xref: /openbmc/linux/fs/f2fs/segment.c (revision 97767500781fae9c53b7d227f99f1dbb0dfe9a4f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174 
175 	if (f2fs_lfs_mode(sbi))
176 		return false;
177 	if (sbi->gc_mode == GC_URGENT)
178 		return true;
179 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 		return true;
181 
182 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185 
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 	struct inmem_pages *new;
189 
190 	f2fs_trace_pid(page);
191 
192 	f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193 
194 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195 
196 	/* add atomic page indices to the list */
197 	new->page = page;
198 	INIT_LIST_HEAD(&new->list);
199 
200 	/* increase reference count with clean state */
201 	get_page(page);
202 	mutex_lock(&F2FS_I(inode)->inmem_lock);
203 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
206 
207 	trace_f2fs_register_inmem_page(page, INMEM);
208 }
209 
210 static int __revoke_inmem_pages(struct inode *inode,
211 				struct list_head *head, bool drop, bool recover,
212 				bool trylock)
213 {
214 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 	struct inmem_pages *cur, *tmp;
216 	int err = 0;
217 
218 	list_for_each_entry_safe(cur, tmp, head, list) {
219 		struct page *page = cur->page;
220 
221 		if (drop)
222 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223 
224 		if (trylock) {
225 			/*
226 			 * to avoid deadlock in between page lock and
227 			 * inmem_lock.
228 			 */
229 			if (!trylock_page(page))
230 				continue;
231 		} else {
232 			lock_page(page);
233 		}
234 
235 		f2fs_wait_on_page_writeback(page, DATA, true, true);
236 
237 		if (recover) {
238 			struct dnode_of_data dn;
239 			struct node_info ni;
240 
241 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243 			set_new_dnode(&dn, inode, NULL, NULL, 0);
244 			err = f2fs_get_dnode_of_data(&dn, page->index,
245 								LOOKUP_NODE);
246 			if (err) {
247 				if (err == -ENOMEM) {
248 					congestion_wait(BLK_RW_ASYNC,
249 							DEFAULT_IO_TIMEOUT);
250 					cond_resched();
251 					goto retry;
252 				}
253 				err = -EAGAIN;
254 				goto next;
255 			}
256 
257 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
258 			if (err) {
259 				f2fs_put_dnode(&dn);
260 				return err;
261 			}
262 
263 			if (cur->old_addr == NEW_ADDR) {
264 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266 			} else
267 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268 					cur->old_addr, ni.version, true, true);
269 			f2fs_put_dnode(&dn);
270 		}
271 next:
272 		/* we don't need to invalidate this in the sccessful status */
273 		if (drop || recover) {
274 			ClearPageUptodate(page);
275 			clear_cold_data(page);
276 		}
277 		f2fs_clear_page_private(page);
278 		f2fs_put_page(page, 1);
279 
280 		list_del(&cur->list);
281 		kmem_cache_free(inmem_entry_slab, cur);
282 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283 	}
284 	return err;
285 }
286 
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 	struct inode *inode;
291 	struct f2fs_inode_info *fi;
292 	unsigned int count = sbi->atomic_files;
293 	unsigned int looped = 0;
294 next:
295 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 	if (list_empty(head)) {
297 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 		return;
299 	}
300 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 	inode = igrab(&fi->vfs_inode);
302 	if (inode)
303 		list_move_tail(&fi->inmem_ilist, head);
304 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305 
306 	if (inode) {
307 		if (gc_failure) {
308 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 				goto skip;
310 		}
311 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 		f2fs_drop_inmem_pages(inode);
313 skip:
314 		iput(inode);
315 	}
316 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 	cond_resched();
318 	if (gc_failure) {
319 		if (++looped >= count)
320 			return;
321 	}
322 	goto next;
323 }
324 
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 	struct f2fs_inode_info *fi = F2FS_I(inode);
329 
330 	while (!list_empty(&fi->inmem_pages)) {
331 		mutex_lock(&fi->inmem_lock);
332 		__revoke_inmem_pages(inode, &fi->inmem_pages,
333 						true, false, true);
334 		mutex_unlock(&fi->inmem_lock);
335 	}
336 
337 	fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
338 
339 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340 	if (!list_empty(&fi->inmem_ilist))
341 		list_del_init(&fi->inmem_ilist);
342 	if (f2fs_is_atomic_file(inode)) {
343 		clear_inode_flag(inode, FI_ATOMIC_FILE);
344 		sbi->atomic_files--;
345 	}
346 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348 
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351 	struct f2fs_inode_info *fi = F2FS_I(inode);
352 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 	struct list_head *head = &fi->inmem_pages;
354 	struct inmem_pages *cur = NULL;
355 
356 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357 
358 	mutex_lock(&fi->inmem_lock);
359 	list_for_each_entry(cur, head, list) {
360 		if (cur->page == page)
361 			break;
362 	}
363 
364 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365 	list_del(&cur->list);
366 	mutex_unlock(&fi->inmem_lock);
367 
368 	dec_page_count(sbi, F2FS_INMEM_PAGES);
369 	kmem_cache_free(inmem_entry_slab, cur);
370 
371 	ClearPageUptodate(page);
372 	f2fs_clear_page_private(page);
373 	f2fs_put_page(page, 0);
374 
375 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377 
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 	struct f2fs_inode_info *fi = F2FS_I(inode);
382 	struct inmem_pages *cur, *tmp;
383 	struct f2fs_io_info fio = {
384 		.sbi = sbi,
385 		.ino = inode->i_ino,
386 		.type = DATA,
387 		.op = REQ_OP_WRITE,
388 		.op_flags = REQ_SYNC | REQ_PRIO,
389 		.io_type = FS_DATA_IO,
390 	};
391 	struct list_head revoke_list;
392 	bool submit_bio = false;
393 	int err = 0;
394 
395 	INIT_LIST_HEAD(&revoke_list);
396 
397 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398 		struct page *page = cur->page;
399 
400 		lock_page(page);
401 		if (page->mapping == inode->i_mapping) {
402 			trace_f2fs_commit_inmem_page(page, INMEM);
403 
404 			f2fs_wait_on_page_writeback(page, DATA, true, true);
405 
406 			set_page_dirty(page);
407 			if (clear_page_dirty_for_io(page)) {
408 				inode_dec_dirty_pages(inode);
409 				f2fs_remove_dirty_inode(inode);
410 			}
411 retry:
412 			fio.page = page;
413 			fio.old_blkaddr = NULL_ADDR;
414 			fio.encrypted_page = NULL;
415 			fio.need_lock = LOCK_DONE;
416 			err = f2fs_do_write_data_page(&fio);
417 			if (err) {
418 				if (err == -ENOMEM) {
419 					congestion_wait(BLK_RW_ASYNC,
420 							DEFAULT_IO_TIMEOUT);
421 					cond_resched();
422 					goto retry;
423 				}
424 				unlock_page(page);
425 				break;
426 			}
427 			/* record old blkaddr for revoking */
428 			cur->old_addr = fio.old_blkaddr;
429 			submit_bio = true;
430 		}
431 		unlock_page(page);
432 		list_move_tail(&cur->list, &revoke_list);
433 	}
434 
435 	if (submit_bio)
436 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
437 
438 	if (err) {
439 		/*
440 		 * try to revoke all committed pages, but still we could fail
441 		 * due to no memory or other reason, if that happened, EAGAIN
442 		 * will be returned, which means in such case, transaction is
443 		 * already not integrity, caller should use journal to do the
444 		 * recovery or rewrite & commit last transaction. For other
445 		 * error number, revoking was done by filesystem itself.
446 		 */
447 		err = __revoke_inmem_pages(inode, &revoke_list,
448 						false, true, false);
449 
450 		/* drop all uncommitted pages */
451 		__revoke_inmem_pages(inode, &fi->inmem_pages,
452 						true, false, false);
453 	} else {
454 		__revoke_inmem_pages(inode, &revoke_list,
455 						false, false, false);
456 	}
457 
458 	return err;
459 }
460 
461 int f2fs_commit_inmem_pages(struct inode *inode)
462 {
463 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464 	struct f2fs_inode_info *fi = F2FS_I(inode);
465 	int err;
466 
467 	f2fs_balance_fs(sbi, true);
468 
469 	down_write(&fi->i_gc_rwsem[WRITE]);
470 
471 	f2fs_lock_op(sbi);
472 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
473 
474 	mutex_lock(&fi->inmem_lock);
475 	err = __f2fs_commit_inmem_pages(inode);
476 	mutex_unlock(&fi->inmem_lock);
477 
478 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
479 
480 	f2fs_unlock_op(sbi);
481 	up_write(&fi->i_gc_rwsem[WRITE]);
482 
483 	return err;
484 }
485 
486 /*
487  * This function balances dirty node and dentry pages.
488  * In addition, it controls garbage collection.
489  */
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
491 {
492 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494 		f2fs_stop_checkpoint(sbi, false);
495 	}
496 
497 	/* balance_fs_bg is able to be pending */
498 	if (need && excess_cached_nats(sbi))
499 		f2fs_balance_fs_bg(sbi, false);
500 
501 	if (!f2fs_is_checkpoint_ready(sbi))
502 		return;
503 
504 	/*
505 	 * We should do GC or end up with checkpoint, if there are so many dirty
506 	 * dir/node pages without enough free segments.
507 	 */
508 	if (has_not_enough_free_secs(sbi, 0, 0)) {
509 		down_write(&sbi->gc_lock);
510 		f2fs_gc(sbi, false, false, NULL_SEGNO);
511 	}
512 }
513 
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
515 {
516 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517 		return;
518 
519 	/* try to shrink extent cache when there is no enough memory */
520 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
522 
523 	/* check the # of cached NAT entries */
524 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
526 
527 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529 	else
530 		f2fs_build_free_nids(sbi, false, false);
531 
532 	if (!is_idle(sbi, REQ_TIME) &&
533 		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
534 		return;
535 
536 	/* checkpoint is the only way to shrink partial cached entries */
537 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538 			!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539 			excess_prefree_segs(sbi) ||
540 			excess_dirty_nats(sbi) ||
541 			excess_dirty_nodes(sbi) ||
542 			f2fs_time_over(sbi, CP_TIME)) {
543 		if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544 			struct blk_plug plug;
545 
546 			mutex_lock(&sbi->flush_lock);
547 
548 			blk_start_plug(&plug);
549 			f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550 			blk_finish_plug(&plug);
551 
552 			mutex_unlock(&sbi->flush_lock);
553 		}
554 		f2fs_sync_fs(sbi->sb, true);
555 		stat_inc_bg_cp_count(sbi->stat_info);
556 	}
557 }
558 
559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560 				struct block_device *bdev)
561 {
562 	struct bio *bio;
563 	int ret;
564 
565 	bio = f2fs_bio_alloc(sbi, 0, false);
566 	if (!bio)
567 		return -ENOMEM;
568 
569 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570 	bio_set_dev(bio, bdev);
571 	ret = submit_bio_wait(bio);
572 	bio_put(bio);
573 
574 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575 				test_opt(sbi, FLUSH_MERGE), ret);
576 	return ret;
577 }
578 
579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
580 {
581 	int ret = 0;
582 	int i;
583 
584 	if (!f2fs_is_multi_device(sbi))
585 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
586 
587 	for (i = 0; i < sbi->s_ndevs; i++) {
588 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
589 			continue;
590 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
591 		if (ret)
592 			break;
593 	}
594 	return ret;
595 }
596 
597 static int issue_flush_thread(void *data)
598 {
599 	struct f2fs_sb_info *sbi = data;
600 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601 	wait_queue_head_t *q = &fcc->flush_wait_queue;
602 repeat:
603 	if (kthread_should_stop())
604 		return 0;
605 
606 	sb_start_intwrite(sbi->sb);
607 
608 	if (!llist_empty(&fcc->issue_list)) {
609 		struct flush_cmd *cmd, *next;
610 		int ret;
611 
612 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
614 
615 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
616 
617 		ret = submit_flush_wait(sbi, cmd->ino);
618 		atomic_inc(&fcc->issued_flush);
619 
620 		llist_for_each_entry_safe(cmd, next,
621 					  fcc->dispatch_list, llnode) {
622 			cmd->ret = ret;
623 			complete(&cmd->wait);
624 		}
625 		fcc->dispatch_list = NULL;
626 	}
627 
628 	sb_end_intwrite(sbi->sb);
629 
630 	wait_event_interruptible(*q,
631 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
632 	goto repeat;
633 }
634 
635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
636 {
637 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638 	struct flush_cmd cmd;
639 	int ret;
640 
641 	if (test_opt(sbi, NOBARRIER))
642 		return 0;
643 
644 	if (!test_opt(sbi, FLUSH_MERGE)) {
645 		atomic_inc(&fcc->queued_flush);
646 		ret = submit_flush_wait(sbi, ino);
647 		atomic_dec(&fcc->queued_flush);
648 		atomic_inc(&fcc->issued_flush);
649 		return ret;
650 	}
651 
652 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653 	    f2fs_is_multi_device(sbi)) {
654 		ret = submit_flush_wait(sbi, ino);
655 		atomic_dec(&fcc->queued_flush);
656 
657 		atomic_inc(&fcc->issued_flush);
658 		return ret;
659 	}
660 
661 	cmd.ino = ino;
662 	init_completion(&cmd.wait);
663 
664 	llist_add(&cmd.llnode, &fcc->issue_list);
665 
666 	/* update issue_list before we wake up issue_flush thread */
667 	smp_mb();
668 
669 	if (waitqueue_active(&fcc->flush_wait_queue))
670 		wake_up(&fcc->flush_wait_queue);
671 
672 	if (fcc->f2fs_issue_flush) {
673 		wait_for_completion(&cmd.wait);
674 		atomic_dec(&fcc->queued_flush);
675 	} else {
676 		struct llist_node *list;
677 
678 		list = llist_del_all(&fcc->issue_list);
679 		if (!list) {
680 			wait_for_completion(&cmd.wait);
681 			atomic_dec(&fcc->queued_flush);
682 		} else {
683 			struct flush_cmd *tmp, *next;
684 
685 			ret = submit_flush_wait(sbi, ino);
686 
687 			llist_for_each_entry_safe(tmp, next, list, llnode) {
688 				if (tmp == &cmd) {
689 					cmd.ret = ret;
690 					atomic_dec(&fcc->queued_flush);
691 					continue;
692 				}
693 				tmp->ret = ret;
694 				complete(&tmp->wait);
695 			}
696 		}
697 	}
698 
699 	return cmd.ret;
700 }
701 
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
703 {
704 	dev_t dev = sbi->sb->s_bdev->bd_dev;
705 	struct flush_cmd_control *fcc;
706 	int err = 0;
707 
708 	if (SM_I(sbi)->fcc_info) {
709 		fcc = SM_I(sbi)->fcc_info;
710 		if (fcc->f2fs_issue_flush)
711 			return err;
712 		goto init_thread;
713 	}
714 
715 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
716 	if (!fcc)
717 		return -ENOMEM;
718 	atomic_set(&fcc->issued_flush, 0);
719 	atomic_set(&fcc->queued_flush, 0);
720 	init_waitqueue_head(&fcc->flush_wait_queue);
721 	init_llist_head(&fcc->issue_list);
722 	SM_I(sbi)->fcc_info = fcc;
723 	if (!test_opt(sbi, FLUSH_MERGE))
724 		return err;
725 
726 init_thread:
727 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729 	if (IS_ERR(fcc->f2fs_issue_flush)) {
730 		err = PTR_ERR(fcc->f2fs_issue_flush);
731 		kvfree(fcc);
732 		SM_I(sbi)->fcc_info = NULL;
733 		return err;
734 	}
735 
736 	return err;
737 }
738 
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
740 {
741 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
742 
743 	if (fcc && fcc->f2fs_issue_flush) {
744 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
745 
746 		fcc->f2fs_issue_flush = NULL;
747 		kthread_stop(flush_thread);
748 	}
749 	if (free) {
750 		kvfree(fcc);
751 		SM_I(sbi)->fcc_info = NULL;
752 	}
753 }
754 
755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
756 {
757 	int ret = 0, i;
758 
759 	if (!f2fs_is_multi_device(sbi))
760 		return 0;
761 
762 	for (i = 1; i < sbi->s_ndevs; i++) {
763 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
764 			continue;
765 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
766 		if (ret)
767 			break;
768 
769 		spin_lock(&sbi->dev_lock);
770 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
771 		spin_unlock(&sbi->dev_lock);
772 	}
773 
774 	return ret;
775 }
776 
777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778 		enum dirty_type dirty_type)
779 {
780 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
781 
782 	/* need not be added */
783 	if (IS_CURSEG(sbi, segno))
784 		return;
785 
786 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787 		dirty_i->nr_dirty[dirty_type]++;
788 
789 	if (dirty_type == DIRTY) {
790 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
791 		enum dirty_type t = sentry->type;
792 
793 		if (unlikely(t >= DIRTY)) {
794 			f2fs_bug_on(sbi, 1);
795 			return;
796 		}
797 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
798 			dirty_i->nr_dirty[t]++;
799 
800 		if (__is_large_section(sbi)) {
801 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
802 			unsigned short valid_blocks =
803 				get_valid_blocks(sbi, segno, true);
804 
805 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
806 					valid_blocks == BLKS_PER_SEC(sbi)));
807 
808 			if (!IS_CURSEC(sbi, secno))
809 				set_bit(secno, dirty_i->dirty_secmap);
810 		}
811 	}
812 }
813 
814 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
815 		enum dirty_type dirty_type)
816 {
817 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
818 	unsigned short valid_blocks;
819 
820 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
821 		dirty_i->nr_dirty[dirty_type]--;
822 
823 	if (dirty_type == DIRTY) {
824 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
825 		enum dirty_type t = sentry->type;
826 
827 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
828 			dirty_i->nr_dirty[t]--;
829 
830 		valid_blocks = get_valid_blocks(sbi, segno, true);
831 		if (valid_blocks == 0) {
832 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
833 						dirty_i->victim_secmap);
834 #ifdef CONFIG_F2FS_CHECK_FS
835 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
836 #endif
837 		}
838 		if (__is_large_section(sbi)) {
839 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
840 
841 			if (!valid_blocks ||
842 					valid_blocks == BLKS_PER_SEC(sbi)) {
843 				clear_bit(secno, dirty_i->dirty_secmap);
844 				return;
845 			}
846 
847 			if (!IS_CURSEC(sbi, secno))
848 				set_bit(secno, dirty_i->dirty_secmap);
849 		}
850 	}
851 }
852 
853 /*
854  * Should not occur error such as -ENOMEM.
