1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *bio_entry_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 void register_inmem_page(struct inode *inode, struct page *page) 170 { 171 struct f2fs_inode_info *fi = F2FS_I(inode); 172 struct inmem_pages *new; 173 174 f2fs_trace_pid(page); 175 176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 177 SetPagePrivate(page); 178 179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 180 181 /* add atomic page indices to the list */ 182 new->page = page; 183 INIT_LIST_HEAD(&new->list); 184 185 /* increase reference count with clean state */ 186 mutex_lock(&fi->inmem_lock); 187 get_page(page); 188 list_add_tail(&new->list, &fi->inmem_pages); 189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 190 mutex_unlock(&fi->inmem_lock); 191 192 trace_f2fs_register_inmem_page(page, INMEM); 193 } 194 195 static int __revoke_inmem_pages(struct inode *inode, 196 struct list_head *head, bool drop, bool recover) 197 { 198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 199 struct inmem_pages *cur, *tmp; 200 int err = 0; 201 202 list_for_each_entry_safe(cur, tmp, head, list) { 203 struct page *page = cur->page; 204 205 if (drop) 206 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 207 208 lock_page(page); 209 210 if (recover) { 211 struct dnode_of_data dn; 212 struct node_info ni; 213 214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 215 216 set_new_dnode(&dn, inode, NULL, NULL, 0); 217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 218 err = -EAGAIN; 219 goto next; 220 } 221 get_node_info(sbi, dn.nid, &ni); 222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 223 cur->old_addr, ni.version, true, true); 224 f2fs_put_dnode(&dn); 225 } 226 next: 227 /* we don't need to invalidate this in the sccessful status */ 228 if (drop || recover) 229 ClearPageUptodate(page); 230 set_page_private(page, 0); 231 ClearPagePrivate(page); 232 f2fs_put_page(page, 1); 233 234 list_del(&cur->list); 235 kmem_cache_free(inmem_entry_slab, cur); 236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 237 } 238 return err; 239 } 240 241 void drop_inmem_pages(struct inode *inode) 242 { 243 struct f2fs_inode_info *fi = F2FS_I(inode); 244 245 clear_inode_flag(inode, FI_ATOMIC_FILE); 246 247 mutex_lock(&fi->inmem_lock); 248 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 249 mutex_unlock(&fi->inmem_lock); 250 } 251 252 static int __commit_inmem_pages(struct inode *inode, 253 struct list_head *revoke_list) 254 { 255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 256 struct f2fs_inode_info *fi = F2FS_I(inode); 257 struct inmem_pages *cur, *tmp; 258 struct f2fs_io_info fio = { 259 .sbi = sbi, 260 .type = DATA, 261 .op = REQ_OP_WRITE, 262 .op_flags = WRITE_SYNC | REQ_PRIO, 263 .encrypted_page = NULL, 264 }; 265 bool submit_bio = false; 266 int err = 0; 267 268 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 269 struct page *page = cur->page; 270 271 lock_page(page); 272 if (page->mapping == inode->i_mapping) { 273 trace_f2fs_commit_inmem_page(page, INMEM); 274 275 set_page_dirty(page); 276 f2fs_wait_on_page_writeback(page, DATA, true); 277 if (clear_page_dirty_for_io(page)) 278 inode_dec_dirty_pages(inode); 279 280 fio.page = page; 281 err = do_write_data_page(&fio); 282 if (err) { 283 unlock_page(page); 284 break; 285 } 286 287 /* record old blkaddr for revoking */ 288 cur->old_addr = fio.old_blkaddr; 289 290 clear_cold_data(page); 291 submit_bio = true; 292 } 293 unlock_page(page); 294 list_move_tail(&cur->list, revoke_list); 295 } 296 297 if (submit_bio) 298 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 299 300 if (!err) 301 __revoke_inmem_pages(inode, revoke_list, false, false); 302 303 return err; 304 } 305 306 int commit_inmem_pages(struct inode *inode) 307 { 308 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 309 struct f2fs_inode_info *fi = F2FS_I(inode); 310 struct list_head revoke_list; 311 int err; 312 313 INIT_LIST_HEAD(&revoke_list); 314 f2fs_balance_fs(sbi, true); 315 f2fs_lock_op(sbi); 316 317 mutex_lock(&fi->inmem_lock); 318 err = __commit_inmem_pages(inode, &revoke_list); 319 if (err) { 320 int ret; 321 /* 322 * try to revoke all committed pages, but still we could fail 323 * due to no memory or other reason, if that happened, EAGAIN 324 * will be returned, which means in such case, transaction is 325 * already not integrity, caller should use journal to do the 326 * recovery or rewrite & commit last transaction. For other 327 * error number, revoking was done by filesystem itself. 328 */ 329 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 330 if (ret) 331 err = ret; 332 333 /* drop all uncommitted pages */ 334 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 335 } 336 mutex_unlock(&fi->inmem_lock); 337 338 f2fs_unlock_op(sbi); 339 return err; 340 } 341 342 /* 343 * This function balances dirty node and dentry pages. 344 * In addition, it controls garbage collection. 345 */ 346 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 347 { 348 if (!need) 349 return; 350 351 /* balance_fs_bg is able to be pending */ 352 if (excess_cached_nats(sbi)) 353 f2fs_balance_fs_bg(sbi); 354 355 /* 356 * We should do GC or end up with checkpoint, if there are so many dirty 357 * dir/node pages without enough free segments. 358 */ 359 if (has_not_enough_free_secs(sbi, 0, 0)) { 360 mutex_lock(&sbi->gc_mutex); 361 f2fs_gc(sbi, false); 362 } 363 } 364 365 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 366 { 367 /* try to shrink extent cache when there is no enough memory */ 368 if (!available_free_memory(sbi, EXTENT_CACHE)) 369 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 370 371 /* check the # of cached NAT entries */ 372 if (!available_free_memory(sbi, NAT_ENTRIES)) 373 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 374 375 if (!available_free_memory(sbi, FREE_NIDS)) 376 try_to_free_nids(sbi, MAX_FREE_NIDS); 377 else 378 build_free_nids(sbi); 379 380 /* checkpoint is the only way to shrink partial cached entries */ 381 if (!available_free_memory(sbi, NAT_ENTRIES) || 382 !available_free_memory(sbi, INO_ENTRIES) || 383 excess_prefree_segs(sbi) || 384 excess_dirty_nats(sbi) || 385 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) { 386 if (test_opt(sbi, DATA_FLUSH)) { 387 struct blk_plug plug; 388 389 blk_start_plug(&plug); 390 sync_dirty_inodes(sbi, FILE_INODE); 391 blk_finish_plug(&plug); 392 } 393 f2fs_sync_fs(sbi->sb, true); 394 stat_inc_bg_cp_count(sbi->stat_info); 395 } 396 } 397 398 static int issue_flush_thread(void *data) 399 { 400 struct f2fs_sb_info *sbi = data; 401 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 402 wait_queue_head_t *q = &fcc->flush_wait_queue; 403 repeat: 404 if (kthread_should_stop()) 405 return 0; 406 407 if (!llist_empty(&fcc->issue_list)) { 408 struct bio *bio; 409 struct flush_cmd *cmd, *next; 410 int ret; 411 412 bio = f2fs_bio_alloc(0); 413 414 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 415 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 416 417 bio->bi_bdev = sbi->sb->s_bdev; 418 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 419 ret = submit_bio_wait(bio); 420 421 llist_for_each_entry_safe(cmd, next, 422 fcc->dispatch_list, llnode) { 423 cmd->ret = ret; 424 complete(&cmd->wait); 425 } 426 bio_put(bio); 427 fcc->dispatch_list = NULL; 428 } 429 430 wait_event_interruptible(*q, 431 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 432 goto repeat; 433 } 434 435 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 436 { 437 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 438 struct flush_cmd cmd; 439 440 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 441 test_opt(sbi, FLUSH_MERGE)); 442 443 if (test_opt(sbi, NOBARRIER)) 444 return 0; 445 446 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) { 447 struct bio *bio = f2fs_bio_alloc(0); 448 int ret; 449 450 atomic_inc(&fcc->submit_flush); 451 bio->bi_bdev = sbi->sb->s_bdev; 452 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 453 ret = submit_bio_wait(bio); 454 atomic_dec(&fcc->submit_flush); 455 bio_put(bio); 456 return ret; 457 } 458 459 init_completion(&cmd.wait); 460 461 atomic_inc(&fcc->submit_flush); 462 llist_add(&cmd.llnode, &fcc->issue_list); 463 464 if (!fcc->dispatch_list) 465 wake_up(&fcc->flush_wait_queue); 466 467 wait_for_completion(&cmd.wait); 468 atomic_dec(&fcc->submit_flush); 469 470 return cmd.ret; 471 } 472 473 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 474 { 475 dev_t dev = sbi->sb->s_bdev->bd_dev; 476 struct flush_cmd_control *fcc; 477 int err = 0; 478 479 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 480 if (!fcc) 481 return -ENOMEM; 482 atomic_set(&fcc->submit_flush, 0); 483 init_waitqueue_head(&fcc->flush_wait_queue); 484 init_llist_head(&fcc->issue_list); 485 SM_I(sbi)->cmd_control_info = fcc; 486 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 487 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 488 if (IS_ERR(fcc->f2fs_issue_flush)) { 489 err = PTR_ERR(fcc->f2fs_issue_flush); 490 kfree(fcc); 491 SM_I(sbi)->cmd_control_info = NULL; 492 return err; 493 } 494 495 return err; 496 } 497 498 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 