1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (test_opt(sbi, LFS)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 189 struct f2fs_inode_info *fi = F2FS_I(inode); 190 struct inmem_pages *new; 191 192 f2fs_trace_pid(page); 193 194 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 195 196 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 197 198 /* add atomic page indices to the list */ 199 new->page = page; 200 INIT_LIST_HEAD(&new->list); 201 202 /* increase reference count with clean state */ 203 mutex_lock(&fi->inmem_lock); 204 get_page(page); 205 list_add_tail(&new->list, &fi->inmem_pages); 206 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 207 if (list_empty(&fi->inmem_ilist)) 208 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 209 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 210 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 211 mutex_unlock(&fi->inmem_lock); 212 213 trace_f2fs_register_inmem_page(page, INMEM); 214 } 215 216 static int __revoke_inmem_pages(struct inode *inode, 217 struct list_head *head, bool drop, bool recover, 218 bool trylock) 219 { 220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 221 struct inmem_pages *cur, *tmp; 222 int err = 0; 223 224 list_for_each_entry_safe(cur, tmp, head, list) { 225 struct page *page = cur->page; 226 227 if (drop) 228 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 229 230 if (trylock) { 231 /* 232 * to avoid deadlock in between page lock and 233 * inmem_lock. 234 */ 235 if (!trylock_page(page)) 236 continue; 237 } else { 238 lock_page(page); 239 } 240 241 f2fs_wait_on_page_writeback(page, DATA, true, true); 242 243 if (recover) { 244 struct dnode_of_data dn; 245 struct node_info ni; 246 247 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 248 retry: 249 set_new_dnode(&dn, inode, NULL, NULL, 0); 250 err = f2fs_get_dnode_of_data(&dn, page->index, 251 LOOKUP_NODE); 252 if (err) { 253 if (err == -ENOMEM) { 254 congestion_wait(BLK_RW_ASYNC, HZ/50); 255 cond_resched(); 256 goto retry; 257 } 258 err = -EAGAIN; 259 goto next; 260 } 261 262 err = f2fs_get_node_info(sbi, dn.nid, &ni); 263 if (err) { 264 f2fs_put_dnode(&dn); 265 return err; 266 } 267 268 if (cur->old_addr == NEW_ADDR) { 269 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 270 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 271 } else 272 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 273 cur->old_addr, ni.version, true, true); 274 f2fs_put_dnode(&dn); 275 } 276 next: 277 /* we don't need to invalidate this in the sccessful status */ 278 if (drop || recover) { 279 ClearPageUptodate(page); 280 clear_cold_data(page); 281 } 282 f2fs_clear_page_private(page); 283 f2fs_put_page(page, 1); 284 285 list_del(&cur->list); 286 kmem_cache_free(inmem_entry_slab, cur); 287 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 288 } 289 return err; 290 } 291 292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 293 { 294 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 295 struct inode *inode; 296 struct f2fs_inode_info *fi; 297 next: 298 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 299 if (list_empty(head)) { 300 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 301 return; 302 } 303 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 304 inode = igrab(&fi->vfs_inode); 305 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 306 307 if (inode) { 308 if (gc_failure) { 309 if (fi->i_gc_failures[GC_FAILURE_ATOMIC]) 310 goto drop; 311 goto skip; 312 } 313 drop: 314 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 315 f2fs_drop_inmem_pages(inode); 316 iput(inode); 317 } 318 skip: 319 congestion_wait(BLK_RW_ASYNC, HZ/50); 320 cond_resched(); 321 goto next; 322 } 323 324 void f2fs_drop_inmem_pages(struct inode *inode) 325 { 326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 327 struct f2fs_inode_info *fi = F2FS_I(inode); 328 329 while (!list_empty(&fi->inmem_pages)) { 330 mutex_lock(&fi->inmem_lock); 331 __revoke_inmem_pages(inode, &fi->inmem_pages, 332 true, false, true); 333 334 if (list_empty(&fi->inmem_pages)) { 335 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 336 if (!list_empty(&fi->inmem_ilist)) 337 list_del_init(&fi->inmem_ilist); 338 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 339 } 340 mutex_unlock(&fi->inmem_lock); 341 } 342 343 clear_inode_flag(inode, FI_ATOMIC_FILE); 344 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 345 stat_dec_atomic_write(inode); 346 } 347 348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 349 { 350 struct f2fs_inode_info *fi = F2FS_I(inode); 351 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 352 struct list_head *head = &fi->inmem_pages; 353 struct inmem_pages *cur = NULL; 354 355 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 356 357 mutex_lock(&fi->inmem_lock); 358 list_for_each_entry(cur, head, list) { 359 if (cur->page == page) 360 break; 361 } 362 363 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 364 list_del(&cur->list); 365 mutex_unlock(&fi->inmem_lock); 366 367 dec_page_count(sbi, F2FS_INMEM_PAGES); 368 kmem_cache_free(inmem_entry_slab, cur); 369 370 ClearPageUptodate(page); 371 f2fs_clear_page_private(page); 372 f2fs_put_page(page, 0); 373 374 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 375 } 376 377 static int __f2fs_commit_inmem_pages(struct inode *inode) 378 { 379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 380 struct f2fs_inode_info *fi = F2FS_I(inode); 381 struct inmem_pages *cur, *tmp; 382 struct f2fs_io_info fio = { 383 .sbi = sbi, 384 .ino = inode->i_ino, 385 .type = DATA, 386 .op = REQ_OP_WRITE, 387 .op_flags = REQ_SYNC | REQ_PRIO, 388 .io_type = FS_DATA_IO, 389 }; 390 struct list_head revoke_list; 391 bool submit_bio = false; 392 int err = 0; 393 394 INIT_LIST_HEAD(&revoke_list); 395 396 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 397 struct page *page = cur->page; 398 399 lock_page(page); 400 if (page->mapping == inode->i_mapping) { 401 trace_f2fs_commit_inmem_page(page, INMEM); 402 403 f2fs_wait_on_page_writeback(page, DATA, true, true); 404 405 set_page_dirty(page); 406 if (clear_page_dirty_for_io(page)) { 407 inode_dec_dirty_pages(inode); 408 f2fs_remove_dirty_inode(inode); 409 } 410 retry: 411 fio.page = page; 412 fio.old_blkaddr = NULL_ADDR; 413 fio.encrypted_page = NULL; 414 fio.need_lock = LOCK_DONE; 415 err = f2fs_do_write_data_page(&fio); 416 if (err) { 417 if (err == -ENOMEM) { 418 congestion_wait(BLK_RW_ASYNC, HZ/50); 419 cond_resched(); 420 goto retry; 421 } 422 unlock_page(page); 423 break; 424 } 425 /* record old blkaddr for revoking */ 426 cur->old_addr = fio.old_blkaddr; 427 submit_bio = true; 428 } 429 unlock_page(page); 430 list_move_tail(&cur->list, &revoke_list); 431 } 432 433 if (submit_bio) 434 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 435 436 if (err) { 437 /* 438 * try to revoke all committed pages, but still we could fail 439 * due to no memory or other reason, if that happened, EAGAIN 440 * will be returned, which means in such case, transaction is 441 * already not integrity, caller should use journal to do the 442 * recovery or rewrite & commit last transaction. For other 443 * error number, revoking was done by filesystem itself. 444 */ 445 err = __revoke_inmem_pages(inode, &revoke_list, 446 false, true, false); 447 448 /* drop all uncommitted pages */ 449 __revoke_inmem_pages(inode, &fi->inmem_pages, 450 true, false, false); 451 } else { 452 __revoke_inmem_pages(inode, &revoke_list, 453 false, false, false); 454 } 455 456 return err; 457 } 458 459 int f2fs_commit_inmem_pages(struct inode *inode) 460 { 461 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 462 struct f2fs_inode_info *fi = F2FS_I(inode); 463 int err; 464 465 f2fs_balance_fs(sbi, true); 466 467 down_write(&fi->i_gc_rwsem[WRITE]); 468 469 f2fs_lock_op(sbi); 470 set_inode_flag(inode, FI_ATOMIC_COMMIT); 471 472 mutex_lock(&fi->inmem_lock); 473 err = __f2fs_commit_inmem_pages(inode); 474 475 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 476 if (!list_empty(&fi->inmem_ilist)) 477 list_del_init(&fi->inmem_ilist); 478 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 479 mutex_unlock(&fi->inmem_lock); 480 481 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 482 483 f2fs_unlock_op(sbi); 484 up_write(&fi->i_gc_rwsem[WRITE]); 485 486 return err; 487 } 488 489 /* 490 * This function balances dirty node and dentry pages. 491 * In addition, it controls garbage collection. 492 */ 493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 494 { 495 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 496 f2fs_show_injection_info(FAULT_CHECKPOINT); 497 f2fs_stop_checkpoint(sbi, false); 498 } 499 500 /* balance_fs_bg is able to be pending */ 501 if (need && excess_cached_nats(sbi)) 502 f2fs_balance_fs_bg(sbi); 503 504 if (f2fs_is_checkpoint_ready(sbi)) 505 return; 506 507 /* 508 * We should do GC or end up with checkpoint, if there are so many dirty 509 * dir/node pages without enough free segments. 510 */ 511 if (has_not_enough_free_secs(sbi, 0, 0)) { 512 mutex_lock(&sbi->gc_mutex); 513 f2fs_gc(sbi, false, false, NULL_SEGNO); 514 } 515 } 516 517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 518 { 519 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 520 return; 521 522 /* try to shrink extent cache when there is no enough memory */ 523 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 524 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 525 526 /* check the # of cached NAT entries */ 527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 528 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 529 530 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 531 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 532 else 533 f2fs_build_free_nids(sbi, false, false); 534 535 if (!is_idle(sbi, REQ_TIME) && 536 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 537 return; 538 539 /* checkpoint is the only way to shrink partial cached entries */ 540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 541 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 542 excess_prefree_segs(sbi) || 543 excess_dirty_nats(sbi) || 544 excess_dirty_nodes(sbi) || 545 f2fs_time_over(sbi, CP_TIME)) { 546 if (test_opt(sbi, DATA_FLUSH)) { 547 struct blk_plug plug; 548 549 mutex_lock(&sbi->flush_lock); 550 551 blk_start_plug(&plug); 552 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 553 blk_finish_plug(&plug); 554 555 mutex_unlock(&sbi->flush_lock); 556 } 557 f2fs_sync_fs(sbi->sb, true); 558 stat_inc_bg_cp_count(sbi->stat_info); 559 } 560 } 561 562 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 563 struct block_device *bdev) 564 { 565 struct bio *bio; 566 int ret; 567 568 bio = f2fs_bio_alloc(sbi, 0, false); 569 if (!bio) 570 return -ENOMEM; 571 572 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 573 bio_set_dev(bio, bdev); 574 ret = submit_bio_wait(bio); 575 bio_put(bio); 576 577 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 578 test_opt(sbi, FLUSH_MERGE), ret); 579 return ret; 580 } 581 582 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 583 { 584 int ret = 0; 585 int i; 586 587 if (!f2fs_is_multi_device(sbi)) 588 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 589 590 for (i = 0; i < sbi->s_ndevs; i++) { 591 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 592 continue; 593 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 594 if (ret) 595 break; 596 } 597 return ret; 598 } 599 600 static int issue_flush_thread(void *data) 601 { 602 struct f2fs_sb_info *sbi = data; 603 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 604 wait_queue_head_t *q = &fcc->flush_wait_queue; 605 repeat: 606 if (kthread_should_stop()) 607 return 0; 608 609 sb_start_intwrite(sbi->sb); 610 611 if (!llist_empty(&fcc->issue_list)) { 612 struct flush_cmd *cmd, *next; 613 int ret; 614 615 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 616 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 617 618 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 619 620 ret = submit_flush_wait(sbi, cmd->ino); 621 atomic_inc(&fcc->issued_flush); 622 623 llist_for_each_entry_safe(cmd, next, 624 fcc->dispatch_list, llnode) { 625 cmd->ret = ret; 626 complete(&cmd->wait); 627 } 628 fcc->dispatch_list = NULL; 629 } 630 631 sb_end_intwrite(sbi->sb); 632 633 wait_event_interruptible(*q, 634 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 635 goto repeat; 636 } 637 638 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 639 { 640 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 641 struct flush_cmd cmd; 642 int ret; 643 644 if (test_opt(sbi, NOBARRIER)) 645 return 0; 646 647 if (!test_opt(sbi, FLUSH_MERGE)) { 648 atomic_inc(&fcc->queued_flush); 649 ret = submit_flush_wait(sbi, ino); 650 atomic_dec(&fcc->queued_flush); 651 atomic_inc(&fcc->issued_flush); 652 return ret; 653 } 654 655 if (atomic_inc_return(&fcc->queued_flush) == 1 || 656 f2fs_is_multi_device(sbi)) { 657 ret = submit_flush_wait(sbi, ino); 658 atomic_dec(&fcc->queued_flush); 659 660 atomic_inc(&fcc->issued_flush); 661 return ret; 662 } 663 664 cmd.ino = ino; 665 init_completion(&cmd.wait); 666 667 llist_add(&cmd.llnode, &fcc->issue_list); 668 669 /* update issue_list before we wake up issue_flush thread */ 670 smp_mb(); 671 672 if (waitqueue_active(&fcc->flush_wait_queue)) 673 wake_up(&fcc->flush_wait_queue); 674 675 if (fcc->f2fs_issue_flush) { 676 wait_for_completion(&cmd.wait); 677 atomic_dec(&fcc->queued_flush); 678 } else { 679 struct llist_node *list; 680 681 list = llist_del_all(&fcc->issue_list); 682 if (!list) { 683 wait_for_completion(&cmd.wait); 684 atomic_dec(&fcc->queued_flush); 685 } else { 686 struct flush_cmd *tmp, *next; 687 688 ret = submit_flush_wait(sbi, ino); 689 690 llist_for_each_entry_safe(tmp, next, list, llnode) { 691 if (tmp == &cmd) { 692 cmd.ret = ret; 693 atomic_dec(&fcc->queued_flush); 694 continue; 695 } 696 tmp->ret = ret; 697 complete(&tmp->wait); 698 } 699 } 700 } 701 702 return cmd.ret; 703 } 704 705 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 706 { 707 dev_t dev = sbi->sb->s_bdev->bd_dev; 708 struct flush_cmd_control *fcc; 709 int err = 0; 710 711 if (SM_I(sbi)->fcc_info) { 712 fcc = SM_I(sbi)->fcc_info; 713 if (fcc->f2fs_issue_flush) 714 return err; 715 goto init_thread; 716 } 717 718 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 719 if (!fcc) 720 return -ENOMEM; 721 atomic_set(&fcc->issued_flush, 0); 722 atomic_set(&fcc->queued_flush, 0); 723 init_waitqueue_head(&fcc->flush_wait_queue); 724 init_llist_head(&fcc->issue_list); 725 SM_I(sbi)->fcc_info = fcc; 726 if (!test_opt(sbi, FLUSH_MERGE)) 727 return err; 728 729 init_thread: 730 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 731 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 732 if (IS_ERR(fcc->f2fs_issue_flush)) { 733 err = PTR_ERR(fcc->f2fs_issue_flush); 734 kvfree(fcc); 735 SM_I(sbi)->fcc_info = NULL; 736 return err; 737 } 738 739 return err; 740 } 741 742 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 743 { 744 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 745 746 if (fcc && fcc->f2fs_issue_flush) { 747 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 748 749 fcc->f2fs_issue_flush = NULL; 750 kthread_stop(flush_thread); 751 } 752 if (free) { 753 kvfree(fcc); 754 SM_I(sbi)->fcc_info = NULL; 755 } 756 } 757 758 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 759 { 760 int ret = 0, i; 761 762 if (!f2fs_is_multi_device(sbi)) 763 return 0; 764 765 for (i = 1; i < sbi->s_ndevs; i++) { 766 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 767 continue; 768 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 769 if (ret) 770 break; 771 772 spin_lock(&sbi->dev_lock); 773 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 774 spin_unlock(&sbi->dev_lock); 775 } 776 777 return ret; 778 } 779 780 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 781 enum dirty_type dirty_type) 782 { 783 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 784 785 /* need not be added */ 786 if (IS_CURSEG(sbi, segno)) 787 return; 788 789 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 790 dirty_i->nr_dirty[dirty_type]++; 791 792 if (dirty_type == DIRTY) { 793 struct seg_entry *sentry = get_seg_entry(sbi, segno); 794 enum dirty_type t = sentry->type; 795 796 if (unlikely(t >= DIRTY)) { 797 f2fs_bug_on(sbi, 1); 798 return; 799 } 800 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 801 dirty_i->nr_dirty[t]++; 802 } 803 } 804 805 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 806 enum dirty_type dirty_type) 807 { 808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 809 810 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 811 dirty_i->nr_dirty[dirty_type]--; 812 813 if (dirty_type == DIRTY) { 814 struct seg_entry *sentry = get_seg_entry(sbi, segno); 815 enum dirty_type t = sentry->type; 816 817 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 818 dirty_i->nr_dirty[t]--; 819 820 if (get_valid_blocks(sbi, segno, true) == 0) 821 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 822 dirty_i->victim_secmap); 823 } 824 } 825 826 /* 827 * Should not occur error such as -ENOMEM. 