1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include <trace/events/f2fs.h> 24 25 #define __reverse_ffz(x) __reverse_ffs(~(x)) 26 27 static struct kmem_cache *discard_entry_slab; 28 static struct kmem_cache *sit_entry_set_slab; 29 static struct kmem_cache *inmem_entry_slab; 30 31 /* 32 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 33 * MSB and LSB are reversed in a byte by f2fs_set_bit. 34 */ 35 static inline unsigned long __reverse_ffs(unsigned long word) 36 { 37 int num = 0; 38 39 #if BITS_PER_LONG == 64 40 if ((word & 0xffffffff) == 0) { 41 num += 32; 42 word >>= 32; 43 } 44 #endif 45 if ((word & 0xffff) == 0) { 46 num += 16; 47 word >>= 16; 48 } 49 if ((word & 0xff) == 0) { 50 num += 8; 51 word >>= 8; 52 } 53 if ((word & 0xf0) == 0) 54 num += 4; 55 else 56 word >>= 4; 57 if ((word & 0xc) == 0) 58 num += 2; 59 else 60 word >>= 2; 61 if ((word & 0x2) == 0) 62 num += 1; 63 return num; 64 } 65 66 /* 67 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 68 * f2fs_set_bit makes MSB and LSB reversed in a byte. 69 * Example: 70 * LSB <--> MSB 71 * f2fs_set_bit(0, bitmap) => 0000 0001 72 * f2fs_set_bit(7, bitmap) => 1000 0000 73 */ 74 static unsigned long __find_rev_next_bit(const unsigned long *addr, 75 unsigned long size, unsigned long offset) 76 { 77 const unsigned long *p = addr + BIT_WORD(offset); 78 unsigned long result = offset & ~(BITS_PER_LONG - 1); 79 unsigned long tmp; 80 unsigned long mask, submask; 81 unsigned long quot, rest; 82 83 if (offset >= size) 84 return size; 85 86 size -= result; 87 offset %= BITS_PER_LONG; 88 if (!offset) 89 goto aligned; 90 91 tmp = *(p++); 92 quot = (offset >> 3) << 3; 93 rest = offset & 0x7; 94 mask = ~0UL << quot; 95 submask = (unsigned char)(0xff << rest) >> rest; 96 submask <<= quot; 97 mask &= submask; 98 tmp &= mask; 99 if (size < BITS_PER_LONG) 100 goto found_first; 101 if (tmp) 102 goto found_middle; 103 104 size -= BITS_PER_LONG; 105 result += BITS_PER_LONG; 106 aligned: 107 while (size & ~(BITS_PER_LONG-1)) { 108 tmp = *(p++); 109 if (tmp) 110 goto found_middle; 111 result += BITS_PER_LONG; 112 size -= BITS_PER_LONG; 113 } 114 if (!size) 115 return result; 116 tmp = *p; 117 found_first: 118 tmp &= (~0UL >> (BITS_PER_LONG - size)); 119 if (tmp == 0UL) /* Are any bits set? */ 120 return result + size; /* Nope. */ 121 found_middle: 122 return result + __reverse_ffs(tmp); 123 } 124 125 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 126 unsigned long size, unsigned long offset) 127 { 128 const unsigned long *p = addr + BIT_WORD(offset); 129 unsigned long result = offset & ~(BITS_PER_LONG - 1); 130 unsigned long tmp; 131 unsigned long mask, submask; 132 unsigned long quot, rest; 133 134 if (offset >= size) 135 return size; 136 137 size -= result; 138 offset %= BITS_PER_LONG; 139 if (!offset) 140 goto aligned; 141 142 tmp = *(p++); 143 quot = (offset >> 3) << 3; 144 rest = offset & 0x7; 145 mask = ~(~0UL << quot); 146 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 147 submask <<= quot; 148 mask += submask; 149 tmp |= mask; 150 if (size < BITS_PER_LONG) 151 goto found_first; 152 if (~tmp) 153 goto found_middle; 154 155 size -= BITS_PER_LONG; 156 result += BITS_PER_LONG; 157 aligned: 158 while (size & ~(BITS_PER_LONG - 1)) { 159 tmp = *(p++); 160 if (~tmp) 161 goto found_middle; 162 result += BITS_PER_LONG; 163 size -= BITS_PER_LONG; 164 } 165 if (!size) 166 return result; 167 tmp = *p; 168 169 found_first: 170 tmp |= ~0UL << size; 171 if (tmp == ~0UL) /* Are any bits zero? */ 172 return result + size; /* Nope. */ 173 found_middle: 174 return result + __reverse_ffz(tmp); 175 } 176 177 void register_inmem_page(struct inode *inode, struct page *page) 178 { 179 struct f2fs_inode_info *fi = F2FS_I(inode); 180 struct inmem_pages *new; 181 int err; 182 183 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 184 185 /* add atomic page indices to the list */ 186 new->page = page; 187 INIT_LIST_HEAD(&new->list); 188 retry: 189 /* increase reference count with clean state */ 190 mutex_lock(&fi->inmem_lock); 191 err = radix_tree_insert(&fi->inmem_root, page->index, new); 192 if (err == -EEXIST) { 193 mutex_unlock(&fi->inmem_lock); 194 kmem_cache_free(inmem_entry_slab, new); 195 return; 196 } else if (err) { 197 mutex_unlock(&fi->inmem_lock); 198 goto retry; 199 } 200 get_page(page); 201 list_add_tail(&new->list, &fi->inmem_pages); 202 mutex_unlock(&fi->inmem_lock); 203 } 204 205 void invalidate_inmem_page(struct inode *inode, struct page *page) 206 { 207 struct f2fs_inode_info *fi = F2FS_I(inode); 208 struct inmem_pages *cur; 209 210 mutex_lock(&fi->inmem_lock); 211 cur = radix_tree_lookup(&fi->inmem_root, page->index); 212 if (cur) { 213 radix_tree_delete(&fi->inmem_root, cur->page->index); 214 f2fs_put_page(cur->page, 0); 215 list_del(&cur->list); 216 kmem_cache_free(inmem_entry_slab, cur); 217 } 218 mutex_unlock(&fi->inmem_lock); 219 } 220 221 void commit_inmem_pages(struct inode *inode, bool abort) 222 { 223 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 224 struct f2fs_inode_info *fi = F2FS_I(inode); 225 struct inmem_pages *cur, *tmp; 226 bool submit_bio = false; 227 struct f2fs_io_info fio = { 228 .type = DATA, 229 .rw = WRITE_SYNC, 230 }; 231 232 /* 233 * The abort is true only when f2fs_evict_inode is called. 234 * Basically, the f2fs_evict_inode doesn't produce any data writes, so 235 * that we don't need to call f2fs_balance_fs. 236 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this 237 * inode becomes free by iget_locked in f2fs_iget. 238 */ 239 if (!abort) 240 f2fs_balance_fs(sbi); 241 242 f2fs_lock_op(sbi); 243 244 mutex_lock(&fi->inmem_lock); 245 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 246 lock_page(cur->page); 247 if (!abort && cur->page->mapping == inode->i_mapping) { 248 f2fs_wait_on_page_writeback(cur->page, DATA); 249 if (clear_page_dirty_for_io(cur->page)) 250 inode_dec_dirty_pages(inode); 251 do_write_data_page(cur->page, &fio); 252 submit_bio = true; 253 } 254 radix_tree_delete(&fi->inmem_root, cur->page->index); 255 f2fs_put_page(cur->page, 1); 256 list_del(&cur->list); 257 kmem_cache_free(inmem_entry_slab, cur); 258 } 259 if (submit_bio) 260 f2fs_submit_merged_bio(sbi, DATA, WRITE); 261 mutex_unlock(&fi->inmem_lock); 262 263 filemap_fdatawait_range(inode->i_mapping, 0, LLONG_MAX); 264 f2fs_unlock_op(sbi); 265 } 266 267 /* 268 * This function balances dirty node and dentry pages. 269 * In addition, it controls garbage collection. 270 */ 271 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 272 { 273 /* 274 * We should do GC or end up with checkpoint, if there are so many dirty 275 * dir/node pages without enough free segments. 276 */ 277 if (has_not_enough_free_secs(sbi, 0)) { 278 mutex_lock(&sbi->gc_mutex); 279 f2fs_gc(sbi); 280 } 281 } 282 283 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 284 { 285 /* check the # of cached NAT entries and prefree segments */ 286 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || 287 excess_prefree_segs(sbi) || 288 available_free_memory(sbi, INO_ENTRIES)) 289 f2fs_sync_fs(sbi->sb, true); 290 } 291 292 static int issue_flush_thread(void *data) 293 { 294 struct f2fs_sb_info *sbi = data; 295 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 296 wait_queue_head_t *q = &fcc->flush_wait_queue; 297 repeat: 298 if (kthread_should_stop()) 299 return 0; 300 301 if (!llist_empty(&fcc->issue_list)) { 302 struct bio *bio = bio_alloc(GFP_NOIO, 0); 303 struct flush_cmd *cmd, *next; 304 int ret; 305 306 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 307 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 308 309 bio->bi_bdev = sbi->sb->s_bdev; 310 ret = submit_bio_wait(WRITE_FLUSH, bio); 311 312 llist_for_each_entry_safe(cmd, next, 313 fcc->dispatch_list, llnode) { 314 cmd->ret = ret; 315 complete(&cmd->wait); 316 } 317 bio_put(bio); 318 fcc->dispatch_list = NULL; 319 } 320 321 wait_event_interruptible(*q, 322 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 323 goto repeat; 324 } 325 326 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 327 { 328 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 329 