855  * Adding dirty entry into seglist is not critical operation.
856  * If a given segment is one of current working segments, it won't be added.
857  */
858 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
859 {
860 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
861 	unsigned short valid_blocks, ckpt_valid_blocks;
862 
863 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
864 		return;
865 
866 	mutex_lock(&dirty_i->seglist_lock);
867 
868 	valid_blocks = get_valid_blocks(sbi, segno, false);
869 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
870 
871 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
872 				ckpt_valid_blocks == sbi->blocks_per_seg)) {
873 		__locate_dirty_segment(sbi, segno, PRE);
874 		__remove_dirty_segment(sbi, segno, DIRTY);
875 	} else if (valid_blocks < sbi->blocks_per_seg) {
876 		__locate_dirty_segment(sbi, segno, DIRTY);
877 	} else {
878 		/* Recovery routine with SSR needs this */
879 		__remove_dirty_segment(sbi, segno, DIRTY);
880 	}
881 
882 	mutex_unlock(&dirty_i->seglist_lock);
883 }
884 
885 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
886 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
887 {
888 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
889 	unsigned int segno;
890 
891 	mutex_lock(&dirty_i->seglist_lock);
892 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
893 		if (get_valid_blocks(sbi, segno, false))
894 			continue;
895 		if (IS_CURSEG(sbi, segno))
896 			continue;
897 		__locate_dirty_segment(sbi, segno, PRE);
898 		__remove_dirty_segment(sbi, segno, DIRTY);
899 	}
900 	mutex_unlock(&dirty_i->seglist_lock);
901 }
902 
903 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
904 {
905 	int ovp_hole_segs =
906 		(overprovision_segments(sbi) - reserved_segments(sbi));
907 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
908 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
909 	block_t holes[2] = {0, 0};	/* DATA and NODE */
910 	block_t unusable;
911 	struct seg_entry *se;
912 	unsigned int segno;
913 
914 	mutex_lock(&dirty_i->seglist_lock);
915 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
916 		se = get_seg_entry(sbi, segno);
917 		if (IS_NODESEG(se->type))
918 			holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
919 		else
920 			holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
921 	}
922 	mutex_unlock(&dirty_i->seglist_lock);
923 
924 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
925 	if (unusable > ovp_holes)
926 		return unusable - ovp_holes;
927 	return 0;
928 }
929 
930 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
931 {
932 	int ovp_hole_segs =
933 		(overprovision_segments(sbi) - reserved_segments(sbi));
934 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
935 		return -EAGAIN;
936 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
937 		dirty_segments(sbi) > ovp_hole_segs)
938 		return -EAGAIN;
939 	return 0;
940 }
941 
942 /* This is only used by SBI_CP_DISABLED */
943 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
944 {
945 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
946 	unsigned int segno = 0;
947 
948 	mutex_lock(&dirty_i->seglist_lock);
949 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
950 		if (get_valid_blocks(sbi, segno, false))
951 			continue;
952 		if (get_ckpt_valid_blocks(sbi, segno))
953 			continue;
954 		mutex_unlock(&dirty_i->seglist_lock);
955 		return segno;
956 	}
957 	mutex_unlock(&dirty_i->seglist_lock);
958 	return NULL_SEGNO;
959 }
960 
961 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
962 		struct block_device *bdev, block_t lstart,
963 		block_t start, block_t len)
964 {
965 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
966 	struct list_head *pend_list;
967 	struct discard_cmd *dc;
968 
969 	f2fs_bug_on(sbi, !len);
970 
971 	pend_list = &dcc->pend_list[plist_idx(len)];
972 
973 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
974 	INIT_LIST_HEAD(&dc->list);
975 	dc->bdev = bdev;
976 	dc->lstart = lstart;
977 	dc->start = start;
978 	dc->len = len;
979 	dc->ref = 0;
980 	dc->state = D_PREP;
981 	dc->queued = 0;
982 	dc->error = 0;
983 	init_completion(&dc->wait);
984 	list_add_tail(&dc->list, pend_list);
985 	spin_lock_init(&dc->lock);
986 	dc->bio_ref = 0;
987 	atomic_inc(&dcc->discard_cmd_cnt);
988 	dcc->undiscard_blks += len;
989 
990 	return dc;
991 }
992 
993 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
994 				struct block_device *bdev, block_t lstart,
995 				block_t start, block_t len,
996 				struct rb_node *parent, struct rb_node **p,
997 				bool leftmost)
998 {
999 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1000 	struct discard_cmd *dc;
1001 
1002 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1003 
1004 	rb_link_node(&dc->rb_node, parent, p);
1005 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1006 
1007 	return dc;
1008 }
1009 
1010 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1011 							struct discard_cmd *dc)
1012 {
1013 	if (dc->state == D_DONE)
1014 		atomic_sub(dc->queued, &dcc->queued_discard);
1015 
1016 	list_del(&dc->list);
1017 	rb_erase_cached(&dc->rb_node, &dcc->root);
1018 	dcc->undiscard_blks -= dc->len;
1019 
1020 	kmem_cache_free(discard_cmd_slab, dc);
1021 
1022 	atomic_dec(&dcc->discard_cmd_cnt);
1023 }
1024 
1025 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1026 							struct discard_cmd *dc)
1027 {
1028 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1029 	unsigned long flags;
1030 
1031 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1032 
1033 	spin_lock_irqsave(&dc->lock, flags);
1034 	if (dc->bio_ref) {
1035 		spin_unlock_irqrestore(&dc->lock, flags);
1036 		return;
1037 	}
1038 	spin_unlock_irqrestore(&dc->lock, flags);
1039 
1040 	f2fs_bug_on(sbi, dc->ref);
1041 
1042 	if (dc->error == -EOPNOTSUPP)
1043 		dc->error = 0;
1044 
1045 	if (dc->error)
1046 		printk_ratelimited(
1047 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1048 			KERN_INFO, sbi->sb->s_id,
1049 			dc->lstart, dc->start, dc->len, dc->error);
1050 	__detach_discard_cmd(dcc, dc);
1051 }
1052 
1053 static void f2fs_submit_discard_endio(struct bio *bio)
1054 {
1055 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1056 	unsigned long flags;
1057 
1058 	spin_lock_irqsave(&dc->lock, flags);
1059 	if (!dc->error)
1060 		dc->error = blk_status_to_errno(bio->bi_status);
1061 	dc->bio_ref--;
1062 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1063 		dc->state = D_DONE;
1064 		complete_all(&dc->wait);
1065 	}
1066 	spin_unlock_irqrestore(&dc->lock, flags);
1067 	bio_put(bio);
1068 }
1069 
1070 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1071 				block_t start, block_t end)
1072 {
1073 #ifdef CONFIG_F2FS_CHECK_FS
1074 	struct seg_entry *sentry;
1075 	unsigned int segno;
1076 	block_t blk = start;
1077 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1078 	unsigned long *map;
1079 
1080 	while (blk < end) {
1081 		segno = GET_SEGNO(sbi, blk);
1082 		sentry = get_seg_entry(sbi, segno);
1083 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1084 
1085 		if (end < START_BLOCK(sbi, segno + 1))
1086 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1087 		else
1088 			size = max_blocks;
1089 		map = (unsigned long *)(sentry->cur_valid_map);
1090 		offset = __find_rev_next_bit(map, size, offset);
1091 		f2fs_bug_on(sbi, offset != size);
1092 		blk = START_BLOCK(sbi, segno + 1);
1093 	}
1094 #endif
1095 }
1096 
1097 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1098 				struct discard_policy *dpolicy,
1099 				int discard_type, unsigned int granularity)
1100 {
1101 	/* common policy */
1102 	dpolicy->type = discard_type;
1103 	dpolicy->sync = true;
1104 	dpolicy->ordered = false;
1105 	dpolicy->granularity = granularity;
1106 
1107 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1108 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1109 	dpolicy->timeout = false;
1110 
1111 	if (discard_type == DPOLICY_BG) {
1112 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1113 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1114 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1115 		dpolicy->io_aware = true;
1116 		dpolicy->sync = false;
1117 		dpolicy->ordered = true;
1118 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1119 			dpolicy->granularity = 1;
1120 			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1121 		}
1122 	} else if (discard_type == DPOLICY_FORCE) {
1123 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1124 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1125 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1126 		dpolicy->io_aware = false;
1127 	} else if (discard_type == DPOLICY_FSTRIM) {
1128 		dpolicy->io_aware = false;
1129 	} else if (discard_type == DPOLICY_UMOUNT) {
1130 		dpolicy->io_aware = false;
1131 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1132 		dpolicy->granularity = 1;
1133 		dpolicy->timeout = true;
1134 	}
1135 }
1136 
1137 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1138 				struct block_device *bdev, block_t lstart,
1139 				block_t start, block_t len);
1140 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1141 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1142 						struct discard_policy *dpolicy,
1143 						struct discard_cmd *dc,
1144 						unsigned int *issued)
1145 {
1146 	struct block_device *bdev = dc->bdev;
1147 	struct request_queue *q = bdev_get_queue(bdev);
1148 	unsigned int max_discard_blocks =
1149 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1150 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1151 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1152 					&(dcc->fstrim_list) : &(dcc->wait_list);
1153 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1154 	block_t lstart, start, len, total_len;
1155 	int err = 0;
1156 
1157 	if (dc->state != D_PREP)
1158 		return 0;
1159 
1160 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1161 		return 0;
1162 
1163 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1164 
1165 	lstart = dc->lstart;
1166 	start = dc->start;
1167 	len = dc->len;
1168 	total_len = len;
1169 
1170 	dc->len = 0;
1171 
1172 	while (total_len && *issued < dpolicy->max_requests && !err) {
1173 		struct bio *bio = NULL;
1174 		unsigned long flags;
1175 		bool last = true;
1176 
1177 		if (len > max_discard_blocks) {
1178 			len = max_discard_blocks;
1179 			last = false;
1180 		}
1181 
1182 		(*issued)++;
1183 		if (*issued == dpolicy->max_requests)
1184 			last = true;
1185 
1186 		dc->len += len;
1187 
1188 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1189 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1190 			err = -EIO;
1191 			goto submit;
1192 		}
1193 		err = __blkdev_issue_discard(bdev,
1194 					SECTOR_FROM_BLOCK(start),
1195 					SECTOR_FROM_BLOCK(len),
1196 					GFP_NOFS, 0, &bio);
1197 submit:
1198 		if (err) {
1199 			spin_lock_irqsave(&dc->lock, flags);
1200 			if (dc->state == D_PARTIAL)
1201 				dc->state = D_SUBMIT;
1202 			spin_unlock_irqrestore(&dc->lock, flags);
1203 
1204 			break;
1205 		}
1206 
1207 		f2fs_bug_on(sbi, !bio);
1208 
1209 		/*
1210 		 * should keep before submission to avoid D_DONE
1211 		 * right away
1212 		 */
1213 		spin_lock_irqsave(&dc->lock, flags);
1214 		if (last)
1215 			dc->state = D_SUBMIT;
1216 		else
1217 			dc->state = D_PARTIAL;
1218 		dc->bio_ref++;
1219 		spin_unlock_irqrestore(&dc->lock, flags);
1220 
1221 		atomic_inc(&dcc->queued_discard);
1222 		dc->queued++;
1223 		list_move_tail(&dc->list, wait_list);
1224 
1225 		/* sanity check on discard range */
1226 		__check_sit_bitmap(sbi, lstart, lstart + len);
1227 
1228 		bio->bi_private = dc;
1229 		bio->bi_end_io = f2fs_submit_discard_endio;
1230 		bio->bi_opf |= flag;
1231 		submit_bio(bio);
1232 
1233 		atomic_inc(&dcc->issued_discard);
1234 
1235 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1236 
1237 		lstart += len;
1238 		start += len;
1239 		total_len -= len;
1240 		len = total_len;
1241 	}
1242 
1243 	if (!err && len) {
1244 		dcc->undiscard_blks -= len;
1245 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1246 	}
1247 	return err;
1248 }
1249 
1250 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1251 				struct block_device *bdev, block_t lstart,
1252 				block_t start, block_t len,
1253 				struct rb_node **insert_p,
1254 				struct rb_node *insert_parent)
1255 {
1256 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1257 	struct rb_node **p;
1258 	struct rb_node *parent = NULL;
1259 	bool leftmost = true;
1260 
1261 	if (insert_p && insert_parent) {
1262 		parent = insert_parent;
1263 		p = insert_p;
1264 		goto do_insert;
1265 	}
1266 
1267 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1268 							lstart, &leftmost);
1269 do_insert:
1270 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1271 								p, leftmost);
1272 }
1273 
1274 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1275 						struct discard_cmd *dc)
1276 {
1277 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1278 }
1279 
1280 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1281 				struct discard_cmd *dc, block_t blkaddr)
1282 {
1283 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284 	struct discard_info di = dc->di;
1285 	bool modified = false;
1286 
1287 	if (dc->state == D_DONE || dc->len == 1) {
1288 		__remove_discard_cmd(sbi, dc);
1289 		return;
1290 	}
1291 
1292 	dcc->undiscard_blks -= di.len;
1293 
1294 	if (blkaddr > di.lstart) {
1295 		dc->len = blkaddr - dc->lstart;
1296 		dcc->undiscard_blks += dc->len;
1297 		__relocate_discard_cmd(dcc, dc);
1298 		modified = true;
1299 	}
1300 
1301 	if (blkaddr < di.lstart + di.len - 1) {
1302 		if (modified) {
1303 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1304 					di.start + blkaddr + 1 - di.lstart,
1305 					di.lstart + di.len - 1 - blkaddr,
1306 					NULL, NULL);
1307 		} else {
1308 			dc->lstart++;
1309 			dc->len--;
1310 			dc->start++;
1311 			dcc->undiscard_blks += dc->len;
1312 			__relocate_discard_cmd(dcc, dc);
1313 		}
1314 	}
1315 }
1316 
1317 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1318 				struct block_device *bdev, block_t lstart,
1319 				block_t start, block_t len)
1320 {
1321 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1322 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1323 	struct discard_cmd *dc;
1324 	struct discard_info di = {0};
1325 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1326 	struct request_queue *q = bdev_get_queue(bdev);
1327 	unsigned int max_discard_blocks =
1328 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1329 	block_t end = lstart + len;
1330 
1331 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1332 					NULL, lstart,
1333 					(struct rb_entry **)&prev_dc,
1334 					(struct rb_entry **)&next_dc,
1335 					&insert_p, &insert_parent, true, NULL);
1336 	if (dc)
1337 		prev_dc = dc;
1338 
1339 	if (!prev_dc) {
1340 		di.lstart = lstart;
1341 		di.len = next_dc ? next_dc->lstart - lstart : len;
1342 		di.len = min(di.len, len);
1343 		di.start = start;
1344 	}
1345 
1346 	while (1) {
1347 		struct rb_node *node;
1348 		bool merged = false;
1349 		struct discard_cmd *tdc = NULL;
1350 
1351 		if (prev_dc) {
1352 			di.lstart = prev_dc->lstart + prev_dc->len;
1353 			if (di.lstart < lstart)
1354 				di.lstart = lstart;
1355 			if (di.lstart >= end)
1356 				break;
1357 
1358 			if (!next_dc || next_dc->lstart > end)
1359 				di.len = end - di.lstart;
1360 			else
1361 				di.len = next_dc->lstart - di.lstart;
1362 			di.start = start + di.lstart - lstart;
1363 		}
1364 
1365 		if (!di.len)
1366 			goto next;
1367 
1368 		if (prev_dc && prev_dc->state == D_PREP &&
1369 			prev_dc->bdev == bdev &&
1370 			__is_discard_back_mergeable(&di, &prev_dc->di,
1371 							max_discard_blocks)) {
1372 			prev_dc->di.len += di.len;
1373 			dcc->undiscard_blks += di.len;
1374 			__relocate_discard_cmd(dcc, prev_dc);
1375 			di = prev_dc->di;
1376 			tdc = prev_dc;
1377 			merged = true;
1378 		}
1379 
1380 		if (next_dc && next_dc->state == D_PREP &&
1381 			next_dc->bdev == bdev &&
1382 			__is_discard_front_mergeable(&di, &next_dc->di,
1383 							max_discard_blocks)) {
1384 			next_dc->di.lstart = di.lstart;
1385 			next_dc->di.len += di.len;
1386 			next_dc->di.start = di.start;
1387 			dcc->undiscard_blks += di.len;
1388 			__relocate_discard_cmd(dcc, next_dc);
1389 			if (tdc)
1390 				__remove_discard_cmd(sbi, tdc);
1391 			merged = true;
1392 		}
1393 
1394 		if (!merged) {
1395 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1396 							di.len, NULL, NULL);
1397 		}
1398  next:
1399 		prev_dc = next_dc;
1400 		if (!prev_dc)
1401 			break;
1402 
1403 		node = rb_next(&prev_dc->rb_node);
1404 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1405 	}
1406 }
1407 
1408 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1409 		struct block_device *bdev, block_t blkstart, block_t blklen)
1410 {
1411 	block_t lblkstart = blkstart;
1412 
1413 	if (!f2fs_bdev_support_discard(bdev))
1414 		return 0;
1415 
1416 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1417 
1418 	if (f2fs_is_multi_device(sbi)) {
1419 		int devi = f2fs_target_device_index(sbi, blkstart);
1420 
1421 		blkstart -= FDEV(devi).start_blk;
1422 	}
1423 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1424 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1425 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1426 	return 0;
1427 }
1428 
1429 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1430 					struct discard_policy *dpolicy)
1431 {
1432 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1433 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1434 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1435 	struct discard_cmd *dc;
1436 	struct blk_plug plug;
1437 	unsigned int pos = dcc->next_pos;
1438 	unsigned int issued = 0;
1439 	bool io_interrupted = false;
1440 
1441 	mutex_lock(&dcc->cmd_lock);
1442 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1443 					NULL, pos,
1444 					(struct rb_entry **)&prev_dc,
1445 					(struct rb_entry **)&next_dc,
1446 					&insert_p, &insert_parent, true, NULL);
1447 	if (!dc)
1448 		dc = next_dc;
1449 
1450 	blk_start_plug(&plug);
1451 
1452 	while (dc) {
1453 		struct rb_node *node;
1454 		int err = 0;
1455 
1456 		if (dc->state != D_PREP)
1457 			goto next;
1458 
1459 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1460 			io_interrupted = true;
1461 			break;
1462 		}
1463 
1464 		dcc->next_pos = dc->lstart + dc->len;
1465 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1466 
1467 		if (issued >= dpolicy->max_requests)
1468 			break;
1469 next:
1470 		node = rb_next(&dc->rb_node);
1471 		if (err)
1472 			__remove_discard_cmd(sbi, dc);
1473 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1474 	}
1475 
1476 	blk_finish_plug(&plug);
1477 
1478 	if (!dc)
1479 		dcc->next_pos = 0;
1480 
1481 	mutex_unlock(&dcc->cmd_lock);
1482 
1483 	if (!issued && io_interrupted)
1484 		issued = -1;
1485 
1486 	return issued;
1487 }
1488 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1489 					struct discard_policy *dpolicy);
