xref: /openbmc/linux/fs/f2fs/segment.c (revision dcbb4c10e6d9693cc9d6fa493b4d130b66a60c7d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174 
175 	if (test_opt(sbi, LFS))
176 		return false;
177 	if (sbi->gc_mode == GC_URGENT)
178 		return true;
179 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 		return true;
181 
182 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185 
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 	struct f2fs_inode_info *fi = F2FS_I(inode);
190 	struct inmem_pages *new;
191 
192 	f2fs_trace_pid(page);
193 
194 	f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195 
196 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
197 
198 	/* add atomic page indices to the list */
199 	new->page = page;
200 	INIT_LIST_HEAD(&new->list);
201 
202 	/* increase reference count with clean state */
203 	mutex_lock(&fi->inmem_lock);
204 	get_page(page);
205 	list_add_tail(&new->list, &fi->inmem_pages);
206 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
207 	if (list_empty(&fi->inmem_ilist))
208 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
209 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
210 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
211 	mutex_unlock(&fi->inmem_lock);
212 
213 	trace_f2fs_register_inmem_page(page, INMEM);
214 }
215 
216 static int __revoke_inmem_pages(struct inode *inode,
217 				struct list_head *head, bool drop, bool recover,
218 				bool trylock)
219 {
220 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 	struct inmem_pages *cur, *tmp;
222 	int err = 0;
223 
224 	list_for_each_entry_safe(cur, tmp, head, list) {
225 		struct page *page = cur->page;
226 
227 		if (drop)
228 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229 
230 		if (trylock) {
231 			/*
232 			 * to avoid deadlock in between page lock and
233 			 * inmem_lock.
234 			 */
235 			if (!trylock_page(page))
236 				continue;
237 		} else {
238 			lock_page(page);
239 		}
240 
241 		f2fs_wait_on_page_writeback(page, DATA, true, true);
242 
243 		if (recover) {
244 			struct dnode_of_data dn;
245 			struct node_info ni;
246 
247 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
248 retry:
249 			set_new_dnode(&dn, inode, NULL, NULL, 0);
250 			err = f2fs_get_dnode_of_data(&dn, page->index,
251 								LOOKUP_NODE);
252 			if (err) {
253 				if (err == -ENOMEM) {
254 					congestion_wait(BLK_RW_ASYNC, HZ/50);
255 					cond_resched();
256 					goto retry;
257 				}
258 				err = -EAGAIN;
259 				goto next;
260 			}
261 
262 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
263 			if (err) {
264 				f2fs_put_dnode(&dn);
265 				return err;
266 			}
267 
268 			if (cur->old_addr == NEW_ADDR) {
269 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
270 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
271 			} else
272 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
273 					cur->old_addr, ni.version, true, true);
274 			f2fs_put_dnode(&dn);
275 		}
276 next:
277 		/* we don't need to invalidate this in the sccessful status */
278 		if (drop || recover) {
279 			ClearPageUptodate(page);
280 			clear_cold_data(page);
281 		}
282 		f2fs_clear_page_private(page);
283 		f2fs_put_page(page, 1);
284 
285 		list_del(&cur->list);
286 		kmem_cache_free(inmem_entry_slab, cur);
287 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
288 	}
289 	return err;
290 }
291 
292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
293 {
294 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
295 	struct inode *inode;
296 	struct f2fs_inode_info *fi;
297 next:
298 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
299 	if (list_empty(head)) {
300 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
301 		return;
302 	}
303 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
304 	inode = igrab(&fi->vfs_inode);
305 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
306 
307 	if (inode) {
308 		if (gc_failure) {
309 			if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
310 				goto drop;
311 			goto skip;
312 		}
313 drop:
314 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
315 		f2fs_drop_inmem_pages(inode);
316 		iput(inode);
317 	}
318 skip:
319 	congestion_wait(BLK_RW_ASYNC, HZ/50);
320 	cond_resched();
321 	goto next;
322 }
323 
324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327 	struct f2fs_inode_info *fi = F2FS_I(inode);
328 
329 	while (!list_empty(&fi->inmem_pages)) {
330 		mutex_lock(&fi->inmem_lock);
331 		__revoke_inmem_pages(inode, &fi->inmem_pages,
332 						true, false, true);
333 
334 		if (list_empty(&fi->inmem_pages)) {
335 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 			if (!list_empty(&fi->inmem_ilist))
337 				list_del_init(&fi->inmem_ilist);
338 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
339 		}
340 		mutex_unlock(&fi->inmem_lock);
341 	}
342 
343 	clear_inode_flag(inode, FI_ATOMIC_FILE);
344 	fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
345 	stat_dec_atomic_write(inode);
346 }
347 
348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
349 {
350 	struct f2fs_inode_info *fi = F2FS_I(inode);
351 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
352 	struct list_head *head = &fi->inmem_pages;
353 	struct inmem_pages *cur = NULL;
354 
355 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
356 
357 	mutex_lock(&fi->inmem_lock);
358 	list_for_each_entry(cur, head, list) {
359 		if (cur->page == page)
360 			break;
361 	}
362 
363 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
364 	list_del(&cur->list);
365 	mutex_unlock(&fi->inmem_lock);
366 
367 	dec_page_count(sbi, F2FS_INMEM_PAGES);
368 	kmem_cache_free(inmem_entry_slab, cur);
369 
370 	ClearPageUptodate(page);
371 	f2fs_clear_page_private(page);
372 	f2fs_put_page(page, 0);
373 
374 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
375 }
376 
377 static int __f2fs_commit_inmem_pages(struct inode *inode)
378 {
379 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380 	struct f2fs_inode_info *fi = F2FS_I(inode);
381 	struct inmem_pages *cur, *tmp;
382 	struct f2fs_io_info fio = {
383 		.sbi = sbi,
384 		.ino = inode->i_ino,
385 		.type = DATA,
386 		.op = REQ_OP_WRITE,
387 		.op_flags = REQ_SYNC | REQ_PRIO,
388 		.io_type = FS_DATA_IO,
389 	};
390 	struct list_head revoke_list;
391 	bool submit_bio = false;
392 	int err = 0;
393 
394 	INIT_LIST_HEAD(&revoke_list);
395 
396 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
397 		struct page *page = cur->page;
398 
399 		lock_page(page);
400 		if (page->mapping == inode->i_mapping) {
401 			trace_f2fs_commit_inmem_page(page, INMEM);
402 
403 			f2fs_wait_on_page_writeback(page, DATA, true, true);
404 
405 			set_page_dirty(page);
406 			if (clear_page_dirty_for_io(page)) {
407 				inode_dec_dirty_pages(inode);
408 				f2fs_remove_dirty_inode(inode);
409 			}
410 retry:
411 			fio.page = page;
412 			fio.old_blkaddr = NULL_ADDR;
413 			fio.encrypted_page = NULL;
414 			fio.need_lock = LOCK_DONE;
415 			err = f2fs_do_write_data_page(&fio);
416 			if (err) {
417 				if (err == -ENOMEM) {
418 					congestion_wait(BLK_RW_ASYNC, HZ/50);
419 					cond_resched();
420 					goto retry;
421 				}
422 				unlock_page(page);
423 				break;
424 			}
425 			/* record old blkaddr for revoking */
426 			cur->old_addr = fio.old_blkaddr;
427 			submit_bio = true;
428 		}
429 		unlock_page(page);
430 		list_move_tail(&cur->list, &revoke_list);
431 	}
432 
433 	if (submit_bio)
434 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
435 
436 	if (err) {
437 		/*
438 		 * try to revoke all committed pages, but still we could fail
439 		 * due to no memory or other reason, if that happened, EAGAIN
440 		 * will be returned, which means in such case, transaction is
441 		 * already not integrity, caller should use journal to do the
442 		 * recovery or rewrite & commit last transaction. For other
443 		 * error number, revoking was done by filesystem itself.
444 		 */
445 		err = __revoke_inmem_pages(inode, &revoke_list,
446 						false, true, false);
447 
448 		/* drop all uncommitted pages */
449 		__revoke_inmem_pages(inode, &fi->inmem_pages,
450 						true, false, false);
451 	} else {
452 		__revoke_inmem_pages(inode, &revoke_list,
453 						false, false, false);
454 	}
455 
456 	return err;
457 }
458 
459 int f2fs_commit_inmem_pages(struct inode *inode)
460 {
461 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
462 	struct f2fs_inode_info *fi = F2FS_I(inode);
463 	int err;
464 
465 	f2fs_balance_fs(sbi, true);
466 
467 	down_write(&fi->i_gc_rwsem[WRITE]);
468 
469 	f2fs_lock_op(sbi);
470 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
471 
472 	mutex_lock(&fi->inmem_lock);
473 	err = __f2fs_commit_inmem_pages(inode);
474 
475 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
476 	if (!list_empty(&fi->inmem_ilist))
477 		list_del_init(&fi->inmem_ilist);
478 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
479 	mutex_unlock(&fi->inmem_lock);
480 
481 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
482 
483 	f2fs_unlock_op(sbi);
484 	up_write(&fi->i_gc_rwsem[WRITE]);
485 
486 	return err;
487 }
488 
489 /*
490  * This function balances dirty node and dentry pages.
491  * In addition, it controls garbage collection.
492  */
493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
494 {
495 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
496 		f2fs_show_injection_info(FAULT_CHECKPOINT);
497 		f2fs_stop_checkpoint(sbi, false);
498 	}
499 
500 	/* balance_fs_bg is able to be pending */
501 	if (need && excess_cached_nats(sbi))
502 		f2fs_balance_fs_bg(sbi);
503 
504 	if (f2fs_is_checkpoint_ready(sbi))
505 		return;
506 
507 	/*
508 	 * We should do GC or end up with checkpoint, if there are so many dirty
509 	 * dir/node pages without enough free segments.
510 	 */
511 	if (has_not_enough_free_secs(sbi, 0, 0)) {
512 		mutex_lock(&sbi->gc_mutex);
513 		f2fs_gc(sbi, false, false, NULL_SEGNO);
514 	}
515 }
516 
517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
518 {
519 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
520 		return;
521 
522 	/* try to shrink extent cache when there is no enough memory */
523 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
524 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
525 
526 	/* check the # of cached NAT entries */
527 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
528 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
529 
530 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
531 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
532 	else
533 		f2fs_build_free_nids(sbi, false, false);
534 
535 	if (!is_idle(sbi, REQ_TIME) &&
536 		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
537 		return;
538 
539 	/* checkpoint is the only way to shrink partial cached entries */
540 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
541 			!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
542 			excess_prefree_segs(sbi) ||
543 			excess_dirty_nats(sbi) ||
544 			excess_dirty_nodes(sbi) ||
545 			f2fs_time_over(sbi, CP_TIME)) {
546 		if (test_opt(sbi, DATA_FLUSH)) {
547 			struct blk_plug plug;
548 
549 			mutex_lock(&sbi->flush_lock);
550 
551 			blk_start_plug(&plug);
552 			f2fs_sync_dirty_inodes(sbi, FILE_INODE);
553 			blk_finish_plug(&plug);
554 
555 			mutex_unlock(&sbi->flush_lock);
556 		}
557 		f2fs_sync_fs(sbi->sb, true);
558 		stat_inc_bg_cp_count(sbi->stat_info);
559 	}
560 }
561 
562 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
563 				struct block_device *bdev)
564 {
565 	struct bio *bio;
566 	int ret;
567 
568 	bio = f2fs_bio_alloc(sbi, 0, false);
569 	if (!bio)
570 		return -ENOMEM;
571 
572 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
573 	bio_set_dev(bio, bdev);
574 	ret = submit_bio_wait(bio);
575 	bio_put(bio);
576 
577 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
578 				test_opt(sbi, FLUSH_MERGE), ret);
579 	return ret;
580 }
581 
582 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
583 {
584 	int ret = 0;
585 	int i;
586 
587 	if (!f2fs_is_multi_device(sbi))
588 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
589 
590 	for (i = 0; i < sbi->s_ndevs; i++) {
591 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
592 			continue;
593 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
594 		if (ret)
595 			break;
596 	}
597 	return ret;
598 }
599 
600 static int issue_flush_thread(void *data)
601 {
602 	struct f2fs_sb_info *sbi = data;
603 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
604 	wait_queue_head_t *q = &fcc->flush_wait_queue;
605 repeat:
606 	if (kthread_should_stop())
607 		return 0;
608 
609 	sb_start_intwrite(sbi->sb);
610 
611 	if (!llist_empty(&fcc->issue_list)) {
612 		struct flush_cmd *cmd, *next;
613 		int ret;
614 
615 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
616 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
617 
618 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
619 
620 		ret = submit_flush_wait(sbi, cmd->ino);
621 		atomic_inc(&fcc->issued_flush);
622 
623 		llist_for_each_entry_safe(cmd, next,
624 					  fcc->dispatch_list, llnode) {
625 			cmd->ret = ret;
626 			complete(&cmd->wait);
627 		}
628 		fcc->dispatch_list = NULL;
629 	}
630 
631 	sb_end_intwrite(sbi->sb);
632 
633 	wait_event_interruptible(*q,
634 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
635 	goto repeat;
636 }
637 
638 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
639 {
640 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
641 	struct flush_cmd cmd;
642 	int ret;
643 
644 	if (test_opt(sbi, NOBARRIER))
645 		return 0;
646 
647 	if (!test_opt(sbi, FLUSH_MERGE)) {
648 		atomic_inc(&fcc->queued_flush);
649 		ret = submit_flush_wait(sbi, ino);
650 		atomic_dec(&fcc->queued_flush);
651 		atomic_inc(&fcc->issued_flush);
652 		return ret;
653 	}
654 
655 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
656 	    f2fs_is_multi_device(sbi)) {
657 		ret = submit_flush_wait(sbi, ino);
658 		atomic_dec(&fcc->queued_flush);
659 
660 		atomic_inc(&fcc->issued_flush);
661 		return ret;
662 	}
663 
664 	cmd.ino = ino;
665 	init_completion(&cmd.wait);
666 
667 	llist_add(&cmd.llnode, &fcc->issue_list);
668 
669 	/* update issue_list before we wake up issue_flush thread */
670 	smp_mb();
671 
672 	if (waitqueue_active(&fcc->flush_wait_queue))
673 		wake_up(&fcc->flush_wait_queue);
674 
675 	if (fcc->f2fs_issue_flush) {
676 		wait_for_completion(&cmd.wait);
677 		atomic_dec(&fcc->queued_flush);
678 	} else {
679 		struct llist_node *list;
680 
681 		list = llist_del_all(&fcc->issue_list);
682 		if (!list) {
683 			wait_for_completion(&cmd.wait);
684 			atomic_dec(&fcc->queued_flush);
685 		} else {
686 			struct flush_cmd *tmp, *next;
687 
688 			ret = submit_flush_wait(sbi, ino);
689 
690 			llist_for_each_entry_safe(tmp, next, list, llnode) {
691 				if (tmp == &cmd) {
692 					cmd.ret = ret;
693 					atomic_dec(&fcc->queued_flush);
694 					continue;
695 				}
696 				tmp->ret = ret;
697 				complete(&tmp->wait);
698 			}
699 		}
700 	}
701 
702 	return cmd.ret;
703 }
704 
705 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
706 {
707 	dev_t dev = sbi->sb->s_bdev->bd_dev;
708 	struct flush_cmd_control *fcc;
709 	int err = 0;
710 
711 	if (SM_I(sbi)->fcc_info) {
712 		fcc = SM_I(sbi)->fcc_info;
713 		if (fcc->f2fs_issue_flush)
714 			return err;
715 		goto init_thread;
716 	}
717 
718 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
719 	if (!fcc)
720 		return -ENOMEM;
721 	atomic_set(&fcc->issued_flush, 0);
722 	atomic_set(&fcc->queued_flush, 0);
723 	init_waitqueue_head(&fcc->flush_wait_queue);
724 	init_llist_head(&fcc->issue_list);
725 	SM_I(sbi)->fcc_info = fcc;
726 	if (!test_opt(sbi, FLUSH_MERGE))
727 		return err;
728 
729 init_thread:
730 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
731 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
732 	if (IS_ERR(fcc->f2fs_issue_flush)) {
733 		err = PTR_ERR(fcc->f2fs_issue_flush);
734 		kvfree(fcc);
735 		SM_I(sbi)->fcc_info = NULL;
736 		return err;
737 	}
738 
739 	return err;
740 }
741 
742 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
743 {
744 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
745 
746 	if (fcc && fcc->f2fs_issue_flush) {
747 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
748 
749 		fcc->f2fs_issue_flush = NULL;
750 		kthread_stop(flush_thread);
751 	}
752 	if (free) {
753 		kvfree(fcc);
754 		SM_I(sbi)->fcc_info = NULL;
755 	}
756 }
757 
758 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
759 {
760 	int ret = 0, i;
761 
762 	if (!f2fs_is_multi_device(sbi))
763 		return 0;
764 
765 	for (i = 1; i < sbi->s_ndevs; i++) {
766 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
767 			continue;
768 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
769 		if (ret)
770 			break;
771 
772 		spin_lock(&sbi->dev_lock);
773 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
774 		spin_unlock(&sbi->dev_lock);
775 	}
776 
777 	return ret;
778 }
779 
780 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781 		enum dirty_type dirty_type)
782 {
783 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784 
785 	/* need not be added */
786 	if (IS_CURSEG(sbi, segno))
787 		return;
788 
789 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
790 		dirty_i->nr_dirty[dirty_type]++;
791 
792 	if (dirty_type == DIRTY) {
793 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
794 		enum dirty_type t = sentry->type;
795 
796 		if (unlikely(t >= DIRTY)) {
797 			f2fs_bug_on(sbi, 1);
798 			return;
799 		}
800 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
801 			dirty_i->nr_dirty[t]++;
802 	}
803 }
804 
805 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
806 		enum dirty_type dirty_type)
807 {
808 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809 
810 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
811 		dirty_i->nr_dirty[dirty_type]--;
812 
813 	if (dirty_type == DIRTY) {
814 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
815 		enum dirty_type t = sentry->type;
816 
817 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
818 			dirty_i->nr_dirty[t]--;
819 
820 		if (get_valid_blocks(sbi, segno, true) == 0)
821 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
822 						dirty_i->victim_secmap);
823 	}
824 }
825 
826 /*
827  * Should not occur error such as -ENOMEM.
