xref: /openbmc/linux/fs/f2fs/segment.c (revision e7547daccd6a37522f0af74ec4b5a3036f3dd328)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	clear_inode_flag(fi->cow_inode, FI_COW_FILE);
196 	iput(fi->cow_inode);
197 	fi->cow_inode = NULL;
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	stat_dec_atomic_inode(inode);
203 
204 	if (clean) {
205 		truncate_inode_pages_final(inode->i_mapping);
206 		f2fs_i_size_write(inode, fi->original_i_size);
207 	}
208 }
209 
210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
211 			block_t new_addr, block_t *old_addr, bool recover)
212 {
213 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 	struct dnode_of_data dn;
215 	struct node_info ni;
216 	int err;
217 
218 retry:
219 	set_new_dnode(&dn, inode, NULL, NULL, 0);
220 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
221 	if (err) {
222 		if (err == -ENOMEM) {
223 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
224 			goto retry;
225 		}
226 		return err;
227 	}
228 
229 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
230 	if (err) {
231 		f2fs_put_dnode(&dn);
232 		return err;
233 	}
234 
235 	if (recover) {
236 		/* dn.data_blkaddr is always valid */
237 		if (!__is_valid_data_blkaddr(new_addr)) {
238 			if (new_addr == NULL_ADDR)
239 				dec_valid_block_count(sbi, inode, 1);
240 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
241 			f2fs_update_data_blkaddr(&dn, new_addr);
242 		} else {
243 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
244 				new_addr, ni.version, true, true);
245 		}
246 	} else {
247 		blkcnt_t count = 1;
248 
249 		*old_addr = dn.data_blkaddr;
250 		f2fs_truncate_data_blocks_range(&dn, 1);
251 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
252 		inc_valid_block_count(sbi, inode, &count);
253 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
254 					ni.version, true, false);
255 	}
256 
257 	f2fs_put_dnode(&dn);
258 	return 0;
259 }
260 
261 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
262 					bool revoke)
263 {
264 	struct revoke_entry *cur, *tmp;
265 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
266 
267 	list_for_each_entry_safe(cur, tmp, head, list) {
268 		if (revoke)
269 			__replace_atomic_write_block(inode, cur->index,
270 						cur->old_addr, NULL, true);
271 
272 		list_del(&cur->list);
273 		kmem_cache_free(revoke_entry_slab, cur);
274 	}
275 
276 	if (!revoke && truncate)
277 		f2fs_do_truncate_blocks(inode, 0, false);
278 }
279 
280 static int __f2fs_commit_atomic_write(struct inode *inode)
281 {
282 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
283 	struct f2fs_inode_info *fi = F2FS_I(inode);
284 	struct inode *cow_inode = fi->cow_inode;
285 	struct revoke_entry *new;
286 	struct list_head revoke_list;
287 	block_t blkaddr;
288 	struct dnode_of_data dn;
289 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
290 	pgoff_t off = 0, blen, index;
291 	int ret = 0, i;
292 
293 	INIT_LIST_HEAD(&revoke_list);
294 
295 	while (len) {
296 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
297 
298 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
299 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
300 		if (ret && ret != -ENOENT) {
301 			goto out;
302 		} else if (ret == -ENOENT) {
303 			ret = 0;
304 			if (dn.max_level == 0)
305 				goto out;
306 			goto next;
307 		}
308 
309 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
310 				len);
311 		index = off;
312 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
313 			blkaddr = f2fs_data_blkaddr(&dn);
314 
315 			if (!__is_valid_data_blkaddr(blkaddr)) {
316 				continue;
317 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
318 					DATA_GENERIC_ENHANCE)) {
319 				f2fs_put_dnode(&dn);
320 				ret = -EFSCORRUPTED;
321 				f2fs_handle_error(sbi,
322 						ERROR_INVALID_BLKADDR);
323 				goto out;
324 			}
325 
326 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
327 							true, NULL);
328 
329 			ret = __replace_atomic_write_block(inode, index, blkaddr,
330 							&new->old_addr, false);
331 			if (ret) {
332 				f2fs_put_dnode(&dn);
333 				kmem_cache_free(revoke_entry_slab, new);
334 				goto out;
335 			}
336 
337 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
338 			new->index = index;
339 			list_add_tail(&new->list, &revoke_list);
340 		}
341 		f2fs_put_dnode(&dn);
342 next:
343 		off += blen;
344 		len -= blen;
345 	}
346 
347 out:
348 	if (ret) {
349 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
350 	} else {
351 		sbi->committed_atomic_block += fi->atomic_write_cnt;
352 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
353 	}
354 
355 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
356 
357 	return ret;
358 }
359 
360 int f2fs_commit_atomic_write(struct inode *inode)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
363 	struct f2fs_inode_info *fi = F2FS_I(inode);
364 	int err;
365 
366 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
367 	if (err)
368 		return err;
369 
370 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
371 	f2fs_lock_op(sbi);
372 
373 	err = __f2fs_commit_atomic_write(inode);
374 
375 	f2fs_unlock_op(sbi);
376 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
377 
378 	return err;
379 }
380 
381 /*
382  * This function balances dirty node and dentry pages.
383  * In addition, it controls garbage collection.
384  */
385 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
386 {
387 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
388 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
389 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
390 	}
391 
392 	/* balance_fs_bg is able to be pending */
393 	if (need && excess_cached_nats(sbi))
394 		f2fs_balance_fs_bg(sbi, false);
395 
396 	if (!f2fs_is_checkpoint_ready(sbi))
397 		return;
398 
399 	/*
400 	 * We should do GC or end up with checkpoint, if there are so many dirty
401 	 * dir/node pages without enough free segments.
402 	 */
403 	if (has_not_enough_free_secs(sbi, 0, 0)) {
404 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
405 					sbi->gc_thread->f2fs_gc_task) {
406 			DEFINE_WAIT(wait);
407 
408 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
409 						TASK_UNINTERRUPTIBLE);
410 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
411 			io_schedule();
412 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
413 		} else {
414 			struct f2fs_gc_control gc_control = {
415 				.victim_segno = NULL_SEGNO,
416 				.init_gc_type = BG_GC,
417 				.no_bg_gc = true,
418 				.should_migrate_blocks = false,
419 				.err_gc_skipped = false,
420 				.nr_free_secs = 1 };
421 			f2fs_down_write(&sbi->gc_lock);
422 			f2fs_gc(sbi, &gc_control);
423 		}
424 	}
425 }
426 
427 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
428 {
429 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
430 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
431 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
432 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
433 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
434 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
435 	unsigned int threshold = sbi->blocks_per_seg * factor *
436 					DEFAULT_DIRTY_THRESHOLD;
437 	unsigned int global_threshold = threshold * 3 / 2;
438 
439 	if (dents >= threshold || qdata >= threshold ||
440 		nodes >= threshold || meta >= threshold ||
441 		imeta >= threshold)
442 		return true;
443 	return dents + qdata + nodes + meta + imeta >  global_threshold;
444 }
445 
446 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
447 {
448 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
449 		return;
450 
451 	/* try to shrink extent cache when there is no enough memory */
452 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
453 		f2fs_shrink_read_extent_tree(sbi,
454 				READ_EXTENT_CACHE_SHRINK_NUMBER);
455 
456 	/* check the # of cached NAT entries */
457 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
458 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
459 
460 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
461 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
462 	else
463 		f2fs_build_free_nids(sbi, false, false);
464 
465 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
466 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
467 		goto do_sync;
468 
469 	/* there is background inflight IO or foreground operation recently */
470 	if (is_inflight_io(sbi, REQ_TIME) ||
471 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
472 		return;
473 
474 	/* exceed periodical checkpoint timeout threshold */
475 	if (f2fs_time_over(sbi, CP_TIME))
476 		goto do_sync;
477 
478 	/* checkpoint is the only way to shrink partial cached entries */
479 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
480 		f2fs_available_free_memory(sbi, INO_ENTRIES))
481 		return;
482 
483 do_sync:
484 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
485 		struct blk_plug plug;
486 
487 		mutex_lock(&sbi->flush_lock);
488 
489 		blk_start_plug(&plug);
490 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
491 		blk_finish_plug(&plug);
492 
493 		mutex_unlock(&sbi->flush_lock);
494 	}
495 	f2fs_sync_fs(sbi->sb, 1);
496 	stat_inc_bg_cp_count(sbi->stat_info);
497 }
498 
499 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
500 				struct block_device *bdev)
501 {
502 	int ret = blkdev_issue_flush(bdev);
503 
504 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
505 				test_opt(sbi, FLUSH_MERGE), ret);
506 	return ret;
507 }
508 
509 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
510 {
511 	int ret = 0;
512 	int i;
513 
514 	if (!f2fs_is_multi_device(sbi))
515 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
516 
517 	for (i = 0; i < sbi->s_ndevs; i++) {
518 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
519 			continue;
520 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
521 		if (ret)
522 			break;
523 	}
524 	return ret;
525 }
526 
527 static int issue_flush_thread(void *data)
528 {
529 	struct f2fs_sb_info *sbi = data;
530 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
531 	wait_queue_head_t *q = &fcc->flush_wait_queue;
532 repeat:
533 	if (kthread_should_stop())
534 		return 0;
535 
536 	if (!llist_empty(&fcc->issue_list)) {
537 		struct flush_cmd *cmd, *next;
538 		int ret;
539 
540 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
541 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
542 
543 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
544 
545 		ret = submit_flush_wait(sbi, cmd->ino);
546 		atomic_inc(&fcc->issued_flush);
547 
548 		llist_for_each_entry_safe(cmd, next,
549 					  fcc->dispatch_list, llnode) {
550 			cmd->ret = ret;
551 			complete(&cmd->wait);
552 		}
553 		fcc->dispatch_list = NULL;
554 	}
555 
556 	wait_event_interruptible(*q,
557 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
558 	goto repeat;
559 }
560 
561 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
562 {
563 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
564 	struct flush_cmd cmd;
565 	int ret;
566 
567 	if (test_opt(sbi, NOBARRIER))
568 		return 0;
569 
570 	if (!test_opt(sbi, FLUSH_MERGE)) {
571 		atomic_inc(&fcc->queued_flush);
572 		ret = submit_flush_wait(sbi, ino);
573 		atomic_dec(&fcc->queued_flush);
574 		atomic_inc(&fcc->issued_flush);
575 		return ret;
576 	}
577 
578 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
579 	    f2fs_is_multi_device(sbi)) {
580 		ret = submit_flush_wait(sbi, ino);
581 		atomic_dec(&fcc->queued_flush);
582 
583 		atomic_inc(&fcc->issued_flush);
584 		return ret;
585 	}
586 
587 	cmd.ino = ino;
588 	init_completion(&cmd.wait);
589 
590 	llist_add(&cmd.llnode, &fcc->issue_list);
591 
592 	/*
593 	 * update issue_list before we wake up issue_flush thread, this
594 	 * smp_mb() pairs with another barrier in ___wait_event(), see
595 	 * more details in comments of waitqueue_active().
596 	 */
597 	smp_mb();
598 
599 	if (waitqueue_active(&fcc->flush_wait_queue))
600 		wake_up(&fcc->flush_wait_queue);
601 
602 	if (fcc->f2fs_issue_flush) {
603 		wait_for_completion(&cmd.wait);
604 		atomic_dec(&fcc->queued_flush);
605 	} else {
606 		struct llist_node *list;
607 
608 		list = llist_del_all(&fcc->issue_list);
609 		if (!list) {
610 			wait_for_completion(&cmd.wait);
611 			atomic_dec(&fcc->queued_flush);
612 		} else {
613 			struct flush_cmd *tmp, *next;
614 
615 			ret = submit_flush_wait(sbi, ino);
616 
617 			llist_for_each_entry_safe(tmp, next, list, llnode) {
618 				if (tmp == &cmd) {
619 					cmd.ret = ret;
620 					atomic_dec(&fcc->queued_flush);
621 					continue;
622 				}
623 				tmp->ret = ret;
624 				complete(&tmp->wait);
625 			}
626 		}
627 	}
628 
629 	return cmd.ret;
630 }
631 
632 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
633 {
634 	dev_t dev = sbi->sb->s_bdev->bd_dev;
635 	struct flush_cmd_control *fcc;
636 
637 	if (SM_I(sbi)->fcc_info) {
638 		fcc = SM_I(sbi)->fcc_info;
639 		if (fcc->f2fs_issue_flush)
640 			return 0;
641 		goto init_thread;
642 	}
643 
644 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
645 	if (!fcc)
646 		return -ENOMEM;
647 	atomic_set(&fcc->issued_flush, 0);
648 	atomic_set(&fcc->queued_flush, 0);
649 	init_waitqueue_head(&fcc->flush_wait_queue);
650 	init_llist_head(&fcc->issue_list);
651 	SM_I(sbi)->fcc_info = fcc;
652 	if (!test_opt(sbi, FLUSH_MERGE))
653 		return 0;
654 
655 init_thread:
656 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
657 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
658 	if (IS_ERR(fcc->f2fs_issue_flush)) {
659 		int err = PTR_ERR(fcc->f2fs_issue_flush);
660 
661 		kfree(fcc);
662 		SM_I(sbi)->fcc_info = NULL;
663 		return err;
664 	}
665 
666 	return 0;
667 }
668 
669 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
670 {
671 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
672 
673 	if (fcc && fcc->f2fs_issue_flush) {
674 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
675 
676 		fcc->f2fs_issue_flush = NULL;
677 		kthread_stop(flush_thread);
678 	}
679 	if (free) {
680 		kfree(fcc);
681 		SM_I(sbi)->fcc_info = NULL;
682 	}
683 }
684 
685 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
686 {
687 	int ret = 0, i;
688 
689 	if (!f2fs_is_multi_device(sbi))
690 		return 0;
691 
692 	if (test_opt(sbi, NOBARRIER))
693 		return 0;
694 
695 	for (i = 1; i < sbi->s_ndevs; i++) {
696 		int count = DEFAULT_RETRY_IO_COUNT;
697 
698 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
699 			continue;
700 
701 		do {
702 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
703 			if (ret)
704 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
705 		} while (ret && --count);
706 
707 		if (ret) {
708 			f2fs_stop_checkpoint(sbi, false,
709 					STOP_CP_REASON_FLUSH_FAIL);
710 			break;
711 		}
712 
713 		spin_lock(&sbi->dev_lock);
714 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
715 		spin_unlock(&sbi->dev_lock);
716 	}
717 
718 	return ret;
719 }
720 
721 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
722 		enum dirty_type dirty_type)
723 {
724 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
725 
726 	/* need not be added */
727 	if (IS_CURSEG(sbi, segno))
728 		return;
729 
730 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
731 		dirty_i->nr_dirty[dirty_type]++;
732 
733 	if (dirty_type == DIRTY) {
734 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
735 		enum dirty_type t = sentry->type;
736 
737 		if (unlikely(t >= DIRTY)) {
738 			f2fs_bug_on(sbi, 1);
739 			return;
740 		}
741 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
742 			dirty_i->nr_dirty[t]++;
743 
744 		if (__is_large_section(sbi)) {
745 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
746 			block_t valid_blocks =
747 				get_valid_blocks(sbi, segno, true);
748 
749 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
750 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
751 
752 			if (!IS_CURSEC(sbi, secno))
753 				set_bit(secno, dirty_i->dirty_secmap);
754 		}
755 	}
756 }
757 
758 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
759 		enum dirty_type dirty_type)
760 {
761 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
762 	block_t valid_blocks;
763 
764 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
765 		dirty_i->nr_dirty[dirty_type]--;
766 
767 	if (dirty_type == DIRTY) {
768 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
769 		enum dirty_type t = sentry->type;
770 
771 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
772 			dirty_i->nr_dirty[t]--;
773 
774 		valid_blocks = get_valid_blocks(sbi, segno, true);
775 		if (valid_blocks == 0) {
776 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
777 						dirty_i->victim_secmap);
778 #ifdef CONFIG_F2FS_CHECK_FS
779 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
780 #endif
781 		}
782 		if (__is_large_section(sbi)) {
783 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
784 
785 			if (!valid_blocks ||
786 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
787 				clear_bit(secno, dirty_i->dirty_secmap);
788 				return;
789 			}
790 
791 			if (!IS_CURSEC(sbi, secno))
792 				set_bit(secno, dirty_i->dirty_secmap);
793 		}
794 	}
795 }
796 
797 /*
798  * Should not occur error such as -ENOMEM.
799  * Adding dirty entry into seglist is not critical operation.
800  * If a given segment is one of current working segments, it won't be added.
