min_discard_issue_time;
1075 		}
1076 	} else if (discard_type == DPOLICY_FORCE) {
1077 		dpolicy->min_interval = dcc->min_discard_issue_time;
1078 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1079 		dpolicy->max_interval = dcc->max_discard_issue_time;
1080 		dpolicy->io_aware = false;
1081 	} else if (discard_type == DPOLICY_FSTRIM) {
1082 		dpolicy->io_aware = false;
1083 	} else if (discard_type == DPOLICY_UMOUNT) {
1084 		dpolicy->io_aware = false;
1085 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1086 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1087 		dpolicy->timeout = true;
1088 	}
1089 }
1090 
1091 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1092 				struct block_device *bdev, block_t lstart,
1093 				block_t start, block_t len);
1094 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1095 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1096 				struct discard_policy *dpolicy,
1097 				struct discard_cmd *dc, int *issued)
1098 {
1099 	struct block_device *bdev = dc->bdev;
1100 	unsigned int max_discard_blocks =
1101 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1102 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1103 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1104 					&(dcc->fstrim_list) : &(dcc->wait_list);
1105 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1106 	block_t lstart, start, len, total_len;
1107 	int err = 0;
1108 
1109 	if (dc->state != D_PREP)
1110 		return 0;
1111 
1112 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1113 		return 0;
1114 
1115 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1116 
1117 	lstart = dc->lstart;
1118 	start = dc->start;
1119 	len = dc->len;
1120 	total_len = len;
1121 
1122 	dc->len = 0;
1123 
1124 	while (total_len && *issued < dpolicy->max_requests && !err) {
1125 		struct bio *bio = NULL;
1126 		unsigned long flags;
1127 		bool last = true;
1128 
1129 		if (len > max_discard_blocks) {
1130 			len = max_discard_blocks;
1131 			last = false;
1132 		}
1133 
1134 		(*issued)++;
1135 		if (*issued == dpolicy->max_requests)
1136 			last = true;
1137 
1138 		dc->len += len;
1139 
1140 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1141 			err = -EIO;
1142 		} else {
1143 			err = __blkdev_issue_discard(bdev,
1144 					SECTOR_FROM_BLOCK(start),
1145 					SECTOR_FROM_BLOCK(len),
1146 					GFP_NOFS, &bio);
1147 		}
1148 		if (err) {
1149 			spin_lock_irqsave(&dc->lock, flags);
1150 			if (dc->state == D_PARTIAL)
1151 				dc->state = D_SUBMIT;
1152 			spin_unlock_irqrestore(&dc->lock, flags);
1153 
1154 			break;
1155 		}
1156 
1157 		f2fs_bug_on(sbi, !bio);
1158 
1159 		/*
1160 		 * should keep before submission to avoid D_DONE
1161 		 * right away
1162 		 */
1163 		spin_lock_irqsave(&dc->lock, flags);
1164 		if (last)
1165 			dc->state = D_SUBMIT;
1166 		else
1167 			dc->state = D_PARTIAL;
1168 		dc->bio_ref++;
1169 		spin_unlock_irqrestore(&dc->lock, flags);
1170 
1171 		atomic_inc(&dcc->queued_discard);
1172 		dc->queued++;
1173 		list_move_tail(&dc->list, wait_list);
1174 
1175 		/* sanity check on discard range */
1176 		__check_sit_bitmap(sbi, lstart, lstart + len);
1177 
1178 		bio->bi_private = dc;
1179 		bio->bi_end_io = f2fs_submit_discard_endio;
1180 		bio->bi_opf |= flag;
1181 		submit_bio(bio);
1182 
1183 		atomic_inc(&dcc->issued_discard);
1184 
1185 		f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
1186 
1187 		lstart += len;
1188 		start += len;
1189 		total_len -= len;
1190 		len = total_len;
1191 	}
1192 
1193 	if (!err && len) {
1194 		dcc->undiscard_blks -= len;
1195 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1196 	}
1197 	return err;
1198 }
1199 
1200 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1201 				struct block_device *bdev, block_t lstart,
1202 				block_t start, block_t len,
1203 				struct rb_node **insert_p,
1204 				struct rb_node *insert_parent)
1205 {
1206 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1207 	struct rb_node **p;
1208 	struct rb_node *parent = NULL;
1209 	bool leftmost = true;
1210 
1211 	if (insert_p && insert_parent) {
1212 		parent = insert_parent;
1213 		p = insert_p;
1214 		goto do_insert;
1215 	}
1216 
1217 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1218 							lstart, &leftmost);
1219 do_insert:
1220 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1221 								p, leftmost);
1222 }
1223 
1224 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1225 						struct discard_cmd *dc)
1226 {
1227 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1228 }
1229 
1230 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1231 				struct discard_cmd *dc, block_t blkaddr)
1232 {
1233 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1234 	struct discard_info di = dc->di;
1235 	bool modified = false;
1236 
1237 	if (dc->state == D_DONE || dc->len == 1) {
1238 		__remove_discard_cmd(sbi, dc);
1239 		return;
1240 	}
1241 
1242 	dcc->undiscard_blks -= di.len;
1243 
1244 	if (blkaddr > di.lstart) {
1245 		dc->len = blkaddr - dc->lstart;
1246 		dcc->undiscard_blks += dc->len;
1247 		__relocate_discard_cmd(dcc, dc);
1248 		modified = true;
1249 	}
1250 
1251 	if (blkaddr < di.lstart + di.len - 1) {
1252 		if (modified) {
1253 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1254 					di.start + blkaddr + 1 - di.lstart,
1255 					di.lstart + di.len - 1 - blkaddr,
1256 					NULL, NULL);
1257 		} else {
1258 			dc->lstart++;
1259 			dc->len--;
1260 			dc->start++;
1261 			dcc->undiscard_blks += dc->len;
1262 			__relocate_discard_cmd(dcc, dc);
1263 		}
1264 	}
1265 }
1266 
1267 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1268 				struct block_device *bdev, block_t lstart,
1269 				block_t start, block_t len)
1270 {
1271 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1272 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1273 	struct discard_cmd *dc;
1274 	struct discard_info di = {0};
1275 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1276 	unsigned int max_discard_blocks =
1277 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1278 	block_t end = lstart + len;
1279 
1280 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1281 					NULL, lstart,
1282 					(struct rb_entry **)&prev_dc,
1283 					(struct rb_entry **)&next_dc,
1284 					&insert_p, &insert_parent, true, NULL);
1285 	if (dc)
1286 		prev_dc = dc;
1287 
1288 	if (!prev_dc) {
1289 		di.lstart = lstart;
1290 		di.len = next_dc ? next_dc->lstart - lstart : len;
1291 		di.len = min(di.len, len);
1292 		di.start = start;
1293 	}
1294 
1295 	while (1) {
1296 		struct rb_node *node;
1297 		bool merged = false;
1298 		struct discard_cmd *tdc = NULL;
1299 
1300 		if (prev_dc) {
1301 			di.lstart = prev_dc->lstart + prev_dc->len;
1302 			if (di.lstart < lstart)
1303 				di.lstart = lstart;
1304 			if (di.lstart >= end)
1305 				break;
1306 
1307 			if (!next_dc || next_dc->lstart > end)
1308 				di.len = end - di.lstart;
1309 			else
1310 				di.len = next_dc->lstart - di.lstart;
1311 			di.start = start + di.lstart - lstart;
1312 		}
1313 
1314 		if (!di.len)
1315 			goto next;
1316 
1317 		if (prev_dc && prev_dc->state == D_PREP &&
1318 			prev_dc->bdev == bdev &&
1319 			__is_discard_back_mergeable(&di, &prev_dc->di,
1320 							max_discard_blocks)) {
1321 			prev_dc->di.len += di.len;
1322 			dcc->undiscard_blks += di.len;
1323 			__relocate_discard_cmd(dcc, prev_dc);
1324 			di = prev_dc->di;
1325 			tdc = prev_dc;
1326 			merged = true;
1327 		}
1328 
1329 		if (next_dc && next_dc->state == D_PREP &&
1330 			next_dc->bdev == bdev &&
1331 			__is_discard_front_mergeable(&di, &next_dc->di,
1332 							max_discard_blocks)) {
1333 			next_dc->di.lstart = di.lstart;
1334 			next_dc->di.len += di.len;
1335 			next_dc->di.start = di.start;
1336 			dcc->undiscard_blks += di.len;
1337 			__relocate_discard_cmd(dcc, next_dc);
1338 			if (tdc)
1339 				__remove_discard_cmd(sbi, tdc);
1340 			merged = true;
1341 		}
1342 
1343 		if (!merged) {
1344 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1345 							di.len, NULL, NULL);
1346 		}
1347  next:
1348 		prev_dc = next_dc;
1349 		if (!prev_dc)
1350 			break;
1351 
1352 		node = rb_next(&prev_dc->rb_node);
1353 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1354 	}
1355 }
1356 
1357 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1358 		struct block_device *bdev, block_t blkstart, block_t blklen)
1359 {
1360 	block_t lblkstart = blkstart;
1361 
1362 	if (!f2fs_bdev_support_discard(bdev))
1363 		return;
1364 
1365 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1366 
1367 	if (f2fs_is_multi_device(sbi)) {
1368 		int devi = f2fs_target_device_index(sbi, blkstart);
1369 
1370 		blkstart -= FDEV(devi).start_blk;
1371 	}
1372 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1373 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1374 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1375 }
1376 
1377 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1378 		struct discard_policy *dpolicy, int *issued)
1379 {
1380 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1381 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1382 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1383 	struct discard_cmd *dc;
1384 	struct blk_plug plug;
1385 	unsigned int pos = dcc->next_pos;
1386 	bool io_interrupted = false;
1387 
1388 	mutex_lock(&dcc->cmd_lock);
1389 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1390 					NULL, pos,
1391 					(struct rb_entry **)&prev_dc,
1392 					(struct rb_entry **)&next_dc,
1393 					&insert_p, &insert_parent, true, NULL);
1394 	if (!dc)
1395 		dc = next_dc;
1396 
1397 	blk_start_plug(&plug);
1398 
1399 	while (dc) {
1400 		struct rb_node *node;
1401 		int err = 0;
1402 
1403 		if (dc->state != D_PREP)
1404 			goto next;
1405 
1406 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1407 			io_interrupted = true;
1408 			break;
1409 		}
1410 
1411 		dcc->next_pos = dc->lstart + dc->len;
1412 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1413 
1414 		if (*issued >= dpolicy->max_requests)
1415 			break;
1416 next:
1417 		node = rb_next(&dc->rb_node);
1418 		if (err)
1419 			__remove_discard_cmd(sbi, dc);
1420 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1421 	}
1422 
1423 	blk_finish_plug(&plug);
1424 
1425 	if (!dc)
1426 		dcc->next_pos = 0;
1427 
1428 	mutex_unlock(&dcc->cmd_lock);
1429 
1430 	if (!(*issued) && io_interrupted)
1431 		*issued = -1;
1432 }
1433 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1434 					struct discard_policy *dpolicy);
1435 
1436 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1437 					struct discard_policy *dpolicy)
1438 {
1439 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1440 	struct list_head *pend_list;
1441 	struct discard_cmd *dc, *tmp;
1442 	struct blk_plug plug;
1443 	int i, issued;
1444 	bool io_interrupted = false;
1445 
1446 	if (dpolicy->timeout)
1447 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1448 
1449 retry:
1450 	issued = 0;
1451 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1452 		if (dpolicy->timeout &&
1453 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1454 			break;
1455 
1456 		if (i + 1 < dpolicy->granularity)
1457 			break;
1458 
1459 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1460 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1461 			return issued;
1462 		}
1463 
1464 		pend_list = &dcc->pend_list[i];
1465 
1466 		mutex_lock(&dcc->cmd_lock);
1467 		if (list_empty(pend_list))
1468 			goto next;
1469 		if (unlikely(dcc->rbtree_check))
1470 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1471 							&dcc->root, false));
1472 		blk_start_plug(&plug);
1473 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1474 			f2fs_bug_on(sbi, dc->state != D_PREP);
1475 
1476 			if (dpolicy->timeout &&
1477 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1478 				break;
1479 
1480 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1481 						!is_idle(sbi, DISCARD_TIME)) {
1482 				io_interrupted = true;
1483 				break;
1484 			}
1485 
1486 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1487 
1488 			if (issued >= dpolicy->max_requests)
1489 				break;
1490 		}
1491 		blk_finish_plug(&plug);
1492 next:
1493 		mutex_unlock(&dcc->cmd_lock);
1494 
1495 		if (issued >= dpolicy->max_requests || io_interrupted)
1496 			break;
1497 	}
1498 
1499 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1500 		__wait_all_discard_cmd(sbi, dpolicy);
1501 		goto retry;
1502 	}
1503 
1504 	if (!issued && io_interrupted)
1505 		issued = -1;
1506 
1507 	return issued;
1508 }
1509 
1510 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1511 {
1512 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1513 	struct list_head *pend_list;
1514 	struct discard_cmd *dc, *tmp;
1515 	int i;
1516 	bool dropped = false;
1517 
1518 	mutex_lock(&dcc->cmd_lock);
1519 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1520 		pend_list = &dcc->pend_list[i];
1521 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1522 			f2fs_bug_on(sbi, dc->state != D_PREP);
1523 			__remove_discard_cmd(sbi, dc);
1524 			dropped = true;
1525 		}
1526 	}
1527 	mutex_unlock(&dcc->cmd_lock);
1528 
1529 	return dropped;
1530 }
1531 
1532 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1533 {
1534 	__drop_discard_cmd(sbi);
1535 }
1536 
1537 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1538 							struct discard_cmd *dc)
1539 {
1540 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1541 	unsigned int len = 0;
1542 
1543 	wait_for_completion_io(&dc->wait);
1544 	mutex_lock(&dcc->cmd_lock);
1545 	f2fs_bug_on(sbi, dc->state != D_DONE);
1546 	dc->ref--;
1547 	if (!dc->ref) {
1548 		if (!dc->error)
1549 			len = dc->len;
1550 		__remove_discard_cmd(sbi, dc);
1551 	}
1552 	mutex_unlock(&dcc->cmd_lock);
1553 
1554 	return len;
1555 }
1556 
1557 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1558 						struct discard_policy *dpolicy,
1559 						block_t start, block_t end)
1560 {
1561 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1562 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1563 					&(dcc->fstrim_list) : &(dcc->wait_list);
1564 	struct discard_cmd *dc = NULL, *iter, *tmp;
1565 	unsigned int trimmed = 0;
1566 
1567 next:
1568 	dc = NULL;
1569 
1570 	mutex_lock(&dcc->cmd_lock);
1571 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1572 		if (iter->lstart + iter->len <= start || end <= iter->lstart)
1573 			continue;
1574 		if (iter->len < dpolicy->granularity)
1575 			continue;
1576 		if (iter->state == D_DONE && !iter->ref) {
1577 			wait_for_completion_io(&iter->wait);
1578 			if (!iter->error)
1579 				trimmed += iter->len;
1580 			__remove_discard_cmd(sbi, iter);
1581 		} else {
1582 			iter->ref++;
1583 			dc = iter;
1584 			break;
1585 		}
1586 	}
1587 	mutex_unlock(&dcc->cmd_lock);
1588 
1589 	if (dc) {
1590 		trimmed += __wait_one_discard_bio(sbi, dc);
1591 		goto next;
1592 	}
1593 
1594 	return trimmed;
1595 }
1596 
1597 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1598 						struct discard_policy *dpolicy)
1599 {
1600 	struct discard_policy dp;
1601 	unsigned int discard_blks;
1602 
1603 	if (dpolicy)
1604 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1605 
1606 	/* wait all */
1607 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1608 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1609 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1610 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1611 
1612 	return discard_blks;
1613 }
1614 
1615 /* This should be covered by global mutex, &sit_i->sentry_lock */