828  * Adding dirty entry into seglist is not critical operation.
829  * If a given segment is one of current working segments, it won't be added.
830  */
831 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
832 {
833 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 	unsigned short valid_blocks, ckpt_valid_blocks;
835 
836 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
837 		return;
838 
839 	mutex_lock(&dirty_i->seglist_lock);
840 
841 	valid_blocks = get_valid_blocks(sbi, segno, false);
842 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
843 
844 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
845 				ckpt_valid_blocks == sbi->blocks_per_seg)) {
846 		__locate_dirty_segment(sbi, segno, PRE);
847 		__remove_dirty_segment(sbi, segno, DIRTY);
848 	} else if (valid_blocks < sbi->blocks_per_seg) {
849 		__locate_dirty_segment(sbi, segno, DIRTY);
850 	} else {
851 		/* Recovery routine with SSR needs this */
852 		__remove_dirty_segment(sbi, segno, DIRTY);
853 	}
854 
855 	mutex_unlock(&dirty_i->seglist_lock);
856 }
857 
858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
860 {
861 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862 	unsigned int segno;
863 
864 	mutex_lock(&dirty_i->seglist_lock);
865 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866 		if (get_valid_blocks(sbi, segno, false))
867 			continue;
868 		if (IS_CURSEG(sbi, segno))
869 			continue;
870 		__locate_dirty_segment(sbi, segno, PRE);
871 		__remove_dirty_segment(sbi, segno, DIRTY);
872 	}
873 	mutex_unlock(&dirty_i->seglist_lock);
874 }
875 
876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
877 {
878 	int ovp_hole_segs =
879 		(overprovision_segments(sbi) - reserved_segments(sbi));
880 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
881 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882 	block_t holes[2] = {0, 0};	/* DATA and NODE */
883 	block_t unusable;
884 	struct seg_entry *se;
885 	unsigned int segno;
886 
887 	mutex_lock(&dirty_i->seglist_lock);
888 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889 		se = get_seg_entry(sbi, segno);
890 		if (IS_NODESEG(se->type))
891 			holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
892 		else
893 			holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
894 	}
895 	mutex_unlock(&dirty_i->seglist_lock);
896 
897 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
898 	if (unusable > ovp_holes)
899 		return unusable - ovp_holes;
900 	return 0;
901 }
902 
903 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
904 {
905 	int ovp_hole_segs =
906 		(overprovision_segments(sbi) - reserved_segments(sbi));
907 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
908 		return -EAGAIN;
909 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
910 		dirty_segments(sbi) > ovp_hole_segs)
911 		return -EAGAIN;
912 	return 0;
913 }
914 
915 /* This is only used by SBI_CP_DISABLED */
916 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
917 {
918 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
919 	unsigned int segno = 0;
920 
921 	mutex_lock(&dirty_i->seglist_lock);
922 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
923 		if (get_valid_blocks(sbi, segno, false))
924 			continue;
925 		if (get_ckpt_valid_blocks(sbi, segno))
926 			continue;
927 		mutex_unlock(&dirty_i->seglist_lock);
928 		return segno;
929 	}
930 	mutex_unlock(&dirty_i->seglist_lock);
931 	return NULL_SEGNO;
932 }
933 
934 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
935 		struct block_device *bdev, block_t lstart,
936 		block_t start, block_t len)
937 {
938 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
939 	struct list_head *pend_list;
940 	struct discard_cmd *dc;
941 
942 	f2fs_bug_on(sbi, !len);
943 
944 	pend_list = &dcc->pend_list[plist_idx(len)];
945 
946 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
947 	INIT_LIST_HEAD(&dc->list);
948 	dc->bdev = bdev;
949 	dc->lstart = lstart;
950 	dc->start = start;
951 	dc->len = len;
952 	dc->ref = 0;
953 	dc->state = D_PREP;
954 	dc->queued = 0;
955 	dc->error = 0;
956 	init_completion(&dc->wait);
957 	list_add_tail(&dc->list, pend_list);
958 	spin_lock_init(&dc->lock);
959 	dc->bio_ref = 0;
960 	atomic_inc(&dcc->discard_cmd_cnt);
961 	dcc->undiscard_blks += len;
962 
963 	return dc;
964 }
965 
966 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
967 				struct block_device *bdev, block_t lstart,
968 				block_t start, block_t len,
969 				struct rb_node *parent, struct rb_node **p,
970 				bool leftmost)
971 {
972 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
973 	struct discard_cmd *dc;
974 
975 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
976 
977 	rb_link_node(&dc->rb_node, parent, p);
978 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
979 
980 	return dc;
981 }
982 
983 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
984 							struct discard_cmd *dc)
985 {
986 	if (dc->state == D_DONE)
987 		atomic_sub(dc->queued, &dcc->queued_discard);
988 
989 	list_del(&dc->list);
990 	rb_erase_cached(&dc->rb_node, &dcc->root);
991 	dcc->undiscard_blks -= dc->len;
992 
993 	kmem_cache_free(discard_cmd_slab, dc);
994 
995 	atomic_dec(&dcc->discard_cmd_cnt);
996 }
997 
998 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
999 							struct discard_cmd *dc)
1000 {
1001 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1002 	unsigned long flags;
1003 
1004 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1005 
1006 	spin_lock_irqsave(&dc->lock, flags);
1007 	if (dc->bio_ref) {
1008 		spin_unlock_irqrestore(&dc->lock, flags);
1009 		return;
1010 	}
1011 	spin_unlock_irqrestore(&dc->lock, flags);
1012 
1013 	f2fs_bug_on(sbi, dc->ref);
1014 
1015 	if (dc->error == -EOPNOTSUPP)
1016 		dc->error = 0;
1017 
1018 	if (dc->error)
1019 		printk_ratelimited(
1020 			"%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1021 			KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1022 	__detach_discard_cmd(dcc, dc);
1023 }
1024 
1025 static void f2fs_submit_discard_endio(struct bio *bio)
1026 {
1027 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1028 	unsigned long flags;
1029 
1030 	dc->error = blk_status_to_errno(bio->bi_status);
1031 
1032 	spin_lock_irqsave(&dc->lock, flags);
1033 	dc->bio_ref--;
1034 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1035 		dc->state = D_DONE;
1036 		complete_all(&dc->wait);
1037 	}
1038 	spin_unlock_irqrestore(&dc->lock, flags);
1039 	bio_put(bio);
1040 }
1041 
1042 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1043 				block_t start, block_t end)
1044 {
1045 #ifdef CONFIG_F2FS_CHECK_FS
1046 	struct seg_entry *sentry;
1047 	unsigned int segno;
1048 	block_t blk = start;
1049 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1050 	unsigned long *map;
1051 
1052 	while (blk < end) {
1053 		segno = GET_SEGNO(sbi, blk);
1054 		sentry = get_seg_entry(sbi, segno);
1055 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1056 
1057 		if (end < START_BLOCK(sbi, segno + 1))
1058 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1059 		else
1060 			size = max_blocks;
1061 		map = (unsigned long *)(sentry->cur_valid_map);
1062 		offset = __find_rev_next_bit(map, size, offset);
1063 		f2fs_bug_on(sbi, offset != size);
1064 		blk = START_BLOCK(sbi, segno + 1);
1065 	}
1066 #endif
1067 }
1068 
1069 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1070 				struct discard_policy *dpolicy,
1071 				int discard_type, unsigned int granularity)
1072 {
1073 	/* common policy */
1074 	dpolicy->type = discard_type;
1075 	dpolicy->sync = true;
1076 	dpolicy->ordered = false;
1077 	dpolicy->granularity = granularity;
1078 
1079 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1080 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1081 	dpolicy->timeout = 0;
1082 
1083 	if (discard_type == DPOLICY_BG) {
1084 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1085 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1086 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1087 		dpolicy->io_aware = true;
1088 		dpolicy->sync = false;
1089 		dpolicy->ordered = true;
1090 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1091 			dpolicy->granularity = 1;
1092 			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1093 		}
1094 	} else if (discard_type == DPOLICY_FORCE) {
1095 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1096 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1097 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1098 		dpolicy->io_aware = false;
1099 	} else if (discard_type == DPOLICY_FSTRIM) {
1100 		dpolicy->io_aware = false;
1101 	} else if (discard_type == DPOLICY_UMOUNT) {
1102 		dpolicy->max_requests = UINT_MAX;
1103 		dpolicy->io_aware = false;
1104 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1105 		dpolicy->granularity = 1;
1106 	}
1107 }
1108 
1109 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1110 				struct block_device *bdev, block_t lstart,
1111 				block_t start, block_t len);
1112 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1113 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1114 						struct discard_policy *dpolicy,
1115 						struct discard_cmd *dc,
1116 						unsigned int *issued)
1117 {
1118 	struct block_device *bdev = dc->bdev;
1119 	struct request_queue *q = bdev_get_queue(bdev);
1120 	unsigned int max_discard_blocks =
1121 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1122 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1123 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1124 					&(dcc->fstrim_list) : &(dcc->wait_list);
1125 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1126 	block_t lstart, start, len, total_len;
1127 	int err = 0;
1128 
1129 	if (dc->state != D_PREP)
1130 		return 0;
1131 
1132 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1133 		return 0;
1134 
1135 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1136 
1137 	lstart = dc->lstart;
1138 	start = dc->start;
1139 	len = dc->len;
1140 	total_len = len;
1141 
1142 	dc->len = 0;
1143 
1144 	while (total_len && *issued < dpolicy->max_requests && !err) {
1145 		struct bio *bio = NULL;
1146 		unsigned long flags;
1147 		bool last = true;
1148 
1149 		if (len > max_discard_blocks) {
1150 			len = max_discard_blocks;
1151 			last = false;
1152 		}
1153 
1154 		(*issued)++;
1155 		if (*issued == dpolicy->max_requests)
1156 			last = true;
1157 
1158 		dc->len += len;
1159 
1160 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1161 			f2fs_show_injection_info(FAULT_DISCARD);
1162 			err = -EIO;
1163 			goto submit;
1164 		}
1165 		err = __blkdev_issue_discard(bdev,
1166 					SECTOR_FROM_BLOCK(start),
1167 					SECTOR_FROM_BLOCK(len),
1168 					GFP_NOFS, 0, &bio);
1169 submit:
1170 		if (err) {
1171 			spin_lock_irqsave(&dc->lock, flags);
1172 			if (dc->state == D_PARTIAL)
1173 				dc->state = D_SUBMIT;
1174 			spin_unlock_irqrestore(&dc->lock, flags);
1175 
1176 			break;
1177 		}
1178 
1179 		f2fs_bug_on(sbi, !bio);
1180 
1181 		/*
1182 		 * should keep before submission to avoid D_DONE
1183 		 * right away
1184 		 */
1185 		spin_lock_irqsave(&dc->lock, flags);
1186 		if (last)
1187 			dc->state = D_SUBMIT;
1188 		else
1189 			dc->state = D_PARTIAL;
1190 		dc->bio_ref++;
1191 		spin_unlock_irqrestore(&dc->lock, flags);
1192 
1193 		atomic_inc(&dcc->queued_discard);
1194 		dc->queued++;
1195 		list_move_tail(&dc->list, wait_list);
1196 
1197 		/* sanity check on discard range */
1198 		__check_sit_bitmap(sbi, lstart, lstart + len);
1199 
1200 		bio->bi_private = dc;
1201 		bio->bi_end_io = f2fs_submit_discard_endio;
1202 		bio->bi_opf |= flag;
1203 		submit_bio(bio);
1204 
1205 		atomic_inc(&dcc->issued_discard);
1206 
1207 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1208 
1209 		lstart += len;
1210 		start += len;
1211 		total_len -= len;
1212 		len = total_len;
1213 	}
1214 
1215 	if (!err && len)
1216 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1217 	return err;
1218 }
1219 
1220 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1221 				struct block_device *bdev, block_t lstart,
1222 				block_t start, block_t len,
1223 				struct rb_node **insert_p,
1224 				struct rb_node *insert_parent)
1225 {
1226 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1227 	struct rb_node **p;
1228 	struct rb_node *parent = NULL;
1229 	struct discard_cmd *dc = NULL;
1230 	bool leftmost = true;
1231 
1232 	if (insert_p && insert_parent) {
1233 		parent = insert_parent;
1234 		p = insert_p;
1235 		goto do_insert;
1236 	}
1237 
1238 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1239 							lstart, &leftmost);
1240 do_insert:
1241 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1242 								p, leftmost);
1243 	if (!dc)
1244 		return NULL;
1245 
1246 	return dc;
1247 }
1248 
1249 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1250 						struct discard_cmd *dc)
1251 {
1252 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1253 }
1254 
1255 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1256 				struct discard_cmd *dc, block_t blkaddr)
1257 {
1258 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1259 	struct discard_info di = dc->di;
1260 	bool modified = false;
1261 
1262 	if (dc->state == D_DONE || dc->len == 1) {
1263 		__remove_discard_cmd(sbi, dc);
1264 		return;
1265 	}
1266 
1267 	dcc->undiscard_blks -= di.len;
1268 
1269 	if (blkaddr > di.lstart) {
1270 		dc->len = blkaddr - dc->lstart;
1271 		dcc->undiscard_blks += dc->len;
1272 		__relocate_discard_cmd(dcc, dc);
1273 		modified = true;
1274 	}
1275 
1276 	if (blkaddr < di.lstart + di.len - 1) {
1277 		if (modified) {
1278 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1279 					di.start + blkaddr + 1 - di.lstart,
1280 					di.lstart + di.len - 1 - blkaddr,
1281 					NULL, NULL);
1282 		} else {
1283 			dc->lstart++;
1284 			dc->len--;
1285 			dc->start++;
1286 			dcc->undiscard_blks += dc->len;
1287 			__relocate_discard_cmd(dcc, dc);
1288 		}
1289 	}
1290 }
1291 
1292 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1293 				struct block_device *bdev, block_t lstart,
1294 				block_t start, block_t len)
1295 {
1296 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1297 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1298 	struct discard_cmd *dc;
1299 	struct discard_info di = {0};
1300 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1301 	struct request_queue *q = bdev_get_queue(bdev);
1302 	unsigned int max_discard_blocks =
1303 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1304 	block_t end = lstart + len;
1305 
1306 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1307 					NULL, lstart,
1308 					(struct rb_entry **)&prev_dc,
1309 					(struct rb_entry **)&next_dc,
1310 					&insert_p, &insert_parent, true, NULL);
1311 	if (dc)
1312 		prev_dc = dc;
1313 
1314 	if (!prev_dc) {
1315 		di.lstart = lstart;
1316 		di.len = next_dc ? next_dc->lstart - lstart : len;
1317 		di.len = min(di.len, len);
1318 		di.start = start;
1319 	}
1320 
1321 	while (1) {
1322 		struct rb_node *node;
1323 		bool merged = false;
1324 		struct discard_cmd *tdc = NULL;
1325 
1326 		if (prev_dc) {
1327 			di.lstart = prev_dc->lstart + prev_dc->len;
1328 			if (di.lstart < lstart)
1329 				di.lstart = lstart;
1330 			if (di.lstart >= end)
1331 				break;
1332 
1333 			if (!next_dc || next_dc->lstart > end)
1334 				di.len = end - di.lstart;
1335 			else
1336 				di.len = next_dc->lstart - di.lstart;
1337 			di.start = start + di.lstart - lstart;
1338 		}
1339 
1340 		if (!di.len)
1341 			goto next;
1342 
1343 		if (prev_dc && prev_dc->state == D_PREP &&
1344 			prev_dc->bdev == bdev &&
1345 			__is_discard_back_mergeable(&di, &prev_dc->di,
1346 							max_discard_blocks)) {
1347 			prev_dc->di.len += di.len;
1348 			dcc->undiscard_blks += di.len;
1349 			__relocate_discard_cmd(dcc, prev_dc);
1350 			di = prev_dc->di;
1351 			tdc = prev_dc;
1352 			merged = true;
1353 		}
1354 
1355 		if (next_dc && next_dc->state == D_PREP &&
1356 			next_dc->bdev == bdev &&
1357 			__is_discard_front_mergeable(&di, &next_dc->di,
1358 							max_discard_blocks)) {
1359 			next_dc->di.lstart = di.lstart;
1360 			next_dc->di.len += di.len;
1361 			next_dc->di.start = di.start;
1362 			dcc->undiscard_blks += di.len;
1363 			__relocate_discard_cmd(dcc, next_dc);
1364 			if (tdc)
1365 				__remove_discard_cmd(sbi, tdc);
1366 			merged = true;
1367 		}
1368 
1369 		if (!merged) {
1370 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1371 							di.len, NULL, NULL);
1372 		}
1373  next:
1374 		prev_dc = next_dc;
1375 		if (!prev_dc)
1376 			break;
1377 
1378 		node = rb_next(&prev_dc->rb_node);
1379 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1380 	}
1381 }
1382 
