1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (f2fs_lfs_mode(sbi)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct inmem_pages *new; 189 190 f2fs_trace_pid(page); 191 192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 193 194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 195 196 /* add atomic page indices to the list */ 197 new->page = page; 198 INIT_LIST_HEAD(&new->list); 199 200 /* increase reference count with clean state */ 201 get_page(page); 202 mutex_lock(&F2FS_I(inode)->inmem_lock); 203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&F2FS_I(inode)->inmem_lock); 206 207 trace_f2fs_register_inmem_page(page, INMEM); 208 } 209 210 static int __revoke_inmem_pages(struct inode *inode, 211 struct list_head *head, bool drop, bool recover, 212 bool trylock) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct inmem_pages *cur, *tmp; 216 int err = 0; 217 218 list_for_each_entry_safe(cur, tmp, head, list) { 219 struct page *page = cur->page; 220 221 if (drop) 222 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 223 224 if (trylock) { 225 /* 226 * to avoid deadlock in between page lock and 227 * inmem_lock. 228 */ 229 if (!trylock_page(page)) 230 continue; 231 } else { 232 lock_page(page); 233 } 234 235 f2fs_wait_on_page_writeback(page, DATA, true, true); 236 237 if (recover) { 238 struct dnode_of_data dn; 239 struct node_info ni; 240 241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 242 retry: 243 set_new_dnode(&dn, inode, NULL, NULL, 0); 244 err = f2fs_get_dnode_of_data(&dn, page->index, 245 LOOKUP_NODE); 246 if (err) { 247 if (err == -ENOMEM) { 248 congestion_wait(BLK_RW_ASYNC, 249 DEFAULT_IO_TIMEOUT); 250 cond_resched(); 251 goto retry; 252 } 253 err = -EAGAIN; 254 goto next; 255 } 256 257 err = f2fs_get_node_info(sbi, dn.nid, &ni); 258 if (err) { 259 f2fs_put_dnode(&dn); 260 return err; 261 } 262 263 if (cur->old_addr == NEW_ADDR) { 264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 265 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 266 } else 267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 268 cur->old_addr, ni.version, true, true); 269 f2fs_put_dnode(&dn); 270 } 271 next: 272 /* we don't need to invalidate this in the sccessful status */ 273 if (drop || recover) { 274 ClearPageUptodate(page); 275 clear_cold_data(page); 276 } 277 f2fs_clear_page_private(page); 278 f2fs_put_page(page, 1); 279 280 list_del(&cur->list); 281 kmem_cache_free(inmem_entry_slab, cur); 282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 283 } 284 return err; 285 } 286 287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 288 { 289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 290 struct inode *inode; 291 struct f2fs_inode_info *fi; 292 unsigned int count = sbi->atomic_files; 293 unsigned int looped = 0; 294 next: 295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 296 if (list_empty(head)) { 297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 298 return; 299 } 300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 301 inode = igrab(&fi->vfs_inode); 302 if (inode) 303 list_move_tail(&fi->inmem_ilist, head); 304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 305 306 if (inode) { 307 if (gc_failure) { 308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 309 goto skip; 310 } 311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 312 f2fs_drop_inmem_pages(inode); 313 skip: 314 iput(inode); 315 } 316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 317 cond_resched(); 318 if (gc_failure) { 319 if (++looped >= count) 320 return; 321 } 322 goto next; 323 } 324 325 void f2fs_drop_inmem_pages(struct inode *inode) 326 { 327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 328 struct f2fs_inode_info *fi = F2FS_I(inode); 329 330 while (!list_empty(&fi->inmem_pages)) { 331 mutex_lock(&fi->inmem_lock); 332 __revoke_inmem_pages(inode, &fi->inmem_pages, 333 true, false, true); 334 mutex_unlock(&fi->inmem_lock); 335 } 336 337 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 338 339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 340 if (!list_empty(&fi->inmem_ilist)) 341 list_del_init(&fi->inmem_ilist); 342 if (f2fs_is_atomic_file(inode)) { 343 clear_inode_flag(inode, FI_ATOMIC_FILE); 344 sbi->atomic_files--; 345 } 346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 347 } 348 349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 350 { 351 struct f2fs_inode_info *fi = F2FS_I(inode); 352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 353 struct list_head *head = &fi->inmem_pages; 354 struct inmem_pages *cur = NULL; 355 356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 357 358 mutex_lock(&fi->inmem_lock); 359 list_for_each_entry(cur, head, list) { 360 if (cur->page == page) 361 break; 362 } 363 364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 365 list_del(&cur->list); 366 mutex_unlock(&fi->inmem_lock); 367 368 dec_page_count(sbi, F2FS_INMEM_PAGES); 369 kmem_cache_free(inmem_entry_slab, cur); 370 371 ClearPageUptodate(page); 372 f2fs_clear_page_private(page); 373 f2fs_put_page(page, 0); 374 375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 376 } 377 378 static int __f2fs_commit_inmem_pages(struct inode *inode) 379 { 380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 381 struct f2fs_inode_info *fi = F2FS_I(inode); 382 struct inmem_pages *cur, *tmp; 383 struct f2fs_io_info fio = { 384 .sbi = sbi, 385 .ino = inode->i_ino, 386 .type = DATA, 387 .op = REQ_OP_WRITE, 388 .op_flags = REQ_SYNC | REQ_PRIO, 389 .io_type = FS_DATA_IO, 390 }; 391 struct list_head revoke_list; 392 bool submit_bio = false; 393 int err = 0; 394 395 INIT_LIST_HEAD(&revoke_list); 396 397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 398 struct page *page = cur->page; 399 400 lock_page(page); 401 if (page->mapping == inode->i_mapping) { 402 trace_f2fs_commit_inmem_page(page, INMEM); 403 404 f2fs_wait_on_page_writeback(page, DATA, true, true); 405 406 set_page_dirty(page); 407 if (clear_page_dirty_for_io(page)) { 408 inode_dec_dirty_pages(inode); 409 f2fs_remove_dirty_inode(inode); 410 } 411 retry: 412 fio.page = page; 413 fio.old_blkaddr = NULL_ADDR; 414 fio.encrypted_page = NULL; 415 fio.need_lock = LOCK_DONE; 416 err = f2fs_do_write_data_page(&fio); 417 if (err) { 418 if (err == -ENOMEM) { 419 congestion_wait(BLK_RW_ASYNC, 420 DEFAULT_IO_TIMEOUT); 421 cond_resched(); 422 goto retry; 423 } 424 unlock_page(page); 425 break; 426 } 427 /* record old blkaddr for revoking */ 428 cur->old_addr = fio.old_blkaddr; 429 submit_bio = true; 430 } 431 unlock_page(page); 432 list_move_tail(&cur->list, &revoke_list); 433 } 434 435 if (submit_bio) 436 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 437 438 if (err) { 439 /* 440 * try to revoke all committed pages, but still we could fail 441 * due to no memory or other reason, if that happened, EAGAIN 442 * will be returned, which means in such case, transaction is 443 * already not integrity, caller should use journal to do the 444 * recovery or rewrite & commit last transaction. For other 445 * error number, revoking was done by filesystem itself. 446 */ 447 err = __revoke_inmem_pages(inode, &revoke_list, 448 false, true, false); 449 450 /* drop all uncommitted pages */ 451 __revoke_inmem_pages(inode, &fi->inmem_pages, 452 true, false, false); 453 } else { 454 __revoke_inmem_pages(inode, &revoke_list, 455 false, false, false); 456 } 457 458 return err; 459 } 460 461 int f2fs_commit_inmem_pages(struct inode *inode) 462 { 463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 464 struct f2fs_inode_info *fi = F2FS_I(inode); 465 int err; 466 467 f2fs_balance_fs(sbi, true); 468 469 down_write(&fi->i_gc_rwsem[WRITE]); 470 471 f2fs_lock_op(sbi); 472 set_inode_flag(inode, FI_ATOMIC_COMMIT); 473 474 mutex_lock(&fi->inmem_lock); 475 err = __f2fs_commit_inmem_pages(inode); 476 mutex_unlock(&fi->inmem_lock); 477 478 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 479 480 f2fs_unlock_op(sbi); 481 up_write(&fi->i_gc_rwsem[WRITE]); 482 483 return err; 484 } 485 486 /* 487 * This function balances dirty node and dentry pages. 488 * In addition, it controls garbage collection. 489 */ 490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 491 { 492 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 493 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 494 f2fs_stop_checkpoint(sbi, false); 495 } 496 497 /* balance_fs_bg is able to be pending */ 498 if (need && excess_cached_nats(sbi)) 499 f2fs_balance_fs_bg(sbi, false); 500 501 if (!f2fs_is_checkpoint_ready(sbi)) 502 return; 503 504 /* 505 * We should do GC or end up with checkpoint, if there are so many dirty 506 * dir/node pages without enough free segments. 507 */ 508 if (has_not_enough_free_secs(sbi, 0, 0)) { 509 down_write(&sbi->gc_lock); 510 f2fs_gc(sbi, false, false, NULL_SEGNO); 511 } 512 } 513 514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 515 { 516 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 517 return; 518 519 /* try to shrink extent cache when there is no enough memory */ 520 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 521 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 522 523 /* check the # of cached NAT entries */ 524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 525 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 526 527 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 528 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 529 else 530 f2fs_build_free_nids(sbi, false, false); 531 532 if (!is_idle(sbi, REQ_TIME) && 533 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 534 return; 535 536 /* checkpoint is the only way to shrink partial cached entries */ 537 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 538 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 539 excess_prefree_segs(sbi) || 540 excess_dirty_nats(sbi) || 541 excess_dirty_nodes(sbi) || 542 f2fs_time_over(sbi, CP_TIME)) { 543 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 544 struct blk_plug plug; 545 546 mutex_lock(&sbi->flush_lock); 547 548 blk_start_plug(&plug); 549 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 550 blk_finish_plug(&plug); 551 552 mutex_unlock(&sbi->flush_lock); 553 } 554 f2fs_sync_fs(sbi->sb, true); 555 stat_inc_bg_cp_count(sbi->stat_info); 556 } 557 } 558 559 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 560 struct block_device *bdev) 561 { 562 struct bio *bio; 563 int ret; 564 565 bio = f2fs_bio_alloc(sbi, 0, false); 566 if (!bio) 567 return -ENOMEM; 568 569 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 570 bio_set_dev(bio, bdev); 571 ret = submit_bio_wait(bio); 572 bio_put(bio); 573 574 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 575 test_opt(sbi, FLUSH_MERGE), ret); 576 return ret; 577 } 578 579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 580 { 581 int ret = 0; 582 int i; 583 584 if (!f2fs_is_multi_device(sbi)) 585 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 586 587 for (i = 0; i < sbi->s_ndevs; i++) { 588 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 589 continue; 590 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 591 if (ret) 592 break; 593 } 594 return ret; 595 } 596 597 static int issue_flush_thread(void *data) 598 { 599 struct f2fs_sb_info *sbi = data; 600 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 601 wait_queue_head_t *q = &fcc->flush_wait_queue; 602 repeat: 603 if (kthread_should_stop()) 604 return 0; 605 606 sb_start_intwrite(sbi->sb); 607 608 if (!llist_empty(&fcc->issue_list)) { 609 struct flush_cmd *cmd, *next; 610 int ret; 611 612 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 613 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 614 615 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 616 617 ret = submit_flush_wait(sbi, cmd->ino); 618 atomic_inc(&fcc->issued_flush); 619 620 llist_for_each_entry_safe(cmd, next, 621 fcc->dispatch_list, llnode) { 622 cmd->ret = ret; 623 complete(&cmd->wait); 624 } 625 fcc->dispatch_list = NULL; 626 } 627 628 sb_end_intwrite(sbi->sb); 629 630 wait_event_interruptible(*q, 631 