xref: /openbmc/linux/fs/f2fs/segment.c (revision a7d9fe3c33887085a2e10c085d378126314dc222)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include <trace/events/f2fs.h>
24 
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26 
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *discard_cmd_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31 
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 	unsigned long tmp = 0;
35 	int shift = 24, idx = 0;
36 
37 #if BITS_PER_LONG == 64
38 	shift = 56;
39 #endif
40 	while (shift >= 0) {
41 		tmp |= (unsigned long)str[idx++] << shift;
42 		shift -= BITS_PER_BYTE;
43 	}
44 	return tmp;
45 }
46 
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 	int num = 0;
54 
55 #if BITS_PER_LONG == 64
56 	if ((word & 0xffffffff00000000UL) == 0)
57 		num += 32;
58 	else
59 		word >>= 32;
60 #endif
61 	if ((word & 0xffff0000) == 0)
62 		num += 16;
63 	else
64 		word >>= 16;
65 
66 	if ((word & 0xff00) == 0)
67 		num += 8;
68 	else
69 		word >>= 8;
70 
71 	if ((word & 0xf0) == 0)
72 		num += 4;
73 	else
74 		word >>= 4;
75 
76 	if ((word & 0xc) == 0)
77 		num += 2;
78 	else
79 		word >>= 2;
80 
81 	if ((word & 0x2) == 0)
82 		num += 1;
83 	return num;
84 }
85 
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 			unsigned long size, unsigned long offset)
97 {
98 	const unsigned long *p = addr + BIT_WORD(offset);
99 	unsigned long result = size;
100 	unsigned long tmp;
101 
102 	if (offset >= size)
103 		return size;
104 
105 	size -= (offset & ~(BITS_PER_LONG - 1));
106 	offset %= BITS_PER_LONG;
107 
108 	while (1) {
109 		if (*p == 0)
110 			goto pass;
111 
112 		tmp = __reverse_ulong((unsigned char *)p);
113 
114 		tmp &= ~0UL >> offset;
115 		if (size < BITS_PER_LONG)
116 			tmp &= (~0UL << (BITS_PER_LONG - size));
117 		if (tmp)
118 			goto found;
119 pass:
120 		if (size <= BITS_PER_LONG)
121 			break;
122 		size -= BITS_PER_LONG;
123 		offset = 0;
124 		p++;
125 	}
126 	return result;
127 found:
128 	return result - size + __reverse_ffs(tmp);
129 }
130 
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 			unsigned long size, unsigned long offset)
133 {
134 	const unsigned long *p = addr + BIT_WORD(offset);
135 	unsigned long result = size;
136 	unsigned long tmp;
137 
138 	if (offset >= size)
139 		return size;
140 
141 	size -= (offset & ~(BITS_PER_LONG - 1));
142 	offset %= BITS_PER_LONG;
143 
144 	while (1) {
145 		if (*p == ~0UL)
146 			goto pass;
147 
148 		tmp = __reverse_ulong((unsigned char *)p);
149 
150 		if (offset)
151 			tmp |= ~0UL << (BITS_PER_LONG - offset);
152 		if (size < BITS_PER_LONG)
153 			tmp |= ~0UL >> size;
154 		if (tmp != ~0UL)
155 			goto found;
156 pass:
157 		if (size <= BITS_PER_LONG)
158 			break;
159 		size -= BITS_PER_LONG;
160 		offset = 0;
161 		p++;
162 	}
163 	return result;
164 found:
165 	return result - size + __reverse_ffz(tmp);
166 }
167 
168 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
169 {
170 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
171 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
172 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
173 
174 	if (f2fs_lfs_mode(sbi))
175 		return false;
176 	if (sbi->gc_mode == GC_URGENT_HIGH)
177 		return true;
178 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
179 		return true;
180 
181 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
182 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
183 }
184 
185 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
186 {
187 	struct inmem_pages *new;
188 
189 	set_page_private_atomic(page);
190 
191 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
192 
193 	/* add atomic page indices to the list */
194 	new->page = page;
195 	INIT_LIST_HEAD(&new->list);
196 
197 	/* increase reference count with clean state */
198 	get_page(page);
199 	mutex_lock(&F2FS_I(inode)->inmem_lock);
200 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
201 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
202 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
203 
204 	trace_f2fs_register_inmem_page(page, INMEM);
205 }
206 
207 static int __revoke_inmem_pages(struct inode *inode,
208 				struct list_head *head, bool drop, bool recover,
209 				bool trylock)
210 {
211 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
212 	struct inmem_pages *cur, *tmp;
213 	int err = 0;
214 
215 	list_for_each_entry_safe(cur, tmp, head, list) {
216 		struct page *page = cur->page;
217 
218 		if (drop)
219 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
220 
221 		if (trylock) {
222 			/*
223 			 * to avoid deadlock in between page lock and
224 			 * inmem_lock.
225 			 */
226 			if (!trylock_page(page))
227 				continue;
228 		} else {
229 			lock_page(page);
230 		}
231 
232 		f2fs_wait_on_page_writeback(page, DATA, true, true);
233 
234 		if (recover) {
235 			struct dnode_of_data dn;
236 			struct node_info ni;
237 
238 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239 retry:
240 			set_new_dnode(&dn, inode, NULL, NULL, 0);
241 			err = f2fs_get_dnode_of_data(&dn, page->index,
242 								LOOKUP_NODE);
243 			if (err) {
244 				if (err == -ENOMEM) {
245 					congestion_wait(BLK_RW_ASYNC,
246 							DEFAULT_IO_TIMEOUT);
247 					cond_resched();
248 					goto retry;
249 				}
250 				err = -EAGAIN;
251 				goto next;
252 			}
253 
254 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
255 			if (err) {
256 				f2fs_put_dnode(&dn);
257 				return err;
258 			}
259 
260 			if (cur->old_addr == NEW_ADDR) {
261 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 			} else
264 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265 					cur->old_addr, ni.version, true, true);
266 			f2fs_put_dnode(&dn);
267 		}
268 next:
269 		/* we don't need to invalidate this in the sccessful status */
270 		if (drop || recover) {
271 			ClearPageUptodate(page);
272 			clear_page_private_gcing(page);
273 		}
274 		detach_page_private(page);
275 		set_page_private(page, 0);
276 		f2fs_put_page(page, 1);
277 
278 		list_del(&cur->list);
279 		kmem_cache_free(inmem_entry_slab, cur);
280 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
281 	}
282 	return err;
283 }
284 
285 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
286 {
287 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
288 	struct inode *inode;
289 	struct f2fs_inode_info *fi;
290 	unsigned int count = sbi->atomic_files;
291 	unsigned int looped = 0;
292 next:
293 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
294 	if (list_empty(head)) {
295 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
296 		return;
297 	}
298 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
299 	inode = igrab(&fi->vfs_inode);
300 	if (inode)
301 		list_move_tail(&fi->inmem_ilist, head);
302 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
303 
304 	if (inode) {
305 		if (gc_failure) {
306 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
307 				goto skip;
308 		}
309 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
310 		f2fs_drop_inmem_pages(inode);
311 skip:
312 		iput(inode);
313 	}
314 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
315 	cond_resched();
316 	if (gc_failure) {
317 		if (++looped >= count)
318 			return;
319 	}
320 	goto next;
321 }
322 
323 void f2fs_drop_inmem_pages(struct inode *inode)
324 {
325 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
326 	struct f2fs_inode_info *fi = F2FS_I(inode);
327 
328 	do {
329 		mutex_lock(&fi->inmem_lock);
330 		if (list_empty(&fi->inmem_pages)) {
331 			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
332 
333 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
334 			if (!list_empty(&fi->inmem_ilist))
335 				list_del_init(&fi->inmem_ilist);
336 			if (f2fs_is_atomic_file(inode)) {
337 				clear_inode_flag(inode, FI_ATOMIC_FILE);
338 				sbi->atomic_files--;
339 			}
340 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
341 
342 			mutex_unlock(&fi->inmem_lock);
343 			break;
344 		}
345 		__revoke_inmem_pages(inode, &fi->inmem_pages,
346 						true, false, true);
347 		mutex_unlock(&fi->inmem_lock);
348 	} while (1);
349 }
350 
351 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
352 {
353 	struct f2fs_inode_info *fi = F2FS_I(inode);
354 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
355 	struct list_head *head = &fi->inmem_pages;
356 	struct inmem_pages *cur = NULL;
357 
358 	f2fs_bug_on(sbi, !page_private_atomic(page));
359 
360 	mutex_lock(&fi->inmem_lock);
361 	list_for_each_entry(cur, head, list) {
362 		if (cur->page == page)
363 			break;
364 	}
365 
366 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
367 	list_del(&cur->list);
368 	mutex_unlock(&fi->inmem_lock);
369 
370 	dec_page_count(sbi, F2FS_INMEM_PAGES);
371 	kmem_cache_free(inmem_entry_slab, cur);
372 
373 	ClearPageUptodate(page);
374 	clear_page_private_atomic(page);
375 	f2fs_put_page(page, 0);
376 
377 	detach_page_private(page);
378 	set_page_private(page, 0);
379 
380 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
381 }
382 
383 static int __f2fs_commit_inmem_pages(struct inode *inode)
384 {
385 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
386 	struct f2fs_inode_info *fi = F2FS_I(inode);
387 	struct inmem_pages *cur, *tmp;
388 	struct f2fs_io_info fio = {
389 		.sbi = sbi,
390 		.ino = inode->i_ino,
391 		.type = DATA,
392 		.op = REQ_OP_WRITE,
393 		.op_flags = REQ_SYNC | REQ_PRIO,
394 		.io_type = FS_DATA_IO,
395 	};
396 	struct list_head revoke_list;
397 	bool submit_bio = false;
398 	int err = 0;
399 
400 	INIT_LIST_HEAD(&revoke_list);
401 
402 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
403 		struct page *page = cur->page;
404 
405 		lock_page(page);
406 		if (page->mapping == inode->i_mapping) {
407 			trace_f2fs_commit_inmem_page(page, INMEM);
408 
409 			f2fs_wait_on_page_writeback(page, DATA, true, true);
410 
411 			set_page_dirty(page);
412 			if (clear_page_dirty_for_io(page)) {
413 				inode_dec_dirty_pages(inode);
414 				f2fs_remove_dirty_inode(inode);
415 			}
416 retry:
417 			fio.page = page;
418 			fio.old_blkaddr = NULL_ADDR;
419 			fio.encrypted_page = NULL;
420 			fio.need_lock = LOCK_DONE;
421 			err = f2fs_do_write_data_page(&fio);
422 			if (err) {
423 				if (err == -ENOMEM) {
424 					congestion_wait(BLK_RW_ASYNC,
425 							DEFAULT_IO_TIMEOUT);
426 					cond_resched();
427 					goto retry;
428 				}
429 				unlock_page(page);
430 				break;
431 			}
432 			/* record old blkaddr for revoking */
433 			cur->old_addr = fio.old_blkaddr;
434 			submit_bio = true;
435 		}
436 		unlock_page(page);
437 		list_move_tail(&cur->list, &revoke_list);
438 	}
439 
440 	if (submit_bio)
441 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
442 
443 	if (err) {
444 		/*
445 		 * try to revoke all committed pages, but still we could fail
446 		 * due to no memory or other reason, if that happened, EAGAIN
447 		 * will be returned, which means in such case, transaction is
448 		 * already not integrity, caller should use journal to do the
449 		 * recovery or rewrite & commit last transaction. For other
450 		 * error number, revoking was done by filesystem itself.
451 		 */
452 		err = __revoke_inmem_pages(inode, &revoke_list,
453 						false, true, false);
454 
455 		/* drop all uncommitted pages */
456 		__revoke_inmem_pages(inode, &fi->inmem_pages,
457 						true, false, false);
458 	} else {
459 		__revoke_inmem_pages(inode, &revoke_list,
460 						false, false, false);
461 	}
462 
463 	return err;
464 }
465 
466 int f2fs_commit_inmem_pages(struct inode *inode)
467 {
468 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
469 	struct f2fs_inode_info *fi = F2FS_I(inode);
470 	int err;
471 
472 	f2fs_balance_fs(sbi, true);
473 
474 	down_write(&fi->i_gc_rwsem[WRITE]);
475 
476 	f2fs_lock_op(sbi);
477 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
478 
479 	mutex_lock(&fi->inmem_lock);
480 	err = __f2fs_commit_inmem_pages(inode);
481 	mutex_unlock(&fi->inmem_lock);
482 
483 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
484 
485 	f2fs_unlock_op(sbi);
486 	up_write(&fi->i_gc_rwsem[WRITE]);
487 
488 	return err;
489 }
490 
491 /*
492  * This function balances dirty node and dentry pages.
493  * In addition, it controls garbage collection.
494  */
495 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
496 {
497 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
498 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
499 		f2fs_stop_checkpoint(sbi, false);
500 	}
501 
502 	/* balance_fs_bg is able to be pending */
503 	if (need && excess_cached_nats(sbi))
504 		f2fs_balance_fs_bg(sbi, false);
505 
506 	if (!f2fs_is_checkpoint_ready(sbi))
507 		return;
508 
509 	/*
510 	 * We should do GC or end up with checkpoint, if there are so many dirty
511 	 * dir/node pages without enough free segments.
512 	 */
513 	if (has_not_enough_free_secs(sbi, 0, 0)) {
514 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
515 					sbi->gc_thread->f2fs_gc_task) {
516 			DEFINE_WAIT(wait);
517 
518 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
519 						TASK_UNINTERRUPTIBLE);
520 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
521 			io_schedule();
522 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
523 		} else {
524 			down_write(&sbi->gc_lock);
525 			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
526 		}
527 	}
528 }
529 
530 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
531 {
532 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
533 		return;
534 
535 	/* try to shrink extent cache when there is no enough memory */
536 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
537 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
538 
539 	/* check the # of cached NAT entries */
540 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
541 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
542 
543 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
544 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
545 	else
546 		f2fs_build_free_nids(sbi, false, false);
547 
548 	if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
549 		excess_prefree_segs(sbi))
550 		goto do_sync;
551 
552 	/* there is background inflight IO or foreground operation recently */
553 	if (is_inflight_io(sbi, REQ_TIME) ||
554 		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
555 		return;
556 
557 	/* exceed periodical checkpoint timeout threshold */
558 	if (f2fs_time_over(sbi, CP_TIME))
559 		goto do_sync;
560 
561 	/* checkpoint is the only way to shrink partial cached entries */
562 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
563 		f2fs_available_free_memory(sbi, INO_ENTRIES))
564 		return;
565 
566 do_sync:
567 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
568 		struct blk_plug plug;
569 
570 		mutex_lock(&sbi->flush_lock);
571 
572 		blk_start_plug(&plug);
573 		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
574 		blk_finish_plug(&plug);
575 
576 		mutex_unlock(&sbi->flush_lock);
577 	}
578 	f2fs_sync_fs(sbi->sb, true);
579 	stat_inc_bg_cp_count(sbi->stat_info);
580 }
581 
582 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
583 				struct block_device *bdev)
584 {
585 	int ret = blkdev_issue_flush(bdev);
586 
587 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
588 				test_opt(sbi, FLUSH_MERGE), ret);
589 	return ret;
590 }
591 
592 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
593 {
594 	int ret = 0;
595 	int i;
596 
597 	if (!f2fs_is_multi_device(sbi))
598 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
599 
600 	for (i = 0; i < sbi->s_ndevs; i++) {
601 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
602 			continue;
603 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
604 		if (ret)
605 			break;
606 	}
607 	return ret;
608 }
609 
610 static int issue_flush_thread(void *data)
611 {
612 	struct f2fs_sb_info *sbi = data;
613 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 	wait_queue_head_t *q = &fcc->flush_wait_queue;
615 repeat:
616 	if (kthread_should_stop())
617 		return 0;
618 
619 	if (!llist_empty(&fcc->issue_list)) {
620 		struct flush_cmd *cmd, *next;
621 		int ret;
622 
623 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
624 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
625 
626 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
627 
628 		ret = submit_flush_wait(sbi, cmd->ino);
629 		atomic_inc(&fcc->issued_flush);
630 
631 		llist_for_each_entry_safe(cmd, next,
632 					  fcc->dispatch_list, llnode) {
633 			cmd->ret = ret;
634 			complete(&cmd->wait);
635 		}
636 		fcc->dispatch_list = NULL;
637 	}
638 
639 	wait_event_interruptible(*q,
640 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
641 	goto repeat;
642 }
643 
644 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
645 {
646 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
647 	struct flush_cmd cmd;
648 	int ret;
649 
650 	if (test_opt(sbi, NOBARRIER))
651 		return 0;
652 
653 	if (!test_opt(sbi, FLUSH_MERGE)) {
654 		atomic_inc(&fcc->queued_flush);
655 		ret = submit_flush_wait(sbi, ino);
656 		atomic_dec(&fcc->queued_flush);
657 		atomic_inc(&fcc->issued_flush);
658 		return ret;
659 	}
660 
661 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
662 	    f2fs_is_multi_device(sbi)) {
663 		ret = submit_flush_wait(sbi, ino);
664 		atomic_dec(&fcc->queued_flush);
665 
666 		atomic_inc(&fcc->issued_flush);
667 		return ret;
668 	}
669 
670 	cmd.ino = ino;
671 	init_completion(&cmd.wait);
672 
673 	llist_add(&cmd.llnode, &fcc->issue_list);
674 
675 	/*
676 	 * update issue_list before we wake up issue_flush thread, this
677 	 * smp_mb() pairs with another barrier in ___wait_event(), see
678 	 * more details in comments of waitqueue_active().