1490 
1491 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1492 					struct discard_policy *dpolicy)
1493 {
1494 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1495 	struct list_head *pend_list;
1496 	struct discard_cmd *dc, *tmp;
1497 	struct blk_plug plug;
1498 	int i, issued;
1499 	bool io_interrupted = false;
1500 
1501 	if (dpolicy->timeout)
1502 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1503 
1504 retry:
1505 	issued = 0;
1506 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1507 		if (dpolicy->timeout &&
1508 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1509 			break;
1510 
1511 		if (i + 1 < dpolicy->granularity)
1512 			break;
1513 
1514 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1515 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1516 
1517 		pend_list = &dcc->pend_list[i];
1518 
1519 		mutex_lock(&dcc->cmd_lock);
1520 		if (list_empty(pend_list))
1521 			goto next;
1522 		if (unlikely(dcc->rbtree_check))
1523 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1524 								&dcc->root));
1525 		blk_start_plug(&plug);
1526 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1527 			f2fs_bug_on(sbi, dc->state != D_PREP);
1528 
1529 			if (dpolicy->timeout &&
1530 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1531 				break;
1532 
1533 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1534 						!is_idle(sbi, DISCARD_TIME)) {
1535 				io_interrupted = true;
1536 				break;
1537 			}
1538 
1539 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1540 
1541 			if (issued >= dpolicy->max_requests)
1542 				break;
1543 		}
1544 		blk_finish_plug(&plug);
1545 next:
1546 		mutex_unlock(&dcc->cmd_lock);
1547 
1548 		if (issued >= dpolicy->max_requests || io_interrupted)
1549 			break;
1550 	}
1551 
1552 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1553 		__wait_all_discard_cmd(sbi, dpolicy);
1554 		goto retry;
1555 	}
1556 
1557 	if (!issued && io_interrupted)
1558 		issued = -1;
1559 
1560 	return issued;
1561 }
1562 
1563 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1564 {
1565 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1566 	struct list_head *pend_list;
1567 	struct discard_cmd *dc, *tmp;
1568 	int i;
1569 	bool dropped = false;
1570 
1571 	mutex_lock(&dcc->cmd_lock);
1572 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1573 		pend_list = &dcc->pend_list[i];
1574 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1575 			f2fs_bug_on(sbi, dc->state != D_PREP);
1576 			__remove_discard_cmd(sbi, dc);
1577 			dropped = true;
1578 		}
1579 	}
1580 	mutex_unlock(&dcc->cmd_lock);
1581 
1582 	return dropped;
1583 }
1584 
1585 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1586 {
1587 	__drop_discard_cmd(sbi);
1588 }
1589 
1590 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1591 							struct discard_cmd *dc)
1592 {
1593 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1594 	unsigned int len = 0;
1595 
1596 	wait_for_completion_io(&dc->wait);
1597 	mutex_lock(&dcc->cmd_lock);
1598 	f2fs_bug_on(sbi, dc->state != D_DONE);
1599 	dc->ref--;
1600 	if (!dc->ref) {
1601 		if (!dc->error)
1602 			len = dc->len;
1603 		__remove_discard_cmd(sbi, dc);
1604 	}
1605 	mutex_unlock(&dcc->cmd_lock);
1606 
1607 	return len;
1608 }
1609 
1610 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1611 						struct discard_policy *dpolicy,
1612 						block_t start, block_t end)
1613 {
1614 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1615 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1616 					&(dcc->fstrim_list) : &(dcc->wait_list);
1617 	struct discard_cmd *dc, *tmp;
1618 	bool need_wait;
1619 	unsigned int trimmed = 0;
1620 
1621 next:
1622 	need_wait = false;
1623 
1624 	mutex_lock(&dcc->cmd_lock);
1625 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1626 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1627 			continue;
1628 		if (dc->len < dpolicy->granularity)
1629 			continue;
1630 		if (dc->state == D_DONE && !dc->ref) {
1631 			wait_for_completion_io(&dc->wait);
1632 			if (!dc->error)
1633 				trimmed += dc->len;
1634 			__remove_discard_cmd(sbi, dc);
1635 		} else {
1636 			dc->ref++;
1637 			need_wait = true;
1638 			break;
1639 		}
1640 	}
1641 	mutex_unlock(&dcc->cmd_lock);
1642 
1643 	if (need_wait) {
1644 		trimmed += __wait_one_discard_bio(sbi, dc);
1645 		goto next;
1646 	}
1647 
1648 	return trimmed;
1649 }
1650 
1651 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1652 						struct discard_policy *dpolicy)
1653 {
1654 	struct discard_policy dp;
1655 	unsigned int discard_blks;
1656 
1657 	if (dpolicy)
1658 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1659 
1660 	/* wait all */
1661 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1662 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1663 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1664 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1665 
1666 	return discard_blks;
1667 }
1668 
1669 /* This should be covered by global mutex, &sit_i->sentry_lock */
1670 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1671 {
1672 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1673 	struct discard_cmd *dc;
1674 	bool need_wait = false;
1675 
1676 	mutex_lock(&dcc->cmd_lock);
1677 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1678 							NULL, blkaddr);
1679 	if (dc) {
1680 		if (dc->state == D_PREP) {
1681 			__punch_discard_cmd(sbi, dc, blkaddr);
1682 		} else {
1683 			dc->ref++;
1684 			need_wait = true;
1685 		}
1686 	}
1687 	mutex_unlock(&dcc->cmd_lock);
1688 
1689 	if (need_wait)
1690 		__wait_one_discard_bio(sbi, dc);
1691 }
1692 
1693 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1694 {
1695 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696 
1697 	if (dcc && dcc->f2fs_issue_discard) {
1698 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1699 
1700 		dcc->f2fs_issue_discard = NULL;
1701 		kthread_stop(discard_thread);
1702 	}
1703 }
1704 
1705 /* This comes from f2fs_put_super */
1706 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1707 {
1708 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1709 	struct discard_policy dpolicy;
1710 	bool dropped;
1711 
1712 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1713 					dcc->discard_granularity);
1714 	__issue_discard_cmd(sbi, &dpolicy);
1715 	dropped = __drop_discard_cmd(sbi);
1716 
1717 	/* just to make sure there is no pending discard commands */
1718 	__wait_all_discard_cmd(sbi, NULL);
1719 
1720 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1721 	return dropped;
1722 }
1723 
1724 static int issue_discard_thread(void *data)
1725 {
1726 	struct f2fs_sb_info *sbi = data;
1727 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1728 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1729 	struct discard_policy dpolicy;
1730 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1731 	int issued;
1732 
1733 	set_freezable();
1734 
1735 	do {
1736 		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1737 					dcc->discard_granularity);
1738 
1739 		wait_event_interruptible_timeout(*q,
1740 				kthread_should_stop() || freezing(current) ||
1741 				dcc->discard_wake,
1742 				msecs_to_jiffies(wait_ms));
1743 
1744 		if (dcc->discard_wake)
1745 			dcc->discard_wake = 0;
1746 
1747 		/* clean up pending candidates before going to sleep */
1748 		if (atomic_read(&dcc->queued_discard))
1749 			__wait_all_discard_cmd(sbi, NULL);
1750 
1751 		if (try_to_freeze())
1752 			continue;
1753 		if (f2fs_readonly(sbi->sb))
1754 			continue;
1755 		if (kthread_should_stop())
1756 			return 0;
1757 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1758 			wait_ms = dpolicy.max_interval;
1759 			continue;
1760 		}
1761 
1762 		if (sbi->gc_mode == GC_URGENT)
1763 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1764 
1765 		sb_start_intwrite(sbi->sb);
1766 
1767 		issued = __issue_discard_cmd(sbi, &dpolicy);
1768 		if (issued > 0) {
1769 			__wait_all_discard_cmd(sbi, &dpolicy);
1770 			wait_ms = dpolicy.min_interval;
1771 		} else if (issued == -1){
1772 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1773 			if (!wait_ms)
1774 				wait_ms = dpolicy.mid_interval;
1775 		} else {
1776 			wait_ms = dpolicy.max_interval;
1777 		}
1778 
1779 		sb_end_intwrite(sbi->sb);
1780 
1781 	} while (!kthread_should_stop());
1782 	return 0;
1783 }
1784 
1785 #ifdef CONFIG_BLK_DEV_ZONED
1786 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1787 		struct block_device *bdev, block_t blkstart, block_t blklen)
1788 {
1789 	sector_t sector, nr_sects;
1790 	block_t lblkstart = blkstart;
1791 	int devi = 0;
1792 
1793 	if (f2fs_is_multi_device(sbi)) {
1794 		devi = f2fs_target_device_index(sbi, blkstart);
1795 		if (blkstart < FDEV(devi).start_blk ||
1796 		    blkstart > FDEV(devi).end_blk) {
1797 			f2fs_err(sbi, "Invalid block %x", blkstart);
1798 			return -EIO;
1799 		}
1800 		blkstart -= FDEV(devi).start_blk;
1801 	}
1802 
1803 	/* For sequential zones, reset the zone write pointer */
1804 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1805 		sector = SECTOR_FROM_BLOCK(blkstart);
1806 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1807 
1808 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1809 				nr_sects != bdev_zone_sectors(bdev)) {
1810 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1811 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1812 				 blkstart, blklen);
1813 			return -EIO;
1814 		}
1815 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1816 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1817 					sector, nr_sects, GFP_NOFS);
1818 	}
1819 
1820 	/* For conventional zones, use regular discard if supported */
1821 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1822 }
1823 #endif
1824 
1825 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1826 		struct block_device *bdev, block_t blkstart, block_t blklen)
1827 {
1828 #ifdef CONFIG_BLK_DEV_ZONED
1829 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1830 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1831 #endif
1832 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1833 }
1834 
1835 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1836 				block_t blkstart, block_t blklen)
1837 {
1838 	sector_t start = blkstart, len = 0;
1839 	struct block_device *bdev;
1840 	struct seg_entry *se;
1841 	unsigned int offset;
1842 	block_t i;
1843 	int err = 0;
1844 
1845 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1846 
1847 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1848 		if (i != start) {
1849 			struct block_device *bdev2 =
1850 				f2fs_target_device(sbi, i, NULL);
1851 
1852 			if (bdev2 != bdev) {
1853 				err = __issue_discard_async(sbi, bdev,
1854 						start, len);
1855 				if (err)
1856 					return err;
1857 				bdev = bdev2;
1858 				start = i;
1859 				len = 0;
1860 			}
1861 		}
1862 
1863 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1864 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1865 
1866 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1867 			sbi->discard_blks--;
1868 	}
1869 
1870 	if (len)
1871 		err = __issue_discard_async(sbi, bdev, start, len);
1872 	return err;
1873 }
1874 
1875 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1876 							bool check_only)
1877 {
1878 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1879 	int max_blocks = sbi->blocks_per_seg;
1880 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1881 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1882 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1883 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1884 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1885 	unsigned int start = 0, end = -1;
1886 	bool force = (cpc->reason & CP_DISCARD);
1887 	struct discard_entry *de = NULL;
1888 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1889 	int i;
1890 
1891 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1892 		return false;
1893 
1894 	if (!force) {
1895 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1896 			SM_I(sbi)->dcc_info->nr_discards >=
1897 				SM_I(sbi)->dcc_info->max_discards)
1898 			return false;
1899 	}
1900 
1901 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1902 	for (i = 0; i < entries; i++)
1903 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1904 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1905 
1906 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1907 				SM_I(sbi)->dcc_info->max_discards) {
1908 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1909 		if (start >= max_blocks)
1910 			break;
1911 
1912 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1913 		if (force && start && end != max_blocks
1914 					&& (end - start) < cpc->trim_minlen)
1915 			continue;
1916 
1917 		if (check_only)
1918 			return true;
1919 
1920 		if (!de) {
1921 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1922 								GFP_F2FS_ZERO);
1923 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1924 			list_add_tail(&de->list, head);
1925 		}
1926 
1927 		for (i = start; i < end; i++)
1928 			__set_bit_le(i, (void *)de->discard_map);
1929 
1930 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1931 	}
1932 	return false;
1933 }
1934 
1935 static void release_discard_addr(struct discard_entry *entry)
1936 {
1937 	list_del(&entry->list);
1938 	kmem_cache_free(discard_entry_slab, entry);
1939 }
1940 
1941 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1942 {
1943 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1944 	struct discard_entry *entry, *this;
1945 
1946 	/* drop caches */
1947 	list_for_each_entry_safe(entry, this, head, list)
1948 		release_discard_addr(entry);
1949 }
1950 
1951 /*
1952  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1953  */
1954 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1955 {
1956 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1957 	unsigned int segno;
1958 
1959 	mutex_lock(&dirty_i->seglist_lock);
1960 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1961 		__set_test_and_free(sbi, segno);
1962 	mutex_unlock(&dirty_i->seglist_lock);
1963 }
1964 
1965 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1966 						struct cp_control *cpc)
1967 {
1968 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1969 	struct list_head *head = &dcc->entry_list;
1970 	struct discard_entry *entry, *this;
1971 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1972 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1973 	unsigned int start = 0, end = -1;
1974 	unsigned int secno, start_segno;
1975 	bool force = (cpc->reason & CP_DISCARD);
1976 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1977 
1978 	mutex_lock(&dirty_i->seglist_lock);
1979 
1980 	while (1) {
1981 		int i;
1982 
1983 		if (need_align && end != -1)
1984 			end--;
1985 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1986 		if (start >= MAIN_SEGS(sbi))
1987 			break;
1988 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1989 								start + 1);
1990 
1991 		if (need_align) {
1992 			start = rounddown(start, sbi->segs_per_sec);
1993 			end = roundup(end, sbi->segs_per_sec);
1994 		}
1995 
1996 		for (i = start; i < end; i++) {
1997 			if (test_and_clear_bit(i, prefree_map))
1998 				dirty_i->nr_dirty[PRE]--;
1999 		}
2000 
2001 		if (!f2fs_realtime_discard_enable(sbi))
2002 			continue;
2003 
2004 		if (force && start >= cpc->trim_start &&
2005 					(end - 1) <= cpc->trim_end)
2006 				continue;
2007 
2008 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2009 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2010 				(end - start) << sbi->log_blocks_per_seg);
2011 			continue;
2012 		}
2013 next:
2014 		secno = GET_SEC_FROM_SEG(sbi, start);
2015 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2016 		if (!IS_CURSEC(sbi, secno) &&
2017 			!get_valid_blocks(sbi, start, true))
2018 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2019 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2020 
2021 		start = start_segno + sbi->segs_per_sec;
2022 		if (start < end)
2023 			goto next;
2024 		else
2025 			end = start - 1;
2026 	}
2027 	mutex_unlock(&dirty_i->seglist_lock);
2028 
2029 	/* send small discards */
2030 	list_for_each_entry_safe(entry, this, head, list) {
2031 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2032 		bool is_valid = test_bit_le(0, entry->discard_map);
2033 
2034 find_next:
2035 		if (is_valid) {
2036 			next_pos = find_next_zero_bit_le(entry->discard_map,
2037 					sbi->blocks_per_seg, cur_pos);
2038 			len = next_pos - cur_pos;
2039 
2040 			if (f2fs_sb_has_blkzoned(sbi) ||
2041 			    (force && len < cpc->trim_minlen))
2042 				goto skip;
2043 
2044 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2045 									len);
2046 			total_len += len;
2047 		} else {
2048 			next_pos = find_next_bit_le(entry->discard_map,
2049 					sbi->blocks_per_seg, cur_pos);
2050 		}
2051 skip:
2052 		cur_pos = next_pos;
2053 		is_valid = !is_valid;
2054 
2055 		if (cur_pos < sbi->blocks_per_seg)
2056 			goto find_next;
2057 
2058 		release_discard_addr(entry);
2059 		dcc->nr_discards -= total_len;
2060 	}
2061 
2062 	wake_up_discard_thread(sbi, false);
2063 }
2064 
2065 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2066 {
2067 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2068 	struct discard_cmd_control *dcc;
2069 	int err = 0, i;
2070 
2071 	if (SM_I(sbi)->dcc_info) {
2072 		dcc = SM_I(sbi)->dcc_info;
2073 		goto init_thread;
2074 	}
2075 
2076 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2077 	if (!dcc)
2078 		return -ENOMEM;
2079 
2080 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2081 	INIT_LIST_HEAD(&dcc->entry_list);
2082 	for (i = 0; i < MAX_PLIST_NUM; i++)
2083 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2084 	INIT_LIST_HEAD(&dcc->wait_list);
2085 	INIT_LIST_HEAD(&dcc->fstrim_list);
2086 	mutex_init(&dcc->cmd_lock);
2087 	atomic_set(&dcc->issued_discard, 0);
2088 	atomic_set(&dcc->queued_discard, 0);
2089 	atomic_set(&dcc->discard_cmd_cnt, 0);
2090 	dcc->nr_discards = 0;
2091 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2092 	dcc->undiscard_blks = 0;
2093 	dcc->next_pos = 0;
2094 	dcc->root = RB_ROOT_CACHED;
2095 	dcc->rbtree_check = false;
2096 
2097 	init_waitqueue_head(&dcc->discard_wait_queue);
2098 	SM_I(sbi)->dcc_info = dcc;
2099 init_thread:
2100 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2101 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2102 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2103 		err = PTR_ERR(dcc->f2fs_issue_discard);
2104 		kvfree(dcc);
2105 		SM_I(sbi)->dcc_info = NULL;
2106 		return err;
2107 	}
2108 
2109 	return err;
2110 }
2111 
2112 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2113 {
2114 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2115 
2116 	if (!dcc)
2117 		return;
2118 
2119 	f2fs_stop_discard_thread(sbi);
2120 
2121 	/*
2122 	 * Recovery can cache discard commands, so in error path of
2123 	 * fill_super(), it needs to give a chance to handle them.