struct flush_cmd cmd; 330 331 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 332 test_opt(sbi, FLUSH_MERGE)); 333 334 if (test_opt(sbi, NOBARRIER)) 335 return 0; 336 337 if (!test_opt(sbi, FLUSH_MERGE)) 338 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL); 339 340 init_completion(&cmd.wait); 341 342 llist_add(&cmd.llnode, &fcc->issue_list); 343 344 if (!fcc->dispatch_list) 345 wake_up(&fcc->flush_wait_queue); 346 347 wait_for_completion(&cmd.wait); 348 349 return cmd.ret; 350 } 351 352 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 353 { 354 dev_t dev = sbi->sb->s_bdev->bd_dev; 355 struct flush_cmd_control *fcc; 356 int err = 0; 357 358 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 359 if (!fcc) 360 return -ENOMEM; 361 init_waitqueue_head(&fcc->flush_wait_queue); 362 init_llist_head(&fcc->issue_list); 363 SM_I(sbi)->cmd_control_info = fcc; 364 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 365 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 366 if (IS_ERR(fcc->f2fs_issue_flush)) { 367 err = PTR_ERR(fcc->f2fs_issue_flush); 368 kfree(fcc); 369 SM_I(sbi)->cmd_control_info = NULL; 370 return err; 371 } 372 373 return err; 374 } 375 376 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 377 { 378 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 379 380 if (fcc && fcc->f2fs_issue_flush) 381 kthread_stop(fcc->f2fs_issue_flush); 382 kfree(fcc); 383 SM_I(sbi)->cmd_control_info = NULL; 384 } 385 386 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 387 enum dirty_type dirty_type) 388 { 389 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 390 391 /* need not be added */ 392 if (IS_CURSEG(sbi, segno)) 393 return; 394 395 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 396 dirty_i->nr_dirty[dirty_type]++; 397 398 if (dirty_type == DIRTY) { 399 struct seg_entry *sentry = get_seg_entry(sbi, segno); 400 enum dirty_type t = sentry->type; 401 402 if (unlikely(t >= DIRTY)) { 403 f2fs_bug_on(sbi, 1); 404 return; 405 } 406 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 407 dirty_i->nr_dirty[t]++; 408 } 409 } 410 411 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 412 enum dirty_type dirty_type) 413 { 414 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 415 416 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 417 dirty_i->nr_dirty[dirty_type]--; 418 419 if (dirty_type == DIRTY) { 420 struct seg_entry *sentry = get_seg_entry(sbi, segno); 421 enum dirty_type t = sentry->type; 422 423 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 424 dirty_i->nr_dirty[t]--; 425 426 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 427 clear_bit(GET_SECNO(sbi, segno), 428 dirty_i->victim_secmap); 429 } 430 } 431 432 /* 433 * Should not occur error such as -ENOMEM. 434 * Adding dirty entry into seglist is not critical operation. 435 * If a given segment is one of current working segments, it won't be added. 436 */ 437 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 438 { 439 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 440 unsigned short valid_blocks; 441 442 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 443 return; 444 445 mutex_lock(&dirty_i->seglist_lock); 446 447 valid_blocks = get_valid_blocks(sbi, segno, 0); 448 449 if (valid_blocks == 0) { 450 __locate_dirty_segment(sbi, segno, PRE); 451 __remove_dirty_segment(sbi, segno, DIRTY); 452 } else if (valid_blocks < sbi->blocks_per_seg) { 453 __locate_dirty_segment(sbi, segno, DIRTY); 454 } else { 455 /* Recovery routine with SSR needs this */ 456 __remove_dirty_segment(sbi, segno, DIRTY); 457 } 458 459 mutex_unlock(&dirty_i->seglist_lock); 460 } 461 462 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 463 block_t blkstart, block_t blklen) 464 { 465 sector_t start = SECTOR_FROM_BLOCK(blkstart); 466 sector_t len = SECTOR_FROM_BLOCK(blklen); 467 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 468 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 469 } 470 471 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 472 { 473 if (f2fs_issue_discard(sbi, blkaddr, 1)) { 474 struct page *page = grab_meta_page(sbi, blkaddr); 475 /* zero-filled page */ 476 set_page_dirty(page); 477 f2fs_put_page(page, 1); 478 } 479 } 480 481 static void __add_discard_entry(struct f2fs_sb_info *sbi, 482 struct cp_control *cpc, unsigned int start, unsigned int end) 483 { 484 struct list_head *head = &SM_I(sbi)->discard_list; 485 struct discard_entry *new, *last; 486 487 if (!list_empty(head)) { 488 last = list_last_entry(head, struct discard_entry, list); 489 if (START_BLOCK(sbi, cpc->trim_start) + start == 490 last->blkaddr + last->len) { 491 last->len += end - start; 492 goto done; 493 } 494 } 495 496 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 497 INIT_LIST_HEAD(&new->list); 498 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 499 new->len = end - start; 500 list_add_tail(&new->list, head); 501 done: 502 SM_I(sbi)->nr_discards += end - start; 503 cpc->trimmed += end - start; 504 } 505 506 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 507 { 508 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 509 int max_blocks = sbi->blocks_per_seg; 510 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 511 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 512 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 513 unsigned long dmap[entries]; 514 unsigned int start = 0, end = -1; 515 bool force = (cpc->reason == CP_DISCARD); 516 int i; 517 518 if (!force && !test_opt(sbi, DISCARD)) 519 return; 520 521 if (force && !se->valid_blocks) { 522 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 523 /* 524 * if this segment is registered in the prefree list, then 525 * we should skip adding a discard candidate, and let the 526 * checkpoint do that later. 527 */ 528 mutex_lock(&dirty_i->seglist_lock); 529 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) { 530 mutex_unlock(&dirty_i->seglist_lock); 531 cpc->trimmed += sbi->blocks_per_seg; 532 return; 533 } 534 mutex_unlock(&dirty_i->seglist_lock); 535 536 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg); 537 return; 538 } 539 540 /* zero block will be discarded through the prefree list */ 541 if (!se->valid_blocks || se->valid_blocks == max_blocks) 542 return; 543 544 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 545 for (i = 0; i < entries; i++) 546 dmap[i] = ~(cur_map[i] | ckpt_map[i]); 547 548 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 549 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 550 if (start >= max_blocks) 551 break; 552 553 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 554 555 if (end - start < cpc->trim_minlen) 556 continue; 557 558 __add_discard_entry(sbi, cpc, start, end); 559 } 560 } 561 562 void release_discard_addrs(struct f2fs_sb_info *sbi) 563 { 564 struct list_head *head = &(SM_I(sbi)->discard_list); 565 struct discard_entry *entry, *this; 566 567 /* drop caches */ 568 list_for_each_entry_safe(entry, this, head, list) { 569 list_del(&entry->list); 570 kmem_cache_free(discard_entry_slab, entry); 571 } 572 } 573 574 /* 575 * Should call clear_prefree_segments after checkpoint is done. 576 */ 577 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 578 { 579 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 580 unsigned int segno; 581 582 mutex_lock(&dirty_i->seglist_lock); 583 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 584 __set_test_and_free(sbi, segno); 585 mutex_unlock(&dirty_i->seglist_lock); 586 } 587 588 void clear_prefree_segments(struct f2fs_sb_info *sbi) 589 { 590 struct list_head *head = &(SM_I(sbi)->discard_list); 591 struct discard_entry *entry, *this; 592 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 593 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 594 unsigned int start = 0, end = -1; 595 596 mutex_lock(&dirty_i->seglist_lock); 597 598 while (1) { 599 int i; 600 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 601 if (start >= MAIN_SEGS(sbi)) 602 break; 603 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 604 start + 1); 605 606 for (i = start; i < end; i++) 607 clear_bit(i, prefree_map); 