499 { 500 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 501 502 if (fcc && fcc->f2fs_issue_flush) 503 kthread_stop(fcc->f2fs_issue_flush); 504 kfree(fcc); 505 SM_I(sbi)->cmd_control_info = NULL; 506 } 507 508 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 509 enum dirty_type dirty_type) 510 { 511 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 512 513 /* need not be added */ 514 if (IS_CURSEG(sbi, segno)) 515 return; 516 517 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 518 dirty_i->nr_dirty[dirty_type]++; 519 520 if (dirty_type == DIRTY) { 521 struct seg_entry *sentry = get_seg_entry(sbi, segno); 522 enum dirty_type t = sentry->type; 523 524 if (unlikely(t >= DIRTY)) { 525 f2fs_bug_on(sbi, 1); 526 return; 527 } 528 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 529 dirty_i->nr_dirty[t]++; 530 } 531 } 532 533 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 534 enum dirty_type dirty_type) 535 { 536 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 537 538 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 539 dirty_i->nr_dirty[dirty_type]--; 540 541 if (dirty_type == DIRTY) { 542 struct seg_entry *sentry = get_seg_entry(sbi, segno); 543 enum dirty_type t = sentry->type; 544 545 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 546 dirty_i->nr_dirty[t]--; 547 548 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 549 clear_bit(GET_SECNO(sbi, segno), 550 dirty_i->victim_secmap); 551 } 552 } 553 554 /* 555 * Should not occur error such as -ENOMEM. 556 * Adding dirty entry into seglist is not critical operation. 557 * If a given segment is one of current working segments, it won't be added. 558 */ 559 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 560 { 561 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 562 unsigned short valid_blocks; 563 564 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 565 return; 566 567 mutex_lock(&dirty_i->seglist_lock); 568 569 valid_blocks = get_valid_blocks(sbi, segno, 0); 570 571 if (valid_blocks == 0) { 572 __locate_dirty_segment(sbi, segno, PRE); 573 __remove_dirty_segment(sbi, segno, DIRTY); 574 } else if (valid_blocks < sbi->blocks_per_seg) { 575 __locate_dirty_segment(sbi, segno, DIRTY); 576 } else { 577 /* Recovery routine with SSR needs this */ 578 __remove_dirty_segment(sbi, segno, DIRTY); 579 } 580 581 mutex_unlock(&dirty_i->seglist_lock); 582 } 583 584 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi, 585 struct bio *bio) 586 { 587 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 588 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 589 590 INIT_LIST_HEAD(&be->list); 591 be->bio = bio; 592 init_completion(&be->event); 593 list_add_tail(&be->list, wait_list); 594 595 return be; 596 } 597 598 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi) 599 { 600 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 601 struct bio_entry *be, *tmp; 602 603 list_for_each_entry_safe(be, tmp, wait_list, list) { 604 struct bio *bio = be->bio; 605 int err; 606 607 wait_for_completion_io(&be->event); 608 err = be->error; 609 if (err == -EOPNOTSUPP) 610 err = 0; 611 612 if (err) 613 f2fs_msg(sbi->sb, KERN_INFO, 614 "Issue discard failed, ret: %d", err); 615 616 bio_put(bio); 617 list_del(&be->list); 618 kmem_cache_free(bio_entry_slab, be); 619 } 620 } 621 622 static void f2fs_submit_bio_wait_endio(struct bio *bio) 623 { 624 struct bio_entry *be = (struct bio_entry *)bio->bi_private; 625 626 be->error = bio->bi_error; 627 complete(&be->event); 628 } 629 630 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 631 int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, sector_t sector, 632 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags) 633 { 634 struct block_device *bdev = sbi->sb->s_bdev; 635 struct bio *bio = NULL; 636 int err; 637 638 err = __blkdev_issue_discard(bdev, sector, nr_sects, gfp_mask, flags, 639 &bio); 640 if (!err && bio) { 641 struct bio_entry *be = __add_bio_entry(sbi, bio); 642 643 bio->bi_private = be; 644 bio->bi_end_io = f2fs_submit_bio_wait_endio; 645 bio->bi_opf |= REQ_SYNC; 646 submit_bio(bio); 647 } 648 649 return err; 650 } 651 652 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 653 block_t blkstart, block_t blklen) 654 { 655 sector_t start = SECTOR_FROM_BLOCK(blkstart); 656 sector_t len = SECTOR_FROM_BLOCK(blklen); 657 struct seg_entry *se; 658 unsigned int offset; 659 block_t i; 660 661 for (i = blkstart; i < blkstart + blklen; i++) { 662 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 663 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 664 665 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 666 sbi->discard_blks--; 667 } 668 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 669 return __f2fs_issue_discard_async(sbi, start, len, GFP_NOFS, 0); 670 } 671 672 static void __add_discard_entry(struct f2fs_sb_info *sbi, 673 struct cp_control *cpc, struct seg_entry *se, 674 unsigned int start, unsigned int end) 675 { 676 struct list_head *head = &SM_I(sbi)->discard_list; 677 struct discard_entry *new, *last; 678 679 if (!list_empty(head)) { 680 last = list_last_entry(head, struct discard_entry, list); 681 if (START_BLOCK(sbi, cpc->trim_start) + start == 682 last->blkaddr + last->len) { 683 last->len += end - start; 684 goto done; 685 } 686 } 687 688 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 689 INIT_LIST_HEAD(&new->list); 690 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 691 new->len = end - start; 692 list_add_tail(&new->list, head); 693 done: 694 SM_I(sbi)->nr_discards += end - start; 695 } 696 697 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 698 { 699 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 700 int max_blocks = sbi->blocks_per_seg; 701 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 702 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 703 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 704 unsigned long *discard_map = (unsigned long *)se->discard_map; 705 unsigned long *dmap = SIT_I(sbi)->tmp_map; 706 unsigned int start = 0, end = -1; 707 bool force = (cpc->reason == CP_DISCARD); 708 int i; 709 710 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 711 return; 712 713 if (!force) { 714 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 715 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 716 return; 717 } 718 719 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 720 for (i = 0; i < entries; i++) 721 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 722 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 723 724 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 725 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 726 if (start >= max_blocks) 727 break; 728 729 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 730 if (force && start && end != max_blocks 731 && (end - start) < cpc->trim_minlen) 732 continue; 733 734 __add_discard_entry(sbi, cpc, se, start, end); 735 } 736 } 737 738 void release_discard_addrs(struct f2fs_sb_info *sbi) 739 { 740 struct list_head *head = &(SM_I(sbi)->discard_list); 741 struct discard_entry *entry, *this; 742 743 /* drop caches */ 744 list_for_each_entry_safe(entry, this, head, list) { 745 list_del(&entry->list); 746 kmem_cache_free(discard_entry_slab, entry); 747 } 748 } 749 750 /* 751 * Should call clear_prefree_segments after checkpoint is done. 752 */ 753 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 754 { 755 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 756 unsigned int segno; 757 758 mutex_lock(&dirty_i->seglist_lock); 759 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 760 __set_test_and_free(sbi, segno); 761 mutex_unlock(&dirty_i->seglist_lock); 762 } 763 764 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 765 { 766 struct list_head *head = &(SM_I(sbi)->discard_list); 767 struct discard_entry *entry, *this; 768 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 769 struct blk_plug plug; 770 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 771 unsigned int start = 0, end = -1; 772 unsigned int secno, start_segno; 773 bool force = (cpc->reason == CP_DISCARD); 774 775 blk_start_plug(&plug); 776 777 mutex_lock(&dirty_i->seglist_lock); 778 779 while (1) { 780 int i; 781 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 782 if (start >= MAIN_SEGS(sbi)) 783 break; 784 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 785 start + 1); 786 787 for (i = start; i < end; i++) 788 clear_bit(i, prefree_map); 789 790 dirty_i->nr_dirty[PRE] -= end - start; 791 792 if (force || !test_opt(sbi, DISCARD)) 793 continue; 794 795 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 796 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 797 (end - start) << sbi->log_blocks_per_seg); 798 continue; 799 } 800 next: 801 secno = GET_SECNO(sbi, start); 802 start_segno = secno * sbi->segs_per_sec; 803 if (!IS_CURSEC(sbi, secno) && 804 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 805 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 806 sbi->segs_per_sec << sbi->log_blocks_per_seg); 807 808 start = start_segno + sbi->segs_per_sec; 809 if (start < end) 810 goto next; 811 } 812 