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 632 goto repeat; 633 } 634 635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 636 { 637 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 638 struct flush_cmd cmd; 639 int ret; 640 641 if (test_opt(sbi, NOBARRIER)) 642 return 0; 643 644 if (!test_opt(sbi, FLUSH_MERGE)) { 645 atomic_inc(&fcc->queued_flush); 646 ret = submit_flush_wait(sbi, ino); 647 atomic_dec(&fcc->queued_flush); 648 atomic_inc(&fcc->issued_flush); 649 return ret; 650 } 651 652 if (atomic_inc_return(&fcc->queued_flush) == 1 || 653 f2fs_is_multi_device(sbi)) { 654 ret = submit_flush_wait(sbi, ino); 655 atomic_dec(&fcc->queued_flush); 656 657 atomic_inc(&fcc->issued_flush); 658 return ret; 659 } 660 661 cmd.ino = ino; 662 init_completion(&cmd.wait); 663 664 llist_add(&cmd.llnode, &fcc->issue_list); 665 666 /* update issue_list before we wake up issue_flush thread */ 667 smp_mb(); 668 669 if (waitqueue_active(&fcc->flush_wait_queue)) 670 wake_up(&fcc->flush_wait_queue); 671 672 if (fcc->f2fs_issue_flush) { 673 wait_for_completion(&cmd.wait); 674 atomic_dec(&fcc->queued_flush); 675 } else { 676 struct llist_node *list; 677 678 list = llist_del_all(&fcc->issue_list); 679 if (!list) { 680 wait_for_completion(&cmd.wait); 681 atomic_dec(&fcc->queued_flush); 682 } else { 683 struct flush_cmd *tmp, *next; 684 685 ret = submit_flush_wait(sbi, ino); 686 687 llist_for_each_entry_safe(tmp, next, list, llnode) { 688 if (tmp == &cmd) { 689 cmd.ret = ret; 690 atomic_dec(&fcc->queued_flush); 691 continue; 692 } 693 tmp->ret = ret; 694 complete(&tmp->wait); 695 } 696 } 697 } 698 699 return cmd.ret; 700 } 701 702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 703 { 704 dev_t dev = sbi->sb->s_bdev->bd_dev; 705 struct flush_cmd_control *fcc; 706 int err = 0; 707 708 if (SM_I(sbi)->fcc_info) { 709 fcc = SM_I(sbi)->fcc_info; 710 if (fcc->f2fs_issue_flush) 711 return err; 712 goto init_thread; 713 } 714 715 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 716 if (!fcc) 717 return -ENOMEM; 718 atomic_set(&fcc->issued_flush, 0); 719 atomic_set(&fcc->queued_flush, 0); 720 init_waitqueue_head(&fcc->flush_wait_queue); 721 init_llist_head(&fcc->issue_list); 722 SM_I(sbi)->fcc_info = fcc; 723 if (!test_opt(sbi, FLUSH_MERGE)) 724 return err; 725 726 init_thread: 727 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 728 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 729 if (IS_ERR(fcc->f2fs_issue_flush)) { 730 err = PTR_ERR(fcc->f2fs_issue_flush); 731 kvfree(fcc); 732 SM_I(sbi)->fcc_info = NULL; 733 return err; 734 } 735 736 return err; 737 } 738 739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 740 { 741 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 742 743 if (fcc && fcc->f2fs_issue_flush) { 744 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 745 746 fcc->f2fs_issue_flush = NULL; 747 kthread_stop(flush_thread); 748 } 749 if (free) { 750 kvfree(fcc); 751 SM_I(sbi)->fcc_info = NULL; 752 } 753 } 754 755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 756 { 757 int ret = 0, i; 758 759 if (!f2fs_is_multi_device(sbi)) 760 return 0; 761 762 for (i = 1; i < sbi->s_ndevs; i++) { 763 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 764 continue; 765 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 766 if (ret) 767 break; 768 769 spin_lock(&sbi->dev_lock); 770 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 771 spin_unlock(&sbi->dev_lock); 772 } 773 774 return ret; 775 } 776 777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 778 enum dirty_type dirty_type) 779 { 780 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 781 782 /* need not be added */ 783 if (IS_CURSEG(sbi, segno)) 784 return; 785 786 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 787 dirty_i->nr_dirty[dirty_type]++; 788 789 if (dirty_type == DIRTY) { 790 struct seg_entry *sentry = get_seg_entry(sbi, segno); 791 enum dirty_type t = sentry->type; 792 793 if (unlikely(t >= DIRTY)) { 794 f2fs_bug_on(sbi, 1); 795 return; 796 } 797 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 798 dirty_i->nr_dirty[t]++; 799 800 if (__is_large_section(sbi)) { 801 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 802 unsigned short valid_blocks = 803 get_valid_blocks(sbi, segno, true); 804 805 f2fs_bug_on(sbi, unlikely(!valid_blocks || 806 valid_blocks == BLKS_PER_SEC(sbi))); 807 808 if (!IS_CURSEC(sbi, secno)) 809 set_bit(secno, dirty_i->dirty_secmap); 810 } 811 } 812 } 813 814 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 815 enum dirty_type dirty_type) 816 { 817 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 818 unsigned short valid_blocks; 819 820 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 821 dirty_i->nr_dirty[dirty_type]--; 822 823 if (dirty_type == DIRTY) { 824 struct seg_entry *sentry = get_seg_entry(sbi, segno); 825 enum dirty_type t = sentry->type; 826 827 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 828 dirty_i->nr_dirty[t]--; 829 830 valid_blocks = get_valid_blocks(sbi, segno, true); 831 if (valid_blocks == 0) { 832 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 833 dirty_i->victim_secmap); 834 #ifdef CONFIG_F2FS_CHECK_FS 835 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 836 #endif 837 } 838 if (__is_large_section(sbi)) { 839 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 840 841 if (!valid_blocks || 842 valid_blocks == BLKS_PER_SEC(sbi)) { 843 clear_bit(secno, dirty_i->dirty_secmap); 844 return; 845 } 846 847 if (!IS_CURSEC(sbi, secno)) 848 set_bit(secno, dirty_i->dirty_secmap); 849 } 850 } 851 } 852 853 /* 854 * Should not occur error such as -ENOMEM. 855 * Adding dirty entry into seglist is not critical operation. 856 * If a given segment is one of current working segments, it won't be added. 857 */ 858 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 859 { 860 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 861 unsigned short valid_blocks, ckpt_valid_blocks; 862 863 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 864 return; 865 866 mutex_lock(&dirty_i->seglist_lock); 867 868 valid_blocks = get_valid_blocks(sbi, segno, false); 869 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 870 871 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 872 ckpt_valid_blocks == sbi->blocks_per_seg)) { 873 __locate_dirty_segment(sbi, segno, PRE); 874 __remove_dirty_segment(sbi, segno, DIRTY); 875 } else if (valid_blocks < sbi->blocks_per_seg) { 876 __locate_dirty_segment(sbi, segno, DIRTY); 877 } else { 878 /* Recovery routine with SSR needs this */ 879 __remove_dirty_segment(sbi, segno, DIRTY); 880 } 881 882 mutex_unlock(&dirty_i->seglist_lock); 883 } 884 885 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 886 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 887 { 888 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 889 unsigned int segno; 890 891 mutex_lock(&dirty_i->seglist_lock); 892 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 893 if (get_valid_blocks(sbi, segno, false)) 894 continue; 895 if (IS_CURSEG(sbi, segno)) 896 continue; 897 __locate_dirty_segment(sbi, segno, PRE); 898 __remove_dirty_segment(sbi, segno, DIRTY); 899 } 900 mutex_unlock(&dirty_i->seglist_lock); 901 } 902 903 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 904 { 905 int ovp_hole_segs = 906 (overprovision_segments(sbi) - reserved_segments(sbi)); 907 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 908 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 909 block_t holes[2] = {0, 0}; /* DATA and NODE */ 910 block_t unusable; 911 struct seg_entry *se; 912 unsigned int segno; 913 914 mutex_lock(&dirty_i->seglist_lock); 915 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 916 se = get_seg_entry(sbi, segno); 917 if (IS_NODESEG(se->type)) 918 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 919 else 920 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 921 } 922 mutex_unlock(&dirty_i->seglist_lock); 923 924 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 925 if (unusable > ovp_holes) 926 return unusable - ovp_holes; 927 return 0; 928 } 929 930 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 931 { 932 int ovp_hole_segs = 933 (overprovision_segments(sbi) - reserved_segments(sbi)); 934 if (unusable > F2FS_OPTION(sbi).unusable_cap) 935 return -EAGAIN; 936 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 937 dirty_segments(sbi) > ovp_hole_segs) 938 return -EAGAIN; 939 return 0; 940 } 941 942 /* This is only used by SBI_CP_DISABLED */ 943 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 944 { 945 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 946 unsigned int segno = 0; 947 948 mutex_lock(&dirty_i->seglist_lock); 949 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 950 if (get_valid_blocks(sbi, segno, false)) 951 continue; 952 if (get_ckpt_valid_blocks(sbi, segno)) 953 continue; 954 mutex_unlock(&dirty_i->seglist_lock); 955 return segno; 956 } 957 mutex_unlock(&dirty_i->seglist_lock); 958 return NULL_SEGNO; 959 } 960 961 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 962 struct block_device *bdev, block_t lstart, 963 block_t start, block_t len) 964 { 965 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 966 struct list_head *pend_list; 967 struct discard_cmd *dc; 968 969 f2fs_bug_on(sbi, !len); 970 971 pend_list = &dcc->pend_list[plist_idx(len)]; 972 973 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 974 INIT_LIST_HEAD(&dc->list); 975 dc->bdev = bdev; 976 dc->lstart = lstart; 977 dc->start = start; 978 dc->len = len; 979 dc->ref = 0; 980 dc->state = D_PREP; 981 dc->queued = 0; 982 dc->error = 0; 983 init_completion(&dc->wait); 984 list_add_tail(&dc->list, pend_list); 985 spin_lock_init(&dc->lock); 986 dc->bio_ref = 0; 987 atomic_inc(&dcc->discard_cmd_cnt); 988 dcc->undiscard_blks += len; 989 990 return dc; 991 } 992 993 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 994 struct block_device *bdev, block_t lstart, 995 block_t start, block_t len, 996 struct rb_node *parent, struct rb_node **p, 997 bool leftmost) 998 { 999 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1000 struct discard_cmd *dc; 1001 1002 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1003 1004 rb_link_node(&dc->rb_node, parent, p); 1005 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1006 1007 return dc; 1008 } 1009 1010 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1011 struct discard_cmd *dc) 1012 { 1013 if (dc->state == D_DONE) 1014 atomic_sub(dc->queued, &dcc->queued_discard); 1015 1016 list_del(&dc->list); 1017 rb_erase_cached(&dc->rb_node, &dcc->root); 1018 dcc->undiscard_blks -= dc->len; 1019 1020 kmem_cache_free(discard_cmd_slab, dc); 1021 1022 atomic_dec(&dcc->discard_cmd_cnt); 1023 } 1024 1025 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1026 struct discard_cmd *dc) 1027 { 1028 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1029 unsigned long flags; 1030 1031 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1032 1033 spin_lock_irqsave(&dc->lock, flags); 1034 if (dc->bio_ref) { 1035 spin_unlock_irqrestore(&dc->lock, flags); 1036 return; 1037 } 1038 spin_unlock_irqrestore(&dc->lock, flags); 1039 1040 f2fs_bug_on(sbi, dc->ref); 1041 1042 if (dc->error == -EOPNOTSUPP) 1043 dc->error = 0; 1044 1045 if (dc->error) 1046 printk_ratelimited( 1047 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1048 KERN_INFO, sbi->sb->s_id, 1049 dc->lstart, dc->start, dc->len, dc->error); 1050 __detach_discard_cmd(dcc, dc); 1051 } 1052 1053 static void f2fs_submit_discard_endio(struct bio *bio) 1054 { 1055 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1056 unsigned long flags; 1057 1058 spin_lock_irqsave(&dc->lock, flags); 1059 if (!dc->error) 1060 dc->error = blk_status_to_errno(bio->bi_status); 1061 dc->bio_ref--; 1062 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1063 dc->state = D_DONE; 1064 complete_all(&dc->wait); 1065 } 1066 spin_unlock_irqrestore(&dc->lock, flags); 1067 bio_put(bio); 1068 } 1069 1070 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1071 block_t start, block_t end) 1072 { 1073 #ifdef CONFIG_F2FS_CHECK_FS 