801  */
802 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
803 {
804 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
805 	unsigned short valid_blocks, ckpt_valid_blocks;
806 	unsigned int usable_blocks;
807 
808 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
809 		return;
810 
811 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
812 	mutex_lock(&dirty_i->seglist_lock);
813 
814 	valid_blocks = get_valid_blocks(sbi, segno, false);
815 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
816 
817 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
818 		ckpt_valid_blocks == usable_blocks)) {
819 		__locate_dirty_segment(sbi, segno, PRE);
820 		__remove_dirty_segment(sbi, segno, DIRTY);
821 	} else if (valid_blocks < usable_blocks) {
822 		__locate_dirty_segment(sbi, segno, DIRTY);
823 	} else {
824 		/* Recovery routine with SSR needs this */
825 		__remove_dirty_segment(sbi, segno, DIRTY);
826 	}
827 
828 	mutex_unlock(&dirty_i->seglist_lock);
829 }
830 
831 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
832 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
833 {
834 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
835 	unsigned int segno;
836 
837 	mutex_lock(&dirty_i->seglist_lock);
838 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
839 		if (get_valid_blocks(sbi, segno, false))
840 			continue;
841 		if (IS_CURSEG(sbi, segno))
842 			continue;
843 		__locate_dirty_segment(sbi, segno, PRE);
844 		__remove_dirty_segment(sbi, segno, DIRTY);
845 	}
846 	mutex_unlock(&dirty_i->seglist_lock);
847 }
848 
849 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
850 {
851 	int ovp_hole_segs =
852 		(overprovision_segments(sbi) - reserved_segments(sbi));
853 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
854 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
855 	block_t holes[2] = {0, 0};	/* DATA and NODE */
856 	block_t unusable;
857 	struct seg_entry *se;
858 	unsigned int segno;
859 
860 	mutex_lock(&dirty_i->seglist_lock);
861 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
862 		se = get_seg_entry(sbi, segno);
863 		if (IS_NODESEG(se->type))
864 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
865 							se->valid_blocks;
866 		else
867 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
868 							se->valid_blocks;
869 	}
870 	mutex_unlock(&dirty_i->seglist_lock);
871 
872 	unusable = max(holes[DATA], holes[NODE]);
873 	if (unusable > ovp_holes)
874 		return unusable - ovp_holes;
875 	return 0;
876 }
877 
878 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
879 {
880 	int ovp_hole_segs =
881 		(overprovision_segments(sbi) - reserved_segments(sbi));
882 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
883 		return -EAGAIN;
884 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
885 		dirty_segments(sbi) > ovp_hole_segs)
886 		return -EAGAIN;
887 	return 0;
888 }
889 
890 /* This is only used by SBI_CP_DISABLED */
891 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
892 {
893 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
894 	unsigned int segno = 0;
895 
896 	mutex_lock(&dirty_i->seglist_lock);
897 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
898 		if (get_valid_blocks(sbi, segno, false))
899 			continue;
900 		if (get_ckpt_valid_blocks(sbi, segno, false))
901 			continue;
902 		mutex_unlock(&dirty_i->seglist_lock);
903 		return segno;
904 	}
905 	mutex_unlock(&dirty_i->seglist_lock);
906 	return NULL_SEGNO;
907 }
908 
909 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
910 		struct block_device *bdev, block_t lstart,
911 		block_t start, block_t len)
912 {
913 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
914 	struct list_head *pend_list;
915 	struct discard_cmd *dc;
916 
917 	f2fs_bug_on(sbi, !len);
918 
919 	pend_list = &dcc->pend_list[plist_idx(len)];
920 
921 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
922 	INIT_LIST_HEAD(&dc->list);
923 	dc->bdev = bdev;
924 	dc->lstart = lstart;
925 	dc->start = start;
926 	dc->len = len;
927 	dc->ref = 0;
928 	dc->state = D_PREP;
929 	dc->queued = 0;
930 	dc->error = 0;
931 	init_completion(&dc->wait);
932 	list_add_tail(&dc->list, pend_list);
933 	spin_lock_init(&dc->lock);
934 	dc->bio_ref = 0;
935 	atomic_inc(&dcc->discard_cmd_cnt);
936 	dcc->undiscard_blks += len;
937 
938 	return dc;
939 }
940 
941 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
942 				struct block_device *bdev, block_t lstart,
943 				block_t start, block_t len,
944 				struct rb_node *parent, struct rb_node **p,
945 				bool leftmost)
946 {
947 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
948 	struct discard_cmd *dc;
949 
950 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
951 
952 	rb_link_node(&dc->rb_node, parent, p);
953 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
954 
955 	return dc;
956 }
957 
958 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
959 							struct discard_cmd *dc)
960 {
961 	if (dc->state == D_DONE)
962 		atomic_sub(dc->queued, &dcc->queued_discard);
963 
964 	list_del(&dc->list);
965 	rb_erase_cached(&dc->rb_node, &dcc->root);
966 	dcc->undiscard_blks -= dc->len;
967 
968 	kmem_cache_free(discard_cmd_slab, dc);
969 
970 	atomic_dec(&dcc->discard_cmd_cnt);
971 }
972 
973 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
974 							struct discard_cmd *dc)
975 {
976 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
977 	unsigned long flags;
978 
979 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
980 
981 	spin_lock_irqsave(&dc->lock, flags);
982 	if (dc->bio_ref) {
983 		spin_unlock_irqrestore(&dc->lock, flags);
984 		return;
985 	}
986 	spin_unlock_irqrestore(&dc->lock, flags);
987 
988 	f2fs_bug_on(sbi, dc->ref);
989 
990 	if (dc->error == -EOPNOTSUPP)
991 		dc->error = 0;
992 
993 	if (dc->error)
994 		printk_ratelimited(
995 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
996 			KERN_INFO, sbi->sb->s_id,
997 			dc->lstart, dc->start, dc->len, dc->error);
998 	__detach_discard_cmd(dcc, dc);
999 }
1000 
1001 static void f2fs_submit_discard_endio(struct bio *bio)
1002 {
1003 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1004 	unsigned long flags;
1005 
1006 	spin_lock_irqsave(&dc->lock, flags);
1007 	if (!dc->error)
1008 		dc->error = blk_status_to_errno(bio->bi_status);
1009 	dc->bio_ref--;
1010 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1011 		dc->state = D_DONE;
1012 		complete_all(&dc->wait);
1013 	}
1014 	spin_unlock_irqrestore(&dc->lock, flags);
1015 	bio_put(bio);
1016 }
1017 
1018 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1019 				block_t start, block_t end)
1020 {
1021 #ifdef CONFIG_F2FS_CHECK_FS
1022 	struct seg_entry *sentry;
1023 	unsigned int segno;
1024 	block_t blk = start;
1025 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1026 	unsigned long *map;
1027 
1028 	while (blk < end) {
1029 		segno = GET_SEGNO(sbi, blk);
1030 		sentry = get_seg_entry(sbi, segno);
1031 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1032 
1033 		if (end < START_BLOCK(sbi, segno + 1))
1034 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1035 		else
1036 			size = max_blocks;
1037 		map = (unsigned long *)(sentry->cur_valid_map);
1038 		offset = __find_rev_next_bit(map, size, offset);
1039 		f2fs_bug_on(sbi, offset != size);
1040 		blk = START_BLOCK(sbi, segno + 1);
1041 	}
1042 #endif
1043 }
1044 
1045 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1046 				struct discard_policy *dpolicy,
1047 				int discard_type, unsigned int granularity)
1048 {
1049 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1050 
1051 	/* common policy */
1052 	dpolicy->type = discard_type;
1053 	dpolicy->sync = true;
1054 	dpolicy->ordered = false;
1055 	dpolicy->granularity = granularity;
1056 
1057 	dpolicy->max_requests = dcc->max_discard_request;
1058 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1059 	dpolicy->timeout = false;
1060 
1061 	if (discard_type == DPOLICY_BG) {
1062 		dpolicy->min_interval = dcc->min_discard_issue_time;
1063 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1064 		dpolicy->max_interval = dcc->max_discard_issue_time;
1065 		dpolicy->io_aware = true;
1066 		dpolicy->sync = false;
1067 		dpolicy->ordered = true;
1068 		if (utilization(sbi) > dcc->discard_urgent_util) {
1069 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1070 			if (atomic_read(&dcc->discard_cmd_cnt))
1071 				dpolicy->max_interval =
1072 					dcc->min_discard_issue_time;
1073 		}
1074 	} else if (discard_type == DPOLICY_FORCE) {
1075 		dpolicy->min_interval = dcc->min_discard_issue_time;
1076 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1077 		dpolicy->max_interval = dcc->max_discard_issue_time;
1078 		dpolicy->io_aware = false;
1079 	} else if (discard_type == DPOLICY_FSTRIM) {
1080 		dpolicy->io_aware = false;
1081 	} else if (discard_type == DPOLICY_UMOUNT) {
1082 		dpolicy->io_aware = false;
1083 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1084 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1085 		dpolicy->timeout = true;
1086 	}
1087 }
1088 
1089 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1090 				struct block_device *bdev, block_t lstart,
1091 				block_t start, block_t len);
1092 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1093 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1094 						struct discard_policy *dpolicy,
1095 						struct discard_cmd *dc,
1096 						unsigned int *issued)
1097 {
1098 	struct block_device *bdev = dc->bdev;
1099 	unsigned int max_discard_blocks =
1100 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1101 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1102 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1103 					&(dcc->fstrim_list) : &(dcc->wait_list);
1104 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1105 	block_t lstart, start, len, total_len;
1106 	int err = 0;
1107 
1108 	if (dc->state != D_PREP)
1109 		return 0;
1110 
1111 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1112 		return 0;
1113 
1114 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1115 
1116 	lstart = dc->lstart;
1117 	start = dc->start;
1118 	len = dc->len;
1119 	total_len = len;
1120 
1121 	dc->len = 0;
1122 
1123 	while (total_len && *issued < dpolicy->max_requests && !err) {
1124 		struct bio *bio = NULL;
1125 		unsigned long flags;
1126 		bool last = true;
1127 
1128 		if (len > max_discard_blocks) {
1129 			len = max_discard_blocks;
1130 			last = false;
1131 		}
1132 
1133 		(*issued)++;
1134 		if (*issued == dpolicy->max_requests)
1135 			last = true;
1136 
1137 		dc->len += len;
1138 
1139 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1140 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1141 			err = -EIO;
1142 		} else {
1143 			err = __blkdev_issue_discard(bdev,
1144 					SECTOR_FROM_BLOCK(start),
1145 					SECTOR_FROM_BLOCK(len),
1146 					GFP_NOFS, &bio);
1147 		}
1148 		if (err) {
1149 			spin_lock_irqsave(&dc->lock, flags);
1150 			if (dc->state == D_PARTIAL)
1151 				dc->state = D_SUBMIT;
1152 			spin_unlock_irqrestore(&dc->lock, flags);
1153 
1154 			break;
1155 		}
1156 
1157 		f2fs_bug_on(sbi, !bio);
1158 
1159 		/*
1160 		 * should keep before submission to avoid D_DONE
1161 		 * right away
1162 		 */
1163 		spin_lock_irqsave(&dc->lock, flags);
1164 		if (last)
1165 			dc->state = D_SUBMIT;
1166 		else
1167 			dc->state = D_PARTIAL;
1168 		dc->bio_ref++;
1169 		spin_unlock_irqrestore(&dc->lock, flags);
1170 
1171 		atomic_inc(&dcc->queued_discard);
1172 		dc->queued++;
1173 		list_move_tail(&dc->list, wait_list);
1174 
1175 		/* sanity check on discard range */
1176 		__check_sit_bitmap(sbi, lstart, lstart + len);
1177 
1178 		bio->bi_private = dc;
1179 		bio->bi_end_io = f2fs_submit_discard_endio;
1180 		bio->bi_opf |= flag;
1181 		submit_bio(bio);
1182 
1183 		atomic_inc(&dcc->issued_discard);
1184 
1185 		f2fs_update_iostat(sbi, NULL, FS_DISCARD, 1);
1186 
1187 		lstart += len;
1188 		start += len;
1189 		total_len -= len;
1190 		len = total_len;
1191 	}
1192 
1193 	if (!err && len) {
1194 		dcc->undiscard_blks -= len;
1195 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1196 	}
1197 	return err;
1198 }
1199 
1200 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1201 				struct block_device *bdev, block_t lstart,
1202 				block_t start, block_t len,
1203 				struct rb_node **insert_p,
1204 				struct rb_node *insert_parent)
1205 {
1206 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1207 	struct rb_node **p;
1208 	struct rb_node *parent = NULL;
1209 	bool leftmost = true;
1210 
1211 	if (insert_p && insert_parent) {
1212 		parent = insert_parent;
1213 		p = insert_p;
1214 		goto do_insert;
1215 	}
1216 
1217 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1218 							lstart, &leftmost);
1219 do_insert:
1220 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1221 								p, leftmost);
1222 }
1223 
1224 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1225 						struct discard_cmd *dc)
1226 {
1227 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1228 }
1229 
1230 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1231 				struct discard_cmd *dc, block_t blkaddr)
1232 {
1233 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1234 	struct discard_info di = dc->di;
1235 	bool modified = false;
1236 
1237 	if (dc->state == D_DONE || dc->len == 1) {
1238 		__remove_discard_cmd(sbi, dc);
1239 		return;
1240 	}
1241 
1242 	dcc->undiscard_blks -= di.len;
1243 
1244 	if (blkaddr > di.lstart) {
1245 		dc->len = blkaddr - dc->lstart;
1246 		dcc->undiscard_blks += dc->len;
1247 		__relocate_discard_cmd(dcc, dc);
1248 		modified = true;
1249 	}
1250 
1251 	if (blkaddr < di.lstart + di.len - 1) {
1252 		if (modified) {
1253 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1254 					di.start + blkaddr + 1 - di.lstart,
1255 					di.lstart + di.len - 1 - blkaddr,
1256 					NULL, NULL);
1257 		} else {
1258 			dc->lstart++;
1259 			dc->len--;
1260 			dc->start++;
1261 			dcc->undiscard_blks += dc->len;
1262 			__relocate_discard_cmd(dcc, dc);
1263 		}
1264 	}
1265 }
1266 
1267 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1268 				struct block_device *bdev, block_t lstart,
1269 				block_t start, block_t len)
1270 {
1271 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1272 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1273 	struct discard_cmd *dc;
1274 	struct discard_info di = {0};
1275 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1276 	unsigned int max_discard_blocks =
1277 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1278 	block_t end = lstart + len;
1279 
1280 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1281 					NULL, lstart,
1282 					(struct rb_entry **)&prev_dc,
1283 					(struct rb_entry **)&next_dc,
1284 					&insert_p, &insert_parent, true, NULL);
1285 	if (dc)
1286 		prev_dc = dc;
1287 
1288 	if (!prev_dc) {
1289 		di.lstart = lstart;
1290 		di.len = next_dc ? next_dc->lstart - lstart : len;
1291 		di.len = min(di.len, len);
1292 		di.start = start;
1293 	}
1294 
1295 	while (1) {
1296 		struct rb_node *node;
1297 		bool merged = false;
1298 		struct discard_cmd *tdc = NULL;
1299 
1300 		if (prev_dc) {
1301 			di.lstart = prev_dc->lstart + prev_dc->len;
1302 			if (di.lstart < lstart)
1303 				di.lstart = lstart;
1304 			if (di.lstart >= end)
1305 				break;
1306 
1307 			if (!next_dc || next_dc->lstart > end)
1308 				di.len = end - di.lstart;
1309 			else
1310 				di.len = next_dc->lstart - di.lstart;
1311 			di.start = start + di.lstart - lstart;
1312 		}
1313 
1314 		if (!di.len)
1315 			goto next;
1316 
1317 		if (prev_dc && prev_dc->state == D_PREP &&
1318 			prev_dc->bdev == bdev &&
1319 			__is_discard_back_mergeable(&di, &prev_dc->di,
1320 							max_discard_blocks)) {
1321 			prev_dc->di.len += di.len;
1322 			dcc->undiscard_blks += di.len;
1323 			__relocate_discard_cmd(dcc, prev_dc);
1324 			di = prev_dc->di;
1325 			tdc = prev_dc;
1326 			merged = true;
1327 		}
1328 
1329 		if (next_dc && next_dc->state == D_PREP &&
1330 			next_dc->bdev == bdev &&
1331 			__is_discard_front_mergeable(&di, &next_dc->di,
1332 							max_discard_blocks)) {
1333 			next_dc->di.lstart = di.lstart;
1334 			next_dc->di.len += di.len;
1335 			next_dc->di.start = di.start;
1336 			dcc->undiscard_blks += di.len;
1337 			__relocate_discard_cmd(dcc, next_dc);
1338 			if (tdc)
1339 				__remove_discard_cmd(sbi, tdc);
1340 			merged = true;
1341 		}
1342 
1343 		if (!merged) {
1344 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1345 							di.len, NULL, NULL);
1346 		}
1347  next:
1348 		prev_dc = next_dc;
1349 		if (!prev_dc)
1350 			break;
1351 
1352 		node = rb_next(&prev_dc->rb_node);
1353 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1354 	}
1355 }
1356 
1357 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1358 		struct block_device *bdev, block_t blkstart, block_t blklen)
1359 {
1360 	block_t lblkstart = blkstart;
1361 
1362 	if (!f2fs_bdev_support_discard(bdev))
1363 		return;
1364 
1365 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1366 
1367 	if (f2fs_is_multi_device(sbi)) {
1368 		int devi = f2fs_target_device_index(sbi, blkstart);
1369 
1370 		blkstart -= FDEV(devi).start_blk;
1371 	}
1372 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1373 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1374 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1375 }
1376 
1377 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1378 					struct discard_policy *dpolicy)
1379 {
1380 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1381 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1382 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1383 	struct discard_cmd *dc;
1384 	struct blk_plug plug;
1385 	unsigned int pos = dcc->next_pos;
1386 	unsigned int issued = 0;
1387 	bool io_interrupted = false;
1388 
1389 	mutex_lock(&dcc->cmd_lock);
1390 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1391 					NULL, pos,
1392 					(struct rb_entry **)&prev_dc,
1393 					(struct rb_entry **)&next_dc,
1394 					&insert_p, &insert_parent, true, NULL);
1395 	if (!dc)
1396 		dc = next_dc;
1397 
1398 	blk_start_plug(&plug);
1399 
1400 	while (dc) {
1401 		struct rb_node *node;
1402 		int err = 0;
1403 
1404 		if (dc->state != D_PREP)
1405 			goto next;
1406 
1407 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1408 			io_interrupted = true;
1409 			break;
1410 		}
1411 
1412 		dcc->next_pos = dc->lstart + dc->len;
1413 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1414 
1415 		if (issued >= dpolicy->max_requests)
1416 			break;
1417 next:
1418 		node = rb_next(&dc->rb_node);
1419 		if (err)
1420 			__remove_discard_cmd(sbi, dc);
1421 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1422 	}
1423 
1424 	blk_finish_plug(&plug);
1425 
1426 	if (!dc)
1427 		dcc->next_pos = 0;
1428 
1429 	mutex_unlock(&dcc->cmd_lock);
1430 
1431 	if (!issued && io_interrupted)
1432 		issued = -1;
1433 
1434 	return issued;
1435 }
1436 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1437 					struct discard_policy *dpolicy);
1438 
1439 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1440 					struct discard_policy *dpolicy)
1441 {
1442 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1443 	struct list_head *pend_list;
1444 	struct discard_cmd *dc, *tmp;
1445 	struct blk_plug plug;
1446 	int i, issued;
1447 	bool io_interrupted = false;
1448 
1449 	if (dpolicy->timeout)
1450 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1451 
1452 retry:
1453 	issued = 0;
1454 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1455 		if (dpolicy->timeout &&
1456 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1457 			break;
1458 
1459 		if (i + 1 < dpolicy->granularity)
1460 			break;
1461 
1462 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered)