1616 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1617 {
1618 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1619 	struct discard_cmd *dc;
1620 	bool need_wait = false;
1621 
1622 	mutex_lock(&dcc->cmd_lock);
1623 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1624 							NULL, blkaddr);
1625 	if (dc) {
1626 		if (dc->state == D_PREP) {
1627 			__punch_discard_cmd(sbi, dc, blkaddr);
1628 		} else {
1629 			dc->ref++;
1630 			need_wait = true;
1631 		}
1632 	}
1633 	mutex_unlock(&dcc->cmd_lock);
1634 
1635 	if (need_wait)
1636 		__wait_one_discard_bio(sbi, dc);
1637 }
1638 
1639 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1640 {
1641 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1642 
1643 	if (dcc && dcc->f2fs_issue_discard) {
1644 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1645 
1646 		dcc->f2fs_issue_discard = NULL;
1647 		kthread_stop(discard_thread);
1648 	}
1649 }
1650 
1651 /* This comes from f2fs_put_super */
1652 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1653 {
1654 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1655 	struct discard_policy dpolicy;
1656 	bool dropped;
1657 
1658 	if (!atomic_read(&dcc->discard_cmd_cnt))
1659 		return false;
1660 
1661 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1662 					dcc->discard_granularity);
1663 	__issue_discard_cmd(sbi, &dpolicy);
1664 	dropped = __drop_discard_cmd(sbi);
1665 
1666 	/* just to make sure there is no pending discard commands */
1667 	__wait_all_discard_cmd(sbi, NULL);
1668 
1669 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1670 	return dropped;
1671 }
1672 
1673 static int issue_discard_thread(void *data)
1674 {
1675 	struct f2fs_sb_info *sbi = data;
1676 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1677 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1678 	struct discard_policy dpolicy;
1679 	unsigned int wait_ms = dcc->min_discard_issue_time;
1680 	int issued;
1681 
1682 	set_freezable();
1683 
1684 	do {
1685 		wait_event_interruptible_timeout(*q,
1686 				kthread_should_stop() || freezing(current) ||
1687 				dcc->discard_wake,
1688 				msecs_to_jiffies(wait_ms));
1689 
1690 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1691 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1692 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1693 						MIN_DISCARD_GRANULARITY);
1694 		else
1695 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1696 						dcc->discard_granularity);
1697 
1698 		if (dcc->discard_wake)
1699 			dcc->discard_wake = 0;
1700 
1701 		/* clean up pending candidates before going to sleep */
1702 		if (atomic_read(&dcc->queued_discard))
1703 			__wait_all_discard_cmd(sbi, NULL);
1704 
1705 		if (try_to_freeze())
1706 			continue;
1707 		if (f2fs_readonly(sbi->sb))
1708 			continue;
1709 		if (kthread_should_stop())
1710 			return 0;
1711 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1712 			!atomic_read(&dcc->discard_cmd_cnt)) {
1713 			wait_ms = dpolicy.max_interval;
1714 			continue;
1715 		}
1716 
1717 		sb_start_intwrite(sbi->sb);
1718 
1719 		issued = __issue_discard_cmd(sbi, &dpolicy);
1720 		if (issued > 0) {
1721 			__wait_all_discard_cmd(sbi, &dpolicy);
1722 			wait_ms = dpolicy.min_interval;
1723 		} else if (issued == -1) {
1724 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1725 			if (!wait_ms)
1726 				wait_ms = dpolicy.mid_interval;
1727 		} else {
1728 			wait_ms = dpolicy.max_interval;
1729 		}
1730 		if (!atomic_read(&dcc->discard_cmd_cnt))
1731 			wait_ms = dpolicy.max_interval;
1732 
1733 		sb_end_intwrite(sbi->sb);
1734 
1735 	} while (!kthread_should_stop());
1736 	return 0;
1737 }
1738 
1739 #ifdef CONFIG_BLK_DEV_ZONED
1740 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1741 		struct block_device *bdev, block_t blkstart, block_t blklen)
1742 {
1743 	sector_t sector, nr_sects;
1744 	block_t lblkstart = blkstart;
1745 	int devi = 0;
1746 
1747 	if (f2fs_is_multi_device(sbi)) {
1748 		devi = f2fs_target_device_index(sbi, blkstart);
1749 		if (blkstart < FDEV(devi).start_blk ||
1750 		    blkstart > FDEV(devi).end_blk) {
1751 			f2fs_err(sbi, "Invalid block %x", blkstart);
1752 			return -EIO;
1753 		}
1754 		blkstart -= FDEV(devi).start_blk;
1755 	}
1756 
1757 	/* For sequential zones, reset the zone write pointer */
1758 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1759 		sector = SECTOR_FROM_BLOCK(blkstart);
1760 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1761 
1762 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1763 				nr_sects != bdev_zone_sectors(bdev)) {
1764 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1765 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1766 				 blkstart, blklen);
1767 			return -EIO;
1768 		}
1769 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1770 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1771 					sector, nr_sects, GFP_NOFS);
1772 	}
1773 
1774 	/* For conventional zones, use regular discard if supported */
1775 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1776 	return 0;
1777 }
1778 #endif
1779 
1780 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1781 		struct block_device *bdev, block_t blkstart, block_t blklen)
1782 {
1783 #ifdef CONFIG_BLK_DEV_ZONED
1784 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1785 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1786 #endif
1787 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1788 	return 0;
1789 }
1790 
1791 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1792 				block_t blkstart, block_t blklen)
1793 {
1794 	sector_t start = blkstart, len = 0;
1795 	struct block_device *bdev;
1796 	struct seg_entry *se;
1797 	unsigned int offset;
1798 	block_t i;
1799 	int err = 0;
1800 
1801 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1802 
1803 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1804 		if (i != start) {
1805 			struct block_device *bdev2 =
1806 				f2fs_target_device(sbi, i, NULL);
1807 
1808 			if (bdev2 != bdev) {
1809 				err = __issue_discard_async(sbi, bdev,
1810 						start, len);
1811 				if (err)
1812 					return err;
1813 				bdev = bdev2;
1814 				start = i;
1815 				len = 0;
1816 			}
1817 		}
1818 
1819 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1820 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1821 
1822 		if (f2fs_block_unit_discard(sbi) &&
1823 				!f2fs_test_and_set_bit(offset, se->discard_map))
1824 			sbi->discard_blks--;
1825 	}
1826 
1827 	if (len)
1828 		err = __issue_discard_async(sbi, bdev, start, len);
1829 	return err;
1830 }
1831 
1832 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1833 							bool check_only)
1834 {
1835 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1836 	int max_blocks = sbi->blocks_per_seg;
1837 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1838 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1839 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1840 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1841 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1842 	unsigned int start = 0, end = -1;
1843 	bool force = (cpc->reason & CP_DISCARD);
1844 	struct discard_entry *de = NULL;
1845 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1846 	int i;
1847 
1848 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1849 			!f2fs_block_unit_discard(sbi))
1850 		return false;
1851 
1852 	if (!force) {
1853 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1854 			SM_I(sbi)->dcc_info->nr_discards >=
1855 				SM_I(sbi)->dcc_info->max_discards)
1856 			return false;
1857 	}
1858 
1859 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1860 	for (i = 0; i < entries; i++)
1861 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1862 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1863 
1864 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1865 				SM_I(sbi)->dcc_info->max_discards) {
1866 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1867 		if (start >= max_blocks)
1868 			break;
1869 
1870 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1871 		if (force && start && end != max_blocks
1872 					&& (end - start) < cpc->trim_minlen)
1873 			continue;
1874 
1875 		if (check_only)
1876 			return true;
1877 
1878 		if (!de) {
1879 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1880 						GFP_F2FS_ZERO, true, NULL);
1881 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1882 			list_add_tail(&de->list, head);
1883 		}
1884 
1885 		for (i = start; i < end; i++)
1886 			__set_bit_le(i, (void *)de->discard_map);
1887 
1888 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1889 	}
1890 	return false;
1891 }
1892 
1893 static void release_discard_addr(struct discard_entry *entry)
1894 {
1895 	list_del(&entry->list);
1896 	kmem_cache_free(discard_entry_slab, entry);
1897 }
1898 
1899 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1900 {
1901 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1902 	struct discard_entry *entry, *this;
1903 
1904 	/* drop caches */
1905 	list_for_each_entry_safe(entry, this, head, list)
1906 		release_discard_addr(entry);
1907 }
1908 
1909 /*
1910  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1911  */
1912 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1913 {
1914 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1915 	unsigned int segno;
1916 
1917 	mutex_lock(&dirty_i->seglist_lock);
1918 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1919 		__set_test_and_free(sbi, segno, false);
1920 	mutex_unlock(&dirty_i->seglist_lock);
1921 }
1922 
1923 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1924 						struct cp_control *cpc)
1925 {
1926 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1927 	struct list_head *head = &dcc->entry_list;
1928 	struct discard_entry *entry, *this;
1929 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1930 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1931 	unsigned int start = 0, end = -1;
1932 	unsigned int secno, start_segno;
1933 	bool force = (cpc->reason & CP_DISCARD);
1934 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1935 						DISCARD_UNIT_SECTION;
1936 
1937 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1938 		section_alignment = true;
1939 
1940 	mutex_lock(&dirty_i->seglist_lock);
1941 
1942 	while (1) {
1943 		int i;
1944 
1945 		if (section_alignment && end != -1)
1946 			end--;
1947 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1948 		if (start >= MAIN_SEGS(sbi))
1949 			break;
1950 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1951 								start + 1);
1952 
1953 		if (section_alignment) {
1954 			start = rounddown(start, sbi->segs_per_sec);
1955 			end = roundup(end, sbi->segs_per_sec);
1956 		}
1957 
1958 		for (i = start; i < end; i++) {
1959 			if (test_and_clear_bit(i, prefree_map))
1960 				dirty_i->nr_dirty[PRE]--;
1961 		}
1962 
1963 		if (!f2fs_realtime_discard_enable(sbi))
1964 			continue;
1965 
1966 		if (force && start >= cpc->trim_start &&
1967 					(end - 1) <= cpc->trim_end)
1968 				continue;
1969 
1970 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1971 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1972 				(end - start) << sbi->log_blocks_per_seg);
1973 			continue;
1974 		}
1975 next:
1976 		secno = GET_SEC_FROM_SEG(sbi, start);
1977 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1978 		if (!IS_CURSEC(sbi, secno) &&
1979 			!get_valid_blocks(sbi, start, true))
1980 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1981 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1982 
1983 		start = start_segno + sbi->segs_per_sec;
1984 		if (start < end)
1985 			goto next;
1986 		else
1987 			end = start - 1;
1988 	}
1989 	mutex_unlock(&dirty_i->seglist_lock);
1990 
1991 	if (!f2fs_block_unit_discard(sbi))
1992 		goto wakeup;
1993 
1994 	/* send small discards */
1995 	list_for_each_entry_safe(entry, this, head, list) {
1996 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1997 		bool is_valid = test_bit_le(0, entry->discard_map);
1998 
1999 find_next:
2000 		if (is_valid) {
2001 			next_pos = find_next_zero_bit_le(entry->discard_map,
2002 					sbi->blocks_per_seg, cur_pos);
2003 			len = next_pos - cur_pos;
2004 
2005 			if (f2fs_sb_has_blkzoned(sbi) ||
2006 			    (force && len < cpc->trim_minlen))
2007 				goto skip;
2008 
2009 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2010 									len);
2011 			total_len += len;
2012 		} else {
2013 			next_pos = find_next_bit_le(entry->discard_map,
2014 					sbi->blocks_per_seg, cur_pos);
2015 		}
2016 skip:
2017 		cur_pos = next_pos;
2018 		is_valid = !is_valid;
2019 
2020 		if (cur_pos < sbi->blocks_per_seg)
2021 			goto find_next;
2022 
2023 		release_discard_addr(entry);
2024 		dcc->nr_discards -= total_len;
2025 	}
2026 
2027 wakeup:
2028 	wake_up_discard_thread(sbi, false);
2029 }
2030 
2031 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2032 {
2033 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2034 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2035 	int err = 0;
2036 
2037 	if (!f2fs_realtime_discard_enable(sbi))
2038 		return 0;
2039 
2040 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2041 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2042 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2043 		err = PTR_ERR(dcc->f2fs_issue_discard);
2044 		dcc->f2fs_issue_discard = NULL;
2045 	}
2046 
2047 	return err;
2048 }
2049 
2050 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2051 {
2052 	struct discard_cmd_control *dcc;
2053 	int err = 0, i;
2054 
2055 	if (SM_I(sbi)->dcc_info) {
2056 		dcc = SM_I(sbi)->dcc_info;
2057 		goto init_thread;
2058 	}
2059 
2060 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2061 	if (!dcc)
2062 		return -ENOMEM;
2063 
2064 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2065 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2066 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2067 		dcc->discard_granularity = sbi->blocks_per_seg;
2068 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2069 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2070 
2071 	INIT_LIST_HEAD(&dcc->entry_list);
2072 	for (i = 0; i < MAX_PLIST_NUM; i++)
2073 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2074 	INIT_LIST_HEAD(&dcc->wait_list);
2075 	INIT_LIST_HEAD(&dcc->fstrim_list);
2076 	mutex_init(&dcc->cmd_lock);
2077 	atomic_set(&dcc->issued_discard, 0);
2078 	atomic_set(&dcc->queued_discard, 0);
2079 	atomic_set(&dcc->discard_cmd_cnt, 0);
2080 	dcc->nr_discards = 0;
2081 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2082 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2083 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2084 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2085 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2086 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2087 	dcc->undiscard_blks = 0;
2088 	dcc->next_pos = 0;
2089 	dcc->root = RB_ROOT_CACHED;
2090 	dcc->rbtree_check = false;
2091 
2092 	init_waitqueue_head(&dcc->discard_wait_queue);
2093 	SM_I(sbi)->dcc_info = dcc;
2094 init_thread:
2095 	err = f2fs_start_discard_thread(sbi);
2096 	if (err) {
2097 		kfree(dcc);
2098 		SM_I(sbi)->dcc_info = NULL;
2099 	}
2100 
2101 	return err;
2102 }
2103 
2104 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2105 {
2106 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2107 
2108 	if (!dcc)
2109 		return;
2110 
2111 	f2fs_stop_discard_thread(sbi);
2112 
2113 	/*
2114 	 * Recovery can cache discard commands, so in error path of
2115 	 * fill_super(), it needs to give a chance to handle them.