828 * Adding dirty entry into seglist is not critical operation. 829 * If a given segment is one of current working segments, it won't be added. 830 */ 831 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 832 { 833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 834 unsigned short valid_blocks, ckpt_valid_blocks; 835 836 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 837 return; 838 839 mutex_lock(&dirty_i->seglist_lock); 840 841 valid_blocks = get_valid_blocks(sbi, segno, false); 842 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 843 844 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 845 ckpt_valid_blocks == sbi->blocks_per_seg)) { 846 __locate_dirty_segment(sbi, segno, PRE); 847 __remove_dirty_segment(sbi, segno, DIRTY); 848 } else if (valid_blocks < sbi->blocks_per_seg) { 849 __locate_dirty_segment(sbi, segno, DIRTY); 850 } else { 851 /* Recovery routine with SSR needs this */ 852 __remove_dirty_segment(sbi, segno, DIRTY); 853 } 854 855 mutex_unlock(&dirty_i->seglist_lock); 856 } 857 858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 860 { 861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 862 unsigned int segno; 863 864 mutex_lock(&dirty_i->seglist_lock); 865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 866 if (get_valid_blocks(sbi, segno, false)) 867 continue; 868 if (IS_CURSEG(sbi, segno)) 869 continue; 870 __locate_dirty_segment(sbi, segno, PRE); 871 __remove_dirty_segment(sbi, segno, DIRTY); 872 } 873 mutex_unlock(&dirty_i->seglist_lock); 874 } 875 876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 877 { 878 int ovp_hole_segs = 879 (overprovision_segments(sbi) - reserved_segments(sbi)); 880 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 882 block_t holes[2] = {0, 0}; /* DATA and NODE */ 883 block_t unusable; 884 struct seg_entry *se; 885 unsigned int segno; 886 887 mutex_lock(&dirty_i->seglist_lock); 888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 889 se = get_seg_entry(sbi, segno); 890 if (IS_NODESEG(se->type)) 891 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 892 else 893 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 894 } 895 mutex_unlock(&dirty_i->seglist_lock); 896 897 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 898 if (unusable > ovp_holes) 899 return unusable - ovp_holes; 900 return 0; 901 } 902 903 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 904 { 905 int ovp_hole_segs = 906 (overprovision_segments(sbi) - reserved_segments(sbi)); 907 if (unusable > F2FS_OPTION(sbi).unusable_cap) 908 return -EAGAIN; 909 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 910 dirty_segments(sbi) > ovp_hole_segs) 911 return -EAGAIN; 912 return 0; 913 } 914 915 /* This is only used by SBI_CP_DISABLED */ 916 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 917 { 918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 919 unsigned int segno = 0; 920 921 mutex_lock(&dirty_i->seglist_lock); 922 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 923 if (get_valid_blocks(sbi, segno, false)) 924 continue; 925 if (get_ckpt_valid_blocks(sbi, segno)) 926 continue; 927 mutex_unlock(&dirty_i->seglist_lock); 928 return segno; 929 } 930 mutex_unlock(&dirty_i->seglist_lock); 931 return NULL_SEGNO; 932 } 933 934 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 935 struct block_device *bdev, block_t lstart, 936 block_t start, block_t len) 937 { 938 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 939 struct list_head *pend_list; 940 struct discard_cmd *dc; 941 942 f2fs_bug_on(sbi, !len); 943 944 pend_list = &dcc->pend_list[plist_idx(len)]; 945 946 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 947 INIT_LIST_HEAD(&dc->list); 948 dc->bdev = bdev; 949 dc->lstart = lstart; 950 dc->start = start; 951 dc->len = len; 952 dc->ref = 0; 953 dc->state = D_PREP; 954 dc->queued = 0; 955 dc->error = 0; 956 init_completion(&dc->wait); 957 list_add_tail(&dc->list, pend_list); 958 spin_lock_init(&dc->lock); 959 dc->bio_ref = 0; 960 atomic_inc(&dcc->discard_cmd_cnt); 961 dcc->undiscard_blks += len; 962 963 return dc; 964 } 965 966 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 967 struct block_device *bdev, block_t lstart, 968 block_t start, block_t len, 969 struct rb_node *parent, struct rb_node **p, 970 bool leftmost) 971 { 972 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 973 struct discard_cmd *dc; 974 975 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 976 977 rb_link_node(&dc->rb_node, parent, p); 978 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 979 980 return dc; 981 } 982 983 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 984 struct discard_cmd *dc) 985 { 986 if (dc->state == D_DONE) 987 atomic_sub(dc->queued, &dcc->queued_discard); 988 989 list_del(&dc->list); 990 rb_erase_cached(&dc->rb_node, &dcc->root); 991 dcc->undiscard_blks -= dc->len; 992 993 kmem_cache_free(discard_cmd_slab, dc); 994 995 atomic_dec(&dcc->discard_cmd_cnt); 996 } 997 998 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 999 struct discard_cmd *dc) 1000 { 1001 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1002 unsigned long flags; 1003 1004 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1005 1006 spin_lock_irqsave(&dc->lock, flags); 1007 if (dc->bio_ref) { 1008 spin_unlock_irqrestore(&dc->lock, flags); 1009 return; 1010 } 1011 spin_unlock_irqrestore(&dc->lock, flags); 1012 1013 f2fs_bug_on(sbi, dc->ref); 1014 1015 if (dc->error == -EOPNOTSUPP) 1016 dc->error = 0; 1017 1018 if (dc->error) 1019 printk_ratelimited( 1020 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d", 1021 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error); 1022 __detach_discard_cmd(dcc, dc); 1023 } 1024 1025 static void f2fs_submit_discard_endio(struct bio *bio) 1026 { 1027 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1028 unsigned long flags; 1029 1030 dc->error = blk_status_to_errno(bio->bi_status); 1031 1032 spin_lock_irqsave(&dc->lock, flags); 1033 dc->bio_ref--; 1034 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1035 dc->state = D_DONE; 1036 complete_all(&dc->wait); 1037 } 1038 spin_unlock_irqrestore(&dc->lock, flags); 1039 bio_put(bio); 1040 } 1041 1042 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1043 block_t start, block_t end) 1044 { 1045 #ifdef CONFIG_F2FS_CHECK_FS 1046 struct seg_entry *sentry; 1047 unsigned int segno; 1048 block_t blk = start; 1049 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1050 unsigned long *map; 1051 1052 while (blk < end) { 1053 segno = GET_SEGNO(sbi, blk); 1054 sentry = get_seg_entry(sbi, segno); 1055 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1056 1057 if (end < START_BLOCK(sbi, segno + 1)) 1058 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1059 else 1060 size = max_blocks; 1061 map = (unsigned long *)(sentry->cur_valid_map); 1062 offset = __find_rev_next_bit(map, size, offset); 1063 f2fs_bug_on(sbi, offset != size); 1064 blk = START_BLOCK(sbi, segno + 1); 1065 } 1066 #endif 1067 } 1068 1069 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1070 struct discard_policy *dpolicy, 1071 int discard_type, unsigned int granularity) 1072 { 1073 /* common policy */ 1074 dpolicy->type = discard_type; 1075 dpolicy->sync = true; 1076 dpolicy->ordered = false; 1077 dpolicy->granularity = granularity; 1078 1079 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1080 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1081 dpolicy->timeout = 0; 1082 1083 if (discard_type == DPOLICY_BG) { 1084 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1085 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1086 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1087 dpolicy->io_aware = true; 1088 dpolicy->sync = false; 1089 dpolicy->ordered = true; 1090 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1091 dpolicy->granularity = 1; 1092 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1093 } 1094 } else if (discard_type == DPOLICY_FORCE) { 1095 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1096 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1097 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1098 dpolicy->io_aware = false; 1099 } else if (discard_type == DPOLICY_FSTRIM) { 1100 dpolicy->io_aware = false; 1101 } else if (discard_type == DPOLICY_UMOUNT) { 1102 dpolicy->max_requests = UINT_MAX; 1103 dpolicy->io_aware = false; 1104 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1105 dpolicy->granularity = 1; 1106 } 1107 } 1108 1109 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1110 struct block_device *bdev, block_t lstart, 1111 block_t start, block_t len); 1112 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1113 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1114 struct discard_policy *dpolicy, 1115 struct discard_cmd *dc, 1116 unsigned int *issued) 1117 { 1118 struct block_device *bdev = dc->bdev; 1119 struct request_queue *q = bdev_get_queue(bdev); 1120 unsigned int max_discard_blocks = 1121 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1122 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1123 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1124 &(dcc->fstrim_list) : &(dcc->wait_list); 1125 int flag = dpolicy->sync ? REQ_SYNC : 0; 1126 block_t lstart, start, len, total_len; 1127 int err = 0; 1128 1129 if (dc->state != D_PREP) 1130 return 0; 1131 1132 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1133 return 0; 1134 1135 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1136 1137 lstart = dc->lstart; 1138 start = dc->start; 1139 len = dc->len; 1140 total_len = len; 1141 1142 dc->len = 0; 1143 1144 while (total_len && *issued < dpolicy->max_requests && !err) { 1145 struct bio *bio = NULL; 1146 unsigned long flags; 1147 bool last = true; 1148 1149 if (len > max_discard_blocks) { 1150 len = max_discard_blocks; 1151 last = false; 1152 } 1153 1154 (*issued)++; 1155 if (*issued == dpolicy->max_requests) 1156 last = true; 1157 1158 dc->len += len; 1159 1160 if (time_to_inject(sbi, FAULT_DISCARD)) { 1161 f2fs_show_injection_info(FAULT_DISCARD); 1162 err = -EIO; 1163 goto submit; 1164 } 1165 err = __blkdev_issue_discard(bdev, 1166 SECTOR_FROM_BLOCK(start), 1167 SECTOR_FROM_BLOCK(len), 1168 GFP_NOFS, 0, &bio); 1169 submit: 1170 if (err) { 1171 spin_lock_irqsave(&dc->lock, flags); 1172 if (dc->state == D_PARTIAL) 1173 dc->state = D_SUBMIT; 1174 spin_unlock_irqrestore(&dc->lock, flags); 1175 1176 break; 1177 } 1178 1179 f2fs_bug_on(sbi, !bio); 1180 1181 /* 1182 * should keep before submission to avoid D_DONE 1183 * right away 1184 */ 1185 spin_lock_irqsave(&dc->lock, flags); 1186 if (last) 1187 dc->state = D_SUBMIT; 1188 else 1189 dc->state = D_PARTIAL; 1190 dc->bio_ref++; 1191 spin_unlock_irqrestore(&dc->lock, flags); 1192 1193 atomic_inc(&dcc->queued_discard); 1194 dc->queued++; 1195 list_move_tail(&dc->list, wait_list); 1196 1197 /* sanity check on discard range */ 1198 __check_sit_bitmap(sbi, lstart, lstart + len); 1199 1200 bio->bi_private = dc; 1201 bio->bi_end_io = f2fs_submit_discard_endio; 1202 bio->bi_opf |= flag; 1203 submit_bio(bio); 1204 1205 atomic_inc(&dcc->issued_discard); 1206 1207 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1208 1209 lstart += len; 1210 start += len; 1211 total_len -= len; 1212 len = total_len; 1213 } 1214 1215 if (!err && len) 1216 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1217 return err; 1218 } 1219 1220 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1221 struct block_device *bdev, block_t lstart, 1222 block_t start, block_t len, 1223 struct rb_node **insert_p, 1224 struct rb_node *insert_parent) 1225 { 1226 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1227 struct rb_node **p; 1228 struct rb_node *parent = NULL; 1229 struct discard_cmd *dc = NULL; 1230 bool leftmost = true; 1231 1232 if (insert_p && insert_parent) { 1233 parent = insert_parent; 1234 p = insert_p; 1235 goto do_insert; 1236 } 1237 1238 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1239 lstart, &leftmost); 1240 do_insert: 1241 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1242 p, leftmost); 1243 if (!dc) 1244 return NULL; 1245 1246 return dc; 1247 } 1248 1249 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1250 struct discard_cmd *dc) 1251 { 1252 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1253 } 1254 1255 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1256 struct discard_cmd *dc, block_t blkaddr) 1257 { 1258 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1259 struct discard_info di = dc->di; 1260 bool modified = false; 1261 1262 if (dc->state == D_DONE || dc->len == 1) { 1263 __remove_discard_cmd(sbi, dc); 1264 return; 1265 } 1266 1267 dcc->undiscard_blks -= di.len; 1268 1269 if (blkaddr > di.lstart) { 1270 dc->len = blkaddr - dc->lstart; 1271 dcc->undiscard_blks += dc->len; 1272 __relocate_discard_cmd(dcc, dc); 1273 modified = true; 1274 } 1275 1276 if (blkaddr < di.lstart + di.len - 1) { 1277 if (modified) { 1278 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1279 di.start + blkaddr + 1 - di.lstart, 1280 di.lstart + di.len - 1 - blkaddr, 1281 NULL, NULL); 1282 } else { 1283 dc->lstart++; 1284 dc->len--; 1285 dc->start++; 1286 dcc->undiscard_blks += dc->len; 1287 __relocate_discard_cmd(dcc, dc); 1288 } 1289 } 1290 } 1291 1292 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1293 struct block_device *bdev, block_t lstart, 1294 block_t start, block_t len) 1295 { 1296 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1297 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1298 struct discard_cmd *dc; 1299 struct discard_info di = {0}; 1300 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1301 struct request_queue *q = bdev_get_queue(bdev); 1302 unsigned int max_discard_blocks = 1303 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1304 block_t end = lstart + len; 1305 1306 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1307 NULL, lstart, 1308 (struct rb_entry **)&prev_dc, 1309 (struct rb_entry **)&next_dc, 1310 &insert_p, &insert_parent, true, NULL); 1311 if (dc) 1312 prev_dc = dc; 1313 1314 if (!prev_dc) { 1315 di.lstart = lstart; 1316 di.len = next_dc ? next_dc->lstart - lstart : len; 1317 di.len = min(di.len, len); 1318 di.start = start; 1319 } 1320 1321 while (1) { 1322 struct rb_node *node; 1323 bool merged = false; 1324 struct discard_cmd *tdc = NULL; 1325 1326 if (prev_dc) { 1327 di.lstart = prev_dc->lstart + prev_dc->len; 1328 if (di.lstart < lstart) 1329 di.lstart = lstart; 1330 if (di.lstart >= end) 1331 break; 1332 1333 if (!next_dc || next_dc->lstart > end) 1334 di.len = end - di.lstart; 1335 else 1336 di.len = next_dc->lstart - di.lstart; 1337 di.start = start + di.lstart - lstart; 1338 } 1339 1340 if (!di.len) 1341 goto next; 1342 1343 if (prev_dc && prev_dc->state == D_PREP && 1344 prev_dc->bdev == bdev && 1345 __is_discard_back_mergeable(&di, &prev_dc->di, 1346 max_discard_blocks)) { 1347 prev_dc->di.len += di.len; 1348 dcc->undiscard_blks += di.len; 1349 __relocate_discard_cmd(dcc, prev_dc); 1350 di = prev_dc->di; 1351 tdc = prev_dc; 1352 merged = true; 1353 } 1354 1355 if (next_dc && next_dc->state == D_PREP && 1356 next_dc->bdev == bdev && 1357 __is_discard_front_mergeable(&di, &next_dc->di, 1358 max_discard_blocks)) { 1359 next_dc->di.lstart = di.lstart; 1360 next_dc->di.len += di.len; 1361 next_dc->di.start = di.start; 1362 dcc->undiscard_blks += di.len; 1363 __relocate_discard_cmd(dcc, next_dc); 1364 if (tdc) 1365 __remove_discard_cmd(sbi, tdc); 1366 merged = true; 1367 } 1368 1369 if (!merged) { 1370 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1371 di.len, NULL, NULL); 1372 } 1373 next: 1374 prev_dc = next_dc; 1375 if (!prev_dc) 1376 break; 1377 1378 node = rb_next(&prev_dc->rb_node); 1379 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1380 } 1381 } 1382 1383 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1384 struct block_device *bdev, block_t blkstart, block_t blklen) 1385 { 1386 block_t lblkstart = blkstart; 1387 1388 if (!f2fs_bdev_support_discard(bdev)) 1389 return 0; 1390 1391 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1392 1393 if (f2fs_is_multi_device(sbi)) { 1394 int devi = f2fs_target_device_index(sbi, blkstart); 1395 1396 blkstart -= FDEV(devi).start_blk; 1397 } 1398 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1399 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1400 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1401 return 0; 1402 } 1403 1404 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1405 struct discard_policy *dpolicy) 1406 { 1407 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1408 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1409 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1410 struct discard_cmd *dc; 1411 struct blk_plug plug; 1412 unsigned int pos = dcc->next_pos; 1413 unsigned int issued = 0; 1414 bool io_interrupted = false; 1415 1416 mutex_lock(&dcc->cmd_lock); 1417 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1418 NULL, pos, 1419 (struct rb_entry **)&prev_dc, 1420 (struct rb_entry **)&next_dc, 1421 &insert_p, &insert_parent, true, NULL); 1422 if (!dc) 1423 dc = next_dc; 1424 1425 blk_start_plug(&plug); 1426 1427 while (dc) { 1428 struct rb_node *node; 1429 int err = 0; 1430 1431 if (dc->state != D_PREP) 1432 goto next; 1433 1434 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1435 io_interrupted = true; 1436 break; 1437 } 1438 1439 dcc->next_pos = dc->lstart + dc->len; 1440 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1441 1442 if (issued >= dpolicy->max_requests) 1443 break; 1444 next: 1445 node = rb_next(&dc->rb_node); 1446 if (err) 1447 __remove_discard_cmd(sbi, dc); 1448 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1449 } 1450 1451 blk_finish_plug(&plug); 1452 1453 if (!dc) 1454 dcc->next_pos = 0; 1455 1456 mutex_unlock(&dcc->cmd_lock); 1457 1458 if (!issued && io_interrupted) 1459 issued = -1; 1460 1461 return issued; 1462 } 1463 1464 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1465 struct discard_policy *dpolicy) 1466 { 1467 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1468 struct list_head *pend_list; 1469 struct discard_cmd *dc, *tmp; 1470 struct blk_plug plug; 1471 int i, issued = 0; 1472 bool io_interrupted = false; 1473 1474 if (dpolicy->timeout != 0) 1475 f2fs_update_time(sbi, dpolicy->timeout); 1476 1477 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1478 if (dpolicy->timeout != 0 && 1479 f2fs_time_over(sbi, dpolicy->timeout)) 1480 break; 1481 1482 if (i + 1 < dpolicy->granularity) 1483 break; 1484 1485 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1486 return __issue_discard_cmd_orderly(sbi, dpolicy); 1487 1488 pend_list = &dcc->pend_list[i]; 1489 1490 mutex_lock(&dcc->cmd_lock); 1491 if (list_empty(pend_list)) 1492 goto next; 1493 if (unlikely(dcc->rbtree_check)) 1494 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1495 &dcc->root)); 1496 blk_start_plug(&plug); 1497 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1498 f2fs_bug_on(sbi, dc->state != D_PREP); 1499 1500 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1501 !is_idle(sbi, DISCARD_TIME)) { 1502 io_interrupted = true; 1503 break; 1504 } 1505 1506 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1507 1508 if (issued >= dpolicy->max_requests) 1509 break; 1510 } 1511 blk_finish_plug(&plug); 1512 next: 1513 mutex_unlock(&dcc->cmd_lock); 1514 1515 if (issued >= dpolicy->max_requests || io_interrupted) 1516 break; 1517 } 1518 1519 if (!issued && io_interrupted) 1520 issued = -1; 1521 1522 return issued; 1523 } 1524 1525 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1526 { 1527 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1528 struct list_head *pend_list; 1529 struct discard_cmd *dc, *tmp; 1530 int i; 1531 bool dropped = false; 1532 1533 mutex_lock(&dcc->cmd_lock); 1534 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1535 pend_list = &dcc->pend_list[i]; 1536 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1537 f2fs_bug_on(sbi, dc->state != D_PREP); 1538 __remove_discard_cmd(sbi, dc); 1539 dropped = true; 1540 } 1541 } 1542 mutex_unlock(&dcc->cmd_lock); 1543 1544 return dropped; 1545 } 1546 1547 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1548 { 1549 __drop_discard_cmd(sbi); 1550 } 1551 1552 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1553 struct discard_cmd *dc) 1554 { 1555 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1556 unsigned int len = 0; 1557 1558 wait_for_completion_io(&dc->wait); 1559 mutex_lock(&dcc->cmd_lock); 1560 f2fs_bug_on(sbi, dc->state != D_DONE); 1561 dc->ref--; 1562 if (!dc->ref) { 1563 if (!dc->error) 1564 len = dc->len; 1565 __remove_discard_cmd(sbi, dc); 1566 } 1567 mutex_unlock(&dcc->cmd_lock); 1568 1569 return len; 1570 } 1571 1572 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1573 struct discard_policy *dpolicy, 1574 block_t start, block_t end) 1575 { 1576 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1577 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1578 &(dcc->fstrim_list) : &(dcc->wait_list); 1579 struct discard_cmd *dc, *tmp; 1580 bool need_wait; 1581 unsigned int trimmed = 0; 1582 1583 next: 1584 need_wait = false; 1585 1586 mutex_lock(&dcc->cmd_lock); 1587 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1588 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1589 continue; 1590 if (dc->len < dpolicy->granularity) 1591 continue; 1592 if (dc->state == D_DONE && !dc->ref) { 1593 wait_for_completion_io(&dc->wait); 1594 if (!dc->error) 1595 trimmed += dc->len; 1596 __remove_discard_cmd(sbi, dc); 1597 } else { 1598 dc->ref++; 1599 need_wait = true; 1600 break; 1601 } 1602 } 1603 mutex_unlock(&dcc->cmd_lock); 1604 1605 if (need_wait) { 1606 trimmed += __wait_one_discard_bio(sbi, dc); 1607 goto next; 1608 } 1609 1610 return trimmed; 1611 } 1612 1613 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1614 struct discard_policy *dpolicy) 1615 { 1616 struct discard_policy dp; 1617 unsigned int discard_blks; 1618 1619 if (dpolicy) 1620 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1621 1622 /* wait all */ 1623 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1624 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1625 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1626 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1627 1628 return discard_blks; 1629 } 1630 1631 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1632 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1633 { 1634 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1635 struct discard_cmd *dc; 1636 bool need_wait = false; 1637 1638 mutex_lock(&dcc->cmd_lock); 1639 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1640 NULL, blkaddr); 1641 if (dc) { 1642 if (dc->state == D_PREP) { 1643 __punch_discard_cmd(sbi, dc, blkaddr); 1644 } else { 1645 dc->ref++; 1646 need_wait = true; 1647 } 1648 } 1649 mutex_unlock(&dcc->cmd_lock); 1650 1651 if (need_wait) 1652 __wait_one_discard_bio(sbi, dc); 1653 } 1654 1655 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1656 { 1657 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1658 1659 if (dcc && dcc->f2fs_issue_discard) { 1660 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1661 1662 dcc->f2fs_issue_discard = NULL; 1663 kthread_stop(discard_thread); 1664 } 1665 } 1666 1667 /* This comes from f2fs_put_super */ 1668 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1669 { 1670 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1671 struct discard_policy dpolicy; 1672 bool dropped; 1673 1674 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1675 dcc->discard_granularity); 1676 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT; 1677 __issue_discard_cmd(sbi, &dpolicy); 1678 dropped = __drop_discard_cmd(sbi); 1679 1680 /* just to make sure there is no pending discard commands */ 1681 __wait_all_discard_cmd(sbi, NULL); 1682 1683 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1684 return dropped; 1685 } 1686 1687 static int issue_discard_thread(void *data) 1688 { 1689 struct f2fs_sb_info *sbi = data; 1690 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1691 wait_queue_head_t *q = &dcc->discard_wait_queue; 1692 struct discard_policy dpolicy; 1693 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1694 int issued; 1695 1696 set_freezable(); 1697 1698 do { 1699 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1700 dcc->discard_granularity); 1701 1702 wait_event_interruptible_timeout(*q, 1703 kthread_should_stop() || freezing(current) || 1704 dcc->discard_wake, 1705 msecs_to_jiffies(wait_ms)); 1706 1707 if (dcc->discard_wake) 1708 dcc->discard_wake = 0; 1709 1710 /* clean up pending candidates before going to sleep */ 1711 if (atomic_read(&dcc->queued_discard)) 1712 __wait_all_discard_cmd(sbi, NULL); 1713 1714 if (try_to_freeze()) 1715 continue; 1716 if (f2fs_readonly(sbi->sb)) 1717 continue; 1718 if (kthread_should_stop()) 1719 return 0; 1720 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1721 wait_ms = dpolicy.max_interval; 1722 continue; 1723 } 1724 1725 if (sbi->gc_mode == GC_URGENT) 1726 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1727 1728 sb_start_intwrite(sbi->sb); 1729 1730 issued = __issue_discard_cmd(sbi, &dpolicy); 1731 if (issued > 0) { 1732 __wait_all_discard_cmd(sbi, &dpolicy); 1733 wait_ms = dpolicy.min_interval; 1734 } else if (issued == -1){ 1735 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1736 if (!wait_ms) 1737 wait_ms = dpolicy.mid_interval; 1738 } else { 1739 wait_ms = dpolicy.max_interval; 1740 } 1741 1742 sb_end_intwrite(sbi->sb); 1743 1744 } while (!kthread_should_stop()); 1745 return 0; 1746 } 1747 1748 #ifdef CONFIG_BLK_DEV_ZONED 1749 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1750 struct block_device *bdev, block_t blkstart, block_t blklen) 1751 { 1752 sector_t sector, nr_sects; 1753 block_t lblkstart = blkstart; 1754 int devi = 0; 1755 1756 if (f2fs_is_multi_device(sbi)) { 1757 devi = f2fs_target_device_index(sbi, blkstart); 1758 if (blkstart < FDEV(devi).start_blk || 1759 blkstart > FDEV(devi).end_blk) { 1760 f2fs_err(sbi, "Invalid block %x", blkstart); 1761 return -EIO; 1762 } 1763 blkstart -= FDEV(devi).start_blk; 1764 } 1765 1766 /* For sequential zones, reset the zone write pointer */ 1767 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1768 sector = SECTOR_FROM_BLOCK(blkstart); 1769 nr_sects = SECTOR_FROM_BLOCK(blklen); 1770 1771 if (sector & (bdev_zone_sectors(bdev) - 1) || 1772 nr_sects != bdev_zone_sectors(bdev)) { 1773 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1774 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1775 blkstart, blklen); 1776 return -EIO; 1777 } 1778 trace_f2fs_issue_reset_zone(bdev, blkstart); 1779 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS); 1780 } 1781 1782 /* For conventional zones, use regular discard if supported */ 1783 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1784 } 1785 #endif 1786 1787 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1788 struct block_device *bdev, block_t blkstart, block_t blklen) 1789 { 1790 #ifdef CONFIG_BLK_DEV_ZONED 1791 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1792 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1793 #endif 1794 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1795 } 1796 1797 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1798 block_t blkstart, block_t blklen) 1799 { 1800 sector_t start = blkstart, len = 0; 1801 struct block_device *bdev; 1802 struct seg_entry *se; 1803 unsigned int offset; 1804 block_t i; 1805 int err = 0; 1806 1807 bdev = f2fs_target_device(sbi, blkstart, NULL); 1808 1809 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1810 if (i != start) { 1811 struct block_device *bdev2 = 1812 f2fs_target_device(sbi, i, NULL); 1813 1814 if (bdev2 != bdev) { 1815 err = __issue_discard_async(sbi, bdev, 1816 start, len); 1817 if (err) 1818 return err; 1819 bdev = bdev2; 1820 start = i; 1821 len = 0; 1822 } 1823 } 1824 1825 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1826 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1827 1828 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1829 sbi->discard_blks--; 1830 } 1831 1832 if (len) 1833 err = __issue_discard_async(sbi, bdev, start, len); 1834 return err; 1835 } 1836 1837 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1838 bool check_only) 1839 { 1840 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1841 int max_blocks = sbi->blocks_per_seg; 1842 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1843 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1844 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1845 unsigned long *discard_map = (unsigned long *)se->discard_map; 1846 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1847 unsigned int start = 0, end = -1; 1848 bool force = (cpc->reason & CP_DISCARD); 1849 struct discard_entry *de = NULL; 1850 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1851 int i; 1852 1853 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1854 return false; 1855 1856 if (!force) { 1857 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1858 SM_I(sbi)->dcc_info->nr_discards >= 1859 SM_I(sbi)->dcc_info->max_discards) 1860 return false; 1861 } 1862 1863 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1864 for (i = 0; i < entries; i++) 1865 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1866 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1867 1868 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1869 SM_I(sbi)->dcc_info->max_discards) { 1870 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1871 if (start >= max_blocks) 1872 break; 1873 1874 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1875 if (force && start && end != max_blocks 