1383 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1384 		struct block_device *bdev, block_t blkstart, block_t blklen)
1385 {
1386 	block_t lblkstart = blkstart;
1387 
1388 	if (!f2fs_bdev_support_discard(bdev))
1389 		return 0;
1390 
1391 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1392 
1393 	if (f2fs_is_multi_device(sbi)) {
1394 		int devi = f2fs_target_device_index(sbi, blkstart);
1395 
1396 		blkstart -= FDEV(devi).start_blk;
1397 	}
1398 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1399 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1400 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1401 	return 0;
1402 }
1403 
1404 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1405 					struct discard_policy *dpolicy)
1406 {
1407 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1408 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1409 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1410 	struct discard_cmd *dc;
1411 	struct blk_plug plug;
1412 	unsigned int pos = dcc->next_pos;
1413 	unsigned int issued = 0;
1414 	bool io_interrupted = false;
1415 
1416 	mutex_lock(&dcc->cmd_lock);
1417 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1418 					NULL, pos,
1419 					(struct rb_entry **)&prev_dc,
1420 					(struct rb_entry **)&next_dc,
1421 					&insert_p, &insert_parent, true, NULL);
1422 	if (!dc)
1423 		dc = next_dc;
1424 
1425 	blk_start_plug(&plug);
1426 
1427 	while (dc) {
1428 		struct rb_node *node;
1429 		int err = 0;
1430 
1431 		if (dc->state != D_PREP)
1432 			goto next;
1433 
1434 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1435 			io_interrupted = true;
1436 			break;
1437 		}
1438 
1439 		dcc->next_pos = dc->lstart + dc->len;
1440 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1441 
1442 		if (issued >= dpolicy->max_requests)
1443 			break;
1444 next:
1445 		node = rb_next(&dc->rb_node);
1446 		if (err)
1447 			__remove_discard_cmd(sbi, dc);
1448 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1449 	}
1450 
1451 	blk_finish_plug(&plug);
1452 
1453 	if (!dc)
1454 		dcc->next_pos = 0;
1455 
1456 	mutex_unlock(&dcc->cmd_lock);
1457 
1458 	if (!issued && io_interrupted)
1459 		issued = -1;
1460 
1461 	return issued;
1462 }
1463 
1464 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1465 					struct discard_policy *dpolicy)
1466 {
1467 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1468 	struct list_head *pend_list;
1469 	struct discard_cmd *dc, *tmp;
1470 	struct blk_plug plug;
1471 	int i, issued = 0;
1472 	bool io_interrupted = false;
1473 
1474 	if (dpolicy->timeout != 0)
1475 		f2fs_update_time(sbi, dpolicy->timeout);
1476 
1477 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1478 		if (dpolicy->timeout != 0 &&
1479 				f2fs_time_over(sbi, dpolicy->timeout))
1480 			break;
1481 
1482 		if (i + 1 < dpolicy->granularity)
1483 			break;
1484 
1485 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1486 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1487 
1488 		pend_list = &dcc->pend_list[i];
1489 
1490 		mutex_lock(&dcc->cmd_lock);
1491 		if (list_empty(pend_list))
1492 			goto next;
1493 		if (unlikely(dcc->rbtree_check))
1494 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1495 								&dcc->root));
1496 		blk_start_plug(&plug);
1497 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1498 			f2fs_bug_on(sbi, dc->state != D_PREP);
1499 
1500 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1501 						!is_idle(sbi, DISCARD_TIME)) {
1502 				io_interrupted = true;
1503 				break;
1504 			}
1505 
1506 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1507 
1508 			if (issued >= dpolicy->max_requests)
1509 				break;
1510 		}
1511 		blk_finish_plug(&plug);
1512 next:
1513 		mutex_unlock(&dcc->cmd_lock);
1514 
1515 		if (issued >= dpolicy->max_requests || io_interrupted)
1516 			break;
1517 	}
1518 
1519 	if (!issued && io_interrupted)
1520 		issued = -1;
1521 
1522 	return issued;
1523 }
1524 
1525 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1526 {
1527 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1528 	struct list_head *pend_list;
1529 	struct discard_cmd *dc, *tmp;
1530 	int i;
1531 	bool dropped = false;
1532 
1533 	mutex_lock(&dcc->cmd_lock);
1534 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1535 		pend_list = &dcc->pend_list[i];
1536 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1537 			f2fs_bug_on(sbi, dc->state != D_PREP);
1538 			__remove_discard_cmd(sbi, dc);
1539 			dropped = true;
1540 		}
1541 	}
1542 	mutex_unlock(&dcc->cmd_lock);
1543 
1544 	return dropped;
1545 }
1546 
1547 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1548 {
1549 	__drop_discard_cmd(sbi);
1550 }
1551 
1552 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1553 							struct discard_cmd *dc)
1554 {
1555 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1556 	unsigned int len = 0;
1557 
1558 	wait_for_completion_io(&dc->wait);
1559 	mutex_lock(&dcc->cmd_lock);
1560 	f2fs_bug_on(sbi, dc->state != D_DONE);
1561 	dc->ref--;
1562 	if (!dc->ref) {
1563 		if (!dc->error)
1564 			len = dc->len;
1565 		__remove_discard_cmd(sbi, dc);
1566 	}
1567 	mutex_unlock(&dcc->cmd_lock);
1568 
1569 	return len;
1570 }
1571 
1572 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1573 						struct discard_policy *dpolicy,
1574 						block_t start, block_t end)
1575 {
1576 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1577 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1578 					&(dcc->fstrim_list) : &(dcc->wait_list);
1579 	struct discard_cmd *dc, *tmp;
1580 	bool need_wait;
1581 	unsigned int trimmed = 0;
1582 
1583 next:
1584 	need_wait = false;
1585 
1586 	mutex_lock(&dcc->cmd_lock);
1587 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1588 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1589 			continue;
1590 		if (dc->len < dpolicy->granularity)
1591 			continue;
1592 		if (dc->state == D_DONE && !dc->ref) {
1593 			wait_for_completion_io(&dc->wait);
1594 			if (!dc->error)
1595 				trimmed += dc->len;
1596 			__remove_discard_cmd(sbi, dc);
1597 		} else {
1598 			dc->ref++;
1599 			need_wait = true;
1600 			break;
1601 		}
1602 	}
1603 	mutex_unlock(&dcc->cmd_lock);
1604 
1605 	if (need_wait) {
1606 		trimmed += __wait_one_discard_bio(sbi, dc);
1607 		goto next;
1608 	}
1609 
1610 	return trimmed;
1611 }
1612 
1613 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1614 						struct discard_policy *dpolicy)
1615 {
1616 	struct discard_policy dp;
1617 	unsigned int discard_blks;
1618 
1619 	if (dpolicy)
1620 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1621 
1622 	/* wait all */
1623 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1624 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1625 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1626 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1627 
1628 	return discard_blks;
1629 }
1630 
1631 /* This should be covered by global mutex, &sit_i->sentry_lock */
1632 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1633 {
1634 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1635 	struct discard_cmd *dc;
1636 	bool need_wait = false;
1637 
1638 	mutex_lock(&dcc->cmd_lock);
1639 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1640 							NULL, blkaddr);
1641 	if (dc) {
1642 		if (dc->state == D_PREP) {
1643 			__punch_discard_cmd(sbi, dc, blkaddr);
1644 		} else {
1645 			dc->ref++;
1646 			need_wait = true;
1647 		}
1648 	}
1649 	mutex_unlock(&dcc->cmd_lock);
1650 
1651 	if (need_wait)
1652 		__wait_one_discard_bio(sbi, dc);
1653 }
1654 
1655 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1656 {
1657 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1658 
1659 	if (dcc && dcc->f2fs_issue_discard) {
1660 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1661 
1662 		dcc->f2fs_issue_discard = NULL;
1663 		kthread_stop(discard_thread);
1664 	}
1665 }
1666 
1667 /* This comes from f2fs_put_super */
1668 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1669 {
1670 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1671 	struct discard_policy dpolicy;
1672 	bool dropped;
1673 
1674 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1675 					dcc->discard_granularity);
1676 	dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1677 	__issue_discard_cmd(sbi, &dpolicy);
1678 	dropped = __drop_discard_cmd(sbi);
1679 
1680 	/* just to make sure there is no pending discard commands */
1681 	__wait_all_discard_cmd(sbi, NULL);
1682 
1683 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1684 	return dropped;
1685 }
1686 
1687 static int issue_discard_thread(void *data)
1688 {
1689 	struct f2fs_sb_info *sbi = data;
1690 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1691 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1692 	struct discard_policy dpolicy;
1693 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1694 	int issued;
1695 
1696 	set_freezable();
1697 
1698 	do {
1699 		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1700 					dcc->discard_granularity);
1701 
1702 		wait_event_interruptible_timeout(*q,
1703 				kthread_should_stop() || freezing(current) ||
1704 				dcc->discard_wake,
1705 				msecs_to_jiffies(wait_ms));
1706 
1707 		if (dcc->discard_wake)
1708 			dcc->discard_wake = 0;
1709 
1710 		/* clean up pending candidates before going to sleep */
1711 		if (atomic_read(&dcc->queued_discard))
1712 			__wait_all_discard_cmd(sbi, NULL);
1713 
1714 		if (try_to_freeze())
1715 			continue;
1716 		if (f2fs_readonly(sbi->sb))
1717 			continue;
1718 		if (kthread_should_stop())
1719 			return 0;
1720 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1721 			wait_ms = dpolicy.max_interval;
1722 			continue;
1723 		}
1724 
1725 		if (sbi->gc_mode == GC_URGENT)
1726 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1727 
1728 		sb_start_intwrite(sbi->sb);
1729 
1730 		issued = __issue_discard_cmd(sbi, &dpolicy);
1731 		if (issued > 0) {
1732 			__wait_all_discard_cmd(sbi, &dpolicy);
1733 			wait_ms = dpolicy.min_interval;
1734 		} else if (issued == -1){
1735 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1736 			if (!wait_ms)
1737 				wait_ms = dpolicy.mid_interval;
1738 		} else {
1739 			wait_ms = dpolicy.max_interval;
1740 		}
1741 
1742 		sb_end_intwrite(sbi->sb);
1743 
1744 	} while (!kthread_should_stop());
1745 	return 0;
1746 }
1747 
1748 #ifdef CONFIG_BLK_DEV_ZONED
1749 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1750 		struct block_device *bdev, block_t blkstart, block_t blklen)
1751 {
1752 	sector_t sector, nr_sects;
1753 	block_t lblkstart = blkstart;
1754 	int devi = 0;
1755 
1756 	if (f2fs_is_multi_device(sbi)) {
1757 		devi = f2fs_target_device_index(sbi, blkstart);
1758 		if (blkstart < FDEV(devi).start_blk ||
1759 		    blkstart > FDEV(devi).end_blk) {
1760 			f2fs_err(sbi, "Invalid block %x", blkstart);
1761 			return -EIO;
1762 		}
1763 		blkstart -= FDEV(devi).start_blk;
1764 	}
1765 
1766 	/* For sequential zones, reset the zone write pointer */
1767 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1768 		sector = SECTOR_FROM_BLOCK(blkstart);
1769 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1770 
1771 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1772 				nr_sects != bdev_zone_sectors(bdev)) {
1773 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1774 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1775 				 blkstart, blklen);
1776 			return -EIO;
1777 		}
1778 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1779 		return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1780 	}
1781 
1782 	/* For conventional zones, use regular discard if supported */
1783 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1784 }
1785 #endif
1786 
1787 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1788 		struct block_device *bdev, block_t blkstart, block_t blklen)
1789 {
1790 #ifdef CONFIG_BLK_DEV_ZONED
1791 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1792 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1793 #endif
1794 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1795 }
1796 
1797 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1798 				block_t blkstart, block_t blklen)
1799 {
1800 	sector_t start = blkstart, len = 0;
1801 	struct block_device *bdev;
1802 	struct seg_entry *se;
1803 	unsigned int offset;
1804 	block_t i;
1805 	int err = 0;
1806 
1807 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1808 
1809 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1810 		if (i != start) {
1811 			struct block_device *bdev2 =
1812 				f2fs_target_device(sbi, i, NULL);
1813 
1814 			if (bdev2 != bdev) {
1815 				err = __issue_discard_async(sbi, bdev,
1816 						start, len);
1817 				if (err)
1818 					return err;
1819 				bdev = bdev2;
1820 				start = i;
1821 				len = 0;
1822 			}
1823 		}
1824 
1825 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1826 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1827 
1828 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1829 			sbi->discard_blks--;
1830 	}
1831 
1832 	if (len)
1833 		err = __issue_discard_async(sbi, bdev, start, len);
1834 	return err;
1835 }
1836 
1837 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1838 							bool check_only)
1839 {
1840 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1841 	int max_blocks = sbi->blocks_per_seg;
1842 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1843 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1844 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1845 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1846 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1847 	unsigned int start = 0, end = -1;
1848 	bool force = (cpc->reason & CP_DISCARD);
1849 	struct discard_entry *de = NULL;
1850 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1851 	int i;
1852 
1853 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1854 		return false;
1855 
1856 	if (!force) {
1857 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1858 			SM_I(sbi)->dcc_info->nr_discards >=
1859 				SM_I(sbi)->dcc_info->max_discards)
1860 			return false;
1861 	}
1862 
1863 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1864 	for (i = 0; i < entries; i++)
1865 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1866 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1867 
1868 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1869 				SM_I(sbi)->dcc_info->max_discards) {
1870 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1871 		if (start >= max_blocks)
1872 			break;
1873 
1874 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1875 		if (force && start && end != max_blocks
1876 					&& (end - start) < cpc->trim_minlen)
1877 			continue;
1878 
1879 		if (check_only)
1880 			return true;
1881 
1882 		if (!de) {
1883 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1884 								GFP_F2FS_ZERO);
1885 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1886 			list_add_tail(&de->list, head);
1887 		}
1888 
1889 		for (i = start; i < end; i++)
1890 			__set_bit_le(i, (void *)de->discard_map);
1891 
1892 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1893 	}
1894 	return false;
1895 }
1896 
1897 static void release_discard_addr(struct discard_entry *entry)
1898 {
1899 	list_del(&entry->list);
1900 	kmem_cache_free(discard_entry_slab, entry);
1901 }
1902 
1903 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1904 {
1905 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1906 	struct discard_entry *entry, *this;
1907 
1908 	/* drop caches */
1909 	list_for_each_entry_safe(entry, this, head, list)
1910 		release_discard_addr(entry);
1911 }
1912 
1913 /*
1914  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1915  */
1916 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1917 {
1918 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1919 	unsigned int segno;
1920 
1921 	mutex_lock(&dirty_i->seglist_lock);
1922 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1923 		__set_test_and_free(sbi, segno);
1924 	mutex_unlock(&dirty_i->seglist_lock);
1925 }
1926 
1927 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1928 						struct cp_control *cpc)
1929 {
1930 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1931 	struct list_head *head = &dcc->entry_list;
1932 	struct discard_entry *entry, *this;
1933 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1934 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1935 	unsigned int start = 0, end = -1;
1936 	unsigned int secno, start_segno;
1937 	bool force = (cpc->reason & CP_DISCARD);
1938 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1939 
1940 	mutex_lock(&dirty_i->seglist_lock);