679 	 */
680 	smp_mb();
681 
682 	if (waitqueue_active(&fcc->flush_wait_queue))
683 		wake_up(&fcc->flush_wait_queue);
684 
685 	if (fcc->f2fs_issue_flush) {
686 		wait_for_completion(&cmd.wait);
687 		atomic_dec(&fcc->queued_flush);
688 	} else {
689 		struct llist_node *list;
690 
691 		list = llist_del_all(&fcc->issue_list);
692 		if (!list) {
693 			wait_for_completion(&cmd.wait);
694 			atomic_dec(&fcc->queued_flush);
695 		} else {
696 			struct flush_cmd *tmp, *next;
697 
698 			ret = submit_flush_wait(sbi, ino);
699 
700 			llist_for_each_entry_safe(tmp, next, list, llnode) {
701 				if (tmp == &cmd) {
702 					cmd.ret = ret;
703 					atomic_dec(&fcc->queued_flush);
704 					continue;
705 				}
706 				tmp->ret = ret;
707 				complete(&tmp->wait);
708 			}
709 		}
710 	}
711 
712 	return cmd.ret;
713 }
714 
715 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
716 {
717 	dev_t dev = sbi->sb->s_bdev->bd_dev;
718 	struct flush_cmd_control *fcc;
719 	int err = 0;
720 
721 	if (SM_I(sbi)->fcc_info) {
722 		fcc = SM_I(sbi)->fcc_info;
723 		if (fcc->f2fs_issue_flush)
724 			return err;
725 		goto init_thread;
726 	}
727 
728 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
729 	if (!fcc)
730 		return -ENOMEM;
731 	atomic_set(&fcc->issued_flush, 0);
732 	atomic_set(&fcc->queued_flush, 0);
733 	init_waitqueue_head(&fcc->flush_wait_queue);
734 	init_llist_head(&fcc->issue_list);
735 	SM_I(sbi)->fcc_info = fcc;
736 	if (!test_opt(sbi, FLUSH_MERGE))
737 		return err;
738 
739 init_thread:
740 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
741 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
742 	if (IS_ERR(fcc->f2fs_issue_flush)) {
743 		err = PTR_ERR(fcc->f2fs_issue_flush);
744 		kfree(fcc);
745 		SM_I(sbi)->fcc_info = NULL;
746 		return err;
747 	}
748 
749 	return err;
750 }
751 
752 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
753 {
754 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
755 
756 	if (fcc && fcc->f2fs_issue_flush) {
757 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
758 
759 		fcc->f2fs_issue_flush = NULL;
760 		kthread_stop(flush_thread);
761 	}
762 	if (free) {
763 		kfree(fcc);
764 		SM_I(sbi)->fcc_info = NULL;
765 	}
766 }
767 
768 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
769 {
770 	int ret = 0, i;
771 
772 	if (!f2fs_is_multi_device(sbi))
773 		return 0;
774 
775 	if (test_opt(sbi, NOBARRIER))
776 		return 0;
777 
778 	for (i = 1; i < sbi->s_ndevs; i++) {
779 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
780 			continue;
781 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
782 		if (ret)
783 			break;
784 
785 		spin_lock(&sbi->dev_lock);
786 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
787 		spin_unlock(&sbi->dev_lock);
788 	}
789 
790 	return ret;
791 }
792 
793 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
794 		enum dirty_type dirty_type)
795 {
796 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
797 
798 	/* need not be added */
799 	if (IS_CURSEG(sbi, segno))
800 		return;
801 
802 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
803 		dirty_i->nr_dirty[dirty_type]++;
804 
805 	if (dirty_type == DIRTY) {
806 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
807 		enum dirty_type t = sentry->type;
808 
809 		if (unlikely(t >= DIRTY)) {
810 			f2fs_bug_on(sbi, 1);
811 			return;
812 		}
813 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
814 			dirty_i->nr_dirty[t]++;
815 
816 		if (__is_large_section(sbi)) {
817 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
818 			block_t valid_blocks =
819 				get_valid_blocks(sbi, segno, true);
820 
821 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
822 					valid_blocks == BLKS_PER_SEC(sbi)));
823 
824 			if (!IS_CURSEC(sbi, secno))
825 				set_bit(secno, dirty_i->dirty_secmap);
826 		}
827 	}
828 }
829 
830 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
831 		enum dirty_type dirty_type)
832 {
833 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 	block_t valid_blocks;
835 
836 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
837 		dirty_i->nr_dirty[dirty_type]--;
838 
839 	if (dirty_type == DIRTY) {
840 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
841 		enum dirty_type t = sentry->type;
842 
843 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
844 			dirty_i->nr_dirty[t]--;
845 
846 		valid_blocks = get_valid_blocks(sbi, segno, true);
847 		if (valid_blocks == 0) {
848 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
849 						dirty_i->victim_secmap);
850 #ifdef CONFIG_F2FS_CHECK_FS
851 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
852 #endif
853 		}
854 		if (__is_large_section(sbi)) {
855 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
856 
857 			if (!valid_blocks ||
858 					valid_blocks == BLKS_PER_SEC(sbi)) {
859 				clear_bit(secno, dirty_i->dirty_secmap);
860 				return;
861 			}
862 
863 			if (!IS_CURSEC(sbi, secno))
864 				set_bit(secno, dirty_i->dirty_secmap);
865 		}
866 	}
867 }
868 
869 /*
870  * Should not occur error such as -ENOMEM.
871  * Adding dirty entry into seglist is not critical operation.
872  * If a given segment is one of current working segments, it won't be added.
873  */
874 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
875 {
876 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877 	unsigned short valid_blocks, ckpt_valid_blocks;
878 	unsigned int usable_blocks;
879 
880 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
881 		return;
882 
883 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
884 	mutex_lock(&dirty_i->seglist_lock);
885 
886 	valid_blocks = get_valid_blocks(sbi, segno, false);
887 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
888 
889 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
890 		ckpt_valid_blocks == usable_blocks)) {
891 		__locate_dirty_segment(sbi, segno, PRE);
892 		__remove_dirty_segment(sbi, segno, DIRTY);
893 	} else if (valid_blocks < usable_blocks) {
894 		__locate_dirty_segment(sbi, segno, DIRTY);
895 	} else {
896 		/* Recovery routine with SSR needs this */
897 		__remove_dirty_segment(sbi, segno, DIRTY);
898 	}
899 
900 	mutex_unlock(&dirty_i->seglist_lock);
901 }
902 
903 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
904 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
905 {
906 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
907 	unsigned int segno;
908 
909 	mutex_lock(&dirty_i->seglist_lock);
910 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
911 		if (get_valid_blocks(sbi, segno, false))
912 			continue;
913 		if (IS_CURSEG(sbi, segno))
914 			continue;
915 		__locate_dirty_segment(sbi, segno, PRE);
916 		__remove_dirty_segment(sbi, segno, DIRTY);
917 	}
918 	mutex_unlock(&dirty_i->seglist_lock);
919 }
920 
921 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
922 {
923 	int ovp_hole_segs =
924 		(overprovision_segments(sbi) - reserved_segments(sbi));
925 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
926 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
927 	block_t holes[2] = {0, 0};	/* DATA and NODE */
928 	block_t unusable;
929 	struct seg_entry *se;
930 	unsigned int segno;
931 
932 	mutex_lock(&dirty_i->seglist_lock);
933 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
934 		se = get_seg_entry(sbi, segno);
935 		if (IS_NODESEG(se->type))
936 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
937 							se->valid_blocks;
938 		else
939 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
940 							se->valid_blocks;
941 	}
942 	mutex_unlock(&dirty_i->seglist_lock);
943 
944 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
945 	if (unusable > ovp_holes)
946 		return unusable - ovp_holes;
947 	return 0;
948 }
949 
950 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
951 {
952 	int ovp_hole_segs =
953 		(overprovision_segments(sbi) - reserved_segments(sbi));
954 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
955 		return -EAGAIN;
956 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
957 		dirty_segments(sbi) > ovp_hole_segs)
958 		return -EAGAIN;
959 	return 0;
960 }
961 
962 /* This is only used by SBI_CP_DISABLED */
963 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
964 {
965 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
966 	unsigned int segno = 0;
967 
968 	mutex_lock(&dirty_i->seglist_lock);
969 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
970 		if (get_valid_blocks(sbi, segno, false))
971 			continue;
972 		if (get_ckpt_valid_blocks(sbi, segno, false))
973 			continue;
974 		mutex_unlock(&dirty_i->seglist_lock);
975 		return segno;
976 	}
977 	mutex_unlock(&dirty_i->seglist_lock);
978 	return NULL_SEGNO;
979 }
980 
981 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
982 		struct block_device *bdev, block_t lstart,
983 		block_t start, block_t len)
984 {
985 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
986 	struct list_head *pend_list;
987 	struct discard_cmd *dc;
988 
989 	f2fs_bug_on(sbi, !len);
990 
991 	pend_list = &dcc->pend_list[plist_idx(len)];
992 
993 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
994 	INIT_LIST_HEAD(&dc->list);
995 	dc->bdev = bdev;
996 	dc->lstart = lstart;
997 	dc->start = start;
998 	dc->len = len;
999 	dc->ref = 0;
1000 	dc->state = D_PREP;
1001 	dc->queued = 0;
1002 	dc->error = 0;
1003 	init_completion(&dc->wait);
1004 	list_add_tail(&dc->list, pend_list);
1005 	spin_lock_init(&dc->lock);
1006 	dc->bio_ref = 0;
1007 	atomic_inc(&dcc->discard_cmd_cnt);
1008 	dcc->undiscard_blks += len;
1009 
1010 	return dc;
1011 }
1012 
1013 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1014 				struct block_device *bdev, block_t lstart,
1015 				block_t start, block_t len,
1016 				struct rb_node *parent, struct rb_node **p,
1017 				bool leftmost)
1018 {
1019 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1020 	struct discard_cmd *dc;
1021 
1022 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1023 
1024 	rb_link_node(&dc->rb_node, parent, p);
1025 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1026 
1027 	return dc;
1028 }
1029 
1030 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1031 							struct discard_cmd *dc)
1032 {
1033 	if (dc->state == D_DONE)
1034 		atomic_sub(dc->queued, &dcc->queued_discard);
1035 
1036 	list_del(&dc->list);
1037 	rb_erase_cached(&dc->rb_node, &dcc->root);
1038 	dcc->undiscard_blks -= dc->len;
1039 
1040 	kmem_cache_free(discard_cmd_slab, dc);
1041 
1042 	atomic_dec(&dcc->discard_cmd_cnt);
1043 }
1044 
1045 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1046 							struct discard_cmd *dc)
1047 {
1048 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1049 	unsigned long flags;
1050 
1051 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1052 
1053 	spin_lock_irqsave(&dc->lock, flags);
1054 	if (dc->bio_ref) {
1055 		spin_unlock_irqrestore(&dc->lock, flags);
1056 		return;
1057 	}
1058 	spin_unlock_irqrestore(&dc->lock, flags);
1059 
1060 	f2fs_bug_on(sbi, dc->ref);
1061 
1062 	if (dc->error == -EOPNOTSUPP)
1063 		dc->error = 0;
1064 
1065 	if (dc->error)
1066 		printk_ratelimited(
1067 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068 			KERN_INFO, sbi->sb->s_id,
1069 			dc->lstart, dc->start, dc->len, dc->error);
1070 	__detach_discard_cmd(dcc, dc);
1071 }
1072 
1073 static void f2fs_submit_discard_endio(struct bio *bio)
1074 {
1075 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1076 	unsigned long flags;
1077 
1078 	spin_lock_irqsave(&dc->lock, flags);
1079 	if (!dc->error)
1080 		dc->error = blk_status_to_errno(bio->bi_status);
1081 	dc->bio_ref--;
1082 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1083 		dc->state = D_DONE;
1084 		complete_all(&dc->wait);
1085 	}
1086 	spin_unlock_irqrestore(&dc->lock, flags);
1087 	bio_put(bio);
1088 }
1089 
1090 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1091 				block_t start, block_t end)
1092 {
1093 #ifdef CONFIG_F2FS_CHECK_FS
1094 	struct seg_entry *sentry;
1095 	unsigned int segno;
1096 	block_t blk = start;
1097 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1098 	unsigned long *map;
1099 
1100 	while (blk < end) {
1101 		segno = GET_SEGNO(sbi, blk);
1102 		sentry = get_seg_entry(sbi, segno);
1103 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1104 
1105 		if (end < START_BLOCK(sbi, segno + 1))
1106 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1107 		else
1108 			size = max_blocks;
1109 		map = (unsigned long *)(sentry->cur_valid_map);
1110 		offset = __find_rev_next_bit(map, size, offset);
1111 		f2fs_bug_on(sbi, offset != size);
1112 		blk = START_BLOCK(sbi, segno + 1);
1113 	}
1114 #endif
1115 }
1116 
1117 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1118 				struct discard_policy *dpolicy,
1119 				int discard_type, unsigned int granularity)
1120 {
1121 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122 
1123 	/* common policy */
1124 	dpolicy->type = discard_type;
1125 	dpolicy->sync = true;
1126 	dpolicy->ordered = false;
1127 	dpolicy->granularity = granularity;
1128 
1129 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1130 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1131 	dpolicy->timeout = false;
1132 
1133 	if (discard_type == DPOLICY_BG) {
1134 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1136 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1137 		dpolicy->io_aware = true;
1138 		dpolicy->sync = false;
1139 		dpolicy->ordered = true;
1140 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1141 			dpolicy->granularity = 1;
1142 			if (atomic_read(&dcc->discard_cmd_cnt))
1143 				dpolicy->max_interval =
1144 					DEF_MIN_DISCARD_ISSUE_TIME;
1145 		}
1146 	} else if (discard_type == DPOLICY_FORCE) {
1147 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150 		dpolicy->io_aware = false;
1151 	} else if (discard_type == DPOLICY_FSTRIM) {
1152 		dpolicy->io_aware = false;
1153 	} else if (discard_type == DPOLICY_UMOUNT) {
1154 		dpolicy->io_aware = false;
1155 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1156 		dpolicy->granularity = 1;
1157 		dpolicy->timeout = true;
1158 	}
1159 }
1160 
1161 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1162 				struct block_device *bdev, block_t lstart,
1163 				block_t start, block_t len);
1164 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1166 						struct discard_policy *dpolicy,
1167 						struct discard_cmd *dc,
1168 						unsigned int *issued)
1169 {
1170 	struct block_device *bdev = dc->bdev;
1171 	struct request_queue *q = bdev_get_queue(bdev);
1172 	unsigned int max_discard_blocks =
1173 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1174 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1175 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1176 					&(dcc->fstrim_list) : &(dcc->wait_list);
1177 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1178 	block_t lstart, start, len, total_len;
1179 	int err = 0;
1180 
1181 	if (dc->state != D_PREP)
1182 		return 0;
1183 
1184 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1185 		return 0;
1186 
1187 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1188 
1189 	lstart = dc->lstart;
1190 	start = dc->start;
1191 	len = dc->len;
1192 	total_len = len;
1193 
1194 	dc->len = 0;
1195 
1196 	while (total_len && *issued < dpolicy->max_requests && !err) {
1197 		struct bio *bio = NULL;
1198 		unsigned long flags;
1199 		bool last = true;
1200 
1201 		if (len > max_discard_blocks) {
1202 			len = max_discard_blocks;
1203 			last = false;
1204 		}
1205 
1206 		(*issued)++;
1207 		if (*issued == dpolicy->max_requests)
1208 			last = true;
1209 
1210 		dc->len += len;
1211 
1212 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1213 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1214 			err = -EIO;
1215 			goto submit;
1216 		}
1217 		err = __blkdev_issue_discard(bdev,
1218 					SECTOR_FROM_BLOCK(start),
1219 					SECTOR_FROM_BLOCK(len),
1220 					GFP_NOFS, 0, &bio);
1221 submit:
1222 		if (err) {
1223 			spin_lock_irqsave(&dc->lock, flags);
1224 			if (dc->state == D_PARTIAL)
1225 				dc->state = D_SUBMIT;
1226 			spin_unlock_irqrestore(&dc->lock, flags);
1227 
1228 			break;
1229 		}
1230 
1231 		f2fs_bug_on(sbi, !bio);
1232 
1233 		/*
1234 		 * should keep before submission to avoid D_DONE
1235 		 * right away
1236 		 */
1237 		spin_lock_irqsave(&dc->lock, flags);
1238 		if (last)
1239 			dc->state = D_SUBMIT;
1240 		else
1241 			dc->state = D_PARTIAL;
1242 		dc->bio_ref++;
1243 		spin_unlock_irqrestore(&dc->lock, flags);
1244 
1245 		atomic_inc(&dcc->queued_discard);
1246 		dc->queued++;
1247 		list_move_tail(&dc->list, wait_list);
1248 
1249 		/* sanity check on discard range */
1250 		__check_sit_bitmap(sbi, lstart, lstart + len);
1251 
1252 		bio->bi_private = dc;
1253 		bio->bi_end_io = f2fs_submit_discard_endio;
1254 		bio->bi_opf |= flag;
1255 		submit_bio(bio);
1256 
1257 		atomic_inc(&dcc->issued_discard);
1258 
1259 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1260 
1261 		lstart += len;
1262 		start += len;
1263 		total_len -= len;
1264 		len = total_len;
1265 	}
1266 
1267 	if (!err && len) {
1268 		dcc->undiscard_blks -= len;
1269 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1270 	}
1271 	return err;
1272 }
1273 
1274 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1275 				struct block_device *bdev, block_t lstart,
1276 				block_t start, block_t len,
1277 				struct rb_node **insert_p,
1278 				struct rb_node *insert_parent)
1279 {
1280 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281 	struct rb_node **p;
1282 	struct rb_node *parent = NULL;
1283 	bool leftmost = true;
1284 
1285 	if (insert_p && insert_parent) {
1286 		parent = insert_parent;
1287 		p = insert_p;
1288 		goto do_insert;
1289 	}
1290 
1291 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1292 							lstart, &leftmost);
1293 do_insert:
1294 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1295 								p, leftmost);
1296 }
1297 
1298 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1299 						struct discard_cmd *dc)
1300 {
1301 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1302 }
1303 
1304 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1305 				struct discard_cmd *dc, block_t blkaddr)
1306 {
1307 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1308 	struct discard_info di = dc->di;
1309 	bool modified = false;
1310 
1311 	if (dc->state == D_DONE || dc->len == 1) {
1312 		__remove_discard_cmd(sbi, dc);
1313 		return;
1314 	}
1315 
1316 	dcc->undiscard_blks -= di.len;
1317 
1318 	if (blkaddr > di.lstart) {
1319 		dc->len = blkaddr - dc->lstart;
1320 		dcc->undiscard_blks += dc->len;
1321 		__relocate_discard_cmd(dcc, dc);
1322 		modified = true;
1323 	}
1324 
1325 	if (blkaddr < di.lstart + di.len - 1) {
1326 		if (modified) {
1327 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1328 					di.start + blkaddr + 1 - di.lstart,
1329 					di.lstart + di.len - 1 - blkaddr,
1330 					NULL, NULL);
1331 		} else {
1332 			dc->lstart++;
1333 			dc->len--;
1334 			dc->start++;
1335 			dcc->undiscard_blks += dc->len;
1336 			__relocate_discard_cmd(dcc, dc);
1337 		}
1338 	}
1339 }
1340 
1341 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1342 				struct block_device *bdev, block_t lstart,
1343 				block_t start, block_t len)
1344 {
1345 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1347 	struct discard_cmd *dc;
1348 	struct discard_info di = {0};
1349 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1350 	struct request_queue *q = bdev_get_queue(bdev);
1351 	unsigned int max_discard_blocks =
1352 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1353 	block_t end = lstart + len;
1354 
1355 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1356 					NULL, lstart,
1357 					(struct rb_entry **)&prev_dc,
1358 					(struct rb_entry **)&next_dc,
1359 					&insert_p, &insert_parent, true, NULL);
1360 	if (dc)
1361 		prev_dc = dc;
1362 
1363 	if (!prev_dc) {
1364 		di.lstart = lstart;
1365 		di.len = next_dc ? next_dc->lstart - lstart : len;
1366 		di.len = min(di.len, len);
1367 		di.start = start;
1368 	}
1369 
1370 	while (1) {
1371 		struct rb_node *node;
1372 		bool merged = false;
1373 		struct discard_cmd *tdc = NULL;
1374 
1375 		if (prev_dc) {
1376 			di.lstart = prev_dc->lstart + prev_dc->len;
1377 			if (di.lstart < lstart)
1378 				di.lstart = lstart;
1379 			if (di.lstart >= end)
1380 				break;
1381 
1382 			if (!next_dc || next_dc->lstart > end)
1383 				di.len = end - di.lstart;
1384 			else
1385 				di.len = next_dc->lstart - di.lstart;
1386 			di.start = start + di.lstart - lstart;
1387 		}
1388 
1389 		if (!di.len)
1390 			goto next;
1391 
1392 		if (prev_dc && prev_dc->state == D_PREP &&
1393 			prev_dc->bdev == bdev &&
1394 			__is_discard_back_mergeable(&di, &prev_dc->di,
1395 							max_discard_blocks)) {
1396 			prev_dc->di.len += di.len;
1397 			dcc->undiscard_blks += di.len;
1398 			__relocate_discard_cmd(dcc, prev_dc);
1399 			di = prev_dc->di;
1400 			tdc = prev_dc;
1401 			merged = true;
1402 		}
1403 
1404 		if (next_dc && next_dc->state == D_PREP &&
1405 			next_dc->bdev == bdev &&
1406 			__is_discard_front_mergeable(&di, &next_dc->di,
1407 							max_discard_blocks)) {
1408 			next_dc->di.lstart = di.lstart;
1409 			next_dc->di.len += di.len;
1410 			next_dc->di.start = di.start;
1411 			dcc->undiscard_blks += di.len;
1412 			__relocate_discard_cmd(dcc, next_dc);
1413 			if (tdc)
1414 				__remove_discard_cmd(sbi, tdc);
1415 			merged = true;
1416 		}
1417 
1418 		if (!merged) {
1419 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1420 							di.len, NULL, NULL);
