1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 void register_inmem_page(struct inode *inode, struct page *page) 170 { 171 struct f2fs_inode_info *fi = F2FS_I(inode); 172 struct inmem_pages *new; 173 174 f2fs_trace_pid(page); 175 176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 177 SetPagePrivate(page); 178 179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 180 181 /* add atomic page indices to the list */ 182 new->page = page; 183 INIT_LIST_HEAD(&new->list); 184 185 /* increase reference count with clean state */ 186 mutex_lock(&fi->inmem_lock); 187 get_page(page); 188 list_add_tail(&new->list, &fi->inmem_pages); 189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 190 mutex_unlock(&fi->inmem_lock); 191 192 trace_f2fs_register_inmem_page(page, INMEM); 193 } 194 195 static int __revoke_inmem_pages(struct inode *inode, 196 struct list_head *head, bool drop, bool recover) 197 { 198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 199 struct inmem_pages *cur, *tmp; 200 int err = 0; 201 202 list_for_each_entry_safe(cur, tmp, head, list) { 203 struct page *page = cur->page; 204 205 if (drop) 206 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 207 208 lock_page(page); 209 210 if (recover) { 211 struct dnode_of_data dn; 212 struct node_info ni; 213 214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 215 216 set_new_dnode(&dn, inode, NULL, NULL, 0); 217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 218 err = -EAGAIN; 219 goto next; 220 } 221 get_node_info(sbi, dn.nid, &ni); 222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 223 cur->old_addr, ni.version, true, true); 224 f2fs_put_dnode(&dn); 225 } 226 next: 227 /* we don't need to invalidate this in the sccessful status */ 228 if (drop || recover) 229 ClearPageUptodate(page); 230 set_page_private(page, 0); 231 ClearPagePrivate(page); 232 f2fs_put_page(page, 1); 233 234 list_del(&cur->list); 235 kmem_cache_free(inmem_entry_slab, cur); 236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 237 } 238 return err; 239 } 240 241 void drop_inmem_pages(struct inode *inode) 242 { 243 struct f2fs_inode_info *fi = F2FS_I(inode); 244 245 mutex_lock(&fi->inmem_lock); 246 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 247 mutex_unlock(&fi->inmem_lock); 248 249 clear_inode_flag(inode, FI_ATOMIC_FILE); 250 stat_dec_atomic_write(inode); 251 } 252 253 static int __commit_inmem_pages(struct inode *inode, 254 struct list_head *revoke_list) 255 { 256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 257 struct f2fs_inode_info *fi = F2FS_I(inode); 258 struct inmem_pages *cur, *tmp; 259 struct f2fs_io_info fio = { 260 .sbi = sbi, 261 .type = DATA, 262 .op = REQ_OP_WRITE, 263 .op_flags = REQ_SYNC | REQ_PRIO, 264 .encrypted_page = NULL, 265 }; 266 pgoff_t last_idx = ULONG_MAX; 267 int err = 0; 268 269 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 270 struct page *page = cur->page; 271 272 lock_page(page); 273 if (page->mapping == inode->i_mapping) { 274 trace_f2fs_commit_inmem_page(page, INMEM); 275 276 set_page_dirty(page); 277 f2fs_wait_on_page_writeback(page, DATA, true); 278 if (clear_page_dirty_for_io(page)) { 279 inode_dec_dirty_pages(inode); 280 remove_dirty_inode(inode); 281 } 282 283 fio.page = page; 284 err = do_write_data_page(&fio); 285 if (err) { 286 unlock_page(page); 287 break; 288 } 289 290 /* record old blkaddr for revoking */ 291 cur->old_addr = fio.old_blkaddr; 292 last_idx = page->index; 293 } 294 unlock_page(page); 295 list_move_tail(&cur->list, revoke_list); 296 } 297 298 if (last_idx != ULONG_MAX) 299 f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx, 300 DATA, WRITE); 301 302 if (!err) 303 __revoke_inmem_pages(inode, revoke_list, false, false); 304 305 return err; 306 } 307 308 int commit_inmem_pages(struct inode *inode) 309 { 310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 311 struct f2fs_inode_info *fi = F2FS_I(inode); 312 struct list_head revoke_list; 313 int err; 314 315 INIT_LIST_HEAD(&revoke_list); 316 f2fs_balance_fs(sbi, true); 317 f2fs_lock_op(sbi); 318 319 set_inode_flag(inode, FI_ATOMIC_COMMIT); 320 321 mutex_lock(&fi->inmem_lock); 322 err = __commit_inmem_pages(inode, &revoke_list); 323 if (err) { 324 int ret; 325 /* 326 * try to revoke all committed pages, but still we could fail 327 * due to no memory or other reason, if that happened, EAGAIN 328 * will be returned, which means in such case, transaction is 329 * already not integrity, caller should use journal to do the 330 * recovery or rewrite & commit last transaction. For other 331 * error number, revoking was done by filesystem itself. 332 */ 333 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 334 if (ret) 335 err = ret; 336 337 /* drop all uncommitted pages */ 338 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 339 } 340 mutex_unlock(&fi->inmem_lock); 341 342 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 343 344 f2fs_unlock_op(sbi); 345 return err; 346 } 347 348 /* 349 * This function balances dirty node and dentry pages. 350 * In addition, it controls garbage collection. 351 */ 352 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 353 { 354 #ifdef CONFIG_F2FS_FAULT_INJECTION 355 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 356 f2fs_stop_checkpoint(sbi, false); 357 #endif 358 359 if (!need) 360 return; 361 362 /* balance_fs_bg is able to be pending */ 363 if (excess_cached_nats(sbi)) 364 f2fs_balance_fs_bg(sbi); 365 366 /* 367 * We should do GC or end up with checkpoint, if there are so many dirty 368 * dir/node pages without enough free segments. 369 */ 370 if (has_not_enough_free_secs(sbi, 0, 0)) { 371 mutex_lock(&sbi->gc_mutex); 372 f2fs_gc(sbi, false, false); 373 } 374 } 375 376 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 377 { 378 /* try to shrink extent cache when there is no enough memory */ 379 if (!available_free_memory(sbi, EXTENT_CACHE)) 380 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 381 382 /* check the # of cached NAT entries */ 383 if (!available_free_memory(sbi, NAT_ENTRIES)) 384 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 385 386 if (!available_free_memory(sbi, FREE_NIDS)) 387 try_to_free_nids(sbi, MAX_FREE_NIDS); 388 else 389 build_free_nids(sbi, false); 390 391 if (!is_idle(sbi)) 392 return; 393 394 /* checkpoint is the only way to shrink partial cached entries */ 395 if (!available_free_memory(sbi, NAT_ENTRIES) || 396 !available_free_memory(sbi, INO_ENTRIES) || 397 excess_prefree_segs(sbi) || 398 excess_dirty_nats(sbi) || 399 f2fs_time_over(sbi, CP_TIME)) { 400 if (test_opt(sbi, DATA_FLUSH)) { 401 struct blk_plug plug; 402 403 blk_start_plug(&plug); 404 sync_dirty_inodes(sbi, FILE_INODE); 405 blk_finish_plug(&plug); 406 } 407 f2fs_sync_fs(sbi->sb, true); 408 stat_inc_bg_cp_count(sbi->stat_info); 409 } 410 } 411 412 static int __submit_flush_wait(struct block_device *bdev) 413 { 414 struct bio *bio = f2fs_bio_alloc(0); 415 int ret; 416 417 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 418 bio->bi_bdev = bdev; 419 ret = submit_bio_wait(bio); 420 bio_put(bio); 421 return ret; 422 } 423 424 static int submit_flush_wait(struct f2fs_sb_info *sbi) 425 { 426 int ret = __submit_flush_wait(sbi->sb->s_bdev); 427 int i; 428 429 if (sbi->s_ndevs && !ret) { 430 for (i = 1; i < sbi->s_ndevs; i++) { 431 trace_f2fs_issue_flush(FDEV(i).bdev, 432 test_opt(sbi, NOBARRIER), 433 test_opt(sbi, FLUSH_MERGE)); 434 ret = __submit_flush_wait(FDEV(i).bdev); 435 if (ret) 436 break; 437 } 438 } 439 return ret; 440 } 441 442 static int issue_flush_thread(void *data) 443 { 444 struct f2fs_sb_info *sbi = data; 445 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 446 wait_queue_head_t *q = &fcc->flush_wait_queue; 447 repeat: 448 if (kthread_should_stop()) 449 return 0; 450 451 if (!llist_empty(&fcc->issue_list)) { 452 struct flush_cmd *cmd, *next; 453 int ret; 454 455 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 456 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 457 458 ret = submit_flush_wait(sbi); 459 llist_for_each_entry_safe(cmd, next, 460 fcc->dispatch_list, llnode) { 461 cmd->ret = ret; 462 complete(&cmd->wait); 463 } 464 fcc->dispatch_list = NULL; 465 } 466 467 wait_event_interruptible(*q, 468 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 469 goto repeat; 470 } 471 472 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 473 { 474 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 475 struct flush_cmd cmd; 476 477 if (test_opt(sbi, NOBARRIER)) 478 return 0; 479 480 if (!test_opt(sbi, FLUSH_MERGE)) 481 return submit_flush_wait(sbi); 482 483 if (!atomic_read(&fcc->submit_flush)) { 484 int ret; 485 486 atomic_inc(&fcc->submit_flush); 487 ret = submit_flush_wait(sbi); 488 atomic_dec(&fcc->submit_flush); 489 return ret; 490 } 491 492 init_completion(&cmd.wait); 493 494 atomic_inc(&fcc->submit_flush); 495 llist_add(&cmd.llnode, &fcc->issue_list); 496 497 if (!fcc->dispatch_list) 498 wake_up(&fcc->flush_wait_queue); 499 500 if (fcc->f2fs_issue_flush) { 501 wait_for_completion(&cmd.wait); 502 atomic_dec(&fcc->submit_flush); 503 } else { 504 llist_del_all(&fcc->issue_list); 505 atomic_set(&fcc->submit_flush, 0); 506 } 507 508 return cmd.ret; 509 } 510 511 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 512 { 513 dev_t dev = sbi->sb->s_bdev->bd_dev; 514 struct flush_cmd_control *fcc; 515 int err = 0; 516 517 if (SM_I(sbi)->fcc_info) { 518 fcc = SM_I(sbi)->fcc_info; 519 goto init_thread; 520 } 521 522 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 523 if (!fcc) 524 return -ENOMEM; 525 atomic_set(&fcc->submit_flush, 0); 526 init_waitqueue_head(&fcc->flush_wait_queue); 527 init_llist_head(&fcc->issue_list); 528 SM_I(sbi)->fcc_info = fcc; 529 init_thread: 530 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 531 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 532 if (IS_ERR(fcc->f2fs_issue_flush)) { 533 err = PTR_ERR(fcc->f2fs_issue_flush); 534 kfree(fcc); 535 SM_I(sbi)->fcc_info = NULL; 536 return err; 537 } 538 539 return err; 540 } 541 542 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 543 { 544 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 545 546 if (fcc && fcc->f2fs_issue_flush) { 547 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 548 549 fcc->f2fs_issue_flush = NULL; 550 kthread_stop(flush_thread); 551 } 552 if (free) { 553 kfree(fcc); 554 SM_I(sbi)->fcc_info = NULL; 555 } 556 } 557 558 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 559 enum dirty_type dirty_type) 560 { 561 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 562 563 /* need not be added */ 564 if (IS_CURSEG(sbi, segno)) 565 return; 566 567 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 568 dirty_i->nr_dirty[dirty_type]++; 569 570 if (dirty_type == DIRTY) { 571 struct seg_entry *sentry = get_seg_entry(sbi, segno); 572 enum dirty_type t = sentry->type; 573 574 if (unlikely(t >= DIRTY)) { 575 f2fs_bug_on(sbi, 1); 576 return; 577 } 578 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 579 dirty_i->nr_dirty[t]++; 580 } 581 } 582 583 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 584 enum dirty_type dirty_type) 585 { 586 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 587 588 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 589 dirty_i->nr_dirty[dirty_type]--; 590 591 if (dirty_type == DIRTY) { 592 struct seg_entry *sentry = get_seg_entry(sbi, segno); 593 enum dirty_type t = sentry->type; 594 595 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 596 dirty_i->nr_dirty[t]--; 597 598 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 599 clear_bit(GET_SECNO(sbi, segno), 600 dirty_i->victim_secmap); 601 } 602 } 603 604 /* 605 * Should not occur error such as -ENOMEM. 