mutex_unlock(&dirty_i->seglist_lock); 813 814 /* send small discards */ 815 list_for_each_entry_safe(entry, this, head, list) { 816 if (force && entry->len < cpc->trim_minlen) 817 goto skip; 818 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 819 cpc->trimmed += entry->len; 820 skip: 821 list_del(&entry->list); 822 SM_I(sbi)->nr_discards -= entry->len; 823 kmem_cache_free(discard_entry_slab, entry); 824 } 825 826 blk_finish_plug(&plug); 827 } 828 829 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 830 { 831 struct sit_info *sit_i = SIT_I(sbi); 832 833 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 834 sit_i->dirty_sentries++; 835 return false; 836 } 837 838 return true; 839 } 840 841 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 842 unsigned int segno, int modified) 843 { 844 struct seg_entry *se = get_seg_entry(sbi, segno); 845 se->type = type; 846 if (modified) 847 __mark_sit_entry_dirty(sbi, segno); 848 } 849 850 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 851 { 852 struct seg_entry *se; 853 unsigned int segno, offset; 854 long int new_vblocks; 855 856 segno = GET_SEGNO(sbi, blkaddr); 857 858 se = get_seg_entry(sbi, segno); 859 new_vblocks = se->valid_blocks + del; 860 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 861 862 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 863 (new_vblocks > sbi->blocks_per_seg))); 864 865 se->valid_blocks = new_vblocks; 866 se->mtime = get_mtime(sbi); 867 SIT_I(sbi)->max_mtime = se->mtime; 868 869 /* Update valid block bitmap */ 870 if (del > 0) { 871 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 872 f2fs_bug_on(sbi, 1); 873 if (f2fs_discard_en(sbi) && 874 !f2fs_test_and_set_bit(offset, se->discard_map)) 875 sbi->discard_blks--; 876 } else { 877 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 878 f2fs_bug_on(sbi, 1); 879 if (f2fs_discard_en(sbi) && 880 f2fs_test_and_clear_bit(offset, se->discard_map)) 881 sbi->discard_blks++; 882 } 883 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 884 se->ckpt_valid_blocks += del; 885 886 __mark_sit_entry_dirty(sbi, segno); 887 888 /* update total number of valid blocks to be written in ckpt area */ 889 SIT_I(sbi)->written_valid_blocks += del; 890 891 if (sbi->segs_per_sec > 1) 892 get_sec_entry(sbi, segno)->valid_blocks += del; 893 } 894 895 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 896 { 897 update_sit_entry(sbi, new, 1); 898 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 899 update_sit_entry(sbi, old, -1); 900 901 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 902 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 903 } 904 905 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 906 { 907 unsigned int segno = GET_SEGNO(sbi, addr); 908 struct sit_info *sit_i = SIT_I(sbi); 909 910 f2fs_bug_on(sbi, addr == NULL_ADDR); 911 if (addr == NEW_ADDR) 912 return; 913 914 /* add it into sit main buffer */ 915 mutex_lock(&sit_i->sentry_lock); 916 917 update_sit_entry(sbi, addr, -1); 918 919 /* add it into dirty seglist */ 920 locate_dirty_segment(sbi, segno); 921 922 mutex_unlock(&sit_i->sentry_lock); 923 } 924 925 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 926 { 927 struct sit_info *sit_i = SIT_I(sbi); 928 unsigned int segno, offset; 929 struct seg_entry *se; 930 bool is_cp = false; 931 932 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 933 return true; 934 935 mutex_lock(&sit_i->sentry_lock); 936 937 segno = GET_SEGNO(sbi, blkaddr); 938 se = get_seg_entry(sbi, segno); 939 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 940 941 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 942 is_cp = true; 943 944 mutex_unlock(&sit_i->sentry_lock); 945 946 return is_cp; 947 } 948 949 /* 950 * This function should be resided under the curseg_mutex lock 951 */ 952 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 953 struct f2fs_summary *sum) 954 { 955 struct curseg_info *curseg = CURSEG_I(sbi, type); 956 void *addr = curseg->sum_blk; 957 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 958 memcpy(addr, sum, sizeof(struct f2fs_summary)); 959 } 960 961 /* 962 * Calculate the number of current summary pages for writing 963 */ 964 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 965 { 966 int valid_sum_count = 0; 967 int i, sum_in_page; 968 969 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 970 if (sbi->ckpt->alloc_type[i] == SSR) 971 valid_sum_count += sbi->blocks_per_seg; 972 else { 973 if (for_ra) 974 valid_sum_count += le16_to_cpu( 975 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 976 else 977 valid_sum_count += curseg_blkoff(sbi, i); 978 } 979 } 980 981 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 982 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 983 if (valid_sum_count <= sum_in_page) 984 return 1; 985 else if ((valid_sum_count - sum_in_page) <= 986 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 987 return 2; 988 return 3; 989 } 990 991 /* 992 * Caller should put this summary page 993 */ 994 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 995 { 996 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 997 } 998 999 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1000 { 1001 struct page *page = grab_meta_page(sbi, blk_addr); 1002 void *dst = page_address(page); 1003 1004 if (src) 1005 memcpy(dst, src, PAGE_SIZE); 1006 else 1007 memset(dst, 0, PAGE_SIZE); 1008 set_page_dirty(page); 1009 f2fs_put_page(page, 1); 1010 } 1011 1012 static void write_sum_page(struct f2fs_sb_info *sbi, 1013 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1014 { 1015 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1016 } 1017 1018 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1019 int type, block_t blk_addr) 1020 { 1021 struct curseg_info *curseg = CURSEG_I(sbi, type); 1022 struct page *page = grab_meta_page(sbi, blk_addr); 1023 struct f2fs_summary_block *src = curseg->sum_blk; 1024 struct f2fs_summary_block *dst; 1025 1026 dst = (struct f2fs_summary_block *)page_address(page); 1027 1028 mutex_lock(&curseg->curseg_mutex); 1029 1030 down_read(&curseg->journal_rwsem); 1031 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1032 up_read(&curseg->journal_rwsem); 1033 1034 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1035 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1036 1037 mutex_unlock(&curseg->curseg_mutex); 1038 1039 set_page_dirty(page); 1040 f2fs_put_page(page, 1); 1041 } 1042 1043 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 1044 { 1045 struct curseg_info *curseg = CURSEG_I(sbi, type); 1046 unsigned int segno = curseg->segno + 1; 1047 struct free_segmap_info *free_i = FREE_I(sbi); 1048 1049 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 1050 return !test_bit(segno, free_i->free_segmap); 1051 return 0; 1052 } 1053 1054 /* 1055 * Find a new segment from the free segments bitmap to right order 1056 * This function should be returned with success, otherwise BUG 1057 */ 1058 static void get_new_segment(struct f2fs_sb_info *sbi, 1059 unsigned int *newseg, bool new_sec, int dir) 1060 { 1061 struct free_segmap_info *free_i = FREE_I(sbi); 1062 unsigned int segno, secno, zoneno; 1063 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1064 unsigned int hint = *newseg / sbi->segs_per_sec; 1065 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1066 unsigned int left_start = hint; 1067 bool init = true; 1068 int go_left = 0; 1069 int i; 1070 1071 spin_lock(&free_i->segmap_lock); 1072 1073 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1074 segno = find_next_zero_bit(free_i->free_segmap, 1075 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1076 if (segno < (hint + 1) * sbi->segs_per_sec) 1077 goto got_it; 1078 } 1079 find_other_zone: 1080 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1081 if (secno >= MAIN_SECS(sbi)) { 1082 if (dir == ALLOC_RIGHT) { 1083 secno = find_next_zero_bit(free_i->free_secmap, 1084 MAIN_SECS(sbi), 0); 1085 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1086 } else { 1087 go_left = 1; 1088 left_start = hint - 1; 1089 } 1090 } 1091 if (go_left == 0) 1092 goto skip_left; 1093 1094 while (test_bit(left_start, free_i->free_secmap)) { 1095 if (left_start > 0) { 1096 left_start--; 1097 continue; 1098 } 1099 left_start = find_next_zero_bit(free_i->free_secmap, 1100 MAIN_SECS(sbi), 0); 1101 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1102 break; 1103 } 1104 secno = left_start; 1105 skip_left: 1106 hint = secno; 1107 segno = secno * sbi->segs_per_sec; 1108 zoneno = secno / sbi->secs_per_zone; 1109 1110 /* give up on finding another zone */ 1111 if (!init) 1112 goto got_it; 1113 if (sbi->secs_per_zone == 1) 1114 goto got_it; 1115 if (zoneno == old_zoneno) 1116 goto got_it; 1117 if (dir == ALLOC_LEFT) { 1118 if (!go_left && zoneno + 1 >= total_zones) 1119 goto got_it; 1120 if (go_left && zoneno == 0) 1121 goto got_it; 1122 } 1123 for (i = 0; i < NR_CURSEG_TYPE; i++) 1124 if (CURSEG_I(sbi, i)->zone == zoneno) 1125 break; 1126 1127 if (i < NR_CURSEG_TYPE) { 1128 /* zone is in user, try another */ 1129 if (go_left) 1130 hint = zoneno * sbi->secs_per_zone - 1; 1131 else if (zoneno + 1 >= total_zones) 1132 hint = 0; 1133 else 1134 hint = (zoneno + 1) * sbi->secs_per_zone; 1135 init = false; 1136 goto find_other_zone; 1137 } 1138 got_it: 1139 /* set it as dirty segment in free segmap */ 1140 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1141 __set_inuse(sbi, segno); 1142 *newseg = segno; 1143 spin_unlock(&free_i->segmap_lock); 1144 } 1145 1146 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1147 { 1148 struct curseg_info *curseg = CURSEG_I(sbi, type); 1149 struct summary_footer *sum_footer; 1150 1151 curseg->segno = curseg->next_segno; 1152 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1153 curseg->next_blkoff = 0; 1154 curseg->next_segno = NULL_SEGNO; 1155 1156 sum_footer = &(curseg->sum_blk->footer); 1157 memset(sum_footer, 0, sizeof(struct summary_footer)); 1158 if (IS_DATASEG(type)) 1159 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1160 if (IS_NODESEG(type)) 1161 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1162 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1163 } 1164 1165 /* 1166 * Allocate a current working segment. 