1463 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1464 
1465 		pend_list = &dcc->pend_list[i];
1466 
1467 		mutex_lock(&dcc->cmd_lock);
1468 		if (list_empty(pend_list))
1469 			goto next;
1470 		if (unlikely(dcc->rbtree_check))
1471 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1472 							&dcc->root, false));
1473 		blk_start_plug(&plug);
1474 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1475 			f2fs_bug_on(sbi, dc->state != D_PREP);
1476 
1477 			if (dpolicy->timeout &&
1478 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1479 				break;
1480 
1481 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1482 						!is_idle(sbi, DISCARD_TIME)) {
1483 				io_interrupted = true;
1484 				break;
1485 			}
1486 
1487 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1488 
1489 			if (issued >= dpolicy->max_requests)
1490 				break;
1491 		}
1492 		blk_finish_plug(&plug);
1493 next:
1494 		mutex_unlock(&dcc->cmd_lock);
1495 
1496 		if (issued >= dpolicy->max_requests || io_interrupted)
1497 			break;
1498 	}
1499 
1500 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1501 		__wait_all_discard_cmd(sbi, dpolicy);
1502 		goto retry;
1503 	}
1504 
1505 	if (!issued && io_interrupted)
1506 		issued = -1;
1507 
1508 	return issued;
1509 }
1510 
1511 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1512 {
1513 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1514 	struct list_head *pend_list;
1515 	struct discard_cmd *dc, *tmp;
1516 	int i;
1517 	bool dropped = false;
1518 
1519 	mutex_lock(&dcc->cmd_lock);
1520 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1521 		pend_list = &dcc->pend_list[i];
1522 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1523 			f2fs_bug_on(sbi, dc->state != D_PREP);
1524 			__remove_discard_cmd(sbi, dc);
1525 			dropped = true;
1526 		}
1527 	}
1528 	mutex_unlock(&dcc->cmd_lock);
1529 
1530 	return dropped;
1531 }
1532 
1533 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1534 {
1535 	__drop_discard_cmd(sbi);
1536 }
1537 
1538 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1539 							struct discard_cmd *dc)
1540 {
1541 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1542 	unsigned int len = 0;
1543 
1544 	wait_for_completion_io(&dc->wait);
1545 	mutex_lock(&dcc->cmd_lock);
1546 	f2fs_bug_on(sbi, dc->state != D_DONE);
1547 	dc->ref--;
1548 	if (!dc->ref) {
1549 		if (!dc->error)
1550 			len = dc->len;
1551 		__remove_discard_cmd(sbi, dc);
1552 	}
1553 	mutex_unlock(&dcc->cmd_lock);
1554 
1555 	return len;
1556 }
1557 
1558 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1559 						struct discard_policy *dpolicy,
1560 						block_t start, block_t end)
1561 {
1562 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1563 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1564 					&(dcc->fstrim_list) : &(dcc->wait_list);
1565 	struct discard_cmd *dc = NULL, *iter, *tmp;
1566 	unsigned int trimmed = 0;
1567 
1568 next:
1569 	dc = NULL;
1570 
1571 	mutex_lock(&dcc->cmd_lock);
1572 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1573 		if (iter->lstart + iter->len <= start || end <= iter->lstart)
1574 			continue;
1575 		if (iter->len < dpolicy->granularity)
1576 			continue;
1577 		if (iter->state == D_DONE && !iter->ref) {
1578 			wait_for_completion_io(&iter->wait);
1579 			if (!iter->error)
1580 				trimmed += iter->len;
1581 			__remove_discard_cmd(sbi, iter);
1582 		} else {
1583 			iter->ref++;
1584 			dc = iter;
1585 			break;
1586 		}
1587 	}
1588 	mutex_unlock(&dcc->cmd_lock);
1589 
1590 	if (dc) {
1591 		trimmed += __wait_one_discard_bio(sbi, dc);
1592 		goto next;
1593 	}
1594 
1595 	return trimmed;
1596 }
1597 
1598 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1599 						struct discard_policy *dpolicy)
1600 {
1601 	struct discard_policy dp;
1602 	unsigned int discard_blks;
1603 
1604 	if (dpolicy)
1605 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1606 
1607 	/* wait all */
1608 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1609 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1610 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1611 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1612 
1613 	return discard_blks;
1614 }
1615 
1616 /* This should be covered by global mutex, &sit_i->sentry_lock */
1617 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1618 {
1619 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1620 	struct discard_cmd *dc;
1621 	bool need_wait = false;
1622 
1623 	mutex_lock(&dcc->cmd_lock);
1624 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1625 							NULL, blkaddr);
1626 	if (dc) {
1627 		if (dc->state == D_PREP) {
1628 			__punch_discard_cmd(sbi, dc, blkaddr);
1629 		} else {
1630 			dc->ref++;
1631 			need_wait = true;
1632 		}
1633 	}
1634 	mutex_unlock(&dcc->cmd_lock);
1635 
1636 	if (need_wait)
1637 		__wait_one_discard_bio(sbi, dc);
1638 }
1639 
1640 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1641 {
1642 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1643 
1644 	if (dcc && dcc->f2fs_issue_discard) {
1645 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1646 
1647 		dcc->f2fs_issue_discard = NULL;
1648 		kthread_stop(discard_thread);
1649 	}
1650 }
1651 
1652 /* This comes from f2fs_put_super */
1653 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1654 {
1655 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1656 	struct discard_policy dpolicy;
1657 	bool dropped;
1658 
1659 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1660 					dcc->discard_granularity);
1661 	__issue_discard_cmd(sbi, &dpolicy);
1662 	dropped = __drop_discard_cmd(sbi);
1663 
1664 	/* just to make sure there is no pending discard commands */
1665 	__wait_all_discard_cmd(sbi, NULL);
1666 
1667 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1668 	return dropped;
1669 }
1670 
1671 static int issue_discard_thread(void *data)
1672 {
1673 	struct f2fs_sb_info *sbi = data;
1674 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1675 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1676 	struct discard_policy dpolicy;
1677 	unsigned int wait_ms = dcc->min_discard_issue_time;
1678 	int issued;
1679 
1680 	set_freezable();
1681 
1682 	do {
1683 		wait_event_interruptible_timeout(*q,
1684 				kthread_should_stop() || freezing(current) ||
1685 				dcc->discard_wake,
1686 				msecs_to_jiffies(wait_ms));
1687 
1688 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1689 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1690 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1691 		else
1692 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1693 						dcc->discard_granularity);
1694 
1695 		if (dcc->discard_wake)
1696 			dcc->discard_wake = 0;
1697 
1698 		/* clean up pending candidates before going to sleep */
1699 		if (atomic_read(&dcc->queued_discard))
1700 			__wait_all_discard_cmd(sbi, NULL);
1701 
1702 		if (try_to_freeze())
1703 			continue;
1704 		if (f2fs_readonly(sbi->sb))
1705 			continue;
1706 		if (kthread_should_stop())
1707 			return 0;
1708 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1709 			!atomic_read(&dcc->discard_cmd_cnt)) {
1710 			wait_ms = dpolicy.max_interval;
1711 			continue;
1712 		}
1713 
1714 		sb_start_intwrite(sbi->sb);
1715 
1716 		issued = __issue_discard_cmd(sbi, &dpolicy);
1717 		if (issued > 0) {
1718 			__wait_all_discard_cmd(sbi, &dpolicy);
1719 			wait_ms = dpolicy.min_interval;
1720 		} else if (issued == -1) {
1721 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1722 			if (!wait_ms)
1723 				wait_ms = dpolicy.mid_interval;
1724 		} else {
1725 			wait_ms = dpolicy.max_interval;
1726 		}
1727 		if (!atomic_read(&dcc->discard_cmd_cnt))
1728 			wait_ms = dpolicy.max_interval;
1729 
1730 		sb_end_intwrite(sbi->sb);
1731 
1732 	} while (!kthread_should_stop());
1733 	return 0;
1734 }
1735 
1736 #ifdef CONFIG_BLK_DEV_ZONED
1737 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1738 		struct block_device *bdev, block_t blkstart, block_t blklen)
1739 {
1740 	sector_t sector, nr_sects;
1741 	block_t lblkstart = blkstart;
1742 	int devi = 0;
1743 
1744 	if (f2fs_is_multi_device(sbi)) {
1745 		devi = f2fs_target_device_index(sbi, blkstart);
1746 		if (blkstart < FDEV(devi).start_blk ||
1747 		    blkstart > FDEV(devi).end_blk) {
1748 			f2fs_err(sbi, "Invalid block %x", blkstart);
1749 			return -EIO;
1750 		}
1751 		blkstart -= FDEV(devi).start_blk;
1752 	}
1753 
1754 	/* For sequential zones, reset the zone write pointer */
1755 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1756 		sector = SECTOR_FROM_BLOCK(blkstart);
1757 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1758 
1759 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1760 				nr_sects != bdev_zone_sectors(bdev)) {
1761 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1762 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1763 				 blkstart, blklen);
1764 			return -EIO;
1765 		}
1766 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1767 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1768 					sector, nr_sects, GFP_NOFS);
1769 	}
1770 
1771 	/* For conventional zones, use regular discard if supported */
1772 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1773 	return 0;
1774 }
1775 #endif
1776 
1777 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1778 		struct block_device *bdev, block_t blkstart, block_t blklen)
1779 {
1780 #ifdef CONFIG_BLK_DEV_ZONED
1781 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1782 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1783 #endif
1784 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1785 	return 0;
1786 }
1787 
1788 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1789 				block_t blkstart, block_t blklen)
1790 {
1791 	sector_t start = blkstart, len = 0;
1792 	struct block_device *bdev;
1793 	struct seg_entry *se;
1794 	unsigned int offset;
1795 	block_t i;
1796 	int err = 0;
1797 
1798 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1799 
1800 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1801 		if (i != start) {
1802 			struct block_device *bdev2 =
1803 				f2fs_target_device(sbi, i, NULL);
1804 
1805 			if (bdev2 != bdev) {
1806 				err = __issue_discard_async(sbi, bdev,
1807 						start, len);
1808 				if (err)
1809 					return err;
1810 				bdev = bdev2;
1811 				start = i;
1812 				len = 0;
1813 			}
1814 		}
1815 
1816 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1817 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1818 
1819 		if (f2fs_block_unit_discard(sbi) &&
1820 				!f2fs_test_and_set_bit(offset, se->discard_map))
1821 			sbi->discard_blks--;
1822 	}
1823 
1824 	if (len)
1825 		err = __issue_discard_async(sbi, bdev, start, len);
1826 	return err;
1827 }
1828 
1829 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1830 							bool check_only)
1831 {
1832 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1833 	int max_blocks = sbi->blocks_per_seg;
1834 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1835 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1836 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1837 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1838 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1839 	unsigned int start = 0, end = -1;
1840 	bool force = (cpc->reason & CP_DISCARD);
1841 	struct discard_entry *de = NULL;
1842 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1843 	int i;
1844 
1845 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1846 			!f2fs_block_unit_discard(sbi))
1847 		return false;
1848 
1849 	if (!force) {
1850 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1851 			SM_I(sbi)->dcc_info->nr_discards >=
1852 				SM_I(sbi)->dcc_info->max_discards)
1853 			return false;
1854 	}
1855 
1856 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1857 	for (i = 0; i < entries; i++)
1858 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1859 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1860 
1861 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1862 				SM_I(sbi)->dcc_info->max_discards) {
1863 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1864 		if (start >= max_blocks)
1865 			break;
1866 
1867 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1868 		if (force && start && end != max_blocks
1869 					&& (end - start) < cpc->trim_minlen)
1870 			continue;
1871 
1872 		if (check_only)
1873 			return true;
1874 
1875 		if (!de) {
1876 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1877 						GFP_F2FS_ZERO, true, NULL);
1878 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1879 			list_add_tail(&de->list, head);
1880 		}
1881 
1882 		for (i = start; i < end; i++)
1883 			__set_bit_le(i, (void *)de->discard_map);
1884 
1885 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1886 	}
1887 	return false;
1888 }
1889 
1890 static void release_discard_addr(struct discard_entry *entry)
1891 {
1892 	list_del(&entry->list);
1893 	kmem_cache_free(discard_entry_slab, entry);
1894 }
1895 
1896 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1897 {
1898 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1899 	struct discard_entry *entry, *this;
1900 
1901 	/* drop caches */
1902 	list_for_each_entry_safe(entry, this, head, list)
1903 		release_discard_addr(entry);
1904 }
1905 
1906 /*
1907  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1908  */
1909 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1910 {
1911 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1912 	unsigned int segno;
1913 
1914 	mutex_lock(&dirty_i->seglist_lock);
1915 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1916 		__set_test_and_free(sbi, segno, false);
1917 	mutex_unlock(&dirty_i->seglist_lock);
1918 }
1919 
1920 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1921 						struct cp_control *cpc)
1922 {
1923 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1924 	struct list_head *head = &dcc->entry_list;
1925 	struct discard_entry *entry, *this;
1926 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1927 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1928 	unsigned int start = 0, end = -1;
1929 	unsigned int secno, start_segno;
1930 	bool force = (cpc->reason & CP_DISCARD);
1931 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1932 						DISCARD_UNIT_SECTION;
1933 
1934 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1935 		section_alignment = true;
1936 
1937 	mutex_lock(&dirty_i->seglist_lock);
1938 
1939 	while (1) {
1940 		int i;
1941 
1942 		if (section_alignment && end != -1)
1943 			end--;
1944 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1945 		if (start >= MAIN_SEGS(sbi))
1946 			break;
1947 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1948 								start + 1);
1949 
1950 		if (section_alignment) {
1951 			start = rounddown(start, sbi->segs_per_sec);
1952 			end = roundup(end, sbi->segs_per_sec);
1953 		}
1954 
1955 		for (i = start; i < end; i++) {
1956 			if (test_and_clear_bit(i, prefree_map))
1957 				dirty_i->nr_dirty[PRE]--;
1958 		}
1959 
1960 		if (!f2fs_realtime_discard_enable(sbi))
1961 			continue;
1962 
1963 		if (force && start >= cpc->trim_start &&
1964 					(end - 1) <= cpc->trim_end)
1965 				continue;
1966 
1967 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1968 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1969 				(end - start) << sbi->log_blocks_per_seg);
1970 			continue;
1971 		}
1972 next:
1973 		secno = GET_SEC_FROM_SEG(sbi, start);
1974 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1975 		if (!IS_CURSEC(sbi, secno) &&
1976 			!get_valid_blocks(sbi, start, true))
1977 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1978 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1979 
1980 		start = start_segno + sbi->segs_per_sec;
1981 		if (start < end)
1982 			goto next;
1983 		else
1984 			end = start - 1;
1985 	}
1986 	mutex_unlock(&dirty_i->seglist_lock);
1987 
1988 	if (!f2fs_block_unit_discard(sbi))
1989 		goto wakeup;
1990 
1991 	/* send small discards */
1992 	list_for_each_entry_safe(entry, this, head, list) {
1993 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1994 		bool is_valid = test_bit_le(0, entry->discard_map);
1995 
1996 find_next:
1997 		if (is_valid) {
1998 			next_pos = find_next_zero_bit_le(entry->discard_map,
1999 					sbi->blocks_per_seg, cur_pos);
2000 			len = next_pos - cur_pos;
2001 
2002 			if (f2fs_sb_has_blkzoned(sbi) ||
2003 			    (force && len < cpc->trim_minlen))
2004 				goto skip;
2005 
2006 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2007 									len);
2008 			total_len += len;
2009 		} else {
2010 			next_pos = find_next_bit_le(entry->discard_map,
2011 					sbi->blocks_per_seg, cur_pos);
2012 		}
2013 skip:
2014 		cur_pos = next_pos;
2015 		is_valid = !is_valid;
2016 
2017 		if (cur_pos < sbi->blocks_per_seg)
2018 			goto find_next;
2019 
2020 		release_discard_addr(entry);
2021 		dcc->nr_discards -= total_len;
2022 	}
2023 
2024 wakeup:
2025 	wake_up_discard_thread(sbi, false);
2026 }
2027 
2028 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2029 {
2030 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2031 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2032 	int err = 0;
2033 
2034 	if (!f2fs_realtime_discard_enable(sbi))
2035 		return 0;
2036 
2037 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2038 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2039 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2040 		err = PTR_ERR(dcc->f2fs_issue_discard);
2041 		dcc->f2fs_issue_discard = NULL;
2042 	}
2043 
2044 	return err;
2045 }
2046 
2047 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2048 {
2049 	struct discard_cmd_control *dcc;
2050 	int err = 0, i;
2051 
2052 	if (SM_I(sbi)->dcc_info) {
2053 		dcc = SM_I(sbi)->dcc_info;
2054 		goto init_thread;
2055 	}
2056 
2057 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2058 	if (!dcc)
2059 		return -ENOMEM;
2060 
2061 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2062 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2063 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2064 		dcc->discard_granularity = sbi->blocks_per_seg;
2065 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2066 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2067 
2068 	INIT_LIST_HEAD(&dcc->entry_list);
2069 	for (i = 0; i < MAX_PLIST_NUM; i++)
2070 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2071 	INIT_LIST_HEAD(&dcc->wait_list);
2072 	INIT_LIST_HEAD(&dcc->fstrim_list);
2073 	mutex_init(&dcc->cmd_lock);
2074 	atomic_set(&dcc->issued_discard, 0);
2075 	atomic_set(&dcc->queued_discard, 0);
2076 	atomic_set(&dcc->discard_cmd_cnt, 0);
2077 	dcc->nr_discards = 0;
2078 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2079 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2080 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2081 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2082 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2083 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2084 	dcc->undiscard_blks = 0;
2085 	dcc->next_pos = 0;
2086 	dcc->root = RB_ROOT_CACHED;
2087 	dcc->rbtree_check = false;
2088 
2089 	init_waitqueue_head(&dcc->discard_wait_queue);
2090 	SM_I(sbi)->dcc_info = dcc;
2091 init_thread:
2092 	err = f2fs_start_discard_thread(sbi);
2093 	if (err) {
2094 		kfree(dcc);
2095 		SM_I(sbi)->dcc_info = NULL;
2096 	}
2097 
2098 	return err;
2099 }
2100 
2101 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2102 {
2103 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2104 
2105 	if (!dcc)
2106 		return;
2107 
2108 	f2fs_stop_discard_thread(sbi);
2109 
2110 	/*
2111 	 * Recovery can cache discard commands, so in error path of
2112 	 * fill_super(), it needs to give a chance to handle them.