1074 struct seg_entry *sentry; 1075 unsigned int segno; 1076 block_t blk = start; 1077 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1078 unsigned long *map; 1079 1080 while (blk < end) { 1081 segno = GET_SEGNO(sbi, blk); 1082 sentry = get_seg_entry(sbi, segno); 1083 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1084 1085 if (end < START_BLOCK(sbi, segno + 1)) 1086 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1087 else 1088 size = max_blocks; 1089 map = (unsigned long *)(sentry->cur_valid_map); 1090 offset = __find_rev_next_bit(map, size, offset); 1091 f2fs_bug_on(sbi, offset != size); 1092 blk = START_BLOCK(sbi, segno + 1); 1093 } 1094 #endif 1095 } 1096 1097 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1098 struct discard_policy *dpolicy, 1099 int discard_type, unsigned int granularity) 1100 { 1101 /* common policy */ 1102 dpolicy->type = discard_type; 1103 dpolicy->sync = true; 1104 dpolicy->ordered = false; 1105 dpolicy->granularity = granularity; 1106 1107 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1108 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1109 dpolicy->timeout = false; 1110 1111 if (discard_type == DPOLICY_BG) { 1112 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1113 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1114 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1115 dpolicy->io_aware = true; 1116 dpolicy->sync = false; 1117 dpolicy->ordered = true; 1118 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1119 dpolicy->granularity = 1; 1120 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1121 } 1122 } else if (discard_type == DPOLICY_FORCE) { 1123 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1124 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1125 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1126 dpolicy->io_aware = false; 1127 } else if (discard_type == DPOLICY_FSTRIM) { 1128 dpolicy->io_aware = false; 1129 } else if (discard_type == DPOLICY_UMOUNT) { 1130 dpolicy->io_aware = false; 1131 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1132 dpolicy->granularity = 1; 1133 dpolicy->timeout = true; 1134 } 1135 } 1136 1137 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1138 struct block_device *bdev, block_t lstart, 1139 block_t start, block_t len); 1140 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1141 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1142 struct discard_policy *dpolicy, 1143 struct discard_cmd *dc, 1144 unsigned int *issued) 1145 { 1146 struct block_device *bdev = dc->bdev; 1147 struct request_queue *q = bdev_get_queue(bdev); 1148 unsigned int max_discard_blocks = 1149 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1150 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1151 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1152 &(dcc->fstrim_list) : &(dcc->wait_list); 1153 int flag = dpolicy->sync ? REQ_SYNC : 0; 1154 block_t lstart, start, len, total_len; 1155 int err = 0; 1156 1157 if (dc->state != D_PREP) 1158 return 0; 1159 1160 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1161 return 0; 1162 1163 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1164 1165 lstart = dc->lstart; 1166 start = dc->start; 1167 len = dc->len; 1168 total_len = len; 1169 1170 dc->len = 0; 1171 1172 while (total_len && *issued < dpolicy->max_requests && !err) { 1173 struct bio *bio = NULL; 1174 unsigned long flags; 1175 bool last = true; 1176 1177 if (len > max_discard_blocks) { 1178 len = max_discard_blocks; 1179 last = false; 1180 } 1181 1182 (*issued)++; 1183 if (*issued == dpolicy->max_requests) 1184 last = true; 1185 1186 dc->len += len; 1187 1188 if (time_to_inject(sbi, FAULT_DISCARD)) { 1189 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1190 err = -EIO; 1191 goto submit; 1192 } 1193 err = __blkdev_issue_discard(bdev, 1194 SECTOR_FROM_BLOCK(start), 1195 SECTOR_FROM_BLOCK(len), 1196 GFP_NOFS, 0, &bio); 1197 submit: 1198 if (err) { 1199 spin_lock_irqsave(&dc->lock, flags); 1200 if (dc->state == D_PARTIAL) 1201 dc->state = D_SUBMIT; 1202 spin_unlock_irqrestore(&dc->lock, flags); 1203 1204 break; 1205 } 1206 1207 f2fs_bug_on(sbi, !bio); 1208 1209 /* 1210 * should keep before submission to avoid D_DONE 1211 * right away 1212 */ 1213 spin_lock_irqsave(&dc->lock, flags); 1214 if (last) 1215 dc->state = D_SUBMIT; 1216 else 1217 dc->state = D_PARTIAL; 1218 dc->bio_ref++; 1219 spin_unlock_irqrestore(&dc->lock, flags); 1220 1221 atomic_inc(&dcc->queued_discard); 1222 dc->queued++; 1223 list_move_tail(&dc->list, wait_list); 1224 1225 /* sanity check on discard range */ 1226 __check_sit_bitmap(sbi, lstart, lstart + len); 1227 1228 bio->bi_private = dc; 1229 bio->bi_end_io = f2fs_submit_discard_endio; 1230 bio->bi_opf |= flag; 1231 submit_bio(bio); 1232 1233 atomic_inc(&dcc->issued_discard); 1234 1235 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1236 1237 lstart += len; 1238 start += len; 1239 total_len -= len; 1240 len = total_len; 1241 } 1242 1243 if (!err && len) { 1244 dcc->undiscard_blks -= len; 1245 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1246 } 1247 return err; 1248 } 1249 1250 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1251 struct block_device *bdev, block_t lstart, 1252 block_t start, block_t len, 1253 struct rb_node **insert_p, 1254 struct rb_node *insert_parent) 1255 { 1256 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1257 struct rb_node **p; 1258 struct rb_node *parent = NULL; 1259 bool leftmost = true; 1260 1261 if (insert_p && insert_parent) { 1262 parent = insert_parent; 1263 p = insert_p; 1264 goto do_insert; 1265 } 1266 1267 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1268 lstart, &leftmost); 1269 do_insert: 1270 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1271 p, leftmost); 1272 } 1273 1274 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1275 struct discard_cmd *dc) 1276 { 1277 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1278 } 1279 1280 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1281 struct discard_cmd *dc, block_t blkaddr) 1282 { 1283 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1284 struct discard_info di = dc->di; 1285 bool modified = false; 1286 1287 if (dc->state == D_DONE || dc->len == 1) { 1288 __remove_discard_cmd(sbi, dc); 1289 return; 1290 } 1291 1292 dcc->undiscard_blks -= di.len; 1293 1294 if (blkaddr > di.lstart) { 1295 dc->len = blkaddr - dc->lstart; 1296 dcc->undiscard_blks += dc->len; 1297 __relocate_discard_cmd(dcc, dc); 1298 modified = true; 1299 } 1300 1301 if (blkaddr < di.lstart + di.len - 1) { 1302 if (modified) { 1303 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1304 di.start + blkaddr + 1 - di.lstart, 1305 di.lstart + di.len - 1 - blkaddr, 1306 NULL, NULL); 1307 } else { 1308 dc->lstart++; 1309 dc->len--; 1310 dc->start++; 1311 dcc->undiscard_blks += dc->len; 1312 __relocate_discard_cmd(dcc, dc); 1313 } 1314 } 1315 } 1316 1317 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1318 struct block_device *bdev, block_t lstart, 1319 block_t start, block_t len) 1320 { 1321 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1322 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1323 struct discard_cmd *dc; 1324 struct discard_info di = {0}; 1325 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1326 struct request_queue *q = bdev_get_queue(bdev); 1327 unsigned int max_discard_blocks = 1328 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1329 block_t end = lstart + len; 1330 1331 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1332 NULL, lstart, 1333 (struct rb_entry **)&prev_dc, 1334 (struct rb_entry **)&next_dc, 1335 &insert_p, &insert_parent, true, NULL); 1336 if (dc) 1337 prev_dc = dc; 1338 1339 if (!prev_dc) { 1340 di.lstart = lstart; 1341 di.len = next_dc ? next_dc->lstart - lstart : len; 1342 di.len = min(di.len, len); 1343 di.start = start; 1344 } 1345 1346 while (1) { 1347 struct rb_node *node; 1348 bool merged = false; 1349 struct discard_cmd *tdc = NULL; 1350 1351 if (prev_dc) { 1352 di.lstart = prev_dc->lstart + prev_dc->len; 1353 if (di.lstart < lstart) 1354 di.lstart = lstart; 1355 if (di.lstart >= end) 1356 break; 1357 1358 if (!next_dc || next_dc->lstart > end) 1359 di.len = end - di.lstart; 1360 else 1361 di.len = next_dc->lstart - di.lstart; 1362 di.start = start + di.lstart - lstart; 1363 } 1364 1365 if (!di.len) 1366 goto next; 1367 1368 if (prev_dc && prev_dc->state == D_PREP && 1369 prev_dc->bdev == bdev && 1370 __is_discard_back_mergeable(&di, &prev_dc->di, 1371 max_discard_blocks)) { 1372 prev_dc->di.len += di.len; 1373 dcc->undiscard_blks += di.len; 1374 __relocate_discard_cmd(dcc, prev_dc); 1375 di = prev_dc->di; 1376 tdc = prev_dc; 1377 merged = true; 1378 } 1379 1380 if (next_dc && next_dc->state == D_PREP && 1381 next_dc->bdev == bdev && 1382 __is_discard_front_mergeable(&di, &next_dc->di, 1383 max_discard_blocks)) { 1384 next_dc->di.lstart = di.lstart; 1385 next_dc->di.len += di.len; 1386 next_dc->di.start = di.start; 1387 dcc->undiscard_blks += di.len; 1388 __relocate_discard_cmd(dcc, next_dc); 1389 if (tdc) 1390 __remove_discard_cmd(sbi, tdc); 1391 merged = true; 1392 } 1393 1394 if (!merged) { 1395 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1396 di.len, NULL, NULL); 1397 } 1398 next: 1399 prev_dc = next_dc; 1400 if (!prev_dc) 1401 break; 1402 1403 node = rb_next(&prev_dc->rb_node); 1404 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1405 } 1406 } 1407 1408 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1409 struct block_device *bdev, block_t blkstart, block_t blklen) 1410 { 1411 block_t lblkstart = blkstart; 1412 1413 if (!f2fs_bdev_support_discard(bdev)) 1414 return 0; 1415 1416 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1417 1418 if (f2fs_is_multi_device(sbi)) { 1419 int devi = f2fs_target_device_index(sbi, blkstart); 1420 1421 blkstart -= FDEV(devi).start_blk; 1422 } 1423 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1424 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1425 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1426 return 0; 1427 } 1428 1429 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1430 struct discard_policy *dpolicy) 1431 { 1432 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1433 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1434 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1435 struct discard_cmd *dc; 1436 struct blk_plug plug; 1437 unsigned int pos = dcc->next_pos; 1438 unsigned int issued = 0; 1439 bool io_interrupted = false; 1440 1441 mutex_lock(&dcc->cmd_lock); 1442 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1443 NULL, pos, 1444 (struct rb_entry **)&prev_dc, 1445 (struct rb_entry **)&next_dc, 1446 &insert_p, &insert_parent, true, NULL); 1447 if (!dc) 1448 dc = next_dc; 1449 1450 blk_start_plug(&plug); 1451 1452 while (dc) { 1453 struct rb_node *node; 1454 int err = 0; 1455 1456 if (dc->state != D_PREP) 1457 goto next; 1458 1459 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1460 io_interrupted = true; 1461 break; 1462 } 1463 1464 dcc->next_pos = dc->lstart + dc->len; 1465 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1466 1467 if (issued >= dpolicy->max_requests) 1468 break; 1469 next: 1470 node = rb_next(&dc->rb_node); 1471 if (err) 1472 __remove_discard_cmd(sbi, dc); 1473 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1474 } 1475 1476 blk_finish_plug(&plug); 1477 1478 if (!dc) 1479 dcc->next_pos = 0; 1480 1481 mutex_unlock(&dcc->cmd_lock); 1482 1483 if (!issued && io_interrupted) 1484 issued = -1; 1485 1486 return issued; 1487 } 1488 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1489 struct discard_policy *dpolicy); 1490 1491 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1492 struct discard_policy *dpolicy) 1493 { 1494 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1495 struct list_head *pend_list; 1496 struct discard_cmd *dc, *tmp; 1497 struct blk_plug plug; 1498 int i, issued; 1499 bool io_interrupted = false; 1500 1501 if (dpolicy->timeout) 1502 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1503 