2124 	 */
2125 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2126 		f2fs_issue_discard_timeout(sbi);
2127 
2128 	kvfree(dcc);
2129 	SM_I(sbi)->dcc_info = NULL;
2130 }
2131 
2132 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2133 {
2134 	struct sit_info *sit_i = SIT_I(sbi);
2135 
2136 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2137 		sit_i->dirty_sentries++;
2138 		return false;
2139 	}
2140 
2141 	return true;
2142 }
2143 
2144 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2145 					unsigned int segno, int modified)
2146 {
2147 	struct seg_entry *se = get_seg_entry(sbi, segno);
2148 	se->type = type;
2149 	if (modified)
2150 		__mark_sit_entry_dirty(sbi, segno);
2151 }
2152 
2153 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2154 {
2155 	struct seg_entry *se;
2156 	unsigned int segno, offset;
2157 	long int new_vblocks;
2158 	bool exist;
2159 #ifdef CONFIG_F2FS_CHECK_FS
2160 	bool mir_exist;
2161 #endif
2162 
2163 	segno = GET_SEGNO(sbi, blkaddr);
2164 
2165 	se = get_seg_entry(sbi, segno);
2166 	new_vblocks = se->valid_blocks + del;
2167 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2168 
2169 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2170 				(new_vblocks > sbi->blocks_per_seg)));
2171 
2172 	se->valid_blocks = new_vblocks;
2173 	se->mtime = get_mtime(sbi, false);
2174 	if (se->mtime > SIT_I(sbi)->max_mtime)
2175 		SIT_I(sbi)->max_mtime = se->mtime;
2176 
2177 	/* Update valid block bitmap */
2178 	if (del > 0) {
2179 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2180 #ifdef CONFIG_F2FS_CHECK_FS
2181 		mir_exist = f2fs_test_and_set_bit(offset,
2182 						se->cur_valid_map_mir);
2183 		if (unlikely(exist != mir_exist)) {
2184 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2185 				 blkaddr, exist);
2186 			f2fs_bug_on(sbi, 1);
2187 		}
2188 #endif
2189 		if (unlikely(exist)) {
2190 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2191 				 blkaddr);
2192 			f2fs_bug_on(sbi, 1);
2193 			se->valid_blocks--;
2194 			del = 0;
2195 		}
2196 
2197 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2198 			sbi->discard_blks--;
2199 
2200 		/*
2201 		 * SSR should never reuse block which is checkpointed
2202 		 * or newly invalidated.
2203 		 */
2204 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2205 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2206 				se->ckpt_valid_blocks++;
2207 		}
2208 	} else {
2209 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2210 #ifdef CONFIG_F2FS_CHECK_FS
2211 		mir_exist = f2fs_test_and_clear_bit(offset,
2212 						se->cur_valid_map_mir);
2213 		if (unlikely(exist != mir_exist)) {
2214 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2215 				 blkaddr, exist);
2216 			f2fs_bug_on(sbi, 1);
2217 		}
2218 #endif
2219 		if (unlikely(!exist)) {
2220 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2221 				 blkaddr);
2222 			f2fs_bug_on(sbi, 1);
2223 			se->valid_blocks++;
2224 			del = 0;
2225 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2226 			/*
2227 			 * If checkpoints are off, we must not reuse data that
2228 			 * was used in the previous checkpoint. If it was used
2229 			 * before, we must track that to know how much space we
2230 			 * really have.
2231 			 */
2232 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2233 				spin_lock(&sbi->stat_lock);
2234 				sbi->unusable_block_count++;
2235 				spin_unlock(&sbi->stat_lock);
2236 			}
2237 		}
2238 
2239 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2240 			sbi->discard_blks++;
2241 	}
2242 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2243 		se->ckpt_valid_blocks += del;
2244 
2245 	__mark_sit_entry_dirty(sbi, segno);
2246 
2247 	/* update total number of valid blocks to be written in ckpt area */
2248 	SIT_I(sbi)->written_valid_blocks += del;
2249 
2250 	if (__is_large_section(sbi))
2251 		get_sec_entry(sbi, segno)->valid_blocks += del;
2252 }
2253 
2254 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2255 {
2256 	unsigned int segno = GET_SEGNO(sbi, addr);
2257 	struct sit_info *sit_i = SIT_I(sbi);
2258 
2259 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2260 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2261 		return;
2262 
2263 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2264 
2265 	/* add it into sit main buffer */
2266 	down_write(&sit_i->sentry_lock);
2267 
2268 	update_sit_entry(sbi, addr, -1);
2269 
2270 	/* add it into dirty seglist */
2271 	locate_dirty_segment(sbi, segno);
2272 
2273 	up_write(&sit_i->sentry_lock);
2274 }
2275 
2276 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2277 {
2278 	struct sit_info *sit_i = SIT_I(sbi);
2279 	unsigned int segno, offset;
2280 	struct seg_entry *se;
2281 	bool is_cp = false;
2282 
2283 	if (!__is_valid_data_blkaddr(blkaddr))
2284 		return true;
2285 
2286 	down_read(&sit_i->sentry_lock);
2287 
2288 	segno = GET_SEGNO(sbi, blkaddr);
2289 	se = get_seg_entry(sbi, segno);
2290 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2291 
2292 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2293 		is_cp = true;
2294 
2295 	up_read(&sit_i->sentry_lock);
2296 
2297 	return is_cp;
2298 }
2299 
2300 /*
2301  * This function should be resided under the curseg_mutex lock
2302  */
2303 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2304 					struct f2fs_summary *sum)
2305 {
2306 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2307 	void *addr = curseg->sum_blk;
2308 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2309 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2310 }
2311 
2312 /*
2313  * Calculate the number of current summary pages for writing
2314  */
2315 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2316 {
2317 	int valid_sum_count = 0;
2318 	int i, sum_in_page;
2319 
2320 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2321 		if (sbi->ckpt->alloc_type[i] == SSR)
2322 			valid_sum_count += sbi->blocks_per_seg;
2323 		else {
2324 			if (for_ra)
2325 				valid_sum_count += le16_to_cpu(
2326 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2327 			else
2328 				valid_sum_count += curseg_blkoff(sbi, i);
2329 		}
2330 	}
2331 
2332 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2333 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2334 	if (valid_sum_count <= sum_in_page)
2335 		return 1;
2336 	else if ((valid_sum_count - sum_in_page) <=
2337 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2338 		return 2;
2339 	return 3;
2340 }
2341 
2342 /*
2343  * Caller should put this summary page
2344  */
2345 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2346 {
2347 	return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2348 }
2349 
2350 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2351 					void *src, block_t blk_addr)
2352 {
2353 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2354 
2355 	memcpy(page_address(page), src, PAGE_SIZE);
2356 	set_page_dirty(page);
2357 	f2fs_put_page(page, 1);
2358 }
2359 
2360 static void write_sum_page(struct f2fs_sb_info *sbi,
2361 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2362 {
2363 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2364 }
2365 
2366 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2367 						int type, block_t blk_addr)
2368 {
2369 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2370 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2371 	struct f2fs_summary_block *src = curseg->sum_blk;
2372 	struct f2fs_summary_block *dst;
2373 
2374 	dst = (struct f2fs_summary_block *)page_address(page);
2375 	memset(dst, 0, PAGE_SIZE);
2376 
2377 	mutex_lock(&curseg->curseg_mutex);
2378 
2379 	down_read(&curseg->journal_rwsem);
2380 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2381 	up_read(&curseg->journal_rwsem);
2382 
2383 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2384 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2385 
2386 	mutex_unlock(&curseg->curseg_mutex);
2387 
2388 	set_page_dirty(page);
2389 	f2fs_put_page(page, 1);
2390 }
2391 
2392 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2393 {
2394 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2395 	unsigned int segno = curseg->segno + 1;
2396 	struct free_segmap_info *free_i = FREE_I(sbi);
2397 
2398 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2399 		return !test_bit(segno, free_i->free_segmap);
2400 	return 0;
2401 }
2402 
2403 /*
2404  * Find a new segment from the free segments bitmap to right order
2405  * This function should be returned with success, otherwise BUG
2406  */
2407 static void get_new_segment(struct f2fs_sb_info *sbi,
2408 			unsigned int *newseg, bool new_sec, int dir)
2409 {
2410 	struct free_segmap_info *free_i = FREE_I(sbi);
2411 	unsigned int segno, secno, zoneno;
2412 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2413 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2414 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2415 	unsigned int left_start = hint;
2416 	bool init = true;
2417 	int go_left = 0;
2418 	int i;
2419 
2420 	spin_lock(&free_i->segmap_lock);
2421 
2422 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2423 		segno = find_next_zero_bit(free_i->free_segmap,
2424 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2425 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2426 			goto got_it;
2427 	}
2428 find_other_zone:
2429 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2430 	if (secno >= MAIN_SECS(sbi)) {
2431 		if (dir == ALLOC_RIGHT) {
2432 			secno = find_next_zero_bit(free_i->free_secmap,
2433 							MAIN_SECS(sbi), 0);
2434 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2435 		} else {
2436 			go_left = 1;
2437 			left_start = hint - 1;
2438 		}
2439 	}
2440 	if (go_left == 0)
2441 		goto skip_left;
2442 
2443 	while (test_bit(left_start, free_i->free_secmap)) {
2444 		if (left_start > 0) {
2445 			left_start--;
2446 			continue;
2447 		}
2448 		left_start = find_next_zero_bit(free_i->free_secmap,
2449 							MAIN_SECS(sbi), 0);
2450 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2451 		break;
2452 	}
2453 	secno = left_start;
2454 skip_left:
2455 	segno = GET_SEG_FROM_SEC(sbi, secno);
2456 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2457 
2458 	/* give up on finding another zone */
2459 	if (!init)
2460 		goto got_it;
2461 	if (sbi->secs_per_zone == 1)
2462 		goto got_it;
2463 	if (zoneno == old_zoneno)
2464 		goto got_it;
2465 	if (dir == ALLOC_LEFT) {
2466 		if (!go_left && zoneno + 1 >= total_zones)
2467 			goto got_it;
2468 		if (go_left && zoneno == 0)
2469 			goto got_it;
2470 	}
2471 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2472 		if (CURSEG_I(sbi, i)->zone == zoneno)
2473 			break;
2474 
2475 	if (i < NR_CURSEG_TYPE) {
2476 		/* zone is in user, try another */
2477 		if (go_left)
2478 			hint = zoneno * sbi->secs_per_zone - 1;
2479 		else if (zoneno + 1 >= total_zones)
2480 			hint = 0;
2481 		else
2482 			hint = (zoneno + 1) * sbi->secs_per_zone;
2483 		init = false;
2484 		goto find_other_zone;
2485 	}
2486 got_it:
2487 	/* set it as dirty segment in free segmap */
2488 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2489 	__set_inuse(sbi, segno);
2490 	*newseg = segno;
2491 	spin_unlock(&free_i->segmap_lock);
2492 }
2493 
2494 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2495 {
2496 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2497 	struct summary_footer *sum_footer;
2498 
2499 	curseg->segno = curseg->next_segno;
2500 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2501 	curseg->next_blkoff = 0;
2502 	curseg->next_segno = NULL_SEGNO;
2503 
2504 	sum_footer = &(curseg->sum_blk->footer);
2505 	memset(sum_footer, 0, sizeof(struct summary_footer));
2506 	if (IS_DATASEG(type))
2507 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2508 	if (IS_NODESEG(type))
2509 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2510 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2511 }
2512 
2513 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2514 {
2515 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2516 	if (__is_large_section(sbi))
2517 		return CURSEG_I(sbi, type)->segno;
2518 
2519 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2520 		return 0;
2521 
2522 	if (test_opt(sbi, NOHEAP) &&
2523 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2524 		return 0;
2525 
2526 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2527 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2528 
2529 	/* find segments from 0 to reuse freed segments */
2530 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2531 		return 0;
2532 
2533 	return CURSEG_I(sbi, type)->segno;
2534 }
2535 
2536 /*
2537  * Allocate a current working segment.
2538  * This function always allocates a free segment in LFS manner.