1941 
1942 	while (1) {
1943 		int i;
1944 
1945 		if (need_align && end != -1)
1946 			end--;
1947 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1948 		if (start >= MAIN_SEGS(sbi))
1949 			break;
1950 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1951 								start + 1);
1952 
1953 		if (need_align) {
1954 			start = rounddown(start, sbi->segs_per_sec);
1955 			end = roundup(end, sbi->segs_per_sec);
1956 		}
1957 
1958 		for (i = start; i < end; i++) {
1959 			if (test_and_clear_bit(i, prefree_map))
1960 				dirty_i->nr_dirty[PRE]--;
1961 		}
1962 
1963 		if (!f2fs_realtime_discard_enable(sbi))
1964 			continue;
1965 
1966 		if (force && start >= cpc->trim_start &&
1967 					(end - 1) <= cpc->trim_end)
1968 				continue;
1969 
1970 		if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1971 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1972 				(end - start) << sbi->log_blocks_per_seg);
1973 			continue;
1974 		}
1975 next:
1976 		secno = GET_SEC_FROM_SEG(sbi, start);
1977 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1978 		if (!IS_CURSEC(sbi, secno) &&
1979 			!get_valid_blocks(sbi, start, true))
1980 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1981 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1982 
1983 		start = start_segno + sbi->segs_per_sec;
1984 		if (start < end)
1985 			goto next;
1986 		else
1987 			end = start - 1;
1988 	}
1989 	mutex_unlock(&dirty_i->seglist_lock);
1990 
1991 	/* send small discards */
1992 	list_for_each_entry_safe(entry, this, head, list) {
1993 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1994 		bool is_valid = test_bit_le(0, entry->discard_map);
1995 
1996 find_next:
1997 		if (is_valid) {
1998 			next_pos = find_next_zero_bit_le(entry->discard_map,
1999 					sbi->blocks_per_seg, cur_pos);
2000 			len = next_pos - cur_pos;
2001 
2002 			if (f2fs_sb_has_blkzoned(sbi) ||
2003 			    (force && len < cpc->trim_minlen))
2004 				goto skip;
2005 
2006 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2007 									len);
2008 			total_len += len;
2009 		} else {
2010 			next_pos = find_next_bit_le(entry->discard_map,
2011 					sbi->blocks_per_seg, cur_pos);
2012 		}
2013 skip:
2014 		cur_pos = next_pos;
2015 		is_valid = !is_valid;
2016 
2017 		if (cur_pos < sbi->blocks_per_seg)
2018 			goto find_next;
2019 
2020 		release_discard_addr(entry);
2021 		dcc->nr_discards -= total_len;
2022 	}
2023 
2024 	wake_up_discard_thread(sbi, false);
2025 }
2026 
2027 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2028 {
2029 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2030 	struct discard_cmd_control *dcc;
2031 	int err = 0, i;
2032 
2033 	if (SM_I(sbi)->dcc_info) {
2034 		dcc = SM_I(sbi)->dcc_info;
2035 		goto init_thread;
2036 	}
2037 
2038 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2039 	if (!dcc)
2040 		return -ENOMEM;
2041 
2042 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2043 	INIT_LIST_HEAD(&dcc->entry_list);
2044 	for (i = 0; i < MAX_PLIST_NUM; i++)
2045 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2046 	INIT_LIST_HEAD(&dcc->wait_list);
2047 	INIT_LIST_HEAD(&dcc->fstrim_list);
2048 	mutex_init(&dcc->cmd_lock);
2049 	atomic_set(&dcc->issued_discard, 0);
2050 	atomic_set(&dcc->queued_discard, 0);
2051 	atomic_set(&dcc->discard_cmd_cnt, 0);
2052 	dcc->nr_discards = 0;
2053 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2054 	dcc->undiscard_blks = 0;
2055 	dcc->next_pos = 0;
2056 	dcc->root = RB_ROOT_CACHED;
2057 	dcc->rbtree_check = false;
2058 
2059 	init_waitqueue_head(&dcc->discard_wait_queue);
2060 	SM_I(sbi)->dcc_info = dcc;
2061 init_thread:
2062 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2063 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2064 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2065 		err = PTR_ERR(dcc->f2fs_issue_discard);
2066 		kvfree(dcc);
2067 		SM_I(sbi)->dcc_info = NULL;
2068 		return err;
2069 	}
2070 
2071 	return err;
2072 }
2073 
2074 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2075 {
2076 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2077 
2078 	if (!dcc)
2079 		return;
2080 
2081 	f2fs_stop_discard_thread(sbi);
2082 
2083 	kvfree(dcc);
2084 	SM_I(sbi)->dcc_info = NULL;
2085 }
2086 
2087 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2088 {
2089 	struct sit_info *sit_i = SIT_I(sbi);
2090 
2091 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2092 		sit_i->dirty_sentries++;
2093 		return false;
2094 	}
2095 
2096 	return true;
2097 }
2098 
2099 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2100 					unsigned int segno, int modified)
2101 {
2102 	struct seg_entry *se = get_seg_entry(sbi, segno);
2103 	se->type = type;
2104 	if (modified)
2105 		__mark_sit_entry_dirty(sbi, segno);
2106 }
2107 
2108 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2109 {
2110 	struct seg_entry *se;
2111 	unsigned int segno, offset;
2112 	long int new_vblocks;
2113 	bool exist;
2114 #ifdef CONFIG_F2FS_CHECK_FS
2115 	bool mir_exist;
2116 #endif
2117 
2118 	segno = GET_SEGNO(sbi, blkaddr);
2119 
2120 	se = get_seg_entry(sbi, segno);
2121 	new_vblocks = se->valid_blocks + del;
2122 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2123 
2124 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2125 				(new_vblocks > sbi->blocks_per_seg)));
2126 
2127 	se->valid_blocks = new_vblocks;
2128 	se->mtime = get_mtime(sbi, false);
2129 	if (se->mtime > SIT_I(sbi)->max_mtime)
2130 		SIT_I(sbi)->max_mtime = se->mtime;
2131 
2132 	/* Update valid block bitmap */
2133 	if (del > 0) {
2134 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2135 #ifdef CONFIG_F2FS_CHECK_FS
2136 		mir_exist = f2fs_test_and_set_bit(offset,
2137 						se->cur_valid_map_mir);
2138 		if (unlikely(exist != mir_exist)) {
2139 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2140 				 blkaddr, exist);
2141 			f2fs_bug_on(sbi, 1);
2142 		}
2143 #endif
2144 		if (unlikely(exist)) {
2145 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2146 				 blkaddr);
2147 			f2fs_bug_on(sbi, 1);
2148 			se->valid_blocks--;
2149 			del = 0;
2150 		}
2151 
2152 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2153 			sbi->discard_blks--;
2154 
2155 		/* don't overwrite by SSR to keep node chain */
2156 		if (IS_NODESEG(se->type) &&
2157 				!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2158 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2159 				se->ckpt_valid_blocks++;
2160 		}
2161 	} else {
2162 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2163 #ifdef CONFIG_F2FS_CHECK_FS
2164 		mir_exist = f2fs_test_and_clear_bit(offset,
2165 						se->cur_valid_map_mir);
2166 		if (unlikely(exist != mir_exist)) {
2167 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2168 				 blkaddr, exist);
2169 			f2fs_bug_on(sbi, 1);
2170 		}
2171 #endif
2172 		if (unlikely(!exist)) {
2173 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2174 				 blkaddr);
2175 			f2fs_bug_on(sbi, 1);
2176 			se->valid_blocks++;
2177 			del = 0;
2178 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2179 			/*
2180 			 * If checkpoints are off, we must not reuse data that
2181 			 * was used in the previous checkpoint. If it was used
2182 			 * before, we must track that to know how much space we
2183 			 * really have.
2184 			 */
2185 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2186 				spin_lock(&sbi->stat_lock);
2187 				sbi->unusable_block_count++;
2188 				spin_unlock(&sbi->stat_lock);
2189 			}
2190 		}
2191 
2192 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2193 			sbi->discard_blks++;
2194 	}
2195 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2196 		se->ckpt_valid_blocks += del;
2197 
2198 	__mark_sit_entry_dirty(sbi, segno);
2199 
2200 	/* update total number of valid blocks to be written in ckpt area */
2201 	SIT_I(sbi)->written_valid_blocks += del;
2202 
2203 	if (__is_large_section(sbi))
2204 		get_sec_entry(sbi, segno)->valid_blocks += del;
2205 }
2206 
2207 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2208 {
2209 	unsigned int segno = GET_SEGNO(sbi, addr);
2210 	struct sit_info *sit_i = SIT_I(sbi);
2211 
2212 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2213 	if (addr == NEW_ADDR)
2214 		return;
2215 
2216 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2217 
2218 	/* add it into sit main buffer */
2219 	down_write(&sit_i->sentry_lock);
2220 
2221 	update_sit_entry(sbi, addr, -1);
2222 
2223 	/* add it into dirty seglist */
2224 	locate_dirty_segment(sbi, segno);
2225 
2226 	up_write(&sit_i->sentry_lock);
2227 }
2228 
2229 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2230 {
2231 	struct sit_info *sit_i = SIT_I(sbi);
2232 	unsigned int segno, offset;
2233 	struct seg_entry *se;
2234 	bool is_cp = false;
2235 
2236 	if (!__is_valid_data_blkaddr(blkaddr))
2237 		return true;
2238 
2239 	down_read(&sit_i->sentry_lock);
2240 
2241 	segno = GET_SEGNO(sbi, blkaddr);
2242 	se = get_seg_entry(sbi, segno);
2243 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2244 
2245 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2246 		is_cp = true;
2247 
2248 	up_read(&sit_i->sentry_lock);
2249 
2250 	return is_cp;
2251 }
2252 
2253 /*
2254  * This function should be resided under the curseg_mutex lock
2255  */
2256 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2257 					struct f2fs_summary *sum)
2258 {
2259 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2260 	void *addr = curseg->sum_blk;
2261 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2262 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2263 }
2264 
2265 /*
2266  * Calculate the number of current summary pages for writing
2267  */
2268 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2269 {
2270 	int valid_sum_count = 0;
2271 	int i, sum_in_page;
2272 
2273 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2274 		if (sbi->ckpt->alloc_type[i] == SSR)
2275 			valid_sum_count += sbi->blocks_per_seg;
2276 		else {
2277 			if (for_ra)
2278 				valid_sum_count += le16_to_cpu(
2279 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2280 			else
2281 				valid_sum_count += curseg_blkoff(sbi, i);
2282 		}
2283 	}
2284 
2285 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2286 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2287 	if (valid_sum_count <= sum_in_page)
2288 		return 1;
2289 	else if ((valid_sum_count - sum_in_page) <=
2290 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2291 		return 2;
2292 	return 3;
2293 }
2294 
2295 /*
2296  * Caller should put this summary page
2297  */
2298 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2299 {
2300 	return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2301 }
2302 
2303 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2304 					void *src, block_t blk_addr)
2305 {
2306 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2307 
2308 	memcpy(page_address(page), src, PAGE_SIZE);
2309 	set_page_dirty(page);
2310 	f2fs_put_page(page, 1);
2311 }
2312 
2313 static void write_sum_page(struct f2fs_sb_info *sbi,
2314 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2315 {
2316 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2317 }
2318 
2319 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2320 						int type, block_t blk_addr)
2321 {
2322 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2323 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2324 	struct f2fs_summary_block *src = curseg->sum_blk;
2325 	struct f2fs_summary_block *dst;
2326 
2327 	dst = (struct f2fs_summary_block *)page_address(page);
2328 	memset(dst, 0, PAGE_SIZE);
2329 
2330 	mutex_lock(&curseg->curseg_mutex);
2331 
2332 	down_read(&curseg->journal_rwsem);
2333 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2334 	up_read(&curseg->journal_rwsem);
2335 
2336 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2337 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2338 
2339 	mutex_unlock(&curseg->curseg_mutex);
2340 
2341 	set_page_dirty(page);
2342 	f2fs_put_page(page, 1);
2343 }
2344 
2345 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2346 {
2347 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2348 	unsigned int segno = curseg->segno + 1;
2349 	struct free_segmap_info *free_i = FREE_I(sbi);
2350 
2351 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2352 		return !test_bit(segno, free_i->free_segmap);
2353 	return 0;
2354 }
2355 
2356 /*
2357  * Find a new segment from the free segments bitmap to right order
2358  * This function should be returned with success, otherwise BUG
2359  */
2360 static void get_new_segment(struct f2fs_sb_info *sbi,
2361 			unsigned int *newseg, bool new_sec, int dir)
2362 {
2363 	struct free_segmap_info *free_i = FREE_I(sbi);
2364 	unsigned int segno, secno, zoneno;
2365 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2366 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2367 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2368 	unsigned int left_start = hint;
2369 	bool init = true;
2370 	int go_left = 0;
2371 	int i;
2372 
2373 	spin_lock(&free_i->segmap_lock);
2374 
2375 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2376 		segno = find_next_zero_bit(free_i->free_segmap,
2377 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2378 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2379 			goto got_it;
2380 	}
2381 find_other_zone:
2382 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2383 	if (secno >= MAIN_SECS(sbi)) {
2384 		if (dir == ALLOC_RIGHT) {
2385 			secno = find_next_zero_bit(free_i->free_secmap,
2386 							MAIN_SECS(sbi), 0);
2387 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2388 		} else {
2389 			go_left = 1;
2390 			left_start = hint - 1;
2391 		}
2392 	}
2393 	if (go_left == 0)
2394 		goto skip_left;
2395 
2396 	while (test_bit(left_start, free_i->free_secmap)) {
2397 		if (left_start > 0) {
2398 			left_start--;
2399 			continue;
2400 		}
2401 		left_start = find_next_zero_bit(free_i->free_secmap,
2402 							MAIN_SECS(sbi), 0);
2403 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2404 		break;
2405 	}
2406 	secno = left_start;
2407 skip_left:
2408 	segno = GET_SEG_FROM_SEC(sbi, secno);
2409 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2410 
2411 	/* give up on finding another zone */
2412 	if (!init)
2413 		goto got_it;
2414 	if (sbi->secs_per_zone == 1)
2415 		goto got_it;
2416 	if (zoneno == old_zoneno)
2417 		goto got_it;
2418 	if (dir == ALLOC_LEFT) {
2419 		if (!go_left && zoneno + 1 >= total_zones)
2420 			goto got_it;
2421 		if (go_left && zoneno == 0)
2422 			goto got_it;
2423 	}
2424 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2425 		if (CURSEG_I(sbi, i)->zone == zoneno)
2426 			break;
2427 
2428 	if (i < NR_CURSEG_TYPE) {
2429 		/* zone is in user, try another */
2430 		if (go_left)
2431 			hint = zoneno * sbi->secs_per_zone - 1;
2432 		else if (zoneno + 1 >= total_zones)
2433 			hint = 0;
2434 		else
2435 			hint = (zoneno + 1) * sbi->secs_per_zone;
2436 		init = false;
2437 		goto find_other_zone;
2438 	}
2439 got_it:
2440 	/* set it as dirty segment in free segmap */
2441 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2442 	__set_inuse(sbi, segno);
2443 	*newseg = segno;
2444 	spin_unlock(&free_i->segmap_lock);
2445 }
2446 
2447 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2448 {
2449 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2450 	struct summary_footer *sum_footer;
2451 
2452 	curseg->segno = curseg->next_segno;
2453 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2454 	curseg->next_blkoff = 0;
2455 	curseg->next_segno = NULL_SEGNO;
2456 
2457 	sum_footer = &(curseg->sum_blk->footer);
2458 	memset(sum_footer, 0, sizeof(struct summary_footer));
2459 	if (IS_DATASEG(type))
2460 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2461 	if (IS_NODESEG(type))
2462 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2463 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2464 }
2465 
2466 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2467 {
2468 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2469 	if (__is_large_section(sbi))
2470 		return CURSEG_I(sbi, type)->segno;
2471 
2472 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2473 		return 0;
2474 
2475 	if (test_opt(sbi, NOHEAP) &&
2476 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2477 		return 0;
2478 
2479 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2480 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2481 
2482 	/* find segments from 0 to reuse freed segments */
2483 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2484 		return 0;
2485 
2486 	return CURSEG_I(sbi, type)->segno;
2487 }
2488 
2489 /*
2490  * Allocate a current working segment.