608 609 dirty_i->nr_dirty[PRE] -= end - start; 610 611 if (!test_opt(sbi, DISCARD)) 612 continue; 613 614 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 615 (end - start) << sbi->log_blocks_per_seg); 616 } 617 mutex_unlock(&dirty_i->seglist_lock); 618 619 /* send small discards */ 620 list_for_each_entry_safe(entry, this, head, list) { 621 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 622 list_del(&entry->list); 623 SM_I(sbi)->nr_discards -= entry->len; 624 kmem_cache_free(discard_entry_slab, entry); 625 } 626 } 627 628 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 629 { 630 struct sit_info *sit_i = SIT_I(sbi); 631 632 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 633 sit_i->dirty_sentries++; 634 return false; 635 } 636 637 return true; 638 } 639 640 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 641 unsigned int segno, int modified) 642 { 643 struct seg_entry *se = get_seg_entry(sbi, segno); 644 se->type = type; 645 if (modified) 646 __mark_sit_entry_dirty(sbi, segno); 647 } 648 649 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 650 { 651 struct seg_entry *se; 652 unsigned int segno, offset; 653 long int new_vblocks; 654 655 segno = GET_SEGNO(sbi, blkaddr); 656 657 se = get_seg_entry(sbi, segno); 658 new_vblocks = se->valid_blocks + del; 659 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 660 661 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 662 (new_vblocks > sbi->blocks_per_seg))); 663 664 se->valid_blocks = new_vblocks; 665 se->mtime = get_mtime(sbi); 666 SIT_I(sbi)->max_mtime = se->mtime; 667 668 /* Update valid block bitmap */ 669 if (del > 0) { 670 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 671 f2fs_bug_on(sbi, 1); 672 } else { 673 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 674 f2fs_bug_on(sbi, 1); 675 } 676 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 677 se->ckpt_valid_blocks += del; 678 679 __mark_sit_entry_dirty(sbi, segno); 680 681 /* update total number of valid blocks to be written in ckpt area */ 682 SIT_I(sbi)->written_valid_blocks += del; 683 684 if (sbi->segs_per_sec > 1) 685 get_sec_entry(sbi, segno)->valid_blocks += del; 686 } 687 688 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 689 { 690 update_sit_entry(sbi, new, 1); 691 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 692 update_sit_entry(sbi, old, -1); 693 694 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 695 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 696 } 697 698 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 699 { 700 unsigned int segno = GET_SEGNO(sbi, addr); 701 struct sit_info *sit_i = SIT_I(sbi); 702 703 f2fs_bug_on(sbi, addr == NULL_ADDR); 704 if (addr == NEW_ADDR) 705 return; 706 707 /* add it into sit main buffer */ 708 mutex_lock(&sit_i->sentry_lock); 709 710 update_sit_entry(sbi, addr, -1); 711 712 /* add it into dirty seglist */ 713 locate_dirty_segment(sbi, segno); 714 715 mutex_unlock(&sit_i->sentry_lock); 716 } 717 718 /* 719 * This function should be resided under the curseg_mutex lock 720 */ 721 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 722 struct f2fs_summary *sum) 723 { 724 struct curseg_info *curseg = CURSEG_I(sbi, type); 725 void *addr = curseg->sum_blk; 726 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 727 memcpy(addr, sum, sizeof(struct f2fs_summary)); 728 } 729 730 /* 731 * Calculate the number of current summary pages for writing 732 */ 733 int npages_for_summary_flush(struct f2fs_sb_info *sbi) 734 { 735 int valid_sum_count = 0; 736 int i, sum_in_page; 737 738 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 739 if (sbi->ckpt->alloc_type[i] == SSR) 740 valid_sum_count += sbi->blocks_per_seg; 741 else 742 valid_sum_count += curseg_blkoff(sbi, i); 743 } 744 745 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 746 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 747 if (valid_sum_count <= sum_in_page) 748 return 1; 749 else if ((valid_sum_count - sum_in_page) <= 750 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 751 return 2; 752 return 3; 753 } 754 755 /* 756 * Caller should put this summary page 757 */ 758 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 759 { 760 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 761 } 762 763 static void write_sum_page(struct f2fs_sb_info *sbi, 764 struct f2fs_summary_block *sum_blk, block_t blk_addr) 765 { 766 struct page *page = grab_meta_page(sbi, blk_addr); 767 void *kaddr = page_address(page); 768 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); 769 set_page_dirty(page); 770 f2fs_put_page(page, 1); 771 } 772 773 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 774 { 775 struct curseg_info *curseg = CURSEG_I(sbi, type); 776 unsigned int segno = curseg->segno + 1; 777 struct free_segmap_info *free_i = FREE_I(sbi); 778 779 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 780 return !test_bit(segno, free_i->free_segmap); 781 return 0; 782 } 783 784 /* 785 * Find a new segment from the free segments bitmap to right order 786 * This function should be returned with success, otherwise BUG 787 */ 788 static void get_new_segment(struct f2fs_sb_info *sbi, 789 unsigned int *newseg, bool new_sec, int dir) 790 { 791 struct free_segmap_info *free_i = FREE_I(sbi); 792 unsigned int segno, secno, zoneno; 793 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 794 unsigned int hint = *newseg / sbi->segs_per_sec; 795 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 796 unsigned int left_start = hint; 797 bool init = true; 798 int go_left = 0; 799 int i; 800 801 write_lock(&free_i->segmap_lock); 802 803 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 804 segno = find_next_zero_bit(free_i->free_segmap, 805 MAIN_SEGS(sbi), *newseg + 1); 806 if (segno - *newseg < sbi->segs_per_sec - 807 (*newseg % sbi->segs_per_sec)) 808 goto got_it; 809 } 810 find_other_zone: 811 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 812 if (secno >= MAIN_SECS(sbi)) { 813 if (dir == ALLOC_RIGHT) { 814 secno = find_next_zero_bit(free_i->free_secmap, 815 MAIN_SECS(sbi), 0); 816 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 817 } else { 818 go_left = 1; 819 left_start = hint - 1; 820 } 821 } 822 if (go_left == 0) 823 goto skip_left; 824 825 while (test_bit(left_start, free_i->free_secmap)) { 826 if (left_start > 0) { 827 left_start--; 828 continue; 829 } 830 left_start = find_next_zero_bit(free_i->free_secmap, 831 MAIN_SECS(sbi), 0); 832 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 833 break; 834 } 835 secno = left_start; 836 skip_left: 837 hint = secno; 838 segno = secno * sbi->segs_per_sec; 839 zoneno = secno / sbi->secs_per_zone; 840 841 /* give up on finding another zone */ 842 if (!init) 843 goto got_it; 844 if (sbi->secs_per_zone == 1) 845 goto got_it; 846 if (zoneno == old_zoneno) 847 goto got_it; 848 if (dir == ALLOC_LEFT) { 849 if (!go_left && zoneno + 1 >= total_zones) 850 goto got_it; 851 if (go_left && zoneno == 0) 852 goto got_it; 853 } 854 for (i = 0; i < NR_CURSEG_TYPE; i++) 855 if (CURSEG_I(sbi, i)->zone == zoneno) 856 break; 857 858 if (i < NR_CURSEG_TYPE) { 859 /* zone is in user, try another */ 860 if (go_left) 861 hint = zoneno * sbi->secs_per_zone - 1; 862 else if (zoneno + 1 >= total_zones) 863 hint = 0; 864 else 865 hint = (zoneno + 1) * sbi->secs_per_zone; 866 init = false; 867 goto find_other_zone; 868 } 869 got_it: 870 /* set it as dirty segment in free segmap */ 871 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 872 __set_inuse(sbi, segno); 873 *newseg = segno; 874 write_unlock(&free_i->segmap_lock); 875 } 876 877 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 878 { 879 struct curseg_info *curseg = CURSEG_I(sbi, type); 880 struct summary_footer *sum_footer; 881 882 curseg->segno = curseg->next_segno; 883 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 884 curseg->next_blkoff = 0; 885 curseg->next_segno = NULL_SEGNO; 886 887 sum_footer = &(curseg->sum_blk->footer); 888 memset(sum_footer, 0, sizeof(struct summary_footer)); 889 if (IS_DATASEG(type)) 890 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 891 if (IS_NODESEG(type)) 892 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 893 __set_sit_entry_type(sbi, type, curseg->segno, modified); 894 } 895 896 /* 897 * Allocate a current working segment. 