2113 	 */
2114 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2115 		f2fs_issue_discard_timeout(sbi);
2116 
2117 	kfree(dcc);
2118 	SM_I(sbi)->dcc_info = NULL;
2119 }
2120 
2121 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2122 {
2123 	struct sit_info *sit_i = SIT_I(sbi);
2124 
2125 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2126 		sit_i->dirty_sentries++;
2127 		return false;
2128 	}
2129 
2130 	return true;
2131 }
2132 
2133 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2134 					unsigned int segno, int modified)
2135 {
2136 	struct seg_entry *se = get_seg_entry(sbi, segno);
2137 
2138 	se->type = type;
2139 	if (modified)
2140 		__mark_sit_entry_dirty(sbi, segno);
2141 }
2142 
2143 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2144 								block_t blkaddr)
2145 {
2146 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2147 
2148 	if (segno == NULL_SEGNO)
2149 		return 0;
2150 	return get_seg_entry(sbi, segno)->mtime;
2151 }
2152 
2153 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2154 						unsigned long long old_mtime)
2155 {
2156 	struct seg_entry *se;
2157 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2158 	unsigned long long ctime = get_mtime(sbi, false);
2159 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2160 
2161 	if (segno == NULL_SEGNO)
2162 		return;
2163 
2164 	se = get_seg_entry(sbi, segno);
2165 
2166 	if (!se->mtime)
2167 		se->mtime = mtime;
2168 	else
2169 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2170 						se->valid_blocks + 1);
2171 
2172 	if (ctime > SIT_I(sbi)->max_mtime)
2173 		SIT_I(sbi)->max_mtime = ctime;
2174 }
2175 
2176 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2177 {
2178 	struct seg_entry *se;
2179 	unsigned int segno, offset;
2180 	long int new_vblocks;
2181 	bool exist;
2182 #ifdef CONFIG_F2FS_CHECK_FS
2183 	bool mir_exist;
2184 #endif
2185 
2186 	segno = GET_SEGNO(sbi, blkaddr);
2187 
2188 	se = get_seg_entry(sbi, segno);
2189 	new_vblocks = se->valid_blocks + del;
2190 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2191 
2192 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2193 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2194 
2195 	se->valid_blocks = new_vblocks;
2196 
2197 	/* Update valid block bitmap */
2198 	if (del > 0) {
2199 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2200 #ifdef CONFIG_F2FS_CHECK_FS
2201 		mir_exist = f2fs_test_and_set_bit(offset,
2202 						se->cur_valid_map_mir);
2203 		if (unlikely(exist != mir_exist)) {
2204 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2205 				 blkaddr, exist);
2206 			f2fs_bug_on(sbi, 1);
2207 		}
2208 #endif
2209 		if (unlikely(exist)) {
2210 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2211 				 blkaddr);
2212 			f2fs_bug_on(sbi, 1);
2213 			se->valid_blocks--;
2214 			del = 0;
2215 		}
2216 
2217 		if (f2fs_block_unit_discard(sbi) &&
2218 				!f2fs_test_and_set_bit(offset, se->discard_map))
2219 			sbi->discard_blks--;
2220 
2221 		/*
2222 		 * SSR should never reuse block which is checkpointed
2223 		 * or newly invalidated.
2224 		 */
2225 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2226 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2227 				se->ckpt_valid_blocks++;
2228 		}
2229 	} else {
2230 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2231 #ifdef CONFIG_F2FS_CHECK_FS
2232 		mir_exist = f2fs_test_and_clear_bit(offset,
2233 						se->cur_valid_map_mir);
2234 		if (unlikely(exist != mir_exist)) {
2235 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2236 				 blkaddr, exist);
2237 			f2fs_bug_on(sbi, 1);
2238 		}
2239 #endif
2240 		if (unlikely(!exist)) {
2241 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2242 				 blkaddr);
2243 			f2fs_bug_on(sbi, 1);
2244 			se->valid_blocks++;
2245 			del = 0;
2246 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2247 			/*
2248 			 * If checkpoints are off, we must not reuse data that
2249 			 * was used in the previous checkpoint. If it was used
2250 			 * before, we must track that to know how much space we
2251 			 * really have.
2252 			 */
2253 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2254 				spin_lock(&sbi->stat_lock);
2255 				sbi->unusable_block_count++;
2256 				spin_unlock(&sbi->stat_lock);
2257 			}
2258 		}
2259 
2260 		if (f2fs_block_unit_discard(sbi) &&
2261 			f2fs_test_and_clear_bit(offset, se->discard_map))
2262 			sbi->discard_blks++;
2263 	}
2264 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2265 		se->ckpt_valid_blocks += del;
2266 
2267 	__mark_sit_entry_dirty(sbi, segno);
2268 
2269 	/* update total number of valid blocks to be written in ckpt area */
2270 	SIT_I(sbi)->written_valid_blocks += del;
2271 
2272 	if (__is_large_section(sbi))
2273 		get_sec_entry(sbi, segno)->valid_blocks += del;
2274 }
2275 
2276 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2277 {
2278 	unsigned int segno = GET_SEGNO(sbi, addr);
2279 	struct sit_info *sit_i = SIT_I(sbi);
2280 
2281 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2282 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2283 		return;
2284 
2285 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2286 	f2fs_invalidate_compress_page(sbi, addr);
2287 
2288 	/* add it into sit main buffer */
2289 	down_write(&sit_i->sentry_lock);
2290 
2291 	update_segment_mtime(sbi, addr, 0);
2292 	update_sit_entry(sbi, addr, -1);
2293 
2294 	/* add it into dirty seglist */
2295 	locate_dirty_segment(sbi, segno);
2296 
2297 	up_write(&sit_i->sentry_lock);
2298 }
2299 
2300 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2301 {
2302 	struct sit_info *sit_i = SIT_I(sbi);
2303 	unsigned int segno, offset;
2304 	struct seg_entry *se;
2305 	bool is_cp = false;
2306 
2307 	if (!__is_valid_data_blkaddr(blkaddr))
2308 		return true;
2309 
2310 	down_read(&sit_i->sentry_lock);
2311 
2312 	segno = GET_SEGNO(sbi, blkaddr);
2313 	se = get_seg_entry(sbi, segno);
2314 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2315 
2316 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2317 		is_cp = true;
2318 
2319 	up_read(&sit_i->sentry_lock);
2320 
2321 	return is_cp;
2322 }
2323 
2324 /*
2325  * This function should be resided under the curseg_mutex lock
2326  */
2327 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2328 					struct f2fs_summary *sum)
2329 {
2330 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2331 	void *addr = curseg->sum_blk;
2332 
2333 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2334 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2335 }
2336 
2337 /*
2338  * Calculate the number of current summary pages for writing
2339  */
2340 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2341 {
2342 	int valid_sum_count = 0;
2343 	int i, sum_in_page;
2344 
2345 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2346 		if (sbi->ckpt->alloc_type[i] == SSR)
2347 			valid_sum_count += sbi->blocks_per_seg;
2348 		else {
2349 			if (for_ra)
2350 				valid_sum_count += le16_to_cpu(
2351 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2352 			else
2353 				valid_sum_count += curseg_blkoff(sbi, i);
2354 		}
2355 	}
2356 
2357 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2358 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2359 	if (valid_sum_count <= sum_in_page)
2360 		return 1;
2361 	else if ((valid_sum_count - sum_in_page) <=
2362 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2363 		return 2;
2364 	return 3;
2365 }
2366 
2367 /*
2368  * Caller should put this summary page
2369  */
2370 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2371 {
2372 	if (unlikely(f2fs_cp_error(sbi)))
2373 		return ERR_PTR(-EIO);
2374 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2375 }
2376 
2377 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2378 					void *src, block_t blk_addr)
2379 {
2380 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2381 
2382 	memcpy(page_address(page), src, PAGE_SIZE);
2383 	set_page_dirty(page);
2384 	f2fs_put_page(page, 1);
2385 }
2386 
2387 static void write_sum_page(struct f2fs_sb_info *sbi,
2388 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2389 {
2390 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2391 }
2392 
2393 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2394 						int type, block_t blk_addr)
2395 {
2396 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2397 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2398 	struct f2fs_summary_block *src = curseg->sum_blk;
2399 	struct f2fs_summary_block *dst;
2400 
2401 	dst = (struct f2fs_summary_block *)page_address(page);
2402 	memset(dst, 0, PAGE_SIZE);
2403 
2404 	mutex_lock(&curseg->curseg_mutex);
2405 
2406 	down_read(&curseg->journal_rwsem);
2407 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2408 	up_read(&curseg->journal_rwsem);
2409 
2410 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2411 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2412 
2413 	mutex_unlock(&curseg->curseg_mutex);
2414 
2415 	set_page_dirty(page);
2416 	f2fs_put_page(page, 1);
2417 }
2418 
2419 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2420 				struct curseg_info *curseg, int type)
2421 {
2422 	unsigned int segno = curseg->segno + 1;
2423 	struct free_segmap_info *free_i = FREE_I(sbi);
2424 
2425 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2426 		return !test_bit(segno, free_i->free_segmap);
2427 	return 0;
2428 }
2429 
2430 /*
2431  * Find a new segment from the free segments bitmap to right order
2432  * This function should be returned with success, otherwise BUG
2433  */
2434 static void get_new_segment(struct f2fs_sb_info *sbi,
2435 			unsigned int *newseg, bool new_sec, int dir)
2436 {
2437 	struct free_segmap_info *free_i = FREE_I(sbi);
2438 	unsigned int segno, secno, zoneno;
2439 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2440 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2441 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2442 	unsigned int left_start = hint;
2443 	bool init = true;
2444 	int go_left = 0;
2445 	int i;
2446 
2447 	spin_lock(&free_i->segmap_lock);
2448 
2449 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2450 		segno = find_next_zero_bit(free_i->free_segmap,
2451 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2452 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2453 			goto got_it;
2454 	}
2455 find_other_zone:
2456 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2457 	if (secno >= MAIN_SECS(sbi)) {
2458 		if (dir == ALLOC_RIGHT) {
2459 			secno = find_first_zero_bit(free_i->free_secmap,
2460 							MAIN_SECS(sbi));
2461 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2462 		} else {
2463 			go_left = 1;
2464 			left_start = hint - 1;
2465 		}
2466 	}
2467 	if (go_left == 0)
2468 		goto skip_left;
2469 
2470 	while (test_bit(left_start, free_i->free_secmap)) {
2471 		if (left_start > 0) {
2472 			left_start--;
2473 			continue;
2474 		}
2475 		left_start = find_first_zero_bit(free_i->free_secmap,
2476 							MAIN_SECS(sbi));
2477 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2478 		break;
2479 	}
2480 	secno = left_start;
2481 skip_left:
2482 	segno = GET_SEG_FROM_SEC(sbi, secno);
2483 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2484 
2485 	/* give up on finding another zone */
2486 	if (!init)
2487 		goto got_it;
2488 	if (sbi->secs_per_zone == 1)
2489 		goto got_it;
2490 	if (zoneno == old_zoneno)
2491 		goto got_it;
2492 	if (dir == ALLOC_LEFT) {
2493 		if (!go_left && zoneno + 1 >= total_zones)
2494 			goto got_it;
2495 		if (go_left && zoneno == 0)
2496 			goto got_it;
2497 	}
2498 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2499 		if (CURSEG_I(sbi, i)->zone == zoneno)
2500 			break;
2501 
2502 	if (i < NR_CURSEG_TYPE) {
2503 		/* zone is in user, try another */
2504 		if (go_left)
2505 			hint = zoneno * sbi->secs_per_zone - 1;
2506 		else if (zoneno + 1 >= total_zones)
2507 			hint = 0;
2508 		else
2509 			hint = (zoneno + 1) * sbi->secs_per_zone;
2510 		init = false;
2511 		goto find_other_zone;
2512 	}
2513 got_it:
2514 	/* set it as dirty segment in free segmap */
2515 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2516 	__set_inuse(sbi, segno);
2517 	*newseg = segno;
2518 	spin_unlock(&free_i->segmap_lock);
2519 }
2520 
2521 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2522 {
2523 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2524 	struct summary_footer *sum_footer;
2525 	unsigned short seg_type = curseg->seg_type;
2526 
2527 	curseg->inited = true;
2528 	curseg->segno = curseg->next_segno;
2529 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2530 	curseg->next_blkoff = 0;
2531 	curseg->next_segno = NULL_SEGNO;
2532 
2533 	sum_footer = &(curseg->sum_blk->footer);
2534 	memset(sum_footer, 0, sizeof(struct summary_footer));
2535 
2536 	sanity_check_seg_type(sbi, seg_type);
2537 
2538 	if (IS_DATASEG(seg_type))
2539 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2540 	if (IS_NODESEG(seg_type))
2541 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2542 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2543 }
2544 
2545 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2546 {
2547 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2548 	unsigned short seg_type = curseg->seg_type;
2549 
2550 	sanity_check_seg_type(sbi, seg_type);
2551 	if (f2fs_need_rand_seg(sbi))
2552 		return prandom_u32_max(MAIN_SECS(sbi) * sbi->segs_per_sec);
2553 
2554 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2555 	if (__is_large_section(sbi))
2556 		return curseg->segno;
2557 
2558 	/* inmem log may not locate on any segment after mount */
2559 	if (!curseg->inited)
2560 		return 0;
2561 
2562 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2563 		return 0;
2564 
2565 	if (test_opt(sbi, NOHEAP) &&
2566 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2567 		return 0;
2568 
2569 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2570 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2571 
2572 	/* find segments from 0 to reuse freed segments */
2573 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2574 		return 0;
2575 
2576 	return curseg->segno;
2577 }
2578 
2579 /*
2580  * Allocate a current working segment.
2581  * This function always allocates a free segment in LFS manner.