2116 	 */
2117 	f2fs_issue_discard_timeout(sbi);
2118 
2119 	kfree(dcc);
2120 	SM_I(sbi)->dcc_info = NULL;
2121 }
2122 
2123 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2124 {
2125 	struct sit_info *sit_i = SIT_I(sbi);
2126 
2127 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2128 		sit_i->dirty_sentries++;
2129 		return false;
2130 	}
2131 
2132 	return true;
2133 }
2134 
2135 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2136 					unsigned int segno, int modified)
2137 {
2138 	struct seg_entry *se = get_seg_entry(sbi, segno);
2139 
2140 	se->type = type;
2141 	if (modified)
2142 		__mark_sit_entry_dirty(sbi, segno);
2143 }
2144 
2145 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2146 								block_t blkaddr)
2147 {
2148 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2149 
2150 	if (segno == NULL_SEGNO)
2151 		return 0;
2152 	return get_seg_entry(sbi, segno)->mtime;
2153 }
2154 
2155 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2156 						unsigned long long old_mtime)
2157 {
2158 	struct seg_entry *se;
2159 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2160 	unsigned long long ctime = get_mtime(sbi, false);
2161 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2162 
2163 	if (segno == NULL_SEGNO)
2164 		return;
2165 
2166 	se = get_seg_entry(sbi, segno);
2167 
2168 	if (!se->mtime)
2169 		se->mtime = mtime;
2170 	else
2171 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2172 						se->valid_blocks + 1);
2173 
2174 	if (ctime > SIT_I(sbi)->max_mtime)
2175 		SIT_I(sbi)->max_mtime = ctime;
2176 }
2177 
2178 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2179 {
2180 	struct seg_entry *se;
2181 	unsigned int segno, offset;
2182 	long int new_vblocks;
2183 	bool exist;
2184 #ifdef CONFIG_F2FS_CHECK_FS
2185 	bool mir_exist;
2186 #endif
2187 
2188 	segno = GET_SEGNO(sbi, blkaddr);
2189 
2190 	se = get_seg_entry(sbi, segno);
2191 	new_vblocks = se->valid_blocks + del;
2192 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2193 
2194 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2195 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2196 
2197 	se->valid_blocks = new_vblocks;
2198 
2199 	/* Update valid block bitmap */
2200 	if (del > 0) {
2201 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2202 #ifdef CONFIG_F2FS_CHECK_FS
2203 		mir_exist = f2fs_test_and_set_bit(offset,
2204 						se->cur_valid_map_mir);
2205 		if (unlikely(exist != mir_exist)) {
2206 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2207 				 blkaddr, exist);
2208 			f2fs_bug_on(sbi, 1);
2209 		}
2210 #endif
2211 		if (unlikely(exist)) {
2212 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2213 				 blkaddr);
2214 			f2fs_bug_on(sbi, 1);
2215 			se->valid_blocks--;
2216 			del = 0;
2217 		}
2218 
2219 		if (f2fs_block_unit_discard(sbi) &&
2220 				!f2fs_test_and_set_bit(offset, se->discard_map))
2221 			sbi->discard_blks--;
2222 
2223 		/*
2224 		 * SSR should never reuse block which is checkpointed
2225 		 * or newly invalidated.
2226 		 */
2227 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2228 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2229 				se->ckpt_valid_blocks++;
2230 		}
2231 	} else {
2232 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2233 #ifdef CONFIG_F2FS_CHECK_FS
2234 		mir_exist = f2fs_test_and_clear_bit(offset,
2235 						se->cur_valid_map_mir);
2236 		if (unlikely(exist != mir_exist)) {
2237 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2238 				 blkaddr, exist);
2239 			f2fs_bug_on(sbi, 1);
2240 		}
2241 #endif
2242 		if (unlikely(!exist)) {
2243 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2244 				 blkaddr);
2245 			f2fs_bug_on(sbi, 1);
2246 			se->valid_blocks++;
2247 			del = 0;
2248 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2249 			/*
2250 			 * If checkpoints are off, we must not reuse data that
2251 			 * was used in the previous checkpoint. If it was used
2252 			 * before, we must track that to know how much space we
2253 			 * really have.
2254 			 */
2255 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2256 				spin_lock(&sbi->stat_lock);
2257 				sbi->unusable_block_count++;
2258 				spin_unlock(&sbi->stat_lock);
2259 			}
2260 		}
2261 
2262 		if (f2fs_block_unit_discard(sbi) &&
2263 			f2fs_test_and_clear_bit(offset, se->discard_map))
2264 			sbi->discard_blks++;
2265 	}
2266 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2267 		se->ckpt_valid_blocks += del;
2268 
2269 	__mark_sit_entry_dirty(sbi, segno);
2270 
2271 	/* update total number of valid blocks to be written in ckpt area */
2272 	SIT_I(sbi)->written_valid_blocks += del;
2273 
2274 	if (__is_large_section(sbi))
2275 		get_sec_entry(sbi, segno)->valid_blocks += del;
2276 }
2277 
2278 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2279 {
2280 	unsigned int segno = GET_SEGNO(sbi, addr);
2281 	struct sit_info *sit_i = SIT_I(sbi);
2282 
2283 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2284 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2285 		return;
2286 
2287 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2288 	f2fs_invalidate_compress_page(sbi, addr);
2289 
2290 	/* add it into sit main buffer */
2291 	down_write(&sit_i->sentry_lock);
2292 
2293 	update_segment_mtime(sbi, addr, 0);
2294 	update_sit_entry(sbi, addr, -1);
2295 
2296 	/* add it into dirty seglist */
2297 	locate_dirty_segment(sbi, segno);
2298 
2299 	up_write(&sit_i->sentry_lock);
2300 }
2301 
2302 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2303 {
2304 	struct sit_info *sit_i = SIT_I(sbi);
2305 	unsigned int segno, offset;
2306 	struct seg_entry *se;
2307 	bool is_cp = false;
2308 
2309 	if (!__is_valid_data_blkaddr(blkaddr))
2310 		return true;
2311 
2312 	down_read(&sit_i->sentry_lock);
2313 
2314 	segno = GET_SEGNO(sbi, blkaddr);
2315 	se = get_seg_entry(sbi, segno);
2316 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2317 
2318 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2319 		is_cp = true;
2320 
2321 	up_read(&sit_i->sentry_lock);
2322 
2323 	return is_cp;
2324 }
2325 
2326 /*
2327  * This function should be resided under the curseg_mutex lock
2328  */
2329 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2330 					struct f2fs_summary *sum)
2331 {
2332 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2333 	void *addr = curseg->sum_blk;
2334 
2335 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2336 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2337 }
2338 
2339 /*
2340  * Calculate the number of current summary pages for writing
2341  */
2342 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2343 {
2344 	int valid_sum_count = 0;
2345 	int i, sum_in_page;
2346 
2347 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2348 		if (sbi->ckpt->alloc_type[i] == SSR)
2349 			valid_sum_count += sbi->blocks_per_seg;
2350 		else {
2351 			if (for_ra)
2352 				valid_sum_count += le16_to_cpu(
2353 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2354 			else
2355 				valid_sum_count += curseg_blkoff(sbi, i);
2356 		}
2357 	}
2358 
2359 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2360 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2361 	if (valid_sum_count <= sum_in_page)
2362 		return 1;
2363 	else if ((valid_sum_count - sum_in_page) <=
2364 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2365 		return 2;
2366 	return 3;
2367 }
2368 
2369 /*
2370  * Caller should put this summary page
2371  */
2372 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2373 {
2374 	if (unlikely(f2fs_cp_error(sbi)))
2375 		return ERR_PTR(-EIO);
2376 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2377 }
2378 
2379 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2380 					void *src, block_t blk_addr)
2381 {
2382 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2383 
2384 	memcpy(page_address(page), src, PAGE_SIZE);
2385 	set_page_dirty(page);
2386 	f2fs_put_page(page, 1);
2387 }
2388 
2389 static void write_sum_page(struct f2fs_sb_info *sbi,
2390 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2391 {
2392 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2393 }
2394 
2395 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2396 						int type, block_t blk_addr)
2397 {
2398 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2399 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2400 	struct f2fs_summary_block *src = curseg->sum_blk;
2401 	struct f2fs_summary_block *dst;
2402 
2403 	dst = (struct f2fs_summary_block *)page_address(page);
2404 	memset(dst, 0, PAGE_SIZE);
2405 
2406 	mutex_lock(&curseg->curseg_mutex);
2407 
2408 	down_read(&curseg->journal_rwsem);
2409 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2410 	up_read(&curseg->journal_rwsem);
2411 
2412 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2413 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2414 
2415 	mutex_unlock(&curseg->curseg_mutex);
2416 
2417 	set_page_dirty(page);
2418 	f2fs_put_page(page, 1);
2419 }
2420 
2421 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2422 				struct curseg_info *curseg, int type)
2423 {
2424 	unsigned int segno = curseg->segno + 1;
2425 	struct free_segmap_info *free_i = FREE_I(sbi);
2426 
2427 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2428 		return !test_bit(segno, free_i->free_segmap);
2429 	return 0;
2430 }
2431 
2432 /*
2433  * Find a new segment from the free segments bitmap to right order
2434  * This function should be returned with success, otherwise BUG
2435  */
2436 static void get_new_segment(struct f2fs_sb_info *sbi,
2437 			unsigned int *newseg, bool new_sec, int dir)
2438 {
2439 	struct free_segmap_info *free_i = FREE_I(sbi);
2440 	unsigned int segno, secno, zoneno;
2441 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2442 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2443 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2444 	unsigned int left_start = hint;
2445 	bool init = true;
2446 	int go_left = 0;
2447 	int i;
2448 
2449 	spin_lock(&free_i->segmap_lock);
2450 
2451 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2452 		segno = find_next_zero_bit(free_i->free_segmap,
2453 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2454 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2455 			goto got_it;
2456 	}
2457 find_other_zone:
2458 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2459 	if (secno >= MAIN_SECS(sbi)) {
2460 		if (dir == ALLOC_RIGHT) {
2461 			secno = find_first_zero_bit(free_i->free_secmap,
2462 							MAIN_SECS(sbi));
2463 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2464 		} else {
2465 			go_left = 1;
2466 			left_start = hint - 1;
2467 		}
2468 	}
2469 	if (go_left == 0)
2470 		goto skip_left;
2471 
2472 	while (test_bit(left_start, free_i->free_secmap)) {
2473 		if (left_start > 0) {
2474 			left_start--;
2475 			continue;
2476 		}
2477 		left_start = find_first_zero_bit(free_i->free_secmap,
2478 							MAIN_SECS(sbi));
2479 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2480 		break;
2481 	}
2482 	secno = left_start;
2483 skip_left:
2484 	segno = GET_SEG_FROM_SEC(sbi, secno);
2485 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2486 
2487 	/* give up on finding another zone */
2488 	if (!init)
2489 		goto got_it;
2490 	if (sbi->secs_per_zone == 1)
2491 		goto got_it;
2492 	if (zoneno == old_zoneno)
2493 		goto got_it;
2494 	if (dir == ALLOC_LEFT) {
2495 		if (!go_left && zoneno + 1 >= total_zones)
2496 			goto got_it;
2497 		if (go_left && zoneno == 0)
2498 			goto got_it;
2499 	}
2500 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2501 		if (CURSEG_I(sbi, i)->zone == zoneno)
2502 			break;
2503 
2504 	if (i < NR_CURSEG_TYPE) {
2505 		/* zone is in user, try another */
2506 		if (go_left)
2507 			hint = zoneno * sbi->secs_per_zone - 1;
2508 		else if (zoneno + 1 >= total_zones)
2509 			hint = 0;
2510 		else
2511 			hint = (zoneno + 1) * sbi->secs_per_zone;
2512 		init = false;
2513 		goto find_other_zone;
2514 	}
2515 got_it:
2516 	/* set it as dirty segment in free segmap */
2517 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2518 	__set_inuse(sbi, segno);
2519 	*newseg = segno;
2520 	spin_unlock(&free_i->segmap_lock);
2521 }
2522 
2523 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2524 {
2525 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2526 	struct summary_footer *sum_footer;
2527 	unsigned short seg_type = curseg->seg_type;
2528 
2529 	curseg->inited = true;
2530 	curseg->segno = curseg->next_segno;
2531 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2532 	curseg->next_blkoff = 0;
2533 	curseg->next_segno = NULL_SEGNO;
2534 
2535 	sum_footer = &(curseg->sum_blk->footer);
2536 	memset(sum_footer, 0, sizeof(struct summary_footer));
2537 
2538 	sanity_check_seg_type(sbi, seg_type);
2539 
2540 	if (IS_DATASEG(seg_type))
2541 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2542 	if (IS_NODESEG(seg_type))
2543 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2544 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2545 }
2546 
2547 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2548 {
2549 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2550 	unsigned short seg_type = curseg->seg_type;
2551 
2552 	sanity_check_seg_type(sbi, seg_type);
2553 	if (f2fs_need_rand_seg(sbi))
2554 		return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2555 
2556 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2557 	if (__is_large_section(sbi))
2558 		return curseg->segno;
2559 
2560 	/* inmem log may not locate on any segment after mount */
2561 	if (!curseg->inited)
2562 		return 0;
2563 
2564 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2565 		return 0;
2566 
2567 	if (test_opt(sbi, NOHEAP) &&
2568 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2569 		return 0;
2570 
2571 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2572 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2573 
2574 	/* find segments from 0 to reuse freed segments */
2575 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2576 		return 0;
2577 
2578 	return curseg->segno;
2579 }
2580 
2581 /*
2582  * Allocate a current working segment.
2583  * This function always allocates a free segment in LFS manner.