606 * Adding dirty entry into seglist is not critical operation. 607 * If a given segment is one of current working segments, it won't be added. 608 */ 609 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 610 { 611 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 612 unsigned short valid_blocks; 613 614 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 615 return; 616 617 mutex_lock(&dirty_i->seglist_lock); 618 619 valid_blocks = get_valid_blocks(sbi, segno, 0); 620 621 if (valid_blocks == 0) { 622 __locate_dirty_segment(sbi, segno, PRE); 623 __remove_dirty_segment(sbi, segno, DIRTY); 624 } else if (valid_blocks < sbi->blocks_per_seg) { 625 __locate_dirty_segment(sbi, segno, DIRTY); 626 } else { 627 /* Recovery routine with SSR needs this */ 628 __remove_dirty_segment(sbi, segno, DIRTY); 629 } 630 631 mutex_unlock(&dirty_i->seglist_lock); 632 } 633 634 static void __add_discard_cmd(struct f2fs_sb_info *sbi, 635 struct bio *bio, block_t lstart, block_t len) 636 { 637 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 638 struct list_head *cmd_list = &(dcc->discard_cmd_list); 639 struct discard_cmd *dc; 640 641 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 642 INIT_LIST_HEAD(&dc->list); 643 dc->bio = bio; 644 bio->bi_private = dc; 645 dc->lstart = lstart; 646 dc->len = len; 647 dc->state = D_PREP; 648 init_completion(&dc->wait); 649 650 mutex_lock(&dcc->cmd_lock); 651 list_add_tail(&dc->list, cmd_list); 652 mutex_unlock(&dcc->cmd_lock); 653 } 654 655 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc) 656 { 657 int err = dc->bio->bi_error; 658 659 if (dc->state == D_DONE) 660 atomic_dec(&(SM_I(sbi)->dcc_info->submit_discard)); 661 662 if (err == -EOPNOTSUPP) 663 err = 0; 664 665 if (err) 666 f2fs_msg(sbi->sb, KERN_INFO, 667 "Issue discard failed, ret: %d", err); 668 bio_put(dc->bio); 669 list_del(&dc->list); 670 kmem_cache_free(discard_cmd_slab, dc); 671 } 672 673 /* This should be covered by global mutex, &sit_i->sentry_lock */ 674 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 675 { 676 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 677 struct list_head *wait_list = &(dcc->discard_cmd_list); 678 struct discard_cmd *dc, *tmp; 679 680 mutex_lock(&dcc->cmd_lock); 681 list_for_each_entry_safe(dc, tmp, wait_list, list) { 682 683 if (blkaddr == NULL_ADDR) { 684 if (dc->state == D_PREP) { 685 dc->state = D_SUBMIT; 686 submit_bio(dc->bio); 687 atomic_inc(&dcc->submit_discard); 688 } 689 wait_for_completion_io(&dc->wait); 690 691 __remove_discard_cmd(sbi, dc); 692 continue; 693 } 694 695 if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) { 696 if (dc->state == D_SUBMIT) 697 wait_for_completion_io(&dc->wait); 698 else 699 __remove_discard_cmd(sbi, dc); 700 } 701 } 702 mutex_unlock(&dcc->cmd_lock); 703 } 704 705 static void f2fs_submit_discard_endio(struct bio *bio) 706 { 707 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 708 709 complete(&dc->wait); 710 dc->state = D_DONE; 711 } 712 713 static int issue_discard_thread(void *data) 714 { 715 struct f2fs_sb_info *sbi = data; 716 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 717 wait_queue_head_t *q = &dcc->discard_wait_queue; 718 struct list_head *cmd_list = &dcc->discard_cmd_list; 719 struct discard_cmd *dc, *tmp; 720 struct blk_plug plug; 721 int iter = 0; 722 repeat: 723 if (kthread_should_stop()) 724 return 0; 725 726 blk_start_plug(&plug); 727 728 mutex_lock(&dcc->cmd_lock); 729 list_for_each_entry_safe(dc, tmp, cmd_list, list) { 730 if (dc->state == D_PREP) { 731 dc->state = D_SUBMIT; 732 submit_bio(dc->bio); 733 atomic_inc(&dcc->submit_discard); 734 if (iter++ > DISCARD_ISSUE_RATE) 735 break; 736 } else if (dc->state == D_DONE) { 737 __remove_discard_cmd(sbi, dc); 738 } 739 } 740 mutex_unlock(&dcc->cmd_lock); 741 742 blk_finish_plug(&plug); 743 744 iter = 0; 745 congestion_wait(BLK_RW_SYNC, HZ/50); 746 747 wait_event_interruptible(*q, 748 kthread_should_stop() || !list_empty(&dcc->discard_cmd_list)); 749 goto repeat; 750 } 751 752 753 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 754 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, 755 struct block_device *bdev, block_t blkstart, block_t blklen) 756 { 757 struct bio *bio = NULL; 758 block_t lblkstart = blkstart; 759 int err; 760 761 trace_f2fs_issue_discard(bdev, blkstart, blklen); 762 763 if (sbi->s_ndevs) { 764 int devi = f2fs_target_device_index(sbi, blkstart); 765 766 blkstart -= FDEV(devi).start_blk; 767 } 768 err = __blkdev_issue_discard(bdev, 769 SECTOR_FROM_BLOCK(blkstart), 770 SECTOR_FROM_BLOCK(blklen), 771 GFP_NOFS, 0, &bio); 772 if (!err && bio) { 773 bio->bi_end_io = f2fs_submit_discard_endio; 774 bio->bi_opf |= REQ_SYNC; 775 776 __add_discard_cmd(sbi, bio, lblkstart, blklen); 777 wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue); 778 } 779 return err; 780 } 781 782 #ifdef CONFIG_BLK_DEV_ZONED 783 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 784 struct block_device *bdev, block_t blkstart, block_t blklen) 785 { 786 sector_t nr_sects = SECTOR_FROM_BLOCK(blklen); 787 sector_t sector; 788 int devi = 0; 789 790 if (sbi->s_ndevs) { 791 devi = f2fs_target_device_index(sbi, blkstart); 792 blkstart -= FDEV(devi).start_blk; 793 } 794 sector = SECTOR_FROM_BLOCK(blkstart); 795 796 if (sector & (bdev_zone_sectors(bdev) - 1) || 797 nr_sects != bdev_zone_sectors(bdev)) { 798 f2fs_msg(sbi->sb, KERN_INFO, 799 "(%d) %s: Unaligned discard attempted (block %x + %x)", 800 devi, sbi->s_ndevs ? FDEV(devi).path: "", 801 blkstart, blklen); 802 return -EIO; 803 } 804 805 /* 806 * We need to know the type of the zone: for conventional zones, 807 * use regular discard if the drive supports it. For sequential 808 * zones, reset the zone write pointer. 809 */ 810 switch (get_blkz_type(sbi, bdev, blkstart)) { 811 812 case BLK_ZONE_TYPE_CONVENTIONAL: 813 if (!blk_queue_discard(bdev_get_queue(bdev))) 814 return 0; 815 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 816 case BLK_ZONE_TYPE_SEQWRITE_REQ: 817 case BLK_ZONE_TYPE_SEQWRITE_PREF: 818 trace_f2fs_issue_reset_zone(bdev, blkstart); 819 return blkdev_reset_zones(bdev, sector, 820 nr_sects, GFP_NOFS); 821 default: 822 /* Unknown zone type: broken device ? */ 823 return -EIO; 824 } 825 } 826 #endif 827 828 static int __issue_discard_async(struct f2fs_sb_info *sbi, 829 struct block_device *bdev, block_t blkstart, block_t blklen) 830 { 831 #ifdef CONFIG_BLK_DEV_ZONED 832 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 833 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 834 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 835 #endif 836 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 837 } 838 839 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 840 block_t blkstart, block_t blklen) 841 { 842 sector_t start = blkstart, len = 0; 843 struct block_device *bdev; 844 struct seg_entry *se; 845 unsigned int offset; 846 block_t i; 847 int err = 0; 848 849 bdev = f2fs_target_device(sbi, blkstart, NULL); 850 851 for (i = blkstart; i < blkstart + blklen; i++, len++) { 852 if (i != start) { 853 struct block_device *bdev2 = 854 f2fs_target_device(sbi, i, NULL); 855 856 if (bdev2 != bdev) { 857 err = __issue_discard_async(sbi, bdev, 858 start, len); 859 if (err) 860 return err; 861 bdev = bdev2; 862 start = i; 863 len = 0; 864 } 865 } 866 867 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 868 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 869 870 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 871 sbi->discard_blks--; 872 } 873 874 if (len) 875 err = __issue_discard_async(sbi, bdev, start, len); 876 return err; 877 } 878 879 static void __add_discard_entry(struct f2fs_sb_info *sbi, 880 struct cp_control *cpc, struct seg_entry *se, 881 unsigned int start, unsigned int end) 882 { 883 struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list; 884 struct discard_entry *new, *last; 885 886 if (!list_empty(head)) { 887 last = list_last_entry(head, struct discard_entry, list); 888 if (START_BLOCK(sbi, cpc->trim_start) + start == 889 last->blkaddr + last->len && 890 last->len < MAX_DISCARD_BLOCKS(sbi)) { 891 last->len += end - start; 892 goto done; 893 } 894 } 895 896 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 897 INIT_LIST_HEAD(&new->list); 898 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 899 new->len = end - start; 900 list_add_tail(&new->list, head); 901 done: 902 SM_I(sbi)->dcc_info->nr_discards += end - start; 903 } 904 905 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 906 bool check_only) 907 { 908 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 909 int max_blocks = sbi->blocks_per_seg; 910 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 