1504 retry: 1505 issued = 0; 1506 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1507 if (dpolicy->timeout && 1508 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1509 break; 1510 1511 if (i + 1 < dpolicy->granularity) 1512 break; 1513 1514 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1515 return __issue_discard_cmd_orderly(sbi, dpolicy); 1516 1517 pend_list = &dcc->pend_list[i]; 1518 1519 mutex_lock(&dcc->cmd_lock); 1520 if (list_empty(pend_list)) 1521 goto next; 1522 if (unlikely(dcc->rbtree_check)) 1523 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1524 &dcc->root)); 1525 blk_start_plug(&plug); 1526 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1527 f2fs_bug_on(sbi, dc->state != D_PREP); 1528 1529 if (dpolicy->timeout && 1530 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1531 break; 1532 1533 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1534 !is_idle(sbi, DISCARD_TIME)) { 1535 io_interrupted = true; 1536 break; 1537 } 1538 1539 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1540 1541 if (issued >= dpolicy->max_requests) 1542 break; 1543 } 1544 blk_finish_plug(&plug); 1545 next: 1546 mutex_unlock(&dcc->cmd_lock); 1547 1548 if (issued >= dpolicy->max_requests || io_interrupted) 1549 break; 1550 } 1551 1552 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1553 __wait_all_discard_cmd(sbi, dpolicy); 1554 goto retry; 1555 } 1556 1557 if (!issued && io_interrupted) 1558 issued = -1; 1559 1560 return issued; 1561 } 1562 1563 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1564 { 1565 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1566 struct list_head *pend_list; 1567 struct discard_cmd *dc, *tmp; 1568 int i; 1569 bool dropped = false; 1570 1571 mutex_lock(&dcc->cmd_lock); 1572 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1573 pend_list = &dcc->pend_list[i]; 1574 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1575 f2fs_bug_on(sbi, dc->state != D_PREP); 1576 __remove_discard_cmd(sbi, dc); 1577 dropped = true; 1578 } 1579 } 1580 mutex_unlock(&dcc->cmd_lock); 1581 1582 return dropped; 1583 } 1584 1585 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1586 { 1587 __drop_discard_cmd(sbi); 1588 } 1589 1590 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1591 struct discard_cmd *dc) 1592 { 1593 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1594 unsigned int len = 0; 1595 1596 wait_for_completion_io(&dc->wait); 1597 mutex_lock(&dcc->cmd_lock); 1598 f2fs_bug_on(sbi, dc->state != D_DONE); 1599 dc->ref--; 1600 if (!dc->ref) { 1601 if (!dc->error) 1602 len = dc->len; 1603 __remove_discard_cmd(sbi, dc); 1604 } 1605 mutex_unlock(&dcc->cmd_lock); 1606 1607 return len; 1608 } 1609 1610 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1611 struct discard_policy *dpolicy, 1612 block_t start, block_t end) 1613 { 1614 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1615 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1616 &(dcc->fstrim_list) : &(dcc->wait_list); 1617 struct discard_cmd *dc, *tmp; 1618 bool need_wait; 1619 unsigned int trimmed = 0; 1620 1621 next: 1622 need_wait = false; 1623 1624 mutex_lock(&dcc->cmd_lock); 1625 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1626 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1627 continue; 1628 if (dc->len < dpolicy->granularity) 1629 continue; 1630 if (dc->state == D_DONE && !dc->ref) { 1631 wait_for_completion_io(&dc->wait); 1632 if (!dc->error) 1633 trimmed += dc->len; 1634 __remove_discard_cmd(sbi, dc); 1635 } else { 1636 dc->ref++; 1637 need_wait = true; 1638 break; 1639 } 1640 } 1641 mutex_unlock(&dcc->cmd_lock); 1642 1643 if (need_wait) { 1644 trimmed += __wait_one_discard_bio(sbi, dc); 1645 goto next; 1646 } 1647 1648 return trimmed; 1649 } 1650 1651 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1652 struct discard_policy *dpolicy) 1653 { 1654 struct discard_policy dp; 1655 unsigned int discard_blks; 1656 1657 if (dpolicy) 1658 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1659 1660 /* wait all */ 1661 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1662 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1663 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1664 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1665 1666 return discard_blks; 1667 } 1668 1669 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1670 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1671 { 1672 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1673 struct discard_cmd *dc; 1674 bool need_wait = false; 1675 1676 mutex_lock(&dcc->cmd_lock); 1677 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1678 NULL, blkaddr); 1679 if (dc) { 1680 if (dc->state == D_PREP) { 1681 __punch_discard_cmd(sbi, dc, blkaddr); 1682 } else { 1683 dc->ref++; 1684 need_wait = true; 1685 } 1686 } 1687 mutex_unlock(&dcc->cmd_lock); 1688 1689 if (need_wait) 1690 __wait_one_discard_bio(sbi, dc); 1691 } 1692 1693 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1694 { 1695 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1696 1697 if (dcc && dcc->f2fs_issue_discard) { 1698 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1699 1700 dcc->f2fs_issue_discard = NULL; 1701 kthread_stop(discard_thread); 1702 } 1703 } 1704 1705 /* This comes from f2fs_put_super */ 1706 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1707 { 1708 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1709 struct discard_policy dpolicy; 1710 bool dropped; 1711 1712 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1713 dcc->discard_granularity); 1714 __issue_discard_cmd(sbi, &dpolicy); 1715 dropped = __drop_discard_cmd(sbi); 1716 1717 /* just to make sure there is no pending discard commands */ 1718 __wait_all_discard_cmd(sbi, NULL); 1719 1720 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1721 return dropped; 1722 } 1723 1724 static int issue_discard_thread(void *data) 1725 { 1726 struct f2fs_sb_info *sbi = data; 1727 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1728 wait_queue_head_t *q = &dcc->discard_wait_queue; 1729 struct discard_policy dpolicy; 1730 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1731 int issued; 1732 1733 set_freezable(); 1734 1735 do { 1736 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1737 dcc->discard_granularity); 1738 1739 wait_event_interruptible_timeout(*q, 1740 kthread_should_stop() || freezing(current) || 1741 dcc->discard_wake, 1742 msecs_to_jiffies(wait_ms)); 1743 1744 if (dcc->discard_wake) 1745 dcc->discard_wake = 0; 1746 1747 /* clean up pending candidates before going to sleep */ 1748 if (atomic_read(&dcc->queued_discard)) 1749 __wait_all_discard_cmd(sbi, NULL); 1750 1751 if (try_to_freeze()) 1752 continue; 1753 if (f2fs_readonly(sbi->sb)) 1754 continue; 1755 if (kthread_should_stop()) 1756 return 0; 1757 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1758 wait_ms = dpolicy.max_interval; 1759 continue; 1760 } 1761 1762 if (sbi->gc_mode == GC_URGENT) 1763 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1764 1765 sb_start_intwrite(sbi->sb); 1766 1767 issued = __issue_discard_cmd(sbi, &dpolicy); 1768 if (issued > 0) { 1769 __wait_all_discard_cmd(sbi, &dpolicy); 1770 wait_ms = dpolicy.min_interval; 1771 } else if (issued == -1){ 1772 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1773 if (!wait_ms) 1774 wait_ms = dpolicy.mid_interval; 1775 } else { 1776 wait_ms = dpolicy.max_interval; 1777 } 1778 1779 sb_end_intwrite(sbi->sb); 1780 1781 } while (!kthread_should_stop()); 1782 return 0; 1783 } 1784 1785 #ifdef CONFIG_BLK_DEV_ZONED 1786 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1787 struct block_device *bdev, block_t blkstart, block_t blklen) 1788 { 1789 sector_t sector, nr_sects; 1790 block_t lblkstart = blkstart; 1791 int devi = 0; 1792 1793 if (f2fs_is_multi_device(sbi)) { 1794 devi = f2fs_target_device_index(sbi, blkstart); 1795 if (blkstart < FDEV(devi).start_blk || 1796 blkstart > FDEV(devi).end_blk) { 1797 f2fs_err(sbi, "Invalid block %x", blkstart); 1798 return -EIO; 1799 } 1800 blkstart -= FDEV(devi).start_blk; 1801 } 1802 1803 /* For sequential zones, reset the zone write pointer */ 1804 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1805 sector = SECTOR_FROM_BLOCK(blkstart); 1806 nr_sects = SECTOR_FROM_BLOCK(blklen); 1807 1808 if (sector & (bdev_zone_sectors(bdev) - 1) || 1809 nr_sects != bdev_zone_sectors(bdev)) { 1810 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1811 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1812 blkstart, blklen); 1813 return -EIO; 1814 } 1815 trace_f2fs_issue_reset_zone(bdev, blkstart); 1816 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1817 sector, nr_sects, GFP_NOFS); 1818 } 1819 1820 /* For conventional zones, use regular discard if supported */ 1821 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1822 } 1823 #endif 1824 1825 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1826 struct block_device *bdev, block_t blkstart, block_t blklen) 1827 { 1828 #ifdef CONFIG_BLK_DEV_ZONED 1829 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1830 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1831 #endif 1832 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1833 } 1834 1835 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1836 block_t blkstart, block_t blklen) 1837 { 1838 sector_t start = blkstart, len = 0; 1839 struct block_device *bdev; 1840 struct seg_entry *se; 1841 unsigned int offset; 1842 block_t i; 1843 int err = 0; 1844 1845 bdev = f2fs_target_device(sbi, blkstart, NULL); 1846 1847 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1848 if (i != start) { 1849 struct block_device *bdev2 = 1850 f2fs_target_device(sbi, i, NULL); 1851 1852 if (bdev2 != bdev) { 1853 err = __issue_discard_async(sbi, bdev, 1854 start, len); 1855 if (err) 1856 return err; 1857 bdev = bdev2; 1858 start = i; 1859 len = 0; 1860 } 1861 } 1862 1863 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1864 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1865 1866 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1867 sbi->discard_blks--; 1868 } 1869 1870 if (len) 1871 err = __issue_discard_async(sbi, bdev, start, len); 1872 return err; 1873 } 1874 1875 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1876 bool check_only) 1877 { 1878 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1879 int max_blocks = sbi->blocks_per_seg; 1880 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1881 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1882 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1883 unsigned long *discard_map = (unsigned long *)se->discard_map; 1884 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1885 unsigned int start = 0, end = -1; 1886 bool force = (cpc->reason & CP_DISCARD); 1887 struct discard_entry *de = NULL; 1888 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1889 int i; 1890 1891 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1892 return false; 1893 1894 if (!force) { 1895 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1896 SM_I(sbi)->dcc_info->nr_discards >= 1897 SM_I(sbi)->dcc_info->max_discards) 1898 return false; 1899 } 1900 1901 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1902 for (i = 0; i < entries; i++) 1903 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1904 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1905 1906 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1907 SM_I(sbi)->dcc_info->max_discards) { 1908 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1909 if (start >= max_blocks) 1910 break; 1911 1912 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1913 if (force && start && end != max_blocks 1914 && (end - start) < cpc->trim_minlen) 1915 continue; 1916 1917 if (check_only) 1918 return true; 1919 1920 if (!de) { 1921 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1922 GFP_F2FS_ZERO); 1923 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1924 list_add_tail(&de->list, head); 1925 } 1926 1927 for (i = start; i < end; i++) 1928 __set_bit_le(i, (void *)de->discard_map); 1929 1930 