2584  */
2585 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2586 {
2587 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2588 	unsigned short seg_type = curseg->seg_type;
2589 	unsigned int segno = curseg->segno;
2590 	int dir = ALLOC_LEFT;
2591 
2592 	if (curseg->inited)
2593 		write_sum_page(sbi, curseg->sum_blk,
2594 				GET_SUM_BLOCK(sbi, segno));
2595 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2596 		dir = ALLOC_RIGHT;
2597 
2598 	if (test_opt(sbi, NOHEAP))
2599 		dir = ALLOC_RIGHT;
2600 
2601 	segno = __get_next_segno(sbi, type);
2602 	get_new_segment(sbi, &segno, new_sec, dir);
2603 	curseg->next_segno = segno;
2604 	reset_curseg(sbi, type, 1);
2605 	curseg->alloc_type = LFS;
2606 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2607 		curseg->fragment_remained_chunk =
2608 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2609 }
2610 
2611 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2612 					int segno, block_t start)
2613 {
2614 	struct seg_entry *se = get_seg_entry(sbi, segno);
2615 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2616 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2617 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2618 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2619 	int i;
2620 
2621 	for (i = 0; i < entries; i++)
2622 		target_map[i] = ckpt_map[i] | cur_map[i];
2623 
2624 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2625 }
2626 
2627 /*
2628  * If a segment is written by LFS manner, next block offset is just obtained
2629  * by increasing the current block offset. However, if a segment is written by
2630  * SSR manner, next block offset obtained by calling __next_free_blkoff
2631  */
2632 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2633 				struct curseg_info *seg)
2634 {
2635 	if (seg->alloc_type == SSR) {
2636 		seg->next_blkoff =
2637 			__next_free_blkoff(sbi, seg->segno,
2638 						seg->next_blkoff + 1);
2639 	} else {
2640 		seg->next_blkoff++;
2641 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2642 			/* To allocate block chunks in different sizes, use random number */
2643 			if (--seg->fragment_remained_chunk <= 0) {
2644 				seg->fragment_remained_chunk =
2645 				   get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2646 				seg->next_blkoff +=
2647 				   get_random_u32_inclusive(1, sbi->max_fragment_hole);
2648 			}
2649 		}
2650 	}
2651 }
2652 
2653 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2654 {
2655 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2656 }
2657 
2658 /*
2659  * This function always allocates a used segment(from dirty seglist) by SSR
2660  * manner, so it should recover the existing segment information of valid blocks
2661  */
2662 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2663 {
2664 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2665 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2666 	unsigned int new_segno = curseg->next_segno;
2667 	struct f2fs_summary_block *sum_node;
2668 	struct page *sum_page;
2669 
2670 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2671 
2672 	__set_test_and_inuse(sbi, new_segno);
2673 
2674 	mutex_lock(&dirty_i->seglist_lock);
2675 	__remove_dirty_segment(sbi, new_segno, PRE);
2676 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2677 	mutex_unlock(&dirty_i->seglist_lock);
2678 
2679 	reset_curseg(sbi, type, 1);
2680 	curseg->alloc_type = SSR;
2681 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2682 
2683 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2684 	if (IS_ERR(sum_page)) {
2685 		/* GC won't be able to use stale summary pages by cp_error */
2686 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2687 		return;
2688 	}
2689 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2690 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2691 	f2fs_put_page(sum_page, 1);
2692 }
2693 
2694 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2695 				int alloc_mode, unsigned long long age);
2696 
2697 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2698 					int target_type, int alloc_mode,
2699 					unsigned long long age)
2700 {
2701 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2702 
2703 	curseg->seg_type = target_type;
2704 
2705 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2706 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2707 
2708 		curseg->seg_type = se->type;
2709 		change_curseg(sbi, type);
2710 	} else {
2711 		/* allocate cold segment by default */
2712 		curseg->seg_type = CURSEG_COLD_DATA;
2713 		new_curseg(sbi, type, true);
2714 	}
2715 	stat_inc_seg_type(sbi, curseg);
2716 }
2717 
2718 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2719 {
2720 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2721 
2722 	if (!sbi->am.atgc_enabled)
2723 		return;
2724 
2725 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2726 
2727 	mutex_lock(&curseg->curseg_mutex);
2728 	down_write(&SIT_I(sbi)->sentry_lock);
2729 
2730 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2731 
2732 	up_write(&SIT_I(sbi)->sentry_lock);
2733 	mutex_unlock(&curseg->curseg_mutex);
2734 
2735 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2736 
2737 }
2738 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2739 {
2740 	__f2fs_init_atgc_curseg(sbi);
2741 }
2742 
2743 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2744 {
2745 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2746 
2747 	mutex_lock(&curseg->curseg_mutex);
2748 	if (!curseg->inited)
2749 		goto out;
2750 
2751 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2752 		write_sum_page(sbi, curseg->sum_blk,
2753 				GET_SUM_BLOCK(sbi, curseg->segno));
2754 	} else {
2755 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2756 		__set_test_and_free(sbi, curseg->segno, true);
2757 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2758 	}
2759 out:
2760 	mutex_unlock(&curseg->curseg_mutex);
2761 }
2762 
2763 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2764 {
2765 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2766 
2767 	if (sbi->am.atgc_enabled)
2768 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2769 }
2770 
2771 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2772 {
2773 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2774 
2775 	mutex_lock(&curseg->curseg_mutex);
2776 	if (!curseg->inited)
2777 		goto out;
2778 	if (get_valid_blocks(sbi, curseg->segno, false))
2779 		goto out;
2780 
2781 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2782 	__set_test_and_inuse(sbi, curseg->segno);
2783 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2784 out:
2785 	mutex_unlock(&curseg->curseg_mutex);
2786 }
2787 
2788 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2789 {
2790 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2791 
2792 	if (sbi->am.atgc_enabled)
2793 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2794 }
2795 
2796 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2797 				int alloc_mode, unsigned long long age)
2798 {
2799 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2800 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2801 	unsigned segno = NULL_SEGNO;
2802 	unsigned short seg_type = curseg->seg_type;
2803 	int i, cnt;
2804 	bool reversed = false;
2805 
2806 	sanity_check_seg_type(sbi, seg_type);
2807 
2808 	/* f2fs_need_SSR() already forces to do this */
2809 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2810 		curseg->next_segno = segno;
2811 		return 1;
2812 	}
2813 
2814 	/* For node segments, let's do SSR more intensively */
2815 	if (IS_NODESEG(seg_type)) {
2816 		if (seg_type >= CURSEG_WARM_NODE) {
2817 			reversed = true;
2818 			i = CURSEG_COLD_NODE;
2819 		} else {
2820 			i = CURSEG_HOT_NODE;
2821 		}
2822 		cnt = NR_CURSEG_NODE_TYPE;
2823 	} else {
2824 		if (seg_type >= CURSEG_WARM_DATA) {
2825 			reversed = true;
2826 			i = CURSEG_COLD_DATA;
2827 		} else {
2828 			i = CURSEG_HOT_DATA;
2829 		}
2830 		cnt = NR_CURSEG_DATA_TYPE;
2831 	}
2832 
2833 	for (; cnt-- > 0; reversed ? i-- : i++) {
2834 		if (i == seg_type)
2835 			continue;
2836 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2837 			curseg->next_segno = segno;
2838 			return 1;
2839 		}
2840 	}
2841 
2842 	/* find valid_blocks=0 in dirty list */
2843 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2844 		segno = get_free_segment(sbi);
2845 		if (segno != NULL_SEGNO) {
2846 			curseg->next_segno = segno;
2847 			return 1;
2848 		}
2849 	}
2850 	return 0;
2851 }
2852 
2853 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
2854 {
2855 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2856 
2857 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2858 	    curseg->seg_type == CURSEG_WARM_NODE)
2859 		return true;
2860 	if (curseg->alloc_type == LFS &&
2861 	    is_next_segment_free(sbi, curseg, type) &&
2862 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2863 		return true;
2864 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2865 		return true;
2866 	return false;
2867 }
2868 
2869 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2870 					unsigned int start, unsigned int end)
2871 {
2872 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2873 	unsigned int segno;
2874 
2875 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2876 	mutex_lock(&curseg->curseg_mutex);
2877 	down_write(&SIT_I(sbi)->sentry_lock);
2878 
2879 	segno = CURSEG_I(sbi, type)->segno;
2880 	if (segno < start || segno > end)
2881 		goto unlock;
2882 
2883 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2884 		change_curseg(sbi, type);
2885 	else
2886 		new_curseg(sbi, type, true);
2887 
2888 	stat_inc_seg_type(sbi, curseg);
2889 
2890 	locate_dirty_segment(sbi, segno);
2891 unlock:
2892 	up_write(&SIT_I(sbi)->sentry_lock);
2893 
2894 	if (segno != curseg->segno)
2895 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2896 			    type, segno, curseg->segno);
2897 
2898 	mutex_unlock(&curseg->curseg_mutex);
2899 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2900 }
2901 
2902 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2903 						bool new_sec, bool force)
2904 {
2905 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2906 	unsigned int old_segno;
2907 
2908 	if (!curseg->inited)
2909 		goto alloc;
2910 
2911 	if (force || curseg->next_blkoff ||
2912 		get_valid_blocks(sbi, curseg->segno, new_sec))
2913 		goto alloc;
2914 
2915 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2916 		return;
2917 alloc:
2918 	old_segno = curseg->segno;
2919 	new_curseg(sbi, type, true);
2920 	stat_inc_seg_type(sbi, curseg);
2921 	locate_dirty_segment(sbi, old_segno);
2922 }
2923 
2924 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2925 						int type, bool force)
2926 {
2927 	__allocate_new_segment(sbi, type, true, force);
2928 }
2929 
2930 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2931 {
2932 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2933 	down_write(&SIT_I(sbi)->sentry_lock);
2934 	__allocate_new_section(sbi, type, force);
2935 	up_write(&SIT_I(sbi)->sentry_lock);
2936 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2937 }
2938 
2939 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2940 {
2941 	int i;
2942 
2943 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2944 	down_write(&SIT_I(sbi)->sentry_lock);
2945 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2946 		__allocate_new_segment(sbi, i, false, false);
2947 	up_write(&SIT_I(sbi)->sentry_lock);
2948 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2949 }
2950 
2951 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2952 						struct cp_control *cpc)
2953 {
2954 	__u64 trim_start = cpc->trim_start;
2955 	bool has_candidate = false;
2956 
2957 	down_write(&SIT_I(sbi)->sentry_lock);
2958 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2959 		if (add_discard_addrs(sbi, cpc, true)) {
2960 			has_candidate = true;
2961 			break;
2962 		}
2963 	}
2964 	up_write(&SIT_I(sbi)->sentry_lock);
2965 
2966 	cpc->trim_start = trim_start;
2967 	return has_candidate;
2968 }
2969 
2970 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2971 					struct discard_policy *dpolicy,
2972 					unsigned int start, unsigned int end)
2973 {
2974 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2975 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2976 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2977 	struct discard_cmd *dc;
2978 	struct blk_plug plug;
2979 	int issued;
2980 	unsigned int trimmed = 0;
2981 
2982 next:
2983 	issued = 0;
2984 
2985 	mutex_lock(&dcc->cmd_lock);
2986 	if (unlikely(dcc->rbtree_check))
2987 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2988 							&dcc->root, false));
2989 
2990 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2991 					NULL, start,
2992 					(struct rb_entry **)&prev_dc,
2993 					(struct rb_entry **)&next_dc,
2994 					&insert_p, &insert_parent, true, NULL);
2995 	if (!dc)
2996 		dc = next_dc;
2997 
2998 	blk_start_plug(&plug);
2999 
3000 	while (dc && dc->lstart <= end) {
3001 		struct rb_node *node;
3002 		int err = 0;
3003 
3004 		if (dc->len < dpolicy->granularity)
3005 			goto skip;
3006 
3007 		if (dc->state != D_PREP) {
3008 			list_move_tail(&dc->list, &dcc->fstrim_list);
3009 			goto skip;
3010 		}
3011 
3012 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3013 
3014 		if (issued >= dpolicy->max_requests) {
3015 			start = dc->lstart + dc->len;
3016 
3017 			if (err)
3018 				__remove_discard_cmd(sbi, dc);
3019 
3020 			blk_finish_plug(&plug);
3021 			mutex_unlock(&dcc->cmd_lock);
3022 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3023 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3024 			goto next;
3025 		}
3026 skip:
3027 		node = rb_next(&dc->rb_node);
3028 		if (err)
3029 			__remove_discard_cmd(sbi, dc);
3030 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3031 
3032 		if (fatal_signal_pending(current))
3033 			break;
3034 	}
3035 
3036 	blk_finish_plug(&plug);
3037 	mutex_unlock(&dcc->cmd_lock);
3038 
3039 	return trimmed;
3040 }
3041 
3042 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3043 {
3044 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3045 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3046 	unsigned int start_segno, end_segno;
3047 	block_t start_block, end_block;
3048 	struct cp_control cpc;
3049 	struct discard_policy dpolicy;
3050 	unsigned long long trimmed = 0;
3051 	int err = 0;
3052 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3053 
3054 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3055 		return -EINVAL;
3056 
3057 	if (end < MAIN_BLKADDR(sbi))
3058 		goto out;
3059 
3060 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3061 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3062 		return -EFSCORRUPTED;
3063 	}
3064 
3065 	/* start/end segment number in main_area */
3066 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3067 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3068 						GET_SEGNO(sbi, end);
3069 	if (need_align) {
3070 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3071 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3072 	}
3073 
3074 	cpc.reason = CP_DISCARD;
3075 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3076 	cpc.trim_start = start_segno;
3077 	cpc.trim_end = end_segno;
3078 
3079 	if (sbi->discard_blks == 0)
3080 		goto out;
3081 
3082 	f2fs_down_write(&sbi->gc_lock);
3083 	err = f2fs_write_checkpoint(sbi, &cpc);
3084 	f2fs_up_write(&sbi->gc_lock);
3085 	if (err)
3086 		goto out;
3087 
3088 	/*
3089 	 * We filed discard candidates, but actually we don't need to wait for
3090 	 * all of them, since they'll be issued in idle time along with runtime
3091 	 * discard option. User configuration looks like using runtime discard
3092 	 * or periodic fstrim instead of it.
3093 	 */
3094 	if (f2fs_realtime_discard_enable(sbi))
3095 		goto out;
3096 
3097 	start_block = START_BLOCK(sbi, start_segno);
3098 	end_block = START_BLOCK(sbi, end_segno + 1);
3099 
3100 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3101 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3102 					start_block, end_block);
3103 
3104 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3105 					start_block, end_block);
3106 out:
3107 	if (!err)
3108 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3109 	return err;
3110 }
3111 
3112 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3113 					struct curseg_info *curseg)
3114 {
3115 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3116 							curseg->segno);
3117 }
3118 
3119 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3120 {
3121 	switch (hint) {
3122 	case WRITE_LIFE_SHORT:
3123 		return CURSEG_HOT_DATA;
3124 	case WRITE_LIFE_EXTREME:
3125 		return CURSEG_COLD_DATA;
3126 	default:
3127 		return CURSEG_WARM_DATA;
3128 	}
3129 }
3130 
3131 static int __get_segment_type_2(struct f2fs_io_info *fio)
3132 {
3133 	if (fio->type == DATA)
3134 		return CURSEG_HOT_DATA;
3135 	else
3136 		return CURSEG_HOT_NODE;
3137 }
3138 
3139 static int __get_segment_type_4(struct f2fs_io_info *fio)
3140 {
3141 	if (fio->type == DATA) {
3142 		struct inode *inode = fio->page->mapping->host;
3143 
3144 		if (S_ISDIR(inode->i_mode))
3145 			return CURSEG_HOT_DATA;
3146 		else
3147 			return CURSEG_COLD_DATA;
3148 	} else {
3149 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3150 			return CURSEG_WARM_NODE;
3151 		else
3152 			return CURSEG_COLD_NODE;
3153 	}
3154 }
3155 
3156 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3157 {
3158 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3159 	struct extent_info ei = {};
3160 
3161 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3162 		if (!ei.age)
3163 			return NO_CHECK_TYPE;
3164 		if (ei.age <= sbi->hot_data_age_threshold)
3165 			return CURSEG_HOT_DATA;
3166 		if (ei.age <= sbi->warm_data_age_threshold)
3167 			return CURSEG_WARM_DATA;
3168 		return CURSEG_COLD_DATA;
3169 	}
3170 	return NO_CHECK_TYPE;
3171 }
3172 
3173 static int __get_segment_type_6(struct f2fs_io_info *fio)
3174 {
3175 	if (fio->type == DATA) {
3176 		struct inode *inode = fio->page->mapping->host;
3177 		int type;
3178 
3179 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3180 			return CURSEG_COLD_DATA_PINNED;
3181 
3182 		if (page_private_gcing(fio->page)) {
3183 			if (fio->sbi->am.atgc_enabled &&
3184 				(fio->io_type == FS_DATA_IO) &&
3185 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3186 				return CURSEG_ALL_DATA_ATGC;
3187 			else
3188 				return CURSEG_COLD_DATA;
3189 		}
3190 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3191 			return CURSEG_COLD_DATA;
3192 
3193 		type = __get_age_segment_type(inode, fio->page->index);
3194 		if (type != NO_CHECK_TYPE)
3195 			return type;
3196 
3197 		if (file_is_hot(inode) ||
3198 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3199 				f2fs_is_cow_file(inode))
3200 			return CURSEG_HOT_DATA;
3201 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3202 	} else {
3203 		if (IS_DNODE(fio->page))
3204 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3205 						CURSEG_HOT_NODE;
3206 		return CURSEG_COLD_NODE;
3207 	}
3208 }
3209 
3210 static int __get_segment_type(struct f2fs_io_info *fio)
3211 {
3212 	int type = 0;
3213 
3214 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3215 	case 2:
3216 		type = __get_segment_type_2(fio);
3217 		break;
3218 	case 4:
3219 		type = __get_segment_type_4(fio);
3220 		break;
3221 	case 6:
3222 		type = __get_segment_type_6(fio);
3223 		break;
3224 	default:
3225 		f2fs_bug_on(fio->sbi, true);
3226 	}
3227 
3228 	if (IS_HOT(type))
3229 		fio->temp = HOT;
3230 	else if (IS_WARM(type))
3231 		fio->temp = WARM;
3232 	else
3233 		fio->temp = COLD;
3234 	return type;
3235 }
3236 
3237 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3238 		block_t old_blkaddr, block_t *new_blkaddr,
3239 		struct f2fs_summary *sum, int type,
3240 		struct f2fs_io_info *fio)
3241 {
3242 	struct sit_info *sit_i = SIT_I(sbi);
3243 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3244 	unsigned long long old_mtime;
3245 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3246 	struct seg_entry *se = NULL;
3247 
3248 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3249 
3250 	mutex_lock(&curseg->curseg_mutex);
3251 	down_write(&sit_i->sentry_lock);
3252 
3253 	if (from_gc) {
3254 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3255 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3256 		sanity_check_seg_type(sbi, se->type);
3257 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3258 	}
3259 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3260 
3261 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3262 
3263 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3264 
3265 	/*
3266 	 * __add_sum_entry should be resided under the curseg_mutex
3267 	 * because, this function updates a summary entry in the
3268 	 * current summary block.