1421 		}
1422  next:
1423 		prev_dc = next_dc;
1424 		if (!prev_dc)
1425 			break;
1426 
1427 		node = rb_next(&prev_dc->rb_node);
1428 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429 	}
1430 }
1431 
1432 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1433 		struct block_device *bdev, block_t blkstart, block_t blklen)
1434 {
1435 	block_t lblkstart = blkstart;
1436 
1437 	if (!f2fs_bdev_support_discard(bdev))
1438 		return 0;
1439 
1440 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1441 
1442 	if (f2fs_is_multi_device(sbi)) {
1443 		int devi = f2fs_target_device_index(sbi, blkstart);
1444 
1445 		blkstart -= FDEV(devi).start_blk;
1446 	}
1447 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1448 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1449 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1450 	return 0;
1451 }
1452 
1453 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1454 					struct discard_policy *dpolicy)
1455 {
1456 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1459 	struct discard_cmd *dc;
1460 	struct blk_plug plug;
1461 	unsigned int pos = dcc->next_pos;
1462 	unsigned int issued = 0;
1463 	bool io_interrupted = false;
1464 
1465 	mutex_lock(&dcc->cmd_lock);
1466 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1467 					NULL, pos,
1468 					(struct rb_entry **)&prev_dc,
1469 					(struct rb_entry **)&next_dc,
1470 					&insert_p, &insert_parent, true, NULL);
1471 	if (!dc)
1472 		dc = next_dc;
1473 
1474 	blk_start_plug(&plug);
1475 
1476 	while (dc) {
1477 		struct rb_node *node;
1478 		int err = 0;
1479 
1480 		if (dc->state != D_PREP)
1481 			goto next;
1482 
1483 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1484 			io_interrupted = true;
1485 			break;
1486 		}
1487 
1488 		dcc->next_pos = dc->lstart + dc->len;
1489 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1490 
1491 		if (issued >= dpolicy->max_requests)
1492 			break;
1493 next:
1494 		node = rb_next(&dc->rb_node);
1495 		if (err)
1496 			__remove_discard_cmd(sbi, dc);
1497 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1498 	}
1499 
1500 	blk_finish_plug(&plug);
1501 
1502 	if (!dc)
1503 		dcc->next_pos = 0;
1504 
1505 	mutex_unlock(&dcc->cmd_lock);
1506 
1507 	if (!issued && io_interrupted)
1508 		issued = -1;
1509 
1510 	return issued;
1511 }
1512 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1513 					struct discard_policy *dpolicy);
1514 
1515 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1516 					struct discard_policy *dpolicy)
1517 {
1518 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519 	struct list_head *pend_list;
1520 	struct discard_cmd *dc, *tmp;
1521 	struct blk_plug plug;
1522 	int i, issued;
1523 	bool io_interrupted = false;
1524 
1525 	if (dpolicy->timeout)
1526 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1527 
1528 retry:
1529 	issued = 0;
1530 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1531 		if (dpolicy->timeout &&
1532 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533 			break;
1534 
1535 		if (i + 1 < dpolicy->granularity)
1536 			break;
1537 
1538 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1539 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1540 
1541 		pend_list = &dcc->pend_list[i];
1542 
1543 		mutex_lock(&dcc->cmd_lock);
1544 		if (list_empty(pend_list))
1545 			goto next;
1546 		if (unlikely(dcc->rbtree_check))
1547 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1548 							&dcc->root, false));
1549 		blk_start_plug(&plug);
1550 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1551 			f2fs_bug_on(sbi, dc->state != D_PREP);
1552 
1553 			if (dpolicy->timeout &&
1554 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1555 				break;
1556 
1557 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1558 						!is_idle(sbi, DISCARD_TIME)) {
1559 				io_interrupted = true;
1560 				break;
1561 			}
1562 
1563 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1564 
1565 			if (issued >= dpolicy->max_requests)
1566 				break;
1567 		}
1568 		blk_finish_plug(&plug);
1569 next:
1570 		mutex_unlock(&dcc->cmd_lock);
1571 
1572 		if (issued >= dpolicy->max_requests || io_interrupted)
1573 			break;
1574 	}
1575 
1576 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1577 		__wait_all_discard_cmd(sbi, dpolicy);
1578 		goto retry;
1579 	}
1580 
1581 	if (!issued && io_interrupted)
1582 		issued = -1;
1583 
1584 	return issued;
1585 }
1586 
1587 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1588 {
1589 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590 	struct list_head *pend_list;
1591 	struct discard_cmd *dc, *tmp;
1592 	int i;
1593 	bool dropped = false;
1594 
1595 	mutex_lock(&dcc->cmd_lock);
1596 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1597 		pend_list = &dcc->pend_list[i];
1598 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1599 			f2fs_bug_on(sbi, dc->state != D_PREP);
1600 			__remove_discard_cmd(sbi, dc);
1601 			dropped = true;
1602 		}
1603 	}
1604 	mutex_unlock(&dcc->cmd_lock);
1605 
1606 	return dropped;
1607 }
1608 
1609 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1610 {
1611 	__drop_discard_cmd(sbi);
1612 }
1613 
1614 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1615 							struct discard_cmd *dc)
1616 {
1617 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618 	unsigned int len = 0;
1619 
1620 	wait_for_completion_io(&dc->wait);
1621 	mutex_lock(&dcc->cmd_lock);
1622 	f2fs_bug_on(sbi, dc->state != D_DONE);
1623 	dc->ref--;
1624 	if (!dc->ref) {
1625 		if (!dc->error)
1626 			len = dc->len;
1627 		__remove_discard_cmd(sbi, dc);
1628 	}
1629 	mutex_unlock(&dcc->cmd_lock);
1630 
1631 	return len;
1632 }
1633 
1634 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1635 						struct discard_policy *dpolicy,
1636 						block_t start, block_t end)
1637 {
1638 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1640 					&(dcc->fstrim_list) : &(dcc->wait_list);
1641 	struct discard_cmd *dc, *tmp;
1642 	bool need_wait;
1643 	unsigned int trimmed = 0;
1644 
1645 next:
1646 	need_wait = false;
1647 
1648 	mutex_lock(&dcc->cmd_lock);
1649 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1650 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1651 			continue;
1652 		if (dc->len < dpolicy->granularity)
1653 			continue;
1654 		if (dc->state == D_DONE && !dc->ref) {
1655 			wait_for_completion_io(&dc->wait);
1656 			if (!dc->error)
1657 				trimmed += dc->len;
1658 			__remove_discard_cmd(sbi, dc);
1659 		} else {
1660 			dc->ref++;
1661 			need_wait = true;
1662 			break;
1663 		}
1664 	}
1665 	mutex_unlock(&dcc->cmd_lock);
1666 
1667 	if (need_wait) {
1668 		trimmed += __wait_one_discard_bio(sbi, dc);
1669 		goto next;
1670 	}
1671 
1672 	return trimmed;
1673 }
1674 
1675 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1676 						struct discard_policy *dpolicy)
1677 {
1678 	struct discard_policy dp;
1679 	unsigned int discard_blks;
1680 
1681 	if (dpolicy)
1682 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1683 
1684 	/* wait all */
1685 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1686 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1687 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1688 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1689 
1690 	return discard_blks;
1691 }
1692 
1693 /* This should be covered by global mutex, &sit_i->sentry_lock */
1694 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1695 {
1696 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 	struct discard_cmd *dc;
1698 	bool need_wait = false;
1699 
1700 	mutex_lock(&dcc->cmd_lock);
1701 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1702 							NULL, blkaddr);
1703 	if (dc) {
1704 		if (dc->state == D_PREP) {
1705 			__punch_discard_cmd(sbi, dc, blkaddr);
1706 		} else {
1707 			dc->ref++;
1708 			need_wait = true;
1709 		}
1710 	}
1711 	mutex_unlock(&dcc->cmd_lock);
1712 
1713 	if (need_wait)
1714 		__wait_one_discard_bio(sbi, dc);
1715 }
1716 
1717 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1718 {
1719 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720 
1721 	if (dcc && dcc->f2fs_issue_discard) {
1722 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1723 
1724 		dcc->f2fs_issue_discard = NULL;
1725 		kthread_stop(discard_thread);
1726 	}
1727 }
1728 
1729 /* This comes from f2fs_put_super */
1730 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1731 {
1732 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 	struct discard_policy dpolicy;
1734 	bool dropped;
1735 
1736 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1737 					dcc->discard_granularity);
1738 	__issue_discard_cmd(sbi, &dpolicy);
1739 	dropped = __drop_discard_cmd(sbi);
1740 
1741 	/* just to make sure there is no pending discard commands */
1742 	__wait_all_discard_cmd(sbi, NULL);
1743 
1744 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1745 	return dropped;
1746 }
1747 
1748 static int issue_discard_thread(void *data)
1749 {
1750 	struct f2fs_sb_info *sbi = data;
1751 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1752 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1753 	struct discard_policy dpolicy;
1754 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1755 	int issued;
1756 
1757 	set_freezable();
1758 
1759 	do {
1760 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1761 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1762 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1763 		else
1764 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1765 						dcc->discard_granularity);
1766 
1767 		if (!atomic_read(&dcc->discard_cmd_cnt))
1768 		       wait_ms = dpolicy.max_interval;
1769 
1770 		wait_event_interruptible_timeout(*q,
1771 				kthread_should_stop() || freezing(current) ||
1772 				dcc->discard_wake,
1773 				msecs_to_jiffies(wait_ms));
1774 
1775 		if (dcc->discard_wake)
1776 			dcc->discard_wake = 0;
1777 
1778 		/* clean up pending candidates before going to sleep */
1779 		if (atomic_read(&dcc->queued_discard))
1780 			__wait_all_discard_cmd(sbi, NULL);
1781 
1782 		if (try_to_freeze())
1783 			continue;
1784 		if (f2fs_readonly(sbi->sb))
1785 			continue;
1786 		if (kthread_should_stop())
1787 			return 0;
1788 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1789 			wait_ms = dpolicy.max_interval;
1790 			continue;
1791 		}
1792 		if (!atomic_read(&dcc->discard_cmd_cnt))
1793 			continue;
1794 
1795 		sb_start_intwrite(sbi->sb);
1796 
1797 		issued = __issue_discard_cmd(sbi, &dpolicy);
1798 		if (issued > 0) {
1799 			__wait_all_discard_cmd(sbi, &dpolicy);
1800 			wait_ms = dpolicy.min_interval;
1801 		} else if (issued == -1) {
1802 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1803 			if (!wait_ms)
1804 				wait_ms = dpolicy.mid_interval;
1805 		} else {
1806 			wait_ms = dpolicy.max_interval;
1807 		}
1808 
1809 		sb_end_intwrite(sbi->sb);
1810 
1811 	} while (!kthread_should_stop());
1812 	return 0;
1813 }
1814 
1815 #ifdef CONFIG_BLK_DEV_ZONED
1816 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1817 		struct block_device *bdev, block_t blkstart, block_t blklen)
1818 {
1819 	sector_t sector, nr_sects;
1820 	block_t lblkstart = blkstart;
1821 	int devi = 0;
1822 
1823 	if (f2fs_is_multi_device(sbi)) {
1824 		devi = f2fs_target_device_index(sbi, blkstart);
1825 		if (blkstart < FDEV(devi).start_blk ||
1826 		    blkstart > FDEV(devi).end_blk) {
1827 			f2fs_err(sbi, "Invalid block %x", blkstart);
1828 			return -EIO;
1829 		}
1830 		blkstart -= FDEV(devi).start_blk;
1831 	}
1832 
1833 	/* For sequential zones, reset the zone write pointer */
1834 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1835 		sector = SECTOR_FROM_BLOCK(blkstart);
1836 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1837 
1838 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1839 				nr_sects != bdev_zone_sectors(bdev)) {
1840 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1842 				 blkstart, blklen);
1843 			return -EIO;
1844 		}
1845 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1846 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1847 					sector, nr_sects, GFP_NOFS);
1848 	}
1849 
1850 	/* For conventional zones, use regular discard if supported */
1851 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1852 }
1853 #endif
1854 
1855 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1856 		struct block_device *bdev, block_t blkstart, block_t blklen)
1857 {
1858 #ifdef CONFIG_BLK_DEV_ZONED
1859 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1860 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1861 #endif
1862 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1863 }
1864 
1865 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1866 				block_t blkstart, block_t blklen)
1867 {
1868 	sector_t start = blkstart, len = 0;
1869 	struct block_device *bdev;
1870 	struct seg_entry *se;
1871 	unsigned int offset;
1872 	block_t i;
1873 	int err = 0;
1874 
1875 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1876 
1877 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1878 		if (i != start) {
1879 			struct block_device *bdev2 =
1880 				f2fs_target_device(sbi, i, NULL);
1881 
1882 			if (bdev2 != bdev) {
1883 				err = __issue_discard_async(sbi, bdev,
1884 						start, len);
1885 				if (err)
1886 					return err;
1887 				bdev = bdev2;
1888 				start = i;
1889 				len = 0;
1890 			}
1891 		}
1892 
1893 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1894 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1895 
1896 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1897 			sbi->discard_blks--;
1898 	}
1899 
1900 	if (len)
1901 		err = __issue_discard_async(sbi, bdev, start, len);
1902 	return err;
1903 }
1904 
1905 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1906 							bool check_only)
1907 {
1908 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1909 	int max_blocks = sbi->blocks_per_seg;
1910 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1911 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1912 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1913 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1914 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1915 	unsigned int start = 0, end = -1;
1916 	bool force = (cpc->reason & CP_DISCARD);
1917 	struct discard_entry *de = NULL;
1918 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1919 	int i;
1920 
1921 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1922 		return false;
1923 
1924 	if (!force) {
1925 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1926 			SM_I(sbi)->dcc_info->nr_discards >=
1927 				SM_I(sbi)->dcc_info->max_discards)
1928 			return false;
1929 	}
1930 
1931 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1932 	for (i = 0; i < entries; i++)
1933 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1934 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1935 
1936 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1937 				SM_I(sbi)->dcc_info->max_discards) {
1938 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1939 		if (start >= max_blocks)
1940 			break;
1941 
1942 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1943 		if (force && start && end != max_blocks
1944 					&& (end - start) < cpc->trim_minlen)
1945 			continue;
1946 
1947 		if (check_only)
1948 			return true;
1949 
1950 		if (!de) {
1951 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1952 								GFP_F2FS_ZERO);
1953 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1954 			list_add_tail(&de->list, head);
1955 		}
1956 
1957 		for (i = start; i < end; i++)
1958 			__set_bit_le(i, (void *)de->discard_map);
1959 
1960 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1961 	}
1962 	return false;
1963 }
1964 
1965 static void release_discard_addr(struct discard_entry *entry)
1966 {
1967 	list_del(&entry->list);
1968 	kmem_cache_free(discard_entry_slab, entry);
1969 }
1970 
1971 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1972 {
1973 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1974 	struct discard_entry *entry, *this;
1975 
1976 	/* drop caches */
1977 	list_for_each_entry_safe(entry, this, head, list)
1978 		release_discard_addr(entry);
1979 }
1980 
1981 /*
1982  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1983  */
1984 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1985 {
1986 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1987 	unsigned int segno;
1988 
1989 	mutex_lock(&dirty_i->seglist_lock);
1990 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1991 		__set_test_and_free(sbi, segno, false);
1992 	mutex_unlock(&dirty_i->seglist_lock);
1993 }
1994 
1995 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1996 						struct cp_control *cpc)
1997 {
1998 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1999 	struct list_head *head = &dcc->entry_list;
2000 	struct discard_entry *entry, *this;
2001 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2003 	unsigned int start = 0, end = -1;
2004 	unsigned int secno, start_segno;
2005 	bool force = (cpc->reason & CP_DISCARD);
2006 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2007 
2008 	mutex_lock(&dirty_i->seglist_lock);
2009 
2010 	while (1) {
2011 		int i;
2012 
2013 		if (need_align && end != -1)
2014 			end--;
2015 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2016 		if (start >= MAIN_SEGS(sbi))
2017 			break;
2018 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2019 								start + 1);
2020 
2021 		if (need_align) {
2022 			start = rounddown(start, sbi->segs_per_sec);
2023 			end = roundup(end, sbi->segs_per_sec);
2024 		}
2025 
2026 		for (i = start; i < end; i++) {
2027 			if (test_and_clear_bit(i, prefree_map))
2028 				dirty_i->nr_dirty[PRE]--;
2029 		}
2030 
2031 		if (!f2fs_realtime_discard_enable(sbi))
2032 			continue;
2033 
2034 		if (force && start >= cpc->trim_start &&
2035 					(end - 1) <= cpc->trim_end)
2036 				continue;
2037 
2038 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2039 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2040 				(end - start) << sbi->log_blocks_per_seg);
2041 			continue;
2042 		}
2043 next:
2044 		secno = GET_SEC_FROM_SEG(sbi, start);
2045 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2046 		if (!IS_CURSEC(sbi, secno) &&
2047 			!get_valid_blocks(sbi, start, true))
2048 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2049 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2050 
2051 		start = start_segno + sbi->segs_per_sec;
2052 		if (start < end)
2053 			goto next;
2054 		else
2055 			end = start - 1;
2056 	}
2057 	mutex_unlock(&dirty_i->seglist_lock);
2058 
2059 	/* send small discards */
2060 	list_for_each_entry_safe(entry, this, head, list) {
2061 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2062 		bool is_valid = test_bit_le(0, entry->discard_map);
2063 
2064 find_next:
2065 		if (is_valid) {
2066 			next_pos = find_next_zero_bit_le(entry->discard_map,
2067 					sbi->blocks_per_seg, cur_pos);
2068 			len = next_pos - cur_pos;
2069 
2070 			if (f2fs_sb_has_blkzoned(sbi) ||
2071 			    (force && len < cpc->trim_minlen))
2072 				goto skip;
2073 
2074 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2075 									len);
2076 			total_len += len;
2077 		} else {
2078 			next_pos = find_next_bit_le(entry->discard_map,
2079 					sbi->blocks_per_seg, cur_pos);
2080 		}
2081 skip:
2082 		cur_pos = next_pos;
2083 		is_valid = !is_valid;
2084 
2085 		if (cur_pos < sbi->blocks_per_seg)
2086 			goto find_next;
2087 
2088 		release_discard_addr(entry);
2089 		dcc->nr_discards -= total_len;
2090 	}
2091 
2092 	wake_up_discard_thread(sbi, false);
2093 }
2094 
2095 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2096 {
2097 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2098 	struct discard_cmd_control *dcc;
2099 	int err = 0, i;
2100 
2101 	if (SM_I(sbi)->dcc_info) {
2102 		dcc = SM_I(sbi)->dcc_info;
2103 		goto init_thread;
2104 	}
2105 
2106 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2107 	if (!dcc)
2108 		return -ENOMEM;
2109 
2110 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2111 	INIT_LIST_HEAD(&dcc->entry_list);
2112 	for (i = 0; i < MAX_PLIST_NUM; i++)
2113 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2114 	INIT_LIST_HEAD(&dcc->wait_list);
2115 	INIT_LIST_HEAD(&dcc->fstrim_list);
2116 	mutex_init(&dcc->cmd_lock);
2117 	atomic_set(&dcc->issued_discard, 0);
2118 	atomic_set(&dcc->queued_discard, 0);
2119 	atomic_set(&dcc->discard_cmd_cnt, 0);
2120 	dcc->nr_discards = 0;
2121 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2122 	dcc->undiscard_blks = 0;
2123 	dcc->next_pos = 0;
2124 	dcc->root = RB_ROOT_CACHED;
2125 	dcc->rbtree_check = false;
2126 
2127 	init_waitqueue_head(&dcc->discard_wait_queue);
2128 	SM_I(sbi)->dcc_info = dcc;
2129 init_thread:
2130 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2131 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2132 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2133 		err = PTR_ERR(dcc->f2fs_issue_discard);
2134 		kfree(dcc);
2135 		SM_I(sbi)->dcc_info = NULL;
2136 		return err;
2137 	}
2138 
2139 	return err;
2140 }
2141 
2142 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2143 {
2144 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145 
2146 	if (!dcc)
2147 		return;
2148 
2149 	f2fs_stop_discard_thread(sbi);
2150 
2151 	/*
2152 	 * Recovery can cache discard commands, so in error path of
2153 	 * fill_super(), it needs to give a chance to handle them.