2539  */
2540 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2541 {
2542 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2543 	unsigned int segno = curseg->segno;
2544 	int dir = ALLOC_LEFT;
2545 
2546 	write_sum_page(sbi, curseg->sum_blk,
2547 				GET_SUM_BLOCK(sbi, segno));
2548 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2549 		dir = ALLOC_RIGHT;
2550 
2551 	if (test_opt(sbi, NOHEAP))
2552 		dir = ALLOC_RIGHT;
2553 
2554 	segno = __get_next_segno(sbi, type);
2555 	get_new_segment(sbi, &segno, new_sec, dir);
2556 	curseg->next_segno = segno;
2557 	reset_curseg(sbi, type, 1);
2558 	curseg->alloc_type = LFS;
2559 }
2560 
2561 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2562 			struct curseg_info *seg, block_t start)
2563 {
2564 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2565 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2566 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2567 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2568 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2569 	int i, pos;
2570 
2571 	for (i = 0; i < entries; i++)
2572 		target_map[i] = ckpt_map[i] | cur_map[i];
2573 
2574 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2575 
2576 	seg->next_blkoff = pos;
2577 }
2578 
2579 /*
2580  * If a segment is written by LFS manner, next block offset is just obtained
2581  * by increasing the current block offset. However, if a segment is written by
2582  * SSR manner, next block offset obtained by calling __next_free_blkoff
2583  */
2584 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2585 				struct curseg_info *seg)
2586 {
2587 	if (seg->alloc_type == SSR)
2588 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2589 	else
2590 		seg->next_blkoff++;
2591 }
2592 
2593 /*
2594  * This function always allocates a used segment(from dirty seglist) by SSR
2595  * manner, so it should recover the existing segment information of valid blocks
2596  */
2597 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2598 {
2599 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2600 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2601 	unsigned int new_segno = curseg->next_segno;
2602 	struct f2fs_summary_block *sum_node;
2603 	struct page *sum_page;
2604 
2605 	write_sum_page(sbi, curseg->sum_blk,
2606 				GET_SUM_BLOCK(sbi, curseg->segno));
2607 	__set_test_and_inuse(sbi, new_segno);
2608 
2609 	mutex_lock(&dirty_i->seglist_lock);
2610 	__remove_dirty_segment(sbi, new_segno, PRE);
2611 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2612 	mutex_unlock(&dirty_i->seglist_lock);
2613 
2614 	reset_curseg(sbi, type, 1);
2615 	curseg->alloc_type = SSR;
2616 	__next_free_blkoff(sbi, curseg, 0);
2617 
2618 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2619 	f2fs_bug_on(sbi, IS_ERR(sum_page));
2620 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2621 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2622 	f2fs_put_page(sum_page, 1);
2623 }
2624 
2625 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2626 {
2627 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2628 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2629 	unsigned segno = NULL_SEGNO;
2630 	int i, cnt;
2631 	bool reversed = false;
2632 
2633 	/* f2fs_need_SSR() already forces to do this */
2634 	if (!v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2635 		curseg->next_segno = segno;
2636 		return 1;
2637 	}
2638 
2639 	/* For node segments, let's do SSR more intensively */
2640 	if (IS_NODESEG(type)) {
2641 		if (type >= CURSEG_WARM_NODE) {
2642 			reversed = true;
2643 			i = CURSEG_COLD_NODE;
2644 		} else {
2645 			i = CURSEG_HOT_NODE;
2646 		}
2647 		cnt = NR_CURSEG_NODE_TYPE;
2648 	} else {
2649 		if (type >= CURSEG_WARM_DATA) {
2650 			reversed = true;
2651 			i = CURSEG_COLD_DATA;
2652 		} else {
2653 			i = CURSEG_HOT_DATA;
2654 		}
2655 		cnt = NR_CURSEG_DATA_TYPE;
2656 	}
2657 
2658 	for (; cnt-- > 0; reversed ? i-- : i++) {
2659 		if (i == type)
2660 			continue;
2661 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2662 			curseg->next_segno = segno;
2663 			return 1;
2664 		}
2665 	}
2666 
2667 	/* find valid_blocks=0 in dirty list */
2668 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2669 		segno = get_free_segment(sbi);
2670 		if (segno != NULL_SEGNO) {
2671 			curseg->next_segno = segno;
2672 			return 1;
2673 		}
2674 	}
2675 	return 0;
2676 }
2677 
2678 /*
2679  * flush out current segment and replace it with new segment
2680  * This function should be returned with success, otherwise BUG
2681  */
2682 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2683 						int type, bool force)
2684 {
2685 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2686 
2687 	if (force)
2688 		new_curseg(sbi, type, true);
2689 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2690 					type == CURSEG_WARM_NODE)
2691 		new_curseg(sbi, type, false);
2692 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2693 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2694 		new_curseg(sbi, type, false);
2695 	else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2696 		change_curseg(sbi, type);
2697 	else
2698 		new_curseg(sbi, type, false);
2699 
2700 	stat_inc_seg_type(sbi, curseg);
2701 }
2702 
2703 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2704 					unsigned int start, unsigned int end)
2705 {
2706 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2707 	unsigned int segno;
2708 
2709 	down_read(&SM_I(sbi)->curseg_lock);
2710 	mutex_lock(&curseg->curseg_mutex);
2711 	down_write(&SIT_I(sbi)->sentry_lock);
2712 
2713 	segno = CURSEG_I(sbi, type)->segno;
2714 	if (segno < start || segno > end)
2715 		goto unlock;
2716 
2717 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2718 		change_curseg(sbi, type);
2719 	else
2720 		new_curseg(sbi, type, true);
2721 
2722 	stat_inc_seg_type(sbi, curseg);
2723 
2724 	locate_dirty_segment(sbi, segno);
2725 unlock:
2726 	up_write(&SIT_I(sbi)->sentry_lock);
2727 
2728 	if (segno != curseg->segno)
2729 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2730 			    type, segno, curseg->segno);
2731 
2732 	mutex_unlock(&curseg->curseg_mutex);
2733 	up_read(&SM_I(sbi)->curseg_lock);
2734 }
2735 
2736 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type)
2737 {
2738 	struct curseg_info *curseg;
2739 	unsigned int old_segno;
2740 	int i;
2741 
2742 	down_write(&SIT_I(sbi)->sentry_lock);
2743 
2744 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2745 		if (type != NO_CHECK_TYPE && i != type)
2746 			continue;
2747 
2748 		curseg = CURSEG_I(sbi, i);
2749 		if (type == NO_CHECK_TYPE || curseg->next_blkoff ||
2750 				get_valid_blocks(sbi, curseg->segno, false) ||
2751 				get_ckpt_valid_blocks(sbi, curseg->segno)) {
2752 			old_segno = curseg->segno;
2753 			SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2754 			locate_dirty_segment(sbi, old_segno);
2755 		}
2756 	}
2757 
2758 	up_write(&SIT_I(sbi)->sentry_lock);
2759 }
2760 
2761 static const struct segment_allocation default_salloc_ops = {
2762 	.allocate_segment = allocate_segment_by_default,
2763 };
2764 
2765 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2766 						struct cp_control *cpc)
2767 {
2768 	__u64 trim_start = cpc->trim_start;
2769 	bool has_candidate = false;
2770 
2771 	down_write(&SIT_I(sbi)->sentry_lock);
2772 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2773 		if (add_discard_addrs(sbi, cpc, true)) {
2774 			has_candidate = true;
2775 			break;
2776 		}
2777 	}
2778 	up_write(&SIT_I(sbi)->sentry_lock);
2779 
2780 	cpc->trim_start = trim_start;
2781 	return has_candidate;
2782 }
2783 
2784 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2785 					struct discard_policy *dpolicy,
2786 					unsigned int start, unsigned int end)
2787 {
2788 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2789 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2790 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2791 	struct discard_cmd *dc;
2792 	struct blk_plug plug;
2793 	int issued;
2794 	unsigned int trimmed = 0;
2795 
2796 next:
2797 	issued = 0;
2798 
2799 	mutex_lock(&dcc->cmd_lock);
2800 	if (unlikely(dcc->rbtree_check))
2801 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2802 								&dcc->root));
2803 
2804 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2805 					NULL, start,
2806 					(struct rb_entry **)&prev_dc,
2807 					(struct rb_entry **)&next_dc,
2808 					&insert_p, &insert_parent, true, NULL);
2809 	if (!dc)
2810 		dc = next_dc;
2811 
2812 	blk_start_plug(&plug);
2813 
2814 	while (dc && dc->lstart <= end) {
2815 		struct rb_node *node;
2816 		int err = 0;
2817 
2818 		if (dc->len < dpolicy->granularity)
2819 			goto skip;
2820 
2821 		if (dc->state != D_PREP) {
2822 			list_move_tail(&dc->list, &dcc->fstrim_list);
2823 			goto skip;
2824 		}
2825 
2826 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2827 
2828 		if (issued >= dpolicy->max_requests) {
2829 			start = dc->lstart + dc->len;
2830 
2831 			if (err)
2832 				__remove_discard_cmd(sbi, dc);
2833 
2834 			blk_finish_plug(&plug);
2835 			mutex_unlock(&dcc->cmd_lock);
2836 			trimmed += __wait_all_discard_cmd(sbi, NULL);
2837 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2838 			goto next;
2839 		}
2840 skip:
2841 		node = rb_next(&dc->rb_node);
2842 		if (err)
2843 			__remove_discard_cmd(sbi, dc);
2844 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2845 
2846 		if (fatal_signal_pending(current))
2847 			break;
2848 	}
2849 
2850 	blk_finish_plug(&plug);
2851 	mutex_unlock(&dcc->cmd_lock);
2852 
2853 	return trimmed;
2854 }
2855 
2856 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2857 {
2858 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2859 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2860 	unsigned int start_segno, end_segno;
2861 	block_t start_block, end_block;
2862 	struct cp_control cpc;
2863 	struct discard_policy dpolicy;
2864 	unsigned long long trimmed = 0;
2865 	int err = 0;
2866 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2867 
2868 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2869 		return -EINVAL;
2870 
2871 	if (end < MAIN_BLKADDR(sbi))
2872 		goto out;
2873 
2874 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2875 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2876 		return -EFSCORRUPTED;
2877 	}
2878 
2879 	/* start/end segment number in main_area */
2880 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2881 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2882 						GET_SEGNO(sbi, end);
2883 	if (need_align) {
2884 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
2885 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2886 	}
2887 
2888 	cpc.reason = CP_DISCARD;
2889 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2890 	cpc.trim_start = start_segno;
2891 	cpc.trim_end = end_segno;
2892 
2893 	if (sbi->discard_blks == 0)
2894 		goto out;
2895 
2896 	down_write(&sbi->gc_lock);
2897 	err = f2fs_write_checkpoint(sbi, &cpc);
2898 	up_write(&sbi->gc_lock);
2899 	if (err)
2900 		goto out;
2901 
2902 	/*
2903 	 * We filed discard candidates, but actually we don't need to wait for
2904 	 * all of them, since they'll be issued in idle time along with runtime
2905 	 * discard option. User configuration looks like using runtime discard
2906 	 * or periodic fstrim instead of it.
2907 	 */
2908 	if (f2fs_realtime_discard_enable(sbi))
2909 		goto out;
2910 
2911 	start_block = START_BLOCK(sbi, start_segno);
2912 	end_block = START_BLOCK(sbi, end_segno + 1);
2913 
2914 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2915 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2916 					start_block, end_block);
2917 
2918 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2919 					start_block, end_block);
2920 out:
2921 	if (!err)
2922 		range->len = F2FS_BLK_TO_BYTES(trimmed);
2923 	return err;
2924 }
2925 
2926 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2927 {
2928 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2929 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2930 		return true;
2931 	return false;
2932 }
2933 
2934 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2935 {
2936 	switch (hint) {
2937 	case WRITE_LIFE_SHORT:
2938 		return CURSEG_HOT_DATA;
2939 	case WRITE_LIFE_EXTREME:
2940 		return CURSEG_COLD_DATA;
2941 	default:
2942 		return CURSEG_WARM_DATA;
2943 	}
2944 }
2945 
2946 /* This returns write hints for each segment type. This hints will be
2947  * passed down to block layer. There are mapping tables which depend on
2948  * the mount option 'whint_mode'.
2949  *
2950  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2951  *
2952  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2953  *
2954  * User                  F2FS                     Block
2955  * ----                  ----                     -----
2956  *                       META                     WRITE_LIFE_NOT_SET
2957  *                       HOT_NODE                 "
2958  *                       WARM_NODE                "
2959  *                       COLD_NODE                "
2960  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2961  * extension list        "                        "
2962  *
2963  * -- buffered io
2964  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2965  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2966  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2967  * WRITE_LIFE_NONE       "                        "
2968  * WRITE_LIFE_MEDIUM     "                        "
2969  * WRITE_LIFE_LONG       "                        "
2970  *
2971  * -- direct io
2972  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2973  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2974  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2975  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2976  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2977  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2978  *
2979  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2980  *
2981  * User                  F2FS                     Block
2982  * ----                  ----                     -----
2983  *                       META                     WRITE_LIFE_MEDIUM;
2984  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2985  *                       WARM_NODE                "
2986  *                       COLD_NODE                WRITE_LIFE_NONE
2987  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2988  * extension list        "                        "
2989  *
2990  * -- buffered io
2991  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2992  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2993  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2994  * WRITE_LIFE_NONE       "                        "
2995  * WRITE_LIFE_MEDIUM     "                        "
2996  * WRITE_LIFE_LONG       "                        "
2997  *
2998  * -- direct io
2999  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3000  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3001  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3002  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3003  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3004  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3005  */
3006 
3007 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3008 				enum page_type type, enum temp_type temp)
3009 {
3010 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3011 		if (type == DATA) {
3012 			if (temp == WARM)
3013 				return WRITE_LIFE_NOT_SET;
3014 			else if (temp == HOT)
3015 				return WRITE_LIFE_SHORT;
3016 			else if (temp == COLD)
3017 				return WRITE_LIFE_EXTREME;
3018 		} else {
3019 			return WRITE_LIFE_NOT_SET;
3020 		}
3021 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3022 		if (type == DATA) {
3023 			if (temp == WARM)
3024 				return WRITE_LIFE_LONG;
3025 			else if (temp == HOT)
3026 				return WRITE_LIFE_SHORT;
3027 			else if (temp == COLD)
3028 				return WRITE_LIFE_EXTREME;
3029 		} else if (type == NODE) {
3030 			if (temp == WARM || temp == HOT)
3031 				return WRITE_LIFE_NOT_SET;
3032 			else if (temp == COLD)
3033 				return WRITE_LIFE_NONE;
3034 		} else if (type == META) {
3035 			return WRITE_LIFE_MEDIUM;
3036 		}
3037 	}
3038 	return WRITE_LIFE_NOT_SET;
3039 }
3040 
3041 static int __get_segment_type_2(struct f2fs_io_info *fio)
3042 {
3043 	if (fio->type == DATA)
3044 		return CURSEG_HOT_DATA;
3045 	else
3046 		return CURSEG_HOT_NODE;
3047 }
3048 
3049 static int __get_segment_type_4(struct f2fs_io_info *fio)
3050 {
3051 	if (fio->type == DATA) {
3052 		struct inode *inode = fio->page->mapping->host;
3053 
3054 		if (S_ISDIR(inode->i_mode))
3055 			return CURSEG_HOT_DATA;
3056 		else
3057 			return CURSEG_COLD_DATA;
3058 	} else {
3059 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3060 			return CURSEG_WARM_NODE;
3061 		else
3062 			return CURSEG_COLD_NODE;
3063 	}
3064 }
3065 
3066 static int __get_segment_type_6(struct f2fs_io_info *fio)
3067 {
3068 	if (fio->type == DATA) {
3069 		struct inode *inode = fio->page->mapping->host;
3070 
3071 		if (is_cold_data(fio->page) || file_is_cold(inode) ||
3072 				f2fs_compressed_file(inode))
3073 			return CURSEG_COLD_DATA;
3074 		if (file_is_hot(inode) ||
3075 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3076 				f2fs_is_atomic_file(inode) ||
3077 				f2fs_is_volatile_file(inode))
3078 			return CURSEG_HOT_DATA;
3079 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3080 	} else {
3081 		if (IS_DNODE(fio->page))
3082 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3083 						CURSEG_HOT_NODE;
3084 		return CURSEG_COLD_NODE;
3085 	}
3086 }
3087 
3088 static int __get_segment_type(struct f2fs_io_info *fio)
3089 {
3090 	int type = 0;
3091 
3092 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3093 	case 2:
3094 		type = __get_segment_type_2(fio);
3095 		break;
3096 	case 4:
3097 		type = __get_segment_type_4(fio);
3098 		break;
3099 	case 6:
3100 		type = __get_segment_type_6(fio);
3101 		break;
3102 	default:
3103 		f2fs_bug_on(fio->sbi, true);
3104 	}
3105 
3106 	if (IS_HOT(type))
3107 		fio->temp = HOT;
3108 	else if (IS_WARM(type))
3109 		fio->temp = WARM;
3110 	else
3111 		fio->temp = COLD;
3112 	return type;
3113 }
3114 
3115 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3116 		block_t old_blkaddr, block_t *new_blkaddr,
3117 		struct f2fs_summary *sum, int type,
3118 		struct f2fs_io_info *fio)
3119 {
3120 	struct sit_info *sit_i = SIT_I(sbi);
3121 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3122 	bool put_pin_sem = false;
3123 
3124 	if (type == CURSEG_COLD_DATA) {
3125 		/* GC during CURSEG_COLD_DATA_PINNED allocation */
3126 		if (down_read_trylock(&sbi->pin_sem)) {
3127 			put_pin_sem = true;
3128 		} else {
3129 			type = CURSEG_WARM_DATA;
3130 			curseg = CURSEG_I(sbi, type);
3131 		}
3132 	} else if (type == CURSEG_COLD_DATA_PINNED) {
3133 		type = CURSEG_COLD_DATA;
3134 	}
3135 
3136 	down_read(&SM_I(sbi)->curseg_lock);
3137 
3138 	mutex_lock(&curseg->curseg_mutex);
3139 	down_write(&sit_i->sentry_lock);
3140 
3141 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3142 
3143 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3144 
3145 	/*
3146 	 * __add_sum_entry should be resided under the curseg_mutex
3147 	 * because, this function updates a summary entry in the
3148 	 * current summary block.
3149 	 */
3150 	__add_sum_entry(sbi, type, sum);
3151 
3152 	__refresh_next_blkoff(sbi, curseg);
3153 
3154 	stat_inc_block_count(sbi, curseg);
3155 
3156 	/*
3157 	 * SIT information should be updated before segment allocation,
3158 	 * since SSR needs latest valid block information.
3159 	 */
3160 	update_sit_entry(sbi, *new_blkaddr, 1);
3161 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3162 		update_sit_entry(sbi, old_blkaddr, -1);
3163 
3164 	if (!__has_curseg_space(sbi, type))
3165 		sit_i->s_ops->allocate_segment(sbi, type, false);
3166 
3167 	/*
3168 	 * segment dirty status should be updated after segment allocation,
3169 	 * so we just need to update status only one time after previous
3170 	 * segment being closed.