898 * This function always allocates a free segment in LFS manner. 899 */ 900 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 901 { 902 struct curseg_info *curseg = CURSEG_I(sbi, type); 903 unsigned int segno = curseg->segno; 904 int dir = ALLOC_LEFT; 905 906 write_sum_page(sbi, curseg->sum_blk, 907 GET_SUM_BLOCK(sbi, segno)); 908 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 909 dir = ALLOC_RIGHT; 910 911 if (test_opt(sbi, NOHEAP)) 912 dir = ALLOC_RIGHT; 913 914 get_new_segment(sbi, &segno, new_sec, dir); 915 curseg->next_segno = segno; 916 reset_curseg(sbi, type, 1); 917 curseg->alloc_type = LFS; 918 } 919 920 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 921 struct curseg_info *seg, block_t start) 922 { 923 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 924 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 925 unsigned long target_map[entries]; 926 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 927 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 928 int i, pos; 929 930 for (i = 0; i < entries; i++) 931 target_map[i] = ckpt_map[i] | cur_map[i]; 932 933 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 934 935 seg->next_blkoff = pos; 936 } 937 938 /* 939 * If a segment is written by LFS manner, next block offset is just obtained 940 * by increasing the current block offset. However, if a segment is written by 941 * SSR manner, next block offset obtained by calling __next_free_blkoff 942 */ 943 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 944 struct curseg_info *seg) 945 { 946 if (seg->alloc_type == SSR) 947 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 948 else 949 seg->next_blkoff++; 950 } 951 952 /* 953 * This function always allocates a used segment(from dirty seglist) by SSR 954 * manner, so it should recover the existing segment information of valid blocks 955 */ 956 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 957 { 958 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 959 struct curseg_info *curseg = CURSEG_I(sbi, type); 960 unsigned int new_segno = curseg->next_segno; 961 struct f2fs_summary_block *sum_node; 962 struct page *sum_page; 963 964 write_sum_page(sbi, curseg->sum_blk, 965 GET_SUM_BLOCK(sbi, curseg->segno)); 966 __set_test_and_inuse(sbi, new_segno); 967 968 mutex_lock(&dirty_i->seglist_lock); 969 __remove_dirty_segment(sbi, new_segno, PRE); 970 __remove_dirty_segment(sbi, new_segno, DIRTY); 971 mutex_unlock(&dirty_i->seglist_lock); 972 973 reset_curseg(sbi, type, 1); 974 curseg->alloc_type = SSR; 975 __next_free_blkoff(sbi, curseg, 0); 976 977 if (reuse) { 978 sum_page = get_sum_page(sbi, new_segno); 979 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 980 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 981 f2fs_put_page(sum_page, 1); 982 } 983 } 984 985 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 986 { 987 struct curseg_info *curseg = CURSEG_I(sbi, type); 988 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 989 990 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 991 return v_ops->get_victim(sbi, 992 &(curseg)->next_segno, BG_GC, type, SSR); 993 994 /* For data segments, let's do SSR more intensively */ 995 for (; type >= CURSEG_HOT_DATA; type--) 996 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 997 BG_GC, type, SSR)) 998 return 1; 999 return 0; 1000 } 1001 1002 /* 1003 * flush out current segment and replace it with new segment 1004 * This function should be returned with success, otherwise BUG 1005 */ 1006 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1007 int type, bool force) 1008 { 1009 struct curseg_info *curseg = CURSEG_I(sbi, type); 1010 1011 if (force) 1012 new_curseg(sbi, type, true); 1013 else if (type == CURSEG_WARM_NODE) 1014 new_curseg(sbi, type, false); 1015 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1016 new_curseg(sbi, type, false); 1017 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1018 change_curseg(sbi, type, true); 1019 else 1020 new_curseg(sbi, type, false); 1021 1022 stat_inc_seg_type(sbi, curseg); 1023 } 1024 1025 void allocate_new_segments(struct f2fs_sb_info *sbi) 1026 { 1027 struct curseg_info *curseg; 1028 unsigned int old_curseg; 1029 int i; 1030 1031 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1032 curseg = CURSEG_I(sbi, i); 1033 old_curseg = curseg->segno; 1034 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1035 locate_dirty_segment(sbi, old_curseg); 1036 } 1037 } 1038 1039 static const struct segment_allocation default_salloc_ops = { 1040 .allocate_segment = allocate_segment_by_default, 1041 }; 1042 1043 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1044 { 1045 __u64 start = range->start >> sbi->log_blocksize; 1046 __u64 end = start + (range->len >> sbi->log_blocksize) - 1; 1047 unsigned int start_segno, end_segno; 1048 struct cp_control cpc; 1049 1050 if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) || 1051 range->len < sbi->blocksize) 1052 return -EINVAL; 1053 1054 cpc.trimmed = 0; 1055 if (end <= MAIN_BLKADDR(sbi)) 1056 goto out; 1057 1058 /* start/end segment number in main_area */ 1059 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1060 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1061 GET_SEGNO(sbi, end); 1062 cpc.reason = CP_DISCARD; 1063 cpc.trim_start = start_segno; 1064 cpc.trim_end = end_segno; 1065 cpc.trim_minlen = range->minlen >> sbi->log_blocksize; 1066 1067 /* do checkpoint to issue discard commands safely */ 1068 mutex_lock(&sbi->gc_mutex); 1069 write_checkpoint(sbi, &cpc); 1070 mutex_unlock(&sbi->gc_mutex); 1071 out: 1072 range->len = cpc.trimmed << sbi->log_blocksize; 1073 return 0; 1074 } 1075 1076 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1077 { 1078 struct curseg_info *curseg = CURSEG_I(sbi, type); 1079 if (curseg->next_blkoff < sbi->blocks_per_seg) 1080 return true; 1081 return false; 1082 } 1083 1084 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1085 { 1086 if (p_type == DATA) 1087 return CURSEG_HOT_DATA; 1088 else 1089 return CURSEG_HOT_NODE; 1090 } 1091 1092 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1093 { 1094 if (p_type == DATA) { 1095 struct inode *inode = page->mapping->host; 1096 1097 if (S_ISDIR(inode->i_mode)) 1098 return CURSEG_HOT_DATA; 1099 else 1100 return CURSEG_COLD_DATA; 1101 } else { 1102 if (IS_DNODE(page) && is_cold_node(page)) 1103 return CURSEG_WARM_NODE; 1104 else 1105 return CURSEG_COLD_NODE; 1106 } 1107 } 1108 1109 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1110 { 1111 if (p_type == DATA) { 1112 struct inode *inode = page->mapping->host; 1113 1114 if (S_ISDIR(inode->i_mode)) 1115 return CURSEG_HOT_DATA; 1116 else if (is_cold_data(page) || file_is_cold(inode)) 1117 return CURSEG_COLD_DATA; 1118 else 1119 return CURSEG_WARM_DATA; 1120 } else { 1121 if (IS_DNODE(page)) 1122 return is_cold_node(page) ? CURSEG_WARM_NODE : 1123 CURSEG_HOT_NODE; 1124 else 1125 return CURSEG_COLD_NODE; 1126 } 1127 } 1128 1129 static int __get_segment_type(struct page *page, enum page_type p_type) 1130 { 1131 switch (F2FS_P_SB(page)->active_logs) { 1132 case 2: 1133 return __get_segment_type_2(page, p_type); 1134 case 4: 1135 return __get_segment_type_4(page, p_type); 1136 } 1137 /* NR_CURSEG_TYPE(6) logs by default */ 1138 f2fs_bug_on(F2FS_P_SB(page), 1139 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1140 return __get_segment_type_6(page, p_type); 1141 } 1142 1143 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1144 block_t old_blkaddr, block_t *new_blkaddr, 1145 struct f2fs_summary *sum, int type) 1146 { 1147 struct sit_info *sit_i = SIT_I(sbi); 1148 struct curseg_info *curseg; 1149 1150 curseg = CURSEG_I(sbi, type); 1151 1152 mutex_lock(&curseg->curseg_mutex); 1153 1154 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1155 1156 /* 1157 * __add_sum_entry should be resided under the curseg_mutex 1158 * because, this function updates a summary entry in the 1159 * current summary block. 