2582  */
2583 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2584 {
2585 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2586 	unsigned short seg_type = curseg->seg_type;
2587 	unsigned int segno = curseg->segno;
2588 	int dir = ALLOC_LEFT;
2589 
2590 	if (curseg->inited)
2591 		write_sum_page(sbi, curseg->sum_blk,
2592 				GET_SUM_BLOCK(sbi, segno));
2593 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2594 		dir = ALLOC_RIGHT;
2595 
2596 	if (test_opt(sbi, NOHEAP))
2597 		dir = ALLOC_RIGHT;
2598 
2599 	segno = __get_next_segno(sbi, type);
2600 	get_new_segment(sbi, &segno, new_sec, dir);
2601 	curseg->next_segno = segno;
2602 	reset_curseg(sbi, type, 1);
2603 	curseg->alloc_type = LFS;
2604 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2605 		curseg->fragment_remained_chunk =
2606 				prandom_u32_max(sbi->max_fragment_chunk) + 1;
2607 }
2608 
2609 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2610 					int segno, block_t start)
2611 {
2612 	struct seg_entry *se = get_seg_entry(sbi, segno);
2613 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2614 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2615 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2616 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2617 	int i;
2618 
2619 	for (i = 0; i < entries; i++)
2620 		target_map[i] = ckpt_map[i] | cur_map[i];
2621 
2622 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2623 }
2624 
2625 /*
2626  * If a segment is written by LFS manner, next block offset is just obtained
2627  * by increasing the current block offset. However, if a segment is written by
2628  * SSR manner, next block offset obtained by calling __next_free_blkoff
2629  */
2630 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2631 				struct curseg_info *seg)
2632 {
2633 	if (seg->alloc_type == SSR) {
2634 		seg->next_blkoff =
2635 			__next_free_blkoff(sbi, seg->segno,
2636 						seg->next_blkoff + 1);
2637 	} else {
2638 		seg->next_blkoff++;
2639 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2640 			/* To allocate block chunks in different sizes, use random number */
2641 			if (--seg->fragment_remained_chunk <= 0) {
2642 				seg->fragment_remained_chunk =
2643 				   prandom_u32_max(sbi->max_fragment_chunk) + 1;
2644 				seg->next_blkoff +=
2645 				   prandom_u32_max(sbi->max_fragment_hole) + 1;
2646 			}
2647 		}
2648 	}
2649 }
2650 
2651 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2652 {
2653 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2654 }
2655 
2656 /*
2657  * This function always allocates a used segment(from dirty seglist) by SSR
2658  * manner, so it should recover the existing segment information of valid blocks
2659  */
2660 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2661 {
2662 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2663 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2664 	unsigned int new_segno = curseg->next_segno;
2665 	struct f2fs_summary_block *sum_node;
2666 	struct page *sum_page;
2667 
2668 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2669 
2670 	__set_test_and_inuse(sbi, new_segno);
2671 
2672 	mutex_lock(&dirty_i->seglist_lock);
2673 	__remove_dirty_segment(sbi, new_segno, PRE);
2674 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2675 	mutex_unlock(&dirty_i->seglist_lock);
2676 
2677 	reset_curseg(sbi, type, 1);
2678 	curseg->alloc_type = SSR;
2679 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2680 
2681 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2682 	if (IS_ERR(sum_page)) {
2683 		/* GC won't be able to use stale summary pages by cp_error */
2684 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2685 		return;
2686 	}
2687 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2688 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2689 	f2fs_put_page(sum_page, 1);
2690 }
2691 
2692 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2693 				int alloc_mode, unsigned long long age);
2694 
2695 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2696 					int target_type, int alloc_mode,
2697 					unsigned long long age)
2698 {
2699 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2700 
2701 	curseg->seg_type = target_type;
2702 
2703 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2704 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2705 
2706 		curseg->seg_type = se->type;
2707 		change_curseg(sbi, type);
2708 	} else {
2709 		/* allocate cold segment by default */
2710 		curseg->seg_type = CURSEG_COLD_DATA;
2711 		new_curseg(sbi, type, true);
2712 	}
2713 	stat_inc_seg_type(sbi, curseg);
2714 }
2715 
2716 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2717 {
2718 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2719 
2720 	if (!sbi->am.atgc_enabled)
2721 		return;
2722 
2723 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2724 
2725 	mutex_lock(&curseg->curseg_mutex);
2726 	down_write(&SIT_I(sbi)->sentry_lock);
2727 
2728 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2729 
2730 	up_write(&SIT_I(sbi)->sentry_lock);
2731 	mutex_unlock(&curseg->curseg_mutex);
2732 
2733 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2734 
2735 }
2736 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2737 {
2738 	__f2fs_init_atgc_curseg(sbi);
2739 }
2740 
2741 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2742 {
2743 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2744 
2745 	mutex_lock(&curseg->curseg_mutex);
2746 	if (!curseg->inited)
2747 		goto out;
2748 
2749 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2750 		write_sum_page(sbi, curseg->sum_blk,
2751 				GET_SUM_BLOCK(sbi, curseg->segno));
2752 	} else {
2753 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2754 		__set_test_and_free(sbi, curseg->segno, true);
2755 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2756 	}
2757 out:
2758 	mutex_unlock(&curseg->curseg_mutex);
2759 }
2760 
2761 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2762 {
2763 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2764 
2765 	if (sbi->am.atgc_enabled)
2766 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2767 }
2768 
2769 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2770 {
2771 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2772 
2773 	mutex_lock(&curseg->curseg_mutex);
2774 	if (!curseg->inited)
2775 		goto out;
2776 	if (get_valid_blocks(sbi, curseg->segno, false))
2777 		goto out;
2778 
2779 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2780 	__set_test_and_inuse(sbi, curseg->segno);
2781 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2782 out:
2783 	mutex_unlock(&curseg->curseg_mutex);
2784 }
2785 
2786 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2787 {
2788 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2789 
2790 	if (sbi->am.atgc_enabled)
2791 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2792 }
2793 
2794 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2795 				int alloc_mode, unsigned long long age)
2796 {
2797 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2798 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2799 	unsigned segno = NULL_SEGNO;
2800 	unsigned short seg_type = curseg->seg_type;
2801 	int i, cnt;
2802 	bool reversed = false;
2803 
2804 	sanity_check_seg_type(sbi, seg_type);
2805 
2806 	/* f2fs_need_SSR() already forces to do this */
2807 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2808 		curseg->next_segno = segno;
2809 		return 1;
2810 	}
2811 
2812 	/* For node segments, let's do SSR more intensively */
2813 	if (IS_NODESEG(seg_type)) {
2814 		if (seg_type >= CURSEG_WARM_NODE) {
2815 			reversed = true;
2816 			i = CURSEG_COLD_NODE;
2817 		} else {
2818 			i = CURSEG_HOT_NODE;
2819 		}
2820 		cnt = NR_CURSEG_NODE_TYPE;
2821 	} else {
2822 		if (seg_type >= CURSEG_WARM_DATA) {
2823 			reversed = true;
2824 			i = CURSEG_COLD_DATA;
2825 		} else {
2826 			i = CURSEG_HOT_DATA;
2827 		}
2828 		cnt = NR_CURSEG_DATA_TYPE;
2829 	}
2830 
2831 	for (; cnt-- > 0; reversed ? i-- : i++) {
2832 		if (i == seg_type)
2833 			continue;
2834 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2835 			curseg->next_segno = segno;
2836 			return 1;
2837 		}
2838 	}
2839 
2840 	/* find valid_blocks=0 in dirty list */
2841 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2842 		segno = get_free_segment(sbi);
2843 		if (segno != NULL_SEGNO) {
2844 			curseg->next_segno = segno;
2845 			return 1;
2846 		}
2847 	}
2848 	return 0;
2849 }
2850 
2851 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
2852 {
2853 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2854 
2855 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2856 	    curseg->seg_type == CURSEG_WARM_NODE)
2857 		return true;
2858 	if (curseg->alloc_type == LFS &&
2859 	    is_next_segment_free(sbi, curseg, type) &&
2860 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2861 		return true;
2862 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2863 		return true;
2864 	return false;
2865 }
2866 
2867 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2868 					unsigned int start, unsigned int end)
2869 {
2870 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2871 	unsigned int segno;
2872 
2873 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2874 	mutex_lock(&curseg->curseg_mutex);
2875 	down_write(&SIT_I(sbi)->sentry_lock);
2876 
2877 	segno = CURSEG_I(sbi, type)->segno;
2878 	if (segno < start || segno > end)
2879 		goto unlock;
2880 
2881 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2882 		change_curseg(sbi, type);
2883 	else
2884 		new_curseg(sbi, type, true);
2885 
2886 	stat_inc_seg_type(sbi, curseg);
2887 
2888 	locate_dirty_segment(sbi, segno);
2889 unlock:
2890 	up_write(&SIT_I(sbi)->sentry_lock);
2891 
2892 	if (segno != curseg->segno)
2893 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2894 			    type, segno, curseg->segno);
2895 
2896 	mutex_unlock(&curseg->curseg_mutex);
2897 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2898 }
2899 
2900 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2901 						bool new_sec, bool force)
2902 {
2903 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2904 	unsigned int old_segno;
2905 
2906 	if (!curseg->inited)
2907 		goto alloc;
2908 
2909 	if (force || curseg->next_blkoff ||
2910 		get_valid_blocks(sbi, curseg->segno, new_sec))
2911 		goto alloc;
2912 
2913 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2914 		return;
2915 alloc:
2916 	old_segno = curseg->segno;
2917 	new_curseg(sbi, type, true);
2918 	stat_inc_seg_type(sbi, curseg);
2919 	locate_dirty_segment(sbi, old_segno);
2920 }
2921 
2922 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2923 						int type, bool force)
2924 {
2925 	__allocate_new_segment(sbi, type, true, force);
2926 }
2927 
2928 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2929 {
2930 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2931 	down_write(&SIT_I(sbi)->sentry_lock);
2932 	__allocate_new_section(sbi, type, force);
2933 	up_write(&SIT_I(sbi)->sentry_lock);
2934 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2935 }
2936 
2937 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2938 {
2939 	int i;
2940 
2941 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2942 	down_write(&SIT_I(sbi)->sentry_lock);
2943 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2944 		__allocate_new_segment(sbi, i, false, false);
2945 	up_write(&SIT_I(sbi)->sentry_lock);
2946 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2947 }
2948 
2949 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2950 						struct cp_control *cpc)
2951 {
2952 	__u64 trim_start = cpc->trim_start;
2953 	bool has_candidate = false;
2954 
2955 	down_write(&SIT_I(sbi)->sentry_lock);
2956 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2957 		if (add_discard_addrs(sbi, cpc, true)) {
2958 			has_candidate = true;
2959 			break;
2960 		}
2961 	}
2962 	up_write(&SIT_I(sbi)->sentry_lock);
2963 
2964 	cpc->trim_start = trim_start;
2965 	return has_candidate;
2966 }
2967 
2968 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2969 					struct discard_policy *dpolicy,
2970 					unsigned int start, unsigned int end)
2971 {
2972 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2973 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2974 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2975 	struct discard_cmd *dc;
2976 	struct blk_plug plug;
2977 	int issued;
2978 	unsigned int trimmed = 0;
2979 
2980 next:
2981 	issued = 0;
2982 
2983 	mutex_lock(&dcc->cmd_lock);
2984 	if (unlikely(dcc->rbtree_check))
2985 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2986 							&dcc->root, false));
2987 
2988 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2989 					NULL, start,
2990 					(struct rb_entry **)&prev_dc,
2991 					(struct rb_entry **)&next_dc,
2992 					&insert_p, &insert_parent, true, NULL);
2993 	if (!dc)
2994 		dc = next_dc;
2995 
2996 	blk_start_plug(&plug);
2997 
2998 	while (dc && dc->lstart <= end) {
2999 		struct rb_node *node;
3000 		int err = 0;
3001 
3002 		if (dc->len < dpolicy->granularity)
3003 			goto skip;
3004 
3005 		if (dc->state != D_PREP) {
3006 			list_move_tail(&dc->list, &dcc->fstrim_list);
3007 			goto skip;
3008 		}
3009 
3010 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3011 
3012 		if (issued >= dpolicy->max_requests) {
3013 			start = dc->lstart + dc->len;
3014 
3015 			if (err)
3016 				__remove_discard_cmd(sbi, dc);
3017 
3018 			blk_finish_plug(&plug);
3019 			mutex_unlock(&dcc->cmd_lock);
3020 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3021 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3022 			goto next;
3023 		}
3024 skip:
3025 		node = rb_next(&dc->rb_node);
3026 		if (err)
3027 			__remove_discard_cmd(sbi, dc);
3028 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3029 
3030 		if (fatal_signal_pending(current))
3031 			break;
3032 	}
3033 
3034 	blk_finish_plug(&plug);
3035 	mutex_unlock(&dcc->cmd_lock);
3036 
3037 	return trimmed;
3038 }
3039 
3040 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3041 {
3042 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3043 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3044 	unsigned int start_segno, end_segno;
3045 	block_t start_block, end_block;
3046 	struct cp_control cpc;
3047 	struct discard_policy dpolicy;
3048 	unsigned long long trimmed = 0;
3049 	int err = 0;
3050 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3051 
3052 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3053 		return -EINVAL;
3054 
3055 	if (end < MAIN_BLKADDR(sbi))
3056 		goto out;
3057 
3058 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3059 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3060 		return -EFSCORRUPTED;
3061 	}
3062 
3063 	/* start/end segment number in main_area */
3064 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3065 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3066 						GET_SEGNO(sbi, end);
3067 	if (need_align) {
3068 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3069 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3070 	}
3071 
3072 	cpc.reason = CP_DISCARD;
3073 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3074 	cpc.trim_start = start_segno;
3075 	cpc.trim_end = end_segno;
3076 
3077 	if (sbi->discard_blks == 0)
3078 		goto out;
3079 
3080 	f2fs_down_write(&sbi->gc_lock);
3081 	err = f2fs_write_checkpoint(sbi, &cpc);
3082 	f2fs_up_write(&sbi->gc_lock);
3083 	if (err)
3084 		goto out;
3085 
3086 	/*
3087 	 * We filed discard candidates, but actually we don't need to wait for
3088 	 * all of them, since they'll be issued in idle time along with runtime
3089 	 * discard option. User configuration looks like using runtime discard
3090 	 * or periodic fstrim instead of it.
3091 	 */
3092 	if (f2fs_realtime_discard_enable(sbi))
3093 		goto out;
3094 
3095 	start_block = START_BLOCK(sbi, start_segno);
3096 	end_block = START_BLOCK(sbi, end_segno + 1);
3097 
3098 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3099 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3100 					start_block, end_block);
3101 
3102 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3103 					start_block, end_block);
3104 out:
3105 	if (!err)
3106 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3107 	return err;
3108 }
3109 
3110 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3111 					struct curseg_info *curseg)
3112 {
3113 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3114 							curseg->segno);
3115 }
3116 
3117 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3118 {
3119 	switch (hint) {
3120 	case WRITE_LIFE_SHORT:
3121 		return CURSEG_HOT_DATA;
3122 	case WRITE_LIFE_EXTREME:
3123 		return CURSEG_COLD_DATA;
3124 	default:
3125 		return CURSEG_WARM_DATA;
3126 	}
3127 }
3128 
3129 static int __get_segment_type_2(struct f2fs_io_info *fio)
3130 {
3131 	if (fio->type == DATA)
3132 		return CURSEG_HOT_DATA;
3133 	else
3134 		return CURSEG_HOT_NODE;
3135 }
3136 
3137 static int __get_segment_type_4(struct f2fs_io_info *fio)
3138 {
3139 	if (fio->type == DATA) {
3140 		struct inode *inode = fio->page->mapping->host;
3141 
3142 		if (S_ISDIR(inode->i_mode))
3143 			return CURSEG_HOT_DATA;
3144 		else
3145 			return CURSEG_COLD_DATA;
3146 	} else {
3147 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3148 			return CURSEG_WARM_NODE;
3149 		else
3150 			return CURSEG_COLD_NODE;
3151 	}
3152 }
3153 
3154 static int __get_segment_type_6(struct f2fs_io_info *fio)
3155 {
3156 	if (fio->type == DATA) {
3157 		struct inode *inode = fio->page->mapping->host;
3158 
3159 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3160 			return CURSEG_COLD_DATA_PINNED;
3161 
3162 		if (page_private_gcing(fio->page)) {
3163 			if (fio->sbi->am.atgc_enabled &&
3164 				(fio->io_type == FS_DATA_IO) &&
3165 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3166 				return CURSEG_ALL_DATA_ATGC;
3167 			else
3168 				return CURSEG_COLD_DATA;
3169 		}
3170 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3171 			return CURSEG_COLD_DATA;
3172 		if (file_is_hot(inode) ||
3173 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3174 				f2fs_is_cow_file(inode))
3175 			return CURSEG_HOT_DATA;
3176 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3177 	} else {
3178 		if (IS_DNODE(fio->page))
3179 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3180 						CURSEG_HOT_NODE;
3181 		return CURSEG_COLD_NODE;
3182 	}
3183 }
3184 
3185 static int __get_segment_type(struct f2fs_io_info *fio)
3186 {
3187 	int type = 0;
3188 
3189 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3190 	case 2:
3191 		type = __get_segment_type_2(fio);
3192 		break;
3193 	case 4:
3194 		type = __get_segment_type_4(fio);
3195 		break;
3196 	case 6:
3197 		type = __get_segment_type_6(fio);
3198 		break;
3199 	default:
3200 		f2fs_bug_on(fio->sbi, true);
3201 	}
3202 
3203 	if (IS_HOT(type))
3204 		fio->temp = HOT;
3205 	else if (IS_WARM(type))
3206 		fio->temp = WARM;
3207 	else
3208 		fio->temp = COLD;
3209 	return type;
3210 }
3211 
3212 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3213 		block_t old_blkaddr, block_t *new_blkaddr,
3214 		struct f2fs_summary *sum, int type,
3215 		struct f2fs_io_info *fio)
3216 {
3217 	struct sit_info *sit_i = SIT_I(sbi);
3218 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3219 	unsigned long long old_mtime;
3220 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3221 	struct seg_entry *se = NULL;
3222 
3223 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3224 
3225 	mutex_lock(&curseg->curseg_mutex);
3226 	down_write(&sit_i->sentry_lock);
3227 
3228 	if (from_gc) {
3229 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3230 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3231 		sanity_check_seg_type(sbi, se->type);
3232 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3233 	}
3234 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3235 
3236 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3237 
3238 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3239 
3240 	/*
3241 	 * __add_sum_entry should be resided under the curseg_mutex
3242 	 * because, this function updates a summary entry in the
3243 	 * current summary block.
3244 	 */
3245 	__add_sum_entry(sbi, type, sum);
3246 
3247 	__refresh_next_blkoff(sbi, curseg);
3248 
3249 	stat_inc_block_count(sbi, curseg);
3250 
3251 	if (from_gc) {
3252 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3253 	} else {
3254 		update_segment_mtime(sbi, old_blkaddr, 0);
3255 		old_mtime = 0;
3256 	}
3257 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3258 
3259 	/*
3260 	 * SIT information should be updated before segment allocation,
3261 	 * since SSR needs latest valid block information.
3262 	 */
3263 	update_sit_entry(sbi, *new_blkaddr, 1);
3264 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3265 		update_sit_entry(sbi, old_blkaddr, -1);
3266 
3267 	if (!__has_curseg_space(sbi, curseg)) {
3268 		/*
3269 		 * Flush out current segment and replace it with new segment.
3270 		 */
3271 		if (from_gc) {
3272 			get_atssr_segment(sbi, type, se->type,
3273 						AT_SSR, se->mtime);
3274 		} else {
3275 			if (need_new_seg(sbi, type))
3276 				new_curseg(sbi, type, false);
3277 			else
3278 				change_curseg(sbi, type);
3279 			stat_inc_seg_type(sbi, curseg);
3280 		}
3281 	}
3282 	/*
3283 	 * segment dirty status should be updated after segment allocation,
3284 	 * so we just need to update status only one time after previous
3285 	 * segment being closed.