2491  * This function always allocates a free segment in LFS manner.
2492  */
2493 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2494 {
2495 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2496 	unsigned int segno = curseg->segno;
2497 	int dir = ALLOC_LEFT;
2498 
2499 	write_sum_page(sbi, curseg->sum_blk,
2500 				GET_SUM_BLOCK(sbi, segno));
2501 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2502 		dir = ALLOC_RIGHT;
2503 
2504 	if (test_opt(sbi, NOHEAP))
2505 		dir = ALLOC_RIGHT;
2506 
2507 	segno = __get_next_segno(sbi, type);
2508 	get_new_segment(sbi, &segno, new_sec, dir);
2509 	curseg->next_segno = segno;
2510 	reset_curseg(sbi, type, 1);
2511 	curseg->alloc_type = LFS;
2512 }
2513 
2514 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2515 			struct curseg_info *seg, block_t start)
2516 {
2517 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2518 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2519 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2520 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2521 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2522 	int i, pos;
2523 
2524 	for (i = 0; i < entries; i++)
2525 		target_map[i] = ckpt_map[i] | cur_map[i];
2526 
2527 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2528 
2529 	seg->next_blkoff = pos;
2530 }
2531 
2532 /*
2533  * If a segment is written by LFS manner, next block offset is just obtained
2534  * by increasing the current block offset. However, if a segment is written by
2535  * SSR manner, next block offset obtained by calling __next_free_blkoff
2536  */
2537 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2538 				struct curseg_info *seg)
2539 {
2540 	if (seg->alloc_type == SSR)
2541 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2542 	else
2543 		seg->next_blkoff++;
2544 }
2545 
2546 /*
2547  * This function always allocates a used segment(from dirty seglist) by SSR
2548  * manner, so it should recover the existing segment information of valid blocks
2549  */
2550 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2551 {
2552 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2553 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2554 	unsigned int new_segno = curseg->next_segno;
2555 	struct f2fs_summary_block *sum_node;
2556 	struct page *sum_page;
2557 
2558 	write_sum_page(sbi, curseg->sum_blk,
2559 				GET_SUM_BLOCK(sbi, curseg->segno));
2560 	__set_test_and_inuse(sbi, new_segno);
2561 
2562 	mutex_lock(&dirty_i->seglist_lock);
2563 	__remove_dirty_segment(sbi, new_segno, PRE);
2564 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2565 	mutex_unlock(&dirty_i->seglist_lock);
2566 
2567 	reset_curseg(sbi, type, 1);
2568 	curseg->alloc_type = SSR;
2569 	__next_free_blkoff(sbi, curseg, 0);
2570 
2571 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2572 	f2fs_bug_on(sbi, IS_ERR(sum_page));
2573 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2574 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2575 	f2fs_put_page(sum_page, 1);
2576 }
2577 
2578 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2579 {
2580 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2581 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2582 	unsigned segno = NULL_SEGNO;
2583 	int i, cnt;
2584 	bool reversed = false;
2585 
2586 	/* f2fs_need_SSR() already forces to do this */
2587 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2588 		curseg->next_segno = segno;
2589 		return 1;
2590 	}
2591 
2592 	/* For node segments, let's do SSR more intensively */
2593 	if (IS_NODESEG(type)) {
2594 		if (type >= CURSEG_WARM_NODE) {
2595 			reversed = true;
2596 			i = CURSEG_COLD_NODE;
2597 		} else {
2598 			i = CURSEG_HOT_NODE;
2599 		}
2600 		cnt = NR_CURSEG_NODE_TYPE;
2601 	} else {
2602 		if (type >= CURSEG_WARM_DATA) {
2603 			reversed = true;
2604 			i = CURSEG_COLD_DATA;
2605 		} else {
2606 			i = CURSEG_HOT_DATA;
2607 		}
2608 		cnt = NR_CURSEG_DATA_TYPE;
2609 	}
2610 
2611 	for (; cnt-- > 0; reversed ? i-- : i++) {
2612 		if (i == type)
2613 			continue;
2614 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2615 			curseg->next_segno = segno;
2616 			return 1;
2617 		}
2618 	}
2619 
2620 	/* find valid_blocks=0 in dirty list */
2621 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2622 		segno = get_free_segment(sbi);
2623 		if (segno != NULL_SEGNO) {
2624 			curseg->next_segno = segno;
2625 			return 1;
2626 		}
2627 	}
2628 	return 0;
2629 }
2630 
2631 /*
2632  * flush out current segment and replace it with new segment
2633  * This function should be returned with success, otherwise BUG
2634  */
2635 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2636 						int type, bool force)
2637 {
2638 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2639 
2640 	if (force)
2641 		new_curseg(sbi, type, true);
2642 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2643 					type == CURSEG_WARM_NODE)
2644 		new_curseg(sbi, type, false);
2645 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2646 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2647 		new_curseg(sbi, type, false);
2648 	else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2649 		change_curseg(sbi, type);
2650 	else
2651 		new_curseg(sbi, type, false);
2652 
2653 	stat_inc_seg_type(sbi, curseg);
2654 }
2655 
2656 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2657 					unsigned int start, unsigned int end)
2658 {
2659 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2660 	unsigned int segno;
2661 
2662 	down_read(&SM_I(sbi)->curseg_lock);
2663 	mutex_lock(&curseg->curseg_mutex);
2664 	down_write(&SIT_I(sbi)->sentry_lock);
2665 
2666 	segno = CURSEG_I(sbi, type)->segno;
2667 	if (segno < start || segno > end)
2668 		goto unlock;
2669 
2670 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2671 		change_curseg(sbi, type);
2672 	else
2673 		new_curseg(sbi, type, true);
2674 
2675 	stat_inc_seg_type(sbi, curseg);
2676 
2677 	locate_dirty_segment(sbi, segno);
2678 unlock:
2679 	up_write(&SIT_I(sbi)->sentry_lock);
2680 
2681 	if (segno != curseg->segno)
2682 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2683 			    type, segno, curseg->segno);
2684 
2685 	mutex_unlock(&curseg->curseg_mutex);
2686 	up_read(&SM_I(sbi)->curseg_lock);
2687 }
2688 
2689 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2690 {
2691 	struct curseg_info *curseg;
2692 	unsigned int old_segno;
2693 	int i;
2694 
2695 	down_write(&SIT_I(sbi)->sentry_lock);
2696 
2697 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2698 		curseg = CURSEG_I(sbi, i);
2699 		old_segno = curseg->segno;
2700 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2701 		locate_dirty_segment(sbi, old_segno);
2702 	}
2703 
2704 	up_write(&SIT_I(sbi)->sentry_lock);
2705 }
2706 
2707 static const struct segment_allocation default_salloc_ops = {
2708 	.allocate_segment = allocate_segment_by_default,
2709 };
2710 
2711 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2712 						struct cp_control *cpc)
2713 {
2714 	__u64 trim_start = cpc->trim_start;
2715 	bool has_candidate = false;
2716 
2717 	down_write(&SIT_I(sbi)->sentry_lock);
2718 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2719 		if (add_discard_addrs(sbi, cpc, true)) {
2720 			has_candidate = true;
2721 			break;
2722 		}
2723 	}
2724 	up_write(&SIT_I(sbi)->sentry_lock);
2725 
2726 	cpc->trim_start = trim_start;
2727 	return has_candidate;
2728 }
2729 
2730 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2731 					struct discard_policy *dpolicy,
2732 					unsigned int start, unsigned int end)
2733 {
2734 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2735 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2736 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2737 	struct discard_cmd *dc;
2738 	struct blk_plug plug;
2739 	int issued;
2740 	unsigned int trimmed = 0;
2741 
2742 next:
2743 	issued = 0;
2744 
2745 	mutex_lock(&dcc->cmd_lock);
2746 	if (unlikely(dcc->rbtree_check))
2747 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2748 								&dcc->root));
2749 
2750 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2751 					NULL, start,
2752 					(struct rb_entry **)&prev_dc,
2753 					(struct rb_entry **)&next_dc,
2754 					&insert_p, &insert_parent, true, NULL);
2755 	if (!dc)
2756 		dc = next_dc;
2757 
2758 	blk_start_plug(&plug);
2759 
2760 	while (dc && dc->lstart <= end) {
2761 		struct rb_node *node;
2762 		int err = 0;
2763 
2764 		if (dc->len < dpolicy->granularity)
2765 			goto skip;
2766 
2767 		if (dc->state != D_PREP) {
2768 			list_move_tail(&dc->list, &dcc->fstrim_list);
2769 			goto skip;
2770 		}
2771 
2772 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2773 
2774 		if (issued >= dpolicy->max_requests) {
2775 			start = dc->lstart + dc->len;
2776 
2777 			if (err)
2778 				__remove_discard_cmd(sbi, dc);
2779 
2780 			blk_finish_plug(&plug);
2781 			mutex_unlock(&dcc->cmd_lock);
2782 			trimmed += __wait_all_discard_cmd(sbi, NULL);
2783 			congestion_wait(BLK_RW_ASYNC, HZ/50);
2784 			goto next;
2785 		}
2786 skip:
2787 		node = rb_next(&dc->rb_node);
2788 		if (err)
2789 			__remove_discard_cmd(sbi, dc);
2790 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2791 
2792 		if (fatal_signal_pending(current))
2793 			break;
2794 	}
2795 
2796 	blk_finish_plug(&plug);
2797 	mutex_unlock(&dcc->cmd_lock);
2798 
2799 	return trimmed;
2800 }
2801 
2802 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2803 {
2804 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2805 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2806 	unsigned int start_segno, end_segno;
2807 	block_t start_block, end_block;
2808 	struct cp_control cpc;
2809 	struct discard_policy dpolicy;
2810 	unsigned long long trimmed = 0;
2811 	int err = 0;
2812 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2813 
2814 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2815 		return -EINVAL;
2816 
2817 	if (end < MAIN_BLKADDR(sbi))
2818 		goto out;
2819 
2820 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2821 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2822 		return -EIO;
2823 	}
2824 
2825 	/* start/end segment number in main_area */
2826 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2827 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2828 						GET_SEGNO(sbi, end);
2829 	if (need_align) {
2830 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
2831 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2832 	}
2833 
2834 	cpc.reason = CP_DISCARD;
2835 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2836 	cpc.trim_start = start_segno;
2837 	cpc.trim_end = end_segno;
2838 
2839 	if (sbi->discard_blks == 0)
2840 		goto out;
2841 
2842 	mutex_lock(&sbi->gc_mutex);
2843 	err = f2fs_write_checkpoint(sbi, &cpc);
2844 	mutex_unlock(&sbi->gc_mutex);
2845 	if (err)
2846 		goto out;
2847 
2848 	/*
2849 	 * We filed discard candidates, but actually we don't need to wait for
2850 	 * all of them, since they'll be issued in idle time along with runtime
2851 	 * discard option. User configuration looks like using runtime discard
2852 	 * or periodic fstrim instead of it.
2853 	 */
2854 	if (f2fs_realtime_discard_enable(sbi))
2855 		goto out;
2856 
2857 	start_block = START_BLOCK(sbi, start_segno);
2858 	end_block = START_BLOCK(sbi, end_segno + 1);
2859 
2860 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2861 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2862 					start_block, end_block);
2863 
2864 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2865 					start_block, end_block);
2866 out:
2867 	if (!err)
2868 		range->len = F2FS_BLK_TO_BYTES(trimmed);
2869 	return err;
2870 }
2871 
2872 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2873 {
2874 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2875 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2876 		return true;
2877 	return false;
2878 }
2879 
2880 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2881 {
2882 	switch (hint) {
2883 	case WRITE_LIFE_SHORT:
2884 		return CURSEG_HOT_DATA;
2885 	case WRITE_LIFE_EXTREME:
2886 		return CURSEG_COLD_DATA;
2887 	default:
2888 		return CURSEG_WARM_DATA;
2889 	}
2890 }
2891 
2892 /* This returns write hints for each segment type. This hints will be
2893  * passed down to block layer. There are mapping tables which depend on
2894  * the mount option 'whint_mode'.