1160 */ 1161 __add_sum_entry(sbi, type, sum); 1162 1163 mutex_lock(&sit_i->sentry_lock); 1164 __refresh_next_blkoff(sbi, curseg); 1165 1166 stat_inc_block_count(sbi, curseg); 1167 1168 if (!__has_curseg_space(sbi, type)) 1169 sit_i->s_ops->allocate_segment(sbi, type, false); 1170 /* 1171 * SIT information should be updated before segment allocation, 1172 * since SSR needs latest valid block information. 1173 */ 1174 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1175 1176 mutex_unlock(&sit_i->sentry_lock); 1177 1178 if (page && IS_NODESEG(type)) 1179 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1180 1181 mutex_unlock(&curseg->curseg_mutex); 1182 } 1183 1184 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, 1185 block_t old_blkaddr, block_t *new_blkaddr, 1186 struct f2fs_summary *sum, struct f2fs_io_info *fio) 1187 { 1188 int type = __get_segment_type(page, fio->type); 1189 1190 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type); 1191 1192 /* writeout dirty page into bdev */ 1193 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio); 1194 } 1195 1196 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1197 { 1198 struct f2fs_io_info fio = { 1199 .type = META, 1200 .rw = WRITE_SYNC | REQ_META | REQ_PRIO 1201 }; 1202 1203 set_page_writeback(page); 1204 f2fs_submit_page_mbio(sbi, page, page->index, &fio); 1205 } 1206 1207 void write_node_page(struct f2fs_sb_info *sbi, struct page *page, 1208 struct f2fs_io_info *fio, 1209 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) 1210 { 1211 struct f2fs_summary sum; 1212 set_summary(&sum, nid, 0, 0); 1213 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio); 1214 } 1215 1216 void write_data_page(struct page *page, struct dnode_of_data *dn, 1217 block_t *new_blkaddr, struct f2fs_io_info *fio) 1218 { 1219 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1220 struct f2fs_summary sum; 1221 struct node_info ni; 1222 1223 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1224 get_node_info(sbi, dn->nid, &ni); 1225 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1226 1227 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio); 1228 } 1229 1230 void rewrite_data_page(struct page *page, block_t old_blkaddr, 1231 struct f2fs_io_info *fio) 1232 { 1233 f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio); 1234 } 1235 1236 void recover_data_page(struct f2fs_sb_info *sbi, 1237 struct page *page, struct f2fs_summary *sum, 1238 block_t old_blkaddr, block_t new_blkaddr) 1239 { 1240 struct sit_info *sit_i = SIT_I(sbi); 1241 struct curseg_info *curseg; 1242 unsigned int segno, old_cursegno; 1243 struct seg_entry *se; 1244 int type; 1245 1246 segno = GET_SEGNO(sbi, new_blkaddr); 1247 se = get_seg_entry(sbi, segno); 1248 type = se->type; 1249 1250 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1251 if (old_blkaddr == NULL_ADDR) 1252 type = CURSEG_COLD_DATA; 1253 else 1254 type = CURSEG_WARM_DATA; 1255 } 1256 curseg = CURSEG_I(sbi, type); 1257 1258 mutex_lock(&curseg->curseg_mutex); 1259 mutex_lock(&sit_i->sentry_lock); 1260 1261 old_cursegno = curseg->segno; 1262 1263 /* change the current segment */ 1264 if (segno != curseg->segno) { 1265 curseg->next_segno = segno; 1266 change_curseg(sbi, type, true); 1267 } 1268 1269 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1270 __add_sum_entry(sbi, type, sum); 1271 1272 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1273 locate_dirty_segment(sbi, old_cursegno); 1274 1275 mutex_unlock(&sit_i->sentry_lock); 1276 mutex_unlock(&curseg->curseg_mutex); 1277 } 1278 1279 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1280 struct page *page, enum page_type type) 1281 { 1282 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1283 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1284 struct bio_vec *bvec; 1285 int i; 1286 1287 down_read(&io->io_rwsem); 1288 if (!io->bio) 1289 goto out; 1290 1291 bio_for_each_segment_all(bvec, io->bio, i) { 1292 if (page == bvec->bv_page) { 1293 up_read(&io->io_rwsem); 1294 return true; 1295 } 1296 } 1297 1298 out: 1299 up_read(&io->io_rwsem); 1300 return false; 1301 } 1302 1303 void f2fs_wait_on_page_writeback(struct page *page, 1304 enum page_type type) 1305 { 1306 if (PageWriteback(page)) { 1307 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1308 1309 if (is_merged_page(sbi, page, type)) 1310 f2fs_submit_merged_bio(sbi, type, WRITE); 1311 wait_on_page_writeback(page); 1312 } 1313 } 1314 1315 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1316 { 1317 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1318 struct curseg_info *seg_i; 1319 unsigned char *kaddr; 1320 struct page *page; 1321 block_t start; 1322 int i, j, offset; 1323 1324 start = start_sum_block(sbi); 1325 1326 page = get_meta_page(sbi, start++); 1327 kaddr = (unsigned char *)page_address(page); 1328 1329 /* Step 1: restore nat cache */ 1330 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1331 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1332 1333 /* Step 2: restore sit cache */ 1334 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1335 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1336 SUM_JOURNAL_SIZE); 1337 offset = 2 * SUM_JOURNAL_SIZE; 1338 1339 /* Step 3: restore summary entries */ 1340 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1341 unsigned short blk_off; 1342 unsigned int segno; 1343 1344 seg_i = CURSEG_I(sbi, i); 1345 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1346 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1347 seg_i->next_segno = segno; 1348 reset_curseg(sbi, i, 0); 1349 seg_i->alloc_type = ckpt->alloc_type[i]; 1350 seg_i->next_blkoff = blk_off; 1351 1352 if (seg_i->alloc_type == SSR) 1353 blk_off = sbi->blocks_per_seg; 1354 1355 for (j = 0; j < blk_off; j++) { 1356 struct f2fs_summary *s; 1357 s = (struct f2fs_summary *)(kaddr + offset); 1358 seg_i->sum_blk->entries[j] = *s; 1359 offset += SUMMARY_SIZE; 1360 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1361 SUM_FOOTER_SIZE) 1362 continue; 1363 1364 f2fs_put_page(page, 1); 1365 page = NULL; 1366 1367 page = get_meta_page(sbi, start++); 1368 kaddr = (unsigned char *)page_address(page); 1369 offset = 0; 1370 } 1371 } 1372 f2fs_put_page(page, 1); 1373 return 0; 1374 } 1375 1376 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1377 { 1378 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1379 struct f2fs_summary_block *sum; 1380 struct curseg_info *curseg; 1381 struct page *new; 1382 unsigned short blk_off; 1383 unsigned int segno = 0; 1384 block_t blk_addr = 0; 1385 1386 /* get segment number and block addr */ 1387 if (IS_DATASEG(type)) { 1388 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1389 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1390 CURSEG_HOT_DATA]); 1391 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1392 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1393 else 1394 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1395 } else { 1396 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1397 CURSEG_HOT_NODE]); 1398 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1399 CURSEG_HOT_NODE]); 1400 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1401 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1402 type - CURSEG_HOT_NODE); 1403 else 1404 blk_addr = GET_SUM_BLOCK(sbi, segno); 1405 } 1406 1407 new = get_meta_page(sbi, blk_addr); 1408 sum = (struct f2fs_summary_block *)page_address(new); 1409 1410 if (IS_NODESEG(type)) { 1411 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { 1412 struct f2fs_summary *ns = &sum->entries[0]; 1413 int i; 1414 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1415 ns->version = 0; 1416 ns->ofs_in_node = 0; 1417 } 1418 } else { 1419 int err; 1420 1421 err = restore_node_summary(sbi, segno, sum); 1422 if (err) { 1423 f2fs_put_page(new, 1); 1424 return err; 1425 } 1426 } 1427 } 1428 1429 /* set uncompleted segment to curseg */ 1430 curseg = CURSEG_I(sbi, type); 1431 mutex_lock(&curseg->curseg_mutex); 1432 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1433 curseg->next_segno = segno; 1434 