2154 	 */
2155 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2156 		f2fs_issue_discard_timeout(sbi);
2157 
2158 	kfree(dcc);
2159 	SM_I(sbi)->dcc_info = NULL;
2160 }
2161 
2162 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2163 {
2164 	struct sit_info *sit_i = SIT_I(sbi);
2165 
2166 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2167 		sit_i->dirty_sentries++;
2168 		return false;
2169 	}
2170 
2171 	return true;
2172 }
2173 
2174 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2175 					unsigned int segno, int modified)
2176 {
2177 	struct seg_entry *se = get_seg_entry(sbi, segno);
2178 
2179 	se->type = type;
2180 	if (modified)
2181 		__mark_sit_entry_dirty(sbi, segno);
2182 }
2183 
2184 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2185 								block_t blkaddr)
2186 {
2187 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2188 
2189 	if (segno == NULL_SEGNO)
2190 		return 0;
2191 	return get_seg_entry(sbi, segno)->mtime;
2192 }
2193 
2194 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2195 						unsigned long long old_mtime)
2196 {
2197 	struct seg_entry *se;
2198 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2199 	unsigned long long ctime = get_mtime(sbi, false);
2200 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2201 
2202 	if (segno == NULL_SEGNO)
2203 		return;
2204 
2205 	se = get_seg_entry(sbi, segno);
2206 
2207 	if (!se->mtime)
2208 		se->mtime = mtime;
2209 	else
2210 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2211 						se->valid_blocks + 1);
2212 
2213 	if (ctime > SIT_I(sbi)->max_mtime)
2214 		SIT_I(sbi)->max_mtime = ctime;
2215 }
2216 
2217 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2218 {
2219 	struct seg_entry *se;
2220 	unsigned int segno, offset;
2221 	long int new_vblocks;
2222 	bool exist;
2223 #ifdef CONFIG_F2FS_CHECK_FS
2224 	bool mir_exist;
2225 #endif
2226 
2227 	segno = GET_SEGNO(sbi, blkaddr);
2228 
2229 	se = get_seg_entry(sbi, segno);
2230 	new_vblocks = se->valid_blocks + del;
2231 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232 
2233 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2234 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2235 
2236 	se->valid_blocks = new_vblocks;
2237 
2238 	/* Update valid block bitmap */
2239 	if (del > 0) {
2240 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2241 #ifdef CONFIG_F2FS_CHECK_FS
2242 		mir_exist = f2fs_test_and_set_bit(offset,
2243 						se->cur_valid_map_mir);
2244 		if (unlikely(exist != mir_exist)) {
2245 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2246 				 blkaddr, exist);
2247 			f2fs_bug_on(sbi, 1);
2248 		}
2249 #endif
2250 		if (unlikely(exist)) {
2251 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2252 				 blkaddr);
2253 			f2fs_bug_on(sbi, 1);
2254 			se->valid_blocks--;
2255 			del = 0;
2256 		}
2257 
2258 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2259 			sbi->discard_blks--;
2260 
2261 		/*
2262 		 * SSR should never reuse block which is checkpointed
2263 		 * or newly invalidated.
2264 		 */
2265 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2266 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2267 				se->ckpt_valid_blocks++;
2268 		}
2269 	} else {
2270 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2271 #ifdef CONFIG_F2FS_CHECK_FS
2272 		mir_exist = f2fs_test_and_clear_bit(offset,
2273 						se->cur_valid_map_mir);
2274 		if (unlikely(exist != mir_exist)) {
2275 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2276 				 blkaddr, exist);
2277 			f2fs_bug_on(sbi, 1);
2278 		}
2279 #endif
2280 		if (unlikely(!exist)) {
2281 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2282 				 blkaddr);
2283 			f2fs_bug_on(sbi, 1);
2284 			se->valid_blocks++;
2285 			del = 0;
2286 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2287 			/*
2288 			 * If checkpoints are off, we must not reuse data that
2289 			 * was used in the previous checkpoint. If it was used
2290 			 * before, we must track that to know how much space we
2291 			 * really have.
2292 			 */
2293 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2294 				spin_lock(&sbi->stat_lock);
2295 				sbi->unusable_block_count++;
2296 				spin_unlock(&sbi->stat_lock);
2297 			}
2298 		}
2299 
2300 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2301 			sbi->discard_blks++;
2302 	}
2303 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2304 		se->ckpt_valid_blocks += del;
2305 
2306 	__mark_sit_entry_dirty(sbi, segno);
2307 
2308 	/* update total number of valid blocks to be written in ckpt area */
2309 	SIT_I(sbi)->written_valid_blocks += del;
2310 
2311 	if (__is_large_section(sbi))
2312 		get_sec_entry(sbi, segno)->valid_blocks += del;
2313 }
2314 
2315 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2316 {
2317 	unsigned int segno = GET_SEGNO(sbi, addr);
2318 	struct sit_info *sit_i = SIT_I(sbi);
2319 
2320 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2321 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2322 		return;
2323 
2324 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2325 
2326 	/* add it into sit main buffer */
2327 	down_write(&sit_i->sentry_lock);
2328 
2329 	update_segment_mtime(sbi, addr, 0);
2330 	update_sit_entry(sbi, addr, -1);
2331 
2332 	/* add it into dirty seglist */
2333 	locate_dirty_segment(sbi, segno);
2334 
2335 	up_write(&sit_i->sentry_lock);
2336 }
2337 
2338 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2339 {
2340 	struct sit_info *sit_i = SIT_I(sbi);
2341 	unsigned int segno, offset;
2342 	struct seg_entry *se;
2343 	bool is_cp = false;
2344 
2345 	if (!__is_valid_data_blkaddr(blkaddr))
2346 		return true;
2347 
2348 	down_read(&sit_i->sentry_lock);
2349 
2350 	segno = GET_SEGNO(sbi, blkaddr);
2351 	se = get_seg_entry(sbi, segno);
2352 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2353 
2354 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2355 		is_cp = true;
2356 
2357 	up_read(&sit_i->sentry_lock);
2358 
2359 	return is_cp;
2360 }
2361 
2362 /*
2363  * This function should be resided under the curseg_mutex lock
2364  */
2365 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2366 					struct f2fs_summary *sum)
2367 {
2368 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2369 	void *addr = curseg->sum_blk;
2370 
2371 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2372 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2373 }
2374 
2375 /*
2376  * Calculate the number of current summary pages for writing
2377  */
2378 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2379 {
2380 	int valid_sum_count = 0;
2381 	int i, sum_in_page;
2382 
2383 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2384 		if (sbi->ckpt->alloc_type[i] == SSR)
2385 			valid_sum_count += sbi->blocks_per_seg;
2386 		else {
2387 			if (for_ra)
2388 				valid_sum_count += le16_to_cpu(
2389 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2390 			else
2391 				valid_sum_count += curseg_blkoff(sbi, i);
2392 		}
2393 	}
2394 
2395 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2396 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2397 	if (valid_sum_count <= sum_in_page)
2398 		return 1;
2399 	else if ((valid_sum_count - sum_in_page) <=
2400 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2401 		return 2;
2402 	return 3;
2403 }
2404 
2405 /*
2406  * Caller should put this summary page
2407  */
2408 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2409 {
2410 	if (unlikely(f2fs_cp_error(sbi)))
2411 		return ERR_PTR(-EIO);
2412 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2413 }
2414 
2415 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2416 					void *src, block_t blk_addr)
2417 {
2418 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2419 
2420 	memcpy(page_address(page), src, PAGE_SIZE);
2421 	set_page_dirty(page);
2422 	f2fs_put_page(page, 1);
2423 }
2424 
2425 static void write_sum_page(struct f2fs_sb_info *sbi,
2426 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2427 {
2428 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2429 }
2430 
2431 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2432 						int type, block_t blk_addr)
2433 {
2434 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2435 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2436 	struct f2fs_summary_block *src = curseg->sum_blk;
2437 	struct f2fs_summary_block *dst;
2438 
2439 	dst = (struct f2fs_summary_block *)page_address(page);
2440 	memset(dst, 0, PAGE_SIZE);
2441 
2442 	mutex_lock(&curseg->curseg_mutex);
2443 
2444 	down_read(&curseg->journal_rwsem);
2445 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2446 	up_read(&curseg->journal_rwsem);
2447 
2448 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2449 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2450 
2451 	mutex_unlock(&curseg->curseg_mutex);
2452 
2453 	set_page_dirty(page);
2454 	f2fs_put_page(page, 1);
2455 }
2456 
2457 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2458 				struct curseg_info *curseg, int type)
2459 {
2460 	unsigned int segno = curseg->segno + 1;
2461 	struct free_segmap_info *free_i = FREE_I(sbi);
2462 
2463 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2464 		return !test_bit(segno, free_i->free_segmap);
2465 	return 0;
2466 }
2467 
2468 /*
2469  * Find a new segment from the free segments bitmap to right order
2470  * This function should be returned with success, otherwise BUG
2471  */
2472 static void get_new_segment(struct f2fs_sb_info *sbi,
2473 			unsigned int *newseg, bool new_sec, int dir)
2474 {
2475 	struct free_segmap_info *free_i = FREE_I(sbi);
2476 	unsigned int segno, secno, zoneno;
2477 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2478 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2479 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2480 	unsigned int left_start = hint;
2481 	bool init = true;
2482 	int go_left = 0;
2483 	int i;
2484 
2485 	spin_lock(&free_i->segmap_lock);
2486 
2487 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2488 		segno = find_next_zero_bit(free_i->free_segmap,
2489 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2490 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2491 			goto got_it;
2492 	}
2493 find_other_zone:
2494 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2495 	if (secno >= MAIN_SECS(sbi)) {
2496 		if (dir == ALLOC_RIGHT) {
2497 			secno = find_next_zero_bit(free_i->free_secmap,
2498 							MAIN_SECS(sbi), 0);
2499 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2500 		} else {
2501 			go_left = 1;
2502 			left_start = hint - 1;
2503 		}
2504 	}
2505 	if (go_left == 0)
2506 		goto skip_left;
2507 
2508 	while (test_bit(left_start, free_i->free_secmap)) {
2509 		if (left_start > 0) {
2510 			left_start--;
2511 			continue;
2512 		}
2513 		left_start = find_next_zero_bit(free_i->free_secmap,
2514 							MAIN_SECS(sbi), 0);
2515 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2516 		break;
2517 	}
2518 	secno = left_start;
2519 skip_left:
2520 	segno = GET_SEG_FROM_SEC(sbi, secno);
2521 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2522 
2523 	/* give up on finding another zone */
2524 	if (!init)
2525 		goto got_it;
2526 	if (sbi->secs_per_zone == 1)
2527 		goto got_it;
2528 	if (zoneno == old_zoneno)
2529 		goto got_it;
2530 	if (dir == ALLOC_LEFT) {
2531 		if (!go_left && zoneno + 1 >= total_zones)
2532 			goto got_it;
2533 		if (go_left && zoneno == 0)
2534 			goto got_it;
2535 	}
2536 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2537 		if (CURSEG_I(sbi, i)->zone == zoneno)
2538 			break;
2539 
2540 	if (i < NR_CURSEG_TYPE) {
2541 		/* zone is in user, try another */
2542 		if (go_left)
2543 			hint = zoneno * sbi->secs_per_zone - 1;
2544 		else if (zoneno + 1 >= total_zones)
2545 			hint = 0;
2546 		else
2547 			hint = (zoneno + 1) * sbi->secs_per_zone;
2548 		init = false;
2549 		goto find_other_zone;
2550 	}
2551 got_it:
2552 	/* set it as dirty segment in free segmap */
2553 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2554 	__set_inuse(sbi, segno);
2555 	*newseg = segno;
2556 	spin_unlock(&free_i->segmap_lock);
2557 }
2558 
2559 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2560 {
2561 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2562 	struct summary_footer *sum_footer;
2563 	unsigned short seg_type = curseg->seg_type;
2564 
2565 	curseg->inited = true;
2566 	curseg->segno = curseg->next_segno;
2567 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2568 	curseg->next_blkoff = 0;
2569 	curseg->next_segno = NULL_SEGNO;
2570 
2571 	sum_footer = &(curseg->sum_blk->footer);
2572 	memset(sum_footer, 0, sizeof(struct summary_footer));
2573 
2574 	sanity_check_seg_type(sbi, seg_type);
2575 
2576 	if (IS_DATASEG(seg_type))
2577 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2578 	if (IS_NODESEG(seg_type))
2579 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2580 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2581 }
2582 
2583 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2584 {
2585 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2586 	unsigned short seg_type = curseg->seg_type;
2587 
2588 	sanity_check_seg_type(sbi, seg_type);
2589 
2590 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2591 	if (__is_large_section(sbi))
2592 		return curseg->segno;
2593 
2594 	/* inmem log may not locate on any segment after mount */
2595 	if (!curseg->inited)
2596 		return 0;
2597 
2598 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2599 		return 0;
2600 
2601 	if (test_opt(sbi, NOHEAP) &&
2602 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2603 		return 0;
2604 
2605 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2606 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2607 
2608 	/* find segments from 0 to reuse freed segments */
2609 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2610 		return 0;
2611 
2612 	return curseg->segno;
2613 }
2614 
2615 /*
2616  * Allocate a current working segment.
2617  * This function always allocates a free segment in LFS manner.