3269 	 */
3270 	__add_sum_entry(sbi, type, sum);
3271 
3272 	__refresh_next_blkoff(sbi, curseg);
3273 
3274 	stat_inc_block_count(sbi, curseg);
3275 
3276 	if (from_gc) {
3277 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3278 	} else {
3279 		update_segment_mtime(sbi, old_blkaddr, 0);
3280 		old_mtime = 0;
3281 	}
3282 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3283 
3284 	/*
3285 	 * SIT information should be updated before segment allocation,
3286 	 * since SSR needs latest valid block information.
3287 	 */
3288 	update_sit_entry(sbi, *new_blkaddr, 1);
3289 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3290 		update_sit_entry(sbi, old_blkaddr, -1);
3291 
3292 	if (!__has_curseg_space(sbi, curseg)) {
3293 		/*
3294 		 * Flush out current segment and replace it with new segment.
3295 		 */
3296 		if (from_gc) {
3297 			get_atssr_segment(sbi, type, se->type,
3298 						AT_SSR, se->mtime);
3299 		} else {
3300 			if (need_new_seg(sbi, type))
3301 				new_curseg(sbi, type, false);
3302 			else
3303 				change_curseg(sbi, type);
3304 			stat_inc_seg_type(sbi, curseg);
3305 		}
3306 	}
3307 	/*
3308 	 * segment dirty status should be updated after segment allocation,
3309 	 * so we just need to update status only one time after previous
3310 	 * segment being closed.
3311 	 */
3312 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3313 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3314 
3315 	if (IS_DATASEG(type))
3316 		atomic64_inc(&sbi->allocated_data_blocks);
3317 
3318 	up_write(&sit_i->sentry_lock);
3319 
3320 	if (page && IS_NODESEG(type)) {
3321 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3322 
3323 		f2fs_inode_chksum_set(sbi, page);
3324 	}
3325 
3326 	if (fio) {
3327 		struct f2fs_bio_info *io;
3328 
3329 		if (F2FS_IO_ALIGNED(sbi))
3330 			fio->retry = false;
3331 
3332 		INIT_LIST_HEAD(&fio->list);
3333 		fio->in_list = true;
3334 		io = sbi->write_io[fio->type] + fio->temp;
3335 		spin_lock(&io->io_lock);
3336 		list_add_tail(&fio->list, &io->io_list);
3337 		spin_unlock(&io->io_lock);
3338 	}
3339 
3340 	mutex_unlock(&curseg->curseg_mutex);
3341 
3342 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3343 }
3344 
3345 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3346 					block_t blkaddr, unsigned int blkcnt)
3347 {
3348 	if (!f2fs_is_multi_device(sbi))
3349 		return;
3350 
3351 	while (1) {
3352 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3353 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3354 
3355 		/* update device state for fsync */
3356 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3357 
3358 		/* update device state for checkpoint */
3359 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3360 			spin_lock(&sbi->dev_lock);
3361 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3362 			spin_unlock(&sbi->dev_lock);
3363 		}
3364 
3365 		if (blkcnt <= blks)
3366 			break;
3367 		blkcnt -= blks;
3368 		blkaddr += blks;
3369 	}
3370 }
3371 
3372 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3373 {
3374 	int type = __get_segment_type(fio);
3375 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3376 
3377 	if (keep_order)
3378 		f2fs_down_read(&fio->sbi->io_order_lock);
3379 reallocate:
3380 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3381 			&fio->new_blkaddr, sum, type, fio);
3382 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3383 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3384 					fio->old_blkaddr, fio->old_blkaddr);
3385 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3386 	}
3387 
3388 	/* writeout dirty page into bdev */
3389 	f2fs_submit_page_write(fio);
3390 	if (fio->retry) {
3391 		fio->old_blkaddr = fio->new_blkaddr;
3392 		goto reallocate;
3393 	}
3394 
3395 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3396 
3397 	if (keep_order)
3398 		f2fs_up_read(&fio->sbi->io_order_lock);
3399 }
3400 
3401 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3402 					enum iostat_type io_type)
3403 {
3404 	struct f2fs_io_info fio = {
3405 		.sbi = sbi,
3406 		.type = META,
3407 		.temp = HOT,
3408 		.op = REQ_OP_WRITE,
3409 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3410 		.old_blkaddr = page->index,
3411 		.new_blkaddr = page->index,
3412 		.page = page,
3413 		.encrypted_page = NULL,
3414 		.in_list = false,
3415 	};
3416 
3417 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3418 		fio.op_flags &= ~REQ_META;
3419 
3420 	set_page_writeback(page);
3421 	f2fs_submit_page_write(&fio);
3422 
3423 	stat_inc_meta_count(sbi, page->index);
3424 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3425 }
3426 
3427 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3428 {
3429 	struct f2fs_summary sum;
3430 
3431 	set_summary(&sum, nid, 0, 0);
3432 	do_write_page(&sum, fio);
3433 
3434 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3435 }
3436 
3437 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3438 					struct f2fs_io_info *fio)
3439 {
3440 	struct f2fs_sb_info *sbi = fio->sbi;
3441 	struct f2fs_summary sum;
3442 
3443 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3444 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3445 		f2fs_update_age_extent_cache(dn);
3446 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3447 	do_write_page(&sum, fio);
3448 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3449 
3450 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3451 }
3452 
3453 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3454 {
3455 	int err;
3456 	struct f2fs_sb_info *sbi = fio->sbi;
3457 	unsigned int segno;
3458 
3459 	fio->new_blkaddr = fio->old_blkaddr;
3460 	/* i/o temperature is needed for passing down write hints */
3461 	__get_segment_type(fio);
3462 
3463 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3464 
3465 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3466 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3467 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3468 			  __func__, segno);
3469 		err = -EFSCORRUPTED;
3470 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3471 		goto drop_bio;
3472 	}
3473 
3474 	if (f2fs_cp_error(sbi)) {
3475 		err = -EIO;
3476 		goto drop_bio;
3477 	}
3478 
3479 	if (fio->post_read)
3480 		invalidate_mapping_pages(META_MAPPING(sbi),
3481 				fio->new_blkaddr, fio->new_blkaddr);
3482 
3483 	stat_inc_inplace_blocks(fio->sbi);
3484 
3485 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3486 		err = f2fs_merge_page_bio(fio);
3487 	else
3488 		err = f2fs_submit_page_bio(fio);
3489 	if (!err) {
3490 		f2fs_update_device_state(fio->sbi, fio->ino,
3491 						fio->new_blkaddr, 1);
3492 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3493 						fio->io_type, F2FS_BLKSIZE);
3494 	}
3495 
3496 	return err;
3497 drop_bio:
3498 	if (fio->bio && *(fio->bio)) {
3499 		struct bio *bio = *(fio->bio);
3500 
3501 		bio->bi_status = BLK_STS_IOERR;
3502 		bio_endio(bio);
3503 		*(fio->bio) = NULL;
3504 	}
3505 	return err;
3506 }
3507 
3508 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3509 						unsigned int segno)
3510 {
3511 	int i;
3512 
3513 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3514 		if (CURSEG_I(sbi, i)->segno == segno)
3515 			break;
3516 	}
3517 	return i;
3518 }
3519 
3520 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3521 				block_t old_blkaddr, block_t new_blkaddr,
3522 				bool recover_curseg, bool recover_newaddr,
3523 				bool from_gc)
3524 {
3525 	struct sit_info *sit_i = SIT_I(sbi);
3526 	struct curseg_info *curseg;
3527 	unsigned int segno, old_cursegno;
3528 	struct seg_entry *se;
3529 	int type;
3530 	unsigned short old_blkoff;
3531 	unsigned char old_alloc_type;
3532 
3533 	segno = GET_SEGNO(sbi, new_blkaddr);
3534 	se = get_seg_entry(sbi, segno);
3535 	type = se->type;
3536 
3537 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3538 
3539 	if (!recover_curseg) {
3540 		/* for recovery flow */
3541 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3542 			if (old_blkaddr == NULL_ADDR)
3543 				type = CURSEG_COLD_DATA;
3544 			else
3545 				type = CURSEG_WARM_DATA;
3546 		}
3547 	} else {
3548 		if (IS_CURSEG(sbi, segno)) {
3549 			/* se->type is volatile as SSR allocation */
3550 			type = __f2fs_get_curseg(sbi, segno);
3551 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3552 		} else {
3553 			type = CURSEG_WARM_DATA;
3554 		}
3555 	}
3556 
3557 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3558 	curseg = CURSEG_I(sbi, type);
3559 
3560 	mutex_lock(&curseg->curseg_mutex);
3561 	down_write(&sit_i->sentry_lock);
3562 
3563 	old_cursegno = curseg->segno;
3564 	old_blkoff = curseg->next_blkoff;
3565 	old_alloc_type = curseg->alloc_type;
3566 
3567 	/* change the current segment */
3568 	if (segno != curseg->segno) {
3569 		curseg->next_segno = segno;
3570 		change_curseg(sbi, type);
3571 	}
3572 
3573 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3574 	__add_sum_entry(sbi, type, sum);
3575 
3576 	if (!recover_curseg || recover_newaddr) {
3577 		if (!from_gc)
3578 			update_segment_mtime(sbi, new_blkaddr, 0);
3579 		update_sit_entry(sbi, new_blkaddr, 1);
3580 	}
3581 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3582 		invalidate_mapping_pages(META_MAPPING(sbi),
3583 					old_blkaddr, old_blkaddr);
3584 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3585 		if (!from_gc)
3586 			update_segment_mtime(sbi, old_blkaddr, 0);
3587 		update_sit_entry(sbi, old_blkaddr, -1);
3588 	}
3589 
3590 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3591 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3592 
3593 	locate_dirty_segment(sbi, old_cursegno);
3594 
3595 	if (recover_curseg) {
3596 		if (old_cursegno != curseg->segno) {
3597 			curseg->next_segno = old_cursegno;
3598 			change_curseg(sbi, type);
3599 		}
3600 		curseg->next_blkoff = old_blkoff;
3601 		curseg->alloc_type = old_alloc_type;
3602 	}
3603 
3604 	up_write(&sit_i->sentry_lock);
3605 	mutex_unlock(&curseg->curseg_mutex);
3606 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3607 }
3608 
3609 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3610 				block_t old_addr, block_t new_addr,
3611 				unsigned char version, bool recover_curseg,
3612 				bool recover_newaddr)
3613 {
3614 	struct f2fs_summary sum;
3615 
3616 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3617 
3618 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3619 					recover_curseg, recover_newaddr, false);
3620 
3621 	f2fs_update_data_blkaddr(dn, new_addr);
3622 }
3623 
3624 void f2fs_wait_on_page_writeback(struct page *page,
3625 				enum page_type type, bool ordered, bool locked)
3626 {
3627 	if (PageWriteback(page)) {
3628 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3629 
3630 		/* submit cached LFS IO */
3631 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3632 		/* sbumit cached IPU IO */
3633 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3634 		if (ordered) {
3635 			wait_on_page_writeback(page);
3636 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3637 		} else {
3638 			wait_for_stable_page(page);
3639 		}
3640 	}
3641 }
3642 
3643 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3644 {
3645 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3646 	struct page *cpage;
3647 
3648 	if (!f2fs_post_read_required(inode))
3649 		return;
3650 
3651 	if (!__is_valid_data_blkaddr(blkaddr))
3652 		return;
3653 
3654 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3655 	if (cpage) {
3656 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3657 		f2fs_put_page(cpage, 1);
3658 	}
3659 }
3660 
3661 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3662 								block_t len)
3663 {
3664 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3665 	block_t i;
3666 
3667 	if (!f2fs_post_read_required(inode))
3668 		return;
3669 
3670 	for (i = 0; i < len; i++)
3671 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3672 
3673 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3674 }
3675 
3676 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3677 {
3678 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3679 	struct curseg_info *seg_i;
3680 	unsigned char *kaddr;
3681 	struct page *page;
3682 	block_t start;
3683 	int i, j, offset;
3684 
3685 	start = start_sum_block(sbi);
3686 
3687 	page = f2fs_get_meta_page(sbi, start++);
3688 	if (IS_ERR(page))
3689 		return PTR_ERR(page);
3690 	kaddr = (unsigned char *)page_address(page);
3691 
3692 	/* Step 1: restore nat cache */
3693 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3694 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3695 
3696 	/* Step 2: restore sit cache */
3697 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3698 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3699 	offset = 2 * SUM_JOURNAL_SIZE;
