1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include <trace/events/f2fs.h> 24 25 #define __reverse_ffz(x) __reverse_ffs(~(x)) 26 27 static struct kmem_cache *discard_entry_slab; 28 static struct kmem_cache *discard_cmd_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 static unsigned long __reverse_ulong(unsigned char *str) 33 { 34 unsigned long tmp = 0; 35 int shift = 24, idx = 0; 36 37 #if BITS_PER_LONG == 64 38 shift = 56; 39 #endif 40 while (shift >= 0) { 41 tmp |= (unsigned long)str[idx++] << shift; 42 shift -= BITS_PER_BYTE; 43 } 44 return tmp; 45 } 46 47 /* 48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 49 * MSB and LSB are reversed in a byte by f2fs_set_bit. 50 */ 51 static inline unsigned long __reverse_ffs(unsigned long word) 52 { 53 int num = 0; 54 55 #if BITS_PER_LONG == 64 56 if ((word & 0xffffffff00000000UL) == 0) 57 num += 32; 58 else 59 word >>= 32; 60 #endif 61 if ((word & 0xffff0000) == 0) 62 num += 16; 63 else 64 word >>= 16; 65 66 if ((word & 0xff00) == 0) 67 num += 8; 68 else 69 word >>= 8; 70 71 if ((word & 0xf0) == 0) 72 num += 4; 73 else 74 word >>= 4; 75 76 if ((word & 0xc) == 0) 77 num += 2; 78 else 79 word >>= 2; 80 81 if ((word & 0x2) == 0) 82 num += 1; 83 return num; 84 } 85 86 /* 87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 88 * f2fs_set_bit makes MSB and LSB reversed in a byte. 89 * @size must be integral times of unsigned long. 90 * Example: 91 * MSB <--> LSB 92 * f2fs_set_bit(0, bitmap) => 1000 0000 93 * f2fs_set_bit(7, bitmap) => 0000 0001 94 */ 95 static unsigned long __find_rev_next_bit(const unsigned long *addr, 96 unsigned long size, unsigned long offset) 97 { 98 const unsigned long *p = addr + BIT_WORD(offset); 99 unsigned long result = size; 100 unsigned long tmp; 101 102 if (offset >= size) 103 return size; 104 105 size -= (offset & ~(BITS_PER_LONG - 1)); 106 offset %= BITS_PER_LONG; 107 108 while (1) { 109 if (*p == 0) 110 goto pass; 111 112 tmp = __reverse_ulong((unsigned char *)p); 113 114 tmp &= ~0UL >> offset; 115 if (size < BITS_PER_LONG) 116 tmp &= (~0UL << (BITS_PER_LONG - size)); 117 if (tmp) 118 goto found; 119 pass: 120 if (size <= BITS_PER_LONG) 121 break; 122 size -= BITS_PER_LONG; 123 offset = 0; 124 p++; 125 } 126 return result; 127 found: 128 return result - size + __reverse_ffs(tmp); 129 } 130 131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 132 unsigned long size, unsigned long offset) 133 { 134 const unsigned long *p = addr + BIT_WORD(offset); 135 unsigned long result = size; 136 unsigned long tmp; 137 138 if (offset >= size) 139 return size; 140 141 size -= (offset & ~(BITS_PER_LONG - 1)); 142 offset %= BITS_PER_LONG; 143 144 while (1) { 145 if (*p == ~0UL) 146 goto pass; 147 148 tmp = __reverse_ulong((unsigned char *)p); 149 150 if (offset) 151 tmp |= ~0UL << (BITS_PER_LONG - offset); 152 if (size < BITS_PER_LONG) 153 tmp |= ~0UL >> size; 154 if (tmp != ~0UL) 155 goto found; 156 pass: 157 if (size <= BITS_PER_LONG) 158 break; 159 size -= BITS_PER_LONG; 160 offset = 0; 161 p++; 162 } 163 return result; 164 found: 165 return result - size + __reverse_ffz(tmp); 166 } 167 168 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 169 { 170 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 171 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 172 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 173 174 if (f2fs_lfs_mode(sbi)) 175 return false; 176 if (sbi->gc_mode == GC_URGENT_HIGH) 177 return true; 178 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 179 return true; 180 181 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 182 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 183 } 184 185 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 186 { 187 struct inmem_pages *new; 188 189 set_page_private_atomic(page); 190 191 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 192 193 /* add atomic page indices to the list */ 194 new->page = page; 195 INIT_LIST_HEAD(&new->list); 196 197 /* increase reference count with clean state */ 198 get_page(page); 199 mutex_lock(&F2FS_I(inode)->inmem_lock); 200 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 201 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 202 mutex_unlock(&F2FS_I(inode)->inmem_lock); 203 204 trace_f2fs_register_inmem_page(page, INMEM); 205 } 206 207 static int __revoke_inmem_pages(struct inode *inode, 208 struct list_head *head, bool drop, bool recover, 209 bool trylock) 210 { 211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 212 struct inmem_pages *cur, *tmp; 213 int err = 0; 214 215 list_for_each_entry_safe(cur, tmp, head, list) { 216 struct page *page = cur->page; 217 218 if (drop) 219 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 220 221 if (trylock) { 222 /* 223 * to avoid deadlock in between page lock and 224 * inmem_lock. 225 */ 226 if (!trylock_page(page)) 227 continue; 228 } else { 229 lock_page(page); 230 } 231 232 f2fs_wait_on_page_writeback(page, DATA, true, true); 233 234 if (recover) { 235 struct dnode_of_data dn; 236 struct node_info ni; 237 238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 239 retry: 240 set_new_dnode(&dn, inode, NULL, NULL, 0); 241 err = f2fs_get_dnode_of_data(&dn, page->index, 242 LOOKUP_NODE); 243 if (err) { 244 if (err == -ENOMEM) { 245 congestion_wait(BLK_RW_ASYNC, 246 DEFAULT_IO_TIMEOUT); 247 cond_resched(); 248 goto retry; 249 } 250 err = -EAGAIN; 251 goto next; 252 } 253 254 err = f2fs_get_node_info(sbi, dn.nid, &ni); 255 if (err) { 256 f2fs_put_dnode(&dn); 257 return err; 258 } 259 260 if (cur->old_addr == NEW_ADDR) { 261 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 262 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 263 } else 264 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 265 cur->old_addr, ni.version, true, true); 266 f2fs_put_dnode(&dn); 267 } 268 next: 269 /* we don't need to invalidate this in the sccessful status */ 270 if (drop || recover) { 271 ClearPageUptodate(page); 272 clear_page_private_gcing(page); 273 } 274 detach_page_private(page); 275 set_page_private(page, 0); 276 f2fs_put_page(page, 1); 277 278 list_del(&cur->list); 279 kmem_cache_free(inmem_entry_slab, cur); 280 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 281 } 282 return err; 283 } 284 285 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 286 { 287 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 288 struct inode *inode; 289 struct f2fs_inode_info *fi; 290 unsigned int count = sbi->atomic_files; 291 unsigned int looped = 0; 292 next: 293 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 294 if (list_empty(head)) { 295 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 296 return; 297 } 298 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 299 inode = igrab(&fi->vfs_inode); 300 if (inode) 301 list_move_tail(&fi->inmem_ilist, head); 302 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 303 304 if (inode) { 305 if (gc_failure) { 306 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 307 goto skip; 308 } 309 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 310 f2fs_drop_inmem_pages(inode); 311 skip: 312 iput(inode); 313 } 314 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 315 cond_resched(); 316 if (gc_failure) { 317 if (++looped >= count) 318 return; 319 } 320 goto next; 321 } 322 323 void f2fs_drop_inmem_pages(struct inode *inode) 324 { 325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 326 struct f2fs_inode_info *fi = F2FS_I(inode); 327 328 do { 329 mutex_lock(&fi->inmem_lock); 330 if (list_empty(&fi->inmem_pages)) { 331 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 332 333 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 334 if (!list_empty(&fi->inmem_ilist)) 335 list_del_init(&fi->inmem_ilist); 336 if (f2fs_is_atomic_file(inode)) { 337 clear_inode_flag(inode, FI_ATOMIC_FILE); 338 sbi->atomic_files--; 339 } 340 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 341 342 mutex_unlock(&fi->inmem_lock); 343 break; 344 } 345 __revoke_inmem_pages(inode, &fi->inmem_pages, 346 true, false, true); 347 mutex_unlock(&fi->inmem_lock); 348 } while (1); 349 } 350 351 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 352 { 353 struct f2fs_inode_info *fi = F2FS_I(inode); 354 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 355 struct list_head *head = &fi->inmem_pages; 356 struct inmem_pages *cur = NULL; 357 358 f2fs_bug_on(sbi, !page_private_atomic(page)); 359 360 mutex_lock(&fi->inmem_lock); 361 list_for_each_entry(cur, head, list) { 362 if (cur->page == page) 363 break; 364 } 365 366 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 367 list_del(&cur->list); 368 mutex_unlock(&fi->inmem_lock); 369 370 dec_page_count(sbi, F2FS_INMEM_PAGES); 371 kmem_cache_free(inmem_entry_slab, cur); 372 373 ClearPageUptodate(page); 374 clear_page_private_atomic(page); 375 f2fs_put_page(page, 0); 376 377 detach_page_private(page); 378 set_page_private(page, 0); 379 380 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 381 } 382 383 static int __f2fs_commit_inmem_pages(struct inode *inode) 384 { 385 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 386 struct f2fs_inode_info *fi = F2FS_I(inode); 387 struct inmem_pages *cur, *tmp; 388 struct f2fs_io_info fio = { 389 .sbi = sbi, 390 .ino = inode->i_ino, 391 .type = DATA, 392 .op = REQ_OP_WRITE, 393 .op_flags = REQ_SYNC | REQ_PRIO, 394 .io_type = FS_DATA_IO, 395 }; 396 struct list_head revoke_list; 397 bool submit_bio = false; 398 int err = 0; 399 400 INIT_LIST_HEAD(&revoke_list); 401 402 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 403 struct page *page = cur->page; 404 405 lock_page(page); 406 if (page->mapping == inode->i_mapping) { 407 trace_f2fs_commit_inmem_page(page, INMEM); 408 409 f2fs_wait_on_page_writeback(page, DATA, true, true); 410 411 set_page_dirty(page); 412 if (clear_page_dirty_for_io(page)) { 413 inode_dec_dirty_pages(inode); 414 f2fs_remove_dirty_inode(inode); 415 } 416 retry: 417 fio.page = page; 418 fio.old_blkaddr = NULL_ADDR; 419 fio.encrypted_page = NULL; 420 fio.need_lock = LOCK_DONE; 421 err = f2fs_do_write_data_page(&fio); 422 if (err) { 423 if (err == -ENOMEM) { 424 congestion_wait(BLK_RW_ASYNC, 425 DEFAULT_IO_TIMEOUT); 426 cond_resched(); 427 goto retry; 428 } 429 unlock_page(page); 430 break; 431 } 432 /* record old blkaddr for revoking */ 433 cur->old_addr = fio.old_blkaddr; 434 submit_bio = true; 435 } 436 unlock_page(page); 437 list_move_tail(&cur->list, &revoke_list); 438 } 439 440 if (submit_bio) 441 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 442 443 if (err) { 444 /* 445 * try to revoke all committed pages, but still we could fail 446 * due to no memory or other reason, if that happened, EAGAIN 447 * will be returned, which means in such case, transaction is 448 * already not integrity, caller should use journal to do the 449 * recovery or rewrite & commit last transaction. For other 450 * error number, revoking was done by filesystem itself. 451 */ 452 err = __revoke_inmem_pages(inode, &revoke_list, 453 false, true, false); 454 455 /* drop all uncommitted pages */ 456 __revoke_inmem_pages(inode, &fi->inmem_pages, 457 true, false, false); 458 } else { 459 __revoke_inmem_pages(inode, &revoke_list, 460 false, false, false); 461 } 462 463 return err; 464 } 465 466 int f2fs_commit_inmem_pages(struct inode *inode) 467 { 468 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 469 struct f2fs_inode_info *fi = F2FS_I(inode); 470 int err; 471 472 f2fs_balance_fs(sbi, true); 473 474 down_write(&fi->i_gc_rwsem[WRITE]); 475 476 f2fs_lock_op(sbi); 477 set_inode_flag(inode, FI_ATOMIC_COMMIT); 478 479 mutex_lock(&fi->inmem_lock); 480 err = __f2fs_commit_inmem_pages(inode); 481 mutex_unlock(&fi->inmem_lock); 482 483 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 484 485 f2fs_unlock_op(sbi); 486 up_write(&fi->i_gc_rwsem[WRITE]); 487 488 return err; 489 } 490 491 /* 492 * This function balances dirty node and dentry pages. 493 * In addition, it controls garbage collection. 494 */ 495 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 496 { 497 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 498 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 499 f2fs_stop_checkpoint(sbi, false); 500 } 501 502 /* balance_fs_bg is able to be pending */ 503 if (need && excess_cached_nats(sbi)) 504 f2fs_balance_fs_bg(sbi, false); 505 506 if (!f2fs_is_checkpoint_ready(sbi)) 507 return; 508 509 /* 510 * We should do GC or end up with checkpoint, if there are so many dirty 511 * dir/node pages without enough free segments. 512 */ 513 if (has_not_enough_free_secs(sbi, 0, 0)) { 514 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 515 sbi->gc_thread->f2fs_gc_task) { 516 DEFINE_WAIT(wait); 517 518 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 519 TASK_UNINTERRUPTIBLE); 520 wake_up(&sbi->gc_thread->gc_wait_queue_head); 521 io_schedule(); 522 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 523 } else { 524 down_write(&sbi->gc_lock); 525 f2fs_gc(sbi, false, false, false, NULL_SEGNO); 526 } 527 } 528 } 529 530 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 531 { 532 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 533 return; 534 535 /* try to shrink extent cache when there is no enough memory */ 536 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 537 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 538 539 /* check the # of cached NAT entries */ 540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 541 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 542 543 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 544 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 545 else 546 f2fs_build_free_nids(sbi, false, false); 547 548 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) || 549 excess_prefree_segs(sbi)) 550 goto do_sync; 551 552 /* there is background inflight IO or foreground operation recently */ 553 if (is_inflight_io(sbi, REQ_TIME) || 554 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem))) 555 return; 556 557 /* exceed periodical checkpoint timeout threshold */ 558 if (f2fs_time_over(sbi, CP_TIME)) 559 goto do_sync; 560 561 /* checkpoint is the only way to shrink partial cached entries */ 562 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) || 563 f2fs_available_free_memory(sbi, INO_ENTRIES)) 564 return; 565 566 do_sync: 567 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 568 struct blk_plug plug; 569 570 mutex_lock(&sbi->flush_lock); 571 572 blk_start_plug(&plug); 573 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 574 blk_finish_plug(&plug); 575 576 mutex_unlock(&sbi->flush_lock); 577 } 578 f2fs_sync_fs(sbi->sb, true); 579 stat_inc_bg_cp_count(sbi->stat_info); 580 } 581 582 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 583 struct block_device *bdev) 584 { 585 int ret = blkdev_issue_flush(bdev); 586 587 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 588 test_opt(sbi, FLUSH_MERGE), ret); 589 return ret; 590 } 591 592 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 593 { 594 int ret = 0; 595 int i; 596 597 if (!f2fs_is_multi_device(sbi)) 598 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 599 600 for (i = 0; i < sbi->s_ndevs; i++) { 601 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 602 continue; 603 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 604 if (ret) 605 break; 606 } 607 return ret; 608 } 609 610 static int issue_flush_thread(void *data) 611 { 612 struct f2fs_sb_info *sbi = data; 613 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 614 wait_queue_head_t *q = &fcc->flush_wait_queue; 615 repeat: 616 if (kthread_should_stop()) 617 return 0; 618 619 if (!llist_empty(&fcc->issue_list)) { 620 struct flush_cmd *cmd, *next; 621 int ret; 622 623 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 624 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 625 626 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 627 628 ret = submit_flush_wait(sbi, cmd->ino); 629 atomic_inc(&fcc->issued_flush); 630 631 llist_for_each_entry_safe(cmd, next, 632 fcc->dispatch_list, llnode) { 633 cmd->ret = ret; 634 complete(&cmd->wait); 635 } 636 fcc->dispatch_list = NULL; 637 } 638 639 wait_event_interruptible(*q, 640 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 641 goto repeat; 642 } 643 644 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 645 { 646 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 647 struct flush_cmd cmd; 648 int ret; 649 650 if (test_opt(sbi, NOBARRIER)) 651 return 0; 652 653 if (!test_opt(sbi, FLUSH_MERGE)) { 654 atomic_inc(&fcc->queued_flush); 655 ret = submit_flush_wait(sbi, ino); 656 atomic_dec(&fcc->queued_flush); 657 atomic_inc(&fcc->issued_flush); 658 return ret; 659 } 660 661 if (atomic_inc_return(&fcc->queued_flush) == 1 || 662 f2fs_is_multi_device(sbi)) { 663 ret = submit_flush_wait(sbi, ino); 664 atomic_dec(&fcc->queued_flush); 665 666 atomic_inc(&fcc->issued_flush); 667 return ret; 668 } 669 670 cmd.ino = ino; 671 init_completion(&cmd.wait); 672 673 llist_add(&cmd.llnode, &fcc->issue_list); 674 675 /* 676 * update issue_list before we wake up issue_flush thread, this 677 * smp_mb() pairs with another barrier in ___wait_event(), see 678 * more details in comments of waitqueue_active(). 