1167 * This function always allocates a free segment in LFS manner. 1168 */ 1169 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1170 { 1171 struct curseg_info *curseg = CURSEG_I(sbi, type); 1172 unsigned int segno = curseg->segno; 1173 int dir = ALLOC_LEFT; 1174 1175 write_sum_page(sbi, curseg->sum_blk, 1176 GET_SUM_BLOCK(sbi, segno)); 1177 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1178 dir = ALLOC_RIGHT; 1179 1180 if (test_opt(sbi, NOHEAP)) 1181 dir = ALLOC_RIGHT; 1182 1183 get_new_segment(sbi, &segno, new_sec, dir); 1184 curseg->next_segno = segno; 1185 reset_curseg(sbi, type, 1); 1186 curseg->alloc_type = LFS; 1187 } 1188 1189 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1190 struct curseg_info *seg, block_t start) 1191 { 1192 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1193 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1194 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1195 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1196 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1197 int i, pos; 1198 1199 for (i = 0; i < entries; i++) 1200 target_map[i] = ckpt_map[i] | cur_map[i]; 1201 1202 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1203 1204 seg->next_blkoff = pos; 1205 } 1206 1207 /* 1208 * If a segment is written by LFS manner, next block offset is just obtained 1209 * by increasing the current block offset. However, if a segment is written by 1210 * SSR manner, next block offset obtained by calling __next_free_blkoff 1211 */ 1212 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1213 struct curseg_info *seg) 1214 { 1215 if (seg->alloc_type == SSR) 1216 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1217 else 1218 seg->next_blkoff++; 1219 } 1220 1221 /* 1222 * This function always allocates a used segment(from dirty seglist) by SSR 1223 * manner, so it should recover the existing segment information of valid blocks 1224 */ 1225 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1226 { 1227 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1228 struct curseg_info *curseg = CURSEG_I(sbi, type); 1229 unsigned int new_segno = curseg->next_segno; 1230 struct f2fs_summary_block *sum_node; 1231 struct page *sum_page; 1232 1233 write_sum_page(sbi, curseg->sum_blk, 1234 GET_SUM_BLOCK(sbi, curseg->segno)); 1235 __set_test_and_inuse(sbi, new_segno); 1236 1237 mutex_lock(&dirty_i->seglist_lock); 1238 __remove_dirty_segment(sbi, new_segno, PRE); 1239 __remove_dirty_segment(sbi, new_segno, DIRTY); 1240 mutex_unlock(&dirty_i->seglist_lock); 1241 1242 reset_curseg(sbi, type, 1); 1243 curseg->alloc_type = SSR; 1244 __next_free_blkoff(sbi, curseg, 0); 1245 1246 if (reuse) { 1247 sum_page = get_sum_page(sbi, new_segno); 1248 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1249 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1250 f2fs_put_page(sum_page, 1); 1251 } 1252 } 1253 1254 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1255 { 1256 struct curseg_info *curseg = CURSEG_I(sbi, type); 1257 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1258 1259 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0)) 1260 return v_ops->get_victim(sbi, 1261 &(curseg)->next_segno, BG_GC, type, SSR); 1262 1263 /* For data segments, let's do SSR more intensively */ 1264 for (; type >= CURSEG_HOT_DATA; type--) 1265 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1266 BG_GC, type, SSR)) 1267 return 1; 1268 return 0; 1269 } 1270 1271 /* 1272 * flush out current segment and replace it with new segment 1273 * This function should be returned with success, otherwise BUG 1274 */ 1275 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1276 int type, bool force) 1277 { 1278 struct curseg_info *curseg = CURSEG_I(sbi, type); 1279 1280 if (force) 1281 new_curseg(sbi, type, true); 1282 else if (type == CURSEG_WARM_NODE) 1283 new_curseg(sbi, type, false); 1284 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1285 new_curseg(sbi, type, false); 1286 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1287 change_curseg(sbi, type, true); 1288 else 1289 new_curseg(sbi, type, false); 1290 1291 stat_inc_seg_type(sbi, curseg); 1292 } 1293 1294 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1295 { 1296 struct curseg_info *curseg = CURSEG_I(sbi, type); 1297 unsigned int old_segno; 1298 1299 old_segno = curseg->segno; 1300 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1301 locate_dirty_segment(sbi, old_segno); 1302 } 1303 1304 void allocate_new_segments(struct f2fs_sb_info *sbi) 1305 { 1306 int i; 1307 1308 if (test_opt(sbi, LFS)) 1309 return; 1310 1311 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1312 __allocate_new_segments(sbi, i); 1313 } 1314 1315 static const struct segment_allocation default_salloc_ops = { 1316 .allocate_segment = allocate_segment_by_default, 1317 }; 1318 1319 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1320 { 1321 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1322 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1323 unsigned int start_segno, end_segno; 1324 struct cp_control cpc; 1325 int err = 0; 1326 1327 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1328 return -EINVAL; 1329 1330 cpc.trimmed = 0; 1331 if (end <= MAIN_BLKADDR(sbi)) 1332 goto out; 1333 1334 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1335 f2fs_msg(sbi->sb, KERN_WARNING, 1336 "Found FS corruption, run fsck to fix."); 1337 goto out; 1338 } 1339 1340 /* start/end segment number in main_area */ 1341 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1342 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1343 GET_SEGNO(sbi, end); 1344 cpc.reason = CP_DISCARD; 1345 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1346 1347 /* do checkpoint to issue discard commands safely */ 1348 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1349 cpc.trim_start = start_segno; 1350 1351 if (sbi->discard_blks == 0) 1352 break; 1353 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1354 cpc.trim_end = end_segno; 1355 else 1356 cpc.trim_end = min_t(unsigned int, 1357 rounddown(start_segno + 1358 BATCHED_TRIM_SEGMENTS(sbi), 1359 sbi->segs_per_sec) - 1, end_segno); 1360 1361 mutex_lock(&sbi->gc_mutex); 1362 err = write_checkpoint(sbi, &cpc); 1363 mutex_unlock(&sbi->gc_mutex); 1364 if (err) 1365 break; 1366 1367 schedule(); 1368 } 1369 out: 1370 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1371 return err; 1372 } 1373 1374 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1375 { 1376 struct curseg_info *curseg = CURSEG_I(sbi, type); 1377 if (curseg->next_blkoff < sbi->blocks_per_seg) 1378 return true; 1379 return false; 1380 } 1381 1382 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1383 { 1384 if (p_type == DATA) 1385 return CURSEG_HOT_DATA; 1386 else 1387 return CURSEG_HOT_NODE; 1388 } 1389 1390 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1391 { 1392 if (p_type == DATA) { 1393 struct inode *inode = page->mapping->host; 1394 1395 if (S_ISDIR(inode->i_mode)) 1396 return CURSEG_HOT_DATA; 1397 else 1398 return CURSEG_COLD_DATA; 1399 } else { 1400 if (IS_DNODE(page) && is_cold_node(page)) 1401 return CURSEG_WARM_NODE; 1402 else 1403 return CURSEG_COLD_NODE; 1404 } 1405 } 1406 1407 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1408 { 1409 if (p_type == DATA) { 1410 struct inode *inode = page->mapping->host; 1411 1412 if (S_ISDIR(inode->i_mode)) 1413 return CURSEG_HOT_DATA; 1414 else if (is_cold_data(page) || file_is_cold(inode)) 1415 return CURSEG_COLD_DATA; 1416 else 1417 return CURSEG_WARM_DATA; 1418 } else { 1419 if (IS_DNODE(page)) 1420 return is_cold_node(page) ? CURSEG_WARM_NODE : 1421 CURSEG_HOT_NODE; 1422 else 1423 return CURSEG_COLD_NODE; 1424 } 1425 } 1426 1427 static int __get_segment_type(struct page *page, enum page_type p_type) 1428 { 1429 switch (F2FS_P_SB(page)->active_logs) { 1430 case 2: 1431 return __get_segment_type_2(page, p_type); 1432 case 4: 1433 return __get_segment_type_4(page, p_type); 1434 } 1435 /* NR_CURSEG_TYPE(6) logs by default */ 1436 f2fs_bug_on(F2FS_P_SB(page), 1437 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1438 return __get_segment_type_6(page, p_type); 1439 } 1440 1441 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1442 block_t old_blkaddr, block_t *new_blkaddr, 1443 struct f2fs_summary *sum, int type) 1444 { 1445 struct sit_info *sit_i = SIT_I(sbi); 1446 struct curseg_info *curseg; 1447 bool direct_io = (type == CURSEG_DIRECT_IO); 1448 1449 type = direct_io ? CURSEG_WARM_DATA : type; 1450 1451 curseg = CURSEG_I(sbi, type); 1452 1453 mutex_lock(&curseg->curseg_mutex); 1454 mutex_lock(&sit_i->sentry_lock); 1455 1456 /* direct_io'ed data is aligned to the segment for better performance */ 1457 if (direct_io && curseg->next_blkoff && 1458 !has_not_enough_free_secs(sbi, 0, 0)) 1459 __allocate_new_segments(sbi, type); 1460 1461 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1462 1463 /* 1464 * __add_sum_entry should be resided under the curseg_mutex 1465 * because, this function updates a summary entry in the 1466 * current summary block. 