3700 
3701 	/* Step 3: restore summary entries */
3702 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3703 		unsigned short blk_off;
3704 		unsigned int segno;
3705 
3706 		seg_i = CURSEG_I(sbi, i);
3707 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3708 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3709 		seg_i->next_segno = segno;
3710 		reset_curseg(sbi, i, 0);
3711 		seg_i->alloc_type = ckpt->alloc_type[i];
3712 		seg_i->next_blkoff = blk_off;
3713 
3714 		if (seg_i->alloc_type == SSR)
3715 			blk_off = sbi->blocks_per_seg;
3716 
3717 		for (j = 0; j < blk_off; j++) {
3718 			struct f2fs_summary *s;
3719 
3720 			s = (struct f2fs_summary *)(kaddr + offset);
3721 			seg_i->sum_blk->entries[j] = *s;
3722 			offset += SUMMARY_SIZE;
3723 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3724 						SUM_FOOTER_SIZE)
3725 				continue;
3726 
3727 			f2fs_put_page(page, 1);
3728 			page = NULL;
3729 
3730 			page = f2fs_get_meta_page(sbi, start++);
3731 			if (IS_ERR(page))
3732 				return PTR_ERR(page);
3733 			kaddr = (unsigned char *)page_address(page);
3734 			offset = 0;
3735 		}
3736 	}
3737 	f2fs_put_page(page, 1);
3738 	return 0;
3739 }
3740 
3741 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3742 {
3743 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3744 	struct f2fs_summary_block *sum;
3745 	struct curseg_info *curseg;
3746 	struct page *new;
3747 	unsigned short blk_off;
3748 	unsigned int segno = 0;
3749 	block_t blk_addr = 0;
3750 	int err = 0;
3751 
3752 	/* get segment number and block addr */
3753 	if (IS_DATASEG(type)) {
3754 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3755 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3756 							CURSEG_HOT_DATA]);
3757 		if (__exist_node_summaries(sbi))
3758 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3759 		else
3760 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3761 	} else {
3762 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3763 							CURSEG_HOT_NODE]);
3764 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3765 							CURSEG_HOT_NODE]);
3766 		if (__exist_node_summaries(sbi))
3767 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3768 							type - CURSEG_HOT_NODE);
3769 		else
3770 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3771 	}
3772 
3773 	new = f2fs_get_meta_page(sbi, blk_addr);
3774 	if (IS_ERR(new))
3775 		return PTR_ERR(new);
3776 	sum = (struct f2fs_summary_block *)page_address(new);
3777 
3778 	if (IS_NODESEG(type)) {
3779 		if (__exist_node_summaries(sbi)) {
3780 			struct f2fs_summary *ns = &sum->entries[0];
3781 			int i;
3782 
3783 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3784 				ns->version = 0;
3785 				ns->ofs_in_node = 0;
3786 			}
3787 		} else {
3788 			err = f2fs_restore_node_summary(sbi, segno, sum);
3789 			if (err)
3790 				goto out;
3791 		}
3792 	}
3793 
3794 	/* set uncompleted segment to curseg */
3795 	curseg = CURSEG_I(sbi, type);
3796 	mutex_lock(&curseg->curseg_mutex);
3797 
3798 	/* update journal info */
3799 	down_write(&curseg->journal_rwsem);
3800 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3801 	up_write(&curseg->journal_rwsem);
3802 
3803 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3804 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3805 	curseg->next_segno = segno;
3806 	reset_curseg(sbi, type, 0);
3807 	curseg->alloc_type = ckpt->alloc_type[type];
3808 	curseg->next_blkoff = blk_off;
3809 	mutex_unlock(&curseg->curseg_mutex);
3810 out:
3811 	f2fs_put_page(new, 1);
3812 	return err;
3813 }
3814 
3815 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3816 {
3817 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3818 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3819 	int type = CURSEG_HOT_DATA;
3820 	int err;
3821 
3822 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3823 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3824 
3825 		if (npages >= 2)
3826 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3827 							META_CP, true);
3828 
3829 		/* restore for compacted data summary */
3830 		err = read_compacted_summaries(sbi);
3831 		if (err)
3832 			return err;
3833 		type = CURSEG_HOT_NODE;
3834 	}
3835 
3836 	if (__exist_node_summaries(sbi))
3837 		f2fs_ra_meta_pages(sbi,
3838 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3839 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3840 
3841 	for (; type <= CURSEG_COLD_NODE; type++) {
3842 		err = read_normal_summaries(sbi, type);
3843 		if (err)
3844 			return err;
3845 	}
3846 
3847 	/* sanity check for summary blocks */
3848 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3849 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3850 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3851 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3852 		return -EINVAL;
3853 	}
3854 
3855 	return 0;
3856 }
3857 
3858 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3859 {
3860 	struct page *page;
3861 	unsigned char *kaddr;
3862 	struct f2fs_summary *summary;
3863 	struct curseg_info *seg_i;
3864 	int written_size = 0;
3865 	int i, j;
3866 
3867 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3868 	kaddr = (unsigned char *)page_address(page);
3869 	memset(kaddr, 0, PAGE_SIZE);
3870 
3871 	/* Step 1: write nat cache */
3872 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3873 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3874 	written_size += SUM_JOURNAL_SIZE;
3875 
3876 	/* Step 2: write sit cache */
3877 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3878 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3879 	written_size += SUM_JOURNAL_SIZE;
3880 
3881 	/* Step 3: write summary entries */
3882 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3883 		unsigned short blkoff;
3884 
3885 		seg_i = CURSEG_I(sbi, i);
3886 		if (sbi->ckpt->alloc_type[i] == SSR)
3887 			blkoff = sbi->blocks_per_seg;
3888 		else
3889 			blkoff = curseg_blkoff(sbi, i);
3890 
3891 		for (j = 0; j < blkoff; j++) {
3892 			if (!page) {
3893 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3894 				kaddr = (unsigned char *)page_address(page);
3895 				memset(kaddr, 0, PAGE_SIZE);
3896 				written_size = 0;
3897 			}
3898 			summary = (struct f2fs_summary *)(kaddr + written_size);
3899 			*summary = seg_i->sum_blk->entries[j];
3900 			written_size += SUMMARY_SIZE;
3901 
3902 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3903 							SUM_FOOTER_SIZE)
3904 				continue;
3905 
3906 			set_page_dirty(page);
3907 			f2fs_put_page(page, 1);
3908 			page = NULL;
3909 		}
3910 	}
3911 	if (page) {
3912 		set_page_dirty(page);
3913 		f2fs_put_page(page, 1);
3914 	}
3915 }
3916 
3917 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3918 					block_t blkaddr, int type)
3919 {
3920 	int i, end;
3921 
3922 	if (IS_DATASEG(type))
3923 		end = type + NR_CURSEG_DATA_TYPE;
3924 	else
3925 		end = type + NR_CURSEG_NODE_TYPE;
3926 
3927 	for (i = type; i < end; i++)
3928 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3929 }
3930 
3931 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3932 {
3933 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3934 		write_compacted_summaries(sbi, start_blk);
3935 	else
3936 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3937 }
3938 
3939 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3940 {
3941 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3942 }
3943 
3944 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3945 					unsigned int val, int alloc)
3946 {
3947 	int i;
3948 
3949 	if (type == NAT_JOURNAL) {
3950 		for (i = 0; i < nats_in_cursum(journal); i++) {
3951 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3952 				return i;
3953 		}
3954 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3955 			return update_nats_in_cursum(journal, 1);
3956 	} else if (type == SIT_JOURNAL) {
3957 		for (i = 0; i < sits_in_cursum(journal); i++)
3958 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3959 				return i;
3960 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3961 			return update_sits_in_cursum(journal, 1);
3962 	}
3963 	return -1;
3964 }
3965 
3966 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3967 					unsigned int segno)
3968 {
3969 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3970 }
3971 
3972 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3973 					unsigned int start)
3974 {
3975 	struct sit_info *sit_i = SIT_I(sbi);
3976 	struct page *page;
3977 	pgoff_t src_off, dst_off;
3978 
3979 	src_off = current_sit_addr(sbi, start);
3980 	dst_off = next_sit_addr(sbi, src_off);
3981 
3982 	page = f2fs_grab_meta_page(sbi, dst_off);
3983 	seg_info_to_sit_page(sbi, page, start);
3984 
3985 	set_page_dirty(page);
3986 	set_to_next_sit(sit_i, start);
3987 
3988 	return page;
3989 }
3990 
3991 static struct sit_entry_set *grab_sit_entry_set(void)
3992 {
3993 	struct sit_entry_set *ses =
3994 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
3995 						GFP_NOFS, true, NULL);
3996 
3997 	ses->entry_cnt = 0;
3998 	INIT_LIST_HEAD(&ses->set_list);
3999 	return ses;
4000 }
4001 
4002 static void release_sit_entry_set(struct sit_entry_set *ses)
4003 {
4004 	list_del(&ses->set_list);
4005 	kmem_cache_free(sit_entry_set_slab, ses);
4006 }
4007 
4008 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4009 						struct list_head *head)
4010 {
4011 	struct sit_entry_set *next = ses;
4012 
4013 	if (list_is_last(&ses->set_list, head))
4014 		return;
4015 
4016 	list_for_each_entry_continue(next, head, set_list)
4017 		if (ses->entry_cnt <= next->entry_cnt) {
4018 			list_move_tail(&ses->set_list, &next->set_list);
4019 			return;
4020 		}
4021 
4022 	list_move_tail(&ses->set_list, head);
4023 }
4024 
4025 static void add_sit_entry(unsigned int segno, struct list_head *head)
4026 {
4027 	struct sit_entry_set *ses;
4028 	unsigned int start_segno = START_SEGNO(segno);
4029 
4030 	list_for_each_entry(ses, head, set_list) {
4031 		if (ses->start_segno == start_segno) {
4032 			ses->entry_cnt++;
4033 			adjust_sit_entry_set(ses, head);
4034 			return;
4035 		}
4036 	}
4037 
4038 	ses = grab_sit_entry_set();
4039 
4040 	ses->start_segno = start_segno;
4041 	ses->entry_cnt++;
4042 	list_add(&ses->set_list, head);
4043 }
4044 
4045 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4046 {
4047 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4048 	struct list_head *set_list = &sm_info->sit_entry_set;
4049 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4050 	unsigned int segno;
4051 
4052 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4053 		add_sit_entry(segno, set_list);
4054 }
4055 
4056 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4057 {
4058 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4059 	struct f2fs_journal *journal = curseg->journal;
4060 	int i;
4061 
4062 	down_write(&curseg->journal_rwsem);
4063 	for (i = 0; i < sits_in_cursum(journal); i++) {
4064 		unsigned int segno;
4065 		bool dirtied;
4066 
4067 		segno = le32_to_cpu(segno_in_journal(journal, i));
4068 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4069 
4070 		if (!dirtied)
4071 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4072 	}
4073 	update_sits_in_cursum(journal, -i);
4074 	up_write(&curseg->journal_rwsem);
4075 }
4076 
4077 /*
4078  * CP calls this function, which flushes SIT entries including sit_journal,
4079  * and moves prefree segs to free segs.
4080  */
4081 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4082 {
4083 	struct sit_info *sit_i = SIT_I(sbi);
4084 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4085 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4086 	struct f2fs_journal *journal = curseg->journal;
4087 	struct sit_entry_set *ses, *tmp;
4088 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4089 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4090 	struct seg_entry *se;
4091 
4092 	down_write(&sit_i->sentry_lock);
4093 
4094 	if (!sit_i->dirty_sentries)
4095 		goto out;
4096 
4097 	/*
4098 	 * add and account sit entries of dirty bitmap in sit entry
4099 	 * set temporarily
4100 	 */
4101 	add_sits_in_set(sbi);
4102 
4103 	/*
4104 	 * if there are no enough space in journal to store dirty sit
4105 	 * entries, remove all entries from journal and add and account
4106 	 * them in sit entry set.
4107 	 */
4108 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4109 								!to_journal)
4110 		remove_sits_in_journal(sbi);
4111 
4112 	/*
4113 	 * there are two steps to flush sit entries:
4114 	 * #1, flush sit entries to journal in current cold data summary block.
4115 	 * #2, flush sit entries to sit page.