1876 && (end - start) < cpc->trim_minlen) 1877 continue; 1878 1879 if (check_only) 1880 return true; 1881 1882 if (!de) { 1883 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1884 GFP_F2FS_ZERO); 1885 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1886 list_add_tail(&de->list, head); 1887 } 1888 1889 for (i = start; i < end; i++) 1890 __set_bit_le(i, (void *)de->discard_map); 1891 1892 SM_I(sbi)->dcc_info->nr_discards += end - start; 1893 } 1894 return false; 1895 } 1896 1897 static void release_discard_addr(struct discard_entry *entry) 1898 { 1899 list_del(&entry->list); 1900 kmem_cache_free(discard_entry_slab, entry); 1901 } 1902 1903 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1904 { 1905 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1906 struct discard_entry *entry, *this; 1907 1908 /* drop caches */ 1909 list_for_each_entry_safe(entry, this, head, list) 1910 release_discard_addr(entry); 1911 } 1912 1913 /* 1914 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1915 */ 1916 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1917 { 1918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1919 unsigned int segno; 1920 1921 mutex_lock(&dirty_i->seglist_lock); 1922 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1923 __set_test_and_free(sbi, segno); 1924 mutex_unlock(&dirty_i->seglist_lock); 1925 } 1926 1927 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1928 struct cp_control *cpc) 1929 { 1930 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1931 struct list_head *head = &dcc->entry_list; 1932 struct discard_entry *entry, *this; 1933 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1934 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1935 unsigned int start = 0, end = -1; 1936 unsigned int secno, start_segno; 1937 bool force = (cpc->reason & CP_DISCARD); 1938 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 1939 1940 mutex_lock(&dirty_i->seglist_lock); 1941 1942 while (1) { 1943 int i; 1944 1945 if (need_align && end != -1) 1946 end--; 1947 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1948 if (start >= MAIN_SEGS(sbi)) 1949 break; 1950 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1951 start + 1); 1952 1953 if (need_align) { 1954 start = rounddown(start, sbi->segs_per_sec); 1955 end = roundup(end, sbi->segs_per_sec); 1956 } 1957 1958 for (i = start; i < end; i++) { 1959 if (test_and_clear_bit(i, prefree_map)) 1960 dirty_i->nr_dirty[PRE]--; 1961 } 1962 1963 if (!f2fs_realtime_discard_enable(sbi)) 1964 continue; 1965 1966 if (force && start >= cpc->trim_start && 1967 (end - 1) <= cpc->trim_end) 1968 continue; 1969 1970 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) { 1971 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1972 (end - start) << sbi->log_blocks_per_seg); 1973 continue; 1974 } 1975 next: 1976 secno = GET_SEC_FROM_SEG(sbi, start); 1977 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1978 if (!IS_CURSEC(sbi, secno) && 1979 !get_valid_blocks(sbi, start, true)) 1980 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1981 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1982 1983 start = start_segno + sbi->segs_per_sec; 1984 if (start < end) 1985 goto next; 1986 else 1987 end = start - 1; 1988 } 1989 mutex_unlock(&dirty_i->seglist_lock); 1990 1991 /* send small discards */ 1992 list_for_each_entry_safe(entry, this, head, list) { 1993 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1994 bool is_valid = test_bit_le(0, entry->discard_map); 1995 1996 find_next: 1997 if (is_valid) { 1998 next_pos = find_next_zero_bit_le(entry->discard_map, 1999 sbi->blocks_per_seg, cur_pos); 2000 len = next_pos - cur_pos; 2001 2002 if (f2fs_sb_has_blkzoned(sbi) || 2003 (force && len < cpc->trim_minlen)) 2004 goto skip; 2005 2006 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2007 len); 2008 total_len += len; 2009 } else { 2010 next_pos = find_next_bit_le(entry->discard_map, 2011 sbi->blocks_per_seg, cur_pos); 2012 } 2013 skip: 2014 cur_pos = next_pos; 2015 is_valid = !is_valid; 2016 2017 if (cur_pos < sbi->blocks_per_seg) 2018 goto find_next; 2019 2020 release_discard_addr(entry); 2021 dcc->nr_discards -= total_len; 2022 } 2023 2024 wake_up_discard_thread(sbi, false); 2025 } 2026 2027 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2028 { 2029 dev_t dev = sbi->sb->s_bdev->bd_dev; 2030 struct discard_cmd_control *dcc; 2031 int err = 0, i; 2032 2033 if (SM_I(sbi)->dcc_info) { 2034 dcc = SM_I(sbi)->dcc_info; 2035 goto init_thread; 2036 } 2037 2038 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2039 if (!dcc) 2040 return -ENOMEM; 2041 2042 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2043 INIT_LIST_HEAD(&dcc->entry_list); 2044 for (i = 0; i < MAX_PLIST_NUM; i++) 2045 INIT_LIST_HEAD(&dcc->pend_list[i]); 2046 INIT_LIST_HEAD(&dcc->wait_list); 2047 INIT_LIST_HEAD(&dcc->fstrim_list); 2048 mutex_init(&dcc->cmd_lock); 2049 atomic_set(&dcc->issued_discard, 0); 2050 atomic_set(&dcc->queued_discard, 0); 2051 atomic_set(&dcc->discard_cmd_cnt, 0); 2052 dcc->nr_discards = 0; 2053 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2054 dcc->undiscard_blks = 0; 2055 dcc->next_pos = 0; 2056 dcc->root = RB_ROOT_CACHED; 2057 dcc->rbtree_check = false; 2058 2059 init_waitqueue_head(&dcc->discard_wait_queue); 2060 SM_I(sbi)->dcc_info = dcc; 2061 init_thread: 2062 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2063 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2064 if (IS_ERR(dcc->f2fs_issue_discard)) { 2065 err = PTR_ERR(dcc->f2fs_issue_discard); 2066 kvfree(dcc); 2067 SM_I(sbi)->dcc_info = NULL; 2068 return err; 2069 } 2070 2071 return err; 2072 } 2073 2074 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2075 { 2076 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2077 2078 if (!dcc) 2079 return; 2080 2081 f2fs_stop_discard_thread(sbi); 2082 2083 kvfree(dcc); 2084 SM_I(sbi)->dcc_info = NULL; 2085 } 2086 2087 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2088 { 2089 struct sit_info *sit_i = SIT_I(sbi); 2090 2091 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2092 sit_i->dirty_sentries++; 2093 return false; 2094 } 2095 2096 return true; 2097 } 2098 2099 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2100 unsigned int segno, int modified) 2101 { 2102 struct seg_entry *se = get_seg_entry(sbi, segno); 2103 se->type = type; 2104 if (modified) 2105 __mark_sit_entry_dirty(sbi, segno); 2106 } 2107 2108 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2109 { 2110 struct seg_entry *se; 2111 unsigned int segno, offset; 2112 long int new_vblocks; 2113 bool exist; 2114 #ifdef CONFIG_F2FS_CHECK_FS 2115 bool mir_exist; 2116 #endif 2117 2118 segno = GET_SEGNO(sbi, blkaddr); 2119 2120 se = get_seg_entry(sbi, segno); 2121 new_vblocks = se->valid_blocks + del; 2122 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2123 2124 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2125 (new_vblocks > sbi->blocks_per_seg))); 2126 2127 se->valid_blocks = new_vblocks; 2128 se->mtime = get_mtime(sbi, false); 2129 if (se->mtime > SIT_I(sbi)->max_mtime) 2130 SIT_I(sbi)->max_mtime = se->mtime; 2131 2132 /* Update valid block bitmap */ 2133 if (del > 0) { 2134 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2135 #ifdef CONFIG_F2FS_CHECK_FS 2136 mir_exist = f2fs_test_and_set_bit(offset, 2137 se->cur_valid_map_mir); 2138 if (unlikely(exist != mir_exist)) { 2139 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2140 blkaddr, exist); 2141 f2fs_bug_on(sbi, 1); 2142 } 2143 #endif 2144 if (unlikely(exist)) { 2145 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2146 blkaddr); 2147 f2fs_bug_on(sbi, 1); 2148 se->valid_blocks--; 2149 del = 0; 2150 } 2151 2152 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2153 sbi->discard_blks--; 2154 2155 /* don't overwrite by SSR to keep node chain */ 2156 if (IS_NODESEG(se->type) && 2157 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2158 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2159 se->ckpt_valid_blocks++; 2160 } 2161 } else { 2162 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2163 #ifdef CONFIG_F2FS_CHECK_FS 2164 mir_exist = f2fs_test_and_clear_bit(offset, 2165 se->cur_valid_map_mir); 2166 if (unlikely(exist != mir_exist)) { 2167 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2168 blkaddr, exist); 2169 f2fs_bug_on(sbi, 1); 2170 } 2171 #endif 2172 if (unlikely(!exist)) { 2173 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2174 blkaddr); 2175 f2fs_bug_on(sbi, 1); 2176 se->valid_blocks++; 2177 del = 0; 2178 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2179 /* 2180 * If checkpoints are off, we must not reuse data that 2181 * was used in the previous checkpoint. If it was used 2182 * before, we must track that to know how much space we 2183 * really have. 2184 */ 2185 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2186 spin_lock(&sbi->stat_lock); 2187 sbi->unusable_block_count++; 2188 spin_unlock(&sbi->stat_lock); 2189 } 2190 } 2191 2192 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2193 sbi->discard_blks++; 2194 } 2195 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2196 se->ckpt_valid_blocks += del; 2197 2198 __mark_sit_entry_dirty(sbi, segno); 2199 2200 /* update total number of valid blocks to be written in ckpt area */ 2201 SIT_I(sbi)->written_valid_blocks += del; 2202 2203 if (__is_large_section(sbi)) 2204 get_sec_entry(sbi, segno)->valid_blocks += del; 2205 } 2206 2207 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2208 { 2209 unsigned int segno = GET_SEGNO(sbi, addr); 2210 struct sit_info *sit_i = SIT_I(sbi); 2211 2212 f2fs_bug_on(sbi, addr == NULL_ADDR); 2213 if (addr == NEW_ADDR) 2214 return; 2215 2216 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2217 2218 /* add it into sit main buffer */ 2219 down_write(&sit_i->sentry_lock); 2220 2221 update_sit_entry(sbi, addr, -1); 2222 2223 /* add it into dirty seglist */ 2224 locate_dirty_segment(sbi, segno); 2225 2226 up_write(&sit_i->sentry_lock); 2227 } 2228 2229 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2230 { 2231 struct sit_info *sit_i = SIT_I(sbi); 2232 unsigned int segno, offset; 2233 struct seg_entry *se; 2234 bool is_cp = false; 2235 2236 if (!__is_valid_data_blkaddr(blkaddr)) 2237 return true; 2238 2239 down_read(&sit_i->sentry_lock); 2240 2241 segno = GET_SEGNO(sbi, blkaddr); 2242 se = get_seg_entry(sbi, segno); 2243 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2244 2245 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2246 is_cp = true; 2247 2248 up_read(&sit_i->sentry_lock); 2249 2250 return is_cp; 2251 } 2252 2253 /* 2254 * This function should be resided under the curseg_mutex lock 2255 */ 2256 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2257 struct f2fs_summary *sum) 2258 { 2259 struct curseg_info *curseg = CURSEG_I(sbi, type); 2260 void *addr = curseg->sum_blk; 2261 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2262 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2263 } 2264 2265 /* 2266 * Calculate the number of current summary pages for writing 2267 */ 2268 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2269 { 2270 int valid_sum_count = 0; 2271 int i, sum_in_page; 2272 2273 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2274 if (sbi->ckpt->alloc_type[i] == SSR) 2275 valid_sum_count += sbi->blocks_per_seg; 2276 else { 2277 if (for_ra) 2278 valid_sum_count += le16_to_cpu( 2279 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2280 else 2281 valid_sum_count += curseg_blkoff(sbi, i); 2282 } 2283 } 2284 2285 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2286 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2287 if (valid_sum_count <= sum_in_page) 2288 return 1; 2289 else if ((valid_sum_count - sum_in_page) <= 2290 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2291 return 2; 2292 return 3; 2293 } 2294 2295 /* 2296 * Caller should put this summary page 2297 */ 2298 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2299 { 2300 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2301 } 2302 2303 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2304 void *src, block_t blk_addr) 2305 { 2306 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2307 2308 memcpy(page_address(page), src, PAGE_SIZE); 2309 set_page_dirty(page); 2310 f2fs_put_page(page, 1); 2311 } 2312 2313 static void write_sum_page(struct f2fs_sb_info *sbi, 2314 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2315 { 2316 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2317 } 2318 2319 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2320 int type, block_t blk_addr) 2321 { 2322 struct curseg_info *curseg = CURSEG_I(sbi, type); 2323 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2324 struct f2fs_summary_block *src = curseg->sum_blk; 2325 struct f2fs_summary_block *dst; 2326 2327 dst = (struct f2fs_summary_block *)page_address(page); 2328 memset(dst, 0, PAGE_SIZE); 2329 2330 mutex_lock(&curseg->curseg_mutex); 2331 2332 down_read(&curseg->journal_rwsem); 2333 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2334 up_read(&curseg->journal_rwsem); 2335 2336 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2337 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2338 2339 mutex_unlock(&curseg->curseg_mutex); 2340 2341 set_page_dirty(page); 2342 f2fs_put_page(page, 1); 2343 } 2344 2345 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2346 { 2347 struct curseg_info *curseg = CURSEG_I(sbi, type); 2348 unsigned int segno = curseg->segno + 1; 2349 struct free_segmap_info *free_i = FREE_I(sbi); 2350 2351 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2352 return !test_bit(segno, free_i->free_segmap); 2353 return 0; 2354 } 2355 2356 /* 2357 * Find a new segment from the free segments bitmap to right order 2358 * This function should be returned with success, otherwise BUG 2359 */ 2360 static void get_new_segment(struct f2fs_sb_info *sbi, 2361 unsigned int *newseg, bool new_sec, int dir) 2362 { 2363 struct free_segmap_info *free_i = FREE_I(sbi); 2364 unsigned int segno, secno, zoneno; 2365 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2366 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2367 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2368 unsigned int left_start = hint; 2369 bool init = true; 2370 int go_left = 0; 2371 int i; 2372 2373 spin_lock(&free_i->segmap_lock); 2374 2375 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2376 segno = find_next_zero_bit(free_i->free_segmap, 2377 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2378 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2379 goto got_it; 2380 } 2381 find_other_zone: 2382 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2383 if (secno >= MAIN_SECS(sbi)) { 2384 if (dir == ALLOC_RIGHT) { 2385 secno = find_next_zero_bit(free_i->free_secmap, 2386 MAIN_SECS(sbi), 0); 2387 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2388 } else { 2389 go_left = 1; 2390 left_start = hint - 1; 2391 } 2392 } 2393 if (go_left == 0) 2394 goto skip_left; 2395 2396 while (test_bit(left_start, free_i->free_secmap)) { 2397 if (left_start > 0) { 2398 left_start--; 2399 continue; 2400 } 2401 left_start = find_next_zero_bit(free_i->free_secmap, 2402 MAIN_SECS(sbi), 0); 2403 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2404 break; 2405 } 2406 secno = left_start; 2407 skip_left: 2408 segno = GET_SEG_FROM_SEC(sbi, secno); 2409 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2410 2411 /* give up on finding another zone */ 2412 if (!init) 2413 goto got_it; 2414 if (sbi->secs_per_zone == 1) 2415 goto got_it; 2416 if (zoneno == old_zoneno) 2417 goto got_it; 2418 if (dir == ALLOC_LEFT) { 2419 if (!go_left && zoneno + 1 >= total_zones) 2420 goto got_it; 2421 if (go_left && zoneno == 0) 2422 goto got_it; 2423 } 2424 for (i = 0; i < NR_CURSEG_TYPE; i++) 2425 if (CURSEG_I(sbi, i)->zone == zoneno) 2426 break; 2427 2428 if (i < NR_CURSEG_TYPE) { 2429 /* zone is in user, try another */ 2430 if (go_left) 2431 hint = zoneno * sbi->secs_per_zone - 1; 2432 else if (zoneno + 1 >= total_zones) 2433 hint = 0; 2434 else 2435 hint = (zoneno + 1) * sbi->secs_per_zone; 2436 init = false; 2437 goto find_other_zone; 2438 } 2439 got_it: 2440 /* set it as dirty segment in free segmap */ 2441 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2442 __set_inuse(sbi, segno); 2443 *newseg = segno; 2444 spin_unlock(&free_i->segmap_lock); 2445 } 2446 2447 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2448 { 2449 struct curseg_info *curseg = CURSEG_I(sbi, type); 2450 struct summary_footer *sum_footer; 2451 2452 curseg->segno = curseg->next_segno; 2453 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2454 curseg->next_blkoff = 0; 2455 curseg->next_segno = NULL_SEGNO; 2456 2457 sum_footer = &(curseg->sum_blk->footer); 2458 memset(sum_footer, 0, sizeof(struct summary_footer)); 2459 if (IS_DATASEG(type)) 2460 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2461 if (IS_NODESEG(type)) 2462 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2463 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2464 } 2465 2466 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2467 { 2468 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2469 if (__is_large_section(sbi)) 2470 return CURSEG_I(sbi, type)->segno; 2471 2472 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2473 return 0; 2474 2475 if (test_opt(sbi, NOHEAP) && 2476 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2477 return 0; 2478 2479 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2480 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2481 2482 /* find segments from 0 to reuse freed segments */ 2483 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2484 return 0; 2485 2486 return CURSEG_I(sbi, type)->segno; 2487 } 2488 2489 /* 2490 * Allocate a current working segment. 