1467 */ 1468 __add_sum_entry(sbi, type, sum); 1469 1470 __refresh_next_blkoff(sbi, curseg); 1471 1472 stat_inc_block_count(sbi, curseg); 1473 1474 if (!__has_curseg_space(sbi, type)) 1475 sit_i->s_ops->allocate_segment(sbi, type, false); 1476 /* 1477 * SIT information should be updated before segment allocation, 1478 * since SSR needs latest valid block information. 1479 */ 1480 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1481 1482 mutex_unlock(&sit_i->sentry_lock); 1483 1484 if (page && IS_NODESEG(type)) 1485 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1486 1487 mutex_unlock(&curseg->curseg_mutex); 1488 } 1489 1490 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1491 { 1492 int type = __get_segment_type(fio->page, fio->type); 1493 1494 if (fio->type == NODE || fio->type == DATA) 1495 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1496 1497 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1498 &fio->new_blkaddr, sum, type); 1499 1500 /* writeout dirty page into bdev */ 1501 f2fs_submit_page_mbio(fio); 1502 1503 if (fio->type == NODE || fio->type == DATA) 1504 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1505 } 1506 1507 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1508 { 1509 struct f2fs_io_info fio = { 1510 .sbi = sbi, 1511 .type = META, 1512 .op = REQ_OP_WRITE, 1513 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO, 1514 .old_blkaddr = page->index, 1515 .new_blkaddr = page->index, 1516 .page = page, 1517 .encrypted_page = NULL, 1518 }; 1519 1520 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1521 fio.op_flags &= ~REQ_META; 1522 1523 set_page_writeback(page); 1524 f2fs_submit_page_mbio(&fio); 1525 } 1526 1527 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1528 { 1529 struct f2fs_summary sum; 1530 1531 set_summary(&sum, nid, 0, 0); 1532 do_write_page(&sum, fio); 1533 } 1534 1535 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1536 { 1537 struct f2fs_sb_info *sbi = fio->sbi; 1538 struct f2fs_summary sum; 1539 struct node_info ni; 1540 1541 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1542 get_node_info(sbi, dn->nid, &ni); 1543 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1544 do_write_page(&sum, fio); 1545 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1546 } 1547 1548 void rewrite_data_page(struct f2fs_io_info *fio) 1549 { 1550 fio->new_blkaddr = fio->old_blkaddr; 1551 stat_inc_inplace_blocks(fio->sbi); 1552 f2fs_submit_page_mbio(fio); 1553 } 1554 1555 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1556 block_t old_blkaddr, block_t new_blkaddr, 1557 bool recover_curseg, bool recover_newaddr) 1558 { 1559 struct sit_info *sit_i = SIT_I(sbi); 1560 struct curseg_info *curseg; 1561 unsigned int segno, old_cursegno; 1562 struct seg_entry *se; 1563 int type; 1564 unsigned short old_blkoff; 1565 1566 segno = GET_SEGNO(sbi, new_blkaddr); 1567 se = get_seg_entry(sbi, segno); 1568 type = se->type; 1569 1570 if (!recover_curseg) { 1571 /* for recovery flow */ 1572 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1573 if (old_blkaddr == NULL_ADDR) 1574 type = CURSEG_COLD_DATA; 1575 else 1576 type = CURSEG_WARM_DATA; 1577 } 1578 } else { 1579 if (!IS_CURSEG(sbi, segno)) 1580 type = CURSEG_WARM_DATA; 1581 } 1582 1583 curseg = CURSEG_I(sbi, type); 1584 1585 mutex_lock(&curseg->curseg_mutex); 1586 mutex_lock(&sit_i->sentry_lock); 1587 1588 old_cursegno = curseg->segno; 1589 old_blkoff = curseg->next_blkoff; 1590 1591 /* change the current segment */ 1592 if (segno != curseg->segno) { 1593 curseg->next_segno = segno; 1594 change_curseg(sbi, type, true); 1595 } 1596 1597 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1598 __add_sum_entry(sbi, type, sum); 1599 1600 if (!recover_curseg || recover_newaddr) 1601 update_sit_entry(sbi, new_blkaddr, 1); 1602 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1603 update_sit_entry(sbi, old_blkaddr, -1); 1604 1605 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1606 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1607 1608 locate_dirty_segment(sbi, old_cursegno); 1609 1610 if (recover_curseg) { 1611 if (old_cursegno != curseg->segno) { 1612 curseg->next_segno = old_cursegno; 1613 change_curseg(sbi, type, true); 1614 } 1615 curseg->next_blkoff = old_blkoff; 1616 } 1617 1618 mutex_unlock(&sit_i->sentry_lock); 1619 mutex_unlock(&curseg->curseg_mutex); 1620 } 1621 1622 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1623 block_t old_addr, block_t new_addr, 1624 unsigned char version, bool recover_curseg, 1625 bool recover_newaddr) 1626 { 1627 struct f2fs_summary sum; 1628 1629 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1630 1631 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1632 recover_curseg, recover_newaddr); 1633 1634 f2fs_update_data_blkaddr(dn, new_addr); 1635 } 1636 1637 void f2fs_wait_on_page_writeback(struct page *page, 1638 enum page_type type, bool ordered) 1639 { 1640 if (PageWriteback(page)) { 1641 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1642 1643 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1644 if (ordered) 1645 wait_on_page_writeback(page); 1646 else 1647 wait_for_stable_page(page); 1648 } 1649 } 1650 1651 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1652 block_t blkaddr) 1653 { 1654 struct page *cpage; 1655 1656 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1657 return; 1658 1659 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1660 if (cpage) { 1661 f2fs_wait_on_page_writeback(cpage, DATA, true); 1662 f2fs_put_page(cpage, 1); 1663 } 1664 } 1665 1666 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1667 { 1668 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1669 struct curseg_info *seg_i; 1670 unsigned char *kaddr; 1671 struct page *page; 1672 block_t start; 1673 int i, j, offset; 1674 1675 start = start_sum_block(sbi); 1676 1677 page = get_meta_page(sbi, start++); 1678 kaddr = (unsigned char *)page_address(page); 1679 1680 /* Step 1: restore nat cache */ 1681 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1682 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1683 1684 /* Step 2: restore sit cache */ 1685 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1686 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1687 offset = 2 * SUM_JOURNAL_SIZE; 1688 1689 /* Step 3: restore summary entries */ 1690 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1691 unsigned short blk_off; 1692 unsigned int segno; 1693 1694 seg_i = CURSEG_I(sbi, i); 1695 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1696 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1697 seg_i->next_segno = segno; 1698 reset_curseg(sbi, i, 0); 1699 seg_i->alloc_type = ckpt->alloc_type[i]; 1700 seg_i->next_blkoff = blk_off; 1701 1702 if (seg_i->alloc_type == SSR) 1703 blk_off = sbi->blocks_per_seg; 1704 1705 for (j = 0; j < blk_off; j++) { 1706 struct f2fs_summary *s; 1707 s = (struct f2fs_summary *)(kaddr + offset); 1708 seg_i->sum_blk->entries[j] = *s; 1709 offset += SUMMARY_SIZE; 1710 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 1711 SUM_FOOTER_SIZE) 1712 continue; 1713 1714 f2fs_put_page(page, 1); 1715 page = NULL; 1716 1717 page = get_meta_page(sbi, start++); 1718 kaddr = (unsigned char *)page_address(page); 1719 offset = 0; 1720 } 1721 } 1722 f2fs_put_page(page, 1); 1723 return 0; 1724 } 1725 1726 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1727 { 1728 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1729 struct f2fs_summary_block *sum; 1730 struct curseg_info *curseg; 1731 struct page *new; 1732 unsigned short blk_off; 1733 unsigned int segno = 0; 1734 block_t blk_addr = 0; 1735 1736 /* get segment number and block addr */ 1737 if (IS_DATASEG(type)) { 1738 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1739 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1740 CURSEG_HOT_DATA]); 1741 if (__exist_node_summaries(sbi)) 1742 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1743 else 1744 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1745 } else { 1746 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1747 CURSEG_HOT_NODE]); 1748 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1749 CURSEG_HOT_NODE]); 1750 if (__exist_node_summaries(sbi)) 1751 