4116 	 */
4117 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4118 		struct page *page = NULL;
4119 		struct f2fs_sit_block *raw_sit = NULL;
4120 		unsigned int start_segno = ses->start_segno;
4121 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4122 						(unsigned long)MAIN_SEGS(sbi));
4123 		unsigned int segno = start_segno;
4124 
4125 		if (to_journal &&
4126 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4127 			to_journal = false;
4128 
4129 		if (to_journal) {
4130 			down_write(&curseg->journal_rwsem);
4131 		} else {
4132 			page = get_next_sit_page(sbi, start_segno);
4133 			raw_sit = page_address(page);
4134 		}
4135 
4136 		/* flush dirty sit entries in region of current sit set */
4137 		for_each_set_bit_from(segno, bitmap, end) {
4138 			int offset, sit_offset;
4139 
4140 			se = get_seg_entry(sbi, segno);
4141 #ifdef CONFIG_F2FS_CHECK_FS
4142 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4143 						SIT_VBLOCK_MAP_SIZE))
4144 				f2fs_bug_on(sbi, 1);
4145 #endif
4146 
4147 			/* add discard candidates */
4148 			if (!(cpc->reason & CP_DISCARD)) {
4149 				cpc->trim_start = segno;
4150 				add_discard_addrs(sbi, cpc, false);
4151 			}
4152 
4153 			if (to_journal) {
4154 				offset = f2fs_lookup_journal_in_cursum(journal,
4155 							SIT_JOURNAL, segno, 1);
4156 				f2fs_bug_on(sbi, offset < 0);
4157 				segno_in_journal(journal, offset) =
4158 							cpu_to_le32(segno);
4159 				seg_info_to_raw_sit(se,
4160 					&sit_in_journal(journal, offset));
4161 				check_block_count(sbi, segno,
4162 					&sit_in_journal(journal, offset));
4163 			} else {
4164 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4165 				seg_info_to_raw_sit(se,
4166 						&raw_sit->entries[sit_offset]);
4167 				check_block_count(sbi, segno,
4168 						&raw_sit->entries[sit_offset]);
4169 			}
4170 
4171 			__clear_bit(segno, bitmap);
4172 			sit_i->dirty_sentries--;
4173 			ses->entry_cnt--;
4174 		}
4175 
4176 		if (to_journal)
4177 			up_write(&curseg->journal_rwsem);
4178 		else
4179 			f2fs_put_page(page, 1);
4180 
4181 		f2fs_bug_on(sbi, ses->entry_cnt);
4182 		release_sit_entry_set(ses);
4183 	}
4184 
4185 	f2fs_bug_on(sbi, !list_empty(head));
4186 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4187 out:
4188 	if (cpc->reason & CP_DISCARD) {
4189 		__u64 trim_start = cpc->trim_start;
4190 
4191 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4192 			add_discard_addrs(sbi, cpc, false);
4193 
4194 		cpc->trim_start = trim_start;
4195 	}
4196 	up_write(&sit_i->sentry_lock);
4197 
4198 	set_prefree_as_free_segments(sbi);
4199 }
4200 
4201 static int build_sit_info(struct f2fs_sb_info *sbi)
4202 {
4203 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4204 	struct sit_info *sit_i;
4205 	unsigned int sit_segs, start;
4206 	char *src_bitmap, *bitmap;
4207 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4208 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4209 
4210 	/* allocate memory for SIT information */
4211 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4212 	if (!sit_i)
4213 		return -ENOMEM;
4214 
4215 	SM_I(sbi)->sit_info = sit_i;
4216 
4217 	sit_i->sentries =
4218 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4219 					      MAIN_SEGS(sbi)),
4220 			      GFP_KERNEL);
4221 	if (!sit_i->sentries)
4222 		return -ENOMEM;
4223 
4224 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4225 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4226 								GFP_KERNEL);
4227 	if (!sit_i->dirty_sentries_bitmap)
4228 		return -ENOMEM;
4229 
4230 #ifdef CONFIG_F2FS_CHECK_FS
4231 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4232 #else
4233 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4234 #endif
4235 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4236 	if (!sit_i->bitmap)
4237 		return -ENOMEM;
4238 
4239 	bitmap = sit_i->bitmap;
4240 
4241 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4242 		sit_i->sentries[start].cur_valid_map = bitmap;
4243 		bitmap += SIT_VBLOCK_MAP_SIZE;
4244 
4245 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4246 		bitmap += SIT_VBLOCK_MAP_SIZE;
4247 
4248 #ifdef CONFIG_F2FS_CHECK_FS
4249 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4250 		bitmap += SIT_VBLOCK_MAP_SIZE;
4251 #endif
4252 
4253 		if (discard_map) {
4254 			sit_i->sentries[start].discard_map = bitmap;
4255 			bitmap += SIT_VBLOCK_MAP_SIZE;
4256 		}
4257 	}
4258 
4259 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4260 	if (!sit_i->tmp_map)
4261 		return -ENOMEM;
4262 
4263 	if (__is_large_section(sbi)) {
4264 		sit_i->sec_entries =
4265 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4266 						      MAIN_SECS(sbi)),
4267 				      GFP_KERNEL);
4268 		if (!sit_i->sec_entries)
4269 			return -ENOMEM;
4270 	}
4271 
4272 	/* get information related with SIT */
4273 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4274 
4275 	/* setup SIT bitmap from ckeckpoint pack */
4276 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4277 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4278 
4279 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4280 	if (!sit_i->sit_bitmap)
4281 		return -ENOMEM;
4282 
4283 #ifdef CONFIG_F2FS_CHECK_FS
4284 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4285 					sit_bitmap_size, GFP_KERNEL);
4286 	if (!sit_i->sit_bitmap_mir)
4287 		return -ENOMEM;
4288 
4289 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4290 					main_bitmap_size, GFP_KERNEL);
4291 	if (!sit_i->invalid_segmap)
4292 		return -ENOMEM;
4293 #endif
4294 
4295 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4296 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4297 	sit_i->written_valid_blocks = 0;
4298 	sit_i->bitmap_size = sit_bitmap_size;
4299 	sit_i->dirty_sentries = 0;
4300 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4301 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4302 	sit_i->mounted_time = ktime_get_boottime_seconds();
4303 	init_rwsem(&sit_i->sentry_lock);
4304 	return 0;
4305 }
4306 
4307 static int build_free_segmap(struct f2fs_sb_info *sbi)
4308 {
4309 	struct free_segmap_info *free_i;
4310 	unsigned int bitmap_size, sec_bitmap_size;
4311 
4312 	/* allocate memory for free segmap information */
4313 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4314 	if (!free_i)
4315 		return -ENOMEM;
4316 
4317 	SM_I(sbi)->free_info = free_i;
4318 
4319 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4320 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4321 	if (!free_i->free_segmap)
4322 		return -ENOMEM;
4323 
4324 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4325 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4326 	if (!free_i->free_secmap)
4327 		return -ENOMEM;
4328 
4329 	/* set all segments as dirty temporarily */
4330 	memset(free_i->free_segmap, 0xff, bitmap_size);
4331 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4332 
4333 	/* init free segmap information */
4334 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4335 	free_i->free_segments = 0;
4336 	free_i->free_sections = 0;
4337 	spin_lock_init(&free_i->segmap_lock);
4338 	return 0;
4339 }
4340 
4341 static int build_curseg(struct f2fs_sb_info *sbi)
4342 {
4343 	struct curseg_info *array;
4344 	int i;
4345 
4346 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4347 					sizeof(*array)), GFP_KERNEL);
4348 	if (!array)
4349 		return -ENOMEM;
4350 
4351 	SM_I(sbi)->curseg_array = array;
4352 
4353 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4354 		mutex_init(&array[i].curseg_mutex);
4355 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4356 		if (!array[i].sum_blk)
4357 			return -ENOMEM;
4358 		init_rwsem(&array[i].journal_rwsem);
4359 		array[i].journal = f2fs_kzalloc(sbi,
4360 				sizeof(struct f2fs_journal), GFP_KERNEL);
4361 		if (!array[i].journal)
4362 			return -ENOMEM;
4363 		if (i < NR_PERSISTENT_LOG)
4364 			array[i].seg_type = CURSEG_HOT_DATA + i;
4365 		else if (i == CURSEG_COLD_DATA_PINNED)
4366 			array[i].seg_type = CURSEG_COLD_DATA;
4367 		else if (i == CURSEG_ALL_DATA_ATGC)
4368 			array[i].seg_type = CURSEG_COLD_DATA;
4369 		array[i].segno = NULL_SEGNO;
4370 		array[i].next_blkoff = 0;
4371 		array[i].inited = false;
4372 	}
4373 	return restore_curseg_summaries(sbi);
4374 }
4375 
4376 static int build_sit_entries(struct f2fs_sb_info *sbi)
4377 {
4378 	struct sit_info *sit_i = SIT_I(sbi);
4379 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4380 	struct f2fs_journal *journal = curseg->journal;
4381 	struct seg_entry *se;
4382 	struct f2fs_sit_entry sit;
4383 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4384 	unsigned int i, start, end;
4385 	unsigned int readed, start_blk = 0;
4386 	int err = 0;
4387 	block_t sit_valid_blocks[2] = {0, 0};
4388 
4389 	do {
4390 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4391 							META_SIT, true);
4392 
4393 		start = start_blk * sit_i->sents_per_block;
4394 		end = (start_blk + readed) * sit_i->sents_per_block;
4395 
4396 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4397 			struct f2fs_sit_block *sit_blk;
4398 			struct page *page;
4399 
4400 			se = &sit_i->sentries[start];
4401 			page = get_current_sit_page(sbi, start);
4402 			if (IS_ERR(page))
4403 				return PTR_ERR(page);
4404 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4405 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4406 			f2fs_put_page(page, 1);
4407 
4408 			err = check_block_count(sbi, start, &sit);
4409 			if (err)
4410 				return err;
4411 			seg_info_from_raw_sit(se, &sit);
4412 
4413 			if (se->type >= NR_PERSISTENT_LOG) {
4414 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4415 							se->type, start);
4416 				f2fs_handle_error(sbi,
4417 						ERROR_INCONSISTENT_SUM_TYPE);
4418 				return -EFSCORRUPTED;
4419 			}
4420 
4421 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4422 
4423 			if (f2fs_block_unit_discard(sbi)) {
4424 				/* build discard map only one time */
4425 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4426 					memset(se->discard_map, 0xff,
4427 						SIT_VBLOCK_MAP_SIZE);
4428 				} else {
4429 					memcpy(se->discard_map,
4430 						se->cur_valid_map,
4431 						SIT_VBLOCK_MAP_SIZE);
4432 					sbi->discard_blks +=
4433 						sbi->blocks_per_seg -
4434 						se->valid_blocks;
4435 				}
4436 			}
4437 
4438 			if (__is_large_section(sbi))
4439 				get_sec_entry(sbi, start)->valid_blocks +=
4440 							se->valid_blocks;
4441 		}
4442 		start_blk += readed;
4443 	} while (start_blk < sit_blk_cnt);
4444 
4445 	down_read(&curseg->journal_rwsem);
4446 	for (i = 0; i < sits_in_cursum(journal); i++) {
4447 		unsigned int old_valid_blocks;
4448 
4449 		start = le32_to_cpu(segno_in_journal(journal, i));
4450 		if (start >= MAIN_SEGS(sbi)) {
4451 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4452 				 start);
4453 			err = -EFSCORRUPTED;
4454 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4455 			break;
4456 		}
4457 
4458 		se = &sit_i->sentries[start];
4459 		sit = sit_in_journal(journal, i);
4460 
4461 		old_valid_blocks = se->valid_blocks;
4462 
4463 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4464 
4465 		err = check_block_count(sbi, start, &sit);
4466 		if (err)
4467 			break;
4468 		seg_info_from_raw_sit(se, &sit);
4469 
4470 		if (se->type >= NR_PERSISTENT_LOG) {
4471 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4472 							se->type, start);
4473 			err = -EFSCORRUPTED;
4474 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4475 			break;
4476 		}
4477 
4478 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4479 
4480 		if (f2fs_block_unit_discard(sbi)) {
4481 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4482 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4483 			} else {
4484 				memcpy(se->discard_map, se->cur_valid_map,
4485 							SIT_VBLOCK_MAP_SIZE);
4486 				sbi->discard_blks += old_valid_blocks;
4487 				sbi->discard_blks -= se->valid_blocks;
4488 			}
4489 		}
4490 
4491 		if (__is_large_section(sbi)) {
4492 			get_sec_entry(sbi, start)->valid_blocks +=
4493 							se->valid_blocks;
4494 			get_sec_entry(sbi, start)->valid_blocks -=
4495 							old_valid_blocks;
4496 		}
4497 	}
4498 	up_read(&curseg->journal_rwsem);
4499 
4500 	if (err)
4501 		return err;
4502 
4503 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4504 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4505 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4506 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4507 		return -EFSCORRUPTED;
4508 	}
4509 
4510 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4511 				valid_user_blocks(sbi)) {
4512 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4513 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4514 			 valid_user_blocks(sbi));
4515 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4516 		return -EFSCORRUPTED;
4517 	}
4518 
4519 	return 0;
4520 }
4521 
4522 static void init_free_segmap(struct f2fs_sb_info *sbi)
4523 {
4524 	unsigned int start;
4525 	int type;
4526 	struct seg_entry *sentry;
4527 
4528 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4529 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4530 			continue;
4531 		sentry = get_seg_entry(sbi, start);
4532 		if (!sentry->valid_blocks)
4533 			__set_free(sbi, start);
4534 		else
4535 			SIT_I(sbi)->written_valid_blocks +=
4536 						sentry->valid_blocks;
4537 	}
4538 
4539 	/* set use the current segments */
4540 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4541 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4542 
4543 		__set_test_and_inuse(sbi, curseg_t->segno);
4544 	}
4545 }
4546 
4547 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4548 {
4549 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4550 	struct free_segmap_info *free_i = FREE_I(sbi);
4551 	unsigned int segno = 0, offset = 0, secno;
4552 	block_t valid_blocks, usable_blks_in_seg;
4553 
4554 	while (1) {
4555 		/* find dirty segment based on free segmap */
4556 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4557 		if (segno >= MAIN_SEGS(sbi))
4558 			break;
4559 		offset = segno + 1;
4560 		valid_blocks = get_valid_blocks(sbi, segno, false);
4561 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4562 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4563 			continue;
4564 		if (valid_blocks > usable_blks_in_seg) {
4565 			f2fs_bug_on(sbi, 1);
4566 			continue;
4567 		}
4568 		mutex_lock(&dirty_i->seglist_lock);
4569 		__locate_dirty_segment(sbi, segno, DIRTY);
4570 		mutex_unlock(&dirty_i->seglist_lock);
4571 	}
4572 
4573 	if (!__is_large_section(sbi))
4574 		return;
4575 
4576 	mutex_lock(&dirty_i->seglist_lock);
4577 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4578 		valid_blocks = get_valid_blocks(sbi, segno, true);
4579 		secno = GET_SEC_FROM_SEG(sbi, segno);
4580 
4581 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4582 			continue;
4583 		if (IS_CURSEC(sbi, secno))
4584 			continue;
4585 		set_bit(secno, dirty_i->dirty_secmap);
4586 	}
4587 	mutex_unlock(&dirty_i->seglist_lock);
4588 }
4589 
4590 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4591 {
4592 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4593 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4594 
4595 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4596 	if (!dirty_i->victim_secmap)
4597 		return -ENOMEM;
4598 
4599 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4600 	if (!dirty_i->pinned_secmap)
4601 		return -ENOMEM;
4602 
4603 	dirty_i->pinned_secmap_cnt = 0;
4604 	dirty_i->enable_pin_section = true;
4605 	return 0;
4606 }
4607 
4608 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4609 {
4610 	struct dirty_seglist_info *dirty_i;
4611 	unsigned int bitmap_size, i;
4612 
4613 	/* allocate memory for dirty segments list information */
4614 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4615 								GFP_KERNEL);
4616 	if (!dirty_i)
4617 		return -ENOMEM;
4618 
4619 	SM_I(sbi)->dirty_info = dirty_i;
4620 	mutex_init(&dirty_i->seglist_lock);
4621 
4622 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4623 
4624 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4625 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4626 								GFP_KERNEL);
4627 		if (!dirty_i->dirty_segmap[i])
4628 			return -ENOMEM;
4629 	}
4630 
4631 	if (__is_large_section(sbi)) {
4632 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4633 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4634 						bitmap_size, GFP_KERNEL);
4635 		if (!dirty_i->dirty_secmap)
4636 			return -ENOMEM;
4637 	}
4638 
4639 	init_dirty_segmap(sbi);
4640 	return init_victim_secmap(sbi);
4641 }
4642 
4643 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4644 {
4645 	int i;
4646 
4647 	/*
4648 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4649 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4650 	 */
4651 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4652 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4653 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4654 		unsigned int blkofs = curseg->next_blkoff;
4655 
4656 		if (f2fs_sb_has_readonly(sbi) &&
4657 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4658 			continue;
4659 
4660 		sanity_check_seg_type(sbi, curseg->seg_type);
4661 
4662 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4663 			f2fs_err(sbi,
4664 				 "Current segment has invalid alloc_type:%d",
4665 				 curseg->alloc_type);
4666 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4667 			return -EFSCORRUPTED;
4668 		}
4669 
4670 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4671 			goto out;
4672 
4673 		if (curseg->alloc_type == SSR)
4674 			continue;
4675 
4676 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4677 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4678 				continue;
4679 out:
4680 			f2fs_err(sbi,
4681 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4682 				 i, curseg->segno, curseg->alloc_type,
4683 				 curseg->next_blkoff, blkofs);
4684 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4685 			return -EFSCORRUPTED;
4686 		}
4687 	}
4688 	return 0;
4689 }
4690 
4691 #ifdef CONFIG_BLK_DEV_ZONED
4692 
4693 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4694 				    struct f2fs_dev_info *fdev,
4695 				    struct blk_zone *zone)
4696 {
4697 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4698 	block_t zone_block, wp_block, last_valid_block;
4699 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4700 	int i, s, b, ret;
4701 	struct seg_entry *se;
4702 
4703 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4704 		return 0;
4705 
4706 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4707 	wp_segno = GET_SEGNO(sbi, wp_block);
4708 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4709 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4710 	zone_segno = GET_SEGNO(sbi, zone_block);
4711 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4712 
4713 	if (zone_segno >= MAIN_SEGS(sbi))
4714 		return 0;
4715 
4716 	/*
4717 	 * Skip check of zones cursegs point to, since
4718 	 * fix_curseg_write_pointer() checks them.
4719 	 */
4720 	for (i = 0; i < NO_CHECK_TYPE; i++)
4721 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4722 						   CURSEG_I(sbi, i)->segno))
4723 			return 0;
4724 
4725 	/*
4726 	 * Get last valid block of the zone.
4727 	 */
4728 	last_valid_block = zone_block - 1;
4729 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4730 		segno = zone_segno + s;
4731 		se = get_seg_entry(sbi, segno);
4732 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4733 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4734 				last_valid_block = START_BLOCK(sbi, segno) + b;
4735 				break;
4736 			}
4737 		if (last_valid_block >= zone_block)
4738 			break;
4739 	}
4740 
4741 	/*
4742 	 * If last valid block is beyond the write pointer, report the
4743 	 * inconsistency. This inconsistency does not cause write error
4744 	 * because the zone will not be selected for write operation until
4745 	 * it get discarded. Just report it.