2491 * This function always allocates a free segment in LFS manner. 2492 */ 2493 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2494 { 2495 struct curseg_info *curseg = CURSEG_I(sbi, type); 2496 unsigned int segno = curseg->segno; 2497 int dir = ALLOC_LEFT; 2498 2499 write_sum_page(sbi, curseg->sum_blk, 2500 GET_SUM_BLOCK(sbi, segno)); 2501 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2502 dir = ALLOC_RIGHT; 2503 2504 if (test_opt(sbi, NOHEAP)) 2505 dir = ALLOC_RIGHT; 2506 2507 segno = __get_next_segno(sbi, type); 2508 get_new_segment(sbi, &segno, new_sec, dir); 2509 curseg->next_segno = segno; 2510 reset_curseg(sbi, type, 1); 2511 curseg->alloc_type = LFS; 2512 } 2513 2514 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2515 struct curseg_info *seg, block_t start) 2516 { 2517 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2518 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2519 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2520 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2521 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2522 int i, pos; 2523 2524 for (i = 0; i < entries; i++) 2525 target_map[i] = ckpt_map[i] | cur_map[i]; 2526 2527 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2528 2529 seg->next_blkoff = pos; 2530 } 2531 2532 /* 2533 * If a segment is written by LFS manner, next block offset is just obtained 2534 * by increasing the current block offset. However, if a segment is written by 2535 * SSR manner, next block offset obtained by calling __next_free_blkoff 2536 */ 2537 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2538 struct curseg_info *seg) 2539 { 2540 if (seg->alloc_type == SSR) 2541 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2542 else 2543 seg->next_blkoff++; 2544 } 2545 2546 /* 2547 * This function always allocates a used segment(from dirty seglist) by SSR 2548 * manner, so it should recover the existing segment information of valid blocks 2549 */ 2550 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2551 { 2552 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2553 struct curseg_info *curseg = CURSEG_I(sbi, type); 2554 unsigned int new_segno = curseg->next_segno; 2555 struct f2fs_summary_block *sum_node; 2556 struct page *sum_page; 2557 2558 write_sum_page(sbi, curseg->sum_blk, 2559 GET_SUM_BLOCK(sbi, curseg->segno)); 2560 __set_test_and_inuse(sbi, new_segno); 2561 2562 mutex_lock(&dirty_i->seglist_lock); 2563 __remove_dirty_segment(sbi, new_segno, PRE); 2564 __remove_dirty_segment(sbi, new_segno, DIRTY); 2565 mutex_unlock(&dirty_i->seglist_lock); 2566 2567 reset_curseg(sbi, type, 1); 2568 curseg->alloc_type = SSR; 2569 __next_free_blkoff(sbi, curseg, 0); 2570 2571 sum_page = f2fs_get_sum_page(sbi, new_segno); 2572 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2573 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2574 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2575 f2fs_put_page(sum_page, 1); 2576 } 2577 2578 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2579 { 2580 struct curseg_info *curseg = CURSEG_I(sbi, type); 2581 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2582 unsigned segno = NULL_SEGNO; 2583 int i, cnt; 2584 bool reversed = false; 2585 2586 /* f2fs_need_SSR() already forces to do this */ 2587 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2588 curseg->next_segno = segno; 2589 return 1; 2590 } 2591 2592 /* For node segments, let's do SSR more intensively */ 2593 if (IS_NODESEG(type)) { 2594 if (type >= CURSEG_WARM_NODE) { 2595 reversed = true; 2596 i = CURSEG_COLD_NODE; 2597 } else { 2598 i = CURSEG_HOT_NODE; 2599 } 2600 cnt = NR_CURSEG_NODE_TYPE; 2601 } else { 2602 if (type >= CURSEG_WARM_DATA) { 2603 reversed = true; 2604 i = CURSEG_COLD_DATA; 2605 } else { 2606 i = CURSEG_HOT_DATA; 2607 } 2608 cnt = NR_CURSEG_DATA_TYPE; 2609 } 2610 2611 for (; cnt-- > 0; reversed ? i-- : i++) { 2612 if (i == type) 2613 continue; 2614 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2615 curseg->next_segno = segno; 2616 return 1; 2617 } 2618 } 2619 2620 /* find valid_blocks=0 in dirty list */ 2621 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2622 segno = get_free_segment(sbi); 2623 if (segno != NULL_SEGNO) { 2624 curseg->next_segno = segno; 2625 return 1; 2626 } 2627 } 2628 return 0; 2629 } 2630 2631 /* 2632 * flush out current segment and replace it with new segment 2633 * This function should be returned with success, otherwise BUG 2634 */ 2635 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2636 int type, bool force) 2637 { 2638 struct curseg_info *curseg = CURSEG_I(sbi, type); 2639 2640 if (force) 2641 new_curseg(sbi, type, true); 2642 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2643 type == CURSEG_WARM_NODE) 2644 new_curseg(sbi, type, false); 2645 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2646 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2647 new_curseg(sbi, type, false); 2648 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2649 change_curseg(sbi, type); 2650 else 2651 new_curseg(sbi, type, false); 2652 2653 stat_inc_seg_type(sbi, curseg); 2654 } 2655 2656 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2657 unsigned int start, unsigned int end) 2658 { 2659 struct curseg_info *curseg = CURSEG_I(sbi, type); 2660 unsigned int segno; 2661 2662 down_read(&SM_I(sbi)->curseg_lock); 2663 mutex_lock(&curseg->curseg_mutex); 2664 down_write(&SIT_I(sbi)->sentry_lock); 2665 2666 segno = CURSEG_I(sbi, type)->segno; 2667 if (segno < start || segno > end) 2668 goto unlock; 2669 2670 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2671 change_curseg(sbi, type); 2672 else 2673 new_curseg(sbi, type, true); 2674 2675 stat_inc_seg_type(sbi, curseg); 2676 2677 locate_dirty_segment(sbi, segno); 2678 unlock: 2679 up_write(&SIT_I(sbi)->sentry_lock); 2680 2681 if (segno != curseg->segno) 2682 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2683 type, segno, curseg->segno); 2684 2685 mutex_unlock(&curseg->curseg_mutex); 2686 up_read(&SM_I(sbi)->curseg_lock); 2687 } 2688 2689 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2690 { 2691 struct curseg_info *curseg; 2692 unsigned int old_segno; 2693 int i; 2694 2695 down_write(&SIT_I(sbi)->sentry_lock); 2696 2697 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2698 curseg = CURSEG_I(sbi, i); 2699 old_segno = curseg->segno; 2700 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2701 locate_dirty_segment(sbi, old_segno); 2702 } 2703 2704 up_write(&SIT_I(sbi)->sentry_lock); 2705 } 2706 2707 static const struct segment_allocation default_salloc_ops = { 2708 .allocate_segment = allocate_segment_by_default, 2709 }; 2710 2711 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2712 struct cp_control *cpc) 2713 { 2714 __u64 trim_start = cpc->trim_start; 2715 bool has_candidate = false; 2716 2717 down_write(&SIT_I(sbi)->sentry_lock); 2718 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2719 if (add_discard_addrs(sbi, cpc, true)) { 2720 has_candidate = true; 2721 break; 2722 } 2723 } 2724 up_write(&SIT_I(sbi)->sentry_lock); 2725 2726 cpc->trim_start = trim_start; 2727 return has_candidate; 2728 } 2729 2730 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2731 struct discard_policy *dpolicy, 2732 unsigned int start, unsigned int end) 2733 { 2734 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2735 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2736 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2737 struct discard_cmd *dc; 2738 struct blk_plug plug; 2739 int issued; 2740 unsigned int trimmed = 0; 2741 2742 next: 2743 issued = 0; 2744 2745 mutex_lock(&dcc->cmd_lock); 2746 if (unlikely(dcc->rbtree_check)) 2747 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2748 &dcc->root)); 2749 2750 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2751 NULL, start, 2752 (struct rb_entry **)&prev_dc, 2753 (struct rb_entry **)&next_dc, 2754 &insert_p, &insert_parent, true, NULL); 2755 if (!dc) 2756 dc = next_dc; 2757 2758 blk_start_plug(&plug); 2759 2760 while (dc && dc->lstart <= end) { 2761 struct rb_node *node; 2762 int err = 0; 2763 2764 if (dc->len < dpolicy->granularity) 2765 goto skip; 2766 2767 if (dc->state != D_PREP) { 2768 list_move_tail(&dc->list, &dcc->fstrim_list); 2769 goto skip; 2770 } 2771 2772 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2773 2774 if (issued >= dpolicy->max_requests) { 2775 start = dc->lstart + dc->len; 2776 2777 if (err) 2778 __remove_discard_cmd(sbi, dc); 2779 2780 blk_finish_plug(&plug); 2781 mutex_unlock(&dcc->cmd_lock); 2782 trimmed += __wait_all_discard_cmd(sbi, NULL); 2783 congestion_wait(BLK_RW_ASYNC, HZ/50); 2784 goto next; 2785 } 2786 skip: 2787 node = rb_next(&dc->rb_node); 2788 if (err) 2789 __remove_discard_cmd(sbi, dc); 2790 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2791 2792 if (fatal_signal_pending(current)) 2793 break; 2794 } 2795 2796 blk_finish_plug(&plug); 2797 mutex_unlock(&dcc->cmd_lock); 2798 2799 return trimmed; 2800 } 2801 2802 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2803 { 2804 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2805 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2806 unsigned int start_segno, end_segno; 2807 block_t start_block, end_block; 2808 struct cp_control cpc; 2809 struct discard_policy dpolicy; 2810 unsigned long long trimmed = 0; 2811 int err = 0; 2812 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 2813 2814 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2815 return -EINVAL; 2816 2817 if (end < MAIN_BLKADDR(sbi)) 2818 goto out; 2819 2820 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2821 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 2822 return -EIO; 2823 } 2824 2825 /* start/end segment number in main_area */ 2826 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2827 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2828 GET_SEGNO(sbi, end); 2829 if (need_align) { 2830 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2831 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2832 } 2833 2834 cpc.reason = CP_DISCARD; 2835 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2836 cpc.trim_start = start_segno; 2837 cpc.trim_end = end_segno; 2838 2839 if (sbi->discard_blks == 0) 2840 goto out; 2841 2842 mutex_lock(&sbi->gc_mutex); 2843 err = f2fs_write_checkpoint(sbi, &cpc); 2844 mutex_unlock(&sbi->gc_mutex); 2845 if (err) 2846 goto out; 2847 2848 /* 2849 * We filed discard candidates, but actually we don't need to wait for 2850 * all of them, since they'll be issued in idle time along with runtime 2851 * discard option. User configuration looks like using runtime discard 2852 * or periodic fstrim instead of it. 2853 */ 2854 if (f2fs_realtime_discard_enable(sbi)) 2855 goto out; 2856 2857 start_block = START_BLOCK(sbi, start_segno); 2858 end_block = START_BLOCK(sbi, end_segno + 1); 2859 2860 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2861 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2862 start_block, end_block); 2863 2864 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2865 start_block, end_block); 2866 out: 2867 if (!err) 2868 range->len = F2FS_BLK_TO_BYTES(trimmed); 2869 return err; 2870 } 2871 2872 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2873 { 2874 struct curseg_info *curseg = CURSEG_I(sbi, type); 2875 if (curseg->next_blkoff < sbi->blocks_per_seg) 2876 return true; 2877 return false; 2878 } 2879 2880 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2881 { 2882 switch (hint) { 2883 case WRITE_LIFE_SHORT: 2884 return CURSEG_HOT_DATA; 2885 case WRITE_LIFE_EXTREME: 2886 return CURSEG_COLD_DATA; 2887 default: 2888 return CURSEG_WARM_DATA; 2889 } 2890 } 2891 2892 /* This returns write hints for each segment type. This hints will be 2893 * passed down to block layer. There are mapping tables which depend on 2894 * the mount option 'whint_mode'. 