911 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 912 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 913 unsigned long *discard_map = (unsigned long *)se->discard_map; 914 unsigned long *dmap = SIT_I(sbi)->tmp_map; 915 unsigned int start = 0, end = -1; 916 bool force = (cpc->reason == CP_DISCARD); 917 int i; 918 919 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 920 return false; 921 922 if (!force) { 923 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 924 SM_I(sbi)->dcc_info->nr_discards >= 925 SM_I(sbi)->dcc_info->max_discards) 926 return false; 927 } 928 929 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 930 for (i = 0; i < entries; i++) 931 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 932 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 933 934 while (force || SM_I(sbi)->dcc_info->nr_discards <= 935 SM_I(sbi)->dcc_info->max_discards) { 936 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 937 if (start >= max_blocks) 938 break; 939 940 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 941 if (force && start && end != max_blocks 942 && (end - start) < cpc->trim_minlen) 943 continue; 944 945 if (check_only) 946 return true; 947 948 __add_discard_entry(sbi, cpc, se, start, end); 949 } 950 return false; 951 } 952 953 void release_discard_addrs(struct f2fs_sb_info *sbi) 954 { 955 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list); 956 struct discard_entry *entry, *this; 957 958 /* drop caches */ 959 list_for_each_entry_safe(entry, this, head, list) { 960 list_del(&entry->list); 961 kmem_cache_free(discard_entry_slab, entry); 962 } 963 } 964 965 /* 966 * Should call clear_prefree_segments after checkpoint is done. 967 */ 968 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 969 { 970 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 971 unsigned int segno; 972 973 mutex_lock(&dirty_i->seglist_lock); 974 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 975 __set_test_and_free(sbi, segno); 976 mutex_unlock(&dirty_i->seglist_lock); 977 } 978 979 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 980 { 981 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list); 982 struct discard_entry *entry, *this; 983 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 984 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 985 unsigned int start = 0, end = -1; 986 unsigned int secno, start_segno; 987 bool force = (cpc->reason == CP_DISCARD); 988 989 mutex_lock(&dirty_i->seglist_lock); 990 991 while (1) { 992 int i; 993 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 994 if (start >= MAIN_SEGS(sbi)) 995 break; 996 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 997 start + 1); 998 999 for (i = start; i < end; i++) 1000 clear_bit(i, prefree_map); 1001 1002 dirty_i->nr_dirty[PRE] -= end - start; 1003 1004 if (!test_opt(sbi, DISCARD)) 1005 continue; 1006 1007 if (force && start >= cpc->trim_start && 1008 (end - 1) <= cpc->trim_end) 1009 continue; 1010 1011 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1012 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1013 (end - start) << sbi->log_blocks_per_seg); 1014 continue; 1015 } 1016 next: 1017 secno = GET_SECNO(sbi, start); 1018 start_segno = secno * sbi->segs_per_sec; 1019 if (!IS_CURSEC(sbi, secno) && 1020 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 1021 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1022 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1023 1024 start = start_segno + sbi->segs_per_sec; 1025 if (start < end) 1026 goto next; 1027 } 1028 mutex_unlock(&dirty_i->seglist_lock); 1029 1030 /* send small discards */ 1031 list_for_each_entry_safe(entry, this, head, list) { 1032 if (force && entry->len < cpc->trim_minlen) 1033 goto skip; 1034 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 1035 cpc->trimmed += entry->len; 1036 skip: 1037 list_del(&entry->list); 1038 SM_I(sbi)->dcc_info->nr_discards -= entry->len; 1039 kmem_cache_free(discard_entry_slab, entry); 1040 } 1041 } 1042 1043 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1044 { 1045 dev_t dev = sbi->sb->s_bdev->bd_dev; 1046 struct discard_cmd_control *dcc; 1047 int err = 0; 1048 1049 if (SM_I(sbi)->dcc_info) { 1050 dcc = SM_I(sbi)->dcc_info; 1051 goto init_thread; 1052 } 1053 1054 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL); 1055 if (!dcc) 1056 return -ENOMEM; 1057 1058 INIT_LIST_HEAD(&dcc->discard_entry_list); 1059 INIT_LIST_HEAD(&dcc->discard_cmd_list); 1060 mutex_init(&dcc->cmd_lock); 1061 atomic_set(&dcc->submit_discard, 0); 1062 dcc->nr_discards = 0; 1063 dcc->max_discards = 0; 1064 1065 init_waitqueue_head(&dcc->discard_wait_queue); 1066 SM_I(sbi)->dcc_info = dcc; 1067 init_thread: 1068 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 1069 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 1070 if (IS_ERR(dcc->f2fs_issue_discard)) { 1071 err = PTR_ERR(dcc->f2fs_issue_discard); 1072 kfree(dcc); 1073 SM_I(sbi)->dcc_info = NULL; 1074 return err; 1075 } 1076 1077 return err; 1078 } 1079 1080 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free) 1081 { 1082 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1083 1084 if (dcc && dcc->f2fs_issue_discard) { 1085 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1086 1087 dcc->f2fs_issue_discard = NULL; 1088 kthread_stop(discard_thread); 1089 } 1090 if (free) { 1091 kfree(dcc); 1092 SM_I(sbi)->dcc_info = NULL; 1093 } 1094 } 1095 1096 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 1097 { 1098 struct sit_info *sit_i = SIT_I(sbi); 1099 1100 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 1101 sit_i->dirty_sentries++; 1102 return false; 1103 } 1104 1105 return true; 1106 } 1107 1108 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 1109 unsigned int segno, int modified) 1110 { 1111 struct seg_entry *se = get_seg_entry(sbi, segno); 1112 se->type = type; 1113 if (modified) 1114 __mark_sit_entry_dirty(sbi, segno); 1115 } 1116 1117 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 1118 { 1119 struct seg_entry *se; 1120 unsigned int segno, offset; 1121 long int new_vblocks; 1122 1123 segno = GET_SEGNO(sbi, blkaddr); 1124 1125 se = get_seg_entry(sbi, segno); 1126 new_vblocks = se->valid_blocks + del; 1127 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1128 1129 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 1130 (new_vblocks > sbi->blocks_per_seg))); 1131 1132 se->valid_blocks = new_vblocks; 1133 se->mtime = get_mtime(sbi); 1134 SIT_I(sbi)->max_mtime = se->mtime; 1135 1136 /* Update valid block bitmap */ 1137 if (del > 0) { 1138 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) { 1139 #ifdef CONFIG_F2FS_CHECK_FS 1140 if (f2fs_test_and_set_bit(offset, 1141 se->cur_valid_map_mir)) 1142 f2fs_bug_on(sbi, 1); 1143 else 1144 WARN_ON(1); 1145 #else 1146 f2fs_bug_on(sbi, 1); 1147 #endif 1148 } 1149 if (f2fs_discard_en(sbi) && 1150 !f2fs_test_and_set_bit(offset, se->discard_map)) 1151 sbi->discard_blks--; 1152 } else { 1153 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) { 1154 #ifdef CONFIG_F2FS_CHECK_FS 1155 if (!f2fs_test_and_clear_bit(offset, 1156 se->cur_valid_map_mir)) 1157 f2fs_bug_on(sbi, 1); 1158 else 1159 WARN_ON(1); 1160 #else 1161 f2fs_bug_on(sbi, 1); 1162 #endif 1163 } 1164 if (f2fs_discard_en(sbi) && 1165 f2fs_test_and_clear_bit(offset, se->discard_map)) 1166 sbi->discard_blks++; 1167 } 1168 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1169 se->ckpt_valid_blocks += del; 1170 1171 __mark_sit_entry_dirty(sbi, segno); 1172 1173 /* update total number of valid blocks to be written in ckpt area */ 1174 SIT_I(sbi)->written_valid_blocks += del; 1175 1176 if (sbi->segs_per_sec > 1) 1177 get_sec_entry(sbi, segno)->valid_blocks += del; 1178 } 1179 1180 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 1181 { 1182 update_sit_entry(sbi, new, 1); 1183 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 1184 update_sit_entry(sbi, old, -1); 1185 1186 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 1187 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 1188 } 1189 1190 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1191 { 1192 unsigned int segno = GET_SEGNO(sbi, addr); 1193 struct sit_info *sit_i = SIT_I(sbi); 1194 1195 f2fs_bug_on(sbi, addr == NULL_ADDR); 1196 if (addr == NEW_ADDR) 1197 return; 1198 1199 /* add it into sit main buffer */ 1200 mutex_lock(&sit_i->sentry_lock); 1201 1202 update_sit_entry(sbi, addr, -1); 1203 1204 /* add it into dirty seglist */ 1205 locate_dirty_segment(sbi, segno); 1206 1207 mutex_unlock(&sit_i->sentry_lock); 1208 } 1209 1210 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1211 { 1212 struct sit_info *sit_i = SIT_I(sbi); 1213 unsigned int segno, offset; 1214 struct seg_entry *se; 1215 bool is_cp = false; 1216 1217 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1218 return true; 1219 1220 mutex_lock(&sit_i->sentry_lock); 1221 1222 segno = GET_SEGNO(sbi, blkaddr); 1223 se = get_seg_entry(sbi, segno); 1224 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1225 1226 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1227 is_cp = true; 1228 1229 mutex_unlock(&sit_i->sentry_lock); 1230 1231 return is_cp; 1232 } 1233 1234 /* 1235 * This function should be resided under the curseg_mutex lock 1236 */ 1237 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1238 struct f2fs_summary *sum) 1239 { 1240 struct curseg_info *curseg = CURSEG_I(sbi, type); 1241 void *addr = curseg->sum_blk; 1242 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1243 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1244 } 1245 1246 /* 1247 * Calculate the number of current summary pages for writing 1248 */ 1249 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1250 { 1251 int valid_sum_count = 0; 1252 int i, sum_in_page; 1253 1254 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1255 if (sbi->ckpt->alloc_type[i] == SSR) 1256 valid_sum_count += sbi->blocks_per_seg; 1257 else { 1258 if (for_ra) 1259 valid_sum_count += le16_to_cpu( 1260 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1261 else 1262 valid_sum_count += curseg_blkoff(sbi, i); 1263 } 1264 } 1265 1266 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1267 