2618  */
2619 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2620 {
2621 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2622 	unsigned short seg_type = curseg->seg_type;
2623 	unsigned int segno = curseg->segno;
2624 	int dir = ALLOC_LEFT;
2625 
2626 	if (curseg->inited)
2627 		write_sum_page(sbi, curseg->sum_blk,
2628 				GET_SUM_BLOCK(sbi, segno));
2629 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2630 		dir = ALLOC_RIGHT;
2631 
2632 	if (test_opt(sbi, NOHEAP))
2633 		dir = ALLOC_RIGHT;
2634 
2635 	segno = __get_next_segno(sbi, type);
2636 	get_new_segment(sbi, &segno, new_sec, dir);
2637 	curseg->next_segno = segno;
2638 	reset_curseg(sbi, type, 1);
2639 	curseg->alloc_type = LFS;
2640 }
2641 
2642 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2643 					int segno, block_t start)
2644 {
2645 	struct seg_entry *se = get_seg_entry(sbi, segno);
2646 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2647 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2648 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2649 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2650 	int i;
2651 
2652 	for (i = 0; i < entries; i++)
2653 		target_map[i] = ckpt_map[i] | cur_map[i];
2654 
2655 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2656 }
2657 
2658 /*
2659  * If a segment is written by LFS manner, next block offset is just obtained
2660  * by increasing the current block offset. However, if a segment is written by
2661  * SSR manner, next block offset obtained by calling __next_free_blkoff
2662  */
2663 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2664 				struct curseg_info *seg)
2665 {
2666 	if (seg->alloc_type == SSR)
2667 		seg->next_blkoff =
2668 			__next_free_blkoff(sbi, seg->segno,
2669 						seg->next_blkoff + 1);
2670 	else
2671 		seg->next_blkoff++;
2672 }
2673 
2674 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2675 {
2676 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2677 }
2678 
2679 /*
2680  * This function always allocates a used segment(from dirty seglist) by SSR
2681  * manner, so it should recover the existing segment information of valid blocks
2682  */
2683 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2684 {
2685 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2686 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2687 	unsigned int new_segno = curseg->next_segno;
2688 	struct f2fs_summary_block *sum_node;
2689 	struct page *sum_page;
2690 
2691 	if (flush)
2692 		write_sum_page(sbi, curseg->sum_blk,
2693 					GET_SUM_BLOCK(sbi, curseg->segno));
2694 
2695 	__set_test_and_inuse(sbi, new_segno);
2696 
2697 	mutex_lock(&dirty_i->seglist_lock);
2698 	__remove_dirty_segment(sbi, new_segno, PRE);
2699 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2700 	mutex_unlock(&dirty_i->seglist_lock);
2701 
2702 	reset_curseg(sbi, type, 1);
2703 	curseg->alloc_type = SSR;
2704 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2705 
2706 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2707 	if (IS_ERR(sum_page)) {
2708 		/* GC won't be able to use stale summary pages by cp_error */
2709 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2710 		return;
2711 	}
2712 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2713 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2714 	f2fs_put_page(sum_page, 1);
2715 }
2716 
2717 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2718 				int alloc_mode, unsigned long long age);
2719 
2720 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2721 					int target_type, int alloc_mode,
2722 					unsigned long long age)
2723 {
2724 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2725 
2726 	curseg->seg_type = target_type;
2727 
2728 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2729 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2730 
2731 		curseg->seg_type = se->type;
2732 		change_curseg(sbi, type, true);
2733 	} else {
2734 		/* allocate cold segment by default */
2735 		curseg->seg_type = CURSEG_COLD_DATA;
2736 		new_curseg(sbi, type, true);
2737 	}
2738 	stat_inc_seg_type(sbi, curseg);
2739 }
2740 
2741 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2742 {
2743 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2744 
2745 	if (!sbi->am.atgc_enabled)
2746 		return;
2747 
2748 	down_read(&SM_I(sbi)->curseg_lock);
2749 
2750 	mutex_lock(&curseg->curseg_mutex);
2751 	down_write(&SIT_I(sbi)->sentry_lock);
2752 
2753 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2754 
2755 	up_write(&SIT_I(sbi)->sentry_lock);
2756 	mutex_unlock(&curseg->curseg_mutex);
2757 
2758 	up_read(&SM_I(sbi)->curseg_lock);
2759 
2760 }
2761 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2762 {
2763 	__f2fs_init_atgc_curseg(sbi);
2764 }
2765 
2766 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2767 {
2768 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2769 
2770 	mutex_lock(&curseg->curseg_mutex);
2771 	if (!curseg->inited)
2772 		goto out;
2773 
2774 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2775 		write_sum_page(sbi, curseg->sum_blk,
2776 				GET_SUM_BLOCK(sbi, curseg->segno));
2777 	} else {
2778 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2779 		__set_test_and_free(sbi, curseg->segno, true);
2780 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2781 	}
2782 out:
2783 	mutex_unlock(&curseg->curseg_mutex);
2784 }
2785 
2786 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2787 {
2788 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2789 
2790 	if (sbi->am.atgc_enabled)
2791 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2792 }
2793 
2794 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2795 {
2796 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2797 
2798 	mutex_lock(&curseg->curseg_mutex);
2799 	if (!curseg->inited)
2800 		goto out;
2801 	if (get_valid_blocks(sbi, curseg->segno, false))
2802 		goto out;
2803 
2804 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2805 	__set_test_and_inuse(sbi, curseg->segno);
2806 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2807 out:
2808 	mutex_unlock(&curseg->curseg_mutex);
2809 }
2810 
2811 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2812 {
2813 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2814 
2815 	if (sbi->am.atgc_enabled)
2816 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2817 }
2818 
2819 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2820 				int alloc_mode, unsigned long long age)
2821 {
2822 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2823 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2824 	unsigned segno = NULL_SEGNO;
2825 	unsigned short seg_type = curseg->seg_type;
2826 	int i, cnt;
2827 	bool reversed = false;
2828 
2829 	sanity_check_seg_type(sbi, seg_type);
2830 
2831 	/* f2fs_need_SSR() already forces to do this */
2832 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2833 		curseg->next_segno = segno;
2834 		return 1;
2835 	}
2836 
2837 	/* For node segments, let's do SSR more intensively */
2838 	if (IS_NODESEG(seg_type)) {
2839 		if (seg_type >= CURSEG_WARM_NODE) {
2840 			reversed = true;
2841 			i = CURSEG_COLD_NODE;
2842 		} else {
2843 			i = CURSEG_HOT_NODE;
2844 		}
2845 		cnt = NR_CURSEG_NODE_TYPE;
2846 	} else {
2847 		if (seg_type >= CURSEG_WARM_DATA) {
2848 			reversed = true;
2849 			i = CURSEG_COLD_DATA;
2850 		} else {
2851 			i = CURSEG_HOT_DATA;
2852 		}
2853 		cnt = NR_CURSEG_DATA_TYPE;
2854 	}
2855 
2856 	for (; cnt-- > 0; reversed ? i-- : i++) {
2857 		if (i == seg_type)
2858 			continue;
2859 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2860 			curseg->next_segno = segno;
2861 			return 1;
2862 		}
2863 	}
2864 
2865 	/* find valid_blocks=0 in dirty list */
2866 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2867 		segno = get_free_segment(sbi);
2868 		if (segno != NULL_SEGNO) {
2869 			curseg->next_segno = segno;
2870 			return 1;
2871 		}
2872 	}
2873 	return 0;
2874 }
2875 
2876 /*
2877  * flush out current segment and replace it with new segment
2878  * This function should be returned with success, otherwise BUG
2879  */
2880 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2881 						int type, bool force)
2882 {
2883 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2884 
2885 	if (force)
2886 		new_curseg(sbi, type, true);
2887 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2888 					curseg->seg_type == CURSEG_WARM_NODE)
2889 		new_curseg(sbi, type, false);
2890 	else if (curseg->alloc_type == LFS &&
2891 			is_next_segment_free(sbi, curseg, type) &&
2892 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2893 		new_curseg(sbi, type, false);
2894 	else if (f2fs_need_SSR(sbi) &&
2895 			get_ssr_segment(sbi, type, SSR, 0))
2896 		change_curseg(sbi, type, true);
2897 	else
2898 		new_curseg(sbi, type, false);
2899 
2900 	stat_inc_seg_type(sbi, curseg);
2901 }
2902 
2903 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2904 					unsigned int start, unsigned int end)
2905 {
2906 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2907 	unsigned int segno;
2908 
2909 	down_read(&SM_I(sbi)->curseg_lock);
2910 	mutex_lock(&curseg->curseg_mutex);
2911 	down_write(&SIT_I(sbi)->sentry_lock);
2912 
2913 	segno = CURSEG_I(sbi, type)->segno;
2914 	if (segno < start || segno > end)
2915 		goto unlock;
2916 
2917 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2918 		change_curseg(sbi, type, true);
2919 	else
2920 		new_curseg(sbi, type, true);
2921 
2922 	stat_inc_seg_type(sbi, curseg);
2923 
2924 	locate_dirty_segment(sbi, segno);
2925 unlock:
2926 	up_write(&SIT_I(sbi)->sentry_lock);
2927 
2928 	if (segno != curseg->segno)
2929 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2930 			    type, segno, curseg->segno);
2931 
2932 	mutex_unlock(&curseg->curseg_mutex);
2933 	up_read(&SM_I(sbi)->curseg_lock);
2934 }
2935 
2936 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2937 						bool new_sec, bool force)
2938 {
2939 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2940 	unsigned int old_segno;
2941 
2942 	if (!curseg->inited)
2943 		goto alloc;
2944 
2945 	if (force || curseg->next_blkoff ||
2946 		get_valid_blocks(sbi, curseg->segno, new_sec))
2947 		goto alloc;
2948 
2949 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2950 		return;
2951 alloc:
2952 	old_segno = curseg->segno;
2953 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2954 	locate_dirty_segment(sbi, old_segno);
2955 }
2956 
2957 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2958 						int type, bool force)
2959 {
2960 	__allocate_new_segment(sbi, type, true, force);
2961 }
2962 
2963 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2964 {
2965 	down_read(&SM_I(sbi)->curseg_lock);
2966 	down_write(&SIT_I(sbi)->sentry_lock);
2967 	__allocate_new_section(sbi, type, force);
2968 	up_write(&SIT_I(sbi)->sentry_lock);
2969 	up_read(&SM_I(sbi)->curseg_lock);
2970 }
2971 
2972 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2973 {
2974 	int i;
2975 
2976 	down_read(&SM_I(sbi)->curseg_lock);
2977 	down_write(&SIT_I(sbi)->sentry_lock);
2978 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2979 		__allocate_new_segment(sbi, i, false, false);
2980 	up_write(&SIT_I(sbi)->sentry_lock);
2981 	up_read(&SM_I(sbi)->curseg_lock);
2982 }
2983 
2984 static const struct segment_allocation default_salloc_ops = {
2985 	.allocate_segment = allocate_segment_by_default,
2986 };
2987 
2988 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2989 						struct cp_control *cpc)
2990 {
2991 	__u64 trim_start = cpc->trim_start;
2992 	bool has_candidate = false;
2993 
2994 	down_write(&SIT_I(sbi)->sentry_lock);
2995 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2996 		if (add_discard_addrs(sbi, cpc, true)) {
2997 			has_candidate = true;
2998 			break;
2999 		}
3000 	}
3001 	up_write(&SIT_I(sbi)->sentry_lock);
3002 
3003 	cpc->trim_start = trim_start;
3004 	return has_candidate;
3005 }
3006 
3007 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3008 					struct discard_policy *dpolicy,
3009 					unsigned int start, unsigned int end)
3010 {
3011 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3012 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3013 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3014 	struct discard_cmd *dc;
3015 	struct blk_plug plug;
3016 	int issued;
3017 	unsigned int trimmed = 0;
3018 
3019 next:
3020 	issued = 0;
3021 
3022 	mutex_lock(&dcc->cmd_lock);
3023 	if (unlikely(dcc->rbtree_check))
3024 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3025 							&dcc->root, false));
3026 
3027 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3028 					NULL, start,
3029 					(struct rb_entry **)&prev_dc,
3030 					(struct rb_entry **)&next_dc,
3031 					&insert_p, &insert_parent, true, NULL);
3032 	if (!dc)
3033 		dc = next_dc;
3034 
3035 	blk_start_plug(&plug);
3036 
3037 	while (dc && dc->lstart <= end) {
3038 		struct rb_node *node;
3039 		int err = 0;
3040 
3041 		if (dc->len < dpolicy->granularity)
3042 			goto skip;
3043 
3044 		if (dc->state != D_PREP) {
3045 			list_move_tail(&dc->list, &dcc->fstrim_list);
3046 			goto skip;
3047 		}
3048 
3049 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3050 
3051 		if (issued >= dpolicy->max_requests) {
3052 			start = dc->lstart + dc->len;
3053 
3054 			if (err)
3055 				__remove_discard_cmd(sbi, dc);
3056 
3057 			blk_finish_plug(&plug);
3058 			mutex_unlock(&dcc->cmd_lock);
3059 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3060 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3061 			goto next;
3062 		}
3063 skip:
3064 		node = rb_next(&dc->rb_node);
3065 		if (err)
3066 			__remove_discard_cmd(sbi, dc);
3067 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3068 
3069 		if (fatal_signal_pending(current))
3070 			break;
3071 	}
3072 
3073 	blk_finish_plug(&plug);
3074 	mutex_unlock(&dcc->cmd_lock);
3075 
3076 	return trimmed;
3077 }
3078 
3079 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3080 {
3081 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3082 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3083 	unsigned int start_segno, end_segno;
3084 	block_t start_block, end_block;
3085 	struct cp_control cpc;
3086 	struct discard_policy dpolicy;
3087 	unsigned long long trimmed = 0;
3088 	int err = 0;
3089 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3090 
3091 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3092 		return -EINVAL;
3093 
3094 	if (end < MAIN_BLKADDR(sbi))
3095 		goto out;
3096 
3097 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3098 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3099 		return -EFSCORRUPTED;
3100 	}
3101 
3102 	/* start/end segment number in main_area */
3103 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3104 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3105 						GET_SEGNO(sbi, end);
3106 	if (need_align) {
3107 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3108 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3109 	}
3110 
3111 	cpc.reason = CP_DISCARD;
3112 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3113 	cpc.trim_start = start_segno;
3114 	cpc.trim_end = end_segno;
3115 
3116 	if (sbi->discard_blks == 0)
3117 		goto out;
3118 
3119 	down_write(&sbi->gc_lock);
3120 	err = f2fs_write_checkpoint(sbi, &cpc);
3121 	up_write(&sbi->gc_lock);
3122 	if (err)
3123 		goto out;
3124 
3125 	/*
3126 	 * We filed discard candidates, but actually we don't need to wait for
3127 	 * all of them, since they'll be issued in idle time along with runtime
3128 	 * discard option. User configuration looks like using runtime discard
3129 	 * or periodic fstrim instead of it.
3130 	 */
3131 	if (f2fs_realtime_discard_enable(sbi))
3132 		goto out;
3133 
3134 	start_block = START_BLOCK(sbi, start_segno);
3135 	end_block = START_BLOCK(sbi, end_segno + 1);
3136 
3137 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3138 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3139 					start_block, end_block);
3140 
3141 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3142 					start_block, end_block);
3143 out:
3144 	if (!err)
3145 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3146 	return err;
3147 }
3148 
3149 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3150 					struct curseg_info *curseg)
3151 {
3152 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3153 							curseg->segno);
3154 }
3155 
3156 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3157 {
3158 	switch (hint) {
3159 	case WRITE_LIFE_SHORT:
3160 		return CURSEG_HOT_DATA;
3161 	case WRITE_LIFE_EXTREME:
3162 		return CURSEG_COLD_DATA;
3163 	default:
3164 		return CURSEG_WARM_DATA;
3165 	}
3166 }
3167 
3168 /* This returns write hints for each segment type. This hints will be
3169  * passed down to block layer. There are mapping tables which depend on
3170  * the mount option 'whint_mode'.
3171  *
3172  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3173  *
3174  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3175  *
3176  * User                  F2FS                     Block
3177  * ----                  ----                     -----
3178  *                       META                     WRITE_LIFE_NOT_SET
3179  *                       HOT_NODE                 "
3180  *                       WARM_NODE                "
3181  *                       COLD_NODE                "
3182  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3183  * extension list        "                        "
3184  *
3185  * -- buffered io
3186  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3187  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3188  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3189  * WRITE_LIFE_NONE       "                        "
3190  * WRITE_LIFE_MEDIUM     "                        "
3191  * WRITE_LIFE_LONG       "                        "
3192  *
3193  * -- direct io
3194  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3195  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3196  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3197  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3198  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3199  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3200  *
3201  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3202  *
3203  * User                  F2FS                     Block
3204  * ----                  ----                     -----
3205  *                       META                     WRITE_LIFE_MEDIUM;
3206  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3207  *                       WARM_NODE                "
3208  *                       COLD_NODE                WRITE_LIFE_NONE
3209  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3210  * extension list        "                        "
3211  *
3212  * -- buffered io
3213  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3214  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3215  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3216  * WRITE_LIFE_NONE       "                        "
3217  * WRITE_LIFE_MEDIUM     "                        "
3218  * WRITE_LIFE_LONG       "                        "
3219  *
3220  * -- direct io
3221  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3222  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3223  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3224  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3225  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3226  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3227  */
3228 
3229 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3230 				enum page_type type, enum temp_type temp)
3231 {
3232 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3233 		if (type == DATA) {
3234 			if (temp == WARM)
3235 				return WRITE_LIFE_NOT_SET;
3236 			else if (temp == HOT)
3237 				return WRITE_LIFE_SHORT;
3238 			else if (temp == COLD)
3239 				return WRITE_LIFE_EXTREME;
3240 		} else {
3241 			return WRITE_LIFE_NOT_SET;
3242 		}
3243 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3244 		if (type == DATA) {
3245 			if (temp == WARM)
3246 				return WRITE_LIFE_LONG;
3247 			else if (temp == HOT)
3248 				return WRITE_LIFE_SHORT;
3249 			else if (temp == COLD)
3250 				return WRITE_LIFE_EXTREME;
3251 		} else if (type == NODE) {
3252 			if (temp == WARM || temp == HOT)
3253 				return WRITE_LIFE_NOT_SET;
3254 			else if (temp == COLD)
3255 				return WRITE_LIFE_NONE;
3256 		} else if (type == META) {
3257 			return WRITE_LIFE_MEDIUM;
3258 		}
3259 	}
3260 	return WRITE_LIFE_NOT_SET;
3261 }
3262 
3263 static int __get_segment_type_2(struct f2fs_io_info *fio)
3264 {
3265 	if (fio->type == DATA)
3266 		return CURSEG_HOT_DATA;
3267 	else
3268 		return CURSEG_HOT_NODE;
3269 }
3270 
3271 static int __get_segment_type_4(struct f2fs_io_info *fio)
3272 {
3273 	if (fio->type == DATA) {
3274 		struct inode *inode = fio->page->mapping->host;
3275 
3276 		if (S_ISDIR(inode->i_mode))
3277 			return CURSEG_HOT_DATA;
3278 		else
3279 			return CURSEG_COLD_DATA;
3280 	} else {
3281 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3282 			return CURSEG_WARM_NODE;
3283 		else
3284 			return CURSEG_COLD_NODE;
3285 	}
3286 }
3287 
3288 static int __get_segment_type_6(struct f2fs_io_info *fio)
3289 {
3290 	if (fio->type == DATA) {
3291 		struct inode *inode = fio->page->mapping->host;
3292 
3293 		if (page_private_gcing(fio->page)) {
3294 			if (fio->sbi->am.atgc_enabled &&
3295 				(fio->io_type == FS_DATA_IO) &&
3296 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3297 				return CURSEG_ALL_DATA_ATGC;
3298 			else
3299 				return CURSEG_COLD_DATA;
3300 		}
3301 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3302 			return CURSEG_COLD_DATA;
3303 		if (file_is_hot(inode) ||
3304 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3305 				f2fs_is_atomic_file(inode) ||
3306 				f2fs_is_volatile_file(inode))
3307 			return CURSEG_HOT_DATA;
3308 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3309 	} else {
3310 		if (IS_DNODE(fio->page))
3311 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3312 						CURSEG_HOT_NODE;
3313 		return CURSEG_COLD_NODE;
3314 	}
3315 }
3316 
3317 static int __get_segment_type(struct f2fs_io_info *fio)
3318 {
3319 	int type = 0;
3320 
3321 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3322 	case 2:
3323 		type = __get_segment_type_2(fio);
3324 		break;
3325 	case 4:
3326 		type = __get_segment_type_4(fio);
3327 		break;
3328 	case 6:
3329 		type = __get_segment_type_6(fio);
3330 		break;
3331 	default:
3332 		f2fs_bug_on(fio->sbi, true);
3333 	}
3334 
3335 	if (IS_HOT(type))
3336 		fio->temp = HOT;
3337 	else if (IS_WARM(type))
3338 		fio->temp = WARM;
3339 	else
3340 		fio->temp = COLD;
3341 	return type;
3342 }
3343 
3344 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3345 		block_t old_blkaddr, block_t *new_blkaddr,
3346 		struct f2fs_summary *sum, int type,
3347 		struct f2fs_io_info *fio)
3348 {
3349 	struct sit_info *sit_i = SIT_I(sbi);
3350 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3351 	unsigned long long old_mtime;
3352 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3353 	struct seg_entry *se = NULL;
3354 
3355 	down_read(&SM_I(sbi)->curseg_lock);
3356 
3357 	mutex_lock(&curseg->curseg_mutex);
3358 	down_write(&sit_i->sentry_lock);
3359 
3360 	if (from_gc) {
3361 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3362 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3363 		sanity_check_seg_type(sbi, se->type);
3364 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3365 	}
3366 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3367 
3368 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3369 
3370 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3371 
3372 	/*
3373 	 * __add_sum_entry should be resided under the curseg_mutex
3374 	 * because, this function updates a summary entry in the
3375 	 * current summary block.
3376 	 */
3377 	__add_sum_entry(sbi, type, sum);
3378 
3379 	__refresh_next_blkoff(sbi, curseg);
3380 
3381 	stat_inc_block_count(sbi, curseg);
3382 
3383 	if (from_gc) {
3384 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3385 	} else {
3386 		update_segment_mtime(sbi, old_blkaddr, 0);
3387 		old_mtime = 0;
3388 	}
3389 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3390 
3391 	/*
3392 	 * SIT information should be updated before segment allocation,
3393 	 * since SSR needs latest valid block information.