SM_I(sbi)->dcc_info->nr_discards += end - start; 1931 } 1932 return false; 1933 } 1934 1935 static void release_discard_addr(struct discard_entry *entry) 1936 { 1937 list_del(&entry->list); 1938 kmem_cache_free(discard_entry_slab, entry); 1939 } 1940 1941 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1942 { 1943 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1944 struct discard_entry *entry, *this; 1945 1946 /* drop caches */ 1947 list_for_each_entry_safe(entry, this, head, list) 1948 release_discard_addr(entry); 1949 } 1950 1951 /* 1952 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1953 */ 1954 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1955 { 1956 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1957 unsigned int segno; 1958 1959 mutex_lock(&dirty_i->seglist_lock); 1960 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1961 __set_test_and_free(sbi, segno); 1962 mutex_unlock(&dirty_i->seglist_lock); 1963 } 1964 1965 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1966 struct cp_control *cpc) 1967 { 1968 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1969 struct list_head *head = &dcc->entry_list; 1970 struct discard_entry *entry, *this; 1971 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1972 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1973 unsigned int start = 0, end = -1; 1974 unsigned int secno, start_segno; 1975 bool force = (cpc->reason & CP_DISCARD); 1976 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 1977 1978 mutex_lock(&dirty_i->seglist_lock); 1979 1980 while (1) { 1981 int i; 1982 1983 if (need_align && end != -1) 1984 end--; 1985 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1986 if (start >= MAIN_SEGS(sbi)) 1987 break; 1988 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1989 start + 1); 1990 1991 if (need_align) { 1992 start = rounddown(start, sbi->segs_per_sec); 1993 end = roundup(end, sbi->segs_per_sec); 1994 } 1995 1996 for (i = start; i < end; i++) { 1997 if (test_and_clear_bit(i, prefree_map)) 1998 dirty_i->nr_dirty[PRE]--; 1999 } 2000 2001 if (!f2fs_realtime_discard_enable(sbi)) 2002 continue; 2003 2004 if (force && start >= cpc->trim_start && 2005 (end - 1) <= cpc->trim_end) 2006 continue; 2007 2008 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 2009 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2010 (end - start) << sbi->log_blocks_per_seg); 2011 continue; 2012 } 2013 next: 2014 secno = GET_SEC_FROM_SEG(sbi, start); 2015 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2016 if (!IS_CURSEC(sbi, secno) && 2017 !get_valid_blocks(sbi, start, true)) 2018 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2019 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2020 2021 start = start_segno + sbi->segs_per_sec; 2022 if (start < end) 2023 goto next; 2024 else 2025 end = start - 1; 2026 } 2027 mutex_unlock(&dirty_i->seglist_lock); 2028 2029 /* send small discards */ 2030 list_for_each_entry_safe(entry, this, head, list) { 2031 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2032 bool is_valid = test_bit_le(0, entry->discard_map); 2033 2034 find_next: 2035 if (is_valid) { 2036 next_pos = find_next_zero_bit_le(entry->discard_map, 2037 sbi->blocks_per_seg, cur_pos); 2038 len = next_pos - cur_pos; 2039 2040 if (f2fs_sb_has_blkzoned(sbi) || 2041 (force && len < cpc->trim_minlen)) 2042 goto skip; 2043 2044 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2045 len); 2046 total_len += len; 2047 } else { 2048 next_pos = find_next_bit_le(entry->discard_map, 2049 sbi->blocks_per_seg, cur_pos); 2050 } 2051 skip: 2052 cur_pos = next_pos; 2053 is_valid = !is_valid; 2054 2055 if (cur_pos < sbi->blocks_per_seg) 2056 goto find_next; 2057 2058 release_discard_addr(entry); 2059 dcc->nr_discards -= total_len; 2060 } 2061 2062 wake_up_discard_thread(sbi, false); 2063 } 2064 2065 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2066 { 2067 dev_t dev = sbi->sb->s_bdev->bd_dev; 2068 struct discard_cmd_control *dcc; 2069 int err = 0, i; 2070 2071 if (SM_I(sbi)->dcc_info) { 2072 dcc = SM_I(sbi)->dcc_info; 2073 goto init_thread; 2074 } 2075 2076 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2077 if (!dcc) 2078 return -ENOMEM; 2079 2080 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2081 INIT_LIST_HEAD(&dcc->entry_list); 2082 for (i = 0; i < MAX_PLIST_NUM; i++) 2083 INIT_LIST_HEAD(&dcc->pend_list[i]); 2084 INIT_LIST_HEAD(&dcc->wait_list); 2085 INIT_LIST_HEAD(&dcc->fstrim_list); 2086 mutex_init(&dcc->cmd_lock); 2087 atomic_set(&dcc->issued_discard, 0); 2088 atomic_set(&dcc->queued_discard, 0); 2089 atomic_set(&dcc->discard_cmd_cnt, 0); 2090 dcc->nr_discards = 0; 2091 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2092 dcc->undiscard_blks = 0; 2093 dcc->next_pos = 0; 2094 dcc->root = RB_ROOT_CACHED; 2095 dcc->rbtree_check = false; 2096 2097 init_waitqueue_head(&dcc->discard_wait_queue); 2098 SM_I(sbi)->dcc_info = dcc; 2099 init_thread: 2100 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2101 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2102 if (IS_ERR(dcc->f2fs_issue_discard)) { 2103 err = PTR_ERR(dcc->f2fs_issue_discard); 2104 kvfree(dcc); 2105 SM_I(sbi)->dcc_info = NULL; 2106 return err; 2107 } 2108 2109 return err; 2110 } 2111 2112 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2113 { 2114 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2115 2116 if (!dcc) 2117 return; 2118 2119 f2fs_stop_discard_thread(sbi); 2120 2121 /* 2122 * Recovery can cache discard commands, so in error path of 2123 * fill_super(), it needs to give a chance to handle them. 2124 */ 2125 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2126 f2fs_issue_discard_timeout(sbi); 2127 2128 kvfree(dcc); 2129 SM_I(sbi)->dcc_info = NULL; 2130 } 2131 2132 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2133 { 2134 struct sit_info *sit_i = SIT_I(sbi); 2135 2136 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2137 sit_i->dirty_sentries++; 2138 return false; 2139 } 2140 2141 return true; 2142 } 2143 2144 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2145 unsigned int segno, int modified) 2146 { 2147 struct seg_entry *se = get_seg_entry(sbi, segno); 2148 se->type = type; 2149 if (modified) 2150 __mark_sit_entry_dirty(sbi, segno); 2151 } 2152 2153 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2154 { 2155 struct seg_entry *se; 2156 unsigned int segno, offset; 2157 long int new_vblocks; 2158 bool exist; 2159 #ifdef CONFIG_F2FS_CHECK_FS 2160 bool mir_exist; 2161 #endif 2162 2163 segno = GET_SEGNO(sbi, blkaddr); 2164 2165 se = get_seg_entry(sbi, segno); 2166 new_vblocks = se->valid_blocks + del; 2167 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2168 2169 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2170 (new_vblocks > sbi->blocks_per_seg))); 2171 2172 se->valid_blocks = new_vblocks; 2173 se->mtime = get_mtime(sbi, false); 2174 if (se->mtime > SIT_I(sbi)->max_mtime) 2175 SIT_I(sbi)->max_mtime = se->mtime; 2176 2177 /* Update valid block bitmap */ 2178 if (del > 0) { 2179 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2180 #ifdef CONFIG_F2FS_CHECK_FS 2181 mir_exist = f2fs_test_and_set_bit(offset, 2182 se->cur_valid_map_mir); 2183 if (unlikely(exist != mir_exist)) { 2184 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2185 blkaddr, exist); 2186 f2fs_bug_on(sbi, 1); 2187 } 2188 #endif 2189 if (unlikely(exist)) { 2190 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2191 blkaddr); 2192 f2fs_bug_on(sbi, 1); 2193 se->valid_blocks--; 2194 del = 0; 2195 } 2196 2197 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2198 sbi->discard_blks--; 2199 2200 /* 2201 * SSR should never reuse block which is checkpointed 2202 * or newly invalidated. 2203 */ 2204 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2205 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2206 se->ckpt_valid_blocks++; 2207 } 2208 } else { 2209 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2210 #ifdef CONFIG_F2FS_CHECK_FS 2211 mir_exist = f2fs_test_and_clear_bit(offset, 2212 se->cur_valid_map_mir); 2213 if (unlikely(exist != mir_exist)) { 2214 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2215 blkaddr, exist); 2216 f2fs_bug_on(sbi, 1); 2217 } 2218 #endif 2219 if (unlikely(!exist)) { 2220 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2221 blkaddr); 2222 f2fs_bug_on(sbi, 1); 2223 se->valid_blocks++; 2224 del = 0; 2225 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2226 /* 2227 * If checkpoints are off, we must not reuse data that 2228 * was used in the previous checkpoint. If it was used 2229 * before, we must track that to know how much space we 2230 * really have. 2231 */ 2232 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2233 spin_lock(&sbi->stat_lock); 2234 sbi->unusable_block_count++; 2235 spin_unlock(&sbi->stat_lock); 2236 } 2237 } 2238 2239 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2240 sbi->discard_blks++; 2241 } 2242 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2243 se->ckpt_valid_blocks += del; 2244 2245 __mark_sit_entry_dirty(sbi, segno); 2246 2247 /* update total number of valid blocks to be written in ckpt area */ 2248 SIT_I(sbi)->written_valid_blocks += del; 2249 2250 if (__is_large_section(sbi)) 2251 get_sec_entry(sbi, segno)->valid_blocks += del; 2252 } 2253 2254 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2255 { 2256 unsigned int segno = GET_SEGNO(sbi, addr); 2257 struct sit_info *sit_i = SIT_I(sbi); 2258 2259 f2fs_bug_on(sbi, addr == NULL_ADDR); 2260 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2261 return; 2262 2263 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2264 2265 /* add it into sit main buffer */ 2266 down_write(&sit_i->sentry_lock); 2267 2268 update_sit_entry(sbi, addr, -1); 2269 2270 /* add it into dirty seglist */ 2271 locate_dirty_segment(sbi, segno); 2272 2273 up_write(&sit_i->sentry_lock); 2274 } 2275 2276 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2277 { 2278 struct sit_info *sit_i = SIT_I(sbi); 2279 unsigned int segno, offset; 2280 struct seg_entry *se; 2281 bool is_cp = false; 2282 2283 if (!__is_valid_data_blkaddr(blkaddr)) 2284 return true; 2285 2286 down_read(&sit_i->sentry_lock); 2287 2288 segno = GET_SEGNO(sbi, blkaddr); 2289 se = get_seg_entry(sbi, segno); 2290 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2291 2292 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2293 is_cp = true; 2294 2295 up_read(&sit_i->sentry_lock); 2296 2297 return is_cp; 2298 } 2299 2300 /* 2301 * This function should be resided under the curseg_mutex lock 2302 */ 2303 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2304 struct f2fs_summary *sum) 2305 { 2306 struct curseg_info *curseg = CURSEG_I(sbi, type); 2307 void *addr = curseg->sum_blk; 2308 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2309 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2310 } 2311 2312 /* 2313 * Calculate the number of current summary pages for writing 2314 */ 2315 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2316 { 2317 int valid_sum_count = 0; 2318 int i, sum_in_page; 2319 2320 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2321 if (sbi->ckpt->alloc_type[i] == SSR) 2322 valid_sum_count += sbi->blocks_per_seg; 2323 else { 2324 if (for_ra) 2325 valid_sum_count += le16_to_cpu( 2326 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2327 else 2328 valid_sum_count += curseg_blkoff(sbi, i); 2329 } 2330 } 2331 2332 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2333 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2334 if (valid_sum_count <= sum_in_page) 2335 return 1; 2336 else if ((valid_sum_count - sum_in_page) <= 2337 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2338 return 2; 2339 return 3; 2340 } 2341 2342 /* 2343 * Caller should put this summary page 2344 */ 2345 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2346 { 2347 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2348 } 2349 2350 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2351 void *src, block_t blk_addr) 2352 { 2353 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2354 