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1752 type - CURSEG_HOT_NODE); 1753 else 1754 blk_addr = GET_SUM_BLOCK(sbi, segno); 1755 } 1756 1757 new = get_meta_page(sbi, blk_addr); 1758 sum = (struct f2fs_summary_block *)page_address(new); 1759 1760 if (IS_NODESEG(type)) { 1761 if (__exist_node_summaries(sbi)) { 1762 struct f2fs_summary *ns = &sum->entries[0]; 1763 int i; 1764 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1765 ns->version = 0; 1766 ns->ofs_in_node = 0; 1767 } 1768 } else { 1769 int err; 1770 1771 err = restore_node_summary(sbi, segno, sum); 1772 if (err) { 1773 f2fs_put_page(new, 1); 1774 return err; 1775 } 1776 } 1777 } 1778 1779 /* set uncompleted segment to curseg */ 1780 curseg = CURSEG_I(sbi, type); 1781 mutex_lock(&curseg->curseg_mutex); 1782 1783 /* update journal info */ 1784 down_write(&curseg->journal_rwsem); 1785 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1786 up_write(&curseg->journal_rwsem); 1787 1788 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1789 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1790 curseg->next_segno = segno; 1791 reset_curseg(sbi, type, 0); 1792 curseg->alloc_type = ckpt->alloc_type[type]; 1793 curseg->next_blkoff = blk_off; 1794 mutex_unlock(&curseg->curseg_mutex); 1795 f2fs_put_page(new, 1); 1796 return 0; 1797 } 1798 1799 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1800 { 1801 int type = CURSEG_HOT_DATA; 1802 int err; 1803 1804 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1805 int npages = npages_for_summary_flush(sbi, true); 1806 1807 if (npages >= 2) 1808 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1809 META_CP, true); 1810 1811 /* restore for compacted data summary */ 1812 if (read_compacted_summaries(sbi)) 1813 return -EINVAL; 1814 type = CURSEG_HOT_NODE; 1815 } 1816 1817 if (__exist_node_summaries(sbi)) 1818 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1819 NR_CURSEG_TYPE - type, META_CP, true); 1820 1821 for (; type <= CURSEG_COLD_NODE; type++) { 1822 err = read_normal_summaries(sbi, type); 1823 if (err) 1824 return err; 1825 } 1826 1827 return 0; 1828 } 1829 1830 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1831 { 1832 struct page *page; 1833 unsigned char *kaddr; 1834 struct f2fs_summary *summary; 1835 struct curseg_info *seg_i; 1836 int written_size = 0; 1837 int i, j; 1838 1839 page = grab_meta_page(sbi, blkaddr++); 1840 kaddr = (unsigned char *)page_address(page); 1841 1842 /* Step 1: write nat cache */ 1843 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1844 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1845 written_size += SUM_JOURNAL_SIZE; 1846 1847 /* Step 2: write sit cache */ 1848 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1849 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1850 written_size += SUM_JOURNAL_SIZE; 1851 1852 /* Step 3: write summary entries */ 1853 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1854 unsigned short blkoff; 1855 seg_i = CURSEG_I(sbi, i); 1856 if (sbi->ckpt->alloc_type[i] == SSR) 1857 blkoff = sbi->blocks_per_seg; 1858 else 1859 blkoff = curseg_blkoff(sbi, i); 1860 1861 for (j = 0; j < blkoff; j++) { 1862 if (!page) { 1863 page = grab_meta_page(sbi, blkaddr++); 1864 kaddr = (unsigned char *)page_address(page); 1865 written_size = 0; 1866 } 1867 summary = (struct f2fs_summary *)(kaddr + written_size); 1868 *summary = seg_i->sum_blk->entries[j]; 1869 written_size += SUMMARY_SIZE; 1870 1871 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 1872 SUM_FOOTER_SIZE) 1873 continue; 1874 1875 set_page_dirty(page); 1876 f2fs_put_page(page, 1); 1877 page = NULL; 1878 } 1879 } 1880 if (page) { 1881 set_page_dirty(page); 1882 f2fs_put_page(page, 1); 1883 } 1884 } 1885 1886 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1887 block_t blkaddr, int type) 1888 { 1889 int i, end; 1890 if (IS_DATASEG(type)) 1891 end = type + NR_CURSEG_DATA_TYPE; 1892 else 1893 end = type + NR_CURSEG_NODE_TYPE; 1894 1895 for (i = type; i < end; i++) 1896 write_current_sum_page(sbi, i, blkaddr + (i - type)); 1897 } 1898 1899 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1900 { 1901 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1902 write_compacted_summaries(sbi, start_blk); 1903 else 1904 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1905 } 1906 1907 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1908 { 1909 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1910 } 1911 1912 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 1913 unsigned int val, int alloc) 1914 { 1915 int i; 1916 1917 if (type == NAT_JOURNAL) { 1918 for (i = 0; i < nats_in_cursum(journal); i++) { 1919 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 1920 return i; 1921 } 1922 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 1923 return update_nats_in_cursum(journal, 1); 1924 } else if (type == SIT_JOURNAL) { 1925 for (i = 0; i < sits_in_cursum(journal); i++) 1926 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 1927 return i; 1928 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 1929 return update_sits_in_cursum(journal, 1); 1930 } 1931 return -1; 1932 } 1933 1934 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1935 unsigned int segno) 1936 { 1937 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1938 } 1939 1940 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1941 unsigned int start) 1942 { 1943 struct sit_info *sit_i = SIT_I(sbi); 1944 struct page *src_page, *dst_page; 1945 pgoff_t src_off, dst_off; 1946 void *src_addr, *dst_addr; 1947 1948 src_off = current_sit_addr(sbi, start); 1949 dst_off = next_sit_addr(sbi, src_off); 1950 1951 /* get current sit block page without lock */ 1952 src_page = get_meta_page(sbi, src_off); 1953 dst_page = grab_meta_page(sbi, dst_off); 1954 f2fs_bug_on(sbi, PageDirty(src_page)); 1955 1956 src_addr = page_address(src_page); 1957 dst_addr = page_address(dst_page); 1958 memcpy(dst_addr, src_addr, PAGE_SIZE); 1959 1960 set_page_dirty(dst_page); 1961 f2fs_put_page(src_page, 1); 1962 1963 set_to_next_sit(sit_i, start); 1964 1965 return dst_page; 1966 } 1967 1968 static struct sit_entry_set *grab_sit_entry_set(void) 1969 { 1970 struct sit_entry_set *ses = 1971 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 1972 1973 ses->entry_cnt = 0; 1974 INIT_LIST_HEAD(&ses->set_list); 1975 return ses; 1976 } 1977 1978 static void release_sit_entry_set(struct sit_entry_set *ses) 1979 { 1980 list_del(&ses->set_list); 1981 kmem_cache_free(sit_entry_set_slab, ses); 1982 } 1983 1984 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1985 struct list_head *head) 1986 { 1987 struct sit_entry_set *next = ses; 1988 1989 if (list_is_last(&ses->set_list, head)) 1990 return; 1991 1992 list_for_each_entry_continue(next, head, set_list) 1993 if (ses->entry_cnt <= next->entry_cnt) 1994 break; 1995 1996 list_move_tail(&ses->set_list, &next->set_list); 1997 } 1998 1999 static void add_sit_entry(unsigned int segno, struct list_head *head) 2000 { 2001 struct sit_entry_set *ses; 2002 unsigned int start_segno = START_SEGNO(segno); 2003 2004 list_for_each_entry(ses, head, set_list) { 2005 if (ses->start_segno == start_segno) { 2006 ses->entry_cnt++; 2007 adjust_sit_entry_set(ses, head); 2008 return; 2009 } 2010 } 2011 2012 ses = grab_sit_entry_set(); 2013 2014 ses->start_segno = start_segno; 2015 ses->entry_cnt++; 2016 list_add(&ses->set_list, head); 2017 } 2018 2019 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2020 { 2021 struct f2fs_sm_info *sm_info = SM_I(sbi); 2022 struct list_head *set_list = &sm_info->sit_entry_set; 2023 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2024 unsigned int segno; 2025 2026 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2027 add_sit_entry(segno, set_list); 2028 } 2029 2030 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2031 { 2032 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2033 struct f2fs_journal *journal = curseg->journal; 2034 int i; 2035 2036 down_write(&curseg->journal_rwsem); 2037 for (i = 0; i < sits_in_cursum(journal); i++) { 2038 unsigned int segno; 2039 bool dirtied; 2040 2041 segno = le32_to_cpu(segno_in_journal(journal, i)); 2042 dirtied = __mark_sit_entry_dirty(sbi, segno); 2043 2044 if (!dirtied) 2045 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2046 } 2047 update_sits_in_cursum(journal, -i); 2048 up_write(&curseg->journal_rwsem); 2049 } 2050 2051 /* 2052 * CP calls this function, which flushes SIT entries including sit_journal, 2053 * and moves prefree segs to free segs. 2054 */ 2055 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2056 { 2057 struct sit_info *sit_i = SIT_I(sbi); 2058 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2059 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2060 struct f2fs_journal *journal = curseg->journal; 2061 struct sit_entry_set *ses, *tmp; 2062 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2063 bool to_journal = true; 2064 struct seg_entry *se; 2065 2066 mutex_lock(&sit_i->sentry_lock); 2067 2068 if (!sit_i->dirty_sentries) 2069 goto out; 2070 2071 /* 2072 * add and account sit entries of dirty bitmap in sit entry 2073 * set temporarily 2074 */ 2075 add_sits_in_set(sbi); 2076 2077 /* 2078 * if there are no enough space in journal to store dirty sit 2079 * entries, remove all entries from journal and add and account 2080 * them in sit entry set. 2081 */ 2082 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2083 remove_sits_in_journal(sbi); 2084 2085 /* 2086 * there are two steps to flush sit entries: 2087 * #1, flush sit entries to journal in current cold data summary block. 