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1268 if (valid_sum_count <= sum_in_page) 1269 return 1; 1270 else if ((valid_sum_count - sum_in_page) <= 1271 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1272 return 2; 1273 return 3; 1274 } 1275 1276 /* 1277 * Caller should put this summary page 1278 */ 1279 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1280 { 1281 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1282 } 1283 1284 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1285 { 1286 struct page *page = grab_meta_page(sbi, blk_addr); 1287 void *dst = page_address(page); 1288 1289 if (src) 1290 memcpy(dst, src, PAGE_SIZE); 1291 else 1292 memset(dst, 0, PAGE_SIZE); 1293 set_page_dirty(page); 1294 f2fs_put_page(page, 1); 1295 } 1296 1297 static void write_sum_page(struct f2fs_sb_info *sbi, 1298 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1299 { 1300 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1301 } 1302 1303 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1304 int type, block_t blk_addr) 1305 { 1306 struct curseg_info *curseg = CURSEG_I(sbi, type); 1307 struct page *page = grab_meta_page(sbi, blk_addr); 1308 struct f2fs_summary_block *src = curseg->sum_blk; 1309 struct f2fs_summary_block *dst; 1310 1311 dst = (struct f2fs_summary_block *)page_address(page); 1312 1313 mutex_lock(&curseg->curseg_mutex); 1314 1315 down_read(&curseg->journal_rwsem); 1316 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1317 up_read(&curseg->journal_rwsem); 1318 1319 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1320 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1321 1322 mutex_unlock(&curseg->curseg_mutex); 1323 1324 set_page_dirty(page); 1325 f2fs_put_page(page, 1); 1326 } 1327 1328 /* 1329 * Find a new segment from the free segments bitmap to right order 1330 * This function should be returned with success, otherwise BUG 1331 */ 1332 static void get_new_segment(struct f2fs_sb_info *sbi, 1333 unsigned int *newseg, bool new_sec, int dir) 1334 { 1335 struct free_segmap_info *free_i = FREE_I(sbi); 1336 unsigned int segno, secno, zoneno; 1337 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1338 unsigned int hint = *newseg / sbi->segs_per_sec; 1339 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1340 unsigned int left_start = hint; 1341 bool init = true; 1342 int go_left = 0; 1343 int i; 1344 1345 spin_lock(&free_i->segmap_lock); 1346 1347 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1348 segno = find_next_zero_bit(free_i->free_segmap, 1349 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1350 if (segno < (hint + 1) * sbi->segs_per_sec) 1351 goto got_it; 1352 } 1353 find_other_zone: 1354 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1355 if (secno >= MAIN_SECS(sbi)) { 1356 if (dir == ALLOC_RIGHT) { 1357 secno = find_next_zero_bit(free_i->free_secmap, 1358 MAIN_SECS(sbi), 0); 1359 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1360 } else { 1361 go_left = 1; 1362 left_start = hint - 1; 1363 } 1364 } 1365 if (go_left == 0) 1366 goto skip_left; 1367 1368 while (test_bit(left_start, free_i->free_secmap)) { 1369 if (left_start > 0) { 1370 left_start--; 1371 continue; 1372 } 1373 left_start = find_next_zero_bit(free_i->free_secmap, 1374 MAIN_SECS(sbi), 0); 1375 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1376 break; 1377 } 1378 secno = left_start; 1379 skip_left: 1380 hint = secno; 1381 segno = secno * sbi->segs_per_sec; 1382 zoneno = secno / sbi->secs_per_zone; 1383 1384 /* give up on finding another zone */ 1385 if (!init) 1386 goto got_it; 1387 if (sbi->secs_per_zone == 1) 1388 goto got_it; 1389 if (zoneno == old_zoneno) 1390 goto got_it; 1391 if (dir == ALLOC_LEFT) { 1392 if (!go_left && zoneno + 1 >= total_zones) 1393 goto got_it; 1394 if (go_left && zoneno == 0) 1395 goto got_it; 1396 } 1397 for (i = 0; i < NR_CURSEG_TYPE; i++) 1398 if (CURSEG_I(sbi, i)->zone == zoneno) 1399 break; 1400 1401 if (i < NR_CURSEG_TYPE) { 1402 /* zone is in user, try another */ 1403 if (go_left) 1404 hint = zoneno * sbi->secs_per_zone - 1; 1405 else if (zoneno + 1 >= total_zones) 1406 hint = 0; 1407 else 1408 hint = (zoneno + 1) * sbi->secs_per_zone; 1409 init = false; 1410 goto find_other_zone; 1411 } 1412 got_it: 1413 /* set it as dirty segment in free segmap */ 1414 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1415 __set_inuse(sbi, segno); 1416 *newseg = segno; 1417 spin_unlock(&free_i->segmap_lock); 1418 } 1419 1420 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1421 { 1422 struct curseg_info *curseg = CURSEG_I(sbi, type); 1423 struct summary_footer *sum_footer; 1424 1425 curseg->segno = curseg->next_segno; 1426 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1427 curseg->next_blkoff = 0; 1428 curseg->next_segno = NULL_SEGNO; 1429 1430 sum_footer = &(curseg->sum_blk->footer); 1431 memset(sum_footer, 0, sizeof(struct summary_footer)); 1432 if (IS_DATASEG(type)) 1433 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1434 if (IS_NODESEG(type)) 1435 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1436 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1437 } 1438 1439 /* 1440 * Allocate a current working segment. 1441 * This function always allocates a free segment in LFS manner. 1442 */ 1443 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1444 { 1445 struct curseg_info *curseg = CURSEG_I(sbi, type); 1446 unsigned int segno = curseg->segno; 1447 int dir = ALLOC_LEFT; 1448 1449 write_sum_page(sbi, curseg->sum_blk, 1450 GET_SUM_BLOCK(sbi, segno)); 1451 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1452 dir = ALLOC_RIGHT; 1453 1454 if (test_opt(sbi, NOHEAP)) 1455 dir = ALLOC_RIGHT; 1456 1457 get_new_segment(sbi, &segno, new_sec, dir); 1458 curseg->next_segno = segno; 1459 reset_curseg(sbi, type, 1); 1460 curseg->alloc_type = LFS; 1461 } 1462 1463 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1464 struct curseg_info *seg, block_t start) 1465 { 1466 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1467 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1468 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1469 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1470 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1471 int i, pos; 1472 1473 for (i = 0; i < entries; i++) 1474 target_map[i] = ckpt_map[i] | cur_map[i]; 1475 1476 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1477 1478 seg->next_blkoff = pos; 1479 } 1480 1481 /* 1482 * If a segment is written by LFS manner, next block offset is just obtained 1483 * by increasing the current block offset. However, if a segment is written by 1484 * SSR manner, next block offset obtained by calling __next_free_blkoff 1485 */ 1486 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1487 struct curseg_info *seg) 1488 { 1489 if (seg->alloc_type == SSR) 1490 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1491 else 1492 seg->next_blkoff++; 1493 } 1494 1495 /* 1496 * This function always allocates a used segment(from dirty seglist) by SSR 1497 * manner, so it should recover the existing segment information of valid blocks 1498 */ 1499 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1500 { 1501 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1502 struct curseg_info *curseg = CURSEG_I(sbi, type); 1503 unsigned int new_segno = curseg->next_segno; 1504 struct f2fs_summary_block *sum_node; 1505 struct page *sum_page; 1506 1507 write_sum_page(sbi, curseg->sum_blk, 1508 GET_SUM_BLOCK(sbi, curseg->segno)); 1509 __set_test_and_inuse(sbi, new_segno); 1510 1511 mutex_lock(&dirty_i->seglist_lock); 1512 __remove_dirty_segment(sbi, new_segno, PRE); 1513 __remove_dirty_segment(sbi, new_segno, DIRTY); 1514 mutex_unlock(&dirty_i->seglist_lock); 1515 1516 reset_curseg(sbi, type, 1); 1517 curseg->alloc_type = SSR; 1518 __next_free_blkoff(sbi, curseg, 0); 1519 1520 if (reuse) { 1521 sum_page = get_sum_page(sbi, new_segno); 1522 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1523 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1524 f2fs_put_page(sum_page, 1); 1525 } 1526 } 1527 1528 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1529 { 1530 struct curseg_info *curseg = CURSEG_I(sbi, type); 1531 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1532 int i, n; 1533 1534 /* need_SSR() already forces to do this */ 1535 if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR)) 1536 return 1; 1537 1538 /* For node segments, let's do SSR more intensively */ 1539 if (IS_NODESEG(type)) { 1540 i = CURSEG_HOT_NODE; 1541 n = CURSEG_COLD_NODE; 1542 } else { 1543 i = CURSEG_HOT_DATA; 1544 n = CURSEG_COLD_DATA; 1545 } 1546 1547 for (; i <= n; i++) { 1548 if (i == type) 1549 continue; 1550 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1551 BG_GC, i, SSR)) 1552 return 1; 1553 } 1554 return 0; 1555 } 1556 1557 /* 1558 * flush out current segment and replace it with new segment 1559 * This function should be returned with success, otherwise BUG 1560 */ 1561 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1562 int type, bool force) 1563 { 1564 if (force) 1565 new_curseg(sbi, type, true); 1566 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 1567 type == CURSEG_WARM_NODE) 1568 new_curseg(sbi, type, false); 1569 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1570 change_curseg(sbi, type, true); 1571 else 1572 new_curseg(sbi, type, false); 1573 1574 stat_inc_seg_type(sbi, CURSEG_I(sbi, type)); 1575 } 1576 1577 void allocate_new_segments(struct f2fs_sb_info *sbi) 1578 { 1579 struct curseg_info *curseg; 1580 unsigned int old_segno; 1581 int i; 1582 1583 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1584 curseg = CURSEG_I(sbi, i); 1585 old_segno = curseg->segno; 1586 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1587 locate_dirty_segment(sbi, old_segno); 1588 } 1589 } 1590 1591 static const struct segment_allocation default_salloc_ops = { 1592 .allocate_segment = allocate_segment_by_default, 1593 }; 1594 1595 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1596 { 1597 __u64 trim_start = cpc->trim_start; 1598 bool has_candidate = false; 1599 1600 mutex_lock(&SIT_I(sbi)->sentry_lock); 1601 