reset_curseg(sbi, type, 0); 1435 curseg->alloc_type = ckpt->alloc_type[type]; 1436 curseg->next_blkoff = blk_off; 1437 mutex_unlock(&curseg->curseg_mutex); 1438 f2fs_put_page(new, 1); 1439 return 0; 1440 } 1441 1442 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1443 { 1444 int type = CURSEG_HOT_DATA; 1445 int err; 1446 1447 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1448 /* restore for compacted data summary */ 1449 if (read_compacted_summaries(sbi)) 1450 return -EINVAL; 1451 type = CURSEG_HOT_NODE; 1452 } 1453 1454 for (; type <= CURSEG_COLD_NODE; type++) { 1455 err = read_normal_summaries(sbi, type); 1456 if (err) 1457 return err; 1458 } 1459 1460 return 0; 1461 } 1462 1463 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1464 { 1465 struct page *page; 1466 unsigned char *kaddr; 1467 struct f2fs_summary *summary; 1468 struct curseg_info *seg_i; 1469 int written_size = 0; 1470 int i, j; 1471 1472 page = grab_meta_page(sbi, blkaddr++); 1473 kaddr = (unsigned char *)page_address(page); 1474 1475 /* Step 1: write nat cache */ 1476 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1477 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1478 written_size += SUM_JOURNAL_SIZE; 1479 1480 /* Step 2: write sit cache */ 1481 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1482 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1483 SUM_JOURNAL_SIZE); 1484 written_size += SUM_JOURNAL_SIZE; 1485 1486 /* Step 3: write summary entries */ 1487 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1488 unsigned short blkoff; 1489 seg_i = CURSEG_I(sbi, i); 1490 if (sbi->ckpt->alloc_type[i] == SSR) 1491 blkoff = sbi->blocks_per_seg; 1492 else 1493 blkoff = curseg_blkoff(sbi, i); 1494 1495 for (j = 0; j < blkoff; j++) { 1496 if (!page) { 1497 page = grab_meta_page(sbi, blkaddr++); 1498 kaddr = (unsigned char *)page_address(page); 1499 written_size = 0; 1500 } 1501 summary = (struct f2fs_summary *)(kaddr + written_size); 1502 *summary = seg_i->sum_blk->entries[j]; 1503 written_size += SUMMARY_SIZE; 1504 1505 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1506 SUM_FOOTER_SIZE) 1507 continue; 1508 1509 set_page_dirty(page); 1510 f2fs_put_page(page, 1); 1511 page = NULL; 1512 } 1513 } 1514 if (page) { 1515 set_page_dirty(page); 1516 f2fs_put_page(page, 1); 1517 } 1518 } 1519 1520 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1521 block_t blkaddr, int type) 1522 { 1523 int i, end; 1524 if (IS_DATASEG(type)) 1525 end = type + NR_CURSEG_DATA_TYPE; 1526 else 1527 end = type + NR_CURSEG_NODE_TYPE; 1528 1529 for (i = type; i < end; i++) { 1530 struct curseg_info *sum = CURSEG_I(sbi, i); 1531 mutex_lock(&sum->curseg_mutex); 1532 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1533 mutex_unlock(&sum->curseg_mutex); 1534 } 1535 } 1536 1537 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1538 { 1539 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1540 write_compacted_summaries(sbi, start_blk); 1541 else 1542 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1543 } 1544 1545 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1546 { 1547 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) 1548 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1549 } 1550 1551 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1552 unsigned int val, int alloc) 1553 { 1554 int i; 1555 1556 if (type == NAT_JOURNAL) { 1557 for (i = 0; i < nats_in_cursum(sum); i++) { 1558 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1559 return i; 1560 } 1561 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1562 return update_nats_in_cursum(sum, 1); 1563 } else if (type == SIT_JOURNAL) { 1564 for (i = 0; i < sits_in_cursum(sum); i++) 1565 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1566 return i; 1567 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1568 return update_sits_in_cursum(sum, 1); 1569 } 1570 return -1; 1571 } 1572 1573 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1574 unsigned int segno) 1575 { 1576 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1577 } 1578 1579 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1580 unsigned int start) 1581 { 1582 struct sit_info *sit_i = SIT_I(sbi); 1583 struct page *src_page, *dst_page; 1584 pgoff_t src_off, dst_off; 1585 void *src_addr, *dst_addr; 1586 1587 src_off = current_sit_addr(sbi, start); 1588 dst_off = next_sit_addr(sbi, src_off); 1589 1590 /* get current sit block page without lock */ 1591 src_page = get_meta_page(sbi, src_off); 1592 dst_page = grab_meta_page(sbi, dst_off); 1593 f2fs_bug_on(sbi, PageDirty(src_page)); 1594 1595 src_addr = page_address(src_page); 1596 dst_addr = page_address(dst_page); 1597 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1598 1599 set_page_dirty(dst_page); 1600 f2fs_put_page(src_page, 1); 1601 1602 set_to_next_sit(sit_i, start); 1603 1604 return dst_page; 1605 } 1606 1607 static struct sit_entry_set *grab_sit_entry_set(void) 1608 { 1609 struct sit_entry_set *ses = 1610 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC); 1611 1612 ses->entry_cnt = 0; 1613 INIT_LIST_HEAD(&ses->set_list); 1614 return ses; 1615 } 1616 1617 static void release_sit_entry_set(struct sit_entry_set *ses) 1618 { 1619 list_del(&ses->set_list); 1620 kmem_cache_free(sit_entry_set_slab, ses); 1621 } 1622 1623 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1624 struct list_head *head) 1625 { 1626 struct sit_entry_set *next = ses; 1627 1628 if (list_is_last(&ses->set_list, head)) 1629 return; 1630 1631 list_for_each_entry_continue(next, head, set_list) 1632 if (ses->entry_cnt <= next->entry_cnt) 1633 break; 1634 1635 list_move_tail(&ses->set_list, &next->set_list); 1636 } 1637 1638 static void add_sit_entry(unsigned int segno, struct list_head *head) 1639 { 1640 struct sit_entry_set *ses; 1641 unsigned int start_segno = START_SEGNO(segno); 1642 1643 list_for_each_entry(ses, head, set_list) { 1644 if (ses->start_segno == start_segno) { 1645 ses->entry_cnt++; 1646 adjust_sit_entry_set(ses, head); 1647 return; 1648 } 1649 } 1650 1651 ses = grab_sit_entry_set(); 1652 1653 ses->start_segno = start_segno; 1654 ses->entry_cnt++; 1655 list_add(&ses->set_list, head); 1656 } 1657 1658 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1659 { 1660 struct f2fs_sm_info *sm_info = SM_I(sbi); 1661 struct list_head *set_list = &sm_info->sit_entry_set; 1662 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1663 unsigned int segno; 1664 1665 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1666 add_sit_entry(segno, set_list); 1667 } 1668 1669 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1670 { 1671 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1672 struct f2fs_summary_block *sum = curseg->sum_blk; 1673 int i; 1674 1675 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1676 unsigned int segno; 1677 bool dirtied; 1678 1679 segno = le32_to_cpu(segno_in_journal(sum, i)); 1680 dirtied = __mark_sit_entry_dirty(sbi, segno); 1681 1682 if (!dirtied) 1683 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1684 } 1685 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1686 } 1687 1688 /* 1689 * CP calls this function, which flushes SIT entries including sit_journal, 1690 * and moves prefree segs to free segs. 1691 */ 1692 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1693 { 1694 struct sit_info *sit_i = SIT_I(sbi); 1695 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1696 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1697 struct f2fs_summary_block *sum = curseg->sum_blk; 1698 struct sit_entry_set *ses, *tmp; 1699 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1700 bool to_journal = true; 1701 struct seg_entry *se; 1702 1703 mutex_lock(&curseg->curseg_mutex); 1704 mutex_lock(&sit_i->sentry_lock); 1705 1706 /* 1707 * add and account sit entries of dirty bitmap in sit entry 1708 * set temporarily 1709 */ 1710 add_sits_in_set(sbi); 1711 1712 /* 1713 * if there are no enough space in journal to store dirty sit 1714 * entries, remove all entries from journal and add and account 1715 * them in sit entry set. 1716 */ 1717 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL)) 1718 remove_sits_in_journal(sbi); 1719 1720 if (!sit_i->dirty_sentries) 1721 goto out; 1722 1723 /* 1724 * there are two steps to flush sit entries: 1725 * #1, flush sit entries to journal in current cold data summary block. 