3286 	 */
3287 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3288 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3289 
3290 	up_write(&sit_i->sentry_lock);
3291 
3292 	if (page && IS_NODESEG(type)) {
3293 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3294 
3295 		f2fs_inode_chksum_set(sbi, page);
3296 	}
3297 
3298 	if (fio) {
3299 		struct f2fs_bio_info *io;
3300 
3301 		if (F2FS_IO_ALIGNED(sbi))
3302 			fio->retry = false;
3303 
3304 		INIT_LIST_HEAD(&fio->list);
3305 		fio->in_list = true;
3306 		io = sbi->write_io[fio->type] + fio->temp;
3307 		spin_lock(&io->io_lock);
3308 		list_add_tail(&fio->list, &io->io_list);
3309 		spin_unlock(&io->io_lock);
3310 	}
3311 
3312 	mutex_unlock(&curseg->curseg_mutex);
3313 
3314 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3315 }
3316 
3317 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3318 					block_t blkaddr, unsigned int blkcnt)
3319 {
3320 	if (!f2fs_is_multi_device(sbi))
3321 		return;
3322 
3323 	while (1) {
3324 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3325 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3326 
3327 		/* update device state for fsync */
3328 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3329 
3330 		/* update device state for checkpoint */
3331 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3332 			spin_lock(&sbi->dev_lock);
3333 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3334 			spin_unlock(&sbi->dev_lock);
3335 		}
3336 
3337 		if (blkcnt <= blks)
3338 			break;
3339 		blkcnt -= blks;
3340 		blkaddr += blks;
3341 	}
3342 }
3343 
3344 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3345 {
3346 	int type = __get_segment_type(fio);
3347 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3348 
3349 	if (keep_order)
3350 		f2fs_down_read(&fio->sbi->io_order_lock);
3351 reallocate:
3352 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3353 			&fio->new_blkaddr, sum, type, fio);
3354 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3355 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3356 					fio->old_blkaddr, fio->old_blkaddr);
3357 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3358 	}
3359 
3360 	/* writeout dirty page into bdev */
3361 	f2fs_submit_page_write(fio);
3362 	if (fio->retry) {
3363 		fio->old_blkaddr = fio->new_blkaddr;
3364 		goto reallocate;
3365 	}
3366 
3367 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3368 
3369 	if (keep_order)
3370 		f2fs_up_read(&fio->sbi->io_order_lock);
3371 }
3372 
3373 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3374 					enum iostat_type io_type)
3375 {
3376 	struct f2fs_io_info fio = {
3377 		.sbi = sbi,
3378 		.type = META,
3379 		.temp = HOT,
3380 		.op = REQ_OP_WRITE,
3381 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3382 		.old_blkaddr = page->index,
3383 		.new_blkaddr = page->index,
3384 		.page = page,
3385 		.encrypted_page = NULL,
3386 		.in_list = false,
3387 	};
3388 
3389 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3390 		fio.op_flags &= ~REQ_META;
3391 
3392 	set_page_writeback(page);
3393 	ClearPageError(page);
3394 	f2fs_submit_page_write(&fio);
3395 
3396 	stat_inc_meta_count(sbi, page->index);
3397 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3398 }
3399 
3400 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3401 {
3402 	struct f2fs_summary sum;
3403 
3404 	set_summary(&sum, nid, 0, 0);
3405 	do_write_page(&sum, fio);
3406 
3407 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3408 }
3409 
3410 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3411 					struct f2fs_io_info *fio)
3412 {
3413 	struct f2fs_sb_info *sbi = fio->sbi;
3414 	struct f2fs_summary sum;
3415 
3416 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3417 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3418 	do_write_page(&sum, fio);
3419 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3420 
3421 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3422 }
3423 
3424 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3425 {
3426 	int err;
3427 	struct f2fs_sb_info *sbi = fio->sbi;
3428 	unsigned int segno;
3429 
3430 	fio->new_blkaddr = fio->old_blkaddr;
3431 	/* i/o temperature is needed for passing down write hints */
3432 	__get_segment_type(fio);
3433 
3434 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3435 
3436 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3437 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3438 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3439 			  __func__, segno);
3440 		err = -EFSCORRUPTED;
3441 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3442 		goto drop_bio;
3443 	}
3444 
3445 	if (f2fs_cp_error(sbi)) {
3446 		err = -EIO;
3447 		goto drop_bio;
3448 	}
3449 
3450 	if (fio->post_read)
3451 		invalidate_mapping_pages(META_MAPPING(sbi),
3452 				fio->new_blkaddr, fio->new_blkaddr);
3453 
3454 	stat_inc_inplace_blocks(fio->sbi);
3455 
3456 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3457 		err = f2fs_merge_page_bio(fio);
3458 	else
3459 		err = f2fs_submit_page_bio(fio);
3460 	if (!err) {
3461 		f2fs_update_device_state(fio->sbi, fio->ino,
3462 						fio->new_blkaddr, 1);
3463 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3464 						fio->io_type, F2FS_BLKSIZE);
3465 	}
3466 
3467 	return err;
3468 drop_bio:
3469 	if (fio->bio && *(fio->bio)) {
3470 		struct bio *bio = *(fio->bio);
3471 
3472 		bio->bi_status = BLK_STS_IOERR;
3473 		bio_endio(bio);
3474 		*(fio->bio) = NULL;
3475 	}
3476 	return err;
3477 }
3478 
3479 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3480 						unsigned int segno)
3481 {
3482 	int i;
3483 
3484 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3485 		if (CURSEG_I(sbi, i)->segno == segno)
3486 			break;
3487 	}
3488 	return i;
3489 }
3490 
3491 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3492 				block_t old_blkaddr, block_t new_blkaddr,
3493 				bool recover_curseg, bool recover_newaddr,
3494 				bool from_gc)
3495 {
3496 	struct sit_info *sit_i = SIT_I(sbi);
3497 	struct curseg_info *curseg;
3498 	unsigned int segno, old_cursegno;
3499 	struct seg_entry *se;
3500 	int type;
3501 	unsigned short old_blkoff;
3502 	unsigned char old_alloc_type;
3503 
3504 	segno = GET_SEGNO(sbi, new_blkaddr);
3505 	se = get_seg_entry(sbi, segno);
3506 	type = se->type;
3507 
3508 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3509 
3510 	if (!recover_curseg) {
3511 		/* for recovery flow */
3512 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3513 			if (old_blkaddr == NULL_ADDR)
3514 				type = CURSEG_COLD_DATA;
3515 			else
3516 				type = CURSEG_WARM_DATA;
3517 		}
3518 	} else {
3519 		if (IS_CURSEG(sbi, segno)) {
3520 			/* se->type is volatile as SSR allocation */
3521 			type = __f2fs_get_curseg(sbi, segno);
3522 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3523 		} else {
3524 			type = CURSEG_WARM_DATA;
3525 		}
3526 	}
3527 
3528 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3529 	curseg = CURSEG_I(sbi, type);
3530 
3531 	mutex_lock(&curseg->curseg_mutex);
3532 	down_write(&sit_i->sentry_lock);
3533 
3534 	old_cursegno = curseg->segno;
3535 	old_blkoff = curseg->next_blkoff;
3536 	old_alloc_type = curseg->alloc_type;
3537 
3538 	/* change the current segment */
3539 	if (segno != curseg->segno) {
3540 		curseg->next_segno = segno;
3541 		change_curseg(sbi, type);
3542 	}
3543 
3544 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3545 	__add_sum_entry(sbi, type, sum);
3546 
3547 	if (!recover_curseg || recover_newaddr) {
3548 		if (!from_gc)
3549 			update_segment_mtime(sbi, new_blkaddr, 0);
3550 		update_sit_entry(sbi, new_blkaddr, 1);
3551 	}
3552 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3553 		invalidate_mapping_pages(META_MAPPING(sbi),
3554 					old_blkaddr, old_blkaddr);
3555 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3556 		if (!from_gc)
3557 			update_segment_mtime(sbi, old_blkaddr, 0);
3558 		update_sit_entry(sbi, old_blkaddr, -1);
3559 	}
3560 
3561 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3562 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3563 
3564 	locate_dirty_segment(sbi, old_cursegno);
3565 
3566 	if (recover_curseg) {
3567 		if (old_cursegno != curseg->segno) {
3568 			curseg->next_segno = old_cursegno;
3569 			change_curseg(sbi, type);
3570 		}
3571 		curseg->next_blkoff = old_blkoff;
3572 		curseg->alloc_type = old_alloc_type;
3573 	}
3574 
3575 	up_write(&sit_i->sentry_lock);
3576 	mutex_unlock(&curseg->curseg_mutex);
3577 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3578 }
3579 
3580 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3581 				block_t old_addr, block_t new_addr,
3582 				unsigned char version, bool recover_curseg,
3583 				bool recover_newaddr)
3584 {
3585 	struct f2fs_summary sum;
3586 
3587 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3588 
3589 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3590 					recover_curseg, recover_newaddr, false);
3591 
3592 	f2fs_update_data_blkaddr(dn, new_addr);
3593 }
3594 
3595 void f2fs_wait_on_page_writeback(struct page *page,
3596 				enum page_type type, bool ordered, bool locked)
3597 {
3598 	if (PageWriteback(page)) {
3599 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3600 
3601 		/* submit cached LFS IO */
3602 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3603 		/* sbumit cached IPU IO */
3604 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3605 		if (ordered) {
3606 			wait_on_page_writeback(page);
3607 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3608 		} else {
3609 			wait_for_stable_page(page);
3610 		}
3611 	}
3612 }
3613 
3614 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3615 {
3616 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3617 	struct page *cpage;
3618 
3619 	if (!f2fs_post_read_required(inode))
3620 		return;
3621 
3622 	if (!__is_valid_data_blkaddr(blkaddr))
3623 		return;
3624 
3625 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3626 	if (cpage) {
3627 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3628 		f2fs_put_page(cpage, 1);
3629 	}
3630 }
3631 
3632 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3633 								block_t len)
3634 {
3635 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3636 	block_t i;
3637 
3638 	if (!f2fs_post_read_required(inode))
3639 		return;
3640 
3641 	for (i = 0; i < len; i++)
3642 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3643 
3644 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3645 }
3646 
3647 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3648 {
3649 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3650 	struct curseg_info *seg_i;
3651 	unsigned char *kaddr;
3652 	struct page *page;
3653 	block_t start;
3654 	int i, j, offset;
3655 
3656 	start = start_sum_block(sbi);
3657 
3658 	page = f2fs_get_meta_page(sbi, start++);
3659 	if (IS_ERR(page))
3660 		return PTR_ERR(page);
3661 	kaddr = (unsigned char *)page_address(page);
3662 
3663 	/* Step 1: restore nat cache */
3664 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3665 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3666 
3667 	/* Step 2: restore sit cache */
3668 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3669 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3670 	offset = 2 * SUM_JOURNAL_SIZE;
3671 
3672 	/* Step 3: restore summary entries */
3673 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3674 		unsigned short blk_off;
3675 		unsigned int segno;
3676 
3677 		seg_i = CURSEG_I(sbi, i);
3678 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3679 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3680 		seg_i->next_segno = segno;
3681 		reset_curseg(sbi, i, 0);
3682 		seg_i->alloc_type = ckpt->alloc_type[i];
3683 		seg_i->next_blkoff = blk_off;
3684 
3685 		if (seg_i->alloc_type == SSR)
3686 			blk_off = sbi->blocks_per_seg;
3687 
3688 		for (j = 0; j < blk_off; j++) {
3689 			struct f2fs_summary *s;
3690 
3691 			s = (struct f2fs_summary *)(kaddr + offset);
3692 			seg_i->sum_blk->entries[j] = *s;
3693 			offset += SUMMARY_SIZE;
3694 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3695 						SUM_FOOTER_SIZE)
3696 				continue;
3697 
3698 			f2fs_put_page(page, 1);
3699 			page = NULL;
3700 
3701 			page = f2fs_get_meta_page(sbi, start++);
3702 			if (IS_ERR(page))
3703 				return PTR_ERR(page);
3704 			kaddr = (unsigned char *)page_address(page);
3705 			offset = 0;
3706 		}
3707 	}
3708 	f2fs_put_page(page, 1);
3709 	return 0;
3710 }
3711 
3712 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3713 {
3714 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3715 	struct f2fs_summary_block *sum;
3716 	struct curseg_info *curseg;
3717 	struct page *new;
3718 	unsigned short blk_off;
3719 	unsigned int segno = 0;
3720 	block_t blk_addr = 0;
3721 	int err = 0;
3722 
3723 	/* get segment number and block addr */
3724 	if (IS_DATASEG(type)) {
3725 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3726 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3727 							CURSEG_HOT_DATA]);
3728 		if (__exist_node_summaries(sbi))
3729 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3730 		else
3731 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3732 	} else {
3733 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3734 							CURSEG_HOT_NODE]);
3735 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3736 							CURSEG_HOT_NODE]);
3737 		if (__exist_node_summaries(sbi))
3738 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3739 							type - CURSEG_HOT_NODE);
3740 		else
3741 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3742 	}
3743 
3744 	new = f2fs_get_meta_page(sbi, blk_addr);
3745 	if (IS_ERR(new))
3746 		return PTR_ERR(new);
3747 	sum = (struct f2fs_summary_block *)page_address(new);
3748 
3749 	if (IS_NODESEG(type)) {
3750 		if (__exist_node_summaries(sbi)) {
3751 			struct f2fs_summary *ns = &sum->entries[0];
3752 			int i;
3753 
3754 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3755 				ns->version = 0;
3756 				ns->ofs_in_node = 0;
3757 			}
3758 		} else {
3759 			err = f2fs_restore_node_summary(sbi, segno, sum);
3760 			if (err)
3761 				goto out;
3762 		}
3763 	}
3764 
3765 	/* set uncompleted segment to curseg */
3766 	curseg = CURSEG_I(sbi, type);
3767 	mutex_lock(&curseg->curseg_mutex);
3768 
3769 	/* update journal info */
3770 	down_write(&curseg->journal_rwsem);
3771 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3772 	up_write(&curseg->journal_rwsem);
3773 
3774 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3775 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3776 	curseg->next_segno = segno;
3777 	reset_curseg(sbi, type, 0);
3778 	curseg->alloc_type = ckpt->alloc_type[type];
3779 	curseg->next_blkoff = blk_off;
3780 	mutex_unlock(&curseg->curseg_mutex);
3781 out:
3782 	f2fs_put_page(new, 1);
3783 	return err;
3784 }
3785 
3786 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3787 {
3788 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3789 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3790 	int type = CURSEG_HOT_DATA;
3791 	int err;
3792 
3793 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3794 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3795 
3796 		if (npages >= 2)
3797 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3798 							META_CP, true);
3799 
3800 		/* restore for compacted data summary */
3801 		err = read_compacted_summaries(sbi);
3802 		if (err)
3803 			return err;
3804 		type = CURSEG_HOT_NODE;
3805 	}
3806 
3807 	if (__exist_node_summaries(sbi))
3808 		f2fs_ra_meta_pages(sbi,
3809 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3810 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3811 
3812 	for (; type <= CURSEG_COLD_NODE; type++) {
3813 		err = read_normal_summaries(sbi, type);
3814 		if (err)
3815 			return err;
3816 	}
3817 
3818 	/* sanity check for summary blocks */
3819 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3820 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3821 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3822 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3823 		return -EINVAL;
3824 	}
3825 
3826 	return 0;
3827 }
3828 
3829 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3830 {
3831 	struct page *page;
3832 	unsigned char *kaddr;
3833 	struct f2fs_summary *summary;
3834 	struct curseg_info *seg_i;
3835 	int written_size = 0;
3836 	int i, j;
3837 
3838 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3839 	kaddr = (unsigned char *)page_address(page);
3840 	memset(kaddr, 0, PAGE_SIZE);
3841 
3842 	/* Step 1: write nat cache */
3843 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3844 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3845 	written_size += SUM_JOURNAL_SIZE;
3846 
3847 	/* Step 2: write sit cache */
3848 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3849 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3850 	written_size += SUM_JOURNAL_SIZE;
3851 
3852 	/* Step 3: write summary entries */
3853 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3854 		unsigned short blkoff;
3855 
3856 		seg_i = CURSEG_I(sbi, i);
3857 		if (sbi->ckpt->alloc_type[i] == SSR)
3858 			blkoff = sbi->blocks_per_seg;
3859 		else
3860 			blkoff = curseg_blkoff(sbi, i);
3861 
3862 		for (j = 0; j < blkoff; j++) {
3863 			if (!page) {
3864 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3865 				kaddr = (unsigned char *)page_address(page);
3866 				memset(kaddr, 0, PAGE_SIZE);
3867 				written_size = 0;
3868 			}
3869 			summary = (struct f2fs_summary *)(kaddr + written_size);
3870 			*summary = seg_i->sum_blk->entries[j];
3871 			written_size += SUMMARY_SIZE;
3872 
3873 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3874 							SUM_FOOTER_SIZE)
3875 				continue;
3876 
3877 			set_page_dirty(page);
3878 			f2fs_put_page(page, 1);
3879 			page = NULL;
3880 		}
3881 	}
3882 	if (page) {
3883 		set_page_dirty(page);
3884 		f2fs_put_page(page, 1);
3885 	}
3886 }
3887 
3888 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3889 					block_t blkaddr, int type)
3890 {
3891 	int i, end;
3892 
3893 	if (IS_DATASEG(type))
3894 		end = type + NR_CURSEG_DATA_TYPE;
3895 	else
3896 		end = type + NR_CURSEG_NODE_TYPE;
3897 
3898 	for (i = type; i < end; i++)
3899 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3900 }
3901 
3902 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3903 {
3904 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3905 		write_compacted_summaries(sbi, start_blk);
3906 	else
3907 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3908 }
3909 
3910 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3911 {
3912 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3913 }
3914 
3915 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3916 					unsigned int val, int alloc)
3917 {
3918 	int i;
3919 
3920 	if (type == NAT_JOURNAL) {
3921 		for (i = 0; i < nats_in_cursum(journal); i++) {
3922 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3923 				return i;
3924 		}
3925 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3926 			return update_nats_in_cursum(journal, 1);
3927 	} else if (type == SIT_JOURNAL) {
3928 		for (i = 0; i < sits_in_cursum(journal); i++)
3929 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3930 				return i;
3931 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3932 			return update_sits_in_cursum(journal, 1);
3933 	}
3934 	return -1;
3935 }
3936 
3937 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3938 					unsigned int segno)
3939 {
3940 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3941 }
3942 
3943 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3944 					unsigned int start)
3945 {
3946 	struct sit_info *sit_i = SIT_I(sbi);
3947 	struct page *page;
3948 	pgoff_t src_off, dst_off;
3949 
3950 	src_off = current_sit_addr(sbi, start);
3951 	dst_off = next_sit_addr(sbi, src_off);
3952 
3953 	page = f2fs_grab_meta_page(sbi, dst_off);
3954 	seg_info_to_sit_page(sbi, page, start);
3955 
3956 	set_page_dirty(page);
3957 	set_to_next_sit(sit_i, start);
3958 
3959 	return page;
3960 }
3961 
3962 static struct sit_entry_set *grab_sit_entry_set(void)
3963 {
3964 	struct sit_entry_set *ses =
3965 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
3966 						GFP_NOFS, true, NULL);
3967 
3968 	ses->entry_cnt = 0;
3969 	INIT_LIST_HEAD(&ses->set_list);
3970 	return ses;
3971 }
3972 
3973 static void release_sit_entry_set(struct sit_entry_set *ses)
3974 {
3975 	list_del(&ses->set_list);
3976 	kmem_cache_free(sit_entry_set_slab, ses);
3977 }
3978 
3979 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3980 						struct list_head *head)
3981 {
3982 	struct sit_entry_set *next = ses;
3983 
3984 	if (list_is_last(&ses->set_list, head))
3985 		return;
3986 
3987 	list_for_each_entry_continue(next, head, set_list)
3988 		if (ses->entry_cnt <= next->entry_cnt) {
3989 			list_move_tail(&ses->set_list, &next->set_list);
3990 			return;
3991 		}
3992 
3993 	list_move_tail(&ses->set_list, head);
3994 }
3995 
3996 static void add_sit_entry(unsigned int segno, struct list_head *head)
3997 {
3998 	struct sit_entry_set *ses;
3999 	unsigned int start_segno = START_SEGNO(segno);
4000 
4001 	list_for_each_entry(ses, head, set_list) {
4002 		if (ses->start_segno == start_segno) {
4003 			ses->entry_cnt++;
4004 			adjust_sit_entry_set(ses, head);
4005 			return;
4006 		}
4007 	}
4008 
4009 	ses = grab_sit_entry_set();
4010 
4011 	ses->start_segno = start_segno;
4012 	ses->entry_cnt++;
4013 	list_add(&ses->set_list, head);
4014 }
4015 
4016 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4017 {
4018 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4019 	struct list_head *set_list = &sm_info->sit_entry_set;
4020 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4021 	unsigned int segno;
4022 
4023 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4024 		add_sit_entry(segno, set_list);
4025 }
4026 
4027 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4028 {
4029 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4030 	struct f2fs_journal *journal = curseg->journal;
4031 	int i;
4032 
4033 	down_write(&curseg->journal_rwsem);
4034 	for (i = 0; i < sits_in_cursum(journal); i++) {
4035 		unsigned int segno;
4036 		bool dirtied;
4037 
4038 		segno = le32_to_cpu(segno_in_journal(journal, i));
4039 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4040 
4041 		if (!dirtied)
4042 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4043 	}
4044 	update_sits_in_cursum(journal, -i);
4045 	up_write(&curseg->journal_rwsem);
4046 }
4047 
4048 /*
4049  * CP calls this function, which flushes SIT entries including sit_journal,
4050  * and moves prefree segs to free segs.