2895 * 2896 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2897 * 2898 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2899 * 2900 * User F2FS Block 2901 * ---- ---- ----- 2902 * META WRITE_LIFE_NOT_SET 2903 * HOT_NODE " 2904 * WARM_NODE " 2905 * COLD_NODE " 2906 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2907 * extension list " " 2908 * 2909 * -- buffered io 2910 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2911 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2912 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2913 * WRITE_LIFE_NONE " " 2914 * WRITE_LIFE_MEDIUM " " 2915 * WRITE_LIFE_LONG " " 2916 * 2917 * -- direct io 2918 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2919 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2920 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2921 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2922 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2923 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2924 * 2925 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2926 * 2927 * User F2FS Block 2928 * ---- ---- ----- 2929 * META WRITE_LIFE_MEDIUM; 2930 * HOT_NODE WRITE_LIFE_NOT_SET 2931 * WARM_NODE " 2932 * COLD_NODE WRITE_LIFE_NONE 2933 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2934 * extension list " " 2935 * 2936 * -- buffered io 2937 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2938 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2939 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2940 * WRITE_LIFE_NONE " " 2941 * WRITE_LIFE_MEDIUM " " 2942 * WRITE_LIFE_LONG " " 2943 * 2944 * -- direct io 2945 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2946 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2947 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2948 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2949 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2950 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2951 */ 2952 2953 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2954 enum page_type type, enum temp_type temp) 2955 { 2956 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2957 if (type == DATA) { 2958 if (temp == WARM) 2959 return WRITE_LIFE_NOT_SET; 2960 else if (temp == HOT) 2961 return WRITE_LIFE_SHORT; 2962 else if (temp == COLD) 2963 return WRITE_LIFE_EXTREME; 2964 } else { 2965 return WRITE_LIFE_NOT_SET; 2966 } 2967 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2968 if (type == DATA) { 2969 if (temp == WARM) 2970 return WRITE_LIFE_LONG; 2971 else if (temp == HOT) 2972 return WRITE_LIFE_SHORT; 2973 else if (temp == COLD) 2974 return WRITE_LIFE_EXTREME; 2975 } else if (type == NODE) { 2976 if (temp == WARM || temp == HOT) 2977 return WRITE_LIFE_NOT_SET; 2978 else if (temp == COLD) 2979 return WRITE_LIFE_NONE; 2980 } else if (type == META) { 2981 return WRITE_LIFE_MEDIUM; 2982 } 2983 } 2984 return WRITE_LIFE_NOT_SET; 2985 } 2986 2987 static int __get_segment_type_2(struct f2fs_io_info *fio) 2988 { 2989 if (fio->type == DATA) 2990 return CURSEG_HOT_DATA; 2991 else 2992 return CURSEG_HOT_NODE; 2993 } 2994 2995 static int __get_segment_type_4(struct f2fs_io_info *fio) 2996 { 2997 if (fio->type == DATA) { 2998 struct inode *inode = fio->page->mapping->host; 2999 3000 if (S_ISDIR(inode->i_mode)) 3001 return CURSEG_HOT_DATA; 3002 else 3003 return CURSEG_COLD_DATA; 3004 } else { 3005 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3006 return CURSEG_WARM_NODE; 3007 else 3008 return CURSEG_COLD_NODE; 3009 } 3010 } 3011 3012 static int __get_segment_type_6(struct f2fs_io_info *fio) 3013 { 3014 if (fio->type == DATA) { 3015 struct inode *inode = fio->page->mapping->host; 3016 3017 if (is_cold_data(fio->page) || file_is_cold(inode)) 3018 return CURSEG_COLD_DATA; 3019 if (file_is_hot(inode) || 3020 is_inode_flag_set(inode, FI_HOT_DATA) || 3021 f2fs_is_atomic_file(inode) || 3022 f2fs_is_volatile_file(inode)) 3023 return CURSEG_HOT_DATA; 3024 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3025 } else { 3026 if (IS_DNODE(fio->page)) 3027 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3028 CURSEG_HOT_NODE; 3029 return CURSEG_COLD_NODE; 3030 } 3031 } 3032 3033 static int __get_segment_type(struct f2fs_io_info *fio) 3034 { 3035 int type = 0; 3036 3037 switch (F2FS_OPTION(fio->sbi).active_logs) { 3038 case 2: 3039 type = __get_segment_type_2(fio); 3040 break; 3041 case 4: 3042 type = __get_segment_type_4(fio); 3043 break; 3044 case 6: 3045 type = __get_segment_type_6(fio); 3046 break; 3047 default: 3048 f2fs_bug_on(fio->sbi, true); 3049 } 3050 3051 if (IS_HOT(type)) 3052 fio->temp = HOT; 3053 else if (IS_WARM(type)) 3054 fio->temp = WARM; 3055 else 3056 fio->temp = COLD; 3057 return type; 3058 } 3059 3060 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3061 block_t old_blkaddr, block_t *new_blkaddr, 3062 struct f2fs_summary *sum, int type, 3063 struct f2fs_io_info *fio, bool add_list) 3064 { 3065 struct sit_info *sit_i = SIT_I(sbi); 3066 struct curseg_info *curseg = CURSEG_I(sbi, type); 3067 3068 down_read(&SM_I(sbi)->curseg_lock); 3069 3070 mutex_lock(&curseg->curseg_mutex); 3071 down_write(&sit_i->sentry_lock); 3072 3073 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3074 3075 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3076 3077 /* 3078 * __add_sum_entry should be resided under the curseg_mutex 3079 * because, this function updates a summary entry in the 3080 * current summary block. 3081 */ 3082 __add_sum_entry(sbi, type, sum); 3083 3084 __refresh_next_blkoff(sbi, curseg); 3085 3086 stat_inc_block_count(sbi, curseg); 3087 3088 /* 3089 * SIT information should be updated before segment allocation, 3090 * since SSR needs latest valid block information. 3091 */ 3092 update_sit_entry(sbi, *new_blkaddr, 1); 3093 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3094 update_sit_entry(sbi, old_blkaddr, -1); 3095 3096 if (!__has_curseg_space(sbi, type)) 3097 sit_i->s_ops->allocate_segment(sbi, type, false); 3098 3099 /* 3100 * segment dirty status should be updated after segment allocation, 3101 * so we just need to update status only one time after previous 3102 * segment being closed. 3103 */ 3104 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3105 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3106 3107 up_write(&sit_i->sentry_lock); 3108 3109 if (page && IS_NODESEG(type)) { 3110 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3111 3112 f2fs_inode_chksum_set(sbi, page); 3113 } 3114 3115 if (add_list) { 3116 struct f2fs_bio_info *io; 3117 3118 INIT_LIST_HEAD(&fio->list); 3119 fio->in_list = true; 3120 fio->retry = false; 3121 io = sbi->write_io[fio->type] + fio->temp; 3122 spin_lock(&io->io_lock); 3123 list_add_tail(&fio->list, &io->io_list); 3124 spin_unlock(&io->io_lock); 3125 } 3126 3127 mutex_unlock(&curseg->curseg_mutex); 3128 3129 up_read(&SM_I(sbi)->curseg_lock); 3130 } 3131 3132 static void update_device_state(struct f2fs_io_info *fio) 3133 { 3134 struct f2fs_sb_info *sbi = fio->sbi; 3135 unsigned int devidx; 3136 3137 if (!f2fs_is_multi_device(sbi)) 3138 return; 3139 3140 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3141 3142 /* update device state for fsync */ 3143 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3144 3145 /* update device state for checkpoint */ 3146 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3147 spin_lock(&sbi->dev_lock); 3148 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3149 spin_unlock(&sbi->dev_lock); 3150 } 3151 } 3152 3153 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3154 { 3155 int type = __get_segment_type(fio); 3156 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 3157 3158 if (keep_order) 3159 down_read(&fio->sbi->io_order_lock); 3160 reallocate: 3161 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3162 &fio->new_blkaddr, sum, type, fio, true); 3163 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3164 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3165 fio->old_blkaddr, fio->old_blkaddr); 3166 3167 /* writeout dirty page into bdev */ 3168 f2fs_submit_page_write(fio); 3169 if (fio->retry) { 3170 fio->old_blkaddr = fio->new_blkaddr; 3171 goto reallocate; 3172 } 3173 3174 update_device_state(fio); 3175 3176 if (keep_order) 3177 up_read(&fio->sbi->io_order_lock); 3178 } 3179 3180 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3181 enum iostat_type io_type) 3182 { 3183 struct f2fs_io_info fio = { 3184 .sbi = sbi, 3185 .type = META, 3186 .temp = HOT, 3187 .op = REQ_OP_WRITE, 3188 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3189 .old_blkaddr = page->index, 3190 .new_blkaddr = page->index, 3191 .page = page, 3192 .encrypted_page = NULL, 3193 .in_list = false, 3194 }; 3195 3196 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3197 fio.op_flags &= ~REQ_META; 3198 3199 set_page_writeback(page); 3200 ClearPageError(page); 3201 f2fs_submit_page_write(&fio); 3202 3203 stat_inc_meta_count(sbi, page->index); 3204 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3205 } 3206 3207 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3208 { 3209 struct f2fs_summary sum; 3210 3211 set_summary(&sum, nid, 0, 0); 3212 do_write_page(&sum, fio); 3213 3214 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3215 } 3216 3217 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3218 struct f2fs_io_info *fio) 3219 { 3220 struct f2fs_sb_info *sbi = fio->sbi; 3221 struct f2fs_summary sum; 3222 3223 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3224 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3225 do_write_page(&sum, fio); 3226 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3227 3228 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3229 } 3230 3231 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3232 { 3233 int err; 3234 struct f2fs_sb_info *sbi = fio->sbi; 3235 unsigned int segno; 3236 3237 fio->new_blkaddr = fio->old_blkaddr; 3238 /* i/o temperature is needed for passing down write hints */ 3239 __get_segment_type(fio); 3240 3241 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3242 3243 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3244 set_sbi_flag(sbi, SBI_NEED_FSCK); 3245 return -EFAULT; 3246 } 3247 3248 stat_inc_inplace_blocks(fio->sbi); 3249 3250 if (fio->bio) 3251 err = f2fs_merge_page_bio(fio); 3252 else 3253 err = f2fs_submit_page_bio(fio); 3254 if (!err) { 3255 update_device_state(fio); 3256 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3257 } 3258 3259 return err; 3260 } 3261 3262 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3263 unsigned int segno) 3264 { 3265 int i; 3266 3267 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3268 if (CURSEG_I(sbi, i)->segno == segno) 3269 break; 3270 } 3271 return i; 3272 } 3273 3274 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3275 block_t old_blkaddr, block_t new_blkaddr, 3276 bool recover_curseg, bool recover_newaddr) 3277 { 3278 struct sit_info *sit_i = SIT_I(sbi); 3279 struct curseg_info *curseg; 3280 unsigned int segno, old_cursegno; 3281 struct seg_entry *se; 3282 int type; 3283 unsigned short old_blkoff; 3284 3285 segno = GET_SEGNO(sbi, new_blkaddr); 3286 se = get_seg_entry(sbi, segno); 3287 type = se->type; 3288 3289 down_write(&SM_I(sbi)->curseg_lock); 3290 3291 if (!recover_curseg) { 3292 /* for recovery flow */ 3293 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3294 if (old_blkaddr == NULL_ADDR) 3295 type = CURSEG_COLD_DATA; 3296 else 3297 type = CURSEG_WARM_DATA; 3298 } 3299 } else { 3300 if (IS_CURSEG(sbi, segno)) { 3301 /* se->type is volatile as SSR allocation */ 3302 type = __f2fs_get_curseg(sbi, segno); 3303 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3304 } else { 3305 type = CURSEG_WARM_DATA; 3306 } 3307 } 3308 3309 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3310 curseg = CURSEG_I(sbi, type); 3311 3312 mutex_lock(&curseg->curseg_mutex); 3313 down_write(&sit_i->sentry_lock); 3314 3315 old_cursegno = curseg->segno; 3316 old_blkoff = curseg->next_blkoff; 3317 3318 /* change the current segment */ 3319 if (segno != curseg->segno) { 3320 curseg->next_segno = segno; 3321 change_curseg(sbi, type); 3322 } 3323 3324 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3325 __add_sum_entry(sbi, type, sum); 3326 3327 if (!recover_curseg || recover_newaddr) 3328 update_sit_entry(sbi, new_blkaddr, 1); 3329 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3330 invalidate_mapping_pages(META_MAPPING(sbi), 3331 old_blkaddr, old_blkaddr); 3332 update_sit_entry(sbi, old_blkaddr, -1); 3333 } 3334 3335 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3336 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3337 3338 locate_dirty_segment(sbi, old_cursegno); 3339 3340 if (recover_curseg) { 3341 if (old_cursegno != curseg->segno) { 3342 curseg->next_segno = old_cursegno; 3343 change_curseg(sbi, type); 3344 } 3345 curseg->next_blkoff = old_blkoff; 3346 } 3347 3348 up_write(&sit_i->sentry_lock); 3349 mutex_unlock(&curseg->curseg_mutex); 3350 up_write(&SM_I(sbi)->curseg_lock); 3351 } 3352 3353 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3354 block_t old_addr, block_t new_addr, 3355 unsigned char version, bool recover_curseg, 3356 bool recover_newaddr) 3357 { 3358 struct f2fs_summary sum; 3359 3360 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3361 3362 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3363 recover_curseg, recover_newaddr); 3364 3365 f2fs_update_data_blkaddr(dn, new_addr); 3366 } 3367 3368 void f2fs_wait_on_page_writeback(struct page *page, 3369 enum page_type type, bool ordered, bool locked) 3370 { 3371 if (PageWriteback(page)) { 3372 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3373 3374 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3375 if (ordered) { 3376 wait_on_page_writeback(page); 3377 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3378 } else { 3379 wait_for_stable_page(page); 3380 } 3381 } 3382 } 3383 3384 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3385 { 3386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3387 struct page *cpage; 3388 3389 if (!f2fs_post_read_required(inode)) 3390 return; 3391 3392 if (!__is_valid_data_blkaddr(blkaddr)) 3393 return; 3394 3395 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3396 if (cpage) { 3397 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3398 f2fs_put_page(cpage, 1); 3399 } 3400 } 3401 3402 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3403 block_t len) 3404 { 3405 block_t i; 3406 3407 for (i = 0; i < len; i++) 3408 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3409 } 3410 3411 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3412 { 3413 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3414 struct curseg_info *seg_i; 3415 unsigned char *kaddr; 3416 struct page *page; 3417 block_t start; 3418 int i, j, offset; 3419 3420 start = start_sum_block(sbi); 3421 3422 page = f2fs_get_meta_page(sbi, start++); 3423 if (IS_ERR(page)) 3424 return PTR_ERR(page); 3425 kaddr = (unsigned char *)page_address(page); 3426 3427 /* Step 1: restore nat cache */ 3428 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3429 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3430 3431 /* Step 2: restore sit cache */ 3432 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3433 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3434 offset = 2 * SUM_JOURNAL_SIZE; 3435 3436 /* Step 3: restore summary entries */ 3437 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3438 unsigned short blk_off; 3439 unsigned int segno; 3440 3441 seg_i = CURSEG_I(sbi, i); 3442 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3443 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3444 seg_i->next_segno = segno; 3445 reset_curseg(sbi, i, 0); 3446 seg_i->alloc_type = ckpt->alloc_type[i]; 3447 seg_i->next_blkoff = blk_off; 3448 3449 if (seg_i->alloc_type == SSR) 3450 blk_off = sbi->blocks_per_seg; 3451 3452 for (j = 0; j < blk_off; j++) { 3453 struct f2fs_summary *s; 3454 s = (struct f2fs_summary *)(kaddr + offset); 3455 seg_i->sum_blk->entries[j] = *s; 3456 offset += SUMMARY_SIZE; 3457 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3458 SUM_FOOTER_SIZE) 3459 continue; 3460 3461 f2fs_put_page(page, 1); 3462 page = NULL; 3463 3464 page = f2fs_get_meta_page(sbi, start++); 3465 if (IS_ERR(page)) 3466 return PTR_ERR(page); 3467 kaddr = (unsigned char *)page_address(page); 3468 offset = 0; 3469 } 3470 } 3471 f2fs_put_page(page, 1); 3472 return 0; 3473 } 3474 3475 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3476 { 3477 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3478 struct f2fs_summary_block *sum; 3479 struct curseg_info *curseg; 3480 struct page *new; 3481 unsigned short blk_off; 3482 unsigned int segno = 0; 3483 block_t blk_addr = 0; 3484 int err = 0; 3485 3486 /* get segment number and block addr */ 3487 if (IS_DATASEG(type)) { 3488 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3489 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3490 CURSEG_HOT_DATA]); 3491 if (__exist_node_summaries(sbi)) 3492 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3493 else 3494 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3495 } else { 3496 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3497 CURSEG_HOT_NODE]); 3498 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3499 CURSEG_HOT_NODE]); 3500 if (__exist_node_summaries(sbi)) 3501 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3502 type - CURSEG_HOT_NODE); 3503 else 3504 blk_addr = GET_SUM_BLOCK(sbi, segno); 3505 } 3506 3507 new = f2fs_get_meta_page(sbi, blk_addr); 3508 if (IS_ERR(new)) 3509 return PTR_ERR(new); 3510 sum = (struct f2fs_summary_block *)page_address(new); 3511 3512 if (IS_NODESEG(type)) { 3513 if (__exist_node_summaries(sbi)) { 3514 struct f2fs_summary *ns = &sum->entries[0]; 3515 int i; 3516 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3517 ns->version = 0; 3518 ns->ofs_in_node = 0; 3519 } 3520 } else { 3521 err = f2fs_restore_node_summary(sbi, segno, sum); 3522 if (err) 3523 goto out; 3524 } 3525 } 3526 3527 /* set uncompleted segment to curseg */ 3528 curseg = CURSEG_I(sbi, type); 3529 mutex_lock(&curseg->curseg_mutex); 3530 3531 /* update journal info */ 3532 down_write(&curseg->journal_rwsem); 3533 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3534 up_write(&curseg->journal_rwsem); 3535 3536 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3537 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3538 curseg->next_segno = segno; 3539 reset_curseg(sbi, type, 0); 3540 curseg->alloc_type = ckpt->alloc_type[type]; 3541 curseg->next_blkoff = blk_off; 3542 mutex_unlock(&curseg->curseg_mutex); 3543 out: 3544 f2fs_put_page(new, 1); 3545 return err; 3546 } 3547 3548 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3549 { 3550 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3551 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3552 int type = CURSEG_HOT_DATA; 3553 int err; 3554 3555 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3556 int npages = f2fs_npages_for_summary_flush(sbi, true); 3557 3558 if (npages >= 2) 3559 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3560 META_CP, true); 3561 3562 /* restore for compacted data summary */ 3563 err = read_compacted_summaries(sbi); 3564 if (err) 3565 return err; 3566 type = CURSEG_HOT_NODE; 3567 } 3568 3569 if (__exist_node_summaries(sbi)) 3570 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3571 NR_CURSEG_TYPE - type, META_CP, true); 3572 3573 for (; type <= CURSEG_COLD_NODE; type++) { 3574 err = read_normal_summaries(sbi, type); 3575 if (err) 3576 return err; 3577 } 3578 3579 /* sanity check for summary blocks */ 3580 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3581 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3582 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3583 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3584 return -EINVAL; 3585 } 3586 3587 return 0; 3588 } 3589 3590 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3591 { 3592 struct page *page; 3593 unsigned char *kaddr; 3594 struct f2fs_summary *summary; 3595 struct curseg_info *seg_i; 3596 int written_size = 0; 3597 int i, j; 3598 3599 page = f2fs_grab_meta_page(sbi, blkaddr++); 3600 kaddr = (unsigned char *)page_address(page); 3601 memset(kaddr, 0, PAGE_SIZE); 3602 3603 /* Step 1: write nat cache */ 3604 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3605 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3606 written_size += SUM_JOURNAL_SIZE; 3607 3608 /* Step 2: write sit cache */ 3609 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3610 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3611 written_size += SUM_JOURNAL_SIZE; 3612 3613 /* Step 3: write summary entries */ 3614 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3615 unsigned short blkoff; 3616 seg_i = CURSEG_I(sbi, i); 3617 if (sbi->ckpt->alloc_type[i] == SSR) 3618 blkoff = sbi->blocks_per_seg; 3619 else 3620 blkoff = curseg_blkoff(sbi, i); 3621 3622 for (j = 0; j < blkoff; j++) { 3623 if (!page) { 3624 page = f2fs_grab_meta_page(sbi, blkaddr++); 3625 kaddr = (unsigned char *)page_address(page); 3626 memset(kaddr, 0, PAGE_SIZE); 3627 written_size = 0; 3628 } 3629 summary = (struct f2fs_summary *)(kaddr + written_size); 3630 *summary = seg_i->sum_blk->entries[j]; 3631 written_size += SUMMARY_SIZE; 3632 3633 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3634 SUM_FOOTER_SIZE) 3635 continue; 3636 3637 set_page_dirty(page); 3638 f2fs_put_page(page, 1); 3639 page = NULL; 3640 } 3641 } 3642 if (page) { 3643 set_page_dirty(page); 3644 f2fs_put_page(page, 1); 3645 } 3646 } 3647 3648 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3649 block_t blkaddr, int type) 3650 { 3651 int i, end; 3652 if (IS_DATASEG(type)) 3653 end = type + NR_CURSEG_DATA_TYPE; 3654 else 3655 end = type + NR_CURSEG_NODE_TYPE; 3656 3657 for (i = type; i < end; i++) 3658 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3659 } 3660 3661 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3662 { 3663 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3664 write_compacted_summaries(sbi, start_blk); 3665 else 3666 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3667 } 3668 3669 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3670 { 3671 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3672 } 3673 3674 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3675 unsigned int val, int alloc) 3676 { 3677 int i; 3678 3679 if (type == NAT_JOURNAL) { 3680 for (i = 0; i < nats_in_cursum(journal); i++) { 3681 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3682 return i; 3683 } 3684 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3685 return update_nats_in_cursum(journal, 1); 3686 } else if (type == SIT_JOURNAL) { 3687 for (i = 0; i < sits_in_cursum(journal); i++) 3688 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3689 return i; 3690 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3691 return update_sits_in_cursum(journal, 1); 3692 } 3693 return -1; 3694 } 3695 3696 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3697 unsigned int segno) 3698 { 3699 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3700 } 3701 3702 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3703 unsigned int start) 3704 { 3705 struct sit_info *sit_i = SIT_I(sbi); 3706 struct page *page; 3707 pgoff_t src_off, dst_off; 3708 3709 src_off = current_sit_addr(sbi, start); 3710 dst_off = next_sit_addr(sbi, src_off); 3711 3712 page = f2fs_grab_meta_page(sbi, dst_off); 3713 seg_info_to_sit_page(sbi, page, start); 3714 3715 set_page_dirty(page); 3716 set_to_next_sit(sit_i, start); 3717 3718 return page; 3719 } 3720 3721 static struct sit_entry_set *grab_sit_entry_set(void) 3722 { 3723 struct sit_entry_set *ses = 3724 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3725 3726 ses->entry_cnt = 0; 3727 INIT_LIST_HEAD(&ses->set_list); 3728 return ses; 3729 } 3730 3731 static void release_sit_entry_set(struct sit_entry_set *ses) 3732 { 3733 list_del(&ses->set_list); 3734 kmem_cache_free(sit_entry_set_slab, ses); 3735 } 3736 3737 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3738 struct list_head *head) 3739 { 3740 struct sit_entry_set *next = ses; 3741 3742 if (list_is_last(&ses->set_list, head)) 3743 return; 3744 3745 list_for_each_entry_continue(next, head, set_list) 3746 if (ses->entry_cnt <= next->entry_cnt) 3747 break; 3748 3749 list_move_tail(&ses->set_list, &next->set_list); 3750 } 3751 3752 static void add_sit_entry(unsigned int segno, struct list_head *head) 3753 { 3754 struct sit_entry_set *ses; 3755 unsigned int start_segno = START_SEGNO(segno); 3756 3757 list_for_each_entry(ses, head, set_list) { 3758 if (ses->start_segno == start_segno) { 3759 ses->entry_cnt++; 3760 adjust_sit_entry_set(ses, head); 3761 return; 3762 } 3763 } 3764 3765 ses = grab_sit_entry_set(); 3766 3767 ses->start_segno = start_segno; 3768 ses->entry_cnt++; 3769 list_add(&ses->set_list, head); 3770 } 3771 3772 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3773 { 3774 struct f2fs_sm_info *sm_info = SM_I(sbi); 3775 struct list_head *set_list = &sm_info->sit_entry_set; 3776 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3777 unsigned int segno; 3778 3779 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3780 add_sit_entry(segno, set_list); 3781 } 3782 3783 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3784 { 3785 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3786 struct f2fs_journal *journal = curseg->journal; 3787 int i; 3788 3789 down_write(&curseg->journal_rwsem); 3790 for (i = 0; i < sits_in_cursum(journal); i++) { 3791 unsigned int segno; 3792 bool dirtied; 3793 3794 segno = le32_to_cpu(segno_in_journal(journal, i)); 3795 dirtied = __mark_sit_entry_dirty(sbi, segno); 3796 3797 if (!dirtied) 3798 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3799 } 3800 update_sits_in_cursum(journal, -i); 3801 up_write(&curseg->journal_rwsem); 3802 } 3803 3804 /* 3805 * CP calls this function, which flushes SIT entries including sit_journal, 3806 * and moves prefree segs to free segs. 3807 */ 3808 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3809 { 3810 struct sit_info *sit_i = SIT_I(sbi); 3811 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3812 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3813 struct f2fs_journal *journal = curseg->journal; 3814 struct sit_entry_set *ses, *tmp; 3815 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3816 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 3817 struct seg_entry *se; 3818 3819 down_write(&sit_i->sentry_lock); 3820 3821 if (!sit_i->dirty_sentries) 3822 goto out; 3823 3824 /* 3825 * add and account sit entries of dirty bitmap in sit entry 3826 * set temporarily 3827 */ 3828 add_sits_in_set(sbi); 3829 3830 /* 3831 * if there are no enough space in journal to store dirty sit 3832 * entries, remove all entries from journal and add and account 3833 * them in sit entry set. 3834 */ 3835 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 3836 !to_journal) 3837 remove_sits_in_journal(sbi); 3838 3839 /* 3840 * there are two steps to flush sit entries: 3841 * #1, flush sit entries to journal in current cold data summary block. 3842 * #2, flush sit entries to sit page. 3843 */ 3844 list_for_each_entry_safe(ses, tmp, head, set_list) { 3845 struct page *page = NULL; 3846 struct f2fs_sit_block *raw_sit = NULL; 3847 unsigned int start_segno = ses->start_segno; 3848 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3849 (unsigned long)MAIN_SEGS(sbi)); 3850 unsigned int segno = start_segno; 3851 3852 if (to_journal && 3853 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3854 to_journal = false; 3855 3856 if (to_journal) { 3857 down_write(&curseg->journal_rwsem); 3858 } else { 3859 page = get_next_sit_page(sbi, start_segno); 3860 raw_sit = page_address(page); 3861 } 3862 3863 /* flush dirty sit entries in region of current sit set */ 3864 for_each_set_bit_from(segno, bitmap, end) { 3865 int offset, sit_offset; 3866 3867 se = get_seg_entry(sbi, segno); 3868 #ifdef CONFIG_F2FS_CHECK_FS 3869 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3870 SIT_VBLOCK_MAP_SIZE)) 3871 f2fs_bug_on(sbi, 1); 3872 #endif 3873 3874 /* add discard candidates */ 3875 if (!(cpc->reason & CP_DISCARD)) { 3876 cpc->trim_start = segno; 3877 add_discard_addrs(sbi, cpc, false); 3878 } 3879 3880 if (to_journal) { 3881 offset = f2fs_lookup_journal_in_cursum(journal, 3882 SIT_JOURNAL, segno, 1); 3883 f2fs_bug_on(sbi, offset < 0); 3884 segno_in_journal(journal, offset) = 3885 cpu_to_le32(segno); 3886 seg_info_to_raw_sit(se, 3887 &sit_in_journal(journal, offset)); 3888 check_block_count(sbi, segno, 3889 &sit_in_journal(journal, offset)); 3890 } else { 3891 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3892 seg_info_to_raw_sit(se, 3893 &raw_sit->entries[sit_offset]); 3894 check_block_count(sbi, segno, 3895 &raw_sit->entries[sit_offset]); 3896 } 3897 3898 __clear_bit(segno, bitmap); 3899 sit_i->dirty_sentries--; 3900 ses->entry_cnt--; 3901 } 3902 3903 if (to_journal) 3904 up_write(&curseg->journal_rwsem); 3905 else 3906 f2fs_put_page(page, 1); 3907 3908 f2fs_bug_on(sbi, ses->entry_cnt); 3909 release_sit_entry_set(ses); 3910 } 3911 3912 f2fs_bug_on(sbi, !list_empty(head)); 3913 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3914 out: 3915 if (cpc->reason & CP_DISCARD) { 3916 __u64 trim_start = cpc->trim_start; 3917 3918 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3919 add_discard_addrs(sbi, cpc, false); 3920 3921 cpc->trim_start = trim_start; 3922 } 3923 up_write(&sit_i->sentry_lock); 3924 3925 set_prefree_as_free_segments(sbi); 3926 } 3927 3928 static int build_sit_info(struct f2fs_sb_info *sbi) 3929 { 3930 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3931 struct sit_info *sit_i; 3932 unsigned int sit_segs, start; 3933 char *src_bitmap; 3934 unsigned int bitmap_size; 3935 3936 /* allocate memory for SIT information */ 3937 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3938 if (!sit_i) 3939 return -ENOMEM; 3940 3941 SM_I(sbi)->sit_info = sit_i; 3942 3943 sit_i->sentries = 3944 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 3945 MAIN_SEGS(sbi)), 3946 GFP_KERNEL); 3947 if (!sit_i->sentries) 3948 return -ENOMEM; 3949 3950 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3951 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size, 3952 GFP_KERNEL); 3953 if (!sit_i->dirty_sentries_bitmap) 3954 return -ENOMEM; 3955 3956 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3957 sit_i->sentries[start].cur_valid_map 3958 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3959 sit_i->sentries[start].ckpt_valid_map 3960 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3961 if (!sit_i->sentries[start].cur_valid_map || 3962 !sit_i->sentries[start].ckpt_valid_map) 3963 return -ENOMEM; 3964 3965 #ifdef CONFIG_F2FS_CHECK_FS 3966 sit_i->sentries[start].cur_valid_map_mir 3967 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3968 if (!sit_i->sentries[start].cur_valid_map_mir) 3969 return -ENOMEM; 3970 #endif 3971 3972 sit_i->sentries[start].discard_map 3973 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, 3974 GFP_KERNEL); 3975 if (!sit_i->sentries[start].discard_map) 3976 return -ENOMEM; 3977 } 3978 3979 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3980 if (!sit_i->tmp_map) 3981 return -ENOMEM; 3982 3983 if (__is_large_section(sbi)) { 3984 sit_i->sec_entries = 3985 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 3986 MAIN_SECS(sbi)), 3987 GFP_KERNEL); 3988 if (!sit_i->sec_entries) 3989 return -ENOMEM; 3990 } 3991 3992 /* get information related with SIT */ 3993 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 3994 3995 /* setup SIT bitmap from ckeckpoint pack */ 3996 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 3997 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 3998 3999 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 4000 if (!sit_i->sit_bitmap) 4001 return -ENOMEM; 4002 4003 #ifdef CONFIG_F2FS_CHECK_FS 4004 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 4005 if (!sit_i->sit_bitmap_mir) 4006 return -ENOMEM; 4007 #endif 4008 4009 /* init SIT information */ 4010 sit_i->s_ops = &default_salloc_ops; 4011 4012 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4013 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4014 sit_i->written_valid_blocks = 0; 4015 sit_i->bitmap_size = bitmap_size; 4016 sit_i->dirty_sentries = 0; 4017 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4018 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4019 sit_i->mounted_time = ktime_get_real_seconds(); 4020 init_rwsem(&sit_i->sentry_lock); 4021 return 0; 4022 } 4023 4024 static int build_free_segmap(struct f2fs_sb_info *sbi) 4025 { 4026 struct