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 1602 if (add_discard_addrs(sbi, cpc, true)) { 1603 has_candidate = true; 1604 break; 1605 } 1606 } 1607 mutex_unlock(&SIT_I(sbi)->sentry_lock); 1608 1609 cpc->trim_start = trim_start; 1610 return has_candidate; 1611 } 1612 1613 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1614 { 1615 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1616 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1617 unsigned int start_segno, end_segno; 1618 struct cp_control cpc; 1619 int err = 0; 1620 1621 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1622 return -EINVAL; 1623 1624 cpc.trimmed = 0; 1625 if (end <= MAIN_BLKADDR(sbi)) 1626 goto out; 1627 1628 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1629 f2fs_msg(sbi->sb, KERN_WARNING, 1630 "Found FS corruption, run fsck to fix."); 1631 goto out; 1632 } 1633 1634 /* start/end segment number in main_area */ 1635 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1636 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1637 GET_SEGNO(sbi, end); 1638 cpc.reason = CP_DISCARD; 1639 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1640 1641 /* do checkpoint to issue discard commands safely */ 1642 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1643 cpc.trim_start = start_segno; 1644 1645 if (sbi->discard_blks == 0) 1646 break; 1647 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1648 cpc.trim_end = end_segno; 1649 else 1650 cpc.trim_end = min_t(unsigned int, 1651 rounddown(start_segno + 1652 BATCHED_TRIM_SEGMENTS(sbi), 1653 sbi->segs_per_sec) - 1, end_segno); 1654 1655 mutex_lock(&sbi->gc_mutex); 1656 err = write_checkpoint(sbi, &cpc); 1657 mutex_unlock(&sbi->gc_mutex); 1658 if (err) 1659 break; 1660 1661 schedule(); 1662 } 1663 out: 1664 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1665 return err; 1666 } 1667 1668 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1669 { 1670 struct curseg_info *curseg = CURSEG_I(sbi, type); 1671 if (curseg->next_blkoff < sbi->blocks_per_seg) 1672 return true; 1673 return false; 1674 } 1675 1676 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1677 { 1678 if (p_type == DATA) 1679 return CURSEG_HOT_DATA; 1680 else 1681 return CURSEG_HOT_NODE; 1682 } 1683 1684 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1685 { 1686 if (p_type == DATA) { 1687 struct inode *inode = page->mapping->host; 1688 1689 if (S_ISDIR(inode->i_mode)) 1690 return CURSEG_HOT_DATA; 1691 else 1692 return CURSEG_COLD_DATA; 1693 } else { 1694 if (IS_DNODE(page) && is_cold_node(page)) 1695 return CURSEG_WARM_NODE; 1696 else 1697 return CURSEG_COLD_NODE; 1698 } 1699 } 1700 1701 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1702 { 1703 if (p_type == DATA) { 1704 struct inode *inode = page->mapping->host; 1705 1706 if (S_ISDIR(inode->i_mode)) 1707 return CURSEG_HOT_DATA; 1708 else if (is_cold_data(page) || file_is_cold(inode)) 1709 return CURSEG_COLD_DATA; 1710 else 1711 return CURSEG_WARM_DATA; 1712 } else { 1713 if (IS_DNODE(page)) 1714 return is_cold_node(page) ? CURSEG_WARM_NODE : 1715 CURSEG_HOT_NODE; 1716 else 1717 return CURSEG_COLD_NODE; 1718 } 1719 } 1720 1721 static int __get_segment_type(struct page *page, enum page_type p_type) 1722 { 1723 switch (F2FS_P_SB(page)->active_logs) { 1724 case 2: 1725 return __get_segment_type_2(page, p_type); 1726 case 4: 1727 return __get_segment_type_4(page, p_type); 1728 } 1729 /* NR_CURSEG_TYPE(6) logs by default */ 1730 f2fs_bug_on(F2FS_P_SB(page), 1731 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1732 return __get_segment_type_6(page, p_type); 1733 } 1734 1735 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1736 block_t old_blkaddr, block_t *new_blkaddr, 1737 struct f2fs_summary *sum, int type) 1738 { 1739 struct sit_info *sit_i = SIT_I(sbi); 1740 struct curseg_info *curseg = CURSEG_I(sbi, type); 1741 1742 mutex_lock(&curseg->curseg_mutex); 1743 mutex_lock(&sit_i->sentry_lock); 1744 1745 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1746 1747 f2fs_wait_discard_bio(sbi, *new_blkaddr); 1748 1749 /* 1750 * __add_sum_entry should be resided under the curseg_mutex 1751 * because, this function updates a summary entry in the 1752 * current summary block. 1753 */ 1754 __add_sum_entry(sbi, type, sum); 1755 1756 __refresh_next_blkoff(sbi, curseg); 1757 1758 stat_inc_block_count(sbi, curseg); 1759 1760 /* 1761 * SIT information should be updated before segment allocation, 1762 * since SSR needs latest valid block information. 1763 */ 1764 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1765 1766 if (!__has_curseg_space(sbi, type)) 1767 sit_i->s_ops->allocate_segment(sbi, type, false); 1768 1769 mutex_unlock(&sit_i->sentry_lock); 1770 1771 if (page && IS_NODESEG(type)) 1772 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1773 1774 mutex_unlock(&curseg->curseg_mutex); 1775 } 1776 1777 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1778 { 1779 int type = __get_segment_type(fio->page, fio->type); 1780 int err; 1781 1782 if (fio->type == NODE || fio->type == DATA) 1783 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1784 reallocate: 1785 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1786 &fio->new_blkaddr, sum, type); 1787 1788 /* writeout dirty page into bdev */ 1789 err = f2fs_submit_page_mbio(fio); 1790 if (err == -EAGAIN) { 1791 fio->old_blkaddr = fio->new_blkaddr; 1792 goto reallocate; 1793 } 1794 1795 if (fio->type == NODE || fio->type == DATA) 1796 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1797 } 1798 1799 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1800 { 1801 struct f2fs_io_info fio = { 1802 .sbi = sbi, 1803 .type = META, 1804 .op = REQ_OP_WRITE, 1805 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 1806 .old_blkaddr = page->index, 1807 .new_blkaddr = page->index, 1808 .page = page, 1809 .encrypted_page = NULL, 1810 }; 1811 1812 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1813 fio.op_flags &= ~REQ_META; 1814 1815 set_page_writeback(page); 1816 f2fs_submit_page_mbio(&fio); 1817 } 1818 1819 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1820 { 1821 struct f2fs_summary sum; 1822 1823 set_summary(&sum, nid, 0, 0); 1824 do_write_page(&sum, fio); 1825 } 1826 1827 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1828 { 1829 struct f2fs_sb_info *sbi = fio->sbi; 1830 struct f2fs_summary sum; 1831 struct node_info ni; 1832 1833 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1834 get_node_info(sbi, dn->nid, &ni); 1835 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1836 do_write_page(&sum, fio); 1837 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1838 } 1839 1840 void rewrite_data_page(struct f2fs_io_info *fio) 1841 { 1842 fio->new_blkaddr = fio->old_blkaddr; 1843 stat_inc_inplace_blocks(fio->sbi); 1844 f2fs_submit_page_mbio(fio); 1845 } 1846 1847 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1848 block_t old_blkaddr, block_t new_blkaddr, 1849 bool recover_curseg, bool recover_newaddr) 1850 { 1851 struct sit_info *sit_i = SIT_I(sbi); 1852 struct curseg_info *curseg; 1853 unsigned int segno, old_cursegno; 1854 struct seg_entry *se; 1855 int type; 1856 unsigned short old_blkoff; 1857 1858 segno = GET_SEGNO(sbi, new_blkaddr); 1859 se = get_seg_entry(sbi, segno); 1860 type = se->type; 1861 1862 if (!recover_curseg) { 1863 /* for recovery flow */ 1864 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1865 if (old_blkaddr == NULL_ADDR) 1866 type = CURSEG_COLD_DATA; 1867 else 1868 type = CURSEG_WARM_DATA; 1869 } 1870 } else { 1871 if (!IS_CURSEG(sbi, segno)) 1872 type = CURSEG_WARM_DATA; 1873 } 1874 1875 curseg = CURSEG_I(sbi, type); 1876 1877 mutex_lock(&curseg->curseg_mutex); 1878 mutex_lock(&sit_i->sentry_lock); 1879 1880 old_cursegno = curseg->segno; 1881 old_blkoff = curseg->next_blkoff; 1882 1883 /* change the current segment */ 1884 if (segno != curseg->segno) { 1885 curseg->next_segno = segno; 1886 change_curseg(sbi, type, true); 1887 } 1888 1889 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1890 __add_sum_entry(sbi, type, sum); 1891 1892 if (!recover_curseg || recover_newaddr) 1893 update_sit_entry(sbi, new_blkaddr, 1); 1894 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1895 update_sit_entry(sbi, old_blkaddr, -1); 1896 1897 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1898 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1899 1900 locate_dirty_segment(sbi, old_cursegno); 1901 1902 if (recover_curseg) { 1903 if (old_cursegno != curseg->segno) { 1904 curseg->next_segno = old_cursegno; 1905 change_curseg(sbi, type, true); 1906 } 1907 curseg->next_blkoff = old_blkoff; 1908 } 1909 1910 mutex_unlock(&sit_i->sentry_lock); 1911 mutex_unlock(&curseg->curseg_mutex); 1912 } 1913 1914 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1915 block_t old_addr, block_t new_addr, 1916 unsigned char version, bool recover_curseg, 1917 bool recover_newaddr) 1918 { 1919 struct f2fs_summary sum; 1920 1921 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1922 1923 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1924 recover_curseg, recover_newaddr); 1925 1926 f2fs_update_data_blkaddr(dn, new_addr); 1927 } 1928 1929 void f2fs_wait_on_page_writeback(struct page *page, 1930 enum page_type type, bool ordered) 1931 { 1932 if (PageWriteback(page)) { 1933 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1934 1935 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 1936 0, page->index, type, WRITE); 1937 if (ordered) 1938 wait_on_page_writeback(page); 1939 else 1940 wait_for_stable_page(page); 1941 } 1942 } 1943 1944 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1945 block_t blkaddr) 1946 { 1947 struct page *cpage; 1948 1949 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1950 return; 1951 1952 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1953 if (cpage) { 1954 f2fs_wait_on_page_writeback(cpage, DATA, true); 1955 f2fs_put_page(cpage, 1); 1956 } 1957 } 1958 1959 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1960 { 1961 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1962 struct curseg_info *seg_i; 1963 unsigned char *kaddr; 1964 struct page *page; 1965 block_t start; 1966 int