679 */ 680 smp_mb(); 681 682 if (waitqueue_active(&fcc->flush_wait_queue)) 683 wake_up(&fcc->flush_wait_queue); 684 685 if (fcc->f2fs_issue_flush) { 686 wait_for_completion(&cmd.wait); 687 atomic_dec(&fcc->queued_flush); 688 } else { 689 struct llist_node *list; 690 691 list = llist_del_all(&fcc->issue_list); 692 if (!list) { 693 wait_for_completion(&cmd.wait); 694 atomic_dec(&fcc->queued_flush); 695 } else { 696 struct flush_cmd *tmp, *next; 697 698 ret = submit_flush_wait(sbi, ino); 699 700 llist_for_each_entry_safe(tmp, next, list, llnode) { 701 if (tmp == &cmd) { 702 cmd.ret = ret; 703 atomic_dec(&fcc->queued_flush); 704 continue; 705 } 706 tmp->ret = ret; 707 complete(&tmp->wait); 708 } 709 } 710 } 711 712 return cmd.ret; 713 } 714 715 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 716 { 717 dev_t dev = sbi->sb->s_bdev->bd_dev; 718 struct flush_cmd_control *fcc; 719 int err = 0; 720 721 if (SM_I(sbi)->fcc_info) { 722 fcc = SM_I(sbi)->fcc_info; 723 if (fcc->f2fs_issue_flush) 724 return err; 725 goto init_thread; 726 } 727 728 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 729 if (!fcc) 730 return -ENOMEM; 731 atomic_set(&fcc->issued_flush, 0); 732 atomic_set(&fcc->queued_flush, 0); 733 init_waitqueue_head(&fcc->flush_wait_queue); 734 init_llist_head(&fcc->issue_list); 735 SM_I(sbi)->fcc_info = fcc; 736 if (!test_opt(sbi, FLUSH_MERGE)) 737 return err; 738 739 init_thread: 740 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 741 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 742 if (IS_ERR(fcc->f2fs_issue_flush)) { 743 err = PTR_ERR(fcc->f2fs_issue_flush); 744 kfree(fcc); 745 SM_I(sbi)->fcc_info = NULL; 746 return err; 747 } 748 749 return err; 750 } 751 752 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 753 { 754 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 755 756 if (fcc && fcc->f2fs_issue_flush) { 757 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 758 759 fcc->f2fs_issue_flush = NULL; 760 kthread_stop(flush_thread); 761 } 762 if (free) { 763 kfree(fcc); 764 SM_I(sbi)->fcc_info = NULL; 765 } 766 } 767 768 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 769 { 770 int ret = 0, i; 771 772 if (!f2fs_is_multi_device(sbi)) 773 return 0; 774 775 if (test_opt(sbi, NOBARRIER)) 776 return 0; 777 778 for (i = 1; i < sbi->s_ndevs; i++) { 779 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 780 continue; 781 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 782 if (ret) 783 break; 784 785 spin_lock(&sbi->dev_lock); 786 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 787 spin_unlock(&sbi->dev_lock); 788 } 789 790 return ret; 791 } 792 793 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 794 enum dirty_type dirty_type) 795 { 796 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 797 798 /* need not be added */ 799 if (IS_CURSEG(sbi, segno)) 800 return; 801 802 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 803 dirty_i->nr_dirty[dirty_type]++; 804 805 if (dirty_type == DIRTY) { 806 struct seg_entry *sentry = get_seg_entry(sbi, segno); 807 enum dirty_type t = sentry->type; 808 809 if (unlikely(t >= DIRTY)) { 810 f2fs_bug_on(sbi, 1); 811 return; 812 } 813 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 814 dirty_i->nr_dirty[t]++; 815 816 if (__is_large_section(sbi)) { 817 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 818 block_t valid_blocks = 819 get_valid_blocks(sbi, segno, true); 820 821 f2fs_bug_on(sbi, unlikely(!valid_blocks || 822 valid_blocks == BLKS_PER_SEC(sbi))); 823 824 if (!IS_CURSEC(sbi, secno)) 825 set_bit(secno, dirty_i->dirty_secmap); 826 } 827 } 828 } 829 830 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 831 enum dirty_type dirty_type) 832 { 833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 834 block_t valid_blocks; 835 836 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 837 dirty_i->nr_dirty[dirty_type]--; 838 839 if (dirty_type == DIRTY) { 840 struct seg_entry *sentry = get_seg_entry(sbi, segno); 841 enum dirty_type t = sentry->type; 842 843 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 844 dirty_i->nr_dirty[t]--; 845 846 valid_blocks = get_valid_blocks(sbi, segno, true); 847 if (valid_blocks == 0) { 848 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 849 dirty_i->victim_secmap); 850 #ifdef CONFIG_F2FS_CHECK_FS 851 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 852 #endif 853 } 854 if (__is_large_section(sbi)) { 855 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 856 857 if (!valid_blocks || 858 valid_blocks == BLKS_PER_SEC(sbi)) { 859 clear_bit(secno, dirty_i->dirty_secmap); 860 return; 861 } 862 863 if (!IS_CURSEC(sbi, secno)) 864 set_bit(secno, dirty_i->dirty_secmap); 865 } 866 } 867 } 868 869 /* 870 * Should not occur error such as -ENOMEM. 871 * Adding dirty entry into seglist is not critical operation. 872 * If a given segment is one of current working segments, it won't be added. 873 */ 874 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 875 { 876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 877 unsigned short valid_blocks, ckpt_valid_blocks; 878 unsigned int usable_blocks; 879 880 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 881 return; 882 883 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 884 mutex_lock(&dirty_i->seglist_lock); 885 886 valid_blocks = get_valid_blocks(sbi, segno, false); 887 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 888 889 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 890 ckpt_valid_blocks == usable_blocks)) { 891 __locate_dirty_segment(sbi, segno, PRE); 892 __remove_dirty_segment(sbi, segno, DIRTY); 893 } else if (valid_blocks < usable_blocks) { 894 __locate_dirty_segment(sbi, segno, DIRTY); 895 } else { 896 /* Recovery routine with SSR needs this */ 897 __remove_dirty_segment(sbi, segno, DIRTY); 898 } 899 900 mutex_unlock(&dirty_i->seglist_lock); 901 } 902 903 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 904 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 905 { 906 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 907 unsigned int segno; 908 909 mutex_lock(&dirty_i->seglist_lock); 910 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 911 if (get_valid_blocks(sbi, segno, false)) 912 continue; 913 if (IS_CURSEG(sbi, segno)) 914 continue; 915 __locate_dirty_segment(sbi, segno, PRE); 916 __remove_dirty_segment(sbi, segno, DIRTY); 917 } 918 mutex_unlock(&dirty_i->seglist_lock); 919 } 920 921 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 922 { 923 int ovp_hole_segs = 924 (overprovision_segments(sbi) - reserved_segments(sbi)); 925 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 926 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 927 block_t holes[2] = {0, 0}; /* DATA and NODE */ 928 block_t unusable; 929 struct seg_entry *se; 930 unsigned int segno; 931 932 mutex_lock(&dirty_i->seglist_lock); 933 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 934 se = get_seg_entry(sbi, segno); 935 if (IS_NODESEG(se->type)) 936 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 937 se->valid_blocks; 938 else 939 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 940 se->valid_blocks; 941 } 942 mutex_unlock(&dirty_i->seglist_lock); 943 944 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 945 if (unusable > ovp_holes) 946 return unusable - ovp_holes; 947 return 0; 948 } 949 950 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 951 { 952 int ovp_hole_segs = 953 (overprovision_segments(sbi) - reserved_segments(sbi)); 954 if (unusable > F2FS_OPTION(sbi).unusable_cap) 955 return -EAGAIN; 956 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 957 dirty_segments(sbi) > ovp_hole_segs) 958 return -EAGAIN; 959 return 0; 960 } 961 962 /* This is only used by SBI_CP_DISABLED */ 963 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 964 { 965 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 966 unsigned int segno = 0; 967 968 mutex_lock(&dirty_i->seglist_lock); 969 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 970 if (get_valid_blocks(sbi, segno, false)) 971 continue; 972 if (get_ckpt_valid_blocks(sbi, segno, false)) 973 continue; 974 mutex_unlock(&dirty_i->seglist_lock); 975 return segno; 976 } 977 mutex_unlock(&dirty_i->seglist_lock); 978 return NULL_SEGNO; 979 } 980 981 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 982 struct block_device *bdev, block_t lstart, 983 block_t start, block_t len) 984 { 985 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 986 struct list_head *pend_list; 987 struct discard_cmd *dc; 988 989 f2fs_bug_on(sbi, !len); 990 991 pend_list = &dcc->pend_list[plist_idx(len)]; 992 993 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 994 INIT_LIST_HEAD(&dc->list); 995 dc->bdev = bdev; 996 dc->lstart = lstart; 997 dc->start = start; 998 dc->len = len; 999 dc->ref = 0; 1000 dc->state = D_PREP; 1001 dc->queued = 0; 1002 dc->error = 0; 1003 init_completion(&dc->wait); 1004 list_add_tail(&dc->list, pend_list); 1005 spin_lock_init(&dc->lock); 1006 dc->bio_ref = 0; 1007 atomic_inc(&dcc->discard_cmd_cnt); 1008 dcc->undiscard_blks += len; 1009 1010 return dc; 1011 } 1012 1013 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 1014 struct block_device *bdev, block_t lstart, 1015 block_t start, block_t len, 1016 struct rb_node *parent, struct rb_node **p, 1017 bool leftmost) 1018 { 1019 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1020 struct discard_cmd *dc; 1021 1022 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1023 1024 rb_link_node(&dc->rb_node, parent, p); 1025 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1026 1027 return dc; 1028 } 1029 1030 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1031 struct discard_cmd *dc) 1032 { 1033 if (dc->state == D_DONE) 1034 atomic_sub(dc->queued, &dcc->queued_discard); 1035 1036 list_del(&dc->list); 1037 rb_erase_cached(&dc->rb_node, &dcc->root); 1038 dcc->undiscard_blks -= dc->len; 1039 1040 kmem_cache_free(discard_cmd_slab, dc); 1041 1042 atomic_dec(&dcc->discard_cmd_cnt); 1043 } 1044 1045 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1046 struct discard_cmd *dc) 1047 { 1048 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1049 unsigned long flags; 1050 1051 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1052 1053 spin_lock_irqsave(&dc->lock, flags); 1054 if (dc->bio_ref) { 1055 spin_unlock_irqrestore(&dc->lock, flags); 1056 return; 1057 } 1058 spin_unlock_irqrestore(&dc->lock, flags); 1059 1060 f2fs_bug_on(sbi, dc->ref); 1061 1062 if (dc->error == -EOPNOTSUPP) 1063 dc->error = 0; 1064 1065 if (dc->error) 1066 printk_ratelimited( 1067 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1068 KERN_INFO, sbi->sb->s_id, 1069 dc->lstart, dc->start, dc->len, dc->error); 1070 __detach_discard_cmd(dcc, dc); 1071 } 1072 1073 static void f2fs_submit_discard_endio(struct bio *bio) 1074 { 1075 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1076 unsigned long flags; 1077 1078 spin_lock_irqsave(&dc->lock, flags); 1079 if (!dc->error) 1080 dc->error = blk_status_to_errno(bio->bi_status); 1081 dc->bio_ref--; 1082 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1083 dc->state = D_DONE; 1084 complete_all(&dc->wait); 1085 } 1086 spin_unlock_irqrestore(&dc->lock, flags); 1087 bio_put(bio); 1088 } 1089 1090 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1091 block_t start, block_t end) 1092 { 1093 #ifdef CONFIG_F2FS_CHECK_FS 1094 struct seg_entry *sentry; 1095 unsigned int segno; 1096 block_t blk = start; 1097 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1098 unsigned long *map; 1099 1100 while (blk < end) { 1101 segno = GET_SEGNO(sbi, blk); 1102 sentry = get_seg_entry(sbi, segno); 1103 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1104 1105 if (end < START_BLOCK(sbi, segno + 1)) 1106 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1107 else 1108 size = max_blocks; 1109 map = (unsigned long *)(sentry->cur_valid_map); 1110 offset = __find_rev_next_bit(map, size, offset); 1111 f2fs_bug_on(sbi, offset != size); 1112 blk = START_BLOCK(sbi, segno + 1); 1113 } 1114 #endif 1115 } 1116 1117 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1118 struct discard_policy *dpolicy, 1119 int discard_type, unsigned int granularity) 1120 { 1121 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1122 1123 /* common policy */ 1124 dpolicy->type = discard_type; 1125 dpolicy->sync = true; 1126 dpolicy->ordered = false; 1127 dpolicy->granularity = granularity; 1128 1129 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1130 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1131 dpolicy->timeout = false; 1132 1133 if (discard_type == DPOLICY_BG) { 1134 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1135 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1136 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1137 dpolicy->io_aware = true; 1138 dpolicy->sync = false; 1139 dpolicy->ordered = true; 1140 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1141 dpolicy->granularity = 1; 1142 if (atomic_read(&dcc->discard_cmd_cnt)) 1143 dpolicy->max_interval = 1144 DEF_MIN_DISCARD_ISSUE_TIME; 1145 } 1146 } else if (discard_type == DPOLICY_FORCE) { 1147 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1148 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1149 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1150 dpolicy->io_aware = false; 1151 } else if (discard_type == DPOLICY_FSTRIM) { 1152 dpolicy->io_aware = false; 1153 } else if (discard_type == DPOLICY_UMOUNT) { 1154 dpolicy->io_aware = false; 1155 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1156 dpolicy->granularity = 1; 1157 dpolicy->timeout = true; 1158 } 1159 } 1160 1161 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1162 struct block_device *bdev, block_t lstart, 1163 block_t start, block_t len); 1164 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1165 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1166 struct discard_policy *dpolicy, 1167 struct discard_cmd *dc, 1168 unsigned int *issued) 1169 { 1170 struct block_device *bdev = dc->bdev; 1171 struct request_queue *q = bdev_get_queue(bdev); 1172 unsigned int max_discard_blocks = 1173 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1174 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1175 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1176 &(dcc->fstrim_list) : &(dcc->wait_list); 1177 int flag = dpolicy->sync ? REQ_SYNC : 0; 1178 block_t lstart, start, len, total_len; 1179 int err = 0; 1180 1181 if (dc->state != D_PREP) 1182 return 0; 1183 1184 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1185 return 0; 1186 1187 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1188 1189 lstart = dc->lstart; 1190 start = dc->start; 1191 len = dc->len; 1192 total_len = len; 1193 1194 dc->len = 0; 1195 1196 while (total_len && *issued < dpolicy->max_requests && !err) { 1197 struct bio *bio = NULL; 1198 unsigned long flags; 1199 bool last = true; 1200 1201 if (len > max_discard_blocks) { 1202 len = max_discard_blocks; 1203 last = false; 1204 } 1205 1206 (*issued)++; 1207 if (*issued == dpolicy->max_requests) 1208 last = true; 1209 1210 dc->len += len; 1211 1212 if (time_to_inject(sbi, FAULT_DISCARD)) { 1213 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1214 err = -EIO; 1215 goto submit; 1216 } 1217 err = __blkdev_issue_discard(bdev, 1218 SECTOR_FROM_BLOCK(start), 1219 SECTOR_FROM_BLOCK(len), 1220 GFP_NOFS, 0, &bio); 1221 submit: 1222 if (err) { 1223 spin_lock_irqsave(&dc->lock, flags); 1224 if (dc->state == D_PARTIAL) 1225 dc->state = D_SUBMIT; 1226 spin_unlock_irqrestore(&dc->lock, flags); 1227 1228 break; 1229 } 1230 1231 f2fs_bug_on(sbi, !bio); 1232 1233 /* 1234 * should keep before submission to avoid D_DONE 1235 * right away 1236 */ 1237 spin_lock_irqsave(&dc->lock, flags); 1238 if (last) 1239 dc->state = D_SUBMIT; 1240 else 1241 dc->state = D_PARTIAL; 1242 dc->bio_ref++; 1243 spin_unlock_irqrestore(&dc->lock, flags); 1244 1245 atomic_inc(&dcc->queued_discard); 1246 dc->queued++; 1247 list_move_tail(&dc->list, wait_list); 1248 1249 /* sanity check on discard range */ 1250 __check_sit_bitmap(sbi, lstart, lstart + len); 1251 1252 bio->bi_private = dc; 1253 bio->bi_end_io = f2fs_submit_discard_endio; 1254 bio->bi_opf |= flag; 1255 submit_bio(bio); 1256 1257 atomic_inc(&dcc->issued_discard); 1258 1259 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1260 1261 lstart += len; 1262 start += len; 1263 total_len -= len; 1264 len = total_len; 1265 } 1266 1267 if (!err && len) { 1268 dcc->undiscard_blks -= len; 1269 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1270 } 1271 return err; 1272 } 1273 1274 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1275 struct block_device *bdev, block_t lstart, 1276 block_t start, block_t len, 1277 struct rb_node **insert_p, 1278 struct rb_node *insert_parent) 1279 { 1280 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1281 struct rb_node **p; 1282 struct rb_node *parent = NULL; 1283 bool leftmost = true; 1284 1285 if (insert_p && insert_parent) { 1286 parent = insert_parent; 1287 p = insert_p; 1288 goto do_insert; 1289 } 1290 1291 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1292 lstart, &leftmost); 1293 do_insert: 1294 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1295 p, leftmost); 1296 } 1297 1298 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1299 struct discard_cmd *dc) 1300 { 1301 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1302 } 1303 1304 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1305 struct discard_cmd *dc, block_t blkaddr) 1306 { 1307 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1308 struct discard_info di = dc->di; 1309 bool modified = false; 1310 1311 if (dc->state == D_DONE || dc->len == 1) { 1312 __remove_discard_cmd(sbi, dc); 1313 return; 1314 } 1315 1316 dcc->undiscard_blks -= di.len; 1317 1318 if (blkaddr > di.lstart) { 1319 dc->len = blkaddr - dc->lstart; 1320 dcc->undiscard_blks += dc->len; 1321 __relocate_discard_cmd(dcc, dc); 1322 modified = true; 1323 } 1324 1325 if (blkaddr < di.lstart + di.len - 1) { 1326 if (modified) { 1327 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1328 di.start + blkaddr + 1 - di.lstart, 1329 di.lstart + di.len - 1 - blkaddr, 1330 NULL, NULL); 1331 } else { 1332 dc->lstart++; 1333 dc->len--; 1334 dc->start++; 1335 dcc->undiscard_blks += dc->len; 1336 __relocate_discard_cmd(dcc, dc); 1337 } 1338 } 1339 } 1340 1341 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1342 struct block_device *bdev, block_t lstart, 1343 block_t start, block_t len) 1344 { 1345 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1346 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1347 struct discard_cmd *dc; 1348 struct discard_info di = {0}; 1349 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1350 struct request_queue *q = bdev_get_queue(bdev); 1351 unsigned int max_discard_blocks = 1352 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1353 block_t end = lstart + len; 1354 1355 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1356 NULL, lstart, 1357 (struct rb_entry **)&prev_dc, 1358 (struct rb_entry **)&next_dc, 1359 &insert_p, &insert_parent, true, NULL); 1360 if (dc) 1361 prev_dc = dc; 1362 1363 if (!prev_dc) { 1364 di.lstart = lstart; 1365 di.len = next_dc ? next_dc->lstart - lstart : len; 1366 di.len = min(di.len, len); 1367 di.start = start; 1368 } 1369 1370 while (1) { 1371 struct rb_node *node; 1372 bool merged = false; 1373 struct discard_cmd *tdc = NULL; 1374 1375 if (prev_dc) { 1376 di.lstart = prev_dc->lstart + prev_dc->len; 1377 if (di.lstart < lstart) 1378 di.lstart = lstart; 1379 if (di.lstart >= end) 1380 break; 1381 1382 if (!next_dc || next_dc->lstart > end) 1383 di.len = end - di.lstart; 1384 else 1385 di.len = next_dc->lstart - di.lstart; 1386 di.start = start + di.lstart - lstart; 1387 } 1388 1389 if (!di.len) 1390 goto next; 1391 1392 if (prev_dc && prev_dc->state == D_PREP && 1393 prev_dc->bdev == bdev && 1394 __is_discard_back_mergeable(&di, &prev_dc->di, 1395 max_discard_blocks)) { 1396 prev_dc->di.len += di.len; 1397 dcc->undiscard_blks += di.len; 1398 __relocate_discard_cmd(dcc, prev_dc); 1399 di = prev_dc->di; 1400 tdc = prev_dc; 1401 merged = true; 1402 } 1403 1404 if (next_dc && next_dc->state == D_PREP && 1405 next_dc->bdev == bdev && 1406 __is_discard_front_mergeable(&di, &next_dc->di, 1407 max_discard_blocks)) { 1408 next_dc->di.lstart = di.lstart; 1409 next_dc->di.len += di.len; 1410 next_dc->di.start = di.start; 1411 dcc->undiscard_blks += di.len; 1412 __relocate_discard_cmd(dcc, next_dc); 1413 if (tdc) 1414 __remove_discard_cmd(sbi, tdc); 1415 merged = true; 1416 } 1417 1418 if (!merged) { 1419 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1420 di.len, NULL, NULL); 