3394 	 */
3395 	update_sit_entry(sbi, *new_blkaddr, 1);
3396 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3397 		update_sit_entry(sbi, old_blkaddr, -1);
3398 
3399 	if (!__has_curseg_space(sbi, curseg)) {
3400 		if (from_gc)
3401 			get_atssr_segment(sbi, type, se->type,
3402 						AT_SSR, se->mtime);
3403 		else
3404 			sit_i->s_ops->allocate_segment(sbi, type, false);
3405 	}
3406 	/*
3407 	 * segment dirty status should be updated after segment allocation,
3408 	 * so we just need to update status only one time after previous
3409 	 * segment being closed.
3410 	 */
3411 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3412 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3413 
3414 	up_write(&sit_i->sentry_lock);
3415 
3416 	if (page && IS_NODESEG(type)) {
3417 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3418 
3419 		f2fs_inode_chksum_set(sbi, page);
3420 	}
3421 
3422 	if (fio) {
3423 		struct f2fs_bio_info *io;
3424 
3425 		if (F2FS_IO_ALIGNED(sbi))
3426 			fio->retry = false;
3427 
3428 		INIT_LIST_HEAD(&fio->list);
3429 		fio->in_list = true;
3430 		io = sbi->write_io[fio->type] + fio->temp;
3431 		spin_lock(&io->io_lock);
3432 		list_add_tail(&fio->list, &io->io_list);
3433 		spin_unlock(&io->io_lock);
3434 	}
3435 
3436 	mutex_unlock(&curseg->curseg_mutex);
3437 
3438 	up_read(&SM_I(sbi)->curseg_lock);
3439 }
3440 
3441 static void update_device_state(struct f2fs_io_info *fio)
3442 {
3443 	struct f2fs_sb_info *sbi = fio->sbi;
3444 	unsigned int devidx;
3445 
3446 	if (!f2fs_is_multi_device(sbi))
3447 		return;
3448 
3449 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3450 
3451 	/* update device state for fsync */
3452 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3453 
3454 	/* update device state for checkpoint */
3455 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3456 		spin_lock(&sbi->dev_lock);
3457 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3458 		spin_unlock(&sbi->dev_lock);
3459 	}
3460 }
3461 
3462 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3463 {
3464 	int type = __get_segment_type(fio);
3465 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3466 
3467 	if (keep_order)
3468 		down_read(&fio->sbi->io_order_lock);
3469 reallocate:
3470 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3471 			&fio->new_blkaddr, sum, type, fio);
3472 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3473 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3474 					fio->old_blkaddr, fio->old_blkaddr);
3475 
3476 	/* writeout dirty page into bdev */
3477 	f2fs_submit_page_write(fio);
3478 	if (fio->retry) {
3479 		fio->old_blkaddr = fio->new_blkaddr;
3480 		goto reallocate;
3481 	}
3482 
3483 	update_device_state(fio);
3484 
3485 	if (keep_order)
3486 		up_read(&fio->sbi->io_order_lock);
3487 }
3488 
3489 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3490 					enum iostat_type io_type)
3491 {
3492 	struct f2fs_io_info fio = {
3493 		.sbi = sbi,
3494 		.type = META,
3495 		.temp = HOT,
3496 		.op = REQ_OP_WRITE,
3497 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3498 		.old_blkaddr = page->index,
3499 		.new_blkaddr = page->index,
3500 		.page = page,
3501 		.encrypted_page = NULL,
3502 		.in_list = false,
3503 	};
3504 
3505 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3506 		fio.op_flags &= ~REQ_META;
3507 
3508 	set_page_writeback(page);
3509 	ClearPageError(page);
3510 	f2fs_submit_page_write(&fio);
3511 
3512 	stat_inc_meta_count(sbi, page->index);
3513 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3514 }
3515 
3516 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3517 {
3518 	struct f2fs_summary sum;
3519 
3520 	set_summary(&sum, nid, 0, 0);
3521 	do_write_page(&sum, fio);
3522 
3523 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3524 }
3525 
3526 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3527 					struct f2fs_io_info *fio)
3528 {
3529 	struct f2fs_sb_info *sbi = fio->sbi;
3530 	struct f2fs_summary sum;
3531 
3532 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3533 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3534 	do_write_page(&sum, fio);
3535 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3536 
3537 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3538 }
3539 
3540 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3541 {
3542 	int err;
3543 	struct f2fs_sb_info *sbi = fio->sbi;
3544 	unsigned int segno;
3545 
3546 	fio->new_blkaddr = fio->old_blkaddr;
3547 	/* i/o temperature is needed for passing down write hints */
3548 	__get_segment_type(fio);
3549 
3550 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3551 
3552 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3553 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3554 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3555 			  __func__, segno);
3556 		err = -EFSCORRUPTED;
3557 		goto drop_bio;
3558 	}
3559 
3560 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || f2fs_cp_error(sbi)) {
3561 		err = -EIO;
3562 		goto drop_bio;
3563 	}
3564 
3565 	stat_inc_inplace_blocks(fio->sbi);
3566 
3567 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3568 		err = f2fs_merge_page_bio(fio);
3569 	else
3570 		err = f2fs_submit_page_bio(fio);
3571 	if (!err) {
3572 		update_device_state(fio);
3573 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3574 	}
3575 
3576 	return err;
3577 drop_bio:
3578 	if (fio->bio && *(fio->bio)) {
3579 		struct bio *bio = *(fio->bio);
3580 
3581 		bio->bi_status = BLK_STS_IOERR;
3582 		bio_endio(bio);
3583 		*(fio->bio) = NULL;
3584 	}
3585 	return err;
3586 }
3587 
3588 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3589 						unsigned int segno)
3590 {
3591 	int i;
3592 
3593 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3594 		if (CURSEG_I(sbi, i)->segno == segno)
3595 			break;
3596 	}
3597 	return i;
3598 }
3599 
3600 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3601 				block_t old_blkaddr, block_t new_blkaddr,
3602 				bool recover_curseg, bool recover_newaddr,
3603 				bool from_gc)
3604 {
3605 	struct sit_info *sit_i = SIT_I(sbi);
3606 	struct curseg_info *curseg;
3607 	unsigned int segno, old_cursegno;
3608 	struct seg_entry *se;
3609 	int type;
3610 	unsigned short old_blkoff;
3611 	unsigned char old_alloc_type;
3612 
3613 	segno = GET_SEGNO(sbi, new_blkaddr);
3614 	se = get_seg_entry(sbi, segno);
3615 	type = se->type;
3616 
3617 	down_write(&SM_I(sbi)->curseg_lock);
3618 
3619 	if (!recover_curseg) {
3620 		/* for recovery flow */
3621 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3622 			if (old_blkaddr == NULL_ADDR)
3623 				type = CURSEG_COLD_DATA;
3624 			else
3625 				type = CURSEG_WARM_DATA;
3626 		}
3627 	} else {
3628 		if (IS_CURSEG(sbi, segno)) {
3629 			/* se->type is volatile as SSR allocation */
3630 			type = __f2fs_get_curseg(sbi, segno);
3631 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3632 		} else {
3633 			type = CURSEG_WARM_DATA;
3634 		}
3635 	}
3636 
3637 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3638 	curseg = CURSEG_I(sbi, type);
3639 
3640 	mutex_lock(&curseg->curseg_mutex);
3641 	down_write(&sit_i->sentry_lock);
3642 
3643 	old_cursegno = curseg->segno;
3644 	old_blkoff = curseg->next_blkoff;
3645 	old_alloc_type = curseg->alloc_type;
3646 
3647 	/* change the current segment */
3648 	if (segno != curseg->segno) {
3649 		curseg->next_segno = segno;
3650 		change_curseg(sbi, type, true);
3651 	}
3652 
3653 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3654 	__add_sum_entry(sbi, type, sum);
3655 
3656 	if (!recover_curseg || recover_newaddr) {
3657 		if (!from_gc)
3658 			update_segment_mtime(sbi, new_blkaddr, 0);
3659 		update_sit_entry(sbi, new_blkaddr, 1);
3660 	}
3661 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3662 		invalidate_mapping_pages(META_MAPPING(sbi),
3663 					old_blkaddr, old_blkaddr);
3664 		if (!from_gc)
3665 			update_segment_mtime(sbi, old_blkaddr, 0);
3666 		update_sit_entry(sbi, old_blkaddr, -1);
3667 	}
3668 
3669 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3670 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3671 
3672 	locate_dirty_segment(sbi, old_cursegno);
3673 
3674 	if (recover_curseg) {
3675 		if (old_cursegno != curseg->segno) {
3676 			curseg->next_segno = old_cursegno;
3677 			change_curseg(sbi, type, true);
3678 		}
3679 		curseg->next_blkoff = old_blkoff;
3680 		curseg->alloc_type = old_alloc_type;
3681 	}
3682 
3683 	up_write(&sit_i->sentry_lock);
3684 	mutex_unlock(&curseg->curseg_mutex);
3685 	up_write(&SM_I(sbi)->curseg_lock);
3686 }
3687 
3688 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3689 				block_t old_addr, block_t new_addr,
3690 				unsigned char version, bool recover_curseg,
3691 				bool recover_newaddr)
3692 {
3693 	struct f2fs_summary sum;
3694 
3695 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3696 
3697 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3698 					recover_curseg, recover_newaddr, false);
3699 
3700 	f2fs_update_data_blkaddr(dn, new_addr);
3701 }
3702 
3703 void f2fs_wait_on_page_writeback(struct page *page,
3704 				enum page_type type, bool ordered, bool locked)
3705 {
3706 	if (PageWriteback(page)) {
3707 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3708 
3709 		/* submit cached LFS IO */
3710 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3711 		/* sbumit cached IPU IO */
3712 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3713 		if (ordered) {
3714 			wait_on_page_writeback(page);
3715 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3716 		} else {
3717 			wait_for_stable_page(page);
3718 		}
3719 	}
3720 }
3721 
3722 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3723 {
3724 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3725 	struct page *cpage;
3726 
3727 	if (!f2fs_post_read_required(inode))
3728 		return;
3729 
3730 	if (!__is_valid_data_blkaddr(blkaddr))
3731 		return;
3732 
3733 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3734 	if (cpage) {
3735 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3736 		f2fs_put_page(cpage, 1);
3737 	}
3738 }
3739 
3740 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3741 								block_t len)
3742 {
3743 	block_t i;
3744 
3745 	for (i = 0; i < len; i++)
3746 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3747 }
3748 
3749 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3750 {
3751 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3752 	struct curseg_info *seg_i;
3753 	unsigned char *kaddr;
3754 	struct page *page;
3755 	block_t start;
3756 	int i, j, offset;
3757 
3758 	start = start_sum_block(sbi);
3759 
3760 	page = f2fs_get_meta_page(sbi, start++);
3761 	if (IS_ERR(page))
3762 		return PTR_ERR(page);
3763 	kaddr = (unsigned char *)page_address(page);
3764 
3765 	/* Step 1: restore nat cache */
3766 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3767 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3768 
3769 	/* Step 2: restore sit cache */
3770 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3771 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3772 	offset = 2 * SUM_JOURNAL_SIZE;
3773 
3774 	/* Step 3: restore summary entries */
3775 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3776 		unsigned short blk_off;
3777 		unsigned int segno;
3778 
3779 		seg_i = CURSEG_I(sbi, i);
3780 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3781 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3782 		seg_i->next_segno = segno;
3783 		reset_curseg(sbi, i, 0);
3784 		seg_i->alloc_type = ckpt->alloc_type[i];
3785 		seg_i->next_blkoff = blk_off;
3786 
3787 		if (seg_i->alloc_type == SSR)
3788 			blk_off = sbi->blocks_per_seg;
3789 
3790 		for (j = 0; j < blk_off; j++) {
3791 			struct f2fs_summary *s;
3792 
3793 			s = (struct f2fs_summary *)(kaddr + offset);
3794 			seg_i->sum_blk->entries[j] = *s;
3795 			offset += SUMMARY_SIZE;
3796 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3797 						SUM_FOOTER_SIZE)
3798 				continue;
3799 
3800 			f2fs_put_page(page, 1);
3801 			page = NULL;
3802 
3803 			page = f2fs_get_meta_page(sbi, start++);
3804 			if (IS_ERR(page))
3805 				return PTR_ERR(page);
3806 			kaddr = (unsigned char *)page_address(page);
3807 			offset = 0;
3808 		}
3809 	}
3810 	f2fs_put_page(page, 1);
3811 	return 0;
3812 }
3813 
3814 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3815 {
3816 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3817 	struct f2fs_summary_block *sum;
3818 	struct curseg_info *curseg;
3819 	struct page *new;
3820 	unsigned short blk_off;
3821 	unsigned int segno = 0;
3822 	block_t blk_addr = 0;
3823 	int err = 0;
3824 
3825 	/* get segment number and block addr */
3826 	if (IS_DATASEG(type)) {
3827 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3828 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3829 							CURSEG_HOT_DATA]);
3830 		if (__exist_node_summaries(sbi))
3831 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3832 		else
3833 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3834 	} else {
3835 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3836 							CURSEG_HOT_NODE]);
3837 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3838 							CURSEG_HOT_NODE]);
3839 		if (__exist_node_summaries(sbi))
3840 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3841 							type - CURSEG_HOT_NODE);
3842 		else
3843 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3844 	}
3845 
3846 	new = f2fs_get_meta_page(sbi, blk_addr);
3847 	if (IS_ERR(new))
3848 		return PTR_ERR(new);
3849 	sum = (struct f2fs_summary_block *)page_address(new);
3850 
3851 	if (IS_NODESEG(type)) {
3852 		if (__exist_node_summaries(sbi)) {
3853 			struct f2fs_summary *ns = &sum->entries[0];
3854 			int i;
3855 
3856 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3857 				ns->version = 0;
3858 				ns->ofs_in_node = 0;
3859 			}
3860 		} else {
3861 			err = f2fs_restore_node_summary(sbi, segno, sum);
3862 			if (err)
3863 				goto out;
3864 		}
3865 	}
3866 
3867 	/* set uncompleted segment to curseg */
3868 	curseg = CURSEG_I(sbi, type);
3869 	mutex_lock(&curseg->curseg_mutex);
3870 
3871 	/* update journal info */
3872 	down_write(&curseg->journal_rwsem);
3873 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3874 	up_write(&curseg->journal_rwsem);
3875 
3876 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3877 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3878 	curseg->next_segno = segno;
3879 	reset_curseg(sbi, type, 0);
3880 	curseg->alloc_type = ckpt->alloc_type[type];
3881 	curseg->next_blkoff = blk_off;
3882 	mutex_unlock(&curseg->curseg_mutex);
3883 out:
3884 	f2fs_put_page(new, 1);
3885 	return err;
3886 }
3887 
3888 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3889 {
3890 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3891 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3892 	int type = CURSEG_HOT_DATA;
3893 	int err;
3894 
3895 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3896 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3897 
3898 		if (npages >= 2)
3899 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3900 							META_CP, true);
3901 
3902 		/* restore for compacted data summary */
3903 		err = read_compacted_summaries(sbi);
3904 		if (err)
3905 			return err;
3906 		type = CURSEG_HOT_NODE;
3907 	}
3908 
3909 	if (__exist_node_summaries(sbi))
3910 		f2fs_ra_meta_pages(sbi,
3911 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3912 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3913 
3914 	for (; type <= CURSEG_COLD_NODE; type++) {
3915 		err = read_normal_summaries(sbi, type);
3916 		if (err)
3917 			return err;
3918 	}
3919 
3920 	/* sanity check for summary blocks */
3921 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3922 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3923 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3924 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3925 		return -EINVAL;
3926 	}
3927 
3928 	return 0;
3929 }
3930 
3931 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3932 {
3933 	struct page *page;
3934 	unsigned char *kaddr;
3935 	struct f2fs_summary *summary;
3936 	struct curseg_info *seg_i;
3937 	int written_size = 0;
3938 	int i, j;
3939 
3940 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3941 	kaddr = (unsigned char *)page_address(page);
3942 	memset(kaddr, 0, PAGE_SIZE);
3943 
3944 	/* Step 1: write nat cache */
3945 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3946 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3947 	written_size += SUM_JOURNAL_SIZE;
3948 
3949 	/* Step 2: write sit cache */
3950 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3951 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3952 	written_size += SUM_JOURNAL_SIZE;
3953 
3954 	/* Step 3: write summary entries */
3955 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3956 		unsigned short blkoff;
3957 
3958 		seg_i = CURSEG_I(sbi, i);
3959 		if (sbi->ckpt->alloc_type[i] == SSR)
3960 			blkoff = sbi->blocks_per_seg;
3961 		else
3962 			blkoff = curseg_blkoff(sbi, i);
3963 
3964 		for (j = 0; j < blkoff; j++) {
3965 			if (!page) {
3966 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3967 				kaddr = (unsigned char *)page_address(page);
3968 				memset(kaddr, 0, PAGE_SIZE);
3969 				written_size = 0;
3970 			}
3971 			summary = (struct f2fs_summary *)(kaddr + written_size);
3972 			*summary = seg_i->sum_blk->entries[j];
3973 			written_size += SUMMARY_SIZE;
3974 
3975 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3976 							SUM_FOOTER_SIZE)
3977 				continue;
3978 
3979 			set_page_dirty(page);
3980 			f2fs_put_page(page, 1);
3981 			page = NULL;
3982 		}
3983 	}
3984 	if (page) {
3985 		set_page_dirty(page);
3986 		f2fs_put_page(page, 1);
3987 	}
3988 }
3989 
3990 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3991 					block_t blkaddr, int type)
3992 {
3993 	int i, end;
3994 
3995 	if (IS_DATASEG(type))
3996 		end = type + NR_CURSEG_DATA_TYPE;
3997 	else
3998 		end = type + NR_CURSEG_NODE_TYPE;
3999 
4000 	for (i = type; i < end; i++)
4001 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4002 }
4003 
4004 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4005 {
4006 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4007 		write_compacted_summaries(sbi, start_blk);
4008 	else
4009 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4010 }
4011 
4012 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4013 {
4014 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4015 }
4016 
4017 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4018 					unsigned int val, int alloc)
4019 {
4020 	int i;
4021 
4022 	if (type == NAT_JOURNAL) {
4023 		for (i = 0; i < nats_in_cursum(journal); i++) {
4024 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4025 				return i;
4026 		}
4027 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4028 			return update_nats_in_cursum(journal, 1);
4029 	} else if (type == SIT_JOURNAL) {
4030 		for (i = 0; i < sits_in_cursum(journal); i++)
4031 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4032 				return i;
4033 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4034 			return update_sits_in_cursum(journal, 1);
4035 	}
4036 	return -1;
4037 }
4038 
4039 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4040 					unsigned int segno)
4041 {
4042 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4043 }
4044 
4045 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4046 					unsigned int start)
4047 {
4048 	struct sit_info *sit_i = SIT_I(sbi);
4049 	struct page *page;
4050 	pgoff_t src_off, dst_off;
4051 
4052 	src_off = current_sit_addr(sbi, start);
4053 	dst_off = next_sit_addr(sbi, src_off);
4054 
4055 	page = f2fs_grab_meta_page(sbi, dst_off);
4056 	seg_info_to_sit_page(sbi, page, start);
4057 
4058 	set_page_dirty(page);
4059 	set_to_next_sit(sit_i, start);
4060 
4061 	return page;
4062 }
4063 
4064 static struct sit_entry_set *grab_sit_entry_set(void)
4065 {
4066 	struct sit_entry_set *ses =
4067 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4068 
4069 	ses->entry_cnt = 0;
4070 	INIT_LIST_HEAD(&ses->set_list);
4071 	return ses;
4072 }
4073 
4074 static void release_sit_entry_set(struct sit_entry_set *ses)
4075 {
4076 	list_del(&ses->set_list);
4077 	kmem_cache_free(sit_entry_set_slab, ses);
4078 }
4079 
4080 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4081 						struct list_head *head)
4082 {
4083 	struct sit_entry_set *next = ses;
4084 
4085 	if (list_is_last(&ses->set_list, head))
4086 		return;
4087 
4088 	list_for_each_entry_continue(next, head, set_list)
4089 		if (ses->entry_cnt <= next->entry_cnt)
4090 			break;
4091 
4092 	list_move_tail(&ses->set_list, &next->set_list);
4093 }
4094 
4095 static void add_sit_entry(unsigned int segno, struct list_head *head)
4096 {
4097 	struct sit_entry_set *ses;
4098 	unsigned int start_segno = START_SEGNO(segno);
4099 
4100 	list_for_each_entry(ses, head, set_list) {
4101 		if (ses->start_segno == start_segno) {
4102 			ses->entry_cnt++;
4103 			adjust_sit_entry_set(ses, head);
4104 			return;
4105 		}
4106 	}
4107 
4108 	ses = grab_sit_entry_set();
4109 
4110 	ses->start_segno = start_segno;
4111 	ses->entry_cnt++;
4112 	list_add(&ses->set_list, head);
4113 }
4114 
4115 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4116 {
4117 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4118 	struct list_head *set_list = &sm_info->sit_entry_set;
4119 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4120 	unsigned int segno;
4121 
4122 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4123 		add_sit_entry(segno, set_list);
4124 }
4125 
4126 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4127 {
4128 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4129 	struct f2fs_journal *journal = curseg->journal;
4130 	int i;
4131 
4132 	down_write(&curseg->journal_rwsem);
4133 	for (i = 0; i < sits_in_cursum(journal); i++) {
4134 		unsigned int segno;
4135 		bool dirtied;
4136 
4137 		segno = le32_to_cpu(segno_in_journal(journal, i));
4138 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4139 
4140 		if (!dirtied)
4141 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4142 	}
4143 	update_sits_in_cursum(journal, -i);
4144 	up_write(&curseg->journal_rwsem);
4145 }
4146 
4147 /*
4148  * CP calls this function, which flushes SIT entries including sit_journal,
4149  * and moves prefree segs to free segs.