3171 	 */
3172 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3173 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3174 
3175 	up_write(&sit_i->sentry_lock);
3176 
3177 	if (page && IS_NODESEG(type)) {
3178 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3179 
3180 		f2fs_inode_chksum_set(sbi, page);
3181 	}
3182 
3183 	if (F2FS_IO_ALIGNED(sbi))
3184 		fio->retry = false;
3185 
3186 	if (fio) {
3187 		struct f2fs_bio_info *io;
3188 
3189 		INIT_LIST_HEAD(&fio->list);
3190 		fio->in_list = true;
3191 		io = sbi->write_io[fio->type] + fio->temp;
3192 		spin_lock(&io->io_lock);
3193 		list_add_tail(&fio->list, &io->io_list);
3194 		spin_unlock(&io->io_lock);
3195 	}
3196 
3197 	mutex_unlock(&curseg->curseg_mutex);
3198 
3199 	up_read(&SM_I(sbi)->curseg_lock);
3200 
3201 	if (put_pin_sem)
3202 		up_read(&sbi->pin_sem);
3203 }
3204 
3205 static void update_device_state(struct f2fs_io_info *fio)
3206 {
3207 	struct f2fs_sb_info *sbi = fio->sbi;
3208 	unsigned int devidx;
3209 
3210 	if (!f2fs_is_multi_device(sbi))
3211 		return;
3212 
3213 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3214 
3215 	/* update device state for fsync */
3216 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3217 
3218 	/* update device state for checkpoint */
3219 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3220 		spin_lock(&sbi->dev_lock);
3221 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3222 		spin_unlock(&sbi->dev_lock);
3223 	}
3224 }
3225 
3226 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3227 {
3228 	int type = __get_segment_type(fio);
3229 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3230 
3231 	if (keep_order)
3232 		down_read(&fio->sbi->io_order_lock);
3233 reallocate:
3234 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3235 			&fio->new_blkaddr, sum, type, fio);
3236 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3237 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3238 					fio->old_blkaddr, fio->old_blkaddr);
3239 
3240 	/* writeout dirty page into bdev */
3241 	f2fs_submit_page_write(fio);
3242 	if (fio->retry) {
3243 		fio->old_blkaddr = fio->new_blkaddr;
3244 		goto reallocate;
3245 	}
3246 
3247 	update_device_state(fio);
3248 
3249 	if (keep_order)
3250 		up_read(&fio->sbi->io_order_lock);
3251 }
3252 
3253 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3254 					enum iostat_type io_type)
3255 {
3256 	struct f2fs_io_info fio = {
3257 		.sbi = sbi,
3258 		.type = META,
3259 		.temp = HOT,
3260 		.op = REQ_OP_WRITE,
3261 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3262 		.old_blkaddr = page->index,
3263 		.new_blkaddr = page->index,
3264 		.page = page,
3265 		.encrypted_page = NULL,
3266 		.in_list = false,
3267 	};
3268 
3269 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3270 		fio.op_flags &= ~REQ_META;
3271 
3272 	set_page_writeback(page);
3273 	ClearPageError(page);
3274 	f2fs_submit_page_write(&fio);
3275 
3276 	stat_inc_meta_count(sbi, page->index);
3277 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3278 }
3279 
3280 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3281 {
3282 	struct f2fs_summary sum;
3283 
3284 	set_summary(&sum, nid, 0, 0);
3285 	do_write_page(&sum, fio);
3286 
3287 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3288 }
3289 
3290 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3291 					struct f2fs_io_info *fio)
3292 {
3293 	struct f2fs_sb_info *sbi = fio->sbi;
3294 	struct f2fs_summary sum;
3295 
3296 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3297 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3298 	do_write_page(&sum, fio);
3299 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3300 
3301 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3302 }
3303 
3304 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3305 {
3306 	int err;
3307 	struct f2fs_sb_info *sbi = fio->sbi;
3308 	unsigned int segno;
3309 
3310 	fio->new_blkaddr = fio->old_blkaddr;
3311 	/* i/o temperature is needed for passing down write hints */
3312 	__get_segment_type(fio);
3313 
3314 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3315 
3316 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3317 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3318 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3319 			  __func__, segno);
3320 		return -EFSCORRUPTED;
3321 	}
3322 
3323 	stat_inc_inplace_blocks(fio->sbi);
3324 
3325 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3326 		err = f2fs_merge_page_bio(fio);
3327 	else
3328 		err = f2fs_submit_page_bio(fio);
3329 	if (!err) {
3330 		update_device_state(fio);
3331 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3332 	}
3333 
3334 	return err;
3335 }
3336 
3337 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3338 						unsigned int segno)
3339 {
3340 	int i;
3341 
3342 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3343 		if (CURSEG_I(sbi, i)->segno == segno)
3344 			break;
3345 	}
3346 	return i;
3347 }
3348 
3349 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3350 				block_t old_blkaddr, block_t new_blkaddr,
3351 				bool recover_curseg, bool recover_newaddr)
3352 {
3353 	struct sit_info *sit_i = SIT_I(sbi);
3354 	struct curseg_info *curseg;
3355 	unsigned int segno, old_cursegno;
3356 	struct seg_entry *se;
3357 	int type;
3358 	unsigned short old_blkoff;
3359 
3360 	segno = GET_SEGNO(sbi, new_blkaddr);
3361 	se = get_seg_entry(sbi, segno);
3362 	type = se->type;
3363 
3364 	down_write(&SM_I(sbi)->curseg_lock);
3365 
3366 	if (!recover_curseg) {
3367 		/* for recovery flow */
3368 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3369 			if (old_blkaddr == NULL_ADDR)
3370 				type = CURSEG_COLD_DATA;
3371 			else
3372 				type = CURSEG_WARM_DATA;
3373 		}
3374 	} else {
3375 		if (IS_CURSEG(sbi, segno)) {
3376 			/* se->type is volatile as SSR allocation */
3377 			type = __f2fs_get_curseg(sbi, segno);
3378 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3379 		} else {
3380 			type = CURSEG_WARM_DATA;
3381 		}
3382 	}
3383 
3384 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3385 	curseg = CURSEG_I(sbi, type);
3386 
3387 	mutex_lock(&curseg->curseg_mutex);
3388 	down_write(&sit_i->sentry_lock);
3389 
3390 	old_cursegno = curseg->segno;
3391 	old_blkoff = curseg->next_blkoff;
3392 
3393 	/* change the current segment */
3394 	if (segno != curseg->segno) {
3395 		curseg->next_segno = segno;
3396 		change_curseg(sbi, type);
3397 	}
3398 
3399 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3400 	__add_sum_entry(sbi, type, sum);
3401 
3402 	if (!recover_curseg || recover_newaddr)
3403 		update_sit_entry(sbi, new_blkaddr, 1);
3404 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3405 		invalidate_mapping_pages(META_MAPPING(sbi),
3406 					old_blkaddr, old_blkaddr);
3407 		update_sit_entry(sbi, old_blkaddr, -1);
3408 	}
3409 
3410 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3411 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3412 
3413 	locate_dirty_segment(sbi, old_cursegno);
3414 
3415 	if (recover_curseg) {
3416 		if (old_cursegno != curseg->segno) {
3417 			curseg->next_segno = old_cursegno;
3418 			change_curseg(sbi, type);
3419 		}
3420 		curseg->next_blkoff = old_blkoff;
3421 	}
3422 
3423 	up_write(&sit_i->sentry_lock);
3424 	mutex_unlock(&curseg->curseg_mutex);
3425 	up_write(&SM_I(sbi)->curseg_lock);
3426 }
3427 
3428 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3429 				block_t old_addr, block_t new_addr,
3430 				unsigned char version, bool recover_curseg,
3431 				bool recover_newaddr)
3432 {
3433 	struct f2fs_summary sum;
3434 
3435 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3436 
3437 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3438 					recover_curseg, recover_newaddr);
3439 
3440 	f2fs_update_data_blkaddr(dn, new_addr);
3441 }
3442 
3443 void f2fs_wait_on_page_writeback(struct page *page,
3444 				enum page_type type, bool ordered, bool locked)
3445 {
3446 	if (PageWriteback(page)) {
3447 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3448 
3449 		/* submit cached LFS IO */
3450 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3451 		/* sbumit cached IPU IO */
3452 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3453 		if (ordered) {
3454 			wait_on_page_writeback(page);
3455 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3456 		} else {
3457 			wait_for_stable_page(page);
3458 		}
3459 	}
3460 }
3461 
3462 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3463 {
3464 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3465 	struct page *cpage;
3466 
3467 	if (!f2fs_post_read_required(inode))
3468 		return;
3469 
3470 	if (!__is_valid_data_blkaddr(blkaddr))
3471 		return;
3472 
3473 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3474 	if (cpage) {
3475 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3476 		f2fs_put_page(cpage, 1);
3477 	}
3478 }
3479 
3480 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3481 								block_t len)
3482 {
3483 	block_t i;
3484 
3485 	for (i = 0; i < len; i++)
3486 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3487 }
3488 
3489 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3490 {
3491 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3492 	struct curseg_info *seg_i;
3493 	unsigned char *kaddr;
3494 	struct page *page;
3495 	block_t start;
3496 	int i, j, offset;
3497 
3498 	start = start_sum_block(sbi);
3499 
3500 	page = f2fs_get_meta_page(sbi, start++);
3501 	if (IS_ERR(page))
3502 		return PTR_ERR(page);
3503 	kaddr = (unsigned char *)page_address(page);
3504 
3505 	/* Step 1: restore nat cache */
3506 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3507 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3508 
3509 	/* Step 2: restore sit cache */
3510 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3511 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3512 	offset = 2 * SUM_JOURNAL_SIZE;
3513 
3514 	/* Step 3: restore summary entries */
3515 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3516 		unsigned short blk_off;
3517 		unsigned int segno;
3518 
3519 		seg_i = CURSEG_I(sbi, i);
3520 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3521 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3522 		seg_i->next_segno = segno;
3523 		reset_curseg(sbi, i, 0);
3524 		seg_i->alloc_type = ckpt->alloc_type[i];
3525 		seg_i->next_blkoff = blk_off;
3526 
3527 		if (seg_i->alloc_type == SSR)
3528 			blk_off = sbi->blocks_per_seg;
3529 
3530 		for (j = 0; j < blk_off; j++) {
3531 			struct f2fs_summary *s;
3532 			s = (struct f2fs_summary *)(kaddr + offset);
3533 			seg_i->sum_blk->entries[j] = *s;
3534 			offset += SUMMARY_SIZE;
3535 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3536 						SUM_FOOTER_SIZE)
3537 				continue;
3538 
3539 			f2fs_put_page(page, 1);
3540 			page = NULL;
3541 
3542 			page = f2fs_get_meta_page(sbi, start++);
3543 			if (IS_ERR(page))
3544 				return PTR_ERR(page);
3545 			kaddr = (unsigned char *)page_address(page);
3546 			offset = 0;
3547 		}
3548 	}
3549 	f2fs_put_page(page, 1);
3550 	return 0;
3551 }
3552 
3553 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3554 {
3555 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3556 	struct f2fs_summary_block *sum;
3557 	struct curseg_info *curseg;
3558 	struct page *new;
3559 	unsigned short blk_off;
3560 	unsigned int segno = 0;
3561 	block_t blk_addr = 0;
3562 	int err = 0;
3563 
3564 	/* get segment number and block addr */
3565 	if (IS_DATASEG(type)) {
3566 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3567 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3568 							CURSEG_HOT_DATA]);
3569 		if (__exist_node_summaries(sbi))
3570 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3571 		else
3572 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3573 	} else {
3574 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3575 							CURSEG_HOT_NODE]);
3576 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3577 							CURSEG_HOT_NODE]);
3578 		if (__exist_node_summaries(sbi))
3579 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3580 							type - CURSEG_HOT_NODE);
3581 		else
3582 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3583 	}
3584 
3585 	new = f2fs_get_meta_page(sbi, blk_addr);
3586 	if (IS_ERR(new))
3587 		return PTR_ERR(new);
3588 	sum = (struct f2fs_summary_block *)page_address(new);
3589 
3590 	if (IS_NODESEG(type)) {
3591 		if (__exist_node_summaries(sbi)) {
3592 			struct f2fs_summary *ns = &sum->entries[0];
3593 			int i;
3594 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3595 				ns->version = 0;
3596 				ns->ofs_in_node = 0;
3597 			}
3598 		} else {
3599 			err = f2fs_restore_node_summary(sbi, segno, sum);
3600 			if (err)
3601 				goto out;
3602 		}
3603 	}
3604 
3605 	/* set uncompleted segment to curseg */
3606 	curseg = CURSEG_I(sbi, type);
3607 	mutex_lock(&curseg->curseg_mutex);
3608 
3609 	/* update journal info */
3610 	down_write(&curseg->journal_rwsem);
3611 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3612 	up_write(&curseg->journal_rwsem);
3613 
3614 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3615 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3616 	curseg->next_segno = segno;
3617 	reset_curseg(sbi, type, 0);
3618 	curseg->alloc_type = ckpt->alloc_type[type];
3619 	curseg->next_blkoff = blk_off;
3620 	mutex_unlock(&curseg->curseg_mutex);
3621 out:
3622 	f2fs_put_page(new, 1);
3623 	return err;
3624 }
3625 
3626 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3627 {
3628 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3629 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3630 	int type = CURSEG_HOT_DATA;
3631 	int err;
3632 
3633 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3634 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3635 
3636 		if (npages >= 2)
3637 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3638 							META_CP, true);
3639 
3640 		/* restore for compacted data summary */
3641 		err = read_compacted_summaries(sbi);
3642 		if (err)
3643 			return err;
3644 		type = CURSEG_HOT_NODE;
3645 	}
3646 
3647 	if (__exist_node_summaries(sbi))
3648 		f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3649 					NR_CURSEG_TYPE - type, META_CP, true);
3650 
3651 	for (; type <= CURSEG_COLD_NODE; type++) {
3652 		err = read_normal_summaries(sbi, type);
3653 		if (err)
3654 			return err;
3655 	}
3656 
3657 	/* sanity check for summary blocks */
3658 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3659 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3660 		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3661 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3662 		return -EINVAL;
3663 	}
3664 
3665 	return 0;
3666 }
3667 
3668 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3669 {
3670 	struct page *page;
3671 	unsigned char *kaddr;
3672 	struct f2fs_summary *summary;
3673 	struct curseg_info *seg_i;
3674 	int written_size = 0;
3675 	int i, j;
3676 
3677 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3678 	kaddr = (unsigned char *)page_address(page);
3679 	memset(kaddr, 0, PAGE_SIZE);
3680 
3681 	/* Step 1: write nat cache */
3682 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3683 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3684 	written_size += SUM_JOURNAL_SIZE;
3685 
3686 	/* Step 2: write sit cache */
3687 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3688 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3689 	written_size += SUM_JOURNAL_SIZE;
3690 
3691 	/* Step 3: write summary entries */
3692 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3693 		unsigned short blkoff;
3694 		seg_i = CURSEG_I(sbi, i);
3695 		if (sbi->ckpt->alloc_type[i] == SSR)
3696 			blkoff = sbi->blocks_per_seg;
3697 		else
3698 			blkoff = curseg_blkoff(sbi, i);
3699 
3700 		for (j = 0; j < blkoff; j++) {
3701 			if (!page) {
3702 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3703 				kaddr = (unsigned char *)page_address(page);
3704 				memset(kaddr, 0, PAGE_SIZE);
3705 				written_size = 0;
3706 			}
3707 			summary = (struct f2fs_summary *)(kaddr + written_size);
3708 			*summary = seg_i->sum_blk->entries[j];
3709 			written_size += SUMMARY_SIZE;
3710 
3711 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3712 							SUM_FOOTER_SIZE)
3713 				continue;
3714 
3715 			set_page_dirty(page);
3716 			f2fs_put_page(page, 1);
3717 			page = NULL;
3718 		}
3719 	}
3720 	if (page) {
3721 		set_page_dirty(page);
3722 		f2fs_put_page(page, 1);
3723 	}
3724 }
3725 
3726 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3727 					block_t blkaddr, int type)
3728 {
3729 	int i, end;
3730 	if (IS_DATASEG(type))
3731 		end = type + NR_CURSEG_DATA_TYPE;
3732 	else
3733 		end = type + NR_CURSEG_NODE_TYPE;
3734 
3735 	for (i = type; i < end; i++)
3736 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3737 }
3738 
3739 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3740 {
3741 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3742 		write_compacted_summaries(sbi, start_blk);
3743 	else
3744 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3745 }
3746 
3747 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3748 {
3749 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3750 }
3751 
3752 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3753 					unsigned int val, int alloc)
3754 {
3755 	int i;
3756 
3757 	if (type == NAT_JOURNAL) {
3758 		for (i = 0; i < nats_in_cursum(journal); i++) {
3759 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3760 				return i;
3761 		}
3762 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3763 			return update_nats_in_cursum(journal, 1);
3764 	} else if (type == SIT_JOURNAL) {
3765 		for (i = 0; i < sits_in_cursum(journal); i++)
3766 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3767 				return i;
3768 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3769 			return update_sits_in_cursum(journal, 1);
3770 	}
3771 	return -1;
3772 }
3773 
3774 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3775 					unsigned int segno)
3776 {
3777 	return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3778 }
3779 
3780 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3781 					unsigned int start)
3782 {
3783 	struct sit_info *sit_i = SIT_I(sbi);
3784 	struct page *page;
3785 	pgoff_t src_off, dst_off;
3786 
3787 	src_off = current_sit_addr(sbi, start);
3788 	dst_off = next_sit_addr(sbi, src_off);
3789 
3790 	page = f2fs_grab_meta_page(sbi, dst_off);
3791 	seg_info_to_sit_page(sbi, page, start);
3792 
3793 	set_page_dirty(page);
3794 	set_to_next_sit(sit_i, start);
3795 
3796 	return page;
3797 }
3798 
3799 static struct sit_entry_set *grab_sit_entry_set(void)
3800 {
3801 	struct sit_entry_set *ses =
3802 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3803 
3804 	ses->entry_cnt = 0;
3805 	INIT_LIST_HEAD(&ses->set_list);
3806 	return ses;
3807 }
3808 
3809 static void release_sit_entry_set(struct sit_entry_set *ses)
3810 {
3811 	list_del(&ses->set_list);
3812 	kmem_cache_free(sit_entry_set_slab, ses);
3813 }
3814 
3815 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3816 						struct list_head *head)
3817 {
3818 	struct sit_entry_set *next = ses;
3819 
3820 	if (list_is_last(&ses->set_list, head))
3821 		return;
3822 
3823 	list_for_each_entry_continue(next, head, set_list)
3824 		if (ses->entry_cnt <= next->entry_cnt)
3825 			break;
3826 
3827 	list_move_tail(&ses->set_list, &next->set_list);
3828 }
3829 
3830 static void add_sit_entry(unsigned int segno, struct list_head *head)
3831 {
3832 	struct sit_entry_set *ses;
3833 	unsigned int start_segno = START_SEGNO(segno);
3834 
3835 	list_for_each_entry(ses, head, set_list) {
3836 		if (ses->start_segno == start_segno) {
3837 			ses->entry_cnt++;
3838 			adjust_sit_entry_set(ses, head);
3839 			return;
3840 		}
3841 	}
3842 
3843 	ses = grab_sit_entry_set();
3844 
3845 	ses->start_segno = start_segno;
3846 	ses->entry_cnt++;
3847 	list_add(&ses->set_list, head);
3848 }
3849 
3850 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3851 {
3852 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3853 	struct list_head *set_list = &sm_info->sit_entry_set;
3854 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3855 	unsigned int segno;
3856 
3857 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3858 		add_sit_entry(segno, set_list);
3859 }
3860 
3861 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3862 {
3863 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3864 	struct f2fs_journal *journal = curseg->journal;
3865 	int i;
3866 
3867 	down_write(&curseg->journal_rwsem);
3868 	for (i = 0; i < sits_in_cursum(journal); i++) {
3869 		unsigned int segno;
3870 		bool dirtied;
3871 
3872 		segno = le32_to_cpu(segno_in_journal(journal, i));
3873 		dirtied = __mark_sit_entry_dirty(sbi, segno);
3874 
3875 		if (!dirtied)
3876 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3877 	}
3878 	update_sits_in_cursum(journal, -i);
3879 	up_write(&curseg->journal_rwsem);
3880 }
3881 
3882 /*
3883  * CP calls this function, which flushes SIT entries including sit_journal,
3884  * and moves prefree segs to free segs.