i, j, offset; 1967 1968 start = start_sum_block(sbi); 1969 1970 page = get_meta_page(sbi, start++); 1971 kaddr = (unsigned char *)page_address(page); 1972 1973 /* Step 1: restore nat cache */ 1974 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1975 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1976 1977 /* Step 2: restore sit cache */ 1978 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1979 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1980 offset = 2 * SUM_JOURNAL_SIZE; 1981 1982 /* Step 3: restore summary entries */ 1983 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1984 unsigned short blk_off; 1985 unsigned int segno; 1986 1987 seg_i = CURSEG_I(sbi, i); 1988 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1989 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1990 seg_i->next_segno = segno; 1991 reset_curseg(sbi, i, 0); 1992 seg_i->alloc_type = ckpt->alloc_type[i]; 1993 seg_i->next_blkoff = blk_off; 1994 1995 if (seg_i->alloc_type == SSR) 1996 blk_off = sbi->blocks_per_seg; 1997 1998 for (j = 0; j < blk_off; j++) { 1999 struct f2fs_summary *s; 2000 s = (struct f2fs_summary *)(kaddr + offset); 2001 seg_i->sum_blk->entries[j] = *s; 2002 offset += SUMMARY_SIZE; 2003 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 2004 SUM_FOOTER_SIZE) 2005 continue; 2006 2007 f2fs_put_page(page, 1); 2008 page = NULL; 2009 2010 page = get_meta_page(sbi, start++); 2011 kaddr = (unsigned char *)page_address(page); 2012 offset = 0; 2013 } 2014 } 2015 f2fs_put_page(page, 1); 2016 return 0; 2017 } 2018 2019 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 2020 { 2021 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2022 struct f2fs_summary_block *sum; 2023 struct curseg_info *curseg; 2024 struct page *new; 2025 unsigned short blk_off; 2026 unsigned int segno = 0; 2027 block_t blk_addr = 0; 2028 2029 /* get segment number and block addr */ 2030 if (IS_DATASEG(type)) { 2031 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 2032 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 2033 CURSEG_HOT_DATA]); 2034 if (__exist_node_summaries(sbi)) 2035 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 2036 else 2037 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 2038 } else { 2039 segno = le32_to_cpu(ckpt->cur_node_segno[type - 2040 CURSEG_HOT_NODE]); 2041 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 2042 CURSEG_HOT_NODE]); 2043 if (__exist_node_summaries(sbi)) 2044 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 2045 type - CURSEG_HOT_NODE); 2046 else 2047 blk_addr = GET_SUM_BLOCK(sbi, segno); 2048 } 2049 2050 new = get_meta_page(sbi, blk_addr); 2051 sum = (struct f2fs_summary_block *)page_address(new); 2052 2053 if (IS_NODESEG(type)) { 2054 if (__exist_node_summaries(sbi)) { 2055 struct f2fs_summary *ns = &sum->entries[0]; 2056 int i; 2057 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 2058 ns->version = 0; 2059 ns->ofs_in_node = 0; 2060 } 2061 } else { 2062 int err; 2063 2064 err = restore_node_summary(sbi, segno, sum); 2065 if (err) { 2066 f2fs_put_page(new, 1); 2067 return err; 2068 } 2069 } 2070 } 2071 2072 /* set uncompleted segment to curseg */ 2073 curseg = CURSEG_I(sbi, type); 2074 mutex_lock(&curseg->curseg_mutex); 2075 2076 /* update journal info */ 2077 down_write(&curseg->journal_rwsem); 2078 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 2079 up_write(&curseg->journal_rwsem); 2080 2081 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 2082 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 2083 curseg->next_segno = segno; 2084 reset_curseg(sbi, type, 0); 2085 curseg->alloc_type = ckpt->alloc_type[type]; 2086 curseg->next_blkoff = blk_off; 2087 mutex_unlock(&curseg->curseg_mutex); 2088 f2fs_put_page(new, 1); 2089 return 0; 2090 } 2091 2092 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 2093 { 2094 int type = CURSEG_HOT_DATA; 2095 int err; 2096 2097 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 2098 int npages = npages_for_summary_flush(sbi, true); 2099 2100 if (npages >= 2) 2101 ra_meta_pages(sbi, start_sum_block(sbi), npages, 2102 META_CP, true); 2103 2104 /* restore for compacted data summary */ 2105 if (read_compacted_summaries(sbi)) 2106 return -EINVAL; 2107 type = CURSEG_HOT_NODE; 2108 } 2109 2110 if (__exist_node_summaries(sbi)) 2111 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 2112 NR_CURSEG_TYPE - type, META_CP, true); 2113 2114 for (; type <= CURSEG_COLD_NODE; type++) { 2115 err = read_normal_summaries(sbi, type); 2116 if (err) 2117 return err; 2118 } 2119 2120 return 0; 2121 } 2122 2123 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 2124 { 2125 struct page *page; 2126 unsigned char *kaddr; 2127 struct f2fs_summary *summary; 2128 struct curseg_info *seg_i; 2129 int written_size = 0; 2130 int i, j; 2131 2132 page = grab_meta_page(sbi, blkaddr++); 2133 kaddr = (unsigned char *)page_address(page); 2134 2135 /* Step 1: write nat cache */ 2136 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2137 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 2138 written_size += SUM_JOURNAL_SIZE; 2139 2140 /* Step 2: write sit cache */ 2141 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2142 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 2143 written_size += SUM_JOURNAL_SIZE; 2144 2145 /* Step 3: write summary entries */ 2146 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2147 unsigned short blkoff; 2148 seg_i = CURSEG_I(sbi, i); 2149 if (sbi->ckpt->alloc_type[i] == SSR) 2150 blkoff = sbi->blocks_per_seg; 2151 else 2152 blkoff = curseg_blkoff(sbi, i); 2153 2154 for (j = 0; j < blkoff; j++) { 2155 if (!page) { 2156 page = grab_meta_page(sbi, blkaddr++); 2157 kaddr = (unsigned char *)page_address(page); 2158 written_size = 0; 2159 } 2160 summary = (struct f2fs_summary *)(kaddr + written_size); 2161 *summary = seg_i->sum_blk->entries[j]; 2162 written_size += SUMMARY_SIZE; 2163 2164 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 2165 SUM_FOOTER_SIZE) 2166 continue; 2167 2168 set_page_dirty(page); 2169 f2fs_put_page(page, 1); 2170 page = NULL; 2171 } 2172 } 2173 if (page) { 2174 set_page_dirty(page); 2175 f2fs_put_page(page, 1); 2176 } 2177 } 2178 2179 static void write_normal_summaries(struct f2fs_sb_info *sbi, 2180 block_t blkaddr, int type) 2181 { 2182 int i, end; 2183 if (IS_DATASEG(type)) 2184 end = type + NR_CURSEG_DATA_TYPE; 2185 else 2186 end = type + NR_CURSEG_NODE_TYPE; 2187 2188 for (i = type; i < end; i++) 2189 write_current_sum_page(sbi, i, blkaddr + (i - type)); 2190 } 2191 2192 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2193 { 2194 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 2195 write_compacted_summaries(sbi, start_blk); 2196 else 2197 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 2198 } 2199 2200 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2201 { 2202 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 2203 } 2204 2205 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2206 unsigned int val, int alloc) 2207 { 2208 int i; 2209 2210 if (type == NAT_JOURNAL) { 2211 for (i = 0; i < nats_in_cursum(journal); i++) { 2212 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 2213 return i; 2214 } 2215 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 2216 return update_nats_in_cursum(journal, 1); 2217 } else if (type == SIT_JOURNAL) { 2218 for (i = 0; i < sits_in_cursum(journal); i++) 2219 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 2220 return i; 2221 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 2222 return update_sits_in_cursum(journal, 1); 2223 } 2224 return -1; 2225 } 2226 2227 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 2228 unsigned int segno) 2229 { 2230 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 2231 } 2232 2233 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 2234 unsigned int start) 2235 { 2236 struct sit_info *sit_i = SIT_I(sbi); 2237 struct page *src_page, *dst_page; 2238 pgoff_t src_off, dst_off; 2239 void *src_addr, *dst_addr; 2240 2241 src_off = current_sit_addr(sbi, start); 2242 dst_off = next_sit_addr(sbi, src_off); 2243 2244 /* get current sit block page without lock */ 2245 src_page = get_meta_page(sbi, src_off); 2246 dst_page = grab_meta_page(sbi, dst_off); 2247 f2fs_bug_on(sbi, PageDirty(src_page)); 2248 2249 src_addr = page_address(src_page); 2250 dst_addr = page_address(dst_page); 2251 memcpy(dst_addr, src_addr, PAGE_SIZE); 2252 2253 set_page_dirty(dst_page); 2254 f2fs_put_page(src_page, 1); 2255 2256 set_to_next_sit(sit_i, start); 2257 2258 return dst_page; 2259 } 2260 2261 static struct sit_entry_set *grab_sit_entry_set(void) 2262 { 2263 struct sit_entry_set *ses = 2264 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 2265 2266 ses->entry_cnt = 0; 2267 INIT_LIST_HEAD(&ses->set_list); 2268 return ses; 2269 } 2270 2271 static void release_sit_entry_set(struct sit_entry_set *ses) 2272 { 2273 list_del(&ses->set_list); 2274 kmem_cache_free(sit_entry_set_slab, ses); 2275 } 2276 2277 static void adjust_sit_entry_set(struct sit_entry_set *ses, 2278 struct list_head *head) 2279 { 2280 struct sit_entry_set *next = ses; 2281 2282 if (list_is_last(&ses->set_list, head)) 2283 return; 2284 2285 list_for_each_entry_continue(next, head, set_list) 2286 if (ses->entry_cnt <= next->entry_cnt) 2287 break; 2288 2289 list_move_tail(&ses->set_list, &next->set_list); 2290 } 2291 2292 static void add_sit_entry(unsigned int segno, struct list_head *head) 2293 { 2294 struct sit_entry_set *ses; 2295 unsigned int start_segno = START_SEGNO(segno); 2296 2297 list_for_each_entry(ses, head, set_list) { 2298 if (ses->start_segno == start_segno) { 2299 ses->entry_cnt++; 2300 adjust_sit_entry_set(ses, head); 2301 return; 2302 } 2303 } 2304 2305 ses = grab_sit_entry_set(); 2306 2307 ses->start_segno = start_segno; 2308 ses->entry_cnt++; 2309 list_add(&ses->set_list, head); 2310 } 2311 2312 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2313 { 2314 struct f2fs_sm_info *sm_info = SM_I(sbi); 2315 struct list_head *set_list = &sm_info->sit_entry_set; 2316 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2317 unsigned int segno; 2318 2319 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2320 