1421 } 1422 next: 1423 prev_dc = next_dc; 1424 if (!prev_dc) 1425 break; 1426 1427 node = rb_next(&prev_dc->rb_node); 1428 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1429 } 1430 } 1431 1432 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1433 struct block_device *bdev, block_t blkstart, block_t blklen) 1434 { 1435 block_t lblkstart = blkstart; 1436 1437 if (!f2fs_bdev_support_discard(bdev)) 1438 return 0; 1439 1440 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1441 1442 if (f2fs_is_multi_device(sbi)) { 1443 int devi = f2fs_target_device_index(sbi, blkstart); 1444 1445 blkstart -= FDEV(devi).start_blk; 1446 } 1447 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1448 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1449 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1450 return 0; 1451 } 1452 1453 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1454 struct discard_policy *dpolicy) 1455 { 1456 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1457 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1458 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1459 struct discard_cmd *dc; 1460 struct blk_plug plug; 1461 unsigned int pos = dcc->next_pos; 1462 unsigned int issued = 0; 1463 bool io_interrupted = false; 1464 1465 mutex_lock(&dcc->cmd_lock); 1466 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1467 NULL, pos, 1468 (struct rb_entry **)&prev_dc, 1469 (struct rb_entry **)&next_dc, 1470 &insert_p, &insert_parent, true, NULL); 1471 if (!dc) 1472 dc = next_dc; 1473 1474 blk_start_plug(&plug); 1475 1476 while (dc) { 1477 struct rb_node *node; 1478 int err = 0; 1479 1480 if (dc->state != D_PREP) 1481 goto next; 1482 1483 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1484 io_interrupted = true; 1485 break; 1486 } 1487 1488 dcc->next_pos = dc->lstart + dc->len; 1489 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1490 1491 if (issued >= dpolicy->max_requests) 1492 break; 1493 next: 1494 node = rb_next(&dc->rb_node); 1495 if (err) 1496 __remove_discard_cmd(sbi, dc); 1497 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1498 } 1499 1500 blk_finish_plug(&plug); 1501 1502 if (!dc) 1503 dcc->next_pos = 0; 1504 1505 mutex_unlock(&dcc->cmd_lock); 1506 1507 if (!issued && io_interrupted) 1508 issued = -1; 1509 1510 return issued; 1511 } 1512 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1513 struct discard_policy *dpolicy); 1514 1515 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1516 struct discard_policy *dpolicy) 1517 { 1518 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1519 struct list_head *pend_list; 1520 struct discard_cmd *dc, *tmp; 1521 struct blk_plug plug; 1522 int i, issued; 1523 bool io_interrupted = false; 1524 1525 if (dpolicy->timeout) 1526 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1527 1528 retry: 1529 issued = 0; 1530 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1531 if (dpolicy->timeout && 1532 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1533 break; 1534 1535 if (i + 1 < dpolicy->granularity) 1536 break; 1537 1538 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1539 return __issue_discard_cmd_orderly(sbi, dpolicy); 1540 1541 pend_list = &dcc->pend_list[i]; 1542 1543 mutex_lock(&dcc->cmd_lock); 1544 if (list_empty(pend_list)) 1545 goto next; 1546 if (unlikely(dcc->rbtree_check)) 1547 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1548 &dcc->root, false)); 1549 blk_start_plug(&plug); 1550 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1551 f2fs_bug_on(sbi, dc->state != D_PREP); 1552 1553 if (dpolicy->timeout && 1554 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1555 break; 1556 1557 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1558 !is_idle(sbi, DISCARD_TIME)) { 1559 io_interrupted = true; 1560 break; 1561 } 1562 1563 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1564 1565 if (issued >= dpolicy->max_requests) 1566 break; 1567 } 1568 blk_finish_plug(&plug); 1569 next: 1570 mutex_unlock(&dcc->cmd_lock); 1571 1572 if (issued >= dpolicy->max_requests || io_interrupted) 1573 break; 1574 } 1575 1576 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1577 __wait_all_discard_cmd(sbi, dpolicy); 1578 goto retry; 1579 } 1580 1581 if (!issued && io_interrupted) 1582 issued = -1; 1583 1584 return issued; 1585 } 1586 1587 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1588 { 1589 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1590 struct list_head *pend_list; 1591 struct discard_cmd *dc, *tmp; 1592 int i; 1593 bool dropped = false; 1594 1595 mutex_lock(&dcc->cmd_lock); 1596 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1597 pend_list = &dcc->pend_list[i]; 1598 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1599 f2fs_bug_on(sbi, dc->state != D_PREP); 1600 __remove_discard_cmd(sbi, dc); 1601 dropped = true; 1602 } 1603 } 1604 mutex_unlock(&dcc->cmd_lock); 1605 1606 return dropped; 1607 } 1608 1609 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1610 { 1611 __drop_discard_cmd(sbi); 1612 } 1613 1614 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1615 struct discard_cmd *dc) 1616 { 1617 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1618 unsigned int len = 0; 1619 1620 wait_for_completion_io(&dc->wait); 1621 mutex_lock(&dcc->cmd_lock); 1622 f2fs_bug_on(sbi, dc->state != D_DONE); 1623 dc->ref--; 1624 if (!dc->ref) { 1625 if (!dc->error) 1626 len = dc->len; 1627 __remove_discard_cmd(sbi, dc); 1628 } 1629 mutex_unlock(&dcc->cmd_lock); 1630 1631 return len; 1632 } 1633 1634 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1635 struct discard_policy *dpolicy, 1636 block_t start, block_t end) 1637 { 1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1639 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1640 &(dcc->fstrim_list) : &(dcc->wait_list); 1641 struct discard_cmd *dc, *tmp; 1642 bool need_wait; 1643 unsigned int trimmed = 0; 1644 1645 next: 1646 need_wait = false; 1647 1648 mutex_lock(&dcc->cmd_lock); 1649 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1650 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1651 continue; 1652 if (dc->len < dpolicy->granularity) 1653 continue; 1654 if (dc->state == D_DONE && !dc->ref) { 1655 wait_for_completion_io(&dc->wait); 1656 if (!dc->error) 1657 trimmed += dc->len; 1658 __remove_discard_cmd(sbi, dc); 1659 } else { 1660 dc->ref++; 1661 need_wait = true; 1662 break; 1663 } 1664 } 1665 mutex_unlock(&dcc->cmd_lock); 1666 1667 if (need_wait) { 1668 trimmed += __wait_one_discard_bio(sbi, dc); 1669 goto next; 1670 } 1671 1672 return trimmed; 1673 } 1674 1675 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1676 struct discard_policy *dpolicy) 1677 { 1678 struct discard_policy dp; 1679 unsigned int discard_blks; 1680 1681 if (dpolicy) 1682 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1683 1684 /* wait all */ 1685 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1686 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1687 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1688 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1689 1690 return discard_blks; 1691 } 1692 1693 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1694 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1695 { 1696 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1697 struct discard_cmd *dc; 1698 bool need_wait = false; 1699 1700 mutex_lock(&dcc->cmd_lock); 1701 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1702 NULL, blkaddr); 1703 if (dc) { 1704 if (dc->state == D_PREP) { 1705 __punch_discard_cmd(sbi, dc, blkaddr); 1706 } else { 1707 dc->ref++; 1708 need_wait = true; 1709 } 1710 } 1711 mutex_unlock(&dcc->cmd_lock); 1712 1713 if (need_wait) 1714 __wait_one_discard_bio(sbi, dc); 1715 } 1716 1717 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1718 { 1719 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1720 1721 if (dcc && dcc->f2fs_issue_discard) { 1722 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1723 1724 dcc->f2fs_issue_discard = NULL; 1725 kthread_stop(discard_thread); 1726 } 1727 } 1728 1729 /* This comes from f2fs_put_super */ 1730 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1731 { 1732 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1733 struct discard_policy dpolicy; 1734 bool dropped; 1735 1736 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1737 dcc->discard_granularity); 1738 __issue_discard_cmd(sbi, &dpolicy); 1739 dropped = __drop_discard_cmd(sbi); 1740 1741 /* just to make sure there is no pending discard commands */ 1742 __wait_all_discard_cmd(sbi, NULL); 1743 1744 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1745 return dropped; 1746 } 1747 1748 static int issue_discard_thread(void *data) 1749 { 1750 struct f2fs_sb_info *sbi = data; 1751 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1752 wait_queue_head_t *q = &dcc->discard_wait_queue; 1753 struct discard_policy dpolicy; 1754 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1755 int issued; 1756 1757 set_freezable(); 1758 1759 do { 1760 if (sbi->gc_mode == GC_URGENT_HIGH || 1761 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1762 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1763 else 1764 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1765 dcc->discard_granularity); 1766 1767 if (!atomic_read(&dcc->discard_cmd_cnt)) 1768 wait_ms = dpolicy.max_interval; 1769 1770 wait_event_interruptible_timeout(*q, 1771 kthread_should_stop() || freezing(current) || 1772 dcc->discard_wake, 1773 msecs_to_jiffies(wait_ms)); 1774 1775 if (dcc->discard_wake) 1776 dcc->discard_wake = 0; 1777 1778 /* clean up pending candidates before going to sleep */ 1779 if (atomic_read(&dcc->queued_discard)) 1780 __wait_all_discard_cmd(sbi, NULL); 1781 1782 if (try_to_freeze()) 1783 continue; 1784 if (f2fs_readonly(sbi->sb)) 1785 continue; 1786 if (kthread_should_stop()) 1787 return 0; 1788 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1789 wait_ms = dpolicy.max_interval; 1790 continue; 1791 } 1792 if (!atomic_read(&dcc->discard_cmd_cnt)) 1793 continue; 1794 1795 sb_start_intwrite(sbi->sb); 1796 1797 issued = __issue_discard_cmd(sbi, &dpolicy); 1798 if (issued > 0) { 1799 __wait_all_discard_cmd(sbi, &dpolicy); 1800 wait_ms = dpolicy.min_interval; 1801 } else if (issued == -1) { 1802 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1803 if (!wait_ms) 1804 wait_ms = dpolicy.mid_interval; 1805 } else { 1806 wait_ms = dpolicy.max_interval; 1807 } 1808 1809 sb_end_intwrite(sbi->sb); 1810 1811 } while (!kthread_should_stop()); 1812 return 0; 1813 } 1814 1815 #ifdef CONFIG_BLK_DEV_ZONED 1816 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1817 struct block_device *bdev, block_t blkstart, block_t blklen) 1818 { 1819 sector_t sector, nr_sects; 1820 block_t lblkstart = blkstart; 1821 int devi = 0; 1822 1823 if (f2fs_is_multi_device(sbi)) { 1824 devi = f2fs_target_device_index(sbi, blkstart); 1825 if (blkstart < FDEV(devi).start_blk || 1826 blkstart > FDEV(devi).end_blk) { 1827 f2fs_err(sbi, "Invalid block %x", blkstart); 1828 return -EIO; 1829 } 1830 blkstart -= FDEV(devi).start_blk; 1831 } 1832 1833 /* For sequential zones, reset the zone write pointer */ 1834 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1835 sector = SECTOR_FROM_BLOCK(blkstart); 1836 nr_sects = SECTOR_FROM_BLOCK(blklen); 1837 1838 if (sector & (bdev_zone_sectors(bdev) - 1) || 1839 nr_sects != bdev_zone_sectors(bdev)) { 1840 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1841 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1842 blkstart, blklen); 1843 return -EIO; 1844 } 1845 trace_f2fs_issue_reset_zone(bdev, blkstart); 1846 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1847 sector, nr_sects, GFP_NOFS); 1848 } 1849 1850 /* For conventional zones, use regular discard if supported */ 1851 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1852 } 1853 #endif 1854 1855 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1856 struct block_device *bdev, block_t blkstart, block_t blklen) 1857 { 1858 #ifdef CONFIG_BLK_DEV_ZONED 1859 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1860 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1861 #endif 1862 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1863 } 1864 1865 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1866 block_t blkstart, block_t blklen) 1867 { 1868 sector_t start = blkstart, len = 0; 1869 struct block_device *bdev; 1870 struct seg_entry *se; 1871 unsigned int offset; 1872 block_t i; 1873 int err = 0; 1874 1875 bdev = f2fs_target_device(sbi, blkstart, NULL); 1876 1877 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1878 if (i != start) { 1879 struct block_device *bdev2 = 1880 f2fs_target_device(sbi, i, NULL); 1881 1882 if (bdev2 != bdev) { 1883 err = __issue_discard_async(sbi, bdev, 1884 start, len); 1885 if (err) 1886 return err; 1887 bdev = bdev2; 1888 start = i; 1889 len = 0; 1890 } 1891 } 1892 1893 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1894 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1895 1896 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1897 sbi->discard_blks--; 1898 } 1899 1900 if (len) 1901 err = __issue_discard_async(sbi, bdev, start, len); 1902 return err; 1903 } 1904 1905 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1906 bool check_only) 1907 { 1908 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1909 int max_blocks = sbi->blocks_per_seg; 1910 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1911 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1912 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1913 unsigned long *discard_map = (unsigned long *)se->discard_map; 1914 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1915 unsigned int start = 0, end = -1; 1916 bool force = (cpc->reason & CP_DISCARD); 1917 struct discard_entry *de = NULL; 1918 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1919 int i; 1920 1921 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1922 return false; 1923 1924 if (!force) { 1925 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1926 SM_I(sbi)->dcc_info->nr_discards >= 1927 SM_I(sbi)->dcc_info->max_discards) 1928 return false; 1929 } 1930 1931 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1932 for (i = 0; i < entries; i++) 1933 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1934 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1935 1936 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1937 SM_I(sbi)->dcc_info->max_discards) { 1938 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1939 if (start >= max_blocks) 1940 break; 1941 1942 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1943 if (force && start && end != max_blocks 1944 && (end - start) < cpc->trim_minlen) 1945 continue; 1946 1947 if (check_only) 1948 return true; 1949 1950 if (!de) { 1951 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1952 GFP_F2FS_ZERO); 1953 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1954 list_add_tail(&de->list, head); 1955 } 1956 1957 for (i = start; i < end; i++) 1958 __set_bit_le(i, (void *)de->discard_map); 1959 1960 SM_I(sbi)->dcc_info->nr_discards += end - start; 1961 } 1962 return false; 1963 } 1964 1965 static void release_discard_addr(struct discard_entry *entry) 1966 { 1967 list_del(&entry->list); 1968 kmem_cache_free(discard_entry_slab, entry); 1969 } 1970 1971 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1972 { 1973 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1974 struct discard_entry *entry, *this; 1975 1976 /* drop caches */ 1977 list_for_each_entry_safe(entry, this, head, list) 1978 release_discard_addr(entry); 1979 } 1980 1981 /* 1982 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1983 */ 1984 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1985 { 1986 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1987 unsigned int segno; 1988 1989 mutex_lock(&dirty_i->seglist_lock); 1990 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1991 __set_test_and_free(sbi, segno, false); 1992 mutex_unlock(&dirty_i->seglist_lock); 1993 } 1994 1995 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1996 struct cp_control *cpc) 1997 { 1998 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1999 struct list_head *head = &dcc->entry_list; 2000 struct discard_entry *entry, *this; 2001 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2002 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2003 unsigned int start = 0, end = -1; 2004 unsigned int secno, start_segno; 2005 bool force = (cpc->reason & CP_DISCARD); 2006 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 2007 2008 mutex_lock(&dirty_i->seglist_lock); 2009 2010 while (1) { 2011 int i; 2012 2013 if (need_align && end != -1) 2014 end--; 2015 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2016 if (start >= MAIN_SEGS(sbi)) 2017 break; 2018 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2019 start + 1); 2020 2021 if (need_align) { 2022 start = rounddown(start, sbi->segs_per_sec); 2023 end = roundup(end, sbi->segs_per_sec); 2024 } 2025 2026 for (i = start; i < end; i++) { 2027 if (test_and_clear_bit(i, prefree_map)) 2028 dirty_i->nr_dirty[PRE]--; 2029 } 2030 2031 if (!f2fs_realtime_discard_enable(sbi)) 2032 continue; 2033 2034 if (force && start >= cpc->trim_start && 2035 (end - 1) <= cpc->trim_end) 2036 continue; 2037 2038 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 2039 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2040 (end - start) << sbi->log_blocks_per_seg); 2041 continue; 2042 } 2043 next: 2044 secno = GET_SEC_FROM_SEG(sbi, start); 2045 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2046 if (!IS_CURSEC(sbi, secno) && 2047 !get_valid_blocks(sbi, start, true)) 2048 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2049 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2050 2051 start = start_segno + sbi->segs_per_sec; 2052 if (start < end) 2053 goto next; 2054 else 2055 end = start - 1; 2056 } 2057 mutex_unlock(&dirty_i->seglist_lock); 2058 2059 /* send small discards */ 2060 list_for_each_entry_safe(entry, this, head, list) { 2061 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2062 bool is_valid = test_bit_le(0, entry->discard_map); 2063 2064 find_next: 2065 if (is_valid) { 2066 next_pos = find_next_zero_bit_le(entry->discard_map, 2067 sbi->blocks_per_seg, cur_pos); 2068 len = next_pos - cur_pos; 2069 2070 if (f2fs_sb_has_blkzoned(sbi) || 2071 (force && len < cpc->trim_minlen)) 2072 goto skip; 2073 2074 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2075 len); 2076 total_len += len; 2077 } else { 2078 next_pos = find_next_bit_le(entry->discard_map, 2079 sbi->blocks_per_seg, cur_pos); 2080 } 2081 skip: 2082 cur_pos = next_pos; 2083 is_valid = !is_valid; 2084 2085 if (cur_pos < sbi->blocks_per_seg) 2086 goto find_next; 2087 2088 release_discard_addr(entry); 2089 dcc->nr_discards -= total_len; 2090 } 2091 2092 wake_up_discard_thread(sbi, false); 2093 } 2094 2095 