3885  */
3886 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3887 {
3888 	struct sit_info *sit_i = SIT_I(sbi);
3889 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3890 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3891 	struct f2fs_journal *journal = curseg->journal;
3892 	struct sit_entry_set *ses, *tmp;
3893 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3894 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3895 	struct seg_entry *se;
3896 
3897 	down_write(&sit_i->sentry_lock);
3898 
3899 	if (!sit_i->dirty_sentries)
3900 		goto out;
3901 
3902 	/*
3903 	 * add and account sit entries of dirty bitmap in sit entry
3904 	 * set temporarily
3905 	 */
3906 	add_sits_in_set(sbi);
3907 
3908 	/*
3909 	 * if there are no enough space in journal to store dirty sit
3910 	 * entries, remove all entries from journal and add and account
3911 	 * them in sit entry set.
3912 	 */
3913 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3914 								!to_journal)
3915 		remove_sits_in_journal(sbi);
3916 
3917 	/*
3918 	 * there are two steps to flush sit entries:
3919 	 * #1, flush sit entries to journal in current cold data summary block.
3920 	 * #2, flush sit entries to sit page.
3921 	 */
3922 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3923 		struct page *page = NULL;
3924 		struct f2fs_sit_block *raw_sit = NULL;
3925 		unsigned int start_segno = ses->start_segno;
3926 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3927 						(unsigned long)MAIN_SEGS(sbi));
3928 		unsigned int segno = start_segno;
3929 
3930 		if (to_journal &&
3931 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3932 			to_journal = false;
3933 
3934 		if (to_journal) {
3935 			down_write(&curseg->journal_rwsem);
3936 		} else {
3937 			page = get_next_sit_page(sbi, start_segno);
3938 			raw_sit = page_address(page);
3939 		}
3940 
3941 		/* flush dirty sit entries in region of current sit set */
3942 		for_each_set_bit_from(segno, bitmap, end) {
3943 			int offset, sit_offset;
3944 
3945 			se = get_seg_entry(sbi, segno);
3946 #ifdef CONFIG_F2FS_CHECK_FS
3947 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3948 						SIT_VBLOCK_MAP_SIZE))
3949 				f2fs_bug_on(sbi, 1);
3950 #endif
3951 
3952 			/* add discard candidates */
3953 			if (!(cpc->reason & CP_DISCARD)) {
3954 				cpc->trim_start = segno;
3955 				add_discard_addrs(sbi, cpc, false);
3956 			}
3957 
3958 			if (to_journal) {
3959 				offset = f2fs_lookup_journal_in_cursum(journal,
3960 							SIT_JOURNAL, segno, 1);
3961 				f2fs_bug_on(sbi, offset < 0);
3962 				segno_in_journal(journal, offset) =
3963 							cpu_to_le32(segno);
3964 				seg_info_to_raw_sit(se,
3965 					&sit_in_journal(journal, offset));
3966 				check_block_count(sbi, segno,
3967 					&sit_in_journal(journal, offset));
3968 			} else {
3969 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3970 				seg_info_to_raw_sit(se,
3971 						&raw_sit->entries[sit_offset]);
3972 				check_block_count(sbi, segno,
3973 						&raw_sit->entries[sit_offset]);
3974 			}
3975 
3976 			__clear_bit(segno, bitmap);
3977 			sit_i->dirty_sentries--;
3978 			ses->entry_cnt--;
3979 		}
3980 
3981 		if (to_journal)
3982 			up_write(&curseg->journal_rwsem);
3983 		else
3984 			f2fs_put_page(page, 1);
3985 
3986 		f2fs_bug_on(sbi, ses->entry_cnt);
3987 		release_sit_entry_set(ses);
3988 	}
3989 
3990 	f2fs_bug_on(sbi, !list_empty(head));
3991 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3992 out:
3993 	if (cpc->reason & CP_DISCARD) {
3994 		__u64 trim_start = cpc->trim_start;
3995 
3996 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3997 			add_discard_addrs(sbi, cpc, false);
3998 
3999 		cpc->trim_start = trim_start;
4000 	}
4001 	up_write(&sit_i->sentry_lock);
4002 
4003 	set_prefree_as_free_segments(sbi);
4004 }
4005 
4006 static int build_sit_info(struct f2fs_sb_info *sbi)
4007 {
4008 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4009 	struct sit_info *sit_i;
4010 	unsigned int sit_segs, start;
4011 	char *src_bitmap, *bitmap;
4012 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4013 
4014 	/* allocate memory for SIT information */
4015 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4016 	if (!sit_i)
4017 		return -ENOMEM;
4018 
4019 	SM_I(sbi)->sit_info = sit_i;
4020 
4021 	sit_i->sentries =
4022 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4023 					      MAIN_SEGS(sbi)),
4024 			      GFP_KERNEL);
4025 	if (!sit_i->sentries)
4026 		return -ENOMEM;
4027 
4028 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4029 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4030 								GFP_KERNEL);
4031 	if (!sit_i->dirty_sentries_bitmap)
4032 		return -ENOMEM;
4033 
4034 #ifdef CONFIG_F2FS_CHECK_FS
4035 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4036 #else
4037 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4038 #endif
4039 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4040 	if (!sit_i->bitmap)
4041 		return -ENOMEM;
4042 
4043 	bitmap = sit_i->bitmap;
4044 
4045 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4046 		sit_i->sentries[start].cur_valid_map = bitmap;
4047 		bitmap += SIT_VBLOCK_MAP_SIZE;
4048 
4049 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4050 		bitmap += SIT_VBLOCK_MAP_SIZE;
4051 
4052 #ifdef CONFIG_F2FS_CHECK_FS
4053 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4054 		bitmap += SIT_VBLOCK_MAP_SIZE;
4055 #endif
4056 
4057 		sit_i->sentries[start].discard_map = bitmap;
4058 		bitmap += SIT_VBLOCK_MAP_SIZE;
4059 	}
4060 
4061 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4062 	if (!sit_i->tmp_map)
4063 		return -ENOMEM;
4064 
4065 	if (__is_large_section(sbi)) {
4066 		sit_i->sec_entries =
4067 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4068 						      MAIN_SECS(sbi)),
4069 				      GFP_KERNEL);
4070 		if (!sit_i->sec_entries)
4071 			return -ENOMEM;
4072 	}
4073 
4074 	/* get information related with SIT */
4075 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4076 
4077 	/* setup SIT bitmap from ckeckpoint pack */
4078 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4079 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4080 
4081 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4082 	if (!sit_i->sit_bitmap)
4083 		return -ENOMEM;
4084 
4085 #ifdef CONFIG_F2FS_CHECK_FS
4086 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4087 					sit_bitmap_size, GFP_KERNEL);
4088 	if (!sit_i->sit_bitmap_mir)
4089 		return -ENOMEM;
4090 
4091 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4092 					main_bitmap_size, GFP_KERNEL);
4093 	if (!sit_i->invalid_segmap)
4094 		return -ENOMEM;
4095 #endif
4096 
4097 	/* init SIT information */
4098 	sit_i->s_ops = &default_salloc_ops;
4099 
4100 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4101 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4102 	sit_i->written_valid_blocks = 0;
4103 	sit_i->bitmap_size = sit_bitmap_size;
4104 	sit_i->dirty_sentries = 0;
4105 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4106 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4107 	sit_i->mounted_time = ktime_get_boottime_seconds();
4108 	init_rwsem(&sit_i->sentry_lock);
4109 	return 0;
4110 }
4111 
4112 static int build_free_segmap(struct f2fs_sb_info *sbi)
4113 {
4114 	struct free_segmap_info *free_i;
4115 	unsigned int bitmap_size, sec_bitmap_size;
4116 
4117 	/* allocate memory for free segmap information */
4118 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4119 	if (!free_i)
4120 		return -ENOMEM;
4121 
4122 	SM_I(sbi)->free_info = free_i;
4123 
4124 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4125 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4126 	if (!free_i->free_segmap)
4127 		return -ENOMEM;
4128 
4129 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4130 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4131 	if (!free_i->free_secmap)
4132 		return -ENOMEM;
4133 
4134 	/* set all segments as dirty temporarily */
4135 	memset(free_i->free_segmap, 0xff, bitmap_size);
4136 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4137 
4138 	/* init free segmap information */
4139 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4140 	free_i->free_segments = 0;
4141 	free_i->free_sections = 0;
4142 	spin_lock_init(&free_i->segmap_lock);
4143 	return 0;
4144 }
4145 
4146 static int build_curseg(struct f2fs_sb_info *sbi)
4147 {
4148 	struct curseg_info *array;
4149 	int i;
4150 
4151 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4152 			     GFP_KERNEL);
4153 	if (!array)
4154 		return -ENOMEM;
4155 
4156 	SM_I(sbi)->curseg_array = array;
4157 
4158 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4159 		mutex_init(&array[i].curseg_mutex);
4160 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4161 		if (!array[i].sum_blk)
4162 			return -ENOMEM;
4163 		init_rwsem(&array[i].journal_rwsem);
4164 		array[i].journal = f2fs_kzalloc(sbi,
4165 				sizeof(struct f2fs_journal), GFP_KERNEL);
4166 		if (!array[i].journal)
4167 			return -ENOMEM;
4168 		array[i].segno = NULL_SEGNO;
4169 		array[i].next_blkoff = 0;
4170 	}
4171 	return restore_curseg_summaries(sbi);
4172 }
4173 
4174 static int build_sit_entries(struct f2fs_sb_info *sbi)
4175 {
4176 	struct sit_info *sit_i = SIT_I(sbi);
4177 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4178 	struct f2fs_journal *journal = curseg->journal;
4179 	struct seg_entry *se;
4180 	struct f2fs_sit_entry sit;
4181 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4182 	unsigned int i, start, end;
4183 	unsigned int readed, start_blk = 0;
4184 	int err = 0;
4185 	block_t total_node_blocks = 0;
4186 
4187 	do {
4188 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4189 							META_SIT, true);
4190 
4191 		start = start_blk * sit_i->sents_per_block;
4192 		end = (start_blk + readed) * sit_i->sents_per_block;
4193 
4194 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4195 			struct f2fs_sit_block *sit_blk;
4196 			struct page *page;
4197 
4198 			se = &sit_i->sentries[start];
4199 			page = get_current_sit_page(sbi, start);
4200 			if (IS_ERR(page))
4201 				return PTR_ERR(page);
4202 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4203 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4204 			f2fs_put_page(page, 1);
4205 
4206 			err = check_block_count(sbi, start, &sit);
4207 			if (err)
4208 				return err;
4209 			seg_info_from_raw_sit(se, &sit);
4210 			if (IS_NODESEG(se->type))
4211 				total_node_blocks += se->valid_blocks;
4212 
4213 			/* build discard map only one time */
4214 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4215 				memset(se->discard_map, 0xff,
4216 					SIT_VBLOCK_MAP_SIZE);
4217 			} else {
4218 				memcpy(se->discard_map,
4219 					se->cur_valid_map,
4220 					SIT_VBLOCK_MAP_SIZE);
4221 				sbi->discard_blks +=
4222 					sbi->blocks_per_seg -
4223 					se->valid_blocks;
4224 			}
4225 
4226 			if (__is_large_section(sbi))
4227 				get_sec_entry(sbi, start)->valid_blocks +=
4228 							se->valid_blocks;
4229 		}
4230 		start_blk += readed;
4231 	} while (start_blk < sit_blk_cnt);
4232 
4233 	down_read(&curseg->journal_rwsem);
4234 	for (i = 0; i < sits_in_cursum(journal); i++) {
4235 		unsigned int old_valid_blocks;
4236 
4237 		start = le32_to_cpu(segno_in_journal(journal, i));
4238 		if (start >= MAIN_SEGS(sbi)) {
4239 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4240 				 start);
4241 			err = -EFSCORRUPTED;
4242 			break;
4243 		}
4244 
4245 		se = &sit_i->sentries[start];
4246 		sit = sit_in_journal(journal, i);
4247 
4248 		old_valid_blocks = se->valid_blocks;
4249 		if (IS_NODESEG(se->type))
4250 			total_node_blocks -= old_valid_blocks;
4251 
4252 		err = check_block_count(sbi, start, &sit);
4253 		if (err)
4254 			break;
4255 		seg_info_from_raw_sit(se, &sit);
4256 		if (IS_NODESEG(se->type))
4257 			total_node_blocks += se->valid_blocks;
4258 
4259 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4260 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4261 		} else {
4262 			memcpy(se->discard_map, se->cur_valid_map,
4263 						SIT_VBLOCK_MAP_SIZE);
4264 			sbi->discard_blks += old_valid_blocks;
4265 			sbi->discard_blks -= se->valid_blocks;
4266 		}
4267 
4268 		if (__is_large_section(sbi)) {
4269 			get_sec_entry(sbi, start)->valid_blocks +=
4270 							se->valid_blocks;
4271 			get_sec_entry(sbi, start)->valid_blocks -=
4272 							old_valid_blocks;
4273 		}
4274 	}
4275 	up_read(&curseg->journal_rwsem);
4276 
4277 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4278 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4279 			 total_node_blocks, valid_node_count(sbi));
4280 		err = -EFSCORRUPTED;
4281 	}
4282 
4283 	return err;
4284 }
4285 
4286 static void init_free_segmap(struct f2fs_sb_info *sbi)
4287 {
4288 	unsigned int start;
4289 	int type;
4290 
4291 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4292 		struct seg_entry *sentry = get_seg_entry(sbi, start);
4293 		if (!sentry->valid_blocks)
4294 			__set_free(sbi, start);
4295 		else
4296 			SIT_I(sbi)->written_valid_blocks +=
4297 						sentry->valid_blocks;
4298 	}
4299 
4300 	/* set use the current segments */
4301 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4302 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4303 		__set_test_and_inuse(sbi, curseg_t->segno);
4304 	}
4305 }
4306 
4307 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4308 {
4309 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4310 	struct free_segmap_info *free_i = FREE_I(sbi);
4311 	unsigned int segno = 0, offset = 0, secno;
4312 	unsigned short valid_blocks;
4313 	unsigned short blks_per_sec = BLKS_PER_SEC(sbi);
4314 
4315 	while (1) {
4316 		/* find dirty segment based on free segmap */
4317 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4318 		if (segno >= MAIN_SEGS(sbi))
4319 			break;
4320 		offset = segno + 1;
4321 		valid_blocks = get_valid_blocks(sbi, segno, false);
4322 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4323 			continue;
4324 		if (valid_blocks > sbi->blocks_per_seg) {
4325 			f2fs_bug_on(sbi, 1);
4326 			continue;
4327 		}
4328 		mutex_lock(&dirty_i->seglist_lock);
4329 		__locate_dirty_segment(sbi, segno, DIRTY);
4330 		mutex_unlock(&dirty_i->seglist_lock);
4331 	}
4332 
4333 	if (!__is_large_section(sbi))
4334 		return;
4335 
4336 	mutex_lock(&dirty_i->seglist_lock);
4337 	for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) {
4338 		valid_blocks = get_valid_blocks(sbi, segno, true);
4339 		secno = GET_SEC_FROM_SEG(sbi, segno);
4340 
4341 		if (!valid_blocks || valid_blocks == blks_per_sec)
4342 			continue;
4343 		if (IS_CURSEC(sbi, secno))
4344 			continue;
4345 		set_bit(secno, dirty_i->dirty_secmap);
4346 	}
4347 	mutex_unlock(&dirty_i->seglist_lock);
4348 }
4349 
4350 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4351 {
4352 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4353 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4354 
4355 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4356 	if (!dirty_i->victim_secmap)
4357 		return -ENOMEM;
4358 	return 0;
4359 }
4360 
4361 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4362 {
4363 	struct dirty_seglist_info *dirty_i;
4364 	unsigned int bitmap_size, i;
4365 
4366 	/* allocate memory for dirty segments list information */
4367 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4368 								GFP_KERNEL);
4369 	if (!dirty_i)
4370 		return -ENOMEM;
4371 
4372 	SM_I(sbi)->dirty_info = dirty_i;
4373 	mutex_init(&dirty_i->seglist_lock);
4374 
4375 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4376 
4377 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4378 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4379 								GFP_KERNEL);
4380 		if (!dirty_i->dirty_segmap[i])
4381 			return -ENOMEM;
4382 	}
4383 
4384 	if (__is_large_section(sbi)) {
4385 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4386 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4387 						bitmap_size, GFP_KERNEL);
4388 		if (!dirty_i->dirty_secmap)
4389 			return -ENOMEM;
4390 	}
4391 
4392 	init_dirty_segmap(sbi);
4393 	return init_victim_secmap(sbi);
4394 }
4395 
4396 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4397 {
4398 	int i;
4399 
4400 	/*
4401 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4402 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4403 	 */
4404 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4405 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4406 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4407 		unsigned int blkofs = curseg->next_blkoff;
4408 
4409 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4410 			goto out;
4411 
4412 		if (curseg->alloc_type == SSR)
4413 			continue;
4414 
4415 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4416 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4417 				continue;
4418 out:
4419 			f2fs_err(sbi,
4420 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4421 				 i, curseg->segno, curseg->alloc_type,
4422 				 curseg->next_blkoff, blkofs);
4423 			return -EFSCORRUPTED;
4424 		}
4425 	}
4426 	return 0;
4427 }
4428 
4429 #ifdef CONFIG_BLK_DEV_ZONED
4430 
4431 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4432 				    struct f2fs_dev_info *fdev,
4433 				    struct blk_zone *zone)
4434 {
4435 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4436 	block_t zone_block, wp_block, last_valid_block;
4437 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4438 	int i, s, b, ret;
4439 	struct seg_entry *se;
4440 
4441 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4442 		return 0;
4443 
4444 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4445 	wp_segno = GET_SEGNO(sbi, wp_block);
4446 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4447 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4448 	zone_segno = GET_SEGNO(sbi, zone_block);
4449 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4450 
4451 	if (zone_segno >= MAIN_SEGS(sbi))
4452 		return 0;
4453 
4454 	/*
4455 	 * Skip check of zones cursegs point to, since
4456 	 * fix_curseg_write_pointer() checks them.