2895  *
2896  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2897  *
2898  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2899  *
2900  * User                  F2FS                     Block
2901  * ----                  ----                     -----
2902  *                       META                     WRITE_LIFE_NOT_SET
2903  *                       HOT_NODE                 "
2904  *                       WARM_NODE                "
2905  *                       COLD_NODE                "
2906  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2907  * extension list        "                        "
2908  *
2909  * -- buffered io
2910  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2911  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2912  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2913  * WRITE_LIFE_NONE       "                        "
2914  * WRITE_LIFE_MEDIUM     "                        "
2915  * WRITE_LIFE_LONG       "                        "
2916  *
2917  * -- direct io
2918  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2919  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2920  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2921  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2922  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2923  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2924  *
2925  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2926  *
2927  * User                  F2FS                     Block
2928  * ----                  ----                     -----
2929  *                       META                     WRITE_LIFE_MEDIUM;
2930  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2931  *                       WARM_NODE                "
2932  *                       COLD_NODE                WRITE_LIFE_NONE
2933  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2934  * extension list        "                        "
2935  *
2936  * -- buffered io
2937  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2938  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2939  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2940  * WRITE_LIFE_NONE       "                        "
2941  * WRITE_LIFE_MEDIUM     "                        "
2942  * WRITE_LIFE_LONG       "                        "
2943  *
2944  * -- direct io
2945  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2946  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2947  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2948  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2949  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2950  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2951  */
2952 
2953 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2954 				enum page_type type, enum temp_type temp)
2955 {
2956 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2957 		if (type == DATA) {
2958 			if (temp == WARM)
2959 				return WRITE_LIFE_NOT_SET;
2960 			else if (temp == HOT)
2961 				return WRITE_LIFE_SHORT;
2962 			else if (temp == COLD)
2963 				return WRITE_LIFE_EXTREME;
2964 		} else {
2965 			return WRITE_LIFE_NOT_SET;
2966 		}
2967 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2968 		if (type == DATA) {
2969 			if (temp == WARM)
2970 				return WRITE_LIFE_LONG;
2971 			else if (temp == HOT)
2972 				return WRITE_LIFE_SHORT;
2973 			else if (temp == COLD)
2974 				return WRITE_LIFE_EXTREME;
2975 		} else if (type == NODE) {
2976 			if (temp == WARM || temp == HOT)
2977 				return WRITE_LIFE_NOT_SET;
2978 			else if (temp == COLD)
2979 				return WRITE_LIFE_NONE;
2980 		} else if (type == META) {
2981 			return WRITE_LIFE_MEDIUM;
2982 		}
2983 	}
2984 	return WRITE_LIFE_NOT_SET;
2985 }
2986 
2987 static int __get_segment_type_2(struct f2fs_io_info *fio)
2988 {
2989 	if (fio->type == DATA)
2990 		return CURSEG_HOT_DATA;
2991 	else
2992 		return CURSEG_HOT_NODE;
2993 }
2994 
2995 static int __get_segment_type_4(struct f2fs_io_info *fio)
2996 {
2997 	if (fio->type == DATA) {
2998 		struct inode *inode = fio->page->mapping->host;
2999 
3000 		if (S_ISDIR(inode->i_mode))
3001 			return CURSEG_HOT_DATA;
3002 		else
3003 			return CURSEG_COLD_DATA;
3004 	} else {
3005 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3006 			return CURSEG_WARM_NODE;
3007 		else
3008 			return CURSEG_COLD_NODE;
3009 	}
3010 }
3011 
3012 static int __get_segment_type_6(struct f2fs_io_info *fio)
3013 {
3014 	if (fio->type == DATA) {
3015 		struct inode *inode = fio->page->mapping->host;
3016 
3017 		if (is_cold_data(fio->page) || file_is_cold(inode))
3018 			return CURSEG_COLD_DATA;
3019 		if (file_is_hot(inode) ||
3020 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3021 				f2fs_is_atomic_file(inode) ||
3022 				f2fs_is_volatile_file(inode))
3023 			return CURSEG_HOT_DATA;
3024 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3025 	} else {
3026 		if (IS_DNODE(fio->page))
3027 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3028 						CURSEG_HOT_NODE;
3029 		return CURSEG_COLD_NODE;
3030 	}
3031 }
3032 
3033 static int __get_segment_type(struct f2fs_io_info *fio)
3034 {
3035 	int type = 0;
3036 
3037 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3038 	case 2:
3039 		type = __get_segment_type_2(fio);
3040 		break;
3041 	case 4:
3042 		type = __get_segment_type_4(fio);
3043 		break;
3044 	case 6:
3045 		type = __get_segment_type_6(fio);
3046 		break;
3047 	default:
3048 		f2fs_bug_on(fio->sbi, true);
3049 	}
3050 
3051 	if (IS_HOT(type))
3052 		fio->temp = HOT;
3053 	else if (IS_WARM(type))
3054 		fio->temp = WARM;
3055 	else
3056 		fio->temp = COLD;
3057 	return type;
3058 }
3059 
3060 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3061 		block_t old_blkaddr, block_t *new_blkaddr,
3062 		struct f2fs_summary *sum, int type,
3063 		struct f2fs_io_info *fio, bool add_list)
3064 {
3065 	struct sit_info *sit_i = SIT_I(sbi);
3066 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3067 
3068 	down_read(&SM_I(sbi)->curseg_lock);
3069 
3070 	mutex_lock(&curseg->curseg_mutex);
3071 	down_write(&sit_i->sentry_lock);
3072 
3073 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3074 
3075 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3076 
3077 	/*
3078 	 * __add_sum_entry should be resided under the curseg_mutex
3079 	 * because, this function updates a summary entry in the
3080 	 * current summary block.
3081 	 */
3082 	__add_sum_entry(sbi, type, sum);
3083 
3084 	__refresh_next_blkoff(sbi, curseg);
3085 
3086 	stat_inc_block_count(sbi, curseg);
3087 
3088 	/*
3089 	 * SIT information should be updated before segment allocation,
3090 	 * since SSR needs latest valid block information.
3091 	 */
3092 	update_sit_entry(sbi, *new_blkaddr, 1);
3093 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3094 		update_sit_entry(sbi, old_blkaddr, -1);
3095 
3096 	if (!__has_curseg_space(sbi, type))
3097 		sit_i->s_ops->allocate_segment(sbi, type, false);
3098 
3099 	/*
3100 	 * segment dirty status should be updated after segment allocation,
3101 	 * so we just need to update status only one time after previous
3102 	 * segment being closed.
3103 	 */
3104 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3105 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3106 
3107 	up_write(&sit_i->sentry_lock);
3108 
3109 	if (page && IS_NODESEG(type)) {
3110 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3111 
3112 		f2fs_inode_chksum_set(sbi, page);
3113 	}
3114 
3115 	if (add_list) {
3116 		struct f2fs_bio_info *io;
3117 
3118 		INIT_LIST_HEAD(&fio->list);
3119 		fio->in_list = true;
3120 		fio->retry = false;
3121 		io = sbi->write_io[fio->type] + fio->temp;
3122 		spin_lock(&io->io_lock);
3123 		list_add_tail(&fio->list, &io->io_list);
3124 		spin_unlock(&io->io_lock);
3125 	}
3126 
3127 	mutex_unlock(&curseg->curseg_mutex);
3128 
3129 	up_read(&SM_I(sbi)->curseg_lock);
3130 }
3131 
3132 static void update_device_state(struct f2fs_io_info *fio)
3133 {
3134 	struct f2fs_sb_info *sbi = fio->sbi;
3135 	unsigned int devidx;
3136 
3137 	if (!f2fs_is_multi_device(sbi))
3138 		return;
3139 
3140 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3141 
3142 	/* update device state for fsync */
3143 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3144 
3145 	/* update device state for checkpoint */
3146 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3147 		spin_lock(&sbi->dev_lock);
3148 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3149 		spin_unlock(&sbi->dev_lock);
3150 	}
3151 }
3152 
3153 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3154 {
3155 	int type = __get_segment_type(fio);
3156 	bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3157 
3158 	if (keep_order)
3159 		down_read(&fio->sbi->io_order_lock);
3160 reallocate:
3161 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3162 			&fio->new_blkaddr, sum, type, fio, true);
3163 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3164 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3165 					fio->old_blkaddr, fio->old_blkaddr);
3166 
3167 	/* writeout dirty page into bdev */
3168 	f2fs_submit_page_write(fio);
3169 	if (fio->retry) {
3170 		fio->old_blkaddr = fio->new_blkaddr;
3171 		goto reallocate;
3172 	}
3173 
3174 	update_device_state(fio);
3175 
3176 	if (keep_order)
3177 		up_read(&fio->sbi->io_order_lock);
3178 }
3179 
3180 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3181 					enum iostat_type io_type)
3182 {
3183 	struct f2fs_io_info fio = {
3184 		.sbi = sbi,
3185 		.type = META,
3186 		.temp = HOT,
3187 		.op = REQ_OP_WRITE,
3188 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3189 		.old_blkaddr = page->index,
3190 		.new_blkaddr = page->index,
3191 		.page = page,
3192 		.encrypted_page = NULL,
3193 		.in_list = false,
3194 	};
3195 
3196 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3197 		fio.op_flags &= ~REQ_META;
3198 
3199 	set_page_writeback(page);
3200 	ClearPageError(page);
3201 	f2fs_submit_page_write(&fio);
3202 
3203 	stat_inc_meta_count(sbi, page->index);
3204 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3205 }
3206 
3207 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3208 {
3209 	struct f2fs_summary sum;
3210 
3211 	set_summary(&sum, nid, 0, 0);
3212 	do_write_page(&sum, fio);
3213 
3214 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3215 }
3216 
3217 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3218 					struct f2fs_io_info *fio)
3219 {
3220 	struct f2fs_sb_info *sbi = fio->sbi;
3221 	struct f2fs_summary sum;
3222 
3223 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3224 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3225 	do_write_page(&sum, fio);
3226 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3227 
3228 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3229 }
3230 
3231 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3232 {
3233 	int err;
3234 	struct f2fs_sb_info *sbi = fio->sbi;
3235 	unsigned int segno;
3236 
3237 	fio->new_blkaddr = fio->old_blkaddr;
3238 	/* i/o temperature is needed for passing down write hints */
3239 	__get_segment_type(fio);
3240 
3241 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3242 
3243 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3244 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3245 		return -EFAULT;
3246 	}
3247 
3248 	stat_inc_inplace_blocks(fio->sbi);
3249 
3250 	if (fio->bio)
3251 		err = f2fs_merge_page_bio(fio);
3252 	else
3253 		err = f2fs_submit_page_bio(fio);
3254 	if (!err) {
3255 		update_device_state(fio);
3256 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3257 	}
3258 
3259 	return err;
3260 }
3261 
3262 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3263 						unsigned int segno)
3264 {
3265 	int i;
3266 
3267 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3268 		if (CURSEG_I(sbi, i)->segno == segno)
3269 			break;
3270 	}
3271 	return i;
3272 }
3273 
3274 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3275 				block_t old_blkaddr, block_t new_blkaddr,
3276 				bool recover_curseg, bool recover_newaddr)
3277 {
3278 	struct sit_info *sit_i = SIT_I(sbi);
3279 	struct curseg_info *curseg;
3280 	unsigned int segno, old_cursegno;
3281 	struct seg_entry *se;
3282 	int type;
3283 	unsigned short old_blkoff;
3284 
3285 	segno = GET_SEGNO(sbi, new_blkaddr);
3286 	se = get_seg_entry(sbi, segno);
3287 	type = se->type;
3288 
3289 	down_write(&SM_I(sbi)->curseg_lock);
3290 
3291 	if (!recover_curseg) {
3292 		/* for recovery flow */
3293 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3294 			if (old_blkaddr == NULL_ADDR)
3295 				type = CURSEG_COLD_DATA;
3296 			else
3297 				type = CURSEG_WARM_DATA;
3298 		}
3299 	} else {
3300 		if (IS_CURSEG(sbi, segno)) {
3301 			/* se->type is volatile as SSR allocation */
3302 			type = __f2fs_get_curseg(sbi, segno);
3303 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3304 		} else {
3305 			type = CURSEG_WARM_DATA;
3306 		}
3307 	}
3308 
3309 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3310 	curseg = CURSEG_I(sbi, type);
3311 
3312 	mutex_lock(&curseg->curseg_mutex);
3313 	down_write(&sit_i->sentry_lock);
3314 
3315 	old_cursegno = curseg->segno;
3316 	old_blkoff = curseg->next_blkoff;
3317 
3318 	/* change the current segment */
3319 	if (segno != curseg->segno) {
3320 		curseg->next_segno = segno;
3321 		change_curseg(sbi, type);
3322 	}
3323 
3324 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3325 	__add_sum_entry(sbi, type, sum);
3326 
3327 	if (!recover_curseg || recover_newaddr)
3328 		update_sit_entry(sbi, new_blkaddr, 1);
3329 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3330 		invalidate_mapping_pages(META_MAPPING(sbi),
3331 					old_blkaddr, old_blkaddr);
3332 		update_sit_entry(sbi, old_blkaddr, -1);
3333 	}
3334 
3335 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3336 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3337 
3338 	locate_dirty_segment(sbi, old_cursegno);
3339 
3340 	if (recover_curseg) {
3341 		if (old_cursegno != curseg->segno) {
3342 			curseg->next_segno = old_cursegno;
3343 			change_curseg(sbi, type);
3344 		}
3345 		curseg->next_blkoff = old_blkoff;
3346 	}
3347 
3348 	up_write(&sit_i->sentry_lock);
3349 	mutex_unlock(&curseg->curseg_mutex);
3350 	up_write(&SM_I(sbi)->curseg_lock);
3351 }
3352 
3353 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3354 				block_t old_addr, block_t new_addr,
3355 				unsigned char version, bool recover_curseg,
3356 				bool recover_newaddr)
3357 {
3358 	struct f2fs_summary sum;
3359 
3360 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3361 
3362 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3363 					recover_curseg, recover_newaddr);
3364 
3365 	f2fs_update_data_blkaddr(dn, new_addr);
3366 }
3367 
3368 void f2fs_wait_on_page_writeback(struct page *page,
3369 				enum page_type type, bool ordered, bool locked)
3370 {
3371 	if (PageWriteback(page)) {
3372 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3373 
3374 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3375 		if (ordered) {
3376 			wait_on_page_writeback(page);
3377 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3378 		} else {
3379 			wait_for_stable_page(page);
3380 		}
3381 	}
3382 }
3383 
3384 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3385 {
3386 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3387 	struct page *cpage;
3388 
3389 	if (!f2fs_post_read_required(inode))
3390 		return;
3391 
3392 	if (!__is_valid_data_blkaddr(blkaddr))
3393 		return;
3394 
3395 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3396 	if (cpage) {
3397 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3398 		f2fs_put_page(cpage, 1);
3399 	}
3400 }
3401 
3402 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3403 								block_t len)
3404 {
3405 	block_t i;
3406 
3407 	for (i = 0; i < len; i++)
3408 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3409 }
3410 
3411 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3412 {
3413 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3414 	struct curseg_info *seg_i;
3415 	unsigned char *kaddr;
3416 	struct page *page;
3417 	block_t start;
3418 	int i, j, offset;
3419 
3420 	start = start_sum_block(sbi);
3421 
3422 	page = f2fs_get_meta_page(sbi, start++);
3423 	if (IS_ERR(page))
3424 		return PTR_ERR(page);
3425 	kaddr = (unsigned char *)page_address(page);
3426 
3427 	/* Step 1: restore nat cache */
3428 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3429 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3430 
3431 	/* Step 2: restore sit cache */
3432 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3433 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3434 	offset = 2 * SUM_JOURNAL_SIZE;
3435 
3436 	/* Step 3: restore summary entries */
3437 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3438 		unsigned short blk_off;
3439 		unsigned int segno;
3440 
3441 		seg_i = CURSEG_I(sbi, i);
3442 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3443 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3444 		seg_i->next_segno = segno;
3445 		reset_curseg(sbi, i, 0);