4150  */
4151 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4152 {
4153 	struct sit_info *sit_i = SIT_I(sbi);
4154 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4155 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4156 	struct f2fs_journal *journal = curseg->journal;
4157 	struct sit_entry_set *ses, *tmp;
4158 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4159 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4160 	struct seg_entry *se;
4161 
4162 	down_write(&sit_i->sentry_lock);
4163 
4164 	if (!sit_i->dirty_sentries)
4165 		goto out;
4166 
4167 	/*
4168 	 * add and account sit entries of dirty bitmap in sit entry
4169 	 * set temporarily
4170 	 */
4171 	add_sits_in_set(sbi);
4172 
4173 	/*
4174 	 * if there are no enough space in journal to store dirty sit
4175 	 * entries, remove all entries from journal and add and account
4176 	 * them in sit entry set.
4177 	 */
4178 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4179 								!to_journal)
4180 		remove_sits_in_journal(sbi);
4181 
4182 	/*
4183 	 * there are two steps to flush sit entries:
4184 	 * #1, flush sit entries to journal in current cold data summary block.
4185 	 * #2, flush sit entries to sit page.
4186 	 */
4187 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4188 		struct page *page = NULL;
4189 		struct f2fs_sit_block *raw_sit = NULL;
4190 		unsigned int start_segno = ses->start_segno;
4191 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4192 						(unsigned long)MAIN_SEGS(sbi));
4193 		unsigned int segno = start_segno;
4194 
4195 		if (to_journal &&
4196 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4197 			to_journal = false;
4198 
4199 		if (to_journal) {
4200 			down_write(&curseg->journal_rwsem);
4201 		} else {
4202 			page = get_next_sit_page(sbi, start_segno);
4203 			raw_sit = page_address(page);
4204 		}
4205 
4206 		/* flush dirty sit entries in region of current sit set */
4207 		for_each_set_bit_from(segno, bitmap, end) {
4208 			int offset, sit_offset;
4209 
4210 			se = get_seg_entry(sbi, segno);
4211 #ifdef CONFIG_F2FS_CHECK_FS
4212 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4213 						SIT_VBLOCK_MAP_SIZE))
4214 				f2fs_bug_on(sbi, 1);
4215 #endif
4216 
4217 			/* add discard candidates */
4218 			if (!(cpc->reason & CP_DISCARD)) {
4219 				cpc->trim_start = segno;
4220 				add_discard_addrs(sbi, cpc, false);
4221 			}
4222 
4223 			if (to_journal) {
4224 				offset = f2fs_lookup_journal_in_cursum(journal,
4225 							SIT_JOURNAL, segno, 1);
4226 				f2fs_bug_on(sbi, offset < 0);
4227 				segno_in_journal(journal, offset) =
4228 							cpu_to_le32(segno);
4229 				seg_info_to_raw_sit(se,
4230 					&sit_in_journal(journal, offset));
4231 				check_block_count(sbi, segno,
4232 					&sit_in_journal(journal, offset));
4233 			} else {
4234 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4235 				seg_info_to_raw_sit(se,
4236 						&raw_sit->entries[sit_offset]);
4237 				check_block_count(sbi, segno,
4238 						&raw_sit->entries[sit_offset]);
4239 			}
4240 
4241 			__clear_bit(segno, bitmap);
4242 			sit_i->dirty_sentries--;
4243 			ses->entry_cnt--;
4244 		}
4245 
4246 		if (to_journal)
4247 			up_write(&curseg->journal_rwsem);
4248 		else
4249 			f2fs_put_page(page, 1);
4250 
4251 		f2fs_bug_on(sbi, ses->entry_cnt);
4252 		release_sit_entry_set(ses);
4253 	}
4254 
4255 	f2fs_bug_on(sbi, !list_empty(head));
4256 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4257 out:
4258 	if (cpc->reason & CP_DISCARD) {
4259 		__u64 trim_start = cpc->trim_start;
4260 
4261 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4262 			add_discard_addrs(sbi, cpc, false);
4263 
4264 		cpc->trim_start = trim_start;
4265 	}
4266 	up_write(&sit_i->sentry_lock);
4267 
4268 	set_prefree_as_free_segments(sbi);
4269 }
4270 
4271 static int build_sit_info(struct f2fs_sb_info *sbi)
4272 {
4273 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4274 	struct sit_info *sit_i;
4275 	unsigned int sit_segs, start;
4276 	char *src_bitmap, *bitmap;
4277 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4278 
4279 	/* allocate memory for SIT information */
4280 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4281 	if (!sit_i)
4282 		return -ENOMEM;
4283 
4284 	SM_I(sbi)->sit_info = sit_i;
4285 
4286 	sit_i->sentries =
4287 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4288 					      MAIN_SEGS(sbi)),
4289 			      GFP_KERNEL);
4290 	if (!sit_i->sentries)
4291 		return -ENOMEM;
4292 
4293 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4294 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4295 								GFP_KERNEL);
4296 	if (!sit_i->dirty_sentries_bitmap)
4297 		return -ENOMEM;
4298 
4299 #ifdef CONFIG_F2FS_CHECK_FS
4300 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4301 #else
4302 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4303 #endif
4304 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4305 	if (!sit_i->bitmap)
4306 		return -ENOMEM;
4307 
4308 	bitmap = sit_i->bitmap;
4309 
4310 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4311 		sit_i->sentries[start].cur_valid_map = bitmap;
4312 		bitmap += SIT_VBLOCK_MAP_SIZE;
4313 
4314 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4315 		bitmap += SIT_VBLOCK_MAP_SIZE;
4316 
4317 #ifdef CONFIG_F2FS_CHECK_FS
4318 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4319 		bitmap += SIT_VBLOCK_MAP_SIZE;
4320 #endif
4321 
4322 		sit_i->sentries[start].discard_map = bitmap;
4323 		bitmap += SIT_VBLOCK_MAP_SIZE;
4324 	}
4325 
4326 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4327 	if (!sit_i->tmp_map)
4328 		return -ENOMEM;
4329 
4330 	if (__is_large_section(sbi)) {
4331 		sit_i->sec_entries =
4332 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4333 						      MAIN_SECS(sbi)),
4334 				      GFP_KERNEL);
4335 		if (!sit_i->sec_entries)
4336 			return -ENOMEM;
4337 	}
4338 
4339 	/* get information related with SIT */
4340 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4341 
4342 	/* setup SIT bitmap from ckeckpoint pack */
4343 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4344 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4345 
4346 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4347 	if (!sit_i->sit_bitmap)
4348 		return -ENOMEM;
4349 
4350 #ifdef CONFIG_F2FS_CHECK_FS
4351 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4352 					sit_bitmap_size, GFP_KERNEL);
4353 	if (!sit_i->sit_bitmap_mir)
4354 		return -ENOMEM;
4355 
4356 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4357 					main_bitmap_size, GFP_KERNEL);
4358 	if (!sit_i->invalid_segmap)
4359 		return -ENOMEM;
4360 #endif
4361 
4362 	/* init SIT information */
4363 	sit_i->s_ops = &default_salloc_ops;
4364 
4365 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4366 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4367 	sit_i->written_valid_blocks = 0;
4368 	sit_i->bitmap_size = sit_bitmap_size;
4369 	sit_i->dirty_sentries = 0;
4370 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4371 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4372 	sit_i->mounted_time = ktime_get_boottime_seconds();
4373 	init_rwsem(&sit_i->sentry_lock);
4374 	return 0;
4375 }
4376 
4377 static int build_free_segmap(struct f2fs_sb_info *sbi)
4378 {
4379 	struct free_segmap_info *free_i;
4380 	unsigned int bitmap_size, sec_bitmap_size;
4381 
4382 	/* allocate memory for free segmap information */
4383 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4384 	if (!free_i)
4385 		return -ENOMEM;
4386 
4387 	SM_I(sbi)->free_info = free_i;
4388 
4389 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4390 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4391 	if (!free_i->free_segmap)
4392 		return -ENOMEM;
4393 
4394 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4395 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4396 	if (!free_i->free_secmap)
4397 		return -ENOMEM;
4398 
4399 	/* set all segments as dirty temporarily */
4400 	memset(free_i->free_segmap, 0xff, bitmap_size);
4401 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4402 
4403 	/* init free segmap information */
4404 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4405 	free_i->free_segments = 0;
4406 	free_i->free_sections = 0;
4407 	spin_lock_init(&free_i->segmap_lock);
4408 	return 0;
4409 }
4410 
4411 static int build_curseg(struct f2fs_sb_info *sbi)
4412 {
4413 	struct curseg_info *array;
4414 	int i;
4415 
4416 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4417 					sizeof(*array)), GFP_KERNEL);
4418 	if (!array)
4419 		return -ENOMEM;
4420 
4421 	SM_I(sbi)->curseg_array = array;
4422 
4423 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4424 		mutex_init(&array[i].curseg_mutex);
4425 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4426 		if (!array[i].sum_blk)
4427 			return -ENOMEM;
4428 		init_rwsem(&array[i].journal_rwsem);
4429 		array[i].journal = f2fs_kzalloc(sbi,
4430 				sizeof(struct f2fs_journal), GFP_KERNEL);
4431 		if (!array[i].journal)
4432 			return -ENOMEM;
4433 		if (i < NR_PERSISTENT_LOG)
4434 			array[i].seg_type = CURSEG_HOT_DATA + i;
4435 		else if (i == CURSEG_COLD_DATA_PINNED)
4436 			array[i].seg_type = CURSEG_COLD_DATA;
4437 		else if (i == CURSEG_ALL_DATA_ATGC)
4438 			array[i].seg_type = CURSEG_COLD_DATA;
4439 		array[i].segno = NULL_SEGNO;
4440 		array[i].next_blkoff = 0;
4441 		array[i].inited = false;
4442 	}
4443 	return restore_curseg_summaries(sbi);
4444 }
4445 
4446 static int build_sit_entries(struct f2fs_sb_info *sbi)
4447 {
4448 	struct sit_info *sit_i = SIT_I(sbi);
4449 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4450 	struct f2fs_journal *journal = curseg->journal;
4451 	struct seg_entry *se;
4452 	struct f2fs_sit_entry sit;
4453 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4454 	unsigned int i, start, end;
4455 	unsigned int readed, start_blk = 0;
4456 	int err = 0;
4457 	block_t total_node_blocks = 0;
4458 
4459 	do {
4460 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4461 							META_SIT, true);
4462 
4463 		start = start_blk * sit_i->sents_per_block;
4464 		end = (start_blk + readed) * sit_i->sents_per_block;
4465 
4466 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4467 			struct f2fs_sit_block *sit_blk;
4468 			struct page *page;
4469 
4470 			se = &sit_i->sentries[start];
4471 			page = get_current_sit_page(sbi, start);
4472 			if (IS_ERR(page))
4473 				return PTR_ERR(page);
4474 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4475 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4476 			f2fs_put_page(page, 1);
4477 
4478 			err = check_block_count(sbi, start, &sit);
4479 			if (err)
4480 				return err;
4481 			seg_info_from_raw_sit(se, &sit);
4482 			if (IS_NODESEG(se->type))
4483 				total_node_blocks += se->valid_blocks;
4484 
4485 			/* build discard map only one time */
4486 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4487 				memset(se->discard_map, 0xff,
4488 					SIT_VBLOCK_MAP_SIZE);
4489 			} else {
4490 				memcpy(se->discard_map,
4491 					se->cur_valid_map,
4492 					SIT_VBLOCK_MAP_SIZE);
4493 				sbi->discard_blks +=
4494 					sbi->blocks_per_seg -
4495 					se->valid_blocks;
4496 			}
4497 
4498 			if (__is_large_section(sbi))
4499 				get_sec_entry(sbi, start)->valid_blocks +=
4500 							se->valid_blocks;
4501 		}
4502 		start_blk += readed;
4503 	} while (start_blk < sit_blk_cnt);
4504 
4505 	down_read(&curseg->journal_rwsem);
4506 	for (i = 0; i < sits_in_cursum(journal); i++) {
4507 		unsigned int old_valid_blocks;
4508 
4509 		start = le32_to_cpu(segno_in_journal(journal, i));
4510 		if (start >= MAIN_SEGS(sbi)) {
4511 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4512 				 start);
4513 			err = -EFSCORRUPTED;
4514 			break;
4515 		}
4516 
4517 		se = &sit_i->sentries[start];
4518 		sit = sit_in_journal(journal, i);
4519 
4520 		old_valid_blocks = se->valid_blocks;
4521 		if (IS_NODESEG(se->type))
4522 			total_node_blocks -= old_valid_blocks;
4523 
4524 		err = check_block_count(sbi, start, &sit);
4525 		if (err)
4526 			break;
4527 		seg_info_from_raw_sit(se, &sit);
4528 		if (IS_NODESEG(se->type))
4529 			total_node_blocks += se->valid_blocks;
4530 
4531 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4532 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4533 		} else {
4534 			memcpy(se->discard_map, se->cur_valid_map,
4535 						SIT_VBLOCK_MAP_SIZE);
4536 			sbi->discard_blks += old_valid_blocks;
4537 			sbi->discard_blks -= se->valid_blocks;
4538 		}
4539 
4540 		if (__is_large_section(sbi)) {
4541 			get_sec_entry(sbi, start)->valid_blocks +=
4542 							se->valid_blocks;
4543 			get_sec_entry(sbi, start)->valid_blocks -=
4544 							old_valid_blocks;
4545 		}
4546 	}
4547 	up_read(&curseg->journal_rwsem);
4548 
4549 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4550 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4551 			 total_node_blocks, valid_node_count(sbi));
4552 		err = -EFSCORRUPTED;
4553 	}
4554 
4555 	return err;
4556 }
4557 
4558 static void init_free_segmap(struct f2fs_sb_info *sbi)
4559 {
4560 	unsigned int start;
4561 	int type;
4562 	struct seg_entry *sentry;
4563 
4564 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4565 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4566 			continue;
4567 		sentry = get_seg_entry(sbi, start);
4568 		if (!sentry->valid_blocks)
4569 			__set_free(sbi, start);
4570 		else
4571 			SIT_I(sbi)->written_valid_blocks +=
4572 						sentry->valid_blocks;
4573 	}
4574 
4575 	/* set use the current segments */
4576 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4577 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4578 
4579 		__set_test_and_inuse(sbi, curseg_t->segno);
4580 	}
4581 }
4582 
4583 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4584 {
4585 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4586 	struct free_segmap_info *free_i = FREE_I(sbi);
4587 	unsigned int segno = 0, offset = 0, secno;
4588 	block_t valid_blocks, usable_blks_in_seg;
4589 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4590 
4591 	while (1) {
4592 		/* find dirty segment based on free segmap */
4593 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4594 		if (segno >= MAIN_SEGS(sbi))
4595 			break;
4596 		offset = segno + 1;
4597 		valid_blocks = get_valid_blocks(sbi, segno, false);
4598 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4599 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4600 			continue;
4601 		if (valid_blocks > usable_blks_in_seg) {
4602 			f2fs_bug_on(sbi, 1);
4603 			continue;
4604 		}
4605 		mutex_lock(&dirty_i->seglist_lock);
4606 		__locate_dirty_segment(sbi, segno, DIRTY);
4607 		mutex_unlock(&dirty_i->seglist_lock);
4608 	}
4609 
4610 	if (!__is_large_section(sbi))
4611 		return;
4612 
4613 	mutex_lock(&dirty_i->seglist_lock);
4614 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4615 		valid_blocks = get_valid_blocks(sbi, segno, true);
4616 		secno = GET_SEC_FROM_SEG(sbi, segno);
4617 
4618 		if (!valid_blocks || valid_blocks == blks_per_sec)
4619 			continue;
4620 		if (IS_CURSEC(sbi, secno))
4621 			continue;
4622 		set_bit(secno, dirty_i->dirty_secmap);
4623 	}
4624 	mutex_unlock(&dirty_i->seglist_lock);
4625 }
4626 
4627 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4628 {
4629 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4630 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4631 
4632 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4633 	if (!dirty_i->victim_secmap)
4634 		return -ENOMEM;
4635 	return 0;
4636 }
4637 
4638 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4639 {
4640 	struct dirty_seglist_info *dirty_i;
4641 	unsigned int bitmap_size, i;
4642 
4643 	/* allocate memory for dirty segments list information */
4644 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4645 								GFP_KERNEL);
4646 	if (!dirty_i)
4647 		return -ENOMEM;
4648 
4649 	SM_I(sbi)->dirty_info = dirty_i;
4650 	mutex_init(&dirty_i->seglist_lock);
4651 
4652 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4653 
4654 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4655 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4656 								GFP_KERNEL);
4657 		if (!dirty_i->dirty_segmap[i])
4658 			return -ENOMEM;
4659 	}
4660 
4661 	if (__is_large_section(sbi)) {
4662 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4663 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4664 						bitmap_size, GFP_KERNEL);
4665 		if (!dirty_i->dirty_secmap)
4666 			return -ENOMEM;
4667 	}
4668 
4669 	init_dirty_segmap(sbi);
4670 	return init_victim_secmap(sbi);
4671 }
4672 
4673 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4674 {
4675 	int i;
4676 
4677 	/*
4678 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4679 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4680 	 */
4681 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4682 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4683 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4684 		unsigned int blkofs = curseg->next_blkoff;
4685 
4686 		if (f2fs_sb_has_readonly(sbi) &&
4687 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4688 			continue;
4689 
4690 		sanity_check_seg_type(sbi, curseg->seg_type);
4691 
4692 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4693 			goto out;
4694 
4695 		if (curseg->alloc_type == SSR)
4696 			continue;
4697 
4698 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4699 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4700 				continue;
4701 out:
4702 			f2fs_err(sbi,
4703 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4704 				 i, curseg->segno, curseg->alloc_type,
4705 				 curseg->next_blkoff, blkofs);
4706 			return -EFSCORRUPTED;
4707 		}
4708 	}
4709 	return 0;
4710 }
4711 
4712 #ifdef CONFIG_BLK_DEV_ZONED
4713 
4714 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4715 				    struct f2fs_dev_info *fdev,
4716 				    struct blk_zone *zone)
4717 {
4718 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4719 	block_t zone_block, wp_block, last_valid_block;
4720 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4721 	int i, s, b, ret;
4722 	struct seg_entry *se;
4723 
4724 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4725 		return 0;
4726 
4727 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4728 	wp_segno = GET_SEGNO(sbi, wp_block);
4729 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4730 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4731 	zone_segno = GET_SEGNO(sbi, zone_block);
4732 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4733 
4734 	if (zone_segno >= MAIN_SEGS(sbi))
4735 		return 0;
4736 
4737 	/*
4738 	 * Skip check of zones cursegs point to, since
4739 	 * fix_curseg_write_pointer() checks them.