4746 	 */
4747 	if (last_valid_block >= wp_block) {
4748 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4749 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4750 			    GET_SEGNO(sbi, last_valid_block),
4751 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4752 			    wp_segno, wp_blkoff);
4753 		return 0;
4754 	}
4755 
4756 	/*
4757 	 * If there is no valid block in the zone and if write pointer is
4758 	 * not at zone start, reset the write pointer.
4759 	 */
4760 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4761 		f2fs_notice(sbi,
4762 			    "Zone without valid block has non-zero write "
4763 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4764 			    wp_segno, wp_blkoff);
4765 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4766 					zone->len >> log_sectors_per_block);
4767 		if (ret) {
4768 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4769 				 fdev->path, ret);
4770 			return ret;
4771 		}
4772 	}
4773 
4774 	return 0;
4775 }
4776 
4777 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4778 						  block_t zone_blkaddr)
4779 {
4780 	int i;
4781 
4782 	for (i = 0; i < sbi->s_ndevs; i++) {
4783 		if (!bdev_is_zoned(FDEV(i).bdev))
4784 			continue;
4785 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4786 				zone_blkaddr <= FDEV(i).end_blk))
4787 			return &FDEV(i);
4788 	}
4789 
4790 	return NULL;
4791 }
4792 
4793 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4794 			      void *data)
4795 {
4796 	memcpy(data, zone, sizeof(struct blk_zone));
4797 	return 0;
4798 }
4799 
4800 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4801 {
4802 	struct curseg_info *cs = CURSEG_I(sbi, type);
4803 	struct f2fs_dev_info *zbd;
4804 	struct blk_zone zone;
4805 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4806 	block_t cs_zone_block, wp_block;
4807 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4808 	sector_t zone_sector;
4809 	int err;
4810 
4811 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4812 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4813 
4814 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4815 	if (!zbd)
4816 		return 0;
4817 
4818 	/* report zone for the sector the curseg points to */
4819 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4820 		<< log_sectors_per_block;
4821 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4822 				  report_one_zone_cb, &zone);
4823 	if (err != 1) {
4824 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4825 			 zbd->path, err);
4826 		return err;
4827 	}
4828 
4829 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4830 		return 0;
4831 
4832 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4833 	wp_segno = GET_SEGNO(sbi, wp_block);
4834 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4835 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4836 
4837 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4838 		wp_sector_off == 0)
4839 		return 0;
4840 
4841 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4842 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4843 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4844 
4845 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4846 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4847 
4848 	f2fs_allocate_new_section(sbi, type, true);
4849 
4850 	/* check consistency of the zone curseg pointed to */
4851 	if (check_zone_write_pointer(sbi, zbd, &zone))
4852 		return -EIO;
4853 
4854 	/* check newly assigned zone */
4855 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4856 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4857 
4858 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4859 	if (!zbd)
4860 		return 0;
4861 
4862 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4863 		<< log_sectors_per_block;
4864 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4865 				  report_one_zone_cb, &zone);
4866 	if (err != 1) {
4867 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4868 			 zbd->path, err);
4869 		return err;
4870 	}
4871 
4872 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4873 		return 0;
4874 
4875 	if (zone.wp != zone.start) {
4876 		f2fs_notice(sbi,
4877 			    "New zone for curseg[%d] is not yet discarded. "
4878 			    "Reset the zone: curseg[0x%x,0x%x]",
4879 			    type, cs->segno, cs->next_blkoff);
4880 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4881 				zone_sector >> log_sectors_per_block,
4882 				zone.len >> log_sectors_per_block);
4883 		if (err) {
4884 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4885 				 zbd->path, err);
4886 			return err;
4887 		}
4888 	}
4889 
4890 	return 0;
4891 }
4892 
4893 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4894 {
4895 	int i, ret;
4896 
4897 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4898 		ret = fix_curseg_write_pointer(sbi, i);
4899 		if (ret)
4900 			return ret;
4901 	}
4902 
4903 	return 0;
4904 }
4905 
4906 struct check_zone_write_pointer_args {
4907 	struct f2fs_sb_info *sbi;
4908 	struct f2fs_dev_info *fdev;
4909 };
4910 
4911 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4912 				      void *data)
4913 {
4914 	struct check_zone_write_pointer_args *args;
4915 
4916 	args = (struct check_zone_write_pointer_args *)data;
4917 
4918 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4919 }
4920 
4921 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4922 {
4923 	int i, ret;
4924 	struct check_zone_write_pointer_args args;
4925 
4926 	for (i = 0; i < sbi->s_ndevs; i++) {
4927 		if (!bdev_is_zoned(FDEV(i).bdev))
4928 			continue;
4929 
4930 		args.sbi = sbi;
4931 		args.fdev = &FDEV(i);
4932 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4933 					  check_zone_write_pointer_cb, &args);
4934 		if (ret < 0)
4935 			return ret;
4936 	}
4937 
4938 	return 0;
4939 }
4940 
4941 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4942 						unsigned int dev_idx)
4943 {
4944 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4945 		return true;
4946 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4947 }
4948 
4949 /* Return the zone index in the given device */
4950 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4951 					int dev_idx)
4952 {
4953 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4954 
4955 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4956 						sbi->log_blocks_per_blkz;
4957 }
4958 
4959 /*
4960  * Return the usable segments in a section based on the zone's
4961  * corresponding zone capacity. Zone is equal to a section.
4962  */
4963 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4964 		struct f2fs_sb_info *sbi, unsigned int segno)
4965 {
4966 	unsigned int dev_idx, zone_idx;
4967 
4968 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4969 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4970 
4971 	/* Conventional zone's capacity is always equal to zone size */
4972 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4973 		return sbi->segs_per_sec;
4974 
4975 	if (!sbi->unusable_blocks_per_sec)
4976 		return sbi->segs_per_sec;
4977 
4978 	/* Get the segment count beyond zone capacity block */
4979 	return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4980 						sbi->log_blocks_per_seg);
4981 }
4982 
4983 /*
4984  * Return the number of usable blocks in a segment. The number of blocks
4985  * returned is always equal to the number of blocks in a segment for
4986  * segments fully contained within a sequential zone capacity or a
4987  * conventional zone. For segments partially contained in a sequential
4988  * zone capacity, the number of usable blocks up to the zone capacity
4989  * is returned. 0 is returned in all other cases.
4990  */
4991 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4992 			struct f2fs_sb_info *sbi, unsigned int segno)
4993 {
4994 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4995 	unsigned int zone_idx, dev_idx, secno;
4996 
4997 	secno = GET_SEC_FROM_SEG(sbi, segno);
4998 	seg_start = START_BLOCK(sbi, segno);
4999 	dev_idx = f2fs_target_device_index(sbi, seg_start);
5000 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5001 
5002 	/*
5003 	 * Conventional zone's capacity is always equal to zone size,
5004 	 * so, blocks per segment is unchanged.
5005 	 */
5006 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5007 		return sbi->blocks_per_seg;
5008 
5009 	if (!sbi->unusable_blocks_per_sec)
5010 		return sbi->blocks_per_seg;
5011 
5012 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5013 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5014 
5015 	/*
5016 	 * If segment starts before zone capacity and spans beyond
5017 	 * zone capacity, then usable blocks are from seg start to
5018 	 * zone capacity. If the segment starts after the zone capacity,
5019 	 * then there are no usable blocks.
5020 	 */
5021 	if (seg_start >= sec_cap_blkaddr)
5022 		return 0;
5023 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5024 		return sec_cap_blkaddr - seg_start;
5025 
5026 	return sbi->blocks_per_seg;
5027 }
5028 #else
5029 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5030 {
5031 	return 0;
5032 }
5033 
5034 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5035 {
5036 	return 0;
5037 }
5038 
5039 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5040 							unsigned int segno)
5041 {
5042 	return 0;
5043 }
5044 
5045 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5046 							unsigned int segno)
5047 {
5048 	return 0;
5049 }
5050 #endif
5051 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5052 					unsigned int segno)
5053 {
5054 	if (f2fs_sb_has_blkzoned(sbi))
5055 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5056 
5057 	return sbi->blocks_per_seg;
5058 }
5059 
5060 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5061 					unsigned int segno)
5062 {
5063 	if (f2fs_sb_has_blkzoned(sbi))
5064 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5065 
5066 	return sbi->segs_per_sec;
5067 }
5068 
5069 /*
5070  * Update min, max modified time for cost-benefit GC algorithm
5071  */
5072 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5073 {
5074 	struct sit_info *sit_i = SIT_I(sbi);
5075 	unsigned int segno;
5076 
5077 	down_write(&sit_i->sentry_lock);
5078 
5079 	sit_i->min_mtime = ULLONG_MAX;
5080 
5081 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5082 		unsigned int i;
5083 		unsigned long long mtime = 0;
5084 
5085 		for (i = 0; i < sbi->segs_per_sec; i++)
5086 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5087 
5088 		mtime = div_u64(mtime, sbi->segs_per_sec);
5089 
5090 		if (sit_i->min_mtime > mtime)
5091 			sit_i->min_mtime = mtime;
5092 	}
5093 	sit_i->max_mtime = get_mtime(sbi, false);
5094 	sit_i->dirty_max_mtime = 0;
5095 	up_write(&sit_i->sentry_lock);
5096 }
5097 
5098 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5099 {
5100 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5101 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5102 	struct f2fs_sm_info *sm_info;
5103 	int err;
5104 
5105 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5106 	if (!sm_info)
5107 		return -ENOMEM;
5108 
5109 	/* init sm info */
5110 	sbi->sm_info = sm_info;
5111 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5112 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5113 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5114 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5115 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5116 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5117 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5118 	sm_info->rec_prefree_segments = sm_info->main_segments *
5119 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5120 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5121 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5122 
5123 	if (!f2fs_lfs_mode(sbi))
5124 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5125 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5126 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5127 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5128 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5129 	sm_info->min_ssr_sections = reserved_sections(sbi);
5130 
5131 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5132 
5133 	init_f2fs_rwsem(&sm_info->curseg_lock);
5134 
5135 	err = f2fs_create_flush_cmd_control(sbi);
5136 	if (err)
5137 		return err;
5138 
5139 	err = create_discard_cmd_control(sbi);
5140 	if (err)
5141 		return err;
5142 
5143 	err = build_sit_info(sbi);
5144 	if (err)
5145 		return err;
5146 	err = build_free_segmap(sbi);
5147 	if (err)
5148 		return err;
5149 	err = build_curseg(sbi);
5150 	if (err)
5151 		return err;
5152 
5153 	/* reinit free segmap based on SIT */
5154 	err = build_sit_entries(sbi);
5155 	if (err)
5156 		return err;
5157 
5158 	init_free_segmap(sbi);
5159 	err = build_dirty_segmap(sbi);
5160 	if (err)
5161 		return err;
5162 
5163 	err = sanity_check_curseg(sbi);
5164 	if (err)
5165 		return err;
5166 
5167 	init_min_max_mtime(sbi);
5168 	return 0;
5169 }
5170 
5171 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5172 		enum dirty_type dirty_type)
5173 {
5174 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5175 
5176 	mutex_lock(&dirty_i->seglist_lock);
5177 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5178 	dirty_i->nr_dirty[dirty_type] = 0;
5179 	mutex_unlock(&dirty_i->seglist_lock);
5180 }
5181 
5182 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5183 {
5184 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5185 
5186 	kvfree(dirty_i->pinned_secmap);
5187 	kvfree(dirty_i->victim_secmap);
5188 }
5189 
5190 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5191 {
5192 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5193 	int i;
5194 
5195 	if (!dirty_i)
5196 		return;
5197 
5198 	/* discard pre-free/dirty segments list */
5199 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5200 		discard_dirty_segmap(sbi, i);
5201 
5202 	if (__is_large_section(sbi)) {
5203 		mutex_lock(&dirty_i->seglist_lock);
5204 		kvfree(dirty_i->dirty_secmap);
5205 		mutex_unlock(&dirty_i->seglist_lock);
5206 	}
5207 
5208 	destroy_victim_secmap(sbi);
5209 	SM_I(sbi)->dirty_info = NULL;
5210 	kfree(dirty_i);
5211 }
5212 
5213 static void destroy_curseg(struct f2fs_sb_info *sbi)
5214 {
5215 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5216 	int i;
5217 
5218 	if (!array)
5219 		return;
5220 	SM_I(sbi)->curseg_array = NULL;
5221 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5222 		kfree(array[i].sum_blk);
5223 		kfree(array[i].journal);
5224 	}
5225 	kfree(array);
5226 }
5227 
5228 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5229 {
5230 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5231 
5232 	if (!free_i)
5233 		return;
5234 	SM_I(sbi)->free_info = NULL;
5235 	kvfree(free_i->free_segmap);
5236 	kvfree(free_i->free_secmap);
5237 	kfree(free_i);
5238 }
5239 
5240 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5241 {
5242 	struct sit_info *sit_i = SIT_I(sbi);
5243 
5244 	if (!sit_i)
5245 		return;
5246 
5247 	if (sit_i->sentries)
5248 		kvfree(sit_i->bitmap);
5249 	kfree(sit_i->tmp_map);
5250 
5251 	kvfree(sit_i->sentries);
5252 	kvfree(sit_i->sec_entries);
5253 	kvfree(sit_i->dirty_sentries_bitmap);
5254 
5255 	SM_I(sbi)->sit_info = NULL;
5256 	kvfree(sit_i->sit_bitmap);
5257 #ifdef CONFIG_F2FS_CHECK_FS
5258 	kvfree(sit_i->sit_bitmap_mir);
5259 	kvfree(sit_i->invalid_segmap);
5260 #endif
5261 	kfree(sit_i);
5262 }
5263 
5264 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5265 {
5266 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5267 
5268 	if (!sm_info)
5269 		return;
5270 	f2fs_destroy_flush_cmd_control(sbi, true);
5271 	destroy_discard_cmd_control(sbi);
5272 	destroy_dirty_segmap(sbi);
5273 	destroy_curseg(sbi);
5274 	destroy_free_segmap(sbi);
5275 	destroy_sit_info(sbi);
5276 	sbi->sm_info = NULL;
5277 	kfree(sm_info);
5278 }
5279 
5280 int __init f2fs_create_segment_manager_caches(void)
5281 {
5282 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5283 			sizeof(struct discard_entry));
5284 	if (!discard_entry_slab)
5285 		goto fail;
5286 
5287 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5288 			sizeof(struct discard_cmd));
5289 	if (!discard_cmd_slab)
5290 		goto destroy_discard_entry;
5291 
5292 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5293 			sizeof(struct sit_entry_set));
5294 	if (!sit_entry_set_slab)
5295 		goto destroy_discard_cmd;
5296 
5297 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5298 			sizeof(struct revoke_entry));
5299 	if (!revoke_entry_slab)
5300 		goto destroy_sit_entry_set;
5301 	return 0;
5302 
5303 destroy_sit_entry_set:
5304 	kmem_cache_destroy(sit_entry_set_slab);
5305 destroy_discard_cmd:
5306 	kmem_cache_destroy(discard_cmd_slab);
5307 destroy_discard_entry:
5308 	kmem_cache_destroy(discard_entry_slab);
5309 fail:
5310 	return -ENOMEM;
5311 }
5312 
5313 void f2fs_destroy_segment_manager_caches(void)
5314 {
5315 	kmem_cache_destroy(sit_entry_set_slab);
5316 	kmem_cache_destroy(discard_cmd_slab);
5317 	kmem_cache_destroy(discard_entry_slab);
5318 	kmem_cache_destroy(revoke_entry_slab);
5319 }
5320