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2096 { 2097 dev_t dev = sbi->sb->s_bdev->bd_dev; 2098 struct discard_cmd_control *dcc; 2099 int err = 0, i; 2100 2101 if (SM_I(sbi)->dcc_info) { 2102 dcc = SM_I(sbi)->dcc_info; 2103 goto init_thread; 2104 } 2105 2106 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2107 if (!dcc) 2108 return -ENOMEM; 2109 2110 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2111 INIT_LIST_HEAD(&dcc->entry_list); 2112 for (i = 0; i < MAX_PLIST_NUM; i++) 2113 INIT_LIST_HEAD(&dcc->pend_list[i]); 2114 INIT_LIST_HEAD(&dcc->wait_list); 2115 INIT_LIST_HEAD(&dcc->fstrim_list); 2116 mutex_init(&dcc->cmd_lock); 2117 atomic_set(&dcc->issued_discard, 0); 2118 atomic_set(&dcc->queued_discard, 0); 2119 atomic_set(&dcc->discard_cmd_cnt, 0); 2120 dcc->nr_discards = 0; 2121 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2122 dcc->undiscard_blks = 0; 2123 dcc->next_pos = 0; 2124 dcc->root = RB_ROOT_CACHED; 2125 dcc->rbtree_check = false; 2126 2127 init_waitqueue_head(&dcc->discard_wait_queue); 2128 SM_I(sbi)->dcc_info = dcc; 2129 init_thread: 2130 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2131 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2132 if (IS_ERR(dcc->f2fs_issue_discard)) { 2133 err = PTR_ERR(dcc->f2fs_issue_discard); 2134 kfree(dcc); 2135 SM_I(sbi)->dcc_info = NULL; 2136 return err; 2137 } 2138 2139 return err; 2140 } 2141 2142 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2143 { 2144 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2145 2146 if (!dcc) 2147 return; 2148 2149 f2fs_stop_discard_thread(sbi); 2150 2151 /* 2152 * Recovery can cache discard commands, so in error path of 2153 * fill_super(), it needs to give a chance to handle them. 2154 */ 2155 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2156 f2fs_issue_discard_timeout(sbi); 2157 2158 kfree(dcc); 2159 SM_I(sbi)->dcc_info = NULL; 2160 } 2161 2162 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2163 { 2164 struct sit_info *sit_i = SIT_I(sbi); 2165 2166 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2167 sit_i->dirty_sentries++; 2168 return false; 2169 } 2170 2171 return true; 2172 } 2173 2174 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2175 unsigned int segno, int modified) 2176 { 2177 struct seg_entry *se = get_seg_entry(sbi, segno); 2178 2179 se->type = type; 2180 if (modified) 2181 __mark_sit_entry_dirty(sbi, segno); 2182 } 2183 2184 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2185 block_t blkaddr) 2186 { 2187 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2188 2189 if (segno == NULL_SEGNO) 2190 return 0; 2191 return get_seg_entry(sbi, segno)->mtime; 2192 } 2193 2194 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2195 unsigned long long old_mtime) 2196 { 2197 struct seg_entry *se; 2198 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2199 unsigned long long ctime = get_mtime(sbi, false); 2200 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2201 2202 if (segno == NULL_SEGNO) 2203 return; 2204 2205 se = get_seg_entry(sbi, segno); 2206 2207 if (!se->mtime) 2208 se->mtime = mtime; 2209 else 2210 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2211 se->valid_blocks + 1); 2212 2213 if (ctime > SIT_I(sbi)->max_mtime) 2214 SIT_I(sbi)->max_mtime = ctime; 2215 } 2216 2217 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2218 { 2219 struct seg_entry *se; 2220 unsigned int segno, offset; 2221 long int new_vblocks; 2222 bool exist; 2223 #ifdef CONFIG_F2FS_CHECK_FS 2224 bool mir_exist; 2225 #endif 2226 2227 segno = GET_SEGNO(sbi, blkaddr); 2228 2229 se = get_seg_entry(sbi, segno); 2230 new_vblocks = se->valid_blocks + del; 2231 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2232 2233 f2fs_bug_on(sbi, (new_vblocks < 0 || 2234 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2235 2236 se->valid_blocks = new_vblocks; 2237 2238 /* Update valid block bitmap */ 2239 if (del > 0) { 2240 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2241 #ifdef CONFIG_F2FS_CHECK_FS 2242 mir_exist = f2fs_test_and_set_bit(offset, 2243 se->cur_valid_map_mir); 2244 if (unlikely(exist != mir_exist)) { 2245 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2246 blkaddr, exist); 2247 f2fs_bug_on(sbi, 1); 2248 } 2249 #endif 2250 if (unlikely(exist)) { 2251 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2252 blkaddr); 2253 f2fs_bug_on(sbi, 1); 2254 se->valid_blocks--; 2255 del = 0; 2256 } 2257 2258 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2259 sbi->discard_blks--; 2260 2261 /* 2262 * SSR should never reuse block which is checkpointed 2263 * or newly invalidated. 2264 */ 2265 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2266 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2267 se->ckpt_valid_blocks++; 2268 } 2269 } else { 2270 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2271 #ifdef CONFIG_F2FS_CHECK_FS 2272 mir_exist = f2fs_test_and_clear_bit(offset, 2273 se->cur_valid_map_mir); 2274 if (unlikely(exist != mir_exist)) { 2275 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2276 blkaddr, exist); 2277 f2fs_bug_on(sbi, 1); 2278 } 2279 #endif 2280 if (unlikely(!exist)) { 2281 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2282 blkaddr); 2283 f2fs_bug_on(sbi, 1); 2284 se->valid_blocks++; 2285 del = 0; 2286 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2287 /* 2288 * If checkpoints are off, we must not reuse data that 2289 * was used in the previous checkpoint. If it was used 2290 * before, we must track that to know how much space we 2291 * really have. 2292 */ 2293 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2294 spin_lock(&sbi->stat_lock); 2295 sbi->unusable_block_count++; 2296 spin_unlock(&sbi->stat_lock); 2297 } 2298 } 2299 2300 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2301 sbi->discard_blks++; 2302 } 2303 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2304 se->ckpt_valid_blocks += del; 2305 2306 __mark_sit_entry_dirty(sbi, segno); 2307 2308 /* update total number of valid blocks to be written in ckpt area */ 2309 SIT_I(sbi)->written_valid_blocks += del; 2310 2311 if (__is_large_section(sbi)) 2312 get_sec_entry(sbi, segno)->valid_blocks += del; 2313 } 2314 2315 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2316 { 2317 unsigned int segno = GET_SEGNO(sbi, addr); 2318 struct sit_info *sit_i = SIT_I(sbi); 2319 2320 f2fs_bug_on(sbi, addr == NULL_ADDR); 2321 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2322 return; 2323 2324 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2325 2326 /* add it into sit main buffer */ 2327 down_write(&sit_i->sentry_lock); 2328 2329 update_segment_mtime(sbi, addr, 0); 2330 update_sit_entry(sbi, addr, -1); 2331 2332 /* add it into dirty seglist */ 2333 locate_dirty_segment(sbi, segno); 2334 2335 up_write(&sit_i->sentry_lock); 2336 } 2337 2338 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2339 { 2340 struct sit_info *sit_i = SIT_I(sbi); 2341 unsigned int segno, offset; 2342 struct seg_entry *se; 2343 bool is_cp = false; 2344 2345 if (!__is_valid_data_blkaddr(blkaddr)) 2346 return true; 2347 2348 down_read(&sit_i->sentry_lock); 2349 2350 segno = GET_SEGNO(sbi, blkaddr); 2351 se = get_seg_entry(sbi, segno); 2352 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2353 2354 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2355 is_cp = true; 2356 2357 up_read(&sit_i->sentry_lock); 2358 2359 return is_cp; 2360 } 2361 2362 /* 2363 * This function should be resided under the curseg_mutex lock 2364 */ 2365 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2366 struct f2fs_summary *sum) 2367 { 2368 struct curseg_info *curseg = CURSEG_I(sbi, type); 2369 void *addr = curseg->sum_blk; 2370 2371 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2372 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2373 } 2374 2375 /* 2376 * Calculate the number of current summary pages for writing 2377 */ 2378 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2379 { 2380 int valid_sum_count = 0; 2381 int i, sum_in_page; 2382 2383 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2384 if (sbi->ckpt->alloc_type[i] == SSR) 2385 valid_sum_count += sbi->blocks_per_seg; 2386 else { 2387 if (for_ra) 2388 valid_sum_count += le16_to_cpu( 2389 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2390 else 2391 valid_sum_count += curseg_blkoff(sbi, i); 2392 } 2393 } 2394 2395 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2396 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2397 if (valid_sum_count <= sum_in_page) 2398 return 1; 2399 else if ((valid_sum_count - sum_in_page) <= 2400 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2401 return 2; 2402 return 3; 2403 } 2404 2405 /* 2406 * Caller should put this summary page 2407 */ 2408 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2409 { 2410 if (unlikely(f2fs_cp_error(sbi))) 2411 return ERR_PTR(-EIO); 2412 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2413 } 2414 2415 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2416 void *src, block_t blk_addr) 2417 { 2418 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2419 2420 memcpy(page_address(page), src, PAGE_SIZE); 2421 set_page_dirty(page); 2422 f2fs_put_page(page, 1); 2423 } 2424 2425 static void write_sum_page(struct f2fs_sb_info *sbi, 2426 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2427 { 2428 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2429 } 2430 2431 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2432 int type, block_t blk_addr) 2433 { 2434 struct curseg_info *curseg = CURSEG_I(sbi, type); 2435 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2436 struct f2fs_summary_block *src = curseg->sum_blk; 2437 struct f2fs_summary_block *dst; 2438 2439 dst = (struct f2fs_summary_block *)page_address(page); 2440 memset(dst, 0, PAGE_SIZE); 2441 2442 mutex_lock(&curseg->curseg_mutex); 2443 2444 down_read(&curseg->journal_rwsem); 2445 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2446 up_read(&curseg->journal_rwsem); 2447 2448 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2449 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2450 2451 mutex_unlock(&curseg->curseg_mutex); 2452 2453 set_page_dirty(page); 2454 f2fs_put_page(page, 1); 2455 } 2456 2457 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2458 struct curseg_info *curseg, int type) 2459 { 2460 unsigned int segno = curseg->segno + 1; 2461 struct free_segmap_info *free_i = FREE_I(sbi); 2462 2463 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2464 return !test_bit(segno, free_i->free_segmap); 2465 return 0; 2466 } 2467 2468 /* 2469 * Find a new segment from the free segments bitmap to right order 2470 * This function should be returned with success, otherwise BUG 2471 */ 2472 static void get_new_segment(struct f2fs_sb_info *sbi, 2473 unsigned int *newseg, bool new_sec, int dir) 2474 { 2475 struct free_segmap_info *free_i = FREE_I(sbi); 2476 unsigned int segno, secno, zoneno; 2477 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2478 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2479 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2480 unsigned int left_start = hint; 2481 bool init = true; 2482 int go_left = 0; 2483 int i; 2484 2485 spin_lock(&free_i->segmap_lock); 2486 2487 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2488 segno = find_next_zero_bit(free_i->free_segmap, 2489 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2490 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2491 goto got_it; 2492 } 2493 find_other_zone: 2494 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2495 if (secno >= MAIN_SECS(sbi)) { 2496 if (dir == ALLOC_RIGHT) { 2497 secno = find_next_zero_bit(free_i->free_secmap, 2498 MAIN_SECS(sbi), 0); 2499 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2500 } else { 2501 go_left = 1; 2502 left_start = hint - 1; 2503 } 2504 } 2505 if (go_left == 0) 2506 goto skip_left; 2507 2508 while (test_bit(left_start, free_i->free_secmap)) { 2509 if (left_start > 0) { 2510 left_start--; 2511 continue; 2512 } 2513 left_start = find_next_zero_bit(free_i->free_secmap, 2514 MAIN_SECS(sbi), 0); 2515 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2516 break; 2517 } 2518 secno = left_start; 2519 skip_left: 2520 segno = GET_SEG_FROM_SEC(sbi, secno); 2521 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2522 2523 /* give up on finding another zone */ 2524 if (!init) 2525 goto got_it; 2526 if (sbi->secs_per_zone == 1) 2527 goto got_it; 2528 if (zoneno == old_zoneno) 2529 goto got_it; 2530 if (dir == ALLOC_LEFT) { 2531 if (!go_left && zoneno + 1 >= total_zones) 2532 goto got_it; 2533 if (go_left && zoneno == 0) 2534 goto got_it; 2535 } 2536 for (i = 0; i < NR_CURSEG_TYPE; i++) 2537 if (CURSEG_I(sbi, i)->zone == zoneno) 2538 break; 2539 2540 if (i < NR_CURSEG_TYPE) { 2541 /* zone is in user, try another */ 2542 if (go_left) 2543 hint = zoneno * sbi->secs_per_zone - 1; 2544 else if (zoneno + 1 >= total_zones) 2545 hint = 0; 2546 else 2547 hint = (zoneno + 1) * sbi->secs_per_zone; 2548 init = false; 2549 goto find_other_zone; 2550 } 2551 got_it: 2552 /* set it as dirty segment in free segmap */ 2553 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2554 __set_inuse(sbi, segno); 2555 *newseg = segno; 2556 spin_unlock(&free_i->segmap_lock); 2557 } 2558 2559 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2560 { 2561 struct curseg_info *curseg = CURSEG_I(sbi, type); 2562 struct summary_footer *sum_footer; 2563 unsigned short seg_type = curseg->seg_type; 2564 2565 curseg->inited = true; 2566 curseg->segno = curseg->next_segno; 2567 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2568 curseg->next_blkoff = 0; 2569 curseg->next_segno = NULL_SEGNO; 2570 2571 sum_footer = &(curseg->sum_blk->footer); 2572 memset(sum_footer, 0, sizeof(struct summary_footer)); 2573 2574 sanity_check_seg_type(sbi, seg_type); 2575 2576 if (IS_DATASEG(seg_type)) 2577 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2578 if (IS_NODESEG(seg_type)) 2579 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2580 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2581 } 2582 2583 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2584 { 2585 struct curseg_info *curseg = CURSEG_I(sbi, type); 2586 unsigned short seg_type = curseg->seg_type; 2587 2588 sanity_check_seg_type(sbi, seg_type); 2589 2590 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2591 if (__is_large_section(sbi)) 2592 return curseg->segno; 2593 2594 /* inmem log may not locate on any segment after mount */ 2595 if (!curseg->inited) 2596 return 0; 2597 2598 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2599 return 0; 2600 2601 if (test_opt(sbi, NOHEAP) && 2602 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2603 return 0; 2604 2605 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2606 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2607 2608 /* find segments from 0 to reuse freed segments */ 2609 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2610 return 0; 2611 2612 return curseg->segno; 2613 } 2614 2615 /* 2616 * Allocate a current working segment. 2617 * This function always allocates a free segment in LFS manner. 2618 */ 2619 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2620 { 2621 struct curseg_info *curseg = CURSEG_I(sbi, type); 2622 unsigned short seg_type = curseg->seg_type; 2623 unsigned int segno = curseg->segno; 2624 int dir = ALLOC_LEFT; 2625 2626 if (curseg->inited) 2627 write_sum_page(sbi, curseg->sum_blk, 2628 GET_SUM_BLOCK(sbi, segno)); 2629 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2630 dir = ALLOC_RIGHT; 2631 2632 if (test_opt(sbi, NOHEAP)) 2633 dir = ALLOC_RIGHT; 2634 2635 segno = __get_next_segno(sbi, type); 2636 get_new_segment(sbi, &segno, new_sec, dir); 2637 curseg->next_segno = segno; 2638 reset_curseg(sbi, type, 1); 2639 curseg->alloc_type = LFS; 2640 } 2641 2642 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2643 int segno, block_t start) 2644 { 2645 struct seg_entry *se = get_seg_entry(sbi, segno); 2646 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2647 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2648 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2649 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2650 int i; 2651 2652 for (i = 0; i < entries; i++) 2653 target_map[i] = ckpt_map[i] | cur_map[i]; 2654 2655 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2656 } 2657 2658 /* 2659 * If a segment is written by LFS manner, next block offset is just obtained 2660 * by increasing the current block offset. However, if a segment is written by 2661 * SSR manner, next block offset obtained by calling __next_free_blkoff 2662 */ 2663 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2664 struct curseg_info *seg) 2665 { 2666 if (seg->alloc_type == SSR) 2667 seg->next_blkoff = 2668 __next_free_blkoff(sbi, seg->segno, 2669 seg->next_blkoff + 1); 2670 else 2671 seg->next_blkoff++; 2672 } 2673 2674 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2675 { 2676 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2677 } 2678 2679 /* 2680 * This function always allocates a used segment(from dirty seglist) by SSR 2681 * manner, so it should recover the existing segment information of valid blocks 2682 */ 2683 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) 2684 { 2685 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2686 struct curseg_info *curseg = CURSEG_I(sbi, type); 2687 unsigned int new_segno = curseg->next_segno; 2688 struct f2fs_summary_block *sum_node; 2689 struct page *sum_page; 2690 2691 if (flush) 2692 write_sum_page(sbi, curseg->sum_blk, 2693 GET_SUM_BLOCK(sbi, curseg->segno)); 2694 2695 __set_test_and_inuse(sbi, new_segno); 2696 2697 mutex_lock(&dirty_i->seglist_lock); 2698 __remove_dirty_segment(sbi, new_segno, PRE); 2699 __remove_dirty_segment(sbi, new_segno, DIRTY); 2700 mutex_unlock(&dirty_i->seglist_lock); 2701 2702 reset_curseg(sbi, type, 1); 2703 curseg->alloc_type = SSR; 2704 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2705 2706 sum_page = f2fs_get_sum_page(sbi, new_segno); 2707 if (IS_ERR(sum_page)) { 2708 /* GC won't be able to use stale summary pages by cp_error */ 2709 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2710 return; 2711 } 2712 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2713 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2714 f2fs_put_page(sum_page, 1); 2715 } 2716 2717 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2718 int alloc_mode, unsigned long long age); 2719 2720 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2721 int target_type, int alloc_mode, 2722 unsigned long long age) 2723 { 2724 struct curseg_info *curseg = CURSEG_I(sbi, type); 2725 2726 curseg->seg_type = target_type; 2727 2728 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2729 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2730 2731 curseg->seg_type = se->type; 2732 change_curseg(sbi, type, true); 2733 } else { 2734 /* allocate cold