add_sit_entry(segno, set_list); 2321 } 2322 2323 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2324 { 2325 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2326 struct f2fs_journal *journal = curseg->journal; 2327 int i; 2328 2329 down_write(&curseg->journal_rwsem); 2330 for (i = 0; i < sits_in_cursum(journal); i++) { 2331 unsigned int segno; 2332 bool dirtied; 2333 2334 segno = le32_to_cpu(segno_in_journal(journal, i)); 2335 dirtied = __mark_sit_entry_dirty(sbi, segno); 2336 2337 if (!dirtied) 2338 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2339 } 2340 update_sits_in_cursum(journal, -i); 2341 up_write(&curseg->journal_rwsem); 2342 } 2343 2344 /* 2345 * CP calls this function, which flushes SIT entries including sit_journal, 2346 * and moves prefree segs to free segs. 2347 */ 2348 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2349 { 2350 struct sit_info *sit_i = SIT_I(sbi); 2351 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2352 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2353 struct f2fs_journal *journal = curseg->journal; 2354 struct sit_entry_set *ses, *tmp; 2355 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2356 bool to_journal = true; 2357 struct seg_entry *se; 2358 2359 mutex_lock(&sit_i->sentry_lock); 2360 2361 if (!sit_i->dirty_sentries) 2362 goto out; 2363 2364 /* 2365 * add and account sit entries of dirty bitmap in sit entry 2366 * set temporarily 2367 */ 2368 add_sits_in_set(sbi); 2369 2370 /* 2371 * if there are no enough space in journal to store dirty sit 2372 * entries, remove all entries from journal and add and account 2373 * them in sit entry set. 2374 */ 2375 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2376 remove_sits_in_journal(sbi); 2377 2378 /* 2379 * there are two steps to flush sit entries: 2380 * #1, flush sit entries to journal in current cold data summary block. 2381 * #2, flush sit entries to sit page. 2382 */ 2383 list_for_each_entry_safe(ses, tmp, head, set_list) { 2384 struct page *page = NULL; 2385 struct f2fs_sit_block *raw_sit = NULL; 2386 unsigned int start_segno = ses->start_segno; 2387 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2388 (unsigned long)MAIN_SEGS(sbi)); 2389 unsigned int segno = start_segno; 2390 2391 if (to_journal && 2392 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2393 to_journal = false; 2394 2395 if (to_journal) { 2396 down_write(&curseg->journal_rwsem); 2397 } else { 2398 page = get_next_sit_page(sbi, start_segno); 2399 raw_sit = page_address(page); 2400 } 2401 2402 /* flush dirty sit entries in region of current sit set */ 2403 for_each_set_bit_from(segno, bitmap, end) { 2404 int offset, sit_offset; 2405 2406 se = get_seg_entry(sbi, segno); 2407 2408 /* add discard candidates */ 2409 if (cpc->reason != CP_DISCARD) { 2410 cpc->trim_start = segno; 2411 add_discard_addrs(sbi, cpc, false); 2412 } 2413 2414 if (to_journal) { 2415 offset = lookup_journal_in_cursum(journal, 2416 SIT_JOURNAL, segno, 1); 2417 f2fs_bug_on(sbi, offset < 0); 2418 segno_in_journal(journal, offset) = 2419 cpu_to_le32(segno); 2420 seg_info_to_raw_sit(se, 2421 &sit_in_journal(journal, offset)); 2422 } else { 2423 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2424 seg_info_to_raw_sit(se, 2425 &raw_sit->entries[sit_offset]); 2426 } 2427 2428 __clear_bit(segno, bitmap); 2429 sit_i->dirty_sentries--; 2430 ses->entry_cnt--; 2431 } 2432 2433 if (to_journal) 2434 up_write(&curseg->journal_rwsem); 2435 else 2436 f2fs_put_page(page, 1); 2437 2438 f2fs_bug_on(sbi, ses->entry_cnt); 2439 release_sit_entry_set(ses); 2440 } 2441 2442 f2fs_bug_on(sbi, !list_empty(head)); 2443 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2444 out: 2445 if (cpc->reason == CP_DISCARD) { 2446 __u64 trim_start = cpc->trim_start; 2447 2448 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2449 add_discard_addrs(sbi, cpc, false); 2450 2451 cpc->trim_start = trim_start; 2452 } 2453 mutex_unlock(&sit_i->sentry_lock); 2454 2455 set_prefree_as_free_segments(sbi); 2456 } 2457 2458 static int build_sit_info(struct f2fs_sb_info *sbi) 2459 { 2460 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2461 struct sit_info *sit_i; 2462 unsigned int sit_segs, start; 2463 char *src_bitmap; 2464 unsigned int bitmap_size; 2465 2466 /* allocate memory for SIT information */ 2467 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2468 if (!sit_i) 2469 return -ENOMEM; 2470 2471 SM_I(sbi)->sit_info = sit_i; 2472 2473 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2474 sizeof(struct seg_entry), GFP_KERNEL); 2475 if (!sit_i->sentries) 2476 return -ENOMEM; 2477 2478 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2479 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2480 if (!sit_i->dirty_sentries_bitmap) 2481 return -ENOMEM; 2482 2483 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2484 sit_i->sentries[start].cur_valid_map 2485 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2486 sit_i->sentries[start].ckpt_valid_map 2487 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2488 if (!sit_i->sentries[start].cur_valid_map || 2489 !sit_i->sentries[start].ckpt_valid_map) 2490 return -ENOMEM; 2491 2492 #ifdef CONFIG_F2FS_CHECK_FS 2493 sit_i->sentries[start].cur_valid_map_mir 2494 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2495 if (!sit_i->sentries[start].cur_valid_map_mir) 2496 return -ENOMEM; 2497 #endif 2498 2499 if (f2fs_discard_en(sbi)) { 2500 sit_i->sentries[start].discard_map 2501 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2502 if (!sit_i->sentries[start].discard_map) 2503 return -ENOMEM; 2504 } 2505 } 2506 2507 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2508 if (!sit_i->tmp_map) 2509 return -ENOMEM; 2510 2511 if (sbi->segs_per_sec > 1) { 2512 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2513 sizeof(struct sec_entry), GFP_KERNEL); 2514 if (!sit_i->sec_entries) 2515 return -ENOMEM; 2516 } 2517 2518 /* get information related with SIT */ 2519 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2520 2521 /* setup SIT bitmap from ckeckpoint pack */ 2522 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2523 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2524 2525 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2526 if (!sit_i->sit_bitmap) 2527 return -ENOMEM; 2528 2529 #ifdef CONFIG_F2FS_CHECK_FS 2530 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2531 if (!sit_i->sit_bitmap_mir) 2532 return -ENOMEM; 2533 #endif 2534 2535 /* init SIT information */ 2536 sit_i->s_ops = &default_salloc_ops; 2537 2538 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2539 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2540 sit_i->written_valid_blocks = 0; 2541 sit_i->bitmap_size = bitmap_size; 2542 sit_i->dirty_sentries = 0; 2543 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2544 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2545 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2546 mutex_init(&sit_i->sentry_lock); 2547 return 0; 2548 } 2549 2550 static int build_free_segmap(struct f2fs_sb_info *sbi) 2551 { 2552 struct free_segmap_info *free_i; 2553 unsigned int bitmap_size, sec_bitmap_size; 2554 2555 /* allocate memory for free segmap information */ 2556 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2557 if (!free_i) 2558 return -ENOMEM; 2559 2560 SM_I(sbi)->free_info = free_i; 2561 2562 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2563 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2564 if (!free_i->free_segmap) 2565 return -ENOMEM; 2566 2567 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2568 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2569 if (!free_i->free_secmap) 2570 return -ENOMEM; 2571 2572 /* set all segments as dirty temporarily */ 2573 memset(free_i->free_segmap, 0xff, bitmap_size); 2574 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2575 2576 /* init free segmap information */ 2577 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2578 free_i->free_segments = 0; 2579 free_i->free_sections = 0; 2580 spin_lock_init(&free_i->segmap_lock); 2581 return 0; 2582 } 2583 2584 static int build_curseg(struct f2fs_sb_info *sbi) 2585 { 2586 struct curseg_info *array; 2587 int i; 2588 2589 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2590 if (!array) 2591 return -ENOMEM; 2592 2593 SM_I(sbi)->curseg_array = array; 2594 2595 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2596 mutex_init(&array[i].curseg_mutex); 2597 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2598 if (!array[i].sum_blk) 2599 return -ENOMEM; 2600 init_rwsem(&array[i].journal_rwsem); 2601 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2602 GFP_KERNEL); 2603 if (!array[i].journal) 2604 return -ENOMEM; 2605 array[i].segno = NULL_SEGNO; 2606 array[i].next_blkoff = 0; 2607 } 2608 return restore_curseg_summaries(sbi); 2609 } 2610 2611 static void build_sit_entries(struct f2fs_sb_info *sbi) 2612 { 2613 struct sit_info *sit_i = SIT_I(sbi); 2614 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2615 struct f2fs_journal *journal = curseg->journal; 2616 struct seg_entry *se; 2617 struct f2fs_sit_entry sit; 2618 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2619 unsigned int i, start, end; 2620 unsigned int readed, start_blk = 0; 2621 2622 do { 2623 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 2624 META_SIT, true); 2625 2626 start = start_blk * sit_i->sents_per_block; 2627 end = (start_blk + readed) * sit_i->sents_per_block; 2628 2629 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2630 struct f2fs_sit_block *sit_blk; 2631 struct page *page; 2632 2633 se = &sit_i->sentries[start]; 2634 page = get_current_sit_page(sbi, start); 2635 sit_blk = (struct f2fs_sit_block *)page_address(page); 2636 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2637 f2fs_put_page(page, 1); 2638 2639 check_block_count(sbi, start, &sit); 2640 seg_info_from_raw_sit(se, &sit); 2641 2642 /* build discard map only one time */ 2643 if (f2fs_discard_en(sbi)) { 2644 memcpy(se->discard_map, se->cur_valid_map, 2645 SIT_VBLOCK_MAP_SIZE); 2646 sbi->discard_blks += sbi->blocks_per_seg - 2647 se->valid_blocks; 2648 } 2649 2650 if (sbi->segs_per_sec > 1) 2651 get_sec_entry(sbi, start)->valid_blocks += 2652 se->valid_blocks; 2653 } 2654 start_blk += readed; 2655 } while (start_blk < sit_blk_cnt); 2656 2657 down_read(&curseg->journal_rwsem); 2658 for (i = 0; i < sits_in_cursum(journal); i++) { 2659 unsigned int old_valid_blocks; 2660 2661 start = le32_to_cpu(segno_in_journal(journal, i)); 2662 se = &sit_i->sentries[start]; 2663 sit = sit_in_journal(journal, i); 2664 2665 old_valid_blocks = se->valid_blocks; 2666 2667 check_block_count(sbi, start, &sit); 2668 seg_info_from_raw_sit(se, &sit); 2669 2670 if (f2fs_discard_en(sbi)) { 2671 memcpy(se->discard_map, se->cur_valid_map, 2672 SIT_VBLOCK_MAP_SIZE); 2673 sbi->discard_blks += old_valid_blocks - 2674 se->valid_blocks; 2675 } 2676 2677 if (sbi->segs_per_sec > 1) 2678 get_sec_entry(sbi, start)->valid_blocks += 2679 se->valid_blocks - old_valid_blocks; 2680 } 2681 up_read(&curseg->journal_rwsem); 2682 } 2683 2684 static void init_free_segmap(struct f2fs_sb_info *sbi) 2685 { 2686 unsigned int start; 2687 int type; 2688 2689 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2690 struct seg_entry *sentry = get_seg_entry(sbi, start); 2691 if (!sentry->valid_blocks) 2692 __set_free(sbi, start); 2693 else 2694 SIT_I(sbi)->written_valid_blocks += 2695 sentry->valid_blocks; 2696 } 2697 2698 /* set use the current segments */ 2699 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2700 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2701 __set_test_and_inuse(sbi, curseg_t->segno); 2702 } 2703 } 2704 2705 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2706 { 2707 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2708 struct free_segmap_info *free_i = FREE_I(sbi); 2709 unsigned int segno = 0, offset = 0; 2710 unsigned short valid_blocks; 2711 2712 while (1) { 2713 /* find dirty segment based on free segmap */ 2714 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2715 if (segno >= MAIN_SEGS(sbi)) 2716 break; 2717 offset = segno + 1; 2718 valid_blocks = get_valid_blocks(sbi, segno, 0); 2719 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2720 continue; 2721 if (valid_blocks > sbi->blocks_per_seg) { 2722 f2fs_bug_on(sbi, 1); 2723 continue; 2724 } 2725 mutex_lock(&dirty_i->seglist_lock); 2726 __locate_dirty_segment(sbi, segno, DIRTY); 2727 mutex_unlock(&dirty_i->seglist_lock); 2728 } 2729 } 2730 2731 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2732 { 2733 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2734 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2735 2736 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2737 if (!dirty_i->victim_secmap) 2738 return -ENOMEM; 2739 return 0; 2740 } 2741 2742 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2743 { 2744 struct dirty_seglist_info *dirty_i; 2745 unsigned int bitmap_size, i; 2746 2747 /* allocate memory for dirty segments list information */ 2748 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2749 if (!dirty_i) 2750 return -ENOMEM; 2751 2752 SM_I(sbi)->dirty_info = dirty_i; 2753 mutex_init(&dirty_i->seglist_lock); 2754 2755 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2756 2757 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2758 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2759 if (!dirty_i->dirty_segmap[i]) 2760 return -ENOMEM; 2761 } 2762 2763 init_dirty_segmap(sbi); 2764 return init_victim_secmap(sbi); 2765 } 2766 2767 /* 2768 * Update min, max modified time for cost-benefit GC algorithm 2769 */ 2770 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2771 { 2772 struct sit_info *sit_i = SIT_I(sbi); 2773 unsigned int segno; 2774 2775 mutex_lock(&sit_i->sentry_lock); 2776 2777 sit_i->min_mtime = LLONG_MAX; 2778 2779 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2780 unsigned int i; 2781 unsigned long long mtime = 0; 2782 2783 for (i = 0; i < sbi->segs_per_sec; i++) 2784 mtime += get_seg_entry(sbi, segno + i)->mtime; 2785 2786 mtime = div_u64(mtime, sbi->segs_per_sec); 2787 2788 if (sit_i->min_mtime > mtime) 2789 sit_i->min_mtime = mtime; 2790 } 2791 sit_i->max_mtime = get_mtime(sbi); 2792 mutex_unlock(&sit_i->sentry_lock); 2793 } 2794 2795 int build_segment_manager(struct f2fs_sb_info *sbi) 2796 { 2797 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2798 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2799 struct f2fs_sm_info *sm_info; 2800 int err; 2801 2802 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2803 if (!sm_info) 2804 return -ENOMEM; 2805 2806 /* init sm info */ 2807 sbi->sm_info = sm_info; 2808 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2809 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2810 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2811 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2812 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2813 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2814 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2815 sm_info->rec_prefree_segments = sm_info->main_segments * 2816 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2817 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2818 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2819 2820 if (!test_opt(sbi, LFS)) 2821 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2822 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2823 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2824 2825 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2826 2827 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2828 2829 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2830 err = create_flush_cmd_control(sbi); 2831 if (err) 2832 return err; 2833 } 2834 2835 err = create_discard_cmd_control(sbi); 2836 if (err) 2837 return err; 2838 2839 err = build_sit_info(sbi); 2840 if (err) 2841 return err; 2842 err = build_free_segmap(sbi); 2843 if (err) 2844 return err; 2845 err = build_curseg(sbi); 2846 if (err) 2847 return err; 2848 2849 /* reinit free segmap based on SIT */ 2850 build_sit_entries(sbi); 2851 2852 init_free_segmap(sbi); 2853 err = build_dirty_segmap(sbi); 2854 if (err) 2855 return err; 2856 2857 init_min_max_mtime(sbi); 2858 return 0; 2859 } 2860 2861 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2862 enum dirty_type dirty_type) 2863 { 2864 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2865 2866 mutex_lock(&dirty_i->seglist_lock); 2867 kvfree(dirty_i->dirty_segmap[dirty_type]); 2868 dirty_i->nr_dirty[dirty_type] = 0; 2869 mutex_unlock(&dirty_i->seglist_lock); 2870 } 2871 2872 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2873 { 2874 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2875 kvfree(dirty_i->victim_secmap); 2876 } 2877 2878 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2879 { 2880 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2881 int i; 2882 2883 if (!dirty_i) 2884 return; 2885 2886 /* discard pre-free/dirty segments list */ 2887 for (i = 0; i < NR_DIRTY_TYPE; i++) 2888 discard_dirty_segmap(sbi, i); 2889 2890 destroy_victim_secmap(sbi); 2891 SM_I(sbi)->dirty_info = NULL; 2892 kfree(dirty_i); 2893 } 2894 2895 static void destroy_curseg(struct f2fs_sb_info *sbi) 2896 { 2897 struct curseg_info *array = SM_I(sbi)->curseg_array; 2898 int i; 2899 2900 if (!array) 2901 return; 2902 SM_I(sbi)->curseg_array = NULL; 2903 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2904 kfree(array[i].sum_blk); 2905 kfree(array[i].journal); 2906 } 2907 kfree(array); 2908 } 2909 2910 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2911 { 2912 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2913 if (!free_i) 2914 return; 2915 SM_I(sbi)->free_info = NULL; 2916 kvfree(free_i->free_segmap); 2917 kvfree(free_i->free_secmap); 2918 kfree(free_i); 2919 } 2920 2921 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2922 { 2923 struct sit_info *sit_i = SIT_I(sbi); 2924 unsigned int start; 2925 2926 if (!sit_i) 2927 return; 2928 2929 if (sit_i->sentries) { 2930 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2931 kfree(sit_i->sentries[start].cur_valid_map); 2932 #ifdef CONFIG_F2FS_CHECK_FS 2933 kfree(sit_i->sentries[start].cur_valid_map_mir); 2934 #endif 2935 kfree(sit_i->sentries[start].ckpt_valid_map); 2936 kfree(sit_i->sentries[start].discard_map); 2937 } 2938 } 2939 kfree(sit_i->tmp_map); 2940 2941 kvfree(sit_i->sentries); 2942 kvfree(sit_i->sec_entries); 2943 kvfree(sit_i->dirty_sentries_bitmap); 2944 2945 SM_I(sbi)->sit_info = NULL; 2946 kfree(sit_i->sit_bitmap); 2947 #ifdef CONFIG_F2FS_CHECK_FS 2948 kfree(sit_i->sit_bitmap_mir); 2949 #endif 2950 kfree(sit_i); 2951 } 2952 2953 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2954 { 2955 struct f2fs_sm_info *sm_info = SM_I(sbi); 2956 2957 if (!sm_info) 2958 return; 2959 destroy_flush_cmd_control(sbi, true); 2960 destroy_discard_cmd_control(sbi, true); 2961 destroy_dirty_segmap(sbi); 2962 destroy_curseg(sbi); 2963 destroy_free_segmap(sbi); 2964 destroy_sit_info(sbi); 2965 sbi->sm_info = NULL; 2966 kfree(sm_info); 2967 } 2968 2969 int __init create_segment_manager_caches(void) 2970 { 2971 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2972 sizeof(struct discard_entry)); 2973 if (!discard_entry_slab) 2974 goto fail; 2975 2976 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 2977 sizeof(struct discard_cmd)); 2978 if (!discard_cmd_slab) 2979 goto destroy_discard_entry; 2980 2981 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2982 sizeof(struct sit_entry_set)); 2983 if (!sit_entry_set_slab) 2984 goto destroy_discard_cmd; 2985 2986 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2987 sizeof(struct inmem_pages)); 2988 if (!inmem_entry_slab) 2989 goto destroy_sit_entry_set; 2990 return 0; 2991 2992 destroy_sit_entry_set: 2993 kmem_cache_destroy(sit_entry_set_slab); 2994 destroy_discard_cmd: 2995 kmem_cache_destroy(discard_cmd_slab); 2996 destroy_discard_entry: 2997 kmem_cache_destroy(discard_entry_slab); 2998 fail: 2999 return -ENOMEM; 3000 } 3001 3002 void destroy_segment_manager_caches(void) 3003 { 3004 kmem_cache_destroy(sit_entry_set_slab); 3005 kmem_cache_destroy(discard_cmd_slab); 3006 kmem_cache_destroy(discard_entry_slab); 3007 kmem_cache_destroy(inmem_entry_slab); 3008 } 3009