4051  */
4052 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4053 {
4054 	struct sit_info *sit_i = SIT_I(sbi);
4055 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4056 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4057 	struct f2fs_journal *journal = curseg->journal;
4058 	struct sit_entry_set *ses, *tmp;
4059 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4060 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4061 	struct seg_entry *se;
4062 
4063 	down_write(&sit_i->sentry_lock);
4064 
4065 	if (!sit_i->dirty_sentries)
4066 		goto out;
4067 
4068 	/*
4069 	 * add and account sit entries of dirty bitmap in sit entry
4070 	 * set temporarily
4071 	 */
4072 	add_sits_in_set(sbi);
4073 
4074 	/*
4075 	 * if there are no enough space in journal to store dirty sit
4076 	 * entries, remove all entries from journal and add and account
4077 	 * them in sit entry set.
4078 	 */
4079 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4080 								!to_journal)
4081 		remove_sits_in_journal(sbi);
4082 
4083 	/*
4084 	 * there are two steps to flush sit entries:
4085 	 * #1, flush sit entries to journal in current cold data summary block.
4086 	 * #2, flush sit entries to sit page.
4087 	 */
4088 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4089 		struct page *page = NULL;
4090 		struct f2fs_sit_block *raw_sit = NULL;
4091 		unsigned int start_segno = ses->start_segno;
4092 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4093 						(unsigned long)MAIN_SEGS(sbi));
4094 		unsigned int segno = start_segno;
4095 
4096 		if (to_journal &&
4097 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4098 			to_journal = false;
4099 
4100 		if (to_journal) {
4101 			down_write(&curseg->journal_rwsem);
4102 		} else {
4103 			page = get_next_sit_page(sbi, start_segno);
4104 			raw_sit = page_address(page);
4105 		}
4106 
4107 		/* flush dirty sit entries in region of current sit set */
4108 		for_each_set_bit_from(segno, bitmap, end) {
4109 			int offset, sit_offset;
4110 
4111 			se = get_seg_entry(sbi, segno);
4112 #ifdef CONFIG_F2FS_CHECK_FS
4113 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4114 						SIT_VBLOCK_MAP_SIZE))
4115 				f2fs_bug_on(sbi, 1);
4116 #endif
4117 
4118 			/* add discard candidates */
4119 			if (!(cpc->reason & CP_DISCARD)) {
4120 				cpc->trim_start = segno;
4121 				add_discard_addrs(sbi, cpc, false);
4122 			}
4123 
4124 			if (to_journal) {
4125 				offset = f2fs_lookup_journal_in_cursum(journal,
4126 							SIT_JOURNAL, segno, 1);
4127 				f2fs_bug_on(sbi, offset < 0);
4128 				segno_in_journal(journal, offset) =
4129 							cpu_to_le32(segno);
4130 				seg_info_to_raw_sit(se,
4131 					&sit_in_journal(journal, offset));
4132 				check_block_count(sbi, segno,
4133 					&sit_in_journal(journal, offset));
4134 			} else {
4135 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4136 				seg_info_to_raw_sit(se,
4137 						&raw_sit->entries[sit_offset]);
4138 				check_block_count(sbi, segno,
4139 						&raw_sit->entries[sit_offset]);
4140 			}
4141 
4142 			__clear_bit(segno, bitmap);
4143 			sit_i->dirty_sentries--;
4144 			ses->entry_cnt--;
4145 		}
4146 
4147 		if (to_journal)
4148 			up_write(&curseg->journal_rwsem);
4149 		else
4150 			f2fs_put_page(page, 1);
4151 
4152 		f2fs_bug_on(sbi, ses->entry_cnt);
4153 		release_sit_entry_set(ses);
4154 	}
4155 
4156 	f2fs_bug_on(sbi, !list_empty(head));
4157 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4158 out:
4159 	if (cpc->reason & CP_DISCARD) {
4160 		__u64 trim_start = cpc->trim_start;
4161 
4162 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4163 			add_discard_addrs(sbi, cpc, false);
4164 
4165 		cpc->trim_start = trim_start;
4166 	}
4167 	up_write(&sit_i->sentry_lock);
4168 
4169 	set_prefree_as_free_segments(sbi);
4170 }
4171 
4172 static int build_sit_info(struct f2fs_sb_info *sbi)
4173 {
4174 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4175 	struct sit_info *sit_i;
4176 	unsigned int sit_segs, start;
4177 	char *src_bitmap, *bitmap;
4178 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4179 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4180 
4181 	/* allocate memory for SIT information */
4182 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4183 	if (!sit_i)
4184 		return -ENOMEM;
4185 
4186 	SM_I(sbi)->sit_info = sit_i;
4187 
4188 	sit_i->sentries =
4189 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4190 					      MAIN_SEGS(sbi)),
4191 			      GFP_KERNEL);
4192 	if (!sit_i->sentries)
4193 		return -ENOMEM;
4194 
4195 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4196 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4197 								GFP_KERNEL);
4198 	if (!sit_i->dirty_sentries_bitmap)
4199 		return -ENOMEM;
4200 
4201 #ifdef CONFIG_F2FS_CHECK_FS
4202 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4203 #else
4204 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4205 #endif
4206 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4207 	if (!sit_i->bitmap)
4208 		return -ENOMEM;
4209 
4210 	bitmap = sit_i->bitmap;
4211 
4212 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4213 		sit_i->sentries[start].cur_valid_map = bitmap;
4214 		bitmap += SIT_VBLOCK_MAP_SIZE;
4215 
4216 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4217 		bitmap += SIT_VBLOCK_MAP_SIZE;
4218 
4219 #ifdef CONFIG_F2FS_CHECK_FS
4220 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4221 		bitmap += SIT_VBLOCK_MAP_SIZE;
4222 #endif
4223 
4224 		if (discard_map) {
4225 			sit_i->sentries[start].discard_map = bitmap;
4226 			bitmap += SIT_VBLOCK_MAP_SIZE;
4227 		}
4228 	}
4229 
4230 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4231 	if (!sit_i->tmp_map)
4232 		return -ENOMEM;
4233 
4234 	if (__is_large_section(sbi)) {
4235 		sit_i->sec_entries =
4236 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4237 						      MAIN_SECS(sbi)),
4238 				      GFP_KERNEL);
4239 		if (!sit_i->sec_entries)
4240 			return -ENOMEM;
4241 	}
4242 
4243 	/* get information related with SIT */
4244 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4245 
4246 	/* setup SIT bitmap from ckeckpoint pack */
4247 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4248 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4249 
4250 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4251 	if (!sit_i->sit_bitmap)
4252 		return -ENOMEM;
4253 
4254 #ifdef CONFIG_F2FS_CHECK_FS
4255 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4256 					sit_bitmap_size, GFP_KERNEL);
4257 	if (!sit_i->sit_bitmap_mir)
4258 		return -ENOMEM;
4259 
4260 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4261 					main_bitmap_size, GFP_KERNEL);
4262 	if (!sit_i->invalid_segmap)
4263 		return -ENOMEM;
4264 #endif
4265 
4266 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4267 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4268 	sit_i->written_valid_blocks = 0;
4269 	sit_i->bitmap_size = sit_bitmap_size;
4270 	sit_i->dirty_sentries = 0;
4271 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4272 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4273 	sit_i->mounted_time = ktime_get_boottime_seconds();
4274 	init_rwsem(&sit_i->sentry_lock);
4275 	return 0;
4276 }
4277 
4278 static int build_free_segmap(struct f2fs_sb_info *sbi)
4279 {
4280 	struct free_segmap_info *free_i;
4281 	unsigned int bitmap_size, sec_bitmap_size;
4282 
4283 	/* allocate memory for free segmap information */
4284 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4285 	if (!free_i)
4286 		return -ENOMEM;
4287 
4288 	SM_I(sbi)->free_info = free_i;
4289 
4290 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4291 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4292 	if (!free_i->free_segmap)
4293 		return -ENOMEM;
4294 
4295 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4296 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4297 	if (!free_i->free_secmap)
4298 		return -ENOMEM;
4299 
4300 	/* set all segments as dirty temporarily */
4301 	memset(free_i->free_segmap, 0xff, bitmap_size);
4302 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4303 
4304 	/* init free segmap information */
4305 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4306 	free_i->free_segments = 0;
4307 	free_i->free_sections = 0;
4308 	spin_lock_init(&free_i->segmap_lock);
4309 	return 0;
4310 }
4311 
4312 static int build_curseg(struct f2fs_sb_info *sbi)
4313 {
4314 	struct curseg_info *array;
4315 	int i;
4316 
4317 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4318 					sizeof(*array)), GFP_KERNEL);
4319 	if (!array)
4320 		return -ENOMEM;
4321 
4322 	SM_I(sbi)->curseg_array = array;
4323 
4324 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4325 		mutex_init(&array[i].curseg_mutex);
4326 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4327 		if (!array[i].sum_blk)
4328 			return -ENOMEM;
4329 		init_rwsem(&array[i].journal_rwsem);
4330 		array[i].journal = f2fs_kzalloc(sbi,
4331 				sizeof(struct f2fs_journal), GFP_KERNEL);
4332 		if (!array[i].journal)
4333 			return -ENOMEM;
4334 		if (i < NR_PERSISTENT_LOG)
4335 			array[i].seg_type = CURSEG_HOT_DATA + i;
4336 		else if (i == CURSEG_COLD_DATA_PINNED)
4337 			array[i].seg_type = CURSEG_COLD_DATA;
4338 		else if (i == CURSEG_ALL_DATA_ATGC)
4339 			array[i].seg_type = CURSEG_COLD_DATA;
4340 		array[i].segno = NULL_SEGNO;
4341 		array[i].next_blkoff = 0;
4342 		array[i].inited = false;
4343 	}
4344 	return restore_curseg_summaries(sbi);
4345 }
4346 
4347 static int build_sit_entries(struct f2fs_sb_info *sbi)
4348 {
4349 	struct sit_info *sit_i = SIT_I(sbi);
4350 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4351 	struct f2fs_journal *journal = curseg->journal;
4352 	struct seg_entry *se;
4353 	struct f2fs_sit_entry sit;
4354 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4355 	unsigned int i, start, end;
4356 	unsigned int readed, start_blk = 0;
4357 	int err = 0;
4358 	block_t sit_valid_blocks[2] = {0, 0};
4359 
4360 	do {
4361 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4362 							META_SIT, true);
4363 
4364 		start = start_blk * sit_i->sents_per_block;
4365 		end = (start_blk + readed) * sit_i->sents_per_block;
4366 
4367 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4368 			struct f2fs_sit_block *sit_blk;
4369 			struct page *page;
4370 
4371 			se = &sit_i->sentries[start];
4372 			page = get_current_sit_page(sbi, start);
4373 			if (IS_ERR(page))
4374 				return PTR_ERR(page);
4375 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4376 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4377 			f2fs_put_page(page, 1);
4378 
4379 			err = check_block_count(sbi, start, &sit);
4380 			if (err)
4381 				return err;
4382 			seg_info_from_raw_sit(se, &sit);
4383 
4384 			if (se->type >= NR_PERSISTENT_LOG) {
4385 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4386 							se->type, start);
4387 				f2fs_handle_error(sbi,
4388 						ERROR_INCONSISTENT_SUM_TYPE);
4389 				return -EFSCORRUPTED;
4390 			}
4391 
4392 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4393 
4394 			if (f2fs_block_unit_discard(sbi)) {
4395 				/* build discard map only one time */
4396 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4397 					memset(se->discard_map, 0xff,
4398 						SIT_VBLOCK_MAP_SIZE);
4399 				} else {
4400 					memcpy(se->discard_map,
4401 						se->cur_valid_map,
4402 						SIT_VBLOCK_MAP_SIZE);
4403 					sbi->discard_blks +=
4404 						sbi->blocks_per_seg -
4405 						se->valid_blocks;
4406 				}
4407 			}
4408 
4409 			if (__is_large_section(sbi))
4410 				get_sec_entry(sbi, start)->valid_blocks +=
4411 							se->valid_blocks;
4412 		}
4413 		start_blk += readed;
4414 	} while (start_blk < sit_blk_cnt);
4415 
4416 	down_read(&curseg->journal_rwsem);
4417 	for (i = 0; i < sits_in_cursum(journal); i++) {
4418 		unsigned int old_valid_blocks;
4419 
4420 		start = le32_to_cpu(segno_in_journal(journal, i));
4421 		if (start >= MAIN_SEGS(sbi)) {
4422 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4423 				 start);
4424 			err = -EFSCORRUPTED;
4425 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4426 			break;
4427 		}
4428 
4429 		se = &sit_i->sentries[start];
4430 		sit = sit_in_journal(journal, i);
4431 
4432 		old_valid_blocks = se->valid_blocks;
4433 
4434 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4435 
4436 		err = check_block_count(sbi, start, &sit);
4437 		if (err)
4438 			break;
4439 		seg_info_from_raw_sit(se, &sit);
4440 
4441 		if (se->type >= NR_PERSISTENT_LOG) {
4442 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4443 							se->type, start);
4444 			err = -EFSCORRUPTED;
4445 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4446 			break;
4447 		}
4448 
4449 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4450 
4451 		if (f2fs_block_unit_discard(sbi)) {
4452 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4453 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4454 			} else {
4455 				memcpy(se->discard_map, se->cur_valid_map,
4456 							SIT_VBLOCK_MAP_SIZE);
4457 				sbi->discard_blks += old_valid_blocks;
4458 				sbi->discard_blks -= se->valid_blocks;
4459 			}
4460 		}
4461 
4462 		if (__is_large_section(sbi)) {
4463 			get_sec_entry(sbi, start)->valid_blocks +=
4464 							se->valid_blocks;
4465 			get_sec_entry(sbi, start)->valid_blocks -=
4466 							old_valid_blocks;
4467 		}
4468 	}
4469 	up_read(&curseg->journal_rwsem);
4470 
4471 	if (err)
4472 		return err;
4473 
4474 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4475 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4476 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4477 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4478 		return -EFSCORRUPTED;
4479 	}
4480 
4481 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4482 				valid_user_blocks(sbi)) {
4483 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4484 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4485 			 valid_user_blocks(sbi));
4486 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4487 		return -EFSCORRUPTED;
4488 	}
4489 
4490 	return 0;
4491 }
4492 
4493 static void init_free_segmap(struct f2fs_sb_info *sbi)
4494 {
4495 	unsigned int start;
4496 	int type;
4497 	struct seg_entry *sentry;
4498 
4499 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4500 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4501 			continue;
4502 		sentry = get_seg_entry(sbi, start);
4503 		if (!sentry->valid_blocks)
4504 			__set_free(sbi, start);
4505 		else
4506 			SIT_I(sbi)->written_valid_blocks +=
4507 						sentry->valid_blocks;
4508 	}
4509 
4510 	/* set use the current segments */
4511 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4512 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4513 
4514 		__set_test_and_inuse(sbi, curseg_t->segno);
4515 	}
4516 }
4517 
4518 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4519 {
4520 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4521 	struct free_segmap_info *free_i = FREE_I(sbi);
4522 	unsigned int segno = 0, offset = 0, secno;
4523 	block_t valid_blocks, usable_blks_in_seg;
4524 
4525 	while (1) {
4526 		/* find dirty segment based on free segmap */
4527 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4528 		if (segno >= MAIN_SEGS(sbi))
4529 			break;
4530 		offset = segno + 1;
4531 		valid_blocks = get_valid_blocks(sbi, segno, false);
4532 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4533 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4534 			continue;
4535 		if (valid_blocks > usable_blks_in_seg) {
4536 			f2fs_bug_on(sbi, 1);
4537 			continue;
4538 		}
4539 		mutex_lock(&dirty_i->seglist_lock);
4540 		__locate_dirty_segment(sbi, segno, DIRTY);
4541 		mutex_unlock(&dirty_i->seglist_lock);
4542 	}
4543 
4544 	if (!__is_large_section(sbi))
4545 		return;
4546 
4547 	mutex_lock(&dirty_i->seglist_lock);
4548 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4549 		valid_blocks = get_valid_blocks(sbi, segno, true);
4550 		secno = GET_SEC_FROM_SEG(sbi, segno);
4551 
4552 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4553 			continue;
4554 		if (IS_CURSEC(sbi, secno))
4555 			continue;
4556 		set_bit(secno, dirty_i->dirty_secmap);
4557 	}
4558 	mutex_unlock(&dirty_i->seglist_lock);
4559 }
4560 
4561 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4562 {
4563 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4564 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4565 
4566 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4567 	if (!dirty_i->victim_secmap)
4568 		return -ENOMEM;
4569 
4570 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4571 	if (!dirty_i->pinned_secmap)
4572 		return -ENOMEM;
4573 
4574 	dirty_i->pinned_secmap_cnt = 0;
4575 	dirty_i->enable_pin_section = true;
4576 	return 0;
4577 }
4578 
4579 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4580 {
4581 	struct dirty_seglist_info *dirty_i;
4582 	unsigned int bitmap_size, i;
4583 
4584 	/* allocate memory for dirty segments list information */
4585 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4586 								GFP_KERNEL);
4587 	if (!dirty_i)
4588 		return -ENOMEM;
4589 
4590 	SM_I(sbi)->dirty_info = dirty_i;
4591 	mutex_init(&dirty_i->seglist_lock);
4592 
4593 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4594 
4595 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4596 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4597 								GFP_KERNEL);
4598 		if (!dirty_i->dirty_segmap[i])
4599 			return -ENOMEM;
4600 	}
4601 
4602 	if (__is_large_section(sbi)) {
4603 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4604 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4605 						bitmap_size, GFP_KERNEL);
4606 		if (!dirty_i->dirty_secmap)
4607 			return -ENOMEM;
4608 	}
4609 
4610 	init_dirty_segmap(sbi);
4611 	return init_victim_secmap(sbi);
4612 }
4613 
4614 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4615 {
4616 	int i;
4617 
4618 	/*
4619 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4620 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4621 	 */
4622 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4623 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4624 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4625 		unsigned int blkofs = curseg->next_blkoff;
4626 
4627 		if (f2fs_sb_has_readonly(sbi) &&
4628 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4629 			continue;
4630 
4631 		sanity_check_seg_type(sbi, curseg->seg_type);
4632 
4633 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4634 			f2fs_err(sbi,
4635 				 "Current segment has invalid alloc_type:%d",
4636 				 curseg->alloc_type);
4637 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4638 			return -EFSCORRUPTED;
4639 		}
4640 
4641 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4642 			goto out;
4643 
4644 		if (curseg->alloc_type == SSR)
4645 			continue;
4646 
4647 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4648 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4649 				continue;
4650 out:
4651 			f2fs_err(sbi,
4652 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4653 				 i, curseg->segno, curseg->alloc_type,
4654 				 curseg->next_blkoff, blkofs);
4655 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4656 			return -EFSCORRUPTED;
4657 		}
4658 	}
4659 	return 0;
4660 }
4661 
4662 #ifdef CONFIG_BLK_DEV_ZONED
4663 
4664 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4665 				    struct f2fs_dev_info *fdev,
4666 				    struct blk_zone *zone)
4667 {
4668 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4669 	block_t zone_block, wp_block, last_valid_block;
4670 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4671 	int i, s, b, ret;
4672 	struct seg_entry *se;
4673 
4674 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4675 		return 0;
4676 
4677 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4678 	wp_segno = GET_SEGNO(sbi, wp_block);
4679 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4680 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4681 	zone_segno = GET_SEGNO(sbi, zone_block);
4682 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4683 
4684 	if (zone_segno >= MAIN_SEGS(sbi))
4685 		return 0;
4686 
4687 	/*
4688 	 * Skip check of zones cursegs point to, since
4689 	 * fix_curseg_write_pointer() checks them.