segment by default */ 2735 curseg->seg_type = CURSEG_COLD_DATA; 2736 new_curseg(sbi, type, true); 2737 } 2738 stat_inc_seg_type(sbi, curseg); 2739 } 2740 2741 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2742 { 2743 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2744 2745 if (!sbi->am.atgc_enabled) 2746 return; 2747 2748 down_read(&SM_I(sbi)->curseg_lock); 2749 2750 mutex_lock(&curseg->curseg_mutex); 2751 down_write(&SIT_I(sbi)->sentry_lock); 2752 2753 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2754 2755 up_write(&SIT_I(sbi)->sentry_lock); 2756 mutex_unlock(&curseg->curseg_mutex); 2757 2758 up_read(&SM_I(sbi)->curseg_lock); 2759 2760 } 2761 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2762 { 2763 __f2fs_init_atgc_curseg(sbi); 2764 } 2765 2766 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2767 { 2768 struct curseg_info *curseg = CURSEG_I(sbi, type); 2769 2770 mutex_lock(&curseg->curseg_mutex); 2771 if (!curseg->inited) 2772 goto out; 2773 2774 if (get_valid_blocks(sbi, curseg->segno, false)) { 2775 write_sum_page(sbi, curseg->sum_blk, 2776 GET_SUM_BLOCK(sbi, curseg->segno)); 2777 } else { 2778 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2779 __set_test_and_free(sbi, curseg->segno, true); 2780 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2781 } 2782 out: 2783 mutex_unlock(&curseg->curseg_mutex); 2784 } 2785 2786 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2787 { 2788 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2789 2790 if (sbi->am.atgc_enabled) 2791 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2792 } 2793 2794 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2795 { 2796 struct curseg_info *curseg = CURSEG_I(sbi, type); 2797 2798 mutex_lock(&curseg->curseg_mutex); 2799 if (!curseg->inited) 2800 goto out; 2801 if (get_valid_blocks(sbi, curseg->segno, false)) 2802 goto out; 2803 2804 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2805 __set_test_and_inuse(sbi, curseg->segno); 2806 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2807 out: 2808 mutex_unlock(&curseg->curseg_mutex); 2809 } 2810 2811 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2812 { 2813 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2814 2815 if (sbi->am.atgc_enabled) 2816 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2817 } 2818 2819 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2820 int alloc_mode, unsigned long long age) 2821 { 2822 struct curseg_info *curseg = CURSEG_I(sbi, type); 2823 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2824 unsigned segno = NULL_SEGNO; 2825 unsigned short seg_type = curseg->seg_type; 2826 int i, cnt; 2827 bool reversed = false; 2828 2829 sanity_check_seg_type(sbi, seg_type); 2830 2831 /* f2fs_need_SSR() already forces to do this */ 2832 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2833 curseg->next_segno = segno; 2834 return 1; 2835 } 2836 2837 /* For node segments, let's do SSR more intensively */ 2838 if (IS_NODESEG(seg_type)) { 2839 if (seg_type >= CURSEG_WARM_NODE) { 2840 reversed = true; 2841 i = CURSEG_COLD_NODE; 2842 } else { 2843 i = CURSEG_HOT_NODE; 2844 } 2845 cnt = NR_CURSEG_NODE_TYPE; 2846 } else { 2847 if (seg_type >= CURSEG_WARM_DATA) { 2848 reversed = true; 2849 i = CURSEG_COLD_DATA; 2850 } else { 2851 i = CURSEG_HOT_DATA; 2852 } 2853 cnt = NR_CURSEG_DATA_TYPE; 2854 } 2855 2856 for (; cnt-- > 0; reversed ? i-- : i++) { 2857 if (i == seg_type) 2858 continue; 2859 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2860 curseg->next_segno = segno; 2861 return 1; 2862 } 2863 } 2864 2865 /* find valid_blocks=0 in dirty list */ 2866 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2867 segno = get_free_segment(sbi); 2868 if (segno != NULL_SEGNO) { 2869 curseg->next_segno = segno; 2870 return 1; 2871 } 2872 } 2873 return 0; 2874 } 2875 2876 /* 2877 * flush out current segment and replace it with new segment 2878 * This function should be returned with success, otherwise BUG 2879 */ 2880 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2881 int type, bool force) 2882 { 2883 struct curseg_info *curseg = CURSEG_I(sbi, type); 2884 2885 if (force) 2886 new_curseg(sbi, type, true); 2887 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2888 curseg->seg_type == CURSEG_WARM_NODE) 2889 new_curseg(sbi, type, false); 2890 else if (curseg->alloc_type == LFS && 2891 is_next_segment_free(sbi, curseg, type) && 2892 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2893 new_curseg(sbi, type, false); 2894 else if (f2fs_need_SSR(sbi) && 2895 get_ssr_segment(sbi, type, SSR, 0)) 2896 change_curseg(sbi, type, true); 2897 else 2898 new_curseg(sbi, type, false); 2899 2900 stat_inc_seg_type(sbi, curseg); 2901 } 2902 2903 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2904 unsigned int start, unsigned int end) 2905 { 2906 struct curseg_info *curseg = CURSEG_I(sbi, type); 2907 unsigned int segno; 2908 2909 down_read(&SM_I(sbi)->curseg_lock); 2910 mutex_lock(&curseg->curseg_mutex); 2911 down_write(&SIT_I(sbi)->sentry_lock); 2912 2913 segno = CURSEG_I(sbi, type)->segno; 2914 if (segno < start || segno > end) 2915 goto unlock; 2916 2917 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2918 change_curseg(sbi, type, true); 2919 else 2920 new_curseg(sbi, type, true); 2921 2922 stat_inc_seg_type(sbi, curseg); 2923 2924 locate_dirty_segment(sbi, segno); 2925 unlock: 2926 up_write(&SIT_I(sbi)->sentry_lock); 2927 2928 if (segno != curseg->segno) 2929 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2930 type, segno, curseg->segno); 2931 2932 mutex_unlock(&curseg->curseg_mutex); 2933 up_read(&SM_I(sbi)->curseg_lock); 2934 } 2935 2936 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 2937 bool new_sec, bool force) 2938 { 2939 struct curseg_info *curseg = CURSEG_I(sbi, type); 2940 unsigned int old_segno; 2941 2942 if (!curseg->inited) 2943 goto alloc; 2944 2945 if (force || curseg->next_blkoff || 2946 get_valid_blocks(sbi, curseg->segno, new_sec)) 2947 goto alloc; 2948 2949 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 2950 return; 2951 alloc: 2952 old_segno = curseg->segno; 2953 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 2954 locate_dirty_segment(sbi, old_segno); 2955 } 2956 2957 static void __allocate_new_section(struct f2fs_sb_info *sbi, 2958 int type, bool force) 2959 { 2960 __allocate_new_segment(sbi, type, true, force); 2961 } 2962 2963 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 2964 { 2965 down_read(&SM_I(sbi)->curseg_lock); 2966 down_write(&SIT_I(sbi)->sentry_lock); 2967 __allocate_new_section(sbi, type, force); 2968 up_write(&SIT_I(sbi)->sentry_lock); 2969 up_read(&SM_I(sbi)->curseg_lock); 2970 } 2971 2972 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2973 { 2974 int i; 2975 2976 down_read(&SM_I(sbi)->curseg_lock); 2977 down_write(&SIT_I(sbi)->sentry_lock); 2978 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2979 __allocate_new_segment(sbi, i, false, false); 2980 up_write(&SIT_I(sbi)->sentry_lock); 2981 up_read(&SM_I(sbi)->curseg_lock); 2982 } 2983 2984 static const struct segment_allocation default_salloc_ops = { 2985 .allocate_segment = allocate_segment_by_default, 2986 }; 2987 2988 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2989 struct cp_control *cpc) 2990 { 2991 __u64 trim_start = cpc->trim_start; 2992 bool has_candidate = false; 2993 2994 down_write(&SIT_I(sbi)->sentry_lock); 2995 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2996 if (add_discard_addrs(sbi, cpc, true)) { 2997 has_candidate = true; 2998 break; 2999 } 3000 } 3001 up_write(&SIT_I(sbi)->sentry_lock); 3002 3003 cpc->trim_start = trim_start; 3004 return has_candidate; 3005 } 3006 3007 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3008 struct discard_policy *dpolicy, 3009 unsigned int start, unsigned int end) 3010 { 3011 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3012 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3013 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3014 struct discard_cmd *dc; 3015 struct blk_plug plug; 3016 int issued; 3017 unsigned int trimmed = 0; 3018 3019 next: 3020 issued = 0; 3021 3022 mutex_lock(&dcc->cmd_lock); 3023 if (unlikely(dcc->rbtree_check)) 3024 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 3025 &dcc->root, false)); 3026 3027 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 3028 NULL, start, 3029 (struct rb_entry **)&prev_dc, 3030 (struct rb_entry **)&next_dc, 3031 &insert_p, &insert_parent, true, NULL); 3032 if (!dc) 3033 dc = next_dc; 3034 3035 blk_start_plug(&plug); 3036 3037 while (dc && dc->lstart <= end) { 3038 struct rb_node *node; 3039 int err = 0; 3040 3041 if (dc->len < dpolicy->granularity) 3042 goto skip; 3043 3044 if (dc->state != D_PREP) { 3045 list_move_tail(&dc->list, &dcc->fstrim_list); 3046 goto skip; 3047 } 3048 3049 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3050 3051 if (issued >= dpolicy->max_requests) { 3052 start = dc->lstart + dc->len; 3053 3054 if (err) 3055 __remove_discard_cmd(sbi, dc); 3056 3057 blk_finish_plug(&plug); 3058 mutex_unlock(&dcc->cmd_lock); 3059 trimmed += __wait_all_discard_cmd(sbi, NULL); 3060 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 3061 goto next; 3062 } 3063 skip: 3064 node = rb_next(&dc->rb_node); 3065 if (err) 3066 __remove_discard_cmd(sbi, dc); 3067 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3068 3069 if (fatal_signal_pending(current)) 3070 break; 3071 } 3072 3073 blk_finish_plug(&plug); 3074 mutex_unlock(&dcc->cmd_lock); 3075 3076 return trimmed; 3077 } 3078 3079 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3080 { 3081 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3082 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3083 unsigned int start_segno, end_segno; 3084 block_t start_block, end_block; 3085 struct cp_control cpc; 3086 struct discard_policy dpolicy; 3087 unsigned long long trimmed = 0; 3088 int err = 0; 3089 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3090 3091 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3092 return -EINVAL; 3093 3094 if (end < MAIN_BLKADDR(sbi)) 3095 goto out; 3096 3097 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3098 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3099 return -EFSCORRUPTED; 3100 } 3101 3102 /* start/end segment number in main_area */ 3103 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3104 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3105 GET_SEGNO(sbi, end); 3106 if (need_align) { 3107 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3108 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3109 } 3110 3111 cpc.reason = CP_DISCARD; 3112 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3113 cpc.trim_start = start_segno; 3114 cpc.trim_end = end_segno; 3115 3116 if (sbi->discard_blks == 0) 3117 goto out; 3118 3119 down_write(&sbi->gc_lock); 3120 err = f2fs_write_checkpoint(sbi, &cpc); 3121 up_write(&sbi->gc_lock); 3122 if (err) 3123 goto out; 3124 3125 /* 3126 * We filed discard candidates, but actually we don't need to wait for 3127 * all of them, since they'll be issued in idle time along with runtime 3128 * discard option. User configuration looks like using runtime discard 3129 * or periodic fstrim instead of it. 3130 */ 3131 if (f2fs_realtime_discard_enable(sbi)) 3132 goto out; 3133 3134 start_block = START_BLOCK(sbi, start_segno); 3135 end_block = START_BLOCK(sbi, end_segno + 1); 3136 3137 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3138 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3139 start_block, end_block); 3140 3141 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3142 start_block, end_block); 3143 out: 3144 if (!err) 3145 range->len = F2FS_BLK_TO_BYTES(trimmed); 3146 return err; 3147 } 3148 3149 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3150 struct curseg_info *curseg) 3151 { 3152 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3153 curseg->segno); 3154 } 3155 3156 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3157 { 3158 switch (hint) { 3159 case WRITE_LIFE_SHORT: 3160 return CURSEG_HOT_DATA; 3161 case WRITE_LIFE_EXTREME: 3162 return CURSEG_COLD_DATA; 3163 default: 3164 return CURSEG_WARM_DATA; 3165 } 3166 } 3167 3168 /* This returns write hints for each segment type. This hints will be 3169 * passed down to block layer. There are mapping tables which depend on 3170 * the mount option 'whint_mode'. 3171 * 3172 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 3173 * 3174 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 3175 * 3176 * User F2FS Block 3177 * ---- ---- ----- 3178 * META WRITE_LIFE_NOT_SET 3179 * HOT_NODE " 3180 * WARM_NODE " 3181 * COLD_NODE " 3182 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3183 * extension list " " 3184 * 3185 * -- buffered io 3186 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3187 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3188 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3189 * WRITE_LIFE_NONE " " 3190 * WRITE_LIFE_MEDIUM " " 3191 * WRITE_LIFE_LONG " " 3192 * 3193 * -- direct io 3194 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3195 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3196 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3197 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3198 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3199 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3200 * 3201 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 3202 * 3203 * User F2FS Block 3204 * ---- ---- ----- 3205 * META WRITE_LIFE_MEDIUM; 3206 * HOT_NODE WRITE_LIFE_NOT_SET 3207 * WARM_NODE " 3208 * COLD_NODE WRITE_LIFE_NONE 3209 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3210 * extension list " " 3211 * 3212 * -- buffered io 3213 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3214 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3215 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 3216 * WRITE_LIFE_NONE " " 3217 * WRITE_LIFE_MEDIUM " " 3218 * WRITE_LIFE_LONG " " 3219 * 3220 * -- direct io 3221 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3222 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3223 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3224 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3225 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3226 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3227 */ 3228 3229 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3230 enum page_type type, enum temp_type temp) 3231 { 3232 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 3233 if (type == DATA) { 3234 if (temp == WARM) 3235 return WRITE_LIFE_NOT_SET; 3236 else if (temp == HOT) 3237 return WRITE_LIFE_SHORT; 3238 else if (temp == COLD) 3239 return WRITE_LIFE_EXTREME; 3240 } else { 3241 return WRITE_LIFE_NOT_SET; 3242 } 3243 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 3244 if (type == DATA) { 3245 if (temp == WARM) 3246 return WRITE_LIFE_LONG; 3247 else if (temp == HOT) 3248 return WRITE_LIFE_SHORT; 3249 else if (temp == COLD) 3250 return WRITE_LIFE_EXTREME; 3251 } else if (type == NODE) { 3252 if (temp == WARM || temp == HOT) 3253 return WRITE_LIFE_NOT_SET; 3254 else if (temp == COLD) 3255 return WRITE_LIFE_NONE; 3256 } else if (type == META) { 3257 return WRITE_LIFE_MEDIUM; 3258 } 3259 } 3260 return WRITE_LIFE_NOT_SET; 3261 } 3262 3263 static int __get_segment_type_2(struct f2fs_io_info *fio) 3264 { 3265 if (fio->type == DATA) 3266 return CURSEG_HOT_DATA; 3267 else 3268 return CURSEG_HOT_NODE; 3269 } 3270 3271 static int __get_segment_type_4(struct f2fs_io_info *fio) 3272 { 3273 if (fio->type == DATA) { 3274 struct inode *inode = fio->page->mapping->host; 3275 3276 if (S_ISDIR(inode->i_mode)) 3277 return CURSEG_HOT_DATA; 3278 else 3279 return CURSEG_COLD_DATA; 3280 } else { 3281 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3282 return CURSEG_WARM_NODE; 3283 else 3284 return CURSEG_COLD_NODE; 3285 } 3286 } 3287 3288 static int __get_segment_type_6(struct f2fs_io_info *fio) 3289 { 3290 if (fio->type == DATA) { 3291 struct inode *inode = fio->page->mapping->host; 3292 3293 if (page_private_gcing(fio->page)) { 3294 if (fio->sbi->am.atgc_enabled && 3295 (fio->io_type == FS_DATA_IO) && 3296 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3297 return CURSEG_ALL_DATA_ATGC; 3298 else 3299 return CURSEG_COLD_DATA; 3300 } 3301 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3302 return CURSEG_COLD_DATA; 3303 if (file_is_hot(inode) || 3304 is_inode_flag_set(inode, FI_HOT_DATA) || 3305 f2fs_is_atomic_file(inode) || 3306 f2fs_is_volatile_file(inode)) 3307 return CURSEG_HOT_DATA; 3308 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3309 } else { 3310 if (IS_DNODE(fio->page)) 3311 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3312 CURSEG_HOT_NODE; 3313 return CURSEG_COLD_NODE; 3314 } 3315 } 3316 3317 static int __get_segment_type(struct f2fs_io_info *fio) 3318 { 3319 int type = 0; 3320 3321 switch (F2FS_OPTION(fio->sbi).active_logs) { 3322 case 2: 3323 type = __get_segment_type_2(fio); 3324 break; 3325 case 4: 3326 type = __get_segment_type_4(fio); 3327 break; 3328 case 6: 3329 type = __get_segment_type_6(fio); 3330 break; 3331 default: 3332 f2fs_bug_on(fio->sbi, true); 3333 } 3334 3335 if (IS_HOT(type)) 3336 fio->temp = HOT; 3337 else if (IS_WARM(type)) 3338 fio->temp = WARM; 3339 else 3340 fio->temp = COLD; 3341 return type; 3342 } 3343 3344 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3345 block_t old_blkaddr, block_t *new_blkaddr, 3346 struct f2fs_summary *sum, int type, 3347 struct f2fs_io_info *fio) 3348 { 3349 struct sit_info *sit_i = SIT_I(sbi); 3350 struct curseg_info *curseg = CURSEG_I(sbi, type); 3351 unsigned long long old_mtime; 3352 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3353 struct seg_entry *se = NULL; 3354 3355 down_read(&SM_I(sbi)->curseg_lock); 3356 3357 mutex_lock(&curseg->curseg_mutex); 3358 down_write(&sit_i->sentry_lock); 3359 3360 if (from_gc) { 3361 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3362 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3363 sanity_check_seg_type(sbi, se->type); 3364 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3365 } 3366 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3367 3368 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3369 3370 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3371 3372 /* 3373 * __add_sum_entry should be resided under the curseg_mutex 3374 * because, this function updates a summary entry in the 3375 * current summary block. 3376 */ 3377 __add_sum_entry(sbi, type, sum); 3378 3379 __refresh_next_blkoff(sbi, curseg); 3380 3381 stat_inc_block_count(sbi, curseg); 3382 3383 if (from_gc) { 3384 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3385 } else { 3386 update_segment_mtime(sbi, old_blkaddr, 0); 3387 old_mtime = 0; 3388 } 3389 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3390 3391 /* 3392 * SIT information should be updated before segment allocation, 3393 * since SSR needs latest valid block information. 