2088 * #2, flush sit entries to sit page. 2089 */ 2090 list_for_each_entry_safe(ses, tmp, head, set_list) { 2091 struct page *page = NULL; 2092 struct f2fs_sit_block *raw_sit = NULL; 2093 unsigned int start_segno = ses->start_segno; 2094 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2095 (unsigned long)MAIN_SEGS(sbi)); 2096 unsigned int segno = start_segno; 2097 2098 if (to_journal && 2099 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2100 to_journal = false; 2101 2102 if (to_journal) { 2103 down_write(&curseg->journal_rwsem); 2104 } else { 2105 page = get_next_sit_page(sbi, start_segno); 2106 raw_sit = page_address(page); 2107 } 2108 2109 /* flush dirty sit entries in region of current sit set */ 2110 for_each_set_bit_from(segno, bitmap, end) { 2111 int offset, sit_offset; 2112 2113 se = get_seg_entry(sbi, segno); 2114 2115 /* add discard candidates */ 2116 if (cpc->reason != CP_DISCARD) { 2117 cpc->trim_start = segno; 2118 add_discard_addrs(sbi, cpc); 2119 } 2120 2121 if (to_journal) { 2122 offset = lookup_journal_in_cursum(journal, 2123 SIT_JOURNAL, segno, 1); 2124 f2fs_bug_on(sbi, offset < 0); 2125 segno_in_journal(journal, offset) = 2126 cpu_to_le32(segno); 2127 seg_info_to_raw_sit(se, 2128 &sit_in_journal(journal, offset)); 2129 } else { 2130 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2131 seg_info_to_raw_sit(se, 2132 &raw_sit->entries[sit_offset]); 2133 } 2134 2135 __clear_bit(segno, bitmap); 2136 sit_i->dirty_sentries--; 2137 ses->entry_cnt--; 2138 } 2139 2140 if (to_journal) 2141 up_write(&curseg->journal_rwsem); 2142 else 2143 f2fs_put_page(page, 1); 2144 2145 f2fs_bug_on(sbi, ses->entry_cnt); 2146 release_sit_entry_set(ses); 2147 } 2148 2149 f2fs_bug_on(sbi, !list_empty(head)); 2150 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2151 out: 2152 if (cpc->reason == CP_DISCARD) { 2153 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2154 add_discard_addrs(sbi, cpc); 2155 } 2156 mutex_unlock(&sit_i->sentry_lock); 2157 2158 set_prefree_as_free_segments(sbi); 2159 } 2160 2161 static int build_sit_info(struct f2fs_sb_info *sbi) 2162 { 2163 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2164 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2165 struct sit_info *sit_i; 2166 unsigned int sit_segs, start; 2167 char *src_bitmap, *dst_bitmap; 2168 unsigned int bitmap_size; 2169 2170 /* allocate memory for SIT information */ 2171 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2172 if (!sit_i) 2173 return -ENOMEM; 2174 2175 SM_I(sbi)->sit_info = sit_i; 2176 2177 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2178 sizeof(struct seg_entry), GFP_KERNEL); 2179 if (!sit_i->sentries) 2180 return -ENOMEM; 2181 2182 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2183 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2184 if (!sit_i->dirty_sentries_bitmap) 2185 return -ENOMEM; 2186 2187 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2188 sit_i->sentries[start].cur_valid_map 2189 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2190 sit_i->sentries[start].ckpt_valid_map 2191 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2192 if (!sit_i->sentries[start].cur_valid_map || 2193 !sit_i->sentries[start].ckpt_valid_map) 2194 return -ENOMEM; 2195 2196 if (f2fs_discard_en(sbi)) { 2197 sit_i->sentries[start].discard_map 2198 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2199 if (!sit_i->sentries[start].discard_map) 2200 return -ENOMEM; 2201 } 2202 } 2203 2204 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2205 if (!sit_i->tmp_map) 2206 return -ENOMEM; 2207 2208 if (sbi->segs_per_sec > 1) { 2209 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2210 sizeof(struct sec_entry), GFP_KERNEL); 2211 if (!sit_i->sec_entries) 2212 return -ENOMEM; 2213 } 2214 2215 /* get information related with SIT */ 2216 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2217 2218 /* setup SIT bitmap from ckeckpoint pack */ 2219 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2220 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2221 2222 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2223 if (!dst_bitmap) 2224 return -ENOMEM; 2225 2226 /* init SIT information */ 2227 sit_i->s_ops = &default_salloc_ops; 2228 2229 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2230 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2231 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 2232 sit_i->sit_bitmap = dst_bitmap; 2233 sit_i->bitmap_size = bitmap_size; 2234 sit_i->dirty_sentries = 0; 2235 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2236 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2237 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2238 mutex_init(&sit_i->sentry_lock); 2239 return 0; 2240 } 2241 2242 static int build_free_segmap(struct f2fs_sb_info *sbi) 2243 { 2244 struct free_segmap_info *free_i; 2245 unsigned int bitmap_size, sec_bitmap_size; 2246 2247 /* allocate memory for free segmap information */ 2248 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2249 if (!free_i) 2250 return -ENOMEM; 2251 2252 SM_I(sbi)->free_info = free_i; 2253 2254 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2255 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2256 if (!free_i->free_segmap) 2257 return -ENOMEM; 2258 2259 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2260 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2261 if (!free_i->free_secmap) 2262 return -ENOMEM; 2263 2264 /* set all segments as dirty temporarily */ 2265 memset(free_i->free_segmap, 0xff, bitmap_size); 2266 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2267 2268 /* init free segmap information */ 2269 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2270 free_i->free_segments = 0; 2271 free_i->free_sections = 0; 2272 spin_lock_init(&free_i->segmap_lock); 2273 return 0; 2274 } 2275 2276 static int build_curseg(struct f2fs_sb_info *sbi) 2277 { 2278 struct curseg_info *array; 2279 int i; 2280 2281 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2282 if (!array) 2283 return -ENOMEM; 2284 2285 SM_I(sbi)->curseg_array = array; 2286 2287 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2288 mutex_init(&array[i].curseg_mutex); 2289 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2290 if (!array[i].sum_blk) 2291 return -ENOMEM; 2292 init_rwsem(&array[i].journal_rwsem); 2293 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2294 GFP_KERNEL); 2295 if (!array[i].journal) 2296 return -ENOMEM; 2297 array[i].segno = NULL_SEGNO; 2298 array[i].next_blkoff = 0; 2299 } 2300 return restore_curseg_summaries(sbi); 2301 } 2302 2303 static void build_sit_entries(struct f2fs_sb_info *sbi) 2304 { 2305 struct sit_info *sit_i = SIT_I(sbi); 2306 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2307 struct f2fs_journal *journal = curseg->journal; 2308 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2309 unsigned int i, start, end; 2310 unsigned int readed, start_blk = 0; 2311 int nrpages = MAX_BIO_BLOCKS(sbi) * 8; 2312 2313 do { 2314 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true); 2315 2316 start = start_blk * sit_i->sents_per_block; 2317 end = (start_blk + readed) * sit_i->sents_per_block; 2318 2319 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2320 struct seg_entry *se = &sit_i->sentries[start]; 2321 struct f2fs_sit_block *sit_blk; 2322 struct f2fs_sit_entry sit; 2323 struct page *page; 2324 2325 page = get_current_sit_page(sbi, start); 2326 sit_blk = (struct f2fs_sit_block *)page_address(page); 2327 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2328 f2fs_put_page(page, 1); 2329 2330 check_block_count(sbi, start, &sit); 2331 seg_info_from_raw_sit(se, &sit); 2332 2333 /* build discard map only one time */ 2334 if (f2fs_discard_en(sbi)) { 2335 memcpy(se->discard_map, se->cur_valid_map, 2336 SIT_VBLOCK_MAP_SIZE); 2337 sbi->discard_blks += sbi->blocks_per_seg - 2338 se->valid_blocks; 2339 } 2340 2341 if (sbi->segs_per_sec > 1) 2342 get_sec_entry(sbi, start)->valid_blocks += 2343 se->valid_blocks; 2344 } 2345 start_blk += readed; 2346 } while (start_blk < sit_blk_cnt); 2347 2348 down_read(&curseg->journal_rwsem); 2349 for (i = 0; i < sits_in_cursum(journal); i++) { 2350 struct f2fs_sit_entry sit; 2351 struct seg_entry *se; 2352 unsigned int old_valid_blocks; 2353 2354 start = le32_to_cpu(segno_in_journal(journal, i)); 2355 se = &sit_i->sentries[start]; 2356 sit = sit_in_journal(journal, i); 2357 2358 old_valid_blocks = se->valid_blocks; 2359 2360 check_block_count(sbi, start, &sit); 2361 seg_info_from_raw_sit(se, &sit); 2362 2363 if (f2fs_discard_en(sbi)) { 2364 memcpy(se->discard_map, se->cur_valid_map, 2365 SIT_VBLOCK_MAP_SIZE); 2366 sbi->discard_blks += old_valid_blocks - 2367 se->valid_blocks; 2368 } 2369 