free_segmap_info *free_i; 4027 unsigned int bitmap_size, sec_bitmap_size; 4028 4029 /* allocate memory for free segmap information */ 4030 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4031 if (!free_i) 4032 return -ENOMEM; 4033 4034 SM_I(sbi)->free_info = free_i; 4035 4036 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4037 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4038 if (!free_i->free_segmap) 4039 return -ENOMEM; 4040 4041 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4042 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4043 if (!free_i->free_secmap) 4044 return -ENOMEM; 4045 4046 /* set all segments as dirty temporarily */ 4047 memset(free_i->free_segmap, 0xff, bitmap_size); 4048 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4049 4050 /* init free segmap information */ 4051 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4052 free_i->free_segments = 0; 4053 free_i->free_sections = 0; 4054 spin_lock_init(&free_i->segmap_lock); 4055 return 0; 4056 } 4057 4058 static int build_curseg(struct f2fs_sb_info *sbi) 4059 { 4060 struct curseg_info *array; 4061 int i; 4062 4063 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 4064 GFP_KERNEL); 4065 if (!array) 4066 return -ENOMEM; 4067 4068 SM_I(sbi)->curseg_array = array; 4069 4070 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4071 mutex_init(&array[i].curseg_mutex); 4072 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4073 if (!array[i].sum_blk) 4074 return -ENOMEM; 4075 init_rwsem(&array[i].journal_rwsem); 4076 array[i].journal = f2fs_kzalloc(sbi, 4077 sizeof(struct f2fs_journal), GFP_KERNEL); 4078 if (!array[i].journal) 4079 return -ENOMEM; 4080 array[i].segno = NULL_SEGNO; 4081 array[i].next_blkoff = 0; 4082 } 4083 return restore_curseg_summaries(sbi); 4084 } 4085 4086 static int build_sit_entries(struct f2fs_sb_info *sbi) 4087 { 4088 struct sit_info *sit_i = SIT_I(sbi); 4089 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4090 struct f2fs_journal *journal = curseg->journal; 4091 struct seg_entry *se; 4092 struct f2fs_sit_entry sit; 4093 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4094 unsigned int i, start, end; 4095 unsigned int readed, start_blk = 0; 4096 int err = 0; 4097 block_t total_node_blocks = 0; 4098 4099 do { 4100 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4101 META_SIT, true); 4102 4103 start = start_blk * sit_i->sents_per_block; 4104 end = (start_blk + readed) * sit_i->sents_per_block; 4105 4106 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4107 struct f2fs_sit_block *sit_blk; 4108 struct page *page; 4109 4110 se = &sit_i->sentries[start]; 4111 page = get_current_sit_page(sbi, start); 4112 if (IS_ERR(page)) 4113 return PTR_ERR(page); 4114 sit_blk = (struct f2fs_sit_block *)page_address(page); 4115 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4116 f2fs_put_page(page, 1); 4117 4118 err = check_block_count(sbi, start, &sit); 4119 if (err) 4120 return err; 4121 seg_info_from_raw_sit(se, &sit); 4122 if (IS_NODESEG(se->type)) 4123 total_node_blocks += se->valid_blocks; 4124 4125 /* build discard map only one time */ 4126 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4127 memset(se->discard_map, 0xff, 4128 SIT_VBLOCK_MAP_SIZE); 4129 } else { 4130 memcpy(se->discard_map, 4131 se->cur_valid_map, 4132 SIT_VBLOCK_MAP_SIZE); 4133 sbi->discard_blks += 4134 sbi->blocks_per_seg - 4135 se->valid_blocks; 4136 } 4137 4138 if (__is_large_section(sbi)) 4139 get_sec_entry(sbi, start)->valid_blocks += 4140 se->valid_blocks; 4141 } 4142 start_blk += readed; 4143 } while (start_blk < sit_blk_cnt); 4144 4145 down_read(&curseg->journal_rwsem); 4146 for (i = 0; i < sits_in_cursum(journal); i++) { 4147 unsigned int old_valid_blocks; 4148 4149 start = le32_to_cpu(segno_in_journal(journal, i)); 4150 if (start >= MAIN_SEGS(sbi)) { 4151 f2fs_err(sbi, "Wrong journal entry on segno %u", 4152 start); 4153 set_sbi_flag(sbi, SBI_NEED_FSCK); 4154 err = -EINVAL; 4155 break; 4156 } 4157 4158 se = &sit_i->sentries[start]; 4159 sit = sit_in_journal(journal, i); 4160 4161 old_valid_blocks = se->valid_blocks; 4162 if (IS_NODESEG(se->type)) 4163 total_node_blocks -= old_valid_blocks; 4164 4165 err = check_block_count(sbi, start, &sit); 4166 if (err) 4167 break; 4168 seg_info_from_raw_sit(se, &sit); 4169 if (IS_NODESEG(se->type)) 4170 total_node_blocks += se->valid_blocks; 4171 4172 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4173 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4174 } else { 4175 memcpy(se->discard_map, se->cur_valid_map, 4176 SIT_VBLOCK_MAP_SIZE); 4177 sbi->discard_blks += old_valid_blocks; 4178 sbi->discard_blks -= se->valid_blocks; 4179 } 4180 4181 if (__is_large_section(sbi)) { 4182 get_sec_entry(sbi, start)->valid_blocks += 4183 se->valid_blocks; 4184 get_sec_entry(sbi, start)->valid_blocks -= 4185 old_valid_blocks; 4186 } 4187 } 4188 up_read(&curseg->journal_rwsem); 4189 4190 if (!err && total_node_blocks != valid_node_count(sbi)) { 4191 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4192 total_node_blocks, valid_node_count(sbi)); 4193 set_sbi_flag(sbi, SBI_NEED_FSCK); 4194 err = -EINVAL; 4195 } 4196 4197 return err; 4198 } 4199 4200 static void init_free_segmap(struct f2fs_sb_info *sbi) 4201 { 4202 unsigned int start; 4203 int type; 4204 4205 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4206 struct seg_entry *sentry = get_seg_entry(sbi, start); 4207 if (!sentry->valid_blocks) 4208 __set_free(sbi, start); 4209 else 4210 SIT_I(sbi)->written_valid_blocks += 4211 sentry->valid_blocks; 4212 } 4213 4214 /* set use the current segments */ 4215 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4216 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4217 __set_test_and_inuse(sbi, curseg_t->segno); 4218 } 4219 } 4220 4221 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4222 { 4223 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4224 struct free_segmap_info *free_i = FREE_I(sbi); 4225 unsigned int segno = 0, offset = 0; 4226 unsigned short valid_blocks; 4227 4228 while (1) { 4229 /* find dirty segment based on free segmap */ 4230 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4231 if (segno >= MAIN_SEGS(sbi)) 4232 break; 4233 offset = segno + 1; 4234 valid_blocks = get_valid_blocks(sbi, segno, false); 4235 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4236 continue; 4237 if (valid_blocks > sbi->blocks_per_seg) { 4238 f2fs_bug_on(sbi, 1); 4239 continue; 4240 } 4241 mutex_lock(&dirty_i->seglist_lock); 4242 __locate_dirty_segment(sbi, segno, DIRTY); 4243 mutex_unlock(&dirty_i->seglist_lock); 4244 } 4245 } 4246 4247 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4248 { 4249 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4250 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4251 4252 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4253 if (!dirty_i->victim_secmap) 4254 return -ENOMEM; 4255 return 0; 4256 } 4257 4258 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4259 { 4260 struct dirty_seglist_info *dirty_i; 4261 unsigned int bitmap_size, i; 4262 4263 /* allocate memory for dirty segments list information */ 4264 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4265 GFP_KERNEL); 4266 if (!dirty_i) 4267 return -ENOMEM; 4268 4269 SM_I(sbi)->dirty_info = dirty_i; 4270 mutex_init(&dirty_i->seglist_lock); 4271 4272 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4273 4274 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4275 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4276 GFP_KERNEL); 4277 if (!dirty_i->dirty_segmap[i]) 4278 return -ENOMEM; 4279 } 4280 4281 init_dirty_segmap(sbi); 4282 return init_victim_secmap(sbi); 4283 } 4284 4285 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4286 { 4287 int i; 4288 4289 /* 4290 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4291 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4292 */ 4293 for (i = 0; i < NO_CHECK_TYPE; i++) { 4294 struct curseg_info *curseg = CURSEG_I(sbi, i); 4295 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4296 unsigned int blkofs = curseg->next_blkoff; 4297 4298 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4299 goto out; 4300 4301 if (curseg->alloc_type == SSR) 4302 continue; 4303 4304 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4305 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4306 continue; 4307 out: 4308 f2fs_err(sbi, 4309 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4310 i, curseg->segno, curseg->alloc_type, 4311 curseg->next_blkoff, blkofs); 4312 return -EINVAL; 4313 } 4314 } 4315 return 0; 4316 } 4317 4318 /* 4319 * Update min, max modified time for cost-benefit GC algorithm 4320 */ 4321 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4322 { 4323 struct sit_info *sit_i = SIT_I(sbi); 4324 unsigned int segno; 4325 4326 down_write(&sit_i->sentry_lock); 4327 4328 sit_i->min_mtime = ULLONG_MAX; 4329 4330 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4331 unsigned int i; 4332 unsigned long long mtime = 0; 4333 4334 for (i = 0; i < sbi->segs_per_sec; i++) 4335 mtime += get_seg_entry(sbi, segno + i)->mtime; 4336 4337 mtime = div_u64(mtime, sbi->segs_per_sec); 4338 4339 if (sit_i->min_mtime > mtime) 4340 sit_i->min_mtime = mtime; 4341 } 4342 sit_i->max_mtime = get_mtime(sbi, false); 4343 up_write(&sit_i->sentry_lock); 4344 } 4345 4346 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4347 { 4348 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4349 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4350 struct f2fs_sm_info *sm_info; 4351 int err; 4352 4353 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4354 if (!sm_info) 4355 return -ENOMEM; 4356 4357 /* init sm info */ 4358 sbi->sm_info = sm_info; 4359 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4360 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4361 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4362 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4363 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4364 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4365 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4366 sm_info->rec_prefree_segments = sm_info->main_segments * 4367 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4368 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4369 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4370 4371 if (!test_opt(sbi, LFS)) 4372 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4373 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4374 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4375 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4376 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4377 sm_info->min_ssr_sections = reserved_sections(sbi); 4378 4379 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4380 4381 init_rwsem(&sm_info->curseg_lock); 4382 4383 if (!f2fs_readonly(sbi->sb)) { 4384 err = f2fs_create_flush_cmd_control(sbi); 4385 if (err) 4386 return err; 4387 } 4388 4389 err = create_discard_cmd_control(sbi); 4390 if (err) 4391 return err; 4392 4393 err = build_sit_info(sbi); 4394 if (err) 4395 return err; 4396 err = build_free_segmap(sbi); 4397 if (err) 4398 return err; 4399 err = build_curseg(sbi); 4400 if (err) 4401 return err; 4402 4403 /* reinit free segmap based on SIT */ 4404 err = build_sit_entries(sbi); 4405 if (err) 4406 return err; 4407 4408 init_free_segmap(sbi); 4409 err = build_dirty_segmap(sbi); 4410 if (err) 4411 return err; 4412 4413 err = sanity_check_curseg(sbi); 4414 if (err) 4415 return err; 4416 4417 init_min_max_mtime(sbi); 4418 return 0; 4419 } 4420 4421 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4422 enum dirty_type dirty_type) 4423 { 4424 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4425 4426 mutex_lock(&dirty_i->seglist_lock); 4427 kvfree(dirty_i->dirty_segmap[dirty_type]); 4428 dirty_i->nr_dirty[dirty_type] = 0; 4429 mutex_unlock(&dirty_i->seglist_lock); 4430 } 4431 4432 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4433 { 4434 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4435 kvfree(dirty_i->victim_secmap); 4436 } 4437 4438 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4439 { 4440 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4441 int i; 4442 4443 if (!dirty_i) 4444 return; 4445 4446 /* discard pre-free/dirty segments list */ 4447 for (i = 0; i < NR_DIRTY_TYPE; i++) 4448 discard_dirty_segmap(sbi, i); 4449 4450 destroy_victim_secmap(sbi); 4451 SM_I(sbi)->dirty_info = NULL; 4452 kvfree(dirty_i); 4453 } 4454 4455 static void destroy_curseg(struct f2fs_sb_info *sbi) 4456 { 4457 struct curseg_info *array = SM_I(sbi)->curseg_array; 4458 int i; 4459 4460 if (!array) 4461 return; 4462 SM_I(sbi)->curseg_array = NULL; 4463 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4464 kvfree(array[i].sum_blk); 4465 kvfree(array[i].journal); 4466 } 4467 kvfree(array); 4468 } 4469 4470 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4471 { 4472 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4473 if (!free_i) 4474 return; 4475 SM_I(sbi)->free_info = NULL; 4476 kvfree(free_i->free_segmap); 4477 kvfree(free_i->free_secmap); 4478 kvfree(free_i); 4479 } 4480 4481 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4482 { 4483 struct sit_info *sit_i = SIT_I(sbi); 4484 unsigned int start; 4485 4486 if (!sit_i) 4487 return; 4488 4489 if (sit_i->sentries) { 4490 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4491 kvfree(sit_i->sentries[start].cur_valid_map); 4492 #ifdef CONFIG_F2FS_CHECK_FS 4493 kvfree(sit_i->sentries[start].cur_valid_map_mir); 4494 #endif 4495 kvfree(sit_i->sentries[start].ckpt_valid_map); 4496 kvfree(sit_i->sentries[start].discard_map); 4497 } 4498 } 4499 kvfree(sit_i->tmp_map); 4500 4501 kvfree(sit_i->sentries); 4502 kvfree(sit_i->sec_entries); 4503 kvfree(sit_i->dirty_sentries_bitmap); 4504 4505 SM_I(sbi)->sit_info = NULL; 4506 kvfree(sit_i->sit_bitmap); 4507 #ifdef CONFIG_F2FS_CHECK_FS 4508 kvfree(sit_i->sit_bitmap_mir); 4509 #endif 4510 kvfree(sit_i); 4511 } 4512 4513 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4514 { 4515 struct f2fs_sm_info *sm_info = SM_I(sbi); 4516 4517 if (!sm_info) 4518 return; 4519 f2fs_destroy_flush_cmd_control(sbi, true); 4520 destroy_discard_cmd_control(sbi); 4521 destroy_dirty_segmap(sbi); 4522 destroy_curseg(sbi); 4523 destroy_free_segmap(sbi); 4524 destroy_sit_info(sbi); 4525 sbi->sm_info = NULL; 4526 kvfree(sm_info); 4527 } 4528 4529 int __init f2fs_create_segment_manager_caches(void) 4530 { 4531 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4532 sizeof(struct discard_entry)); 4533 if (!discard_entry_slab) 4534 goto fail; 4535 4536 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4537 sizeof(struct discard_cmd)); 4538 if (!discard_cmd_slab) 4539 goto destroy_discard_entry; 4540 4541 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4542 sizeof(struct sit_entry_set)); 4543 if (!sit_entry_set_slab) 4544 goto destroy_discard_cmd; 4545 4546 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4547 sizeof(struct inmem_pages)); 4548 if (!inmem_entry_slab) 4549 goto destroy_sit_entry_set; 4550 return 0; 4551 4552 destroy_sit_entry_set: 4553 kmem_cache_destroy(sit_entry_set_slab); 4554 destroy_discard_cmd: 4555 kmem_cache_destroy(discard_cmd_slab); 4556 destroy_discard_entry: 4557 kmem_cache_destroy(discard_entry_slab); 4558 fail: 4559 return -ENOMEM; 4560 } 4561 4562 void f2fs_destroy_segment_manager_caches(void) 4563 { 4564 kmem_cache_destroy(sit_entry_set_slab); 4565 kmem_cache_destroy(discard_cmd_slab); 4566 kmem_cache_destroy(discard_entry_slab); 4567 kmem_cache_destroy(inmem_entry_slab); 4568 } 4569