3394 */ 3395 update_sit_entry(sbi, *new_blkaddr, 1); 3396 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3397 update_sit_entry(sbi, old_blkaddr, -1); 3398 3399 if (!__has_curseg_space(sbi, curseg)) { 3400 if (from_gc) 3401 get_atssr_segment(sbi, type, se->type, 3402 AT_SSR, se->mtime); 3403 else 3404 sit_i->s_ops->allocate_segment(sbi, type, false); 3405 } 3406 /* 3407 * segment dirty status should be updated after segment allocation, 3408 * so we just need to update status only one time after previous 3409 * segment being closed. 3410 */ 3411 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3412 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3413 3414 up_write(&sit_i->sentry_lock); 3415 3416 if (page && IS_NODESEG(type)) { 3417 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3418 3419 f2fs_inode_chksum_set(sbi, page); 3420 } 3421 3422 if (fio) { 3423 struct f2fs_bio_info *io; 3424 3425 if (F2FS_IO_ALIGNED(sbi)) 3426 fio->retry = false; 3427 3428 INIT_LIST_HEAD(&fio->list); 3429 fio->in_list = true; 3430 io = sbi->write_io[fio->type] + fio->temp; 3431 spin_lock(&io->io_lock); 3432 list_add_tail(&fio->list, &io->io_list); 3433 spin_unlock(&io->io_lock); 3434 } 3435 3436 mutex_unlock(&curseg->curseg_mutex); 3437 3438 up_read(&SM_I(sbi)->curseg_lock); 3439 } 3440 3441 static void update_device_state(struct f2fs_io_info *fio) 3442 { 3443 struct f2fs_sb_info *sbi = fio->sbi; 3444 unsigned int devidx; 3445 3446 if (!f2fs_is_multi_device(sbi)) 3447 return; 3448 3449 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3450 3451 /* update device state for fsync */ 3452 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3453 3454 /* update device state for checkpoint */ 3455 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3456 spin_lock(&sbi->dev_lock); 3457 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3458 spin_unlock(&sbi->dev_lock); 3459 } 3460 } 3461 3462 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3463 { 3464 int type = __get_segment_type(fio); 3465 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3466 3467 if (keep_order) 3468 down_read(&fio->sbi->io_order_lock); 3469 reallocate: 3470 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3471 &fio->new_blkaddr, sum, type, fio); 3472 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3473 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3474 fio->old_blkaddr, fio->old_blkaddr); 3475 3476 /* writeout dirty page into bdev */ 3477 f2fs_submit_page_write(fio); 3478 if (fio->retry) { 3479 fio->old_blkaddr = fio->new_blkaddr; 3480 goto reallocate; 3481 } 3482 3483 update_device_state(fio); 3484 3485 if (keep_order) 3486 up_read(&fio->sbi->io_order_lock); 3487 } 3488 3489 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3490 enum iostat_type io_type) 3491 { 3492 struct f2fs_io_info fio = { 3493 .sbi = sbi, 3494 .type = META, 3495 .temp = HOT, 3496 .op = REQ_OP_WRITE, 3497 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3498 .old_blkaddr = page->index, 3499 .new_blkaddr = page->index, 3500 .page = page, 3501 .encrypted_page = NULL, 3502 .in_list = false, 3503 }; 3504 3505 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3506 fio.op_flags &= ~REQ_META; 3507 3508 set_page_writeback(page); 3509 ClearPageError(page); 3510 f2fs_submit_page_write(&fio); 3511 3512 stat_inc_meta_count(sbi, page->index); 3513 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3514 } 3515 3516 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3517 { 3518 struct f2fs_summary sum; 3519 3520 set_summary(&sum, nid, 0, 0); 3521 do_write_page(&sum, fio); 3522 3523 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3524 } 3525 3526 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3527 struct f2fs_io_info *fio) 3528 { 3529 struct f2fs_sb_info *sbi = fio->sbi; 3530 struct f2fs_summary sum; 3531 3532 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3533 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3534 do_write_page(&sum, fio); 3535 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3536 3537 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3538 } 3539 3540 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3541 { 3542 int err; 3543 struct f2fs_sb_info *sbi = fio->sbi; 3544 unsigned int segno; 3545 3546 fio->new_blkaddr = fio->old_blkaddr; 3547 /* i/o temperature is needed for passing down write hints */ 3548 __get_segment_type(fio); 3549 3550 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3551 3552 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3553 set_sbi_flag(sbi, SBI_NEED_FSCK); 3554 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3555 __func__, segno); 3556 err = -EFSCORRUPTED; 3557 goto drop_bio; 3558 } 3559 3560 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || f2fs_cp_error(sbi)) { 3561 err = -EIO; 3562 goto drop_bio; 3563 } 3564 3565 stat_inc_inplace_blocks(fio->sbi); 3566 3567 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3568 err = f2fs_merge_page_bio(fio); 3569 else 3570 err = f2fs_submit_page_bio(fio); 3571 if (!err) { 3572 update_device_state(fio); 3573 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3574 } 3575 3576 return err; 3577 drop_bio: 3578 if (fio->bio && *(fio->bio)) { 3579 struct bio *bio = *(fio->bio); 3580 3581 bio->bi_status = BLK_STS_IOERR; 3582 bio_endio(bio); 3583 *(fio->bio) = NULL; 3584 } 3585 return err; 3586 } 3587 3588 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3589 unsigned int segno) 3590 { 3591 int i; 3592 3593 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3594 if (CURSEG_I(sbi, i)->segno == segno) 3595 break; 3596 } 3597 return i; 3598 } 3599 3600 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3601 block_t old_blkaddr, block_t new_blkaddr, 3602 bool recover_curseg, bool recover_newaddr, 3603 bool from_gc) 3604 { 3605 struct sit_info *sit_i = SIT_I(sbi); 3606 struct curseg_info *curseg; 3607 unsigned int segno, old_cursegno; 3608 struct seg_entry *se; 3609 int type; 3610 unsigned short old_blkoff; 3611 unsigned char old_alloc_type; 3612 3613 segno = GET_SEGNO(sbi, new_blkaddr); 3614 se = get_seg_entry(sbi, segno); 3615 type = se->type; 3616 3617 down_write(&SM_I(sbi)->curseg_lock); 3618 3619 if (!recover_curseg) { 3620 /* for recovery flow */ 3621 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3622 if (old_blkaddr == NULL_ADDR) 3623 type = CURSEG_COLD_DATA; 3624 else 3625 type = CURSEG_WARM_DATA; 3626 } 3627 } else { 3628 if (IS_CURSEG(sbi, segno)) { 3629 /* se->type is volatile as SSR allocation */ 3630 type = __f2fs_get_curseg(sbi, segno); 3631 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3632 } else { 3633 type = CURSEG_WARM_DATA; 3634 } 3635 } 3636 3637 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3638 curseg = CURSEG_I(sbi, type); 3639 3640 mutex_lock(&curseg->curseg_mutex); 3641 down_write(&sit_i->sentry_lock); 3642 3643 old_cursegno = curseg->segno; 3644 old_blkoff = curseg->next_blkoff; 3645 old_alloc_type = curseg->alloc_type; 3646 3647 /* change the current segment */ 3648 if (segno != curseg->segno) { 3649 curseg->next_segno = segno; 3650 change_curseg(sbi, type, true); 3651 } 3652 3653 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3654 __add_sum_entry(sbi, type, sum); 3655 3656 if (!recover_curseg || recover_newaddr) { 3657 if (!from_gc) 3658 update_segment_mtime(sbi, new_blkaddr, 0); 3659 update_sit_entry(sbi, new_blkaddr, 1); 3660 } 3661 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3662 invalidate_mapping_pages(META_MAPPING(sbi), 3663 old_blkaddr, old_blkaddr); 3664 if (!from_gc) 3665 update_segment_mtime(sbi, old_blkaddr, 0); 3666 update_sit_entry(sbi, old_blkaddr, -1); 3667 } 3668 3669 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3670 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3671 3672 locate_dirty_segment(sbi, old_cursegno); 3673 3674 if (recover_curseg) { 3675 if (old_cursegno != curseg->segno) { 3676 curseg->next_segno = old_cursegno; 3677 change_curseg(sbi, type, true); 3678 } 3679 curseg->next_blkoff = old_blkoff; 3680 curseg->alloc_type = old_alloc_type; 3681 } 3682 3683 up_write(&sit_i->sentry_lock); 3684 mutex_unlock(&curseg->curseg_mutex); 3685 up_write(&SM_I(sbi)->curseg_lock); 3686 } 3687 3688 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3689 block_t old_addr, block_t new_addr, 3690 unsigned char version, bool recover_curseg, 3691 bool recover_newaddr) 3692 { 3693 struct f2fs_summary sum; 3694 3695 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3696 3697 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3698 recover_curseg, recover_newaddr, false); 3699 3700 f2fs_update_data_blkaddr(dn, new_addr); 3701 } 3702 3703 void f2fs_wait_on_page_writeback(struct page *page, 3704 enum page_type type, bool ordered, bool locked) 3705 { 3706 if (PageWriteback(page)) { 3707 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3708 3709 /* submit cached LFS IO */ 3710 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3711 /* sbumit cached IPU IO */ 3712 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3713 if (ordered) { 3714 wait_on_page_writeback(page); 3715 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3716 } else { 3717 wait_for_stable_page(page); 3718 } 3719 } 3720 } 3721 3722 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3723 { 3724 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3725 struct page *cpage; 3726 3727 if (!f2fs_post_read_required(inode)) 3728 return; 3729 3730 if (!__is_valid_data_blkaddr(blkaddr)) 3731 return; 3732 3733 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3734 if (cpage) { 3735 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3736 f2fs_put_page(cpage, 1); 3737 } 3738 } 3739 3740 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3741 block_t len) 3742 { 3743 block_t i; 3744 3745 for (i = 0; i < len; i++) 3746 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3747 } 3748 3749 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3750 { 3751 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3752 struct curseg_info *seg_i; 3753 unsigned char *kaddr; 3754 struct page *page; 3755 block_t start; 3756 int i, j, offset; 3757 3758 start = start_sum_block(sbi); 3759 3760 page = f2fs_get_meta_page(sbi, start++); 3761 if (IS_ERR(page)) 3762 return PTR_ERR(page); 3763 kaddr = (unsigned char *)page_address(page); 3764 3765 /* Step 1: restore nat cache */ 3766 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3767 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3768 3769 /* Step 2: restore sit cache */ 3770 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3771 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3772 offset = 2 * SUM_JOURNAL_SIZE; 3773 3774 /* Step 3: restore summary entries */ 3775 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3776 unsigned short blk_off; 3777 unsigned int segno; 3778 3779 seg_i = CURSEG_I(sbi, i); 3780 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3781 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3782 seg_i->next_segno = segno; 3783 reset_curseg(sbi, i, 0); 3784 seg_i->alloc_type = ckpt->alloc_type[i]; 3785 seg_i->next_blkoff = blk_off; 3786 3787 if (seg_i->alloc_type == SSR) 3788 blk_off = sbi->blocks_per_seg; 3789 3790 for (j = 0; j < blk_off; j++) { 3791 struct f2fs_summary *s; 3792 3793 s = (struct f2fs_summary *)(kaddr + offset); 3794 seg_i->sum_blk->entries[j] = *s; 3795 offset += SUMMARY_SIZE; 3796 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3797 SUM_FOOTER_SIZE) 3798 continue; 3799 3800 f2fs_put_page(page, 1); 3801 page = NULL; 3802 3803 page = f2fs_get_meta_page(sbi, start++); 3804 if (IS_ERR(page)) 3805 return PTR_ERR(page); 3806 kaddr = (unsigned char *)page_address(page); 3807 offset = 0; 3808 } 3809 } 3810 f2fs_put_page(page, 1); 3811 return 0; 3812 } 3813 3814 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3815 { 3816 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3817 struct f2fs_summary_block *sum; 3818 struct curseg_info *curseg; 3819 struct page *new; 3820 unsigned short blk_off; 3821 unsigned int segno = 0; 3822 block_t blk_addr = 0; 3823 int err = 0; 3824 3825 /* get segment number and block addr */ 3826 if (IS_DATASEG(type)) { 3827 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3828 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3829 CURSEG_HOT_DATA]); 3830 if (__exist_node_summaries(sbi)) 3831 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3832 else 3833 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3834 } else { 3835 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3836 CURSEG_HOT_NODE]); 3837 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3838 CURSEG_HOT_NODE]); 3839 if (__exist_node_summaries(sbi)) 3840 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3841 type - CURSEG_HOT_NODE); 3842 else 3843 blk_addr = GET_SUM_BLOCK(sbi, segno); 3844 } 3845 3846 new = f2fs_get_meta_page(sbi, blk_addr); 3847 if (IS_ERR(new)) 3848 return PTR_ERR(new); 3849 sum = (struct f2fs_summary_block *)page_address(new); 3850 3851 if (IS_NODESEG(type)) { 3852 if (__exist_node_summaries(sbi)) { 3853 struct f2fs_summary *ns = &sum->entries[0]; 3854 int i; 3855 3856 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3857 ns->version = 0; 3858 ns->ofs_in_node = 0; 3859 } 3860 } else { 3861 err = f2fs_restore_node_summary(sbi, segno, sum); 3862 if (err) 3863 goto out; 3864 } 3865 } 3866 3867 /* set uncompleted segment to curseg */ 3868 curseg = CURSEG_I(sbi, type); 3869 mutex_lock(&curseg->curseg_mutex); 3870 3871 /* update journal info */ 3872 down_write(&curseg->journal_rwsem); 3873 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3874 up_write(&curseg->journal_rwsem); 3875 3876 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3877 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3878 curseg->next_segno = segno; 3879 reset_curseg(sbi, type, 0); 3880 curseg->alloc_type = ckpt->alloc_type[type]; 3881 curseg->next_blkoff = blk_off; 3882 mutex_unlock(&curseg->curseg_mutex); 3883 out: 3884 f2fs_put_page(new, 1); 3885 return err; 3886 } 3887 3888 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3889 { 3890 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3891 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3892 int type = CURSEG_HOT_DATA; 3893 int err; 3894 3895 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3896 int npages = f2fs_npages_for_summary_flush(sbi, true); 3897 3898 if (npages >= 2) 3899 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3900 META_CP, true); 3901 3902 /* restore for compacted data summary */ 3903 err = read_compacted_summaries(sbi); 3904 if (err) 3905 return err; 3906 type = CURSEG_HOT_NODE; 3907 } 3908 3909 if (__exist_node_summaries(sbi)) 3910 f2fs_ra_meta_pages(sbi, 3911 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3912 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3913 3914 for (; type <= CURSEG_COLD_NODE; type++) { 3915 err = read_normal_summaries(sbi, type); 3916 if (err) 3917 return err; 3918 } 3919 3920 /* sanity check for summary blocks */ 3921 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3922 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3923 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 3924 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3925 return -EINVAL; 3926 } 3927 3928 return 0; 3929 } 3930 3931 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3932 { 3933 struct page *page; 3934 unsigned char *kaddr; 3935 struct f2fs_summary *summary; 3936 struct curseg_info *seg_i; 3937 int written_size = 0; 3938 int i, j; 3939 3940 page = f2fs_grab_meta_page(sbi, blkaddr++); 3941 kaddr = (unsigned char *)page_address(page); 3942 memset(kaddr, 0, PAGE_SIZE); 3943 3944 /* Step 1: write nat cache */ 3945 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3946 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3947 written_size += SUM_JOURNAL_SIZE; 3948 3949 /* Step 2: write sit cache */ 3950 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3951 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3952 written_size += SUM_JOURNAL_SIZE; 3953 3954 /* Step 3: write summary entries */ 3955 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3956 unsigned short blkoff; 3957 3958 seg_i = CURSEG_I(sbi, i); 3959 if (sbi->ckpt->alloc_type[i] == SSR) 3960 blkoff = sbi->blocks_per_seg; 3961 else 3962 blkoff = curseg_blkoff(sbi, i); 3963 3964 for (j = 0; j < blkoff; j++) { 3965 if (!page) { 3966 page = f2fs_grab_meta_page(sbi, blkaddr++); 3967 kaddr = (unsigned char *)page_address(page); 3968 memset(kaddr, 0, PAGE_SIZE); 3969 written_size = 0; 3970 } 3971 summary = (struct f2fs_summary *)(kaddr + written_size); 3972 *summary = seg_i->sum_blk->entries[j]; 3973 written_size += SUMMARY_SIZE; 3974 3975 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3976 SUM_FOOTER_SIZE) 3977 continue; 3978 3979 set_page_dirty(page); 3980 f2fs_put_page(page, 1); 3981 page = NULL; 3982 } 3983 } 3984 if (page) { 3985 set_page_dirty(page); 3986 f2fs_put_page(page, 1); 3987 } 3988 } 3989 3990 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3991 block_t blkaddr, int type) 3992 { 3993 int i, end; 3994 3995 if (IS_DATASEG(type)) 3996 end = type + NR_CURSEG_DATA_TYPE; 3997 else 3998 end = type + NR_CURSEG_NODE_TYPE; 3999 4000 for (i = type; i < end; i++) 4001 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4002 } 4003 4004 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4005 { 4006 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4007 write_compacted_summaries(sbi, start_blk); 4008 else 4009 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4010 } 4011 4012 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4013 { 4014 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4015 } 4016 4017 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4018 unsigned int val, int alloc) 4019 { 4020 int i; 4021 4022 if (type == NAT_JOURNAL) { 4023 for (i = 0; i < nats_in_cursum(journal); i++) { 4024 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4025 return i; 4026 } 4027 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4028 return update_nats_in_cursum(journal, 1); 4029 } else if (type == SIT_JOURNAL) { 4030 for (i = 0; i < sits_in_cursum(journal); i++) 4031 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4032 return i; 4033 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4034 return update_sits_in_cursum(journal, 1); 4035 } 4036 return -1; 4037 } 4038 4039 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4040 unsigned int segno) 4041 { 4042 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4043 } 4044 4045 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4046 unsigned int start) 4047 { 4048 struct sit_info *sit_i = SIT_I(sbi); 4049 struct page *page; 4050 pgoff_t src_off, dst_off; 4051 4052 src_off = current_sit_addr(sbi, start); 4053 dst_off = next_sit_addr(sbi, src_off); 4054 4055 page = f2fs_grab_meta_page(sbi, dst_off); 4056 seg_info_to_sit_page(sbi, page, start); 