2370 if (sbi->segs_per_sec > 1) 2371 get_sec_entry(sbi, start)->valid_blocks += 2372 se->valid_blocks - old_valid_blocks; 2373 } 2374 up_read(&curseg->journal_rwsem); 2375 } 2376 2377 static void init_free_segmap(struct f2fs_sb_info *sbi) 2378 { 2379 unsigned int start; 2380 int type; 2381 2382 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2383 struct seg_entry *sentry = get_seg_entry(sbi, start); 2384 if (!sentry->valid_blocks) 2385 __set_free(sbi, start); 2386 } 2387 2388 /* set use the current segments */ 2389 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2390 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2391 __set_test_and_inuse(sbi, curseg_t->segno); 2392 } 2393 } 2394 2395 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2396 { 2397 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2398 struct free_segmap_info *free_i = FREE_I(sbi); 2399 unsigned int segno = 0, offset = 0; 2400 unsigned short valid_blocks; 2401 2402 while (1) { 2403 /* find dirty segment based on free segmap */ 2404 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2405 if (segno >= MAIN_SEGS(sbi)) 2406 break; 2407 offset = segno + 1; 2408 valid_blocks = get_valid_blocks(sbi, segno, 0); 2409 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2410 continue; 2411 if (valid_blocks > sbi->blocks_per_seg) { 2412 f2fs_bug_on(sbi, 1); 2413 continue; 2414 } 2415 mutex_lock(&dirty_i->seglist_lock); 2416 __locate_dirty_segment(sbi, segno, DIRTY); 2417 mutex_unlock(&dirty_i->seglist_lock); 2418 } 2419 } 2420 2421 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2422 { 2423 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2424 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2425 2426 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2427 if (!dirty_i->victim_secmap) 2428 return -ENOMEM; 2429 return 0; 2430 } 2431 2432 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2433 { 2434 struct dirty_seglist_info *dirty_i; 2435 unsigned int bitmap_size, i; 2436 2437 /* allocate memory for dirty segments list information */ 2438 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2439 if (!dirty_i) 2440 return -ENOMEM; 2441 2442 SM_I(sbi)->dirty_info = dirty_i; 2443 mutex_init(&dirty_i->seglist_lock); 2444 2445 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2446 2447 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2448 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2449 if (!dirty_i->dirty_segmap[i]) 2450 return -ENOMEM; 2451 } 2452 2453 init_dirty_segmap(sbi); 2454 return init_victim_secmap(sbi); 2455 } 2456 2457 /* 2458 * Update min, max modified time for cost-benefit GC algorithm 2459 */ 2460 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2461 { 2462 struct sit_info *sit_i = SIT_I(sbi); 2463 unsigned int segno; 2464 2465 mutex_lock(&sit_i->sentry_lock); 2466 2467 sit_i->min_mtime = LLONG_MAX; 2468 2469 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2470 unsigned int i; 2471 unsigned long long mtime = 0; 2472 2473 for (i = 0; i < sbi->segs_per_sec; i++) 2474 mtime += get_seg_entry(sbi, segno + i)->mtime; 2475 2476 mtime = div_u64(mtime, sbi->segs_per_sec); 2477 2478 if (sit_i->min_mtime > mtime) 2479 sit_i->min_mtime = mtime; 2480 } 2481 sit_i->max_mtime = get_mtime(sbi); 2482 mutex_unlock(&sit_i->sentry_lock); 2483 } 2484 2485 int build_segment_manager(struct f2fs_sb_info *sbi) 2486 { 2487 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2488 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2489 struct f2fs_sm_info *sm_info; 2490 int err; 2491 2492 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2493 if (!sm_info) 2494 return -ENOMEM; 2495 2496 /* init sm info */ 2497 sbi->sm_info = sm_info; 2498 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2499 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2500 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2501 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2502 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2503 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2504 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2505 sm_info->rec_prefree_segments = sm_info->main_segments * 2506 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2507 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2508 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2509 2510 if (!test_opt(sbi, LFS)) 2511 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2512 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2513 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2514 2515 INIT_LIST_HEAD(&sm_info->discard_list); 2516 INIT_LIST_HEAD(&sm_info->wait_list); 2517 sm_info->nr_discards = 0; 2518 sm_info->max_discards = 0; 2519 2520 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2521 2522 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2523 2524 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2525 err = create_flush_cmd_control(sbi); 2526 if (err) 2527 return err; 2528 } 2529 2530 err = build_sit_info(sbi); 2531 if (err) 2532 return err; 2533 err = build_free_segmap(sbi); 2534 if (err) 2535 return err; 2536 err = build_curseg(sbi); 2537 if (err) 2538 return err; 2539 2540 /* reinit free segmap based on SIT */ 2541 build_sit_entries(sbi); 2542 2543 init_free_segmap(sbi); 2544 err = build_dirty_segmap(sbi); 2545 if (err) 2546 return err; 2547 2548 init_min_max_mtime(sbi); 2549 return 0; 2550 } 2551 2552 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2553 enum dirty_type dirty_type) 2554 { 2555 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2556 2557 mutex_lock(&dirty_i->seglist_lock); 2558 kvfree(dirty_i->dirty_segmap[dirty_type]); 2559 dirty_i->nr_dirty[dirty_type] = 0; 2560 mutex_unlock(&dirty_i->seglist_lock); 2561 } 2562 2563 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2564 { 2565 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2566 kvfree(dirty_i->victim_secmap); 2567 } 2568 2569 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2570 { 2571 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2572 int i; 2573 2574 if (!dirty_i) 2575 return; 2576 2577 /* discard pre-free/dirty segments list */ 2578 for (i = 0; i < NR_DIRTY_TYPE; i++) 2579 discard_dirty_segmap(sbi, i); 2580 2581 destroy_victim_secmap(sbi); 2582 SM_I(sbi)->dirty_info = NULL; 2583 kfree(dirty_i); 2584 } 2585 2586 static void destroy_curseg(struct f2fs_sb_info *sbi) 2587 { 2588 struct curseg_info *array = SM_I(sbi)->curseg_array; 2589 int i; 2590 2591 if (!array) 2592 return; 2593 SM_I(sbi)->curseg_array = NULL; 2594 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2595 kfree(array[i].sum_blk); 2596 kfree(array[i].journal); 2597 } 2598 kfree(array); 2599 } 2600 2601 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2602 { 2603 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2604 if (!free_i) 2605 return; 2606 SM_I(sbi)->free_info = NULL; 2607 kvfree(free_i->free_segmap); 2608 kvfree(free_i->free_secmap); 2609 kfree(free_i); 2610 } 2611 2612 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2613 { 2614 struct sit_info *sit_i = SIT_I(sbi); 2615 unsigned int start; 2616 2617 if (!sit_i) 2618 return; 2619 2620 if (sit_i->sentries) { 2621 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2622 kfree(sit_i->sentries[start].cur_valid_map); 2623 kfree(sit_i->sentries[start].ckpt_valid_map); 2624 kfree(sit_i->sentries[start].discard_map); 2625 } 2626 } 2627 kfree(sit_i->tmp_map); 2628 2629 kvfree(sit_i->sentries); 2630 kvfree(sit_i->sec_entries); 2631 kvfree(sit_i->dirty_sentries_bitmap); 2632 2633 SM_I(sbi)->sit_info = NULL; 2634 kfree(sit_i->sit_bitmap); 2635 kfree(sit_i); 2636 } 2637 2638 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2639 { 2640 struct f2fs_sm_info *sm_info = SM_I(sbi); 2641 2642 if (!sm_info) 2643 return; 2644 destroy_flush_cmd_control(sbi); 2645 destroy_dirty_segmap(sbi); 2646 destroy_curseg(sbi); 2647 destroy_free_segmap(sbi); 2648 destroy_sit_info(sbi); 2649 sbi->sm_info = NULL; 2650 kfree(sm_info); 2651 } 2652 2653 int __init create_segment_manager_caches(void) 2654 { 2655 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2656 sizeof(struct discard_entry)); 2657 if (!discard_entry_slab) 2658 goto fail; 2659 2660 bio_entry_slab = f2fs_kmem_cache_create("bio_entry", 2661 sizeof(struct bio_entry)); 2662 if (!bio_entry_slab) 2663 goto destroy_discard_entry; 2664 2665 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2666 sizeof(struct sit_entry_set)); 2667 if (!sit_entry_set_slab) 2668 goto destroy_bio_entry; 2669 2670 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2671 sizeof(struct inmem_pages)); 2672 if (!inmem_entry_slab) 2673 goto destroy_sit_entry_set; 2674 return 0; 2675 2676 destroy_sit_entry_set: 2677 kmem_cache_destroy(sit_entry_set_slab); 2678 destroy_bio_entry: 2679 kmem_cache_destroy(bio_entry_slab); 2680 destroy_discard_entry: 2681 kmem_cache_destroy(discard_entry_slab); 2682 fail: 2683 return -ENOMEM; 2684 } 2685 2686 void destroy_segment_manager_caches(void) 2687 { 2688 kmem_cache_destroy(sit_entry_set_slab); 2689 kmem_cache_destroy(bio_entry_slab); 2690 kmem_cache_destroy(discard_entry_slab); 2691 kmem_cache_destroy(inmem_entry_slab); 2692 } 2693