4457 	 */
4458 	for (i = 0; i < NO_CHECK_TYPE; i++)
4459 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4460 						   CURSEG_I(sbi, i)->segno))
4461 			return 0;
4462 
4463 	/*
4464 	 * Get last valid block of the zone.
4465 	 */
4466 	last_valid_block = zone_block - 1;
4467 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4468 		segno = zone_segno + s;
4469 		se = get_seg_entry(sbi, segno);
4470 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4471 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4472 				last_valid_block = START_BLOCK(sbi, segno) + b;
4473 				break;
4474 			}
4475 		if (last_valid_block >= zone_block)
4476 			break;
4477 	}
4478 
4479 	/*
4480 	 * If last valid block is beyond the write pointer, report the
4481 	 * inconsistency. This inconsistency does not cause write error
4482 	 * because the zone will not be selected for write operation until
4483 	 * it get discarded. Just report it.
4484 	 */
4485 	if (last_valid_block >= wp_block) {
4486 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4487 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4488 			    GET_SEGNO(sbi, last_valid_block),
4489 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4490 			    wp_segno, wp_blkoff);
4491 		return 0;
4492 	}
4493 
4494 	/*
4495 	 * If there is no valid block in the zone and if write pointer is
4496 	 * not at zone start, reset the write pointer.
4497 	 */
4498 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4499 		f2fs_notice(sbi,
4500 			    "Zone without valid block has non-zero write "
4501 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4502 			    wp_segno, wp_blkoff);
4503 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4504 					zone->len >> log_sectors_per_block);
4505 		if (ret) {
4506 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4507 				 fdev->path, ret);
4508 			return ret;
4509 		}
4510 	}
4511 
4512 	return 0;
4513 }
4514 
4515 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4516 						  block_t zone_blkaddr)
4517 {
4518 	int i;
4519 
4520 	for (i = 0; i < sbi->s_ndevs; i++) {
4521 		if (!bdev_is_zoned(FDEV(i).bdev))
4522 			continue;
4523 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4524 				zone_blkaddr <= FDEV(i).end_blk))
4525 			return &FDEV(i);
4526 	}
4527 
4528 	return NULL;
4529 }
4530 
4531 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4532 			      void *data) {
4533 	memcpy(data, zone, sizeof(struct blk_zone));
4534 	return 0;
4535 }
4536 
4537 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4538 {
4539 	struct curseg_info *cs = CURSEG_I(sbi, type);
4540 	struct f2fs_dev_info *zbd;
4541 	struct blk_zone zone;
4542 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4543 	block_t cs_zone_block, wp_block;
4544 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4545 	sector_t zone_sector;
4546 	int err;
4547 
4548 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4549 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4550 
4551 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4552 	if (!zbd)
4553 		return 0;
4554 
4555 	/* report zone for the sector the curseg points to */
4556 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4557 		<< log_sectors_per_block;
4558 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4559 				  report_one_zone_cb, &zone);
4560 	if (err != 1) {
4561 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4562 			 zbd->path, err);
4563 		return err;
4564 	}
4565 
4566 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4567 		return 0;
4568 
4569 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4570 	wp_segno = GET_SEGNO(sbi, wp_block);
4571 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4572 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4573 
4574 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4575 		wp_sector_off == 0)
4576 		return 0;
4577 
4578 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4579 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4580 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4581 
4582 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4583 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4584 	allocate_segment_by_default(sbi, type, true);
4585 
4586 	/* check consistency of the zone curseg pointed to */
4587 	if (check_zone_write_pointer(sbi, zbd, &zone))
4588 		return -EIO;
4589 
4590 	/* check newly assigned zone */
4591 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4592 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4593 
4594 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4595 	if (!zbd)
4596 		return 0;
4597 
4598 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4599 		<< log_sectors_per_block;
4600 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4601 				  report_one_zone_cb, &zone);
4602 	if (err != 1) {
4603 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4604 			 zbd->path, err);
4605 		return err;
4606 	}
4607 
4608 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4609 		return 0;
4610 
4611 	if (zone.wp != zone.start) {
4612 		f2fs_notice(sbi,
4613 			    "New zone for curseg[%d] is not yet discarded. "
4614 			    "Reset the zone: curseg[0x%x,0x%x]",
4615 			    type, cs->segno, cs->next_blkoff);
4616 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4617 				zone_sector >> log_sectors_per_block,
4618 				zone.len >> log_sectors_per_block);
4619 		if (err) {
4620 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4621 				 zbd->path, err);
4622 			return err;
4623 		}
4624 	}
4625 
4626 	return 0;
4627 }
4628 
4629 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4630 {
4631 	int i, ret;
4632 
4633 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4634 		ret = fix_curseg_write_pointer(sbi, i);
4635 		if (ret)
4636 			return ret;
4637 	}
4638 
4639 	return 0;
4640 }
4641 
4642 struct check_zone_write_pointer_args {
4643 	struct f2fs_sb_info *sbi;
4644 	struct f2fs_dev_info *fdev;
4645 };
4646 
4647 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4648 				      void *data) {
4649 	struct check_zone_write_pointer_args *args;
4650 	args = (struct check_zone_write_pointer_args *)data;
4651 
4652 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4653 }
4654 
4655 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4656 {
4657 	int i, ret;
4658 	struct check_zone_write_pointer_args args;
4659 
4660 	for (i = 0; i < sbi->s_ndevs; i++) {
4661 		if (!bdev_is_zoned(FDEV(i).bdev))
4662 			continue;
4663 
4664 		args.sbi = sbi;
4665 		args.fdev = &FDEV(i);
4666 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4667 					  check_zone_write_pointer_cb, &args);
4668 		if (ret < 0)
4669 			return ret;
4670 	}
4671 
4672 	return 0;
4673 }
4674 #else
4675 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4676 {
4677 	return 0;
4678 }
4679 
4680 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4681 {
4682 	return 0;
4683 }
4684 #endif
4685 
4686 /*
4687  * Update min, max modified time for cost-benefit GC algorithm
4688  */
4689 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4690 {
4691 	struct sit_info *sit_i = SIT_I(sbi);
4692 	unsigned int segno;
4693 
4694 	down_write(&sit_i->sentry_lock);
4695 
4696 	sit_i->min_mtime = ULLONG_MAX;
4697 
4698 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4699 		unsigned int i;
4700 		unsigned long long mtime = 0;
4701 
4702 		for (i = 0; i < sbi->segs_per_sec; i++)
4703 			mtime += get_seg_entry(sbi, segno + i)->mtime;
4704 
4705 		mtime = div_u64(mtime, sbi->segs_per_sec);
4706 
4707 		if (sit_i->min_mtime > mtime)
4708 			sit_i->min_mtime = mtime;
4709 	}
4710 	sit_i->max_mtime = get_mtime(sbi, false);
4711 	up_write(&sit_i->sentry_lock);
4712 }
4713 
4714 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4715 {
4716 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4717 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4718 	struct f2fs_sm_info *sm_info;
4719 	int err;
4720 
4721 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4722 	if (!sm_info)
4723 		return -ENOMEM;
4724 
4725 	/* init sm info */
4726 	sbi->sm_info = sm_info;
4727 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4728 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4729 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4730 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4731 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4732 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4733 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4734 	sm_info->rec_prefree_segments = sm_info->main_segments *
4735 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4736 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4737 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4738 
4739 	if (!f2fs_lfs_mode(sbi))
4740 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4741 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4742 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4743 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4744 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4745 	sm_info->min_ssr_sections = reserved_sections(sbi);
4746 
4747 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
4748 
4749 	init_rwsem(&sm_info->curseg_lock);
4750 
4751 	if (!f2fs_readonly(sbi->sb)) {
4752 		err = f2fs_create_flush_cmd_control(sbi);
4753 		if (err)
4754 			return err;
4755 	}
4756 
4757 	err = create_discard_cmd_control(sbi);
4758 	if (err)
4759 		return err;
4760 
4761 	err = build_sit_info(sbi);
4762 	if (err)
4763 		return err;
4764 	err = build_free_segmap(sbi);
4765 	if (err)
4766 		return err;
4767 	err = build_curseg(sbi);
4768 	if (err)
4769 		return err;
4770 
4771 	/* reinit free segmap based on SIT */
4772 	err = build_sit_entries(sbi);
4773 	if (err)
4774 		return err;
4775 
4776 	init_free_segmap(sbi);
4777 	err = build_dirty_segmap(sbi);
4778 	if (err)
4779 		return err;
4780 
4781 	err = sanity_check_curseg(sbi);
4782 	if (err)
4783 		return err;
4784 
4785 	init_min_max_mtime(sbi);
4786 	return 0;
4787 }
4788 
4789 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4790 		enum dirty_type dirty_type)
4791 {
4792 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4793 
4794 	mutex_lock(&dirty_i->seglist_lock);
4795 	kvfree(dirty_i->dirty_segmap[dirty_type]);
4796 	dirty_i->nr_dirty[dirty_type] = 0;
4797 	mutex_unlock(&dirty_i->seglist_lock);
4798 }
4799 
4800 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4801 {
4802 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4803 	kvfree(dirty_i->victim_secmap);
4804 }
4805 
4806 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4807 {
4808 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4809 	int i;
4810 
4811 	if (!dirty_i)
4812 		return;
4813 
4814 	/* discard pre-free/dirty segments list */
4815 	for (i = 0; i < NR_DIRTY_TYPE; i++)
4816 		discard_dirty_segmap(sbi, i);
4817 
4818 	if (__is_large_section(sbi)) {
4819 		mutex_lock(&dirty_i->seglist_lock);
4820 		kvfree(dirty_i->dirty_secmap);
4821 		mutex_unlock(&dirty_i->seglist_lock);
4822 	}
4823 
4824 	destroy_victim_secmap(sbi);
4825 	SM_I(sbi)->dirty_info = NULL;
4826 	kvfree(dirty_i);
4827 }
4828 
4829 static void destroy_curseg(struct f2fs_sb_info *sbi)
4830 {
4831 	struct curseg_info *array = SM_I(sbi)->curseg_array;
4832 	int i;
4833 
4834 	if (!array)
4835 		return;
4836 	SM_I(sbi)->curseg_array = NULL;
4837 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4838 		kvfree(array[i].sum_blk);
4839 		kvfree(array[i].journal);
4840 	}
4841 	kvfree(array);
4842 }
4843 
4844 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4845 {
4846 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4847 	if (!free_i)
4848 		return;
4849 	SM_I(sbi)->free_info = NULL;
4850 	kvfree(free_i->free_segmap);
4851 	kvfree(free_i->free_secmap);
4852 	kvfree(free_i);
4853 }
4854 
4855 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4856 {
4857 	struct sit_info *sit_i = SIT_I(sbi);
4858 
4859 	if (!sit_i)
4860 		return;
4861 
4862 	if (sit_i->sentries)
4863 		kvfree(sit_i->bitmap);
4864 	kvfree(sit_i->tmp_map);
4865 
4866 	kvfree(sit_i->sentries);
4867 	kvfree(sit_i->sec_entries);
4868 	kvfree(sit_i->dirty_sentries_bitmap);
4869 
4870 	SM_I(sbi)->sit_info = NULL;
4871 	kvfree(sit_i->sit_bitmap);
4872 #ifdef CONFIG_F2FS_CHECK_FS
4873 	kvfree(sit_i->sit_bitmap_mir);
4874 	kvfree(sit_i->invalid_segmap);
4875 #endif
4876 	kvfree(sit_i);
4877 }
4878 
4879 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4880 {
4881 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4882 
4883 	if (!sm_info)
4884 		return;
4885 	f2fs_destroy_flush_cmd_control(sbi, true);
4886 	destroy_discard_cmd_control(sbi);
4887 	destroy_dirty_segmap(sbi);
4888 	destroy_curseg(sbi);
4889 	destroy_free_segmap(sbi);
4890 	destroy_sit_info(sbi);
4891 	sbi->sm_info = NULL;
4892 	kvfree(sm_info);
4893 }
4894 
4895 int __init f2fs_create_segment_manager_caches(void)
4896 {
4897 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
4898 			sizeof(struct discard_entry));
4899 	if (!discard_entry_slab)
4900 		goto fail;
4901 
4902 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
4903 			sizeof(struct discard_cmd));
4904 	if (!discard_cmd_slab)
4905 		goto destroy_discard_entry;
4906 
4907 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
4908 			sizeof(struct sit_entry_set));
4909 	if (!sit_entry_set_slab)
4910 		goto destroy_discard_cmd;
4911 
4912 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4913 			sizeof(struct inmem_pages));
4914 	if (!inmem_entry_slab)
4915 		goto destroy_sit_entry_set;
4916 	return 0;
4917 
4918 destroy_sit_entry_set:
4919 	kmem_cache_destroy(sit_entry_set_slab);
4920 destroy_discard_cmd:
4921 	kmem_cache_destroy(discard_cmd_slab);
4922 destroy_discard_entry:
4923 	kmem_cache_destroy(discard_entry_slab);
4924 fail:
4925 	return -ENOMEM;
4926 }
4927 
4928 void f2fs_destroy_segment_manager_caches(void)
4929 {
4930 	kmem_cache_destroy(sit_entry_set_slab);
4931 	kmem_cache_destroy(discard_cmd_slab);
4932 	kmem_cache_destroy(discard_entry_slab);
4933 	kmem_cache_destroy(inmem_entry_slab);
4934 }
4935