4057 4058 set_page_dirty(page); 4059 set_to_next_sit(sit_i, start); 4060 4061 return page; 4062 } 4063 4064 static struct sit_entry_set *grab_sit_entry_set(void) 4065 { 4066 struct sit_entry_set *ses = 4067 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 4068 4069 ses->entry_cnt = 0; 4070 INIT_LIST_HEAD(&ses->set_list); 4071 return ses; 4072 } 4073 4074 static void release_sit_entry_set(struct sit_entry_set *ses) 4075 { 4076 list_del(&ses->set_list); 4077 kmem_cache_free(sit_entry_set_slab, ses); 4078 } 4079 4080 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4081 struct list_head *head) 4082 { 4083 struct sit_entry_set *next = ses; 4084 4085 if (list_is_last(&ses->set_list, head)) 4086 return; 4087 4088 list_for_each_entry_continue(next, head, set_list) 4089 if (ses->entry_cnt <= next->entry_cnt) 4090 break; 4091 4092 list_move_tail(&ses->set_list, &next->set_list); 4093 } 4094 4095 static void add_sit_entry(unsigned int segno, struct list_head *head) 4096 { 4097 struct sit_entry_set *ses; 4098 unsigned int start_segno = START_SEGNO(segno); 4099 4100 list_for_each_entry(ses, head, set_list) { 4101 if (ses->start_segno == start_segno) { 4102 ses->entry_cnt++; 4103 adjust_sit_entry_set(ses, head); 4104 return; 4105 } 4106 } 4107 4108 ses = grab_sit_entry_set(); 4109 4110 ses->start_segno = start_segno; 4111 ses->entry_cnt++; 4112 list_add(&ses->set_list, head); 4113 } 4114 4115 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4116 { 4117 struct f2fs_sm_info *sm_info = SM_I(sbi); 4118 struct list_head *set_list = &sm_info->sit_entry_set; 4119 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4120 unsigned int segno; 4121 4122 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4123 add_sit_entry(segno, set_list); 4124 } 4125 4126 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4127 { 4128 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4129 struct f2fs_journal *journal = curseg->journal; 4130 int i; 4131 4132 down_write(&curseg->journal_rwsem); 4133 for (i = 0; i < sits_in_cursum(journal); i++) { 4134 unsigned int segno; 4135 bool dirtied; 4136 4137 segno = le32_to_cpu(segno_in_journal(journal, i)); 4138 dirtied = __mark_sit_entry_dirty(sbi, segno); 4139 4140 if (!dirtied) 4141 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4142 } 4143 update_sits_in_cursum(journal, -i); 4144 up_write(&curseg->journal_rwsem); 4145 } 4146 4147 /* 4148 * CP calls this function, which flushes SIT entries including sit_journal, 4149 * and moves prefree segs to free segs. 4150 */ 4151 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4152 { 4153 struct sit_info *sit_i = SIT_I(sbi); 4154 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4155 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4156 struct f2fs_journal *journal = curseg->journal; 4157 struct sit_entry_set *ses, *tmp; 4158 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4159 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4160 struct seg_entry *se; 4161 4162 down_write(&sit_i->sentry_lock); 4163 4164 if (!sit_i->dirty_sentries) 4165 goto out; 4166 4167 /* 4168 * add and account sit entries of dirty bitmap in sit entry 4169 * set temporarily 4170 */ 4171 add_sits_in_set(sbi); 4172 4173 /* 4174 * if there are no enough space in journal to store dirty sit 4175 * entries, remove all entries from journal and add and account 4176 * them in sit entry set. 4177 */ 4178 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4179 !to_journal) 4180 remove_sits_in_journal(sbi); 4181 4182 /* 4183 * there are two steps to flush sit entries: 4184 * #1, flush sit entries to journal in current cold data summary block. 4185 * #2, flush sit entries to sit page. 4186 */ 4187 list_for_each_entry_safe(ses, tmp, head, set_list) { 4188 struct page *page = NULL; 4189 struct f2fs_sit_block *raw_sit = NULL; 4190 unsigned int start_segno = ses->start_segno; 4191 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4192 (unsigned long)MAIN_SEGS(sbi)); 4193 unsigned int segno = start_segno; 4194 4195 if (to_journal && 4196 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4197 to_journal = false; 4198 4199 if (to_journal) { 4200 down_write(&curseg->journal_rwsem); 4201 } else { 4202 page = get_next_sit_page(sbi, start_segno); 4203 raw_sit = page_address(page); 4204 } 4205 4206 /* flush dirty sit entries in region of current sit set */ 4207 for_each_set_bit_from(segno, bitmap, end) { 4208 int offset, sit_offset; 4209 4210 se = get_seg_entry(sbi, segno); 4211 #ifdef CONFIG_F2FS_CHECK_FS 4212 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4213 SIT_VBLOCK_MAP_SIZE)) 4214 f2fs_bug_on(sbi, 1); 4215 #endif 4216 4217 /* add discard candidates */ 4218 if (!(cpc->reason & CP_DISCARD)) { 4219 cpc->trim_start = segno; 4220 add_discard_addrs(sbi, cpc, false); 4221 } 4222 4223 if (to_journal) { 4224 offset = f2fs_lookup_journal_in_cursum(journal, 4225 SIT_JOURNAL, segno, 1); 4226 f2fs_bug_on(sbi, offset < 0); 4227 segno_in_journal(journal, offset) = 4228 cpu_to_le32(segno); 4229 seg_info_to_raw_sit(se, 4230 &sit_in_journal(journal, offset)); 4231 check_block_count(sbi, segno, 4232 &sit_in_journal(journal, offset)); 4233 } else { 4234 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4235 seg_info_to_raw_sit(se, 4236 &raw_sit->entries[sit_offset]); 4237 check_block_count(sbi, segno, 4238 &raw_sit->entries[sit_offset]); 4239 } 4240 4241 __clear_bit(segno, bitmap); 4242 sit_i->dirty_sentries--; 4243 ses->entry_cnt--; 4244 } 4245 4246 if (to_journal) 4247 up_write(&curseg->journal_rwsem); 4248 else 4249 f2fs_put_page(page, 1); 4250 4251 f2fs_bug_on(sbi, ses->entry_cnt); 4252 release_sit_entry_set(ses); 4253 } 4254 4255 f2fs_bug_on(sbi, !list_empty(head)); 4256 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4257 out: 4258 if (cpc->reason & CP_DISCARD) { 4259 __u64 trim_start = cpc->trim_start; 4260 4261 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4262 add_discard_addrs(sbi, cpc, false); 4263 4264 cpc->trim_start = trim_start; 4265 } 4266 up_write(&sit_i->sentry_lock); 4267 4268 set_prefree_as_free_segments(sbi); 4269 } 4270 4271 static int build_sit_info(struct f2fs_sb_info *sbi) 4272 { 4273 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4274 struct sit_info *sit_i; 4275 unsigned int sit_segs, start; 4276 char *src_bitmap, *bitmap; 4277 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4278 4279 /* allocate memory for SIT information */ 4280 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4281 if (!sit_i) 4282 return -ENOMEM; 4283 4284 SM_I(sbi)->sit_info = sit_i; 4285 4286 sit_i->sentries = 4287 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4288 MAIN_SEGS(sbi)), 4289 GFP_KERNEL); 4290 if (!sit_i->sentries) 4291 return -ENOMEM; 4292 4293 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4294 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4295 GFP_KERNEL); 4296 if (!sit_i->dirty_sentries_bitmap) 4297 return -ENOMEM; 4298 4299 #ifdef CONFIG_F2FS_CHECK_FS 4300 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 4301 #else 4302 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 4303 #endif 4304 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4305 if (!sit_i->bitmap) 4306 return -ENOMEM; 4307 4308 bitmap = sit_i->bitmap; 4309 4310 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4311 sit_i->sentries[start].cur_valid_map = bitmap; 4312 bitmap += SIT_VBLOCK_MAP_SIZE; 4313 4314 sit_i->sentries[start].ckpt_valid_map = bitmap; 4315 bitmap += SIT_VBLOCK_MAP_SIZE; 4316 4317 #ifdef CONFIG_F2FS_CHECK_FS 4318 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4319 bitmap += SIT_VBLOCK_MAP_SIZE; 4320 #endif 4321 4322 sit_i->sentries[start].discard_map = bitmap; 4323 bitmap += SIT_VBLOCK_MAP_SIZE; 4324 } 4325 4326 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4327 if (!sit_i->tmp_map) 4328 return -ENOMEM; 4329 4330 if (__is_large_section(sbi)) { 4331 sit_i->sec_entries = 4332 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4333 MAIN_SECS(sbi)), 4334 GFP_KERNEL); 4335 if (!sit_i->sec_entries) 4336 return -ENOMEM; 4337 } 4338 4339 /* get information related with SIT */ 4340 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4341 4342 /* setup SIT bitmap from ckeckpoint pack */ 4343 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4344 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4345 4346 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4347 if (!sit_i->sit_bitmap) 4348 return -ENOMEM; 4349 4350 #ifdef CONFIG_F2FS_CHECK_FS 4351 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4352 sit_bitmap_size, GFP_KERNEL); 4353 if (!sit_i->sit_bitmap_mir) 4354 return -ENOMEM; 4355 4356 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4357 main_bitmap_size, GFP_KERNEL); 4358 if (!sit_i->invalid_segmap) 4359 return -ENOMEM; 4360 #endif 4361 4362 /* init SIT information */ 4363 sit_i->s_ops = &default_salloc_ops; 4364 4365 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4366 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4367 sit_i->written_valid_blocks = 0; 4368 sit_i->bitmap_size = sit_bitmap_size; 4369 sit_i->dirty_sentries = 0; 4370 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4371 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4372 sit_i->mounted_time = ktime_get_boottime_seconds(); 4373 init_rwsem(&sit_i->sentry_lock); 4374 return 0; 4375 } 4376 4377 static int build_free_segmap(struct f2fs_sb_info *sbi) 4378 { 4379 struct free_segmap_info *free_i; 4380 unsigned int bitmap_size, sec_bitmap_size; 4381 4382 /* allocate memory for free segmap information */ 4383 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4384 if (!free_i) 4385 return -ENOMEM; 4386 4387 SM_I(sbi)->free_info = free_i; 4388 4389 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4390 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4391 if (!free_i->free_segmap) 4392 return -ENOMEM; 4393 4394 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4395 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4396 if (!free_i->free_secmap) 4397 return -ENOMEM; 4398 4399 /* set all segments as dirty temporarily */ 4400 memset(free_i->free_segmap, 0xff, bitmap_size); 4401 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4402 4403 /* init free segmap information */ 4404 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4405 free_i->free_segments = 0; 4406 free_i->free_sections = 0; 4407 spin_lock_init(&free_i->segmap_lock); 4408 return 0; 4409 } 4410 4411 static int build_curseg(struct f2fs_sb_info *sbi) 4412 { 4413 struct curseg_info *array; 4414 int i; 4415 4416 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4417 sizeof(*array)), GFP_KERNEL); 4418 if (!array) 4419 return -ENOMEM; 4420 4421 SM_I(sbi)->curseg_array = array; 4422 4423 for (i = 0; i < NO_CHECK_TYPE; i++) { 4424 mutex_init(&array[i].curseg_mutex); 4425 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4426 if (!array[i].sum_blk) 4427 return -ENOMEM; 4428 init_rwsem(&array[i].journal_rwsem); 4429 array[i].journal = f2fs_kzalloc(sbi, 4430 sizeof(struct f2fs_journal), GFP_KERNEL); 4431 if (!array[i].journal) 4432 return -ENOMEM; 4433 if (i < NR_PERSISTENT_LOG) 4434 array[i].seg_type = CURSEG_HOT_DATA + i; 4435 else if (i == CURSEG_COLD_DATA_PINNED) 4436 array[i].seg_type = CURSEG_COLD_DATA; 4437 else if (i == CURSEG_ALL_DATA_ATGC) 4438 array[i].seg_type = CURSEG_COLD_DATA; 4439 array[i].segno = NULL_SEGNO; 4440 array[i].next_blkoff = 0; 4441 array[i].inited = false; 4442 } 4443 return restore_curseg_summaries(sbi); 4444 } 4445 4446 static int build_sit_entries(struct f2fs_sb_info *sbi) 4447 { 4448 struct sit_info *sit_i = SIT_I(sbi); 4449 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4450 struct f2fs_journal *journal = curseg->journal; 4451 struct seg_entry *se; 4452 struct f2fs_sit_entry sit; 4453 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4454 unsigned int i, start, end; 4455 unsigned int readed, start_blk = 0; 4456 int err = 0; 4457 block_t total_node_blocks = 0; 4458 4459 do { 4460 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4461 META_SIT, true); 4462 4463 start = start_blk * sit_i->sents_per_block; 4464 end = (start_blk + readed) * sit_i->sents_per_block; 4465 4466 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4467 struct f2fs_sit_block *sit_blk; 4468 struct page *page; 4469 4470 se = &sit_i->sentries[start]; 4471 page = get_current_sit_page(sbi, start); 4472 if (IS_ERR(page)) 4473 return PTR_ERR(page); 4474 sit_blk = (struct f2fs_sit_block *)page_address(page); 4475 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4476 f2fs_put_page(page, 1); 4477 4478 err = check_block_count(sbi, start, &sit); 4479 if (err) 4480 return err; 4481 seg_info_from_raw_sit(se, &sit); 4482 if (IS_NODESEG(se->type)) 4483 total_node_blocks += se->valid_blocks; 4484 4485 /* build discard map only one time */ 4486 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4487 memset(se->discard_map, 0xff, 4488 SIT_VBLOCK_MAP_SIZE); 4489 } else { 4490 memcpy(se->discard_map, 4491 se->cur_valid_map, 4492 SIT_VBLOCK_MAP_SIZE); 4493 sbi->discard_blks += 4494 sbi->blocks_per_seg - 4495 se->valid_blocks; 4496 } 4497 4498 if (__is_large_section(sbi)) 4499 get_sec_entry(sbi, start)->valid_blocks += 4500 se->valid_blocks; 4501 } 4502 start_blk += readed; 4503 } while (start_blk < sit_blk_cnt); 4504 4505 down_read(&curseg->journal_rwsem); 4506 for (i = 0; i < sits_in_cursum(journal); i++) { 4507 unsigned int old_valid_blocks; 4508 4509 start = le32_to_cpu(segno_in_journal(journal, i)); 4510 if (start >= MAIN_SEGS(sbi)) { 4511 f2fs_err(sbi, "Wrong journal entry on segno %u", 4512 start); 4513 err = -EFSCORRUPTED; 4514 break; 4515 } 4516 4517 se = &sit_i->sentries[start]; 4518 sit = sit_in_journal(journal, i); 4519 4520 old_valid_blocks = se->valid_blocks; 4521 if (IS_NODESEG(se->type)) 4522 total_node_blocks -= old_valid_blocks; 4523 4524 err = check_block_count(sbi, start, &sit); 4525 if (err) 4526 break; 4527 seg_info_from_raw_sit(se, &sit); 4528 if (IS_NODESEG(se->type)) 4529 total_node_blocks += se->valid_blocks; 4530 4531 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4532 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4533 } else { 4534 memcpy(se->discard_map, se->cur_valid_map, 4535 SIT_VBLOCK_MAP_SIZE); 4536 sbi->discard_blks += old_valid_blocks; 4537 sbi->discard_blks -= se->valid_blocks; 4538 } 4539 4540 if (__is_large_section(sbi)) { 4541 get_sec_entry(sbi, start)->valid_blocks += 4542 se->valid_blocks; 4543 get_sec_entry(sbi, start)->valid_blocks -= 4544 old_valid_blocks; 4545 } 4546 } 4547 up_read(&curseg->journal_rwsem); 4548 4549 if (!err && total_node_blocks != valid_node_count(sbi)) { 4550 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4551 total_node_blocks, valid_node_count(sbi)); 4552 err = -EFSCORRUPTED; 4553 } 4554 4555 return err; 4556 } 4557 4558 static void init_free_segmap(struct f2fs_sb_info *sbi) 4559 { 4560 unsigned int start; 4561 int type; 4562 struct seg_entry *sentry; 4563 4564 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4565 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4566 continue; 4567 sentry = get_seg_entry(sbi, start); 4568 if (!sentry->valid_blocks) 4569 __set_free(sbi, start); 4570 else 4571 SIT_I(sbi)->written_valid_blocks += 4572 sentry->valid_blocks; 4573 } 4574 4575 /* set use the current segments */ 4576 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4577 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4578 4579 __set_test_and_inuse(sbi, curseg_t->segno); 4580 } 4581 } 4582 4583 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4584 { 4585 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4586 struct free_segmap_info *free_i = FREE_I(sbi); 4587 unsigned int segno = 0, offset = 0, secno; 4588 block_t valid_blocks, usable_blks_in_seg; 4589 block_t blks_per_sec = BLKS_PER_SEC(sbi); 4590 4591 while (1) { 4592 /* find dirty segment based on free segmap */ 4593 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4594 if (segno >= MAIN_SEGS(sbi)) 4595 break; 4596 offset = segno + 1; 4597 valid_blocks = get_valid_blocks(sbi, segno, false); 4598 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4599 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4600 continue; 4601 if (valid_blocks > usable_blks_in_seg) { 4602 f2fs_bug_on(sbi, 1); 4603 continue; 4604 } 4605 mutex_lock(&dirty_i->seglist_lock); 4606 __locate_dirty_segment(sbi, segno, DIRTY); 4607 mutex_unlock(&dirty_i->seglist_lock); 4608 } 4609 4610 if (!