4740 	 */
4741 	for (i = 0; i < NO_CHECK_TYPE; i++)
4742 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4743 						   CURSEG_I(sbi, i)->segno))
4744 			return 0;
4745 
4746 	/*
4747 	 * Get last valid block of the zone.
4748 	 */
4749 	last_valid_block = zone_block - 1;
4750 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4751 		segno = zone_segno + s;
4752 		se = get_seg_entry(sbi, segno);
4753 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4754 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4755 				last_valid_block = START_BLOCK(sbi, segno) + b;
4756 				break;
4757 			}
4758 		if (last_valid_block >= zone_block)
4759 			break;
4760 	}
4761 
4762 	/*
4763 	 * If last valid block is beyond the write pointer, report the
4764 	 * inconsistency. This inconsistency does not cause write error
4765 	 * because the zone will not be selected for write operation until
4766 	 * it get discarded. Just report it.
4767 	 */
4768 	if (last_valid_block >= wp_block) {
4769 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4770 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4771 			    GET_SEGNO(sbi, last_valid_block),
4772 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4773 			    wp_segno, wp_blkoff);
4774 		return 0;
4775 	}
4776 
4777 	/*
4778 	 * If there is no valid block in the zone and if write pointer is
4779 	 * not at zone start, reset the write pointer.
4780 	 */
4781 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4782 		f2fs_notice(sbi,
4783 			    "Zone without valid block has non-zero write "
4784 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4785 			    wp_segno, wp_blkoff);
4786 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4787 					zone->len >> log_sectors_per_block);
4788 		if (ret) {
4789 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4790 				 fdev->path, ret);
4791 			return ret;
4792 		}
4793 	}
4794 
4795 	return 0;
4796 }
4797 
4798 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4799 						  block_t zone_blkaddr)
4800 {
4801 	int i;
4802 
4803 	for (i = 0; i < sbi->s_ndevs; i++) {
4804 		if (!bdev_is_zoned(FDEV(i).bdev))
4805 			continue;
4806 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4807 				zone_blkaddr <= FDEV(i).end_blk))
4808 			return &FDEV(i);
4809 	}
4810 
4811 	return NULL;
4812 }
4813 
4814 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4815 			      void *data)
4816 {
4817 	memcpy(data, zone, sizeof(struct blk_zone));
4818 	return 0;
4819 }
4820 
4821 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4822 {
4823 	struct curseg_info *cs = CURSEG_I(sbi, type);
4824 	struct f2fs_dev_info *zbd;
4825 	struct blk_zone zone;
4826 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4827 	block_t cs_zone_block, wp_block;
4828 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4829 	sector_t zone_sector;
4830 	int err;
4831 
4832 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4833 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4834 
4835 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4836 	if (!zbd)
4837 		return 0;
4838 
4839 	/* report zone for the sector the curseg points to */
4840 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4841 		<< log_sectors_per_block;
4842 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4843 				  report_one_zone_cb, &zone);
4844 	if (err != 1) {
4845 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4846 			 zbd->path, err);
4847 		return err;
4848 	}
4849 
4850 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4851 		return 0;
4852 
4853 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4854 	wp_segno = GET_SEGNO(sbi, wp_block);
4855 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4856 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4857 
4858 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4859 		wp_sector_off == 0)
4860 		return 0;
4861 
4862 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4863 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4864 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4865 
4866 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4867 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4868 
4869 	f2fs_allocate_new_section(sbi, type, true);
4870 
4871 	/* check consistency of the zone curseg pointed to */
4872 	if (check_zone_write_pointer(sbi, zbd, &zone))
4873 		return -EIO;
4874 
4875 	/* check newly assigned zone */
4876 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4877 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4878 
4879 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4880 	if (!zbd)
4881 		return 0;
4882 
4883 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4884 		<< log_sectors_per_block;
4885 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4886 				  report_one_zone_cb, &zone);
4887 	if (err != 1) {
4888 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4889 			 zbd->path, err);
4890 		return err;
4891 	}
4892 
4893 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4894 		return 0;
4895 
4896 	if (zone.wp != zone.start) {
4897 		f2fs_notice(sbi,
4898 			    "New zone for curseg[%d] is not yet discarded. "
4899 			    "Reset the zone: curseg[0x%x,0x%x]",
4900 			    type, cs->segno, cs->next_blkoff);
4901 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4902 				zone_sector >> log_sectors_per_block,
4903 				zone.len >> log_sectors_per_block);
4904 		if (err) {
4905 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4906 				 zbd->path, err);
4907 			return err;
4908 		}
4909 	}
4910 
4911 	return 0;
4912 }
4913 
4914 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4915 {
4916 	int i, ret;
4917 
4918 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4919 		ret = fix_curseg_write_pointer(sbi, i);
4920 		if (ret)
4921 			return ret;
4922 	}
4923 
4924 	return 0;
4925 }
4926 
4927 struct check_zone_write_pointer_args {
4928 	struct f2fs_sb_info *sbi;
4929 	struct f2fs_dev_info *fdev;
4930 };
4931 
4932 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4933 				      void *data)
4934 {
4935 	struct check_zone_write_pointer_args *args;
4936 
4937 	args = (struct check_zone_write_pointer_args *)data;
4938 
4939 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4940 }
4941 
4942 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4943 {
4944 	int i, ret;
4945 	struct check_zone_write_pointer_args args;
4946 
4947 	for (i = 0; i < sbi->s_ndevs; i++) {
4948 		if (!bdev_is_zoned(FDEV(i).bdev))
4949 			continue;
4950 
4951 		args.sbi = sbi;
4952 		args.fdev = &FDEV(i);
4953 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4954 					  check_zone_write_pointer_cb, &args);
4955 		if (ret < 0)
4956 			return ret;
4957 	}
4958 
4959 	return 0;
4960 }
4961 
4962 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4963 						unsigned int dev_idx)
4964 {
4965 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4966 		return true;
4967 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4968 }
4969 
4970 /* Return the zone index in the given device */
4971 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4972 					int dev_idx)
4973 {
4974 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4975 
4976 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4977 						sbi->log_blocks_per_blkz;
4978 }
4979 
4980 /*
4981  * Return the usable segments in a section based on the zone's
4982  * corresponding zone capacity. Zone is equal to a section.
4983  */
4984 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4985 		struct f2fs_sb_info *sbi, unsigned int segno)
4986 {
4987 	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4988 
4989 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4990 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4991 
4992 	/* Conventional zone's capacity is always equal to zone size */
4993 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4994 		return sbi->segs_per_sec;
4995 
4996 	/*
4997 	 * If the zone_capacity_blocks array is NULL, then zone capacity
4998 	 * is equal to the zone size for all zones
4999 	 */
5000 	if (!FDEV(dev_idx).zone_capacity_blocks)
5001 		return sbi->segs_per_sec;
5002 
5003 	/* Get the segment count beyond zone capacity block */
5004 	unusable_segs_in_sec = (sbi->blocks_per_blkz -
5005 				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5006 				sbi->log_blocks_per_seg;
5007 	return sbi->segs_per_sec - unusable_segs_in_sec;
5008 }
5009 
5010 /*
5011  * Return the number of usable blocks in a segment. The number of blocks
5012  * returned is always equal to the number of blocks in a segment for
5013  * segments fully contained within a sequential zone capacity or a
5014  * conventional zone. For segments partially contained in a sequential
5015  * zone capacity, the number of usable blocks up to the zone capacity
5016  * is returned. 0 is returned in all other cases.
5017  */
5018 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5019 			struct f2fs_sb_info *sbi, unsigned int segno)
5020 {
5021 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5022 	unsigned int zone_idx, dev_idx, secno;
5023 
5024 	secno = GET_SEC_FROM_SEG(sbi, segno);
5025 	seg_start = START_BLOCK(sbi, segno);
5026 	dev_idx = f2fs_target_device_index(sbi, seg_start);
5027 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5028 
5029 	/*
5030 	 * Conventional zone's capacity is always equal to zone size,
5031 	 * so, blocks per segment is unchanged.
5032 	 */
5033 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5034 		return sbi->blocks_per_seg;
5035 
5036 	if (!FDEV(dev_idx).zone_capacity_blocks)
5037 		return sbi->blocks_per_seg;
5038 
5039 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5040 	sec_cap_blkaddr = sec_start_blkaddr +
5041 				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5042 
5043 	/*
5044 	 * If segment starts before zone capacity and spans beyond
5045 	 * zone capacity, then usable blocks are from seg start to
5046 	 * zone capacity. If the segment starts after the zone capacity,
5047 	 * then there are no usable blocks.
5048 	 */
5049 	if (seg_start >= sec_cap_blkaddr)
5050 		return 0;
5051 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5052 		return sec_cap_blkaddr - seg_start;
5053 
5054 	return sbi->blocks_per_seg;
5055 }
5056 #else
5057 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5058 {
5059 	return 0;
5060 }
5061 
5062 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5063 {
5064 	return 0;
5065 }
5066 
5067 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5068 							unsigned int segno)
5069 {
5070 	return 0;
5071 }
5072 
5073 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5074 							unsigned int segno)
5075 {
5076 	return 0;
5077 }
5078 #endif
5079 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5080 					unsigned int segno)
5081 {
5082 	if (f2fs_sb_has_blkzoned(sbi))
5083 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5084 
5085 	return sbi->blocks_per_seg;
5086 }
5087 
5088 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5089 					unsigned int segno)
5090 {
5091 	if (f2fs_sb_has_blkzoned(sbi))
5092 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5093 
5094 	return sbi->segs_per_sec;
5095 }
5096 
5097 /*
5098  * Update min, max modified time for cost-benefit GC algorithm
5099  */
5100 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5101 {
5102 	struct sit_info *sit_i = SIT_I(sbi);
5103 	unsigned int segno;
5104 
5105 	down_write(&sit_i->sentry_lock);
5106 
5107 	sit_i->min_mtime = ULLONG_MAX;
5108 
5109 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5110 		unsigned int i;
5111 		unsigned long long mtime = 0;
5112 
5113 		for (i = 0; i < sbi->segs_per_sec; i++)
5114 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5115 
5116 		mtime = div_u64(mtime, sbi->segs_per_sec);
5117 
5118 		if (sit_i->min_mtime > mtime)
5119 			sit_i->min_mtime = mtime;
5120 	}
5121 	sit_i->max_mtime = get_mtime(sbi, false);
5122 	sit_i->dirty_max_mtime = 0;
5123 	up_write(&sit_i->sentry_lock);
5124 }
5125 
5126 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5127 {
5128 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5129 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5130 	struct f2fs_sm_info *sm_info;
5131 	int err;
5132 
5133 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5134 	if (!sm_info)
5135 		return -ENOMEM;
5136 
5137 	/* init sm info */
5138 	sbi->sm_info = sm_info;
5139 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5140 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5141 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5142 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5143 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5144 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5145 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5146 	sm_info->rec_prefree_segments = sm_info->main_segments *
5147 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5148 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5149 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5150 
5151 	if (!f2fs_lfs_mode(sbi))
5152 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5153 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5154 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5155 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5156 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5157 	sm_info->min_ssr_sections = reserved_sections(sbi);
5158 
5159 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5160 
5161 	init_rwsem(&sm_info->curseg_lock);
5162 
5163 	if (!f2fs_readonly(sbi->sb)) {
5164 		err = f2fs_create_flush_cmd_control(sbi);
5165 		if (err)
5166 			return err;
5167 	}
5168 
5169 	err = create_discard_cmd_control(sbi);
5170 	if (err)
5171 		return err;
5172 
5173 	err = build_sit_info(sbi);
5174 	if (err)
5175 		return err;
5176 	err = build_free_segmap(sbi);
5177 	if (err)
5178 		return err;
5179 	err = build_curseg(sbi);
5180 	if (err)
5181 		return err;
5182 
5183 	/* reinit free segmap based on SIT */
5184 	err = build_sit_entries(sbi);
5185 	if (err)
5186 		return err;
5187 
5188 	init_free_segmap(sbi);
5189 	err = build_dirty_segmap(sbi);
5190 	if (err)
5191 		return err;
5192 
5193 	err = sanity_check_curseg(sbi);
5194 	if (err)
5195 		return err;
5196 
5197 	init_min_max_mtime(sbi);
5198 	return 0;
5199 }
5200 
5201 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5202 		enum dirty_type dirty_type)
5203 {
5204 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5205 
5206 	mutex_lock(&dirty_i->seglist_lock);
5207 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5208 	dirty_i->nr_dirty[dirty_type] = 0;
5209 	mutex_unlock(&dirty_i->seglist_lock);
5210 }
5211 
5212 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5213 {
5214 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5215 
5216 	kvfree(dirty_i->victim_secmap);
5217 }
5218 
5219 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5220 {
5221 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5222 	int i;
5223 
5224 	if (!dirty_i)
5225 		return;
5226 
5227 	/* discard pre-free/dirty segments list */
5228 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5229 		discard_dirty_segmap(sbi, i);
5230 
5231 	if (__is_large_section(sbi)) {
5232 		mutex_lock(&dirty_i->seglist_lock);
5233 		kvfree(dirty_i->dirty_secmap);
5234 		mutex_unlock(&dirty_i->seglist_lock);
5235 	}
5236 
5237 	destroy_victim_secmap(sbi);
5238 	SM_I(sbi)->dirty_info = NULL;
5239 	kfree(dirty_i);
5240 }
5241 
5242 static void destroy_curseg(struct f2fs_sb_info *sbi)
5243 {
5244 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5245 	int i;
5246 
5247 	if (!array)
5248 		return;
5249 	SM_I(sbi)->curseg_array = NULL;
5250 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5251 		kfree(array[i].sum_blk);
5252 		kfree(array[i].journal);
5253 	}
5254 	kfree(array);
5255 }
5256 
5257 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5258 {
5259 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5260 
5261 	if (!free_i)
5262 		return;
5263 	SM_I(sbi)->free_info = NULL;
5264 	kvfree(free_i->free_segmap);
5265 	kvfree(free_i->free_secmap);
5266 	kfree(free_i);
5267 }
5268 
5269 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5270 {
5271 	struct sit_info *sit_i = SIT_I(sbi);
5272 
5273 	if (!sit_i)
5274 		return;
5275 
5276 	if (sit_i->sentries)
5277 		kvfree(sit_i->bitmap);
5278 	kfree(sit_i->tmp_map);
5279 
5280 	kvfree(sit_i->sentries);
5281 	kvfree(sit_i->sec_entries);
5282 	kvfree(sit_i->dirty_sentries_bitmap);
5283 
5284 	SM_I(sbi)->sit_info = NULL;
5285 	kvfree(sit_i->sit_bitmap);
5286 #ifdef CONFIG_F2FS_CHECK_FS
5287 	kvfree(sit_i->sit_bitmap_mir);
5288 	kvfree(sit_i->invalid_segmap);
5289 #endif
5290 	kfree(sit_i);
5291 }
5292 
5293 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5294 {
5295 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5296 
5297 	if (!sm_info)
5298 		return;
5299 	f2fs_destroy_flush_cmd_control(sbi, true);
5300 	destroy_discard_cmd_control(sbi);
5301 	destroy_dirty_segmap(sbi);
5302 	destroy_curseg(sbi);
5303 	destroy_free_segmap(sbi);
5304 	destroy_sit_info(sbi);
5305 	sbi->sm_info = NULL;
5306 	kfree(sm_info);
5307 }
5308 
5309 int __init f2fs_create_segment_manager_caches(void)
5310 {
5311 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5312 			sizeof(struct discard_entry));
5313 	if (!discard_entry_slab)
5314 		goto fail;
5315 
5316 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5317 			sizeof(struct discard_cmd));
5318 	if (!discard_cmd_slab)
5319 		goto destroy_discard_entry;
5320 
5321 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5322 			sizeof(struct sit_entry_set));
5323 	if (!sit_entry_set_slab)
5324 		goto destroy_discard_cmd;
5325 
5326 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5327 			sizeof(struct inmem_pages));
5328 	if (!inmem_entry_slab)
5329 		goto destroy_sit_entry_set;
5330 	return 0;
5331 
5332 destroy_sit_entry_set:
5333 	kmem_cache_destroy(sit_entry_set_slab);
5334 destroy_discard_cmd:
5335 	kmem_cache_destroy(discard_cmd_slab);
5336 destroy_discard_entry:
5337 	kmem_cache_destroy(discard_entry_slab);
5338 fail:
5339 	return -ENOMEM;
5340 }
5341 
5342 void f2fs_destroy_segment_manager_caches(void)
5343 {
5344 	kmem_cache_destroy(sit_entry_set_slab);
5345 	kmem_cache_destroy(discard_cmd_slab);
5346 	kmem_cache_destroy(discard_entry_slab);
5347 	kmem_cache_destroy(inmem_entry_slab);
5348 }
5349