3446 		seg_i->alloc_type = ckpt->alloc_type[i];
3447 		seg_i->next_blkoff = blk_off;
3448 
3449 		if (seg_i->alloc_type == SSR)
3450 			blk_off = sbi->blocks_per_seg;
3451 
3452 		for (j = 0; j < blk_off; j++) {
3453 			struct f2fs_summary *s;
3454 			s = (struct f2fs_summary *)(kaddr + offset);
3455 			seg_i->sum_blk->entries[j] = *s;
3456 			offset += SUMMARY_SIZE;
3457 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3458 						SUM_FOOTER_SIZE)
3459 				continue;
3460 
3461 			f2fs_put_page(page, 1);
3462 			page = NULL;
3463 
3464 			page = f2fs_get_meta_page(sbi, start++);
3465 			if (IS_ERR(page))
3466 				return PTR_ERR(page);
3467 			kaddr = (unsigned char *)page_address(page);
3468 			offset = 0;
3469 		}
3470 	}
3471 	f2fs_put_page(page, 1);
3472 	return 0;
3473 }
3474 
3475 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3476 {
3477 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3478 	struct f2fs_summary_block *sum;
3479 	struct curseg_info *curseg;
3480 	struct page *new;
3481 	unsigned short blk_off;
3482 	unsigned int segno = 0;
3483 	block_t blk_addr = 0;
3484 	int err = 0;
3485 
3486 	/* get segment number and block addr */
3487 	if (IS_DATASEG(type)) {
3488 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3489 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3490 							CURSEG_HOT_DATA]);
3491 		if (__exist_node_summaries(sbi))
3492 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3493 		else
3494 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3495 	} else {
3496 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3497 							CURSEG_HOT_NODE]);
3498 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3499 							CURSEG_HOT_NODE]);
3500 		if (__exist_node_summaries(sbi))
3501 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3502 							type - CURSEG_HOT_NODE);
3503 		else
3504 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3505 	}
3506 
3507 	new = f2fs_get_meta_page(sbi, blk_addr);
3508 	if (IS_ERR(new))
3509 		return PTR_ERR(new);
3510 	sum = (struct f2fs_summary_block *)page_address(new);
3511 
3512 	if (IS_NODESEG(type)) {
3513 		if (__exist_node_summaries(sbi)) {
3514 			struct f2fs_summary *ns = &sum->entries[0];
3515 			int i;
3516 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3517 				ns->version = 0;
3518 				ns->ofs_in_node = 0;
3519 			}
3520 		} else {
3521 			err = f2fs_restore_node_summary(sbi, segno, sum);
3522 			if (err)
3523 				goto out;
3524 		}
3525 	}
3526 
3527 	/* set uncompleted segment to curseg */
3528 	curseg = CURSEG_I(sbi, type);
3529 	mutex_lock(&curseg->curseg_mutex);
3530 
3531 	/* update journal info */
3532 	down_write(&curseg->journal_rwsem);
3533 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3534 	up_write(&curseg->journal_rwsem);
3535 
3536 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3537 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3538 	curseg->next_segno = segno;
3539 	reset_curseg(sbi, type, 0);
3540 	curseg->alloc_type = ckpt->alloc_type[type];
3541 	curseg->next_blkoff = blk_off;
3542 	mutex_unlock(&curseg->curseg_mutex);
3543 out:
3544 	f2fs_put_page(new, 1);
3545 	return err;
3546 }
3547 
3548 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3549 {
3550 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3551 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3552 	int type = CURSEG_HOT_DATA;
3553 	int err;
3554 
3555 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3556 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3557 
3558 		if (npages >= 2)
3559 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3560 							META_CP, true);
3561 
3562 		/* restore for compacted data summary */
3563 		err = read_compacted_summaries(sbi);
3564 		if (err)
3565 			return err;
3566 		type = CURSEG_HOT_NODE;
3567 	}
3568 
3569 	if (__exist_node_summaries(sbi))
3570 		f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3571 					NR_CURSEG_TYPE - type, META_CP, true);
3572 
3573 	for (; type <= CURSEG_COLD_NODE; type++) {
3574 		err = read_normal_summaries(sbi, type);
3575 		if (err)
3576 			return err;
3577 	}
3578 
3579 	/* sanity check for summary blocks */
3580 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3581 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3582 		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3583 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3584 		return -EINVAL;
3585 	}
3586 
3587 	return 0;
3588 }
3589 
3590 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3591 {
3592 	struct page *page;
3593 	unsigned char *kaddr;
3594 	struct f2fs_summary *summary;
3595 	struct curseg_info *seg_i;
3596 	int written_size = 0;
3597 	int i, j;
3598 
3599 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3600 	kaddr = (unsigned char *)page_address(page);
3601 	memset(kaddr, 0, PAGE_SIZE);
3602 
3603 	/* Step 1: write nat cache */
3604 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3605 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3606 	written_size += SUM_JOURNAL_SIZE;
3607 
3608 	/* Step 2: write sit cache */
3609 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3610 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3611 	written_size += SUM_JOURNAL_SIZE;
3612 
3613 	/* Step 3: write summary entries */
3614 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3615 		unsigned short blkoff;
3616 		seg_i = CURSEG_I(sbi, i);
3617 		if (sbi->ckpt->alloc_type[i] == SSR)
3618 			blkoff = sbi->blocks_per_seg;
3619 		else
3620 			blkoff = curseg_blkoff(sbi, i);
3621 
3622 		for (j = 0; j < blkoff; j++) {
3623 			if (!page) {
3624 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3625 				kaddr = (unsigned char *)page_address(page);
3626 				memset(kaddr, 0, PAGE_SIZE);
3627 				written_size = 0;
3628 			}
3629 			summary = (struct f2fs_summary *)(kaddr + written_size);
3630 			*summary = seg_i->sum_blk->entries[j];
3631 			written_size += SUMMARY_SIZE;
3632 
3633 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3634 							SUM_FOOTER_SIZE)
3635 				continue;
3636 
3637 			set_page_dirty(page);
3638 			f2fs_put_page(page, 1);
3639 			page = NULL;
3640 		}
3641 	}
3642 	if (page) {
3643 		set_page_dirty(page);
3644 		f2fs_put_page(page, 1);
3645 	}
3646 }
3647 
3648 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3649 					block_t blkaddr, int type)
3650 {
3651 	int i, end;
3652 	if (IS_DATASEG(type))
3653 		end = type + NR_CURSEG_DATA_TYPE;
3654 	else
3655 		end = type + NR_CURSEG_NODE_TYPE;
3656 
3657 	for (i = type; i < end; i++)
3658 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3659 }
3660 
3661 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3662 {
3663 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3664 		write_compacted_summaries(sbi, start_blk);
3665 	else
3666 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3667 }
3668 
3669 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3670 {
3671 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3672 }
3673 
3674 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3675 					unsigned int val, int alloc)
3676 {
3677 	int i;
3678 
3679 	if (type == NAT_JOURNAL) {
3680 		for (i = 0; i < nats_in_cursum(journal); i++) {
3681 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3682 				return i;
3683 		}
3684 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3685 			return update_nats_in_cursum(journal, 1);
3686 	} else if (type == SIT_JOURNAL) {
3687 		for (i = 0; i < sits_in_cursum(journal); i++)
3688 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3689 				return i;
3690 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3691 			return update_sits_in_cursum(journal, 1);
3692 	}
3693 	return -1;
3694 }
3695 
3696 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3697 					unsigned int segno)
3698 {
3699 	return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3700 }
3701 
3702 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3703 					unsigned int start)
3704 {
3705 	struct sit_info *sit_i = SIT_I(sbi);
3706 	struct page *page;
3707 	pgoff_t src_off, dst_off;
3708 
3709 	src_off = current_sit_addr(sbi, start);
3710 	dst_off = next_sit_addr(sbi, src_off);
3711 
3712 	page = f2fs_grab_meta_page(sbi, dst_off);
3713 	seg_info_to_sit_page(sbi, page, start);
3714 
3715 	set_page_dirty(page);
3716 	set_to_next_sit(sit_i, start);
3717 
3718 	return page;
3719 }
3720 
3721 static struct sit_entry_set *grab_sit_entry_set(void)
3722 {
3723 	struct sit_entry_set *ses =
3724 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3725 
3726 	ses->entry_cnt = 0;
3727 	INIT_LIST_HEAD(&ses->set_list);
3728 	return ses;
3729 }
3730 
3731 static void release_sit_entry_set(struct sit_entry_set *ses)
3732 {
3733 	list_del(&ses->set_list);
3734 	kmem_cache_free(sit_entry_set_slab, ses);
3735 }
3736 
3737 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3738 						struct list_head *head)
3739 {
3740 	struct sit_entry_set *next = ses;
3741 
3742 	if (list_is_last(&ses->set_list, head))
3743 		return;
3744 
3745 	list_for_each_entry_continue(next, head, set_list)
3746 		if (ses->entry_cnt <= next->entry_cnt)
3747 			break;
3748 
3749 	list_move_tail(&ses->set_list, &next->set_list);
3750 }
3751 
3752 static void add_sit_entry(unsigned int segno, struct list_head *head)
3753 {
3754 	struct sit_entry_set *ses;
3755 	unsigned int start_segno = START_SEGNO(segno);
3756 
3757 	list_for_each_entry(ses, head, set_list) {
3758 		if (ses->start_segno == start_segno) {
3759 			ses->entry_cnt++;
3760 			adjust_sit_entry_set(ses, head);
3761 			return;
3762 		}
3763 	}
3764 
3765 	ses = grab_sit_entry_set();
3766 
3767 	ses->start_segno = start_segno;
3768 	ses->entry_cnt++;
3769 	list_add(&ses->set_list, head);
3770 }
3771 
3772 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3773 {
3774 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3775 	struct list_head *set_list = &sm_info->sit_entry_set;
3776 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3777 	unsigned int segno;
3778 
3779 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3780 		add_sit_entry(segno, set_list);
3781 }
3782 
3783 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3784 {
3785 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3786 	struct f2fs_journal *journal = curseg->journal;
3787 	int i;
3788 
3789 	down_write(&curseg->journal_rwsem);
3790 	for (i = 0; i < sits_in_cursum(journal); i++) {
3791 		unsigned int segno;
3792 		bool dirtied;
3793 
3794 		segno = le32_to_cpu(segno_in_journal(journal, i));
3795 		dirtied = __mark_sit_entry_dirty(sbi, segno);
3796 
3797 		if (!dirtied)
3798 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3799 	}
3800 	update_sits_in_cursum(journal, -i);
3801 	up_write(&curseg->journal_rwsem);
3802 }
3803 
3804 /*
3805  * CP calls this function, which flushes SIT entries including sit_journal,
3806  * and moves prefree segs to free segs.
3807  */
3808 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3809 {
3810 	struct sit_info *sit_i = SIT_I(sbi);
3811 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3812 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3813 	struct f2fs_journal *journal = curseg->journal;
3814 	struct sit_entry_set *ses, *tmp;
3815 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3816 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3817 	struct seg_entry *se;
3818 
3819 	down_write(&sit_i->sentry_lock);
3820 
3821 	if (!sit_i->dirty_sentries)
3822 		goto out;
3823 
3824 	/*
3825 	 * add and account sit entries of dirty bitmap in sit entry
3826 	 * set temporarily
3827 	 */
3828 	add_sits_in_set(sbi);
3829 
3830 	/*
3831 	 * if there are no enough space in journal to store dirty sit
3832 	 * entries, remove all entries from journal and add and account
3833 	 * them in sit entry set.
3834 	 */
3835 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3836 								!to_journal)
3837 		remove_sits_in_journal(sbi);
3838 
3839 	/*
3840 	 * there are two steps to flush sit entries:
3841 	 * #1, flush sit entries to journal in current cold data summary block.
3842 	 * #2, flush sit entries to sit page.
3843 	 */
3844 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3845 		struct page *page = NULL;
3846 		struct f2fs_sit_block *raw_sit = NULL;
3847 		unsigned int start_segno = ses->start_segno;
3848 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3849 						(unsigned long)MAIN_SEGS(sbi));
3850 		unsigned int segno = start_segno;
3851 
3852 		if (to_journal &&
3853 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3854 			to_journal = false;
3855 
3856 		if (to_journal) {
3857 			down_write(&curseg->journal_rwsem);
3858 		} else {
3859 			page = get_next_sit_page(sbi, start_segno);
3860 			raw_sit = page_address(page);
3861 		}
3862 
3863 		/* flush dirty sit entries in region of current sit set */
3864 		for_each_set_bit_from(segno, bitmap, end) {
3865 			int offset, sit_offset;
3866 
3867 			se = get_seg_entry(sbi, segno);
3868 #ifdef CONFIG_F2FS_CHECK_FS
3869 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3870 						SIT_VBLOCK_MAP_SIZE))
3871 				f2fs_bug_on(sbi, 1);
3872 #endif
3873 
3874 			/* add discard candidates */
3875 			if (!(cpc->reason & CP_DISCARD)) {
3876 				cpc->trim_start = segno;
3877 				add_discard_addrs(sbi, cpc, false);
3878 			}
3879 
3880 			if (to_journal) {
3881 				offset = f2fs_lookup_journal_in_cursum(journal,
3882 							SIT_JOURNAL, segno, 1);
3883 				f2fs_bug_on(sbi, offset < 0);
3884 				segno_in_journal(journal, offset) =
3885 							cpu_to_le32(segno);
3886 				seg_info_to_raw_sit(se,
3887 					&sit_in_journal(journal, offset));
3888 				check_block_count(sbi, segno,
3889 					&sit_in_journal(journal, offset));
3890 			} else {
3891 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3892 				seg_info_to_raw_sit(se,
3893 						&raw_sit->entries[sit_offset]);
3894 				check_block_count(sbi, segno,
3895 						&raw_sit->entries[sit_offset]);
3896 			}
3897 
3898 			__clear_bit(segno, bitmap);
3899 			sit_i->dirty_sentries--;
3900 			ses->entry_cnt--;
3901 		}
3902 
3903 		if (to_journal)
3904 			up_write(&curseg->journal_rwsem);
3905 		else
3906 			f2fs_put_page(page, 1);
3907 
3908 		f2fs_bug_on(sbi, ses->entry_cnt);
3909 		release_sit_entry_set(ses);
3910 	}
3911 
3912 	f2fs_bug_on(sbi, !list_empty(head));
3913 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3914 out:
3915 	if (cpc->reason & CP_DISCARD) {
3916 		__u64 trim_start = cpc->trim_start;
3917 
3918 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3919 			add_discard_addrs(sbi, cpc, false);
3920 
3921 		cpc->trim_start = trim_start;
3922 	}
3923 	up_write(&sit_i->sentry_lock);
3924 
3925 	set_prefree_as_free_segments(sbi);
3926 }
3927 
3928 static int build_sit_info(struct f2fs_sb_info *sbi)
3929 {
3930 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3931 	struct sit_info *sit_i;
3932 	unsigned int sit_segs, start;
3933 	char *src_bitmap;
3934 	unsigned int bitmap_size;
3935 
3936 	/* allocate memory for SIT information */
3937 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3938 	if (!sit_i)
3939 		return -ENOMEM;
3940 
3941 	SM_I(sbi)->sit_info = sit_i;
3942 
3943 	sit_i->sentries =
3944 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3945 					      MAIN_SEGS(sbi)),
3946 			      GFP_KERNEL);
3947 	if (!sit_i->sentries)
3948 		return -ENOMEM;
3949 
3950 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3951 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3952 								GFP_KERNEL);
3953 	if (!sit_i->dirty_sentries_bitmap)
3954 		return -ENOMEM;
3955 
3956 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3957 		sit_i->sentries[start].cur_valid_map
3958 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3959 		sit_i->sentries[start].ckpt_valid_map
3960 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3961 		if (!sit_i->sentries[start].cur_valid_map ||
3962 				!sit_i->sentries[start].ckpt_valid_map)
3963 			return -ENOMEM;
3964 
3965 #ifdef CONFIG_F2FS_CHECK_FS
3966 		sit_i->sentries[start].cur_valid_map_mir
3967 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3968 		if (!sit_i->sentries[start].cur_valid_map_mir)
3969 			return -ENOMEM;
3970 #endif
3971 
3972 		sit_i->sentries[start].discard_map
3973 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3974 							GFP_KERNEL);
3975 		if (!sit_i->sentries[start].discard_map)
3976 			return -ENOMEM;
3977 	}
3978 
3979 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3980 	if (!sit_i->tmp_map)
3981 		return -ENOMEM;
3982 
3983 	if (__is_large_section(sbi)) {
3984 		sit_i->sec_entries =
3985 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3986 						      MAIN_SECS(sbi)),
3987 				      GFP_KERNEL);
3988 		if (!sit_i->sec_entries)
3989 			return -ENOMEM;
3990 	}
3991 
3992 	/* get information related with SIT */
3993 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3994 
3995 	/* setup SIT bitmap from ckeckpoint pack */
3996 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3997 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3998 
3999 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
4000 	if (!sit_i->sit_bitmap)
4001 		return -ENOMEM;
4002 
4003 #ifdef CONFIG_F2FS_CHECK_FS