4690 	 */
4691 	for (i = 0; i < NO_CHECK_TYPE; i++)
4692 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4693 						   CURSEG_I(sbi, i)->segno))
4694 			return 0;
4695 
4696 	/*
4697 	 * Get last valid block of the zone.
4698 	 */
4699 	last_valid_block = zone_block - 1;
4700 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4701 		segno = zone_segno + s;
4702 		se = get_seg_entry(sbi, segno);
4703 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4704 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4705 				last_valid_block = START_BLOCK(sbi, segno) + b;
4706 				break;
4707 			}
4708 		if (last_valid_block >= zone_block)
4709 			break;
4710 	}
4711 
4712 	/*
4713 	 * If last valid block is beyond the write pointer, report the
4714 	 * inconsistency. This inconsistency does not cause write error
4715 	 * because the zone will not be selected for write operation until
4716 	 * it get discarded. Just report it.
4717 	 */
4718 	if (last_valid_block >= wp_block) {
4719 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4720 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4721 			    GET_SEGNO(sbi, last_valid_block),
4722 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4723 			    wp_segno, wp_blkoff);
4724 		return 0;
4725 	}
4726 
4727 	/*
4728 	 * If there is no valid block in the zone and if write pointer is
4729 	 * not at zone start, reset the write pointer.
4730 	 */
4731 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4732 		f2fs_notice(sbi,
4733 			    "Zone without valid block has non-zero write "
4734 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4735 			    wp_segno, wp_blkoff);
4736 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4737 					zone->len >> log_sectors_per_block);
4738 		if (ret) {
4739 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4740 				 fdev->path, ret);
4741 			return ret;
4742 		}
4743 	}
4744 
4745 	return 0;
4746 }
4747 
4748 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4749 						  block_t zone_blkaddr)
4750 {
4751 	int i;
4752 
4753 	for (i = 0; i < sbi->s_ndevs; i++) {
4754 		if (!bdev_is_zoned(FDEV(i).bdev))
4755 			continue;
4756 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4757 				zone_blkaddr <= FDEV(i).end_blk))
4758 			return &FDEV(i);
4759 	}
4760 
4761 	return NULL;
4762 }
4763 
4764 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4765 			      void *data)
4766 {
4767 	memcpy(data, zone, sizeof(struct blk_zone));
4768 	return 0;
4769 }
4770 
4771 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4772 {
4773 	struct curseg_info *cs = CURSEG_I(sbi, type);
4774 	struct f2fs_dev_info *zbd;
4775 	struct blk_zone zone;
4776 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4777 	block_t cs_zone_block, wp_block;
4778 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4779 	sector_t zone_sector;
4780 	int err;
4781 
4782 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4783 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4784 
4785 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4786 	if (!zbd)
4787 		return 0;
4788 
4789 	/* report zone for the sector the curseg points to */
4790 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4791 		<< log_sectors_per_block;
4792 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4793 				  report_one_zone_cb, &zone);
4794 	if (err != 1) {
4795 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4796 			 zbd->path, err);
4797 		return err;
4798 	}
4799 
4800 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4801 		return 0;
4802 
4803 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4804 	wp_segno = GET_SEGNO(sbi, wp_block);
4805 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4806 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4807 
4808 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4809 		wp_sector_off == 0)
4810 		return 0;
4811 
4812 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4813 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4814 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4815 
4816 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4817 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4818 
4819 	f2fs_allocate_new_section(sbi, type, true);
4820 
4821 	/* check consistency of the zone curseg pointed to */
4822 	if (check_zone_write_pointer(sbi, zbd, &zone))
4823 		return -EIO;
4824 
4825 	/* check newly assigned zone */
4826 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4827 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4828 
4829 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4830 	if (!zbd)
4831 		return 0;
4832 
4833 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4834 		<< log_sectors_per_block;
4835 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4836 				  report_one_zone_cb, &zone);
4837 	if (err != 1) {
4838 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4839 			 zbd->path, err);
4840 		return err;
4841 	}
4842 
4843 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4844 		return 0;
4845 
4846 	if (zone.wp != zone.start) {
4847 		f2fs_notice(sbi,
4848 			    "New zone for curseg[%d] is not yet discarded. "
4849 			    "Reset the zone: curseg[0x%x,0x%x]",
4850 			    type, cs->segno, cs->next_blkoff);
4851 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4852 				zone_sector >> log_sectors_per_block,
4853 				zone.len >> log_sectors_per_block);
4854 		if (err) {
4855 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4856 				 zbd->path, err);
4857 			return err;
4858 		}
4859 	}
4860 
4861 	return 0;
4862 }
4863 
4864 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4865 {
4866 	int i, ret;
4867 
4868 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4869 		ret = fix_curseg_write_pointer(sbi, i);
4870 		if (ret)
4871 			return ret;
4872 	}
4873 
4874 	return 0;
4875 }
4876 
4877 struct check_zone_write_pointer_args {
4878 	struct f2fs_sb_info *sbi;
4879 	struct f2fs_dev_info *fdev;
4880 };
4881 
4882 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4883 				      void *data)
4884 {
4885 	struct check_zone_write_pointer_args *args;
4886 
4887 	args = (struct check_zone_write_pointer_args *)data;
4888 
4889 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4890 }
4891 
4892 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4893 {
4894 	int i, ret;
4895 	struct check_zone_write_pointer_args args;
4896 
4897 	for (i = 0; i < sbi->s_ndevs; i++) {
4898 		if (!bdev_is_zoned(FDEV(i).bdev))
4899 			continue;
4900 
4901 		args.sbi = sbi;
4902 		args.fdev = &FDEV(i);
4903 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4904 					  check_zone_write_pointer_cb, &args);
4905 		if (ret < 0)
4906 			return ret;
4907 	}
4908 
4909 	return 0;
4910 }
4911 
4912 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4913 						unsigned int dev_idx)
4914 {
4915 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4916 		return true;
4917 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4918 }
4919 
4920 /* Return the zone index in the given device */
4921 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4922 					int dev_idx)
4923 {
4924 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4925 
4926 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4927 						sbi->log_blocks_per_blkz;
4928 }
4929 
4930 /*
4931  * Return the usable segments in a section based on the zone's
4932  * corresponding zone capacity. Zone is equal to a section.
4933  */
4934 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4935 		struct f2fs_sb_info *sbi, unsigned int segno)
4936 {
4937 	unsigned int dev_idx, zone_idx;
4938 
4939 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4940 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4941 
4942 	/* Conventional zone's capacity is always equal to zone size */
4943 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4944 		return sbi->segs_per_sec;
4945 
4946 	if (!sbi->unusable_blocks_per_sec)
4947 		return sbi->segs_per_sec;
4948 
4949 	/* Get the segment count beyond zone capacity block */
4950 	return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4951 						sbi->log_blocks_per_seg);
4952 }
4953 
4954 /*
4955  * Return the number of usable blocks in a segment. The number of blocks
4956  * returned is always equal to the number of blocks in a segment for
4957  * segments fully contained within a sequential zone capacity or a
4958  * conventional zone. For segments partially contained in a sequential
4959  * zone capacity, the number of usable blocks up to the zone capacity
4960  * is returned. 0 is returned in all other cases.
4961  */
4962 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4963 			struct f2fs_sb_info *sbi, unsigned int segno)
4964 {
4965 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4966 	unsigned int zone_idx, dev_idx, secno;
4967 
4968 	secno = GET_SEC_FROM_SEG(sbi, segno);
4969 	seg_start = START_BLOCK(sbi, segno);
4970 	dev_idx = f2fs_target_device_index(sbi, seg_start);
4971 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
4972 
4973 	/*
4974 	 * Conventional zone's capacity is always equal to zone size,
4975 	 * so, blocks per segment is unchanged.
4976 	 */
4977 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4978 		return sbi->blocks_per_seg;
4979 
4980 	if (!sbi->unusable_blocks_per_sec)
4981 		return sbi->blocks_per_seg;
4982 
4983 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4984 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
4985 
4986 	/*
4987 	 * If segment starts before zone capacity and spans beyond
4988 	 * zone capacity, then usable blocks are from seg start to
4989 	 * zone capacity. If the segment starts after the zone capacity,
4990 	 * then there are no usable blocks.
4991 	 */
4992 	if (seg_start >= sec_cap_blkaddr)
4993 		return 0;
4994 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4995 		return sec_cap_blkaddr - seg_start;
4996 
4997 	return sbi->blocks_per_seg;
4998 }
4999 #else
5000 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5001 {
5002 	return 0;
5003 }
5004 
5005 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5006 {
5007 	return 0;
5008 }
5009 
5010 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5011 							unsigned int segno)
5012 {
5013 	return 0;
5014 }
5015 
5016 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5017 							unsigned int segno)
5018 {
5019 	return 0;
5020 }
5021 #endif
5022 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5023 					unsigned int segno)
5024 {
5025 	if (f2fs_sb_has_blkzoned(sbi))
5026 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5027 
5028 	return sbi->blocks_per_seg;
5029 }
5030 
5031 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5032 					unsigned int segno)
5033 {
5034 	if (f2fs_sb_has_blkzoned(sbi))
5035 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5036 
5037 	return sbi->segs_per_sec;
5038 }
5039 
5040 /*
5041  * Update min, max modified time for cost-benefit GC algorithm
5042  */
5043 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5044 {
5045 	struct sit_info *sit_i = SIT_I(sbi);
5046 	unsigned int segno;
5047 
5048 	down_write(&sit_i->sentry_lock);
5049 
5050 	sit_i->min_mtime = ULLONG_MAX;
5051 
5052 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5053 		unsigned int i;
5054 		unsigned long long mtime = 0;
5055 
5056 		for (i = 0; i < sbi->segs_per_sec; i++)
5057 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5058 
5059 		mtime = div_u64(mtime, sbi->segs_per_sec);
5060 
5061 		if (sit_i->min_mtime > mtime)
5062 			sit_i->min_mtime = mtime;
5063 	}
5064 	sit_i->max_mtime = get_mtime(sbi, false);
5065 	sit_i->dirty_max_mtime = 0;
5066 	up_write(&sit_i->sentry_lock);
5067 }
5068 
5069 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5070 {
5071 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5072 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5073 	struct f2fs_sm_info *sm_info;
5074 	int err;
5075 
5076 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5077 	if (!sm_info)
5078 		return -ENOMEM;
5079 
5080 	/* init sm info */
5081 	sbi->sm_info = sm_info;
5082 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5083 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5084 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5085 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5086 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5087 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5088 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5089 	sm_info->rec_prefree_segments = sm_info->main_segments *
5090 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5091 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5092 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5093 
5094 	if (!f2fs_lfs_mode(sbi))
5095 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5096 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5097 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5098 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5099 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5100 	sm_info->min_ssr_sections = reserved_sections(sbi);
5101 
5102 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5103 
5104 	init_f2fs_rwsem(&sm_info->curseg_lock);
5105 
5106 	if (!f2fs_readonly(sbi->sb)) {
5107 		err = f2fs_create_flush_cmd_control(sbi);
5108 		if (err)
5109 			return err;
5110 	}
5111 
5112 	err = create_discard_cmd_control(sbi);
5113 	if (err)
5114 		return err;
5115 
5116 	err = build_sit_info(sbi);
5117 	if (err)
5118 		return err;
5119 	err = build_free_segmap(sbi);
5120 	if (err)
5121 		return err;
5122 	err = build_curseg(sbi);
5123 	if (err)
5124 		return err;
5125 
5126 	/* reinit free segmap based on SIT */
5127 	err = build_sit_entries(sbi);
5128 	if (err)
5129 		return err;
5130 
5131 	init_free_segmap(sbi);
5132 	err = build_dirty_segmap(sbi);
5133 	if (err)
5134 		return err;
5135 
5136 	err = sanity_check_curseg(sbi);
5137 	if (err)
5138 		return err;
5139 
5140 	init_min_max_mtime(sbi);
5141 	return 0;
5142 }
5143 
5144 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5145 		enum dirty_type dirty_type)
5146 {
5147 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5148 
5149 	mutex_lock(&dirty_i->seglist_lock);
5150 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5151 	dirty_i->nr_dirty[dirty_type] = 0;
5152 	mutex_unlock(&dirty_i->seglist_lock);
5153 }
5154 
5155 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5156 {
5157 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5158 
5159 	kvfree(dirty_i->pinned_secmap);
5160 	kvfree(dirty_i->victim_secmap);
5161 }
5162 
5163 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5164 {
5165 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5166 	int i;
5167 
5168 	if (!dirty_i)
5169 		return;
5170 
5171 	/* discard pre-free/dirty segments list */
5172 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5173 		discard_dirty_segmap(sbi, i);
5174 
5175 	if (__is_large_section(sbi)) {
5176 		mutex_lock(&dirty_i->seglist_lock);
5177 		kvfree(dirty_i->dirty_secmap);
5178 		mutex_unlock(&dirty_i->seglist_lock);
5179 	}
5180 
5181 	destroy_victim_secmap(sbi);
5182 	SM_I(sbi)->dirty_info = NULL;
5183 	kfree(dirty_i);
5184 }
5185 
5186 static void destroy_curseg(struct f2fs_sb_info *sbi)
5187 {
5188 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5189 	int i;
5190 
5191 	if (!array)
5192 		return;
5193 	SM_I(sbi)->curseg_array = NULL;
5194 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5195 		kfree(array[i].sum_blk);
5196 		kfree(array[i].journal);
5197 	}
5198 	kfree(array);
5199 }
5200 
5201 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5202 {
5203 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5204 
5205 	if (!free_i)
5206 		return;
5207 	SM_I(sbi)->free_info = NULL;
5208 	kvfree(free_i->free_segmap);
5209 	kvfree(free_i->free_secmap);
5210 	kfree(free_i);
5211 }
5212 
5213 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5214 {
5215 	struct sit_info *sit_i = SIT_I(sbi);
5216 
5217 	if (!sit_i)
5218 		return;
5219 
5220 	if (sit_i->sentries)
5221 		kvfree(sit_i->bitmap);
5222 	kfree(sit_i->tmp_map);
5223 
5224 	kvfree(sit_i->sentries);
5225 	kvfree(sit_i->sec_entries);
5226 	kvfree(sit_i->dirty_sentries_bitmap);
5227 
5228 	SM_I(sbi)->sit_info = NULL;
5229 	kvfree(sit_i->sit_bitmap);
5230 #ifdef CONFIG_F2FS_CHECK_FS
5231 	kvfree(sit_i->sit_bitmap_mir);
5232 	kvfree(sit_i->invalid_segmap);
5233 #endif
5234 	kfree(sit_i);
5235 }
5236 
5237 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5238 {
5239 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5240 
5241 	if (!sm_info)
5242 		return;
5243 	f2fs_destroy_flush_cmd_control(sbi, true);
5244 	destroy_discard_cmd_control(sbi);
5245 	destroy_dirty_segmap(sbi);
5246 	destroy_curseg(sbi);
5247 	destroy_free_segmap(sbi);
5248 	destroy_sit_info(sbi);
5249 	sbi->sm_info = NULL;
5250 	kfree(sm_info);
5251 }
5252 
5253 int __init f2fs_create_segment_manager_caches(void)
5254 {
5255 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5256 			sizeof(struct discard_entry));
5257 	if (!discard_entry_slab)
5258 		goto fail;
5259 
5260 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5261 			sizeof(struct discard_cmd));
5262 	if (!discard_cmd_slab)
5263 		goto destroy_discard_entry;
5264 
5265 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5266 			sizeof(struct sit_entry_set));
5267 	if (!sit_entry_set_slab)
5268 		goto destroy_discard_cmd;
5269 
5270 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5271 			sizeof(struct revoke_entry));
5272 	if (!revoke_entry_slab)
5273 		goto destroy_sit_entry_set;
5274 	return 0;
5275 
5276 destroy_sit_entry_set:
5277 	kmem_cache_destroy(sit_entry_set_slab);
5278 destroy_discard_cmd:
5279 	kmem_cache_destroy(discard_cmd_slab);
5280 destroy_discard_entry:
5281 	kmem_cache_destroy(discard_entry_slab);
5282 fail:
5283 	return -ENOMEM;
5284 }
5285 
5286 void f2fs_destroy_segment_manager_caches(void)
5287 {
5288 	kmem_cache_destroy(sit_entry_set_slab);
5289 	kmem_cache_destroy(discard_cmd_slab);
5290 	kmem_cache_destroy(discard_entry_slab);
5291 	kmem_cache_destroy(revoke_entry_slab);
5292 }
5293