1726 * #2, flush sit entries to sit page. 1727 */ 1728 list_for_each_entry_safe(ses, tmp, head, set_list) { 1729 struct page *page = NULL; 1730 struct f2fs_sit_block *raw_sit = NULL; 1731 unsigned int start_segno = ses->start_segno; 1732 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1733 (unsigned long)MAIN_SEGS(sbi)); 1734 unsigned int segno = start_segno; 1735 1736 if (to_journal && 1737 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL)) 1738 to_journal = false; 1739 1740 if (!to_journal) { 1741 page = get_next_sit_page(sbi, start_segno); 1742 raw_sit = page_address(page); 1743 } 1744 1745 /* flush dirty sit entries in region of current sit set */ 1746 for_each_set_bit_from(segno, bitmap, end) { 1747 int offset, sit_offset; 1748 1749 se = get_seg_entry(sbi, segno); 1750 1751 /* add discard candidates */ 1752 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards) { 1753 cpc->trim_start = segno; 1754 add_discard_addrs(sbi, cpc); 1755 } 1756 1757 if (to_journal) { 1758 offset = lookup_journal_in_cursum(sum, 1759 SIT_JOURNAL, segno, 1); 1760 f2fs_bug_on(sbi, offset < 0); 1761 segno_in_journal(sum, offset) = 1762 cpu_to_le32(segno); 1763 seg_info_to_raw_sit(se, 1764 &sit_in_journal(sum, offset)); 1765 } else { 1766 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1767 seg_info_to_raw_sit(se, 1768 &raw_sit->entries[sit_offset]); 1769 } 1770 1771 __clear_bit(segno, bitmap); 1772 sit_i->dirty_sentries--; 1773 ses->entry_cnt--; 1774 } 1775 1776 if (!to_journal) 1777 f2fs_put_page(page, 1); 1778 1779 f2fs_bug_on(sbi, ses->entry_cnt); 1780 release_sit_entry_set(ses); 1781 } 1782 1783 f2fs_bug_on(sbi, !list_empty(head)); 1784 f2fs_bug_on(sbi, sit_i->dirty_sentries); 1785 out: 1786 if (cpc->reason == CP_DISCARD) { 1787 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 1788 add_discard_addrs(sbi, cpc); 1789 } 1790 mutex_unlock(&sit_i->sentry_lock); 1791 mutex_unlock(&curseg->curseg_mutex); 1792 1793 set_prefree_as_free_segments(sbi); 1794 } 1795 1796 static int build_sit_info(struct f2fs_sb_info *sbi) 1797 { 1798 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1799 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1800 struct sit_info *sit_i; 1801 unsigned int sit_segs, start; 1802 char *src_bitmap, *dst_bitmap; 1803 unsigned int bitmap_size; 1804 1805 /* allocate memory for SIT information */ 1806 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1807 if (!sit_i) 1808 return -ENOMEM; 1809 1810 SM_I(sbi)->sit_info = sit_i; 1811 1812 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry)); 1813 if (!sit_i->sentries) 1814 return -ENOMEM; 1815 1816 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1817 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1818 if (!sit_i->dirty_sentries_bitmap) 1819 return -ENOMEM; 1820 1821 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1822 sit_i->sentries[start].cur_valid_map 1823 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1824 sit_i->sentries[start].ckpt_valid_map 1825 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1826 if (!sit_i->sentries[start].cur_valid_map 1827 || !sit_i->sentries[start].ckpt_valid_map) 1828 return -ENOMEM; 1829 } 1830 1831 if (sbi->segs_per_sec > 1) { 1832 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) * 1833 sizeof(struct sec_entry)); 1834 if (!sit_i->sec_entries) 1835 return -ENOMEM; 1836 } 1837 1838 /* get information related with SIT */ 1839 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1840 1841 /* setup SIT bitmap from ckeckpoint pack */ 1842 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1843 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1844 1845 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1846 if (!dst_bitmap) 1847 return -ENOMEM; 1848 1849 /* init SIT information */ 1850 sit_i->s_ops = &default_salloc_ops; 1851 1852 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1853 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1854 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1855 sit_i->sit_bitmap = dst_bitmap; 1856 sit_i->bitmap_size = bitmap_size; 1857 sit_i->dirty_sentries = 0; 1858 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1859 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1860 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1861 mutex_init(&sit_i->sentry_lock); 1862 return 0; 1863 } 1864 1865 static int build_free_segmap(struct f2fs_sb_info *sbi) 1866 { 1867 struct free_segmap_info *free_i; 1868 unsigned int bitmap_size, sec_bitmap_size; 1869 1870 /* allocate memory for free segmap information */ 1871 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 1872 if (!free_i) 1873 return -ENOMEM; 1874 1875 SM_I(sbi)->free_info = free_i; 1876 1877 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1878 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 1879 if (!free_i->free_segmap) 1880 return -ENOMEM; 1881 1882 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 1883 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 1884 if (!free_i->free_secmap) 1885 return -ENOMEM; 1886 1887 /* set all segments as dirty temporarily */ 1888 memset(free_i->free_segmap, 0xff, bitmap_size); 1889 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 1890 1891 /* init free segmap information */ 1892 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 1893 free_i->free_segments = 0; 1894 free_i->free_sections = 0; 1895 rwlock_init(&free_i->segmap_lock); 1896 return 0; 1897 } 1898 1899 static int build_curseg(struct f2fs_sb_info *sbi) 1900 { 1901 struct curseg_info *array; 1902 int i; 1903 1904 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 1905 if (!array) 1906 return -ENOMEM; 1907 1908 SM_I(sbi)->curseg_array = array; 1909 1910 for (i = 0; i < NR_CURSEG_TYPE; i++) { 1911 mutex_init(&array[i].curseg_mutex); 1912 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 1913 if (!array[i].sum_blk) 1914 return -ENOMEM; 1915 array[i].segno = NULL_SEGNO; 1916 array[i].next_blkoff = 0; 1917 } 1918 return restore_curseg_summaries(sbi); 1919 } 1920 1921 static void build_sit_entries(struct f2fs_sb_info *sbi) 1922 { 1923 struct sit_info *sit_i = SIT_I(sbi); 1924 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1925 struct f2fs_summary_block *sum = curseg->sum_blk; 1926 int sit_blk_cnt = SIT_BLK_CNT(sbi); 1927 unsigned int i, start, end; 1928 unsigned int readed, start_blk = 0; 1929 int nrpages = MAX_BIO_BLOCKS(sbi); 1930 1931 do { 1932 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 1933 1934 start = start_blk * sit_i->sents_per_block; 1935 end = (start_blk + readed) * sit_i->sents_per_block; 1936 1937 for (; start < end && start < MAIN_SEGS(sbi); start++) { 1938 struct seg_entry *se = &sit_i->sentries[start]; 1939 struct f2fs_sit_block *sit_blk; 1940 struct f2fs_sit_entry sit; 1941 struct page *page; 1942 1943 mutex_lock(&curseg->curseg_mutex); 1944 for (i = 0; i < sits_in_cursum(sum); i++) { 1945 if (le32_to_cpu(segno_in_journal(sum, i)) 1946 == start) { 1947 sit = sit_in_journal(sum, i); 1948 mutex_unlock(&curseg->curseg_mutex); 1949 goto got_it; 1950 } 1951 } 1952 mutex_unlock(&curseg->curseg_mutex); 1953 1954 page = get_current_sit_page(sbi, start); 1955 sit_blk = (struct f2fs_sit_block *)page_address(page); 1956 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 1957 f2fs_put_page(page, 1); 1958 got_it: 1959 check_block_count(sbi, start, &sit); 1960 seg_info_from_raw_sit(se, &sit); 1961 if (sbi->segs_per_sec > 1) { 1962 struct sec_entry *e = get_sec_entry(sbi, start); 1963 e->valid_blocks += se->valid_blocks; 1964 } 1965 } 1966 start_blk += readed; 1967 } while (start_blk < sit_blk_cnt); 1968 } 1969 1970 static void init_free_segmap(struct f2fs_sb_info *sbi) 1971 { 1972 unsigned int start; 1973 int type; 1974 1975 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1976 struct seg_entry *sentry = get_seg_entry(sbi, start); 1977 if (!sentry->valid_blocks) 1978 __set_free(sbi, start); 1979 } 1980 1981 /* set use the current segments */ 1982 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 1983 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 1984 __set_test_and_inuse(sbi, curseg_t->segno); 1985 } 1986 } 1987 1988 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 1989 { 1990 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1991 struct free_segmap_info *free_i = FREE_I(sbi); 1992 unsigned int segno = 0, offset = 0; 1993 unsigned short valid_blocks; 1994 1995 while (1) { 1996 /* find dirty segment based on free segmap */ 1997 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 1998 if (segno >= MAIN_SEGS(sbi)) 1999 break; 2000 offset = segno + 1; 2001 valid_blocks = get_valid_blocks(sbi, segno, 0); 2002 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2003 continue; 2004 if (valid_blocks > sbi->blocks_per_seg) { 2005 f2fs_bug_on(sbi, 1); 2006 continue; 2007 } 2008 mutex_lock(&dirty_i->seglist_lock); 2009 __locate_dirty_segment(sbi, segno, DIRTY); 2010 mutex_unlock(&dirty_i->seglist_lock); 2011 } 2012 } 2013 2014 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2015 { 2016 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2017 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2018 2019 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 2020 if (!dirty_i->victim_secmap) 2021 return -ENOMEM; 2022 return 0; 2023 } 2024 2025 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2026 { 2027 struct dirty_seglist_info *dirty_i; 2028 unsigned int bitmap_size, i; 2029 2030 /* allocate memory for dirty segments list information */ 2031 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2032 if (!dirty_i) 2033 return -ENOMEM; 2034 2035 SM_I(sbi)->dirty_info = dirty_i; 2036 mutex_init(&dirty_i->seglist_lock); 2037 2038 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2039 2040 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2041 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 2042 if (!dirty_i->dirty_segmap[i]) 2043 return -ENOMEM; 2044 } 2045 2046 init_dirty_segmap(sbi); 2047 return init_victim_secmap(sbi); 2048 } 2049 2050 /* 2051 * Update min, max modified time for cost-benefit GC algorithm 2052 */ 2053 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2054 { 2055 struct sit_info *sit_i = SIT_I(sbi); 2056 unsigned int segno; 2057 2058 mutex_lock(&sit_i->sentry_lock); 2059 2060 sit_i->min_mtime = LLONG_MAX; 2061 2062 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2063 unsigned int i; 2064 unsigned long long mtime = 0; 2065 2066 for (i = 0; i < sbi->segs_per_sec; i++) 2067 mtime += get_seg_entry(sbi, segno + i)->mtime; 2068 2069 mtime = div_u64(mtime, sbi->segs_per_sec); 2070 2071 if (sit_i->min_mtime > mtime) 2072 sit_i->min_mtime = mtime; 2073 } 2074 sit_i->max_mtime = get_mtime(sbi); 2075 mutex_unlock(&sit_i->sentry_lock); 2076 } 2077 2078 int build_segment_manager(struct f2fs_sb_info *sbi) 2079 { 2080 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2081 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2082 struct f2fs_sm_info *sm_info; 2083 int err; 2084 2085 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2086 if (!sm_info) 2087 return -ENOMEM; 2088 2089 /* init sm info */ 2090 sbi->sm_info = sm_info; 2091 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2092 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2093 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2094 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2095 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2096 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2097 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2098 sm_info->rec_prefree_segments = sm_info->main_segments * 2099 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2100 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2101 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2102 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2103 2104 INIT_LIST_HEAD(&sm_info->discard_list); 2105 sm_info->nr_discards = 0; 2106 sm_info->max_discards = 0; 2107 2108 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2109 2110 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2111 err = create_flush_cmd_control(sbi); 2112 if (err) 2113 return err; 2114 } 2115 2116 err = build_sit_info(sbi); 2117 if (err) 2118 return err; 2119 err = build_free_segmap(sbi); 2120 if (err) 2121 return err; 2122 err = build_curseg(sbi); 2123 if (err) 2124 return err; 2125 2126 /* reinit free segmap based on SIT */ 2127 build_sit_entries(sbi); 2128 2129 init_free_segmap(sbi); 2130 err = build_dirty_segmap(sbi); 2131 if (err) 2132 return err; 2133 2134 init_min_max_mtime(sbi); 2135 return 0; 2136 } 2137 2138 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2139 enum dirty_type dirty_type) 2140 { 2141 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2142 2143 mutex_lock(&dirty_i->seglist_lock); 2144 kfree(dirty_i->dirty_segmap[dirty_type]); 2145 dirty_i->nr_dirty[dirty_type] = 0; 2146 mutex_unlock(&dirty_i->seglist_lock); 2147 } 2148 2149 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2150 { 2151 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2152 kfree(dirty_i->victim_secmap); 2153 } 2154 2155 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2156 { 2157 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2158 int i; 2159 2160 if (!dirty_i) 2161 return; 2162 2163 /* discard pre-free/dirty segments list */ 2164 for (i = 0; i < NR_DIRTY_TYPE; i++) 2165 discard_dirty_segmap(sbi, i); 2166 2167 destroy_victim_secmap(sbi); 2168 SM_I(sbi)->dirty_info = NULL; 2169 kfree(dirty_i); 2170 } 2171 2172 static void destroy_curseg(struct f2fs_sb_info *sbi) 2173 { 2174 struct curseg_info *array = SM_I(sbi)->curseg_array; 2175 int i; 2176 2177 if (!array) 2178 return; 2179 SM_I(sbi)->curseg_array = NULL; 2180 for (i = 0; i < NR_CURSEG_TYPE; i++) 2181 kfree(array[i].sum_blk); 2182 kfree(array); 2183 } 2184 2185 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2186 { 2187 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2188 if (!free_i) 2189 return; 2190 SM_I(sbi)->free_info = NULL; 2191 kfree(free_i->free_segmap); 2192 kfree(free_i->free_secmap); 2193 kfree(free_i); 2194 } 2195 2196 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2197 { 2198 struct sit_info *sit_i = SIT_I(sbi); 2199 unsigned int start; 2200 2201 if (!sit_i) 2202 return; 2203 2204 if (sit_i->sentries) { 2205 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2206 kfree(sit_i->sentries[start].cur_valid_map); 2207 kfree(sit_i->sentries[start].ckpt_valid_map); 2208 } 2209 } 2210 vfree(sit_i->sentries); 2211 vfree(sit_i->sec_entries); 2212 kfree(sit_i->dirty_sentries_bitmap); 2213 2214 SM_I(sbi)->sit_info = NULL; 2215 kfree(sit_i->sit_bitmap); 2216 kfree(sit_i); 2217 } 2218 2219 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2220 { 2221 struct f2fs_sm_info *sm_info = SM_I(sbi); 2222 2223 if (!sm_info) 2224 return; 2225 destroy_flush_cmd_control(sbi); 2226 destroy_dirty_segmap(sbi); 2227 destroy_curseg(sbi); 2228 destroy_free_segmap(sbi); 2229 destroy_sit_info(sbi); 2230 sbi->sm_info = NULL; 2231 kfree(sm_info); 2232 } 2233 2234 int __init create_segment_manager_caches(void) 2235 { 2236 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2237 sizeof(struct discard_entry)); 2238 if (!discard_entry_slab) 2239 goto fail; 2240 2241 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2242 sizeof(struct sit_entry_set)); 2243 if (!sit_entry_set_slab) 2244 goto destory_discard_entry; 2245 2246 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2247 sizeof(struct inmem_pages)); 2248 if (!inmem_entry_slab) 2249 goto destroy_sit_entry_set; 2250 return 0; 2251 2252 destroy_sit_entry_set: 2253 kmem_cache_destroy(sit_entry_set_slab); 2254 destory_discard_entry: 2255 kmem_cache_destroy(discard_entry_slab); 2256 fail: 2257 return -ENOMEM; 2258 } 2259 2260 void destroy_segment_manager_caches(void) 2261 { 2262 kmem_cache_destroy(sit_entry_set_slab); 2263 kmem_cache_destroy(discard_entry_slab); 2264 kmem_cache_destroy(inmem_entry_slab); 2265 } 2266