__is_large_section(sbi)) 4611 return; 4612 4613 mutex_lock(&dirty_i->seglist_lock); 4614 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4615 valid_blocks = get_valid_blocks(sbi, segno, true); 4616 secno = GET_SEC_FROM_SEG(sbi, segno); 4617 4618 if (!valid_blocks || valid_blocks == blks_per_sec) 4619 continue; 4620 if (IS_CURSEC(sbi, secno)) 4621 continue; 4622 set_bit(secno, dirty_i->dirty_secmap); 4623 } 4624 mutex_unlock(&dirty_i->seglist_lock); 4625 } 4626 4627 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4628 { 4629 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4630 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4631 4632 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4633 if (!dirty_i->victim_secmap) 4634 return -ENOMEM; 4635 return 0; 4636 } 4637 4638 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4639 { 4640 struct dirty_seglist_info *dirty_i; 4641 unsigned int bitmap_size, i; 4642 4643 /* allocate memory for dirty segments list information */ 4644 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4645 GFP_KERNEL); 4646 if (!dirty_i) 4647 return -ENOMEM; 4648 4649 SM_I(sbi)->dirty_info = dirty_i; 4650 mutex_init(&dirty_i->seglist_lock); 4651 4652 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4653 4654 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4655 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4656 GFP_KERNEL); 4657 if (!dirty_i->dirty_segmap[i]) 4658 return -ENOMEM; 4659 } 4660 4661 if (__is_large_section(sbi)) { 4662 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4663 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4664 bitmap_size, GFP_KERNEL); 4665 if (!dirty_i->dirty_secmap) 4666 return -ENOMEM; 4667 } 4668 4669 init_dirty_segmap(sbi); 4670 return init_victim_secmap(sbi); 4671 } 4672 4673 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4674 { 4675 int i; 4676 4677 /* 4678 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4679 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4680 */ 4681 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4682 struct curseg_info *curseg = CURSEG_I(sbi, i); 4683 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4684 unsigned int blkofs = curseg->next_blkoff; 4685 4686 if (f2fs_sb_has_readonly(sbi) && 4687 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4688 continue; 4689 4690 sanity_check_seg_type(sbi, curseg->seg_type); 4691 4692 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4693 goto out; 4694 4695 if (curseg->alloc_type == SSR) 4696 continue; 4697 4698 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4699 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4700 continue; 4701 out: 4702 f2fs_err(sbi, 4703 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4704 i, curseg->segno, curseg->alloc_type, 4705 curseg->next_blkoff, blkofs); 4706 return -EFSCORRUPTED; 4707 } 4708 } 4709 return 0; 4710 } 4711 4712 #ifdef CONFIG_BLK_DEV_ZONED 4713 4714 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4715 struct f2fs_dev_info *fdev, 4716 struct blk_zone *zone) 4717 { 4718 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4719 block_t zone_block, wp_block, last_valid_block; 4720 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4721 int i, s, b, ret; 4722 struct seg_entry *se; 4723 4724 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4725 return 0; 4726 4727 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4728 wp_segno = GET_SEGNO(sbi, wp_block); 4729 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4730 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4731 zone_segno = GET_SEGNO(sbi, zone_block); 4732 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4733 4734 if (zone_segno >= MAIN_SEGS(sbi)) 4735 return 0; 4736 4737 /* 4738 * Skip check of zones cursegs point to, since 4739 * fix_curseg_write_pointer() checks them. 4740 */ 4741 for (i = 0; i < NO_CHECK_TYPE; i++) 4742 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4743 CURSEG_I(sbi, i)->segno)) 4744 return 0; 4745 4746 /* 4747 * Get last valid block of the zone. 4748 */ 4749 last_valid_block = zone_block - 1; 4750 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4751 segno = zone_segno + s; 4752 se = get_seg_entry(sbi, segno); 4753 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4754 if (f2fs_test_bit(b, se->cur_valid_map)) { 4755 last_valid_block = START_BLOCK(sbi, segno) + b; 4756 break; 4757 } 4758 if (last_valid_block >= zone_block) 4759 break; 4760 } 4761 4762 /* 4763 * If last valid block is beyond the write pointer, report the 4764 * inconsistency. This inconsistency does not cause write error 4765 * because the zone will not be selected for write operation until 4766 * it get discarded. Just report it. 4767 */ 4768 if (last_valid_block >= wp_block) { 4769 f2fs_notice(sbi, "Valid block beyond write pointer: " 4770 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4771 GET_SEGNO(sbi, last_valid_block), 4772 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4773 wp_segno, wp_blkoff); 4774 return 0; 4775 } 4776 4777 /* 4778 * If there is no valid block in the zone and if write pointer is 4779 * not at zone start, reset the write pointer. 4780 */ 4781 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4782 f2fs_notice(sbi, 4783 "Zone without valid block has non-zero write " 4784 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4785 wp_segno, wp_blkoff); 4786 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4787 zone->len >> log_sectors_per_block); 4788 if (ret) { 4789 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4790 fdev->path, ret); 4791 return ret; 4792 } 4793 } 4794 4795 return 0; 4796 } 4797 4798 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4799 block_t zone_blkaddr) 4800 { 4801 int i; 4802 4803 for (i = 0; i < sbi->s_ndevs; i++) { 4804 if (!bdev_is_zoned(FDEV(i).bdev)) 4805 continue; 4806 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4807 zone_blkaddr <= FDEV(i).end_blk)) 4808 return &FDEV(i); 4809 } 4810 4811 return NULL; 4812 } 4813 4814 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4815 void *data) 4816 { 4817 memcpy(data, zone, sizeof(struct blk_zone)); 4818 return 0; 4819 } 4820 4821 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4822 { 4823 struct curseg_info *cs = CURSEG_I(sbi, type); 4824 struct f2fs_dev_info *zbd; 4825 struct blk_zone zone; 4826 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4827 block_t cs_zone_block, wp_block; 4828 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4829 sector_t zone_sector; 4830 int err; 4831 4832 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4833 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4834 4835 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4836 if (!zbd) 4837 return 0; 4838 4839 /* report zone for the sector the curseg points to */ 4840 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4841 << log_sectors_per_block; 4842 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4843 report_one_zone_cb, &zone); 4844 if (err != 1) { 4845 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4846 zbd->path, err); 4847 return err; 4848 } 4849 4850 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4851 return 0; 4852 4853 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4854 wp_segno = GET_SEGNO(sbi, wp_block); 4855 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4856 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4857 4858 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4859 wp_sector_off == 0) 4860 return 0; 4861 4862 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4863 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4864 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4865 4866 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4867 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4868 4869 f2fs_allocate_new_section(sbi, type, true); 4870 4871 /* check consistency of the zone curseg pointed to */ 4872 if (check_zone_write_pointer(sbi, zbd, &zone)) 4873 return -EIO; 4874 4875 /* check newly assigned zone */ 4876 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4877 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4878 4879 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4880 if (!zbd) 4881 return 0; 4882 4883 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4884 << log_sectors_per_block; 4885 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4886 report_one_zone_cb, &zone); 4887 if (err != 1) { 4888 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4889 zbd->path, err); 4890 return err; 4891 } 4892 4893 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4894 return 0; 4895 4896 if (zone.wp != zone.start) { 4897 f2fs_notice(sbi, 4898 "New zone for curseg[%d] is not yet discarded. " 4899 "Reset the zone: curseg[0x%x,0x%x]", 4900 type, cs->segno, cs->next_blkoff); 4901 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4902 zone_sector >> log_sectors_per_block, 4903 zone.len >> log_sectors_per_block); 4904 if (err) { 4905 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4906 zbd->path, err); 4907 return err; 4908 } 4909 } 4910 4911 return 0; 4912 } 4913 4914 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4915 { 4916 int i, ret; 4917 4918 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4919 ret = fix_curseg_write_pointer(sbi, i); 4920 if (ret) 4921 return ret; 4922 } 4923 4924 return 0; 4925 } 4926 4927 struct check_zone_write_pointer_args { 4928 struct f2fs_sb_info *sbi; 4929 struct f2fs_dev_info *fdev; 4930 }; 4931 4932 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4933 void *data) 4934 { 4935 struct check_zone_write_pointer_args *args; 4936 4937 args = (struct check_zone_write_pointer_args *)data; 4938 4939 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4940 } 4941 4942 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4943 { 4944 int i, ret; 4945 struct check_zone_write_pointer_args args; 4946 4947 for (i = 0; i < sbi->s_ndevs; i++) { 4948 if (!bdev_is_zoned(FDEV(i).bdev)) 4949 continue; 4950 4951 args.sbi = sbi; 4952 args.fdev = &FDEV(i); 4953 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4954 check_zone_write_pointer_cb, &args); 4955 if (ret < 0) 4956 return ret; 4957 } 4958 4959 return 0; 4960 } 4961 4962 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 4963 unsigned int dev_idx) 4964 { 4965 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 4966 return true; 4967 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 4968 } 4969 4970 /* Return the zone index in the given device */ 4971 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 4972 int dev_idx) 4973 { 4974 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4975 4976 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 4977 sbi->log_blocks_per_blkz; 4978 } 4979 4980 /* 4981 * Return the usable segments in a section based on the zone's 4982 * corresponding zone capacity. Zone is equal to a section. 4983 */ 4984 static inline unsigned int f2fs_usable_zone_segs_in_sec( 4985 struct f2fs_sb_info *sbi, unsigned int segno) 4986 { 4987 unsigned int dev_idx, zone_idx, unusable_segs_in_sec; 4988 4989 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 4990 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 4991 4992 /* Conventional zone's capacity is always equal to zone size */ 4993 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4994 return sbi->segs_per_sec; 4995 4996 /* 4997 * If the zone_capacity_blocks array is NULL, then zone capacity 4998 * is equal to the zone size for all zones 4999 */ 5000 if (!FDEV(dev_idx).zone_capacity_blocks) 5001 return sbi->segs_per_sec; 5002 5003 /* Get the segment count beyond zone capacity block */ 5004 unusable_segs_in_sec = (sbi->blocks_per_blkz - 5005 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >> 5006 sbi->log_blocks_per_seg; 5007 return sbi->segs_per_sec - unusable_segs_in_sec; 5008 } 5009 5010 /* 5011 * Return the number of usable blocks in a segment. The number of blocks 5012 * returned is always equal to the number of blocks in a segment for 5013 * segments fully contained within a sequential zone capacity or a 5014 * conventional zone. For segments partially contained in a sequential 5015 * zone capacity, the number of usable blocks up to the zone capacity 5016 * is returned. 0 is returned in all other cases. 5017 */ 5018 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5019 struct f2fs_sb_info *sbi, unsigned int segno) 5020 { 5021 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5022 unsigned int zone_idx, dev_idx, secno; 5023 5024 secno = GET_SEC_FROM_SEG(sbi, segno); 5025 seg_start = START_BLOCK(sbi, segno); 5026 dev_idx = f2fs_target_device_index(sbi, seg_start); 5027 zone_idx = get_zone_idx(sbi, secno, dev_idx); 5028 5029 /* 5030 * Conventional zone's capacity is always equal to zone size, 5031 * so, blocks per segment is unchanged. 5032 */ 5033 if (is_conv_zone(sbi, zone_idx, dev_idx)) 5034 return sbi->blocks_per_seg; 5035 5036 if (!FDEV(dev_idx).zone_capacity_blocks) 5037 return sbi->blocks_per_seg; 5038 5039 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5040 sec_cap_blkaddr = sec_start_blkaddr + 5041 FDEV(dev_idx).zone_capacity_blocks[zone_idx]; 5042 5043 /* 5044 * If segment starts before zone capacity and spans beyond 5045 * zone capacity, then usable blocks are from seg start to 5046 * zone capacity. If the segment starts after the zone capacity, 5047 * then there are no usable blocks. 5048 */ 5049 if (seg_start >= sec_cap_blkaddr) 5050 return 0; 5051 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5052 return sec_cap_blkaddr - seg_start; 5053 5054 return sbi->blocks_per_seg; 5055 } 5056 #else 5057 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5058 { 5059 return 0; 5060 } 5061 5062 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5063 { 5064 return 0; 5065 } 5066 5067 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5068 unsigned int segno) 5069 { 5070 return 0; 5071 } 5072 5073 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 5074 unsigned int segno) 5075 { 5076 return 0; 5077 } 5078 #endif 5079 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5080 unsigned int segno) 5081 { 5082 if (f2fs_sb_has_blkzoned(sbi)) 5083 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5084 5085 return sbi->blocks_per_seg; 5086 } 5087 5088 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5089 unsigned int segno) 5090 { 5091 if (f2fs_sb_has_blkzoned(sbi)) 5092 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5093 5094 return sbi->segs_per_sec; 5095 } 5096 5097 /* 5098 * Update min, max modified time for cost-benefit GC algorithm 5099 */ 5100 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5101 { 5102 struct sit_info *sit_i = SIT_I(sbi); 5103 unsigned int segno; 5104 5105 down_write(&sit_i->sentry_lock); 5106 5107 sit_i->min_mtime = ULLONG_MAX; 5108 5109 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5110 unsigned int i; 5111 unsigned long long mtime = 0; 5112 5113 for (i = 0; i < sbi->segs_per_sec; i++) 5114 mtime += get_seg_entry(sbi, segno + i)->mtime; 5115 5116 mtime = div_u64(mtime, sbi->segs_per_sec); 5117 5118 if (sit_i->min_mtime > mtime) 5119 sit_i->min_mtime = mtime; 5120 } 5121 sit_i->max_mtime = get_mtime(sbi, false); 5122 sit_i->dirty_max_mtime = 0; 5123 up_write(&sit_i->sentry_lock); 5124 } 5125 5126 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5127 { 5128 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5129 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5130 struct f2fs_sm_info *sm_info; 5131 int err; 5132 5133 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5134 if (!sm_info) 5135 return -ENOMEM; 5136 5137 /* init sm info */ 5138 sbi->sm_info = sm_info; 5139 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5140 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5141 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5142 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5143 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5144 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5145 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5146 sm_info->rec_prefree_segments = sm_info->main_segments * 5147 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5148 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5149 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5150 5151 if (!f2fs_lfs_mode(sbi)) 5152 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5153 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5154 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5155 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 5156 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5157 sm_info->min_ssr_sections = reserved_sections(sbi); 5158 5159 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5160 5161 init_rwsem(&sm_info->curseg_lock); 5162 5163 if (!f2fs_readonly(sbi->sb)) { 5164 err = f2fs_create_flush_cmd_control(sbi); 5165 if (err) 5166 return err; 5167 } 5168 5169 err = create_discard_cmd_control(sbi); 5170 if (err) 5171 return err; 5172 5173 err = build_sit_info(sbi); 5174 if (err) 5175 return err; 5176 err = build_free_segmap(sbi); 5177 if (err) 5178 return err; 5179 err = build_curseg(sbi); 5180 if (err) 5181 return err; 5182 5183 /* reinit free segmap based on SIT */ 5184 err = build_sit_entries(sbi); 5185 if (err) 5186 return err; 5187 5188 init_free_segmap(sbi); 5189 err = build_dirty_segmap(sbi); 5190 if (err) 5191 return err; 5192 5193 err = sanity_check_curseg(sbi); 5194 if (err) 5195 return err; 5196 5197 init_min_max_mtime(sbi); 5198 return 0; 5199 } 5200 5201 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5202 enum dirty_type dirty_type) 5203 { 5204 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5205 5206 mutex_lock(&dirty_i->seglist_lock); 5207 kvfree(dirty_i->dirty_segmap[dirty_type]); 5208 dirty_i->nr_dirty[dirty_type] = 0; 5209 mutex_unlock(&dirty_i->seglist_lock); 5210 } 5211 5212 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5213 { 5214 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5215 5216 kvfree(dirty_i->victim_secmap); 5217 } 5218 5219 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5220 { 5221 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5222 int i; 5223 5224 if (!dirty_i) 5225 return; 5226 5227 /* discard pre-free/dirty segments list */ 5228 for (i = 0; i < NR_DIRTY_TYPE; i++) 5229 discard_dirty_segmap(sbi, i); 5230 5231 if (__is_large_section(sbi)) { 5232 mutex_lock(&dirty_i->seglist_lock); 5233 kvfree(dirty_i->dirty_secmap); 5234 mutex_unlock(&dirty_i->seglist_lock); 5235 } 5236 5237 destroy_victim_secmap(sbi); 5238 SM_I(sbi)->dirty_info = NULL; 5239 kfree(dirty_i); 5240 } 5241 5242 static void destroy_curseg(struct f2fs_sb_info *sbi) 5243 { 5244 struct curseg_info *array = SM_I(sbi)->curseg_array; 5245 int i; 5246 5247 if (!array) 5248 return; 5249 SM_I(sbi)->curseg_array = NULL; 5250 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5251 kfree(array[i].sum_blk); 5252 kfree(array[i].journal); 5253 } 5254 kfree(array); 5255 } 5256 5257 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5258 { 5259 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5260 5261 if (!free_i) 5262 return; 5263 SM_I(sbi)->free_info = NULL; 5264 kvfree(free_i->free_segmap); 5265 kvfree(free_i->free_secmap); 5266 kfree(free_i); 5267 } 5268 5269 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5270 { 5271 struct sit_info *sit_i = SIT_I(sbi); 5272 5273 if (!sit_i) 5274 return; 5275 5276 if (sit_i->sentries) 5277 kvfree(sit_i->bitmap); 5278 kfree(sit_i->tmp_map); 5279 5280 kvfree(sit_i->sentries); 5281 kvfree(sit_i->sec_entries); 5282 kvfree(sit_i->dirty_sentries_bitmap); 5283 5284 SM_I(sbi)->sit_info = NULL; 5285 kvfree(sit_i->sit_bitmap); 5286 #ifdef CONFIG_F2FS_CHECK_FS 5287 kvfree(sit_i->sit_bitmap_mir); 5288 kvfree(sit_i->invalid_segmap); 5289 #endif 5290 kfree(sit_i); 5291 } 5292 5293 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5294 { 5295 struct f2fs_sm_info *sm_info = SM_I(sbi); 5296 5297 if (!sm_info) 5298 return; 5299 f2fs_destroy_flush_cmd_control(sbi, true); 5300 destroy_discard_cmd_control(sbi); 5301 destroy_dirty_segmap(sbi); 5302 destroy_curseg(sbi); 5303 destroy_free_segmap(sbi); 5304 destroy_sit_info(sbi); 5305 sbi->sm_info = NULL; 5306 kfree(sm_info); 5307 } 5308 5309 int __init f2fs_create_segment_manager_caches(void) 5310 { 5311 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5312 sizeof(struct discard_entry)); 5313 if (!discard_entry_slab) 5314 goto fail; 5315 5316 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5317 sizeof(struct discard_cmd)); 5318 if (!discard_cmd_slab) 5319 goto destroy_discard_entry; 5320 5321 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5322 sizeof(struct sit_entry_set)); 5323 if (!sit_entry_set_slab) 5324 goto destroy_discard_cmd; 5325 5326 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", 5327 sizeof(struct inmem_pages)); 5328 if (!inmem_entry_slab) 5329 goto destroy_sit_entry_set; 5330 return 0; 5331 5332 destroy_sit_entry_set: 5333 kmem_cache_destroy(sit_entry_set_slab); 5334 destroy_discard_cmd: 5335 kmem_cache_destroy(discard_cmd_slab); 5336 destroy_discard_entry: 5337 kmem_cache_destroy(discard_entry_slab); 5338 fail: 5339 return -ENOMEM; 5340 } 5341 5342 void f2fs_destroy_segment_manager_caches(void) 5343 { 5344 kmem_cache_destroy(sit_entry_set_slab); 5345 kmem_cache_destroy(discard_cmd_slab); 5346 kmem_cache_destroy(discard_entry_slab); 5347 kmem_cache_destroy(inmem_entry_slab); 5348 } 5349