2355 memcpy(page_address(page), src, PAGE_SIZE); 2356 set_page_dirty(page); 2357 f2fs_put_page(page, 1); 2358 } 2359 2360 static void write_sum_page(struct f2fs_sb_info *sbi, 2361 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2362 { 2363 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2364 } 2365 2366 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2367 int type, block_t blk_addr) 2368 { 2369 struct curseg_info *curseg = CURSEG_I(sbi, type); 2370 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2371 struct f2fs_summary_block *src = curseg->sum_blk; 2372 struct f2fs_summary_block *dst; 2373 2374 dst = (struct f2fs_summary_block *)page_address(page); 2375 memset(dst, 0, PAGE_SIZE); 2376 2377 mutex_lock(&curseg->curseg_mutex); 2378 2379 down_read(&curseg->journal_rwsem); 2380 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2381 up_read(&curseg->journal_rwsem); 2382 2383 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2384 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2385 2386 mutex_unlock(&curseg->curseg_mutex); 2387 2388 set_page_dirty(page); 2389 f2fs_put_page(page, 1); 2390 } 2391 2392 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2393 { 2394 struct curseg_info *curseg = CURSEG_I(sbi, type); 2395 unsigned int segno = curseg->segno + 1; 2396 struct free_segmap_info *free_i = FREE_I(sbi); 2397 2398 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2399 return !test_bit(segno, free_i->free_segmap); 2400 return 0; 2401 } 2402 2403 /* 2404 * Find a new segment from the free segments bitmap to right order 2405 * This function should be returned with success, otherwise BUG 2406 */ 2407 static void get_new_segment(struct f2fs_sb_info *sbi, 2408 unsigned int *newseg, bool new_sec, int dir) 2409 { 2410 struct free_segmap_info *free_i = FREE_I(sbi); 2411 unsigned int segno, secno, zoneno; 2412 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2413 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2414 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2415 unsigned int left_start = hint; 2416 bool init = true; 2417 int go_left = 0; 2418 int i; 2419 2420 spin_lock(&free_i->segmap_lock); 2421 2422 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2423 segno = find_next_zero_bit(free_i->free_segmap, 2424 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2425 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2426 goto got_it; 2427 } 2428 find_other_zone: 2429 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2430 if (secno >= MAIN_SECS(sbi)) { 2431 if (dir == ALLOC_RIGHT) { 2432 secno = find_next_zero_bit(free_i->free_secmap, 2433 MAIN_SECS(sbi), 0); 2434 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2435 } else { 2436 go_left = 1; 2437 left_start = hint - 1; 2438 } 2439 } 2440 if (go_left == 0) 2441 goto skip_left; 2442 2443 while (test_bit(left_start, free_i->free_secmap)) { 2444 if (left_start > 0) { 2445 left_start--; 2446 continue; 2447 } 2448 left_start = find_next_zero_bit(free_i->free_secmap, 2449 MAIN_SECS(sbi), 0); 2450 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2451 break; 2452 } 2453 secno = left_start; 2454 skip_left: 2455 segno = GET_SEG_FROM_SEC(sbi, secno); 2456 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2457 2458 /* give up on finding another zone */ 2459 if (!init) 2460 goto got_it; 2461 if (sbi->secs_per_zone == 1) 2462 goto got_it; 2463 if (zoneno == old_zoneno) 2464 goto got_it; 2465 if (dir == ALLOC_LEFT) { 2466 if (!go_left && zoneno + 1 >= total_zones) 2467 goto got_it; 2468 if (go_left && zoneno == 0) 2469 goto got_it; 2470 } 2471 for (i = 0; i < NR_CURSEG_TYPE; i++) 2472 if (CURSEG_I(sbi, i)->zone == zoneno) 2473 break; 2474 2475 if (i < NR_CURSEG_TYPE) { 2476 /* zone is in user, try another */ 2477 if (go_left) 2478 hint = zoneno * sbi->secs_per_zone - 1; 2479 else if (zoneno + 1 >= total_zones) 2480 hint = 0; 2481 else 2482 hint = (zoneno + 1) * sbi->secs_per_zone; 2483 init = false; 2484 goto find_other_zone; 2485 } 2486 got_it: 2487 /* set it as dirty segment in free segmap */ 2488 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2489 __set_inuse(sbi, segno); 2490 *newseg = segno; 2491 spin_unlock(&free_i->segmap_lock); 2492 } 2493 2494 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2495 { 2496 struct curseg_info *curseg = CURSEG_I(sbi, type); 2497 struct summary_footer *sum_footer; 2498 2499 curseg->segno = curseg->next_segno; 2500 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2501 curseg->next_blkoff = 0; 2502 curseg->next_segno = NULL_SEGNO; 2503 2504 sum_footer = &(curseg->sum_blk->footer); 2505 memset(sum_footer, 0, sizeof(struct summary_footer)); 2506 if (IS_DATASEG(type)) 2507 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2508 if (IS_NODESEG(type)) 2509 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2510 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2511 } 2512 2513 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2514 { 2515 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2516 if (__is_large_section(sbi)) 2517 return CURSEG_I(sbi, type)->segno; 2518 2519 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2520 return 0; 2521 2522 if (test_opt(sbi, NOHEAP) && 2523 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2524 return 0; 2525 2526 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2527 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2528 2529 /* find segments from 0 to reuse freed segments */ 2530 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2531 return 0; 2532 2533 return CURSEG_I(sbi, type)->segno; 2534 } 2535 2536 /* 2537 * Allocate a current working segment. 2538 * This function always allocates a free segment in LFS manner. 2539 */ 2540 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2541 { 2542 struct curseg_info *curseg = CURSEG_I(sbi, type); 2543 unsigned int segno = curseg->segno; 2544 int dir = ALLOC_LEFT; 2545 2546 write_sum_page(sbi, curseg->sum_blk, 2547 GET_SUM_BLOCK(sbi, segno)); 2548 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2549 dir = ALLOC_RIGHT; 2550 2551 if (test_opt(sbi, NOHEAP)) 2552 dir = ALLOC_RIGHT; 2553 2554 segno = __get_next_segno(sbi, type); 2555 get_new_segment(sbi, &segno, new_sec, dir); 2556 curseg->next_segno = segno; 2557 reset_curseg(sbi, type, 1); 2558 curseg->alloc_type = LFS; 2559 } 2560 2561 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2562 struct curseg_info *seg, block_t start) 2563 { 2564 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2565 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2566 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2567 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2568 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2569 int i, pos; 2570 2571 for (i = 0; i < entries; i++) 2572 target_map[i] = ckpt_map[i] | cur_map[i]; 2573 2574 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2575 2576 seg->next_blkoff = pos; 2577 } 2578 2579 /* 2580 * If a segment is written by LFS manner, next block offset is just obtained 2581 * by increasing the current block offset. However, if a segment is written by 2582 * SSR manner, next block offset obtained by calling __next_free_blkoff 2583 */ 2584 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2585 struct curseg_info *seg) 2586 { 2587 if (seg->alloc_type == SSR) 2588 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2589 else 2590 seg->next_blkoff++; 2591 } 2592 2593 /* 2594 * This function always allocates a used segment(from dirty seglist) by SSR 2595 * manner, so it should recover the existing segment information of valid blocks 2596 */ 2597 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2598 { 2599 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2600 struct curseg_info *curseg = CURSEG_I(sbi, type); 2601 unsigned int new_segno = curseg->next_segno; 2602 struct f2fs_summary_block *sum_node; 2603 struct page *sum_page; 2604 2605 write_sum_page(sbi, curseg->sum_blk, 2606 GET_SUM_BLOCK(sbi, curseg->segno)); 2607 __set_test_and_inuse(sbi, new_segno); 2608 2609 mutex_lock(&dirty_i->seglist_lock); 2610 __remove_dirty_segment(sbi, new_segno, PRE); 2611 __remove_dirty_segment(sbi, new_segno, DIRTY); 2612 mutex_unlock(&dirty_i->seglist_lock); 2613 2614 reset_curseg(sbi, type, 1); 2615 curseg->alloc_type = SSR; 2616 __next_free_blkoff(sbi, curseg, 0); 2617 2618 sum_page = f2fs_get_sum_page(sbi, new_segno); 2619 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2620 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2621 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2622 f2fs_put_page(sum_page, 1); 2623 } 2624 2625 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2626 { 2627 struct curseg_info *curseg = CURSEG_I(sbi, type); 2628 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2629 unsigned segno = NULL_SEGNO; 2630 int i, cnt; 2631 bool reversed = false; 2632 2633 /* f2fs_need_SSR() already forces to do this */ 2634 if (!v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2635 curseg->next_segno = segno; 2636 return 1; 2637 } 2638 2639 /* For node segments, let's do SSR more intensively */ 2640 if (IS_NODESEG(type)) { 2641 if (type >= CURSEG_WARM_NODE) { 2642 reversed = true; 2643 i = CURSEG_COLD_NODE; 2644 } else { 2645 i = CURSEG_HOT_NODE; 2646 } 2647 cnt = NR_CURSEG_NODE_TYPE; 2648 } else { 2649 if (type >= CURSEG_WARM_DATA) { 2650 reversed = true; 2651 i = CURSEG_COLD_DATA; 2652 } else { 2653 i = CURSEG_HOT_DATA; 2654 } 2655 cnt = NR_CURSEG_DATA_TYPE; 2656 } 2657 2658 for (; cnt-- > 0; reversed ? i-- : i++) { 2659 if (i == type) 2660 continue; 2661 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2662 curseg->next_segno = segno; 2663 return 1; 2664 } 2665 } 2666 2667 /* find valid_blocks=0 in dirty list */ 2668 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2669 segno = get_free_segment(sbi); 2670 if (segno != NULL_SEGNO) { 2671 curseg->next_segno = segno; 2672 return 1; 2673 } 2674 } 2675 return 0; 2676 } 2677 2678 /* 2679 * flush out current segment and replace it with new segment 2680 * This function should be returned with success, otherwise BUG 2681 */ 2682 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2683 int type, bool force) 2684 { 2685 struct curseg_info *curseg = CURSEG_I(sbi, type); 2686 2687 if (force) 2688 new_curseg(sbi, type, true); 2689 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2690 type == CURSEG_WARM_NODE) 2691 new_curseg(sbi, type, false); 2692 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2693 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2694 new_curseg(sbi, type, false); 2695 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2696 change_curseg(sbi, type); 2697 else 2698 new_curseg(sbi, type, false); 2699 2700 stat_inc_seg_type(sbi, curseg); 2701 } 2702 2703 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2704 unsigned int start, unsigned int end) 2705 { 2706 struct curseg_info *curseg = CURSEG_I(sbi, type); 2707 unsigned int segno; 2708 2709 down_read(&SM_I(sbi)->curseg_lock); 2710 mutex_lock(&curseg->curseg_mutex); 2711 down_write(&SIT_I(sbi)->sentry_lock); 2712 2713 segno = CURSEG_I(sbi, type)->segno; 2714 if (segno < start || segno > end) 2715 goto unlock; 2716 2717 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2718 change_curseg(sbi, type); 2719 else 2720 new_curseg(sbi, type, true); 2721 2722 stat_inc_seg_type(sbi, curseg); 2723 2724 locate_dirty_segment(sbi, segno); 2725 unlock: 2726 up_write(&SIT_I(sbi)->sentry_lock); 2727 2728 if (segno != curseg->segno) 2729 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2730 type, segno, curseg->segno); 2731 2732 mutex_unlock(&curseg->curseg_mutex); 2733 up_read(&SM_I(sbi)->curseg_lock); 2734 } 2735 2736 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type) 2737 { 2738 struct curseg_info *curseg; 2739 unsigned int old_segno; 2740 int i; 2741 2742 down_write(&SIT_I(sbi)->sentry_lock); 2743 2744 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2745 if (type != NO_CHECK_TYPE && i != type) 2746 continue; 2747 2748 curseg = CURSEG_I(sbi, i); 2749 if (type == NO_CHECK_TYPE || curseg->next_blkoff || 2750 get_valid_blocks(sbi, curseg->segno, false) || 2751 get_ckpt_valid_blocks(sbi, curseg->segno)) { 2752 old_segno = curseg->segno; 2753 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2754 locate_dirty_segment(sbi, old_segno); 2755 } 2756 } 2757 2758 up_write(&SIT_I(sbi)->sentry_lock); 2759 } 2760 2761 static const struct segment_allocation default_salloc_ops = { 2762 .allocate_segment = allocate_segment_by_default, 2763 }; 2764 2765 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2766 struct cp_control *cpc) 2767 { 2768 __u64 trim_start = cpc->trim_start; 2769 bool has_candidate = false; 2770 2771 down_write(&SIT_I(sbi)->sentry_lock); 2772 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2773 if (add_discard_addrs(sbi, cpc, true)) { 2774 has_candidate = true; 2775 break; 2776 } 2777 } 2778 up_write(&SIT_I(sbi)->sentry_lock); 2779 2780 cpc->trim_start = trim_start; 2781 return has_candidate; 2782 } 2783 2784 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2785 struct discard_policy *dpolicy, 2786 unsigned int start, unsigned int end) 2787 { 2788 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2789 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2790 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2791 struct discard_cmd *dc; 2792 struct blk_plug plug; 2793 int issued; 2794 unsigned int trimmed = 0; 2795 2796 next: 2797 issued = 0; 2798 2799 mutex_lock(&dcc->cmd_lock); 2800 if (unlikely(dcc->rbtree_check)) 2801 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2802 &dcc->root)); 2803 2804 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2805 NULL, start, 2806 (struct rb_entry **)&prev_dc, 2807 (struct rb_entry **)&next_dc, 2808 &insert_p, &insert_parent, true, NULL); 2809 if (!dc) 2810 dc = next_dc; 2811 2812 blk_start_plug(&plug); 2813 2814 while (dc && dc->lstart <= end) { 2815 struct rb_node *node; 2816 int err = 0; 2817 2818 if (dc->len < dpolicy->granularity) 2819 goto skip; 2820 2821 if (dc->state != D_PREP) { 2822 list_move_tail(&dc->list, &dcc->fstrim_list); 2823 goto skip; 2824 } 2825 2826 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2827 2828 if (issued >= dpolicy->max_requests) { 2829 start = dc->lstart + dc->len; 2830 2831 if (err) 2832 __remove_discard_cmd(sbi, dc); 2833 2834 blk_finish_plug(&plug); 2835 mutex_unlock(&dcc->cmd_lock); 2836 trimmed += __wait_all_discard_cmd(sbi, NULL); 2837 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2838 goto next; 2839 } 2840 skip: 2841 node = rb_next(&dc->rb_node); 2842 if (err) 2843 __remove_discard_cmd(sbi, dc); 2844 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2845 2846 if (fatal_signal_pending(current)) 2847 break; 2848 } 2849 2850 blk_finish_plug(&plug); 2851 mutex_unlock(&dcc->cmd_lock); 2852 2853 return trimmed; 2854 } 2855 2856 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2857 { 2858 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2859 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2860 unsigned int start_segno, end_segno; 2861 block_t start_block, end_block; 2862 struct cp_control cpc; 2863 struct discard_policy dpolicy; 2864 unsigned long long trimmed = 0; 2865 int err = 0; 2866 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 2867 2868 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2869 return -EINVAL; 2870 2871 if (end < MAIN_BLKADDR(sbi)) 2872 goto out; 2873 2874 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2875 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 2876 return -EFSCORRUPTED; 2877 } 2878 2879 /* start/end segment number in main_area */ 2880 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2881 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2882 GET_SEGNO(sbi, end); 2883 if (need_align) { 2884 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2885 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2886 } 2887 2888 cpc.reason = CP_DISCARD; 2889 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2890 cpc.trim_start = start_segno; 2891 cpc.trim_end = end_segno; 2892 2893 if (sbi->discard_blks == 0) 2894 goto out; 2895 2896 down_write(&sbi->gc_lock); 2897 err = f2fs_write_checkpoint(sbi, &cpc); 2898 up_write(&sbi->gc_lock); 2899 if (err) 2900 goto out; 2901 2902 /* 2903 * We filed discard candidates, but actually we don't need to wait for 2904 * all of them, since they'll be issued in idle time along with runtime 2905 * discard option. User configuration looks like using runtime discard 2906 * or periodic fstrim instead of it. 2907 */ 2908 if (f2fs_realtime_discard_enable(sbi)) 2909 goto out; 2910 2911 start_block = START_BLOCK(sbi, start_segno); 2912 end_block = START_BLOCK(sbi, end_segno + 1); 2913 2914 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2915 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2916 start_block, end_block); 2917 2918 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2919 start_block, end_block); 2920 out: 2921 if (!err) 2922 range->len = F2FS_BLK_TO_BYTES(trimmed); 2923 return err; 2924 } 2925 2926 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2927 { 2928 struct curseg_info *curseg = CURSEG_I(sbi, type); 2929 if (curseg->next_blkoff < sbi->blocks_per_seg) 2930 return true; 2931 return false; 2932 } 2933 2934 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2935 { 2936 switch (hint) { 2937 case WRITE_LIFE_SHORT: 2938 return CURSEG_HOT_DATA; 2939 case WRITE_LIFE_EXTREME: 2940 return CURSEG_COLD_DATA; 2941 default: 2942 return CURSEG_WARM_DATA; 2943 } 2944 } 2945 2946 /* This returns write hints for each segment type. This hints will be 2947 * passed down to block layer. There are mapping tables which depend on 2948 * the mount option 'whint_mode'. 2949 * 2950 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2951 * 2952 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2953 * 2954 * User F2FS Block 2955 * ---- ---- ----- 2956 * META WRITE_LIFE_NOT_SET 2957 * HOT_NODE " 2958 * WARM_NODE " 2959 * COLD_NODE " 2960 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2961 * extension list " " 2962 * 2963 * -- buffered io 2964 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2965 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2966 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2967 * WRITE_LIFE_NONE " " 2968 * WRITE_LIFE_MEDIUM " " 2969 * WRITE_LIFE_LONG " " 2970 * 2971 * -- direct io 2972 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2973 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2974 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2975 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2976 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2977 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2978 * 2979 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2980 * 2981 * User F2FS Block 2982 * ---- ---- ----- 2983 * META WRITE_LIFE_MEDIUM; 2984 * HOT_NODE WRITE_LIFE_NOT_SET 2985 * WARM_NODE " 2986 * COLD_NODE WRITE_LIFE_NONE 2987 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2988 * extension list " " 2989 * 2990 * -- buffered io 2991 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2992 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2993 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2994 * WRITE_LIFE_NONE " " 2995 * WRITE_LIFE_MEDIUM " " 2996 * WRITE_LIFE_LONG " " 2997 * 2998 * -- direct io 2999 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3000 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3001 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3002 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3003 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3004 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3005 */ 3006 3007 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3008 enum page_type type, enum temp_type temp) 3009 { 3010 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 3011 if (type == DATA) { 3012 if (temp == WARM) 3013 return WRITE_LIFE_NOT_SET; 3014 else if (temp == HOT) 3015 return WRITE_LIFE_SHORT; 3016 else if (temp == COLD) 3017 return WRITE_LIFE_EXTREME; 3018 } else { 3019 return WRITE_LIFE_NOT_SET; 3020 } 3021 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 3022 if (type == DATA) { 3023 if (temp == WARM) 3024 return WRITE_LIFE_LONG; 3025 else if (temp == HOT) 3026 return WRITE_LIFE_SHORT; 3027 else if (temp == COLD) 3028 return WRITE_LIFE_EXTREME; 3029 } else if (type == NODE) { 3030 if (temp == WARM || temp == HOT) 3031 return WRITE_LIFE_NOT_SET; 3032 else if (temp == COLD) 3033 return WRITE_LIFE_NONE; 3034 } else if (type == META) { 3035 return WRITE_LIFE_MEDIUM; 3036 } 3037 } 3038 return WRITE_LIFE_NOT_SET; 3039 } 3040 3041 static int __get_segment_type_2(struct f2fs_io_info *fio) 3042 { 3043 if (fio->type == DATA) 3044 return CURSEG_HOT_DATA; 3045 else 3046 return CURSEG_HOT_NODE; 3047 } 3048 3049 static int __get_segment_type_4(struct f2fs_io_info *fio) 3050 { 3051 if (fio->type == DATA) { 3052 struct inode *inode = fio->page->mapping->host; 3053 3054 if (S_ISDIR(inode->i_mode)) 3055 return CURSEG_HOT_DATA; 3056 else 3057 return CURSEG_COLD_DATA; 3058 } else { 3059 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3060 return CURSEG_WARM_NODE; 3061 else 3062 return CURSEG_COLD_NODE; 3063 } 3064 } 3065 3066 static int __get_segment_type_6(struct f2fs_io_info *fio) 3067 { 3068 if (fio->type == DATA) { 3069 struct inode *inode = fio->page->mapping->host; 3070 3071 if (is_cold_data(fio->page) || file_is_cold(inode) || 3072 f2fs_compressed_file(inode)) 3073 return CURSEG_COLD_DATA; 3074 if (file_is_hot(inode) || 3075 is_inode_flag_set(inode, FI_HOT_DATA) || 3076 f2fs_is_atomic_file(inode) || 3077 f2fs_is_volatile_file(inode)) 3078 return CURSEG_HOT_DATA; 3079 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3080 } else { 3081 if (IS_DNODE(fio->page)) 3082 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3083 CURSEG_HOT_NODE; 3084 return CURSEG_COLD_NODE; 3085 } 3086 } 3087 3088 static int __get_segment_type(struct f2fs_io_info *fio) 3089 { 3090 int type = 0; 3091 3092 switch (F2FS_OPTION(fio->sbi).active_logs) { 3093 case 2: 3094 type = __get_segment_type_2(fio); 3095 break; 3096 case 4: 3097 type = __get_segment_type_4(fio); 3098 break; 3099 case 6: 3100 type = __get_segment_type_6(fio); 3101 break; 3102 default: 3103 f2fs_bug_on(fio->sbi, true); 3104 } 3105 3106 if (IS_HOT(type)) 3107 fio->temp = HOT; 3108 else if (IS_WARM(type)) 3109 fio->temp = WARM; 3110 else 3111 fio->temp = COLD; 3112 return type; 3113 } 3114 3115 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3116 block_t old_blkaddr, block_t *new_blkaddr, 3117 struct f2fs_summary *sum, int type, 3118 struct f2fs_io_info *fio) 3119 { 3120 struct sit_info *sit_i = SIT_I(sbi); 3121 struct curseg_info *curseg = CURSEG_I(sbi, type); 3122 bool put_pin_sem = false; 3123 3124 if (type == CURSEG_COLD_DATA) { 3125 /* GC during CURSEG_COLD_DATA_PINNED allocation */ 3126 if (down_read_trylock(&sbi->pin_sem)) { 3127 put_pin_sem = true; 3128 } else { 3129 type = CURSEG_WARM_DATA; 3130 curseg = CURSEG_I(sbi, type); 3131 } 3132 } else if (type == CURSEG_COLD_DATA_PINNED) { 3133 type = CURSEG_COLD_DATA; 3134 } 3135 3136 down_read(&SM_I(sbi)->curseg_lock); 3137 3138 mutex_lock(&curseg->curseg_mutex); 3139 down_write(&sit_i->sentry_lock); 3140 3141 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3142 3143 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3144 3145 /* 3146 * __add_sum_entry should be resided under the curseg_mutex 3147 * because, this function updates a summary entry in the 3148 * current summary block. 3149 */ 3150 __add_sum_entry(sbi, type, sum); 3151 3152 __refresh_next_blkoff(sbi, curseg); 3153 3154 stat_inc_block_count(sbi, curseg); 3155 3156 /* 3157 * SIT information should be updated before segment allocation, 3158 * since SSR needs latest valid block information. 3159 */ 3160 update_sit_entry(sbi, *new_blkaddr, 1); 3161 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3162 update_sit_entry(sbi, old_blkaddr, -1); 3163 3164 if (!