4004 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
4005 	if (!sit_i->sit_bitmap_mir)
4006 		return -ENOMEM;
4007 #endif
4008 
4009 	/* init SIT information */
4010 	sit_i->s_ops = &default_salloc_ops;
4011 
4012 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4013 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4014 	sit_i->written_valid_blocks = 0;
4015 	sit_i->bitmap_size = bitmap_size;
4016 	sit_i->dirty_sentries = 0;
4017 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4018 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4019 	sit_i->mounted_time = ktime_get_real_seconds();
4020 	init_rwsem(&sit_i->sentry_lock);
4021 	return 0;
4022 }
4023 
4024 static int build_free_segmap(struct f2fs_sb_info *sbi)
4025 {
4026 	struct free_segmap_info *free_i;
4027 	unsigned int bitmap_size, sec_bitmap_size;
4028 
4029 	/* allocate memory for free segmap information */
4030 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4031 	if (!free_i)
4032 		return -ENOMEM;
4033 
4034 	SM_I(sbi)->free_info = free_i;
4035 
4036 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4037 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4038 	if (!free_i->free_segmap)
4039 		return -ENOMEM;
4040 
4041 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4042 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4043 	if (!free_i->free_secmap)
4044 		return -ENOMEM;
4045 
4046 	/* set all segments as dirty temporarily */
4047 	memset(free_i->free_segmap, 0xff, bitmap_size);
4048 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4049 
4050 	/* init free segmap information */
4051 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4052 	free_i->free_segments = 0;
4053 	free_i->free_sections = 0;
4054 	spin_lock_init(&free_i->segmap_lock);
4055 	return 0;
4056 }
4057 
4058 static int build_curseg(struct f2fs_sb_info *sbi)
4059 {
4060 	struct curseg_info *array;
4061 	int i;
4062 
4063 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4064 			     GFP_KERNEL);
4065 	if (!array)
4066 		return -ENOMEM;
4067 
4068 	SM_I(sbi)->curseg_array = array;
4069 
4070 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4071 		mutex_init(&array[i].curseg_mutex);
4072 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4073 		if (!array[i].sum_blk)
4074 			return -ENOMEM;
4075 		init_rwsem(&array[i].journal_rwsem);
4076 		array[i].journal = f2fs_kzalloc(sbi,
4077 				sizeof(struct f2fs_journal), GFP_KERNEL);
4078 		if (!array[i].journal)
4079 			return -ENOMEM;
4080 		array[i].segno = NULL_SEGNO;
4081 		array[i].next_blkoff = 0;
4082 	}
4083 	return restore_curseg_summaries(sbi);
4084 }
4085 
4086 static int build_sit_entries(struct f2fs_sb_info *sbi)
4087 {
4088 	struct sit_info *sit_i = SIT_I(sbi);
4089 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4090 	struct f2fs_journal *journal = curseg->journal;
4091 	struct seg_entry *se;
4092 	struct f2fs_sit_entry sit;
4093 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4094 	unsigned int i, start, end;
4095 	unsigned int readed, start_blk = 0;
4096 	int err = 0;
4097 	block_t total_node_blocks = 0;
4098 
4099 	do {
4100 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4101 							META_SIT, true);
4102 
4103 		start = start_blk * sit_i->sents_per_block;
4104 		end = (start_blk + readed) * sit_i->sents_per_block;
4105 
4106 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4107 			struct f2fs_sit_block *sit_blk;
4108 			struct page *page;
4109 
4110 			se = &sit_i->sentries[start];
4111 			page = get_current_sit_page(sbi, start);
4112 			if (IS_ERR(page))
4113 				return PTR_ERR(page);
4114 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4115 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4116 			f2fs_put_page(page, 1);
4117 
4118 			err = check_block_count(sbi, start, &sit);
4119 			if (err)
4120 				return err;
4121 			seg_info_from_raw_sit(se, &sit);
4122 			if (IS_NODESEG(se->type))
4123 				total_node_blocks += se->valid_blocks;
4124 
4125 			/* build discard map only one time */
4126 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4127 				memset(se->discard_map, 0xff,
4128 					SIT_VBLOCK_MAP_SIZE);
4129 			} else {
4130 				memcpy(se->discard_map,
4131 					se->cur_valid_map,
4132 					SIT_VBLOCK_MAP_SIZE);
4133 				sbi->discard_blks +=
4134 					sbi->blocks_per_seg -
4135 					se->valid_blocks;
4136 			}
4137 
4138 			if (__is_large_section(sbi))
4139 				get_sec_entry(sbi, start)->valid_blocks +=
4140 							se->valid_blocks;
4141 		}
4142 		start_blk += readed;
4143 	} while (start_blk < sit_blk_cnt);
4144 
4145 	down_read(&curseg->journal_rwsem);
4146 	for (i = 0; i < sits_in_cursum(journal); i++) {
4147 		unsigned int old_valid_blocks;
4148 
4149 		start = le32_to_cpu(segno_in_journal(journal, i));
4150 		if (start >= MAIN_SEGS(sbi)) {
4151 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4152 				 start);
4153 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4154 			err = -EINVAL;
4155 			break;
4156 		}
4157 
4158 		se = &sit_i->sentries[start];
4159 		sit = sit_in_journal(journal, i);
4160 
4161 		old_valid_blocks = se->valid_blocks;
4162 		if (IS_NODESEG(se->type))
4163 			total_node_blocks -= old_valid_blocks;
4164 
4165 		err = check_block_count(sbi, start, &sit);
4166 		if (err)
4167 			break;
4168 		seg_info_from_raw_sit(se, &sit);
4169 		if (IS_NODESEG(se->type))
4170 			total_node_blocks += se->valid_blocks;
4171 
4172 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4173 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4174 		} else {
4175 			memcpy(se->discard_map, se->cur_valid_map,
4176 						SIT_VBLOCK_MAP_SIZE);
4177 			sbi->discard_blks += old_valid_blocks;
4178 			sbi->discard_blks -= se->valid_blocks;
4179 		}
4180 
4181 		if (__is_large_section(sbi)) {
4182 			get_sec_entry(sbi, start)->valid_blocks +=
4183 							se->valid_blocks;
4184 			get_sec_entry(sbi, start)->valid_blocks -=
4185 							old_valid_blocks;
4186 		}
4187 	}
4188 	up_read(&curseg->journal_rwsem);
4189 
4190 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4191 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4192 			 total_node_blocks, valid_node_count(sbi));
4193 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4194 		err = -EINVAL;
4195 	}
4196 
4197 	return err;
4198 }
4199 
4200 static void init_free_segmap(struct f2fs_sb_info *sbi)
4201 {
4202 	unsigned int start;
4203 	int type;
4204 
4205 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4206 		struct seg_entry *sentry = get_seg_entry(sbi, start);
4207 		if (!sentry->valid_blocks)
4208 			__set_free(sbi, start);
4209 		else
4210 			SIT_I(sbi)->written_valid_blocks +=
4211 						sentry->valid_blocks;
4212 	}
4213 
4214 	/* set use the current segments */
4215 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4216 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4217 		__set_test_and_inuse(sbi, curseg_t->segno);
4218 	}
4219 }
4220 
4221 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4222 {
4223 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4224 	struct free_segmap_info *free_i = FREE_I(sbi);
4225 	unsigned int segno = 0, offset = 0;
4226 	unsigned short valid_blocks;
4227 
4228 	while (1) {
4229 		/* find dirty segment based on free segmap */
4230 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4231 		if (segno >= MAIN_SEGS(sbi))
4232 			break;
4233 		offset = segno + 1;
4234 		valid_blocks = get_valid_blocks(sbi, segno, false);
4235 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4236 			continue;
4237 		if (valid_blocks > sbi->blocks_per_seg) {
4238 			f2fs_bug_on(sbi, 1);
4239 			continue;
4240 		}
4241 		mutex_lock(&dirty_i->seglist_lock);
4242 		__locate_dirty_segment(sbi, segno, DIRTY);
4243 		mutex_unlock(&dirty_i->seglist_lock);
4244 	}
4245 }
4246 
4247 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4248 {
4249 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4250 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4251 
4252 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4253 	if (!dirty_i->victim_secmap)
4254 		return -ENOMEM;
4255 	return 0;
4256 }
4257 
4258 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4259 {
4260 	struct dirty_seglist_info *dirty_i;
4261 	unsigned int bitmap_size, i;
4262 
4263 	/* allocate memory for dirty segments list information */
4264 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4265 								GFP_KERNEL);
4266 	if (!dirty_i)
4267 		return -ENOMEM;
4268 
4269 	SM_I(sbi)->dirty_info = dirty_i;
4270 	mutex_init(&dirty_i->seglist_lock);
4271 
4272 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4273 
4274 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4275 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4276 								GFP_KERNEL);
4277 		if (!dirty_i->dirty_segmap[i])
4278 			return -ENOMEM;
4279 	}
4280 
4281 	init_dirty_segmap(sbi);
4282 	return init_victim_secmap(sbi);
4283 }
4284 
4285 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4286 {
4287 	int i;
4288 
4289 	/*
4290 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4291 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4292 	 */
4293 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4294 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4295 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4296 		unsigned int blkofs = curseg->next_blkoff;
4297 
4298 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4299 			goto out;
4300 
4301 		if (curseg->alloc_type == SSR)
4302 			continue;
4303 
4304 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4305 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4306 				continue;
4307 out:
4308 			f2fs_err(sbi,
4309 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4310 				 i, curseg->segno, curseg->alloc_type,
4311 				 curseg->next_blkoff, blkofs);
4312 			return -EINVAL;
4313 		}
4314 	}
4315 	return 0;
4316 }
4317 
4318 /*
4319  * Update min, max modified time for cost-benefit GC algorithm
4320  */
4321 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4322 {
4323 	struct sit_info *sit_i = SIT_I(sbi);
4324 	unsigned int segno;
4325 
4326 	down_write(&sit_i->sentry_lock);
4327 
4328 	sit_i->min_mtime = ULLONG_MAX;
4329 
4330 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4331 		unsigned int i;
4332 		unsigned long long mtime = 0;
4333 
4334 		for (i = 0; i < sbi->segs_per_sec; i++)
4335 			mtime += get_seg_entry(sbi, segno + i)->mtime;
4336 
4337 		mtime = div_u64(mtime, sbi->segs_per_sec);
4338 
4339 		if (sit_i->min_mtime > mtime)
4340 			sit_i->min_mtime = mtime;
4341 	}
4342 	sit_i->max_mtime = get_mtime(sbi, false);
4343 	up_write(&sit_i->sentry_lock);
4344 }
4345 
4346 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4347 {
4348 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4349 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4350 	struct f2fs_sm_info *sm_info;
4351 	int err;
4352 
4353 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4354 	if (!sm_info)
4355 		return -ENOMEM;
4356 
4357 	/* init sm info */
4358 	sbi->sm_info = sm_info;
4359 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4360 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4361 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4362 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4363 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4364 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4365 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4366 	sm_info->rec_prefree_segments = sm_info->main_segments *
4367 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4368 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4369 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4370 
4371 	if (!test_opt(sbi, LFS))
4372 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4373 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4374 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4375 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4376 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4377 	sm_info->min_ssr_sections = reserved_sections(sbi);
4378 
4379 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
4380 
4381 	init_rwsem(&sm_info->curseg_lock);
4382 
4383 	if (!f2fs_readonly(sbi->sb)) {
4384 		err = f2fs_create_flush_cmd_control(sbi);
4385 		if (err)
4386 			return err;
4387 	}
4388 
4389 	err = create_discard_cmd_control(sbi);
4390 	if (err)
4391 		return err;
4392 
4393 	err = build_sit_info(sbi);
4394 	if (err)
4395 		return err;
4396 	err = build_free_segmap(sbi);
4397 	if (err)
4398 		return err;
4399 	err = build_curseg(sbi);
4400 	if (err)
4401 		return err;
4402 
4403 	/* reinit free segmap based on SIT */
4404 	err = build_sit_entries(sbi);
4405 	if (err)
4406 		return err;
4407 
4408 	init_free_segmap(sbi);
4409 	err = build_dirty_segmap(sbi);
4410 	if (err)
4411 		return err;
4412 
4413 	err = sanity_check_curseg(sbi);
4414 	if (err)
4415 		return err;
4416 
4417 	init_min_max_mtime(sbi);
4418 	return 0;
4419 }
4420 
4421 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4422 		enum dirty_type dirty_type)
4423 {
4424 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4425 
4426 	mutex_lock(&dirty_i->seglist_lock);
4427 	kvfree(dirty_i->dirty_segmap[dirty_type]);
4428 	dirty_i->nr_dirty[dirty_type] = 0;
4429 	mutex_unlock(&dirty_i->seglist_lock);
4430 }
4431 
4432 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4433 {
4434 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4435 	kvfree(dirty_i->victim_secmap);
4436 }
4437 
4438 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4439 {
4440 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4441 	int i;
4442 
4443 	if (!dirty_i)
4444 		return;
4445 
4446 	/* discard pre-free/dirty segments list */
4447 	for (i = 0; i < NR_DIRTY_TYPE; i++)
4448 		discard_dirty_segmap(sbi, i);
4449 
4450 	destroy_victim_secmap(sbi);
4451 	SM_I(sbi)->dirty_info = NULL;
4452 	kvfree(dirty_i);
4453 }
4454 
4455 static void destroy_curseg(struct f2fs_sb_info *sbi)
4456 {
4457 	struct curseg_info *array = SM_I(sbi)->curseg_array;
4458 	int i;
4459 
4460 	if (!array)
4461 		return;
4462 	SM_I(sbi)->curseg_array = NULL;
4463 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4464 		kvfree(array[i].sum_blk);
4465 		kvfree(array[i].journal);
4466 	}
4467 	kvfree(array);
4468 }
4469 
4470 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4471 {
4472 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4473 	if (!free_i)
4474 		return;
4475 	SM_I(sbi)->free_info = NULL;
4476 	kvfree(free_i->free_segmap);
4477 	kvfree(free_i->free_secmap);
4478 	kvfree(free_i);
4479 }
4480 
4481 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4482 {
4483 	struct sit_info *sit_i = SIT_I(sbi);
4484 	unsigned int start;
4485 
4486 	if (!sit_i)
4487 		return;
4488 
4489 	if (sit_i->sentries) {
4490 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
4491 			kvfree(sit_i->sentries[start].cur_valid_map);
4492 #ifdef CONFIG_F2FS_CHECK_FS
4493 			kvfree(sit_i->sentries[start].cur_valid_map_mir);
4494 #endif
4495 			kvfree(sit_i->sentries[start].ckpt_valid_map);
4496 			kvfree(sit_i->sentries[start].discard_map);
4497 		}
4498 	}
4499 	kvfree(sit_i->tmp_map);
4500 
4501 	kvfree(sit_i->sentries);
4502 	kvfree(sit_i->sec_entries);
4503 	kvfree(sit_i->dirty_sentries_bitmap);
4504 
4505 	SM_I(sbi)->sit_info = NULL;
4506 	kvfree(sit_i->sit_bitmap);
4507 #ifdef CONFIG_F2FS_CHECK_FS
4508 	kvfree(sit_i->sit_bitmap_mir);
4509 #endif
4510 	kvfree(sit_i);
4511 }
4512 
4513 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4514 {
4515 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4516 
4517 	if (!sm_info)
4518 		return;
4519 	f2fs_destroy_flush_cmd_control(sbi, true);
4520 	destroy_discard_cmd_control(sbi);
4521 	destroy_dirty_segmap(sbi);
4522 	destroy_curseg(sbi);
4523 	destroy_free_segmap(sbi);
4524 	destroy_sit_info(sbi);
4525 	sbi->sm_info = NULL;
4526 	kvfree(sm_info);
4527 }
4528 
4529 int __init f2fs_create_segment_manager_caches(void)
4530 {
4531 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4532 			sizeof(struct discard_entry));
4533 	if (!discard_entry_slab)
4534 		goto fail;
4535 
4536 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4537 			sizeof(struct discard_cmd));
4538 	if (!discard_cmd_slab)
4539 		goto destroy_discard_entry;
4540 
4541 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4542 			sizeof(struct sit_entry_set));
4543 	if (!sit_entry_set_slab)
4544 		goto destroy_discard_cmd;
4545 
4546 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4547 			sizeof(struct inmem_pages));
4548 	if (!inmem_entry_slab)
4549 		goto destroy_sit_entry_set;
4550 	return 0;
4551 
4552 destroy_sit_entry_set:
4553 	kmem_cache_destroy(sit_entry_set_slab);
4554 destroy_discard_cmd:
4555 	kmem_cache_destroy(discard_cmd_slab);
4556 destroy_discard_entry:
4557 	kmem_cache_destroy(discard_entry_slab);
4558 fail:
4559 	return -ENOMEM;
4560 }
4561 
4562 void f2fs_destroy_segment_manager_caches(void)
4563 {
4564 	kmem_cache_destroy(sit_entry_set_slab);
4565 	kmem_cache_destroy(discard_cmd_slab);
4566 	kmem_cache_destroy(discard_entry_slab);
4567 	kmem_cache_destroy(inmem_entry_slab);
4568 }
4569