__has_curseg_space(sbi, type)) 3165 sit_i->s_ops->allocate_segment(sbi, type, false); 3166 3167 /* 3168 * segment dirty status should be updated after segment allocation, 3169 * so we just need to update status only one time after previous 3170 * segment being closed. 3171 */ 3172 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3173 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3174 3175 up_write(&sit_i->sentry_lock); 3176 3177 if (page && IS_NODESEG(type)) { 3178 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3179 3180 f2fs_inode_chksum_set(sbi, page); 3181 } 3182 3183 if (F2FS_IO_ALIGNED(sbi)) 3184 fio->retry = false; 3185 3186 if (fio) { 3187 struct f2fs_bio_info *io; 3188 3189 INIT_LIST_HEAD(&fio->list); 3190 fio->in_list = true; 3191 io = sbi->write_io[fio->type] + fio->temp; 3192 spin_lock(&io->io_lock); 3193 list_add_tail(&fio->list, &io->io_list); 3194 spin_unlock(&io->io_lock); 3195 } 3196 3197 mutex_unlock(&curseg->curseg_mutex); 3198 3199 up_read(&SM_I(sbi)->curseg_lock); 3200 3201 if (put_pin_sem) 3202 up_read(&sbi->pin_sem); 3203 } 3204 3205 static void update_device_state(struct f2fs_io_info *fio) 3206 { 3207 struct f2fs_sb_info *sbi = fio->sbi; 3208 unsigned int devidx; 3209 3210 if (!f2fs_is_multi_device(sbi)) 3211 return; 3212 3213 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3214 3215 /* update device state for fsync */ 3216 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3217 3218 /* update device state for checkpoint */ 3219 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3220 spin_lock(&sbi->dev_lock); 3221 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3222 spin_unlock(&sbi->dev_lock); 3223 } 3224 } 3225 3226 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3227 { 3228 int type = __get_segment_type(fio); 3229 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3230 3231 if (keep_order) 3232 down_read(&fio->sbi->io_order_lock); 3233 reallocate: 3234 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3235 &fio->new_blkaddr, sum, type, fio); 3236 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3237 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3238 fio->old_blkaddr, fio->old_blkaddr); 3239 3240 /* writeout dirty page into bdev */ 3241 f2fs_submit_page_write(fio); 3242 if (fio->retry) { 3243 fio->old_blkaddr = fio->new_blkaddr; 3244 goto reallocate; 3245 } 3246 3247 update_device_state(fio); 3248 3249 if (keep_order) 3250 up_read(&fio->sbi->io_order_lock); 3251 } 3252 3253 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3254 enum iostat_type io_type) 3255 { 3256 struct f2fs_io_info fio = { 3257 .sbi = sbi, 3258 .type = META, 3259 .temp = HOT, 3260 .op = REQ_OP_WRITE, 3261 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3262 .old_blkaddr = page->index, 3263 .new_blkaddr = page->index, 3264 .page = page, 3265 .encrypted_page = NULL, 3266 .in_list = false, 3267 }; 3268 3269 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3270 fio.op_flags &= ~REQ_META; 3271 3272 set_page_writeback(page); 3273 ClearPageError(page); 3274 f2fs_submit_page_write(&fio); 3275 3276 stat_inc_meta_count(sbi, page->index); 3277 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3278 } 3279 3280 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3281 { 3282 struct f2fs_summary sum; 3283 3284 set_summary(&sum, nid, 0, 0); 3285 do_write_page(&sum, fio); 3286 3287 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3288 } 3289 3290 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3291 struct f2fs_io_info *fio) 3292 { 3293 struct f2fs_sb_info *sbi = fio->sbi; 3294 struct f2fs_summary sum; 3295 3296 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3297 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3298 do_write_page(&sum, fio); 3299 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3300 3301 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3302 } 3303 3304 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3305 { 3306 int err; 3307 struct f2fs_sb_info *sbi = fio->sbi; 3308 unsigned int segno; 3309 3310 fio->new_blkaddr = fio->old_blkaddr; 3311 /* i/o temperature is needed for passing down write hints */ 3312 __get_segment_type(fio); 3313 3314 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3315 3316 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3317 set_sbi_flag(sbi, SBI_NEED_FSCK); 3318 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3319 __func__, segno); 3320 return -EFSCORRUPTED; 3321 } 3322 3323 stat_inc_inplace_blocks(fio->sbi); 3324 3325 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3326 err = f2fs_merge_page_bio(fio); 3327 else 3328 err = f2fs_submit_page_bio(fio); 3329 if (!err) { 3330 update_device_state(fio); 3331 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3332 } 3333 3334 return err; 3335 } 3336 3337 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3338 unsigned int segno) 3339 { 3340 int i; 3341 3342 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3343 if (CURSEG_I(sbi, i)->segno == segno) 3344 break; 3345 } 3346 return i; 3347 } 3348 3349 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3350 block_t old_blkaddr, block_t new_blkaddr, 3351 bool recover_curseg, bool recover_newaddr) 3352 { 3353 struct sit_info *sit_i = SIT_I(sbi); 3354 struct curseg_info *curseg; 3355 unsigned int segno, old_cursegno; 3356 struct seg_entry *se; 3357 int type; 3358 unsigned short old_blkoff; 3359 3360 segno = GET_SEGNO(sbi, new_blkaddr); 3361 se = get_seg_entry(sbi, segno); 3362 type = se->type; 3363 3364 down_write(&SM_I(sbi)->curseg_lock); 3365 3366 if (!recover_curseg) { 3367 /* for recovery flow */ 3368 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3369 if (old_blkaddr == NULL_ADDR) 3370 type = CURSEG_COLD_DATA; 3371 else 3372 type = CURSEG_WARM_DATA; 3373 } 3374 } else { 3375 if (IS_CURSEG(sbi, segno)) { 3376 /* se->type is volatile as SSR allocation */ 3377 type = __f2fs_get_curseg(sbi, segno); 3378 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3379 } else { 3380 type = CURSEG_WARM_DATA; 3381 } 3382 } 3383 3384 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3385 curseg = CURSEG_I(sbi, type); 3386 3387 mutex_lock(&curseg->curseg_mutex); 3388 down_write(&sit_i->sentry_lock); 3389 3390 old_cursegno = curseg->segno; 3391 old_blkoff = curseg->next_blkoff; 3392 3393 /* change the current segment */ 3394 if (segno != curseg->segno) { 3395 curseg->next_segno = segno; 3396 change_curseg(sbi, type); 3397 } 3398 3399 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3400 __add_sum_entry(sbi, type, sum); 3401 3402 if (!recover_curseg || recover_newaddr) 3403 update_sit_entry(sbi, new_blkaddr, 1); 3404 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3405 invalidate_mapping_pages(META_MAPPING(sbi), 3406 old_blkaddr, old_blkaddr); 3407 update_sit_entry(sbi, old_blkaddr, -1); 3408 } 3409 3410 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3411 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3412 3413 locate_dirty_segment(sbi, old_cursegno); 3414 3415 if (recover_curseg) { 3416 if (old_cursegno != curseg->segno) { 3417 curseg->next_segno = old_cursegno; 3418 change_curseg(sbi, type); 3419 } 3420 curseg->next_blkoff = old_blkoff; 3421 } 3422 3423 up_write(&sit_i->sentry_lock); 3424 mutex_unlock(&curseg->curseg_mutex); 3425 up_write(&SM_I(sbi)->curseg_lock); 3426 } 3427 3428 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3429 block_t old_addr, block_t new_addr, 3430 unsigned char version, bool recover_curseg, 3431 bool recover_newaddr) 3432 { 3433 struct f2fs_summary sum; 3434 3435 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3436 3437 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3438 recover_curseg, recover_newaddr); 3439 3440 f2fs_update_data_blkaddr(dn, new_addr); 3441 } 3442 3443 void f2fs_wait_on_page_writeback(struct page *page, 3444 enum page_type type, bool ordered, bool locked) 3445 { 3446 if (PageWriteback(page)) { 3447 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3448 3449 /* submit cached LFS IO */ 3450 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3451 /* sbumit cached IPU IO */ 3452 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3453 if (ordered) { 3454 wait_on_page_writeback(page); 3455 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3456 } else { 3457 wait_for_stable_page(page); 3458 } 3459 } 3460 } 3461 3462 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3463 { 3464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3465 struct page *cpage; 3466 3467 if (!f2fs_post_read_required(inode)) 3468 return; 3469 3470 if (!__is_valid_data_blkaddr(blkaddr)) 3471 return; 3472 3473 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3474 if (cpage) { 3475 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3476 f2fs_put_page(cpage, 1); 3477 } 3478 } 3479 3480 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3481 block_t len) 3482 { 3483 block_t i; 3484 3485 for (i = 0; i < len; i++) 3486 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3487 } 3488 3489 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3490 { 3491 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3492 struct curseg_info *seg_i; 3493 unsigned char *kaddr; 3494 struct page *page; 3495 block_t start; 3496 int i, j, offset; 3497 3498 start = start_sum_block(sbi); 3499 3500 page = f2fs_get_meta_page(sbi, start++); 3501 if (IS_ERR(page)) 3502 return PTR_ERR(page); 3503 kaddr = (unsigned char *)page_address(page); 3504 3505 /* Step 1: restore nat cache */ 3506 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3507 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3508 3509 /* Step 2: restore sit cache */ 3510 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3511 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3512 offset = 2 * SUM_JOURNAL_SIZE; 3513 3514 /* Step 3: restore summary entries */ 3515 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3516 unsigned short blk_off; 3517 unsigned int segno; 3518 3519 seg_i = CURSEG_I(sbi, i); 3520 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3521 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3522 seg_i->next_segno = segno; 3523 reset_curseg(sbi, i, 0); 3524 seg_i->alloc_type = ckpt->alloc_type[i]; 3525 seg_i->next_blkoff = blk_off; 3526 3527 if (seg_i->alloc_type == SSR) 3528 blk_off = sbi->blocks_per_seg; 3529 3530 for (j = 0; j < blk_off; j++) { 3531 struct f2fs_summary *s; 3532 s = (struct f2fs_summary *)(kaddr + offset); 3533 seg_i->sum_blk->entries[j] = *s; 3534 offset += SUMMARY_SIZE; 3535 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3536 SUM_FOOTER_SIZE) 3537 continue; 3538 3539 f2fs_put_page(page, 1); 3540 page = NULL; 3541 3542 page = f2fs_get_meta_page(sbi, start++); 3543 if (IS_ERR(page)) 3544 return PTR_ERR(page); 3545 kaddr = (unsigned char *)page_address(page); 3546 offset = 0; 3547 } 3548 } 3549 f2fs_put_page(page, 1); 3550 return 0; 3551 } 3552 3553 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3554 { 3555 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3556 struct f2fs_summary_block *sum; 3557 struct curseg_info *curseg; 3558 struct page *new; 3559 unsigned short blk_off; 3560 unsigned int segno = 0; 3561 block_t blk_addr = 0; 3562 int err = 0; 3563 3564 /* get segment number and block addr */ 3565 if (IS_DATASEG(type)) { 3566 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3567 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3568 CURSEG_HOT_DATA]); 3569 if (__exist_node_summaries(sbi)) 3570 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3571 else 3572 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3573 } else { 3574 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3575 CURSEG_HOT_NODE]); 3576 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3577 CURSEG_HOT_NODE]); 3578 if (__exist_node_summaries(sbi)) 3579 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3580 type - CURSEG_HOT_NODE); 3581 else 3582 blk_addr = GET_SUM_BLOCK(sbi, segno); 3583 } 3584 3585 new = f2fs_get_meta_page(sbi, blk_addr); 3586 if (IS_ERR(new)) 3587 return PTR_ERR(new); 3588 sum = (struct f2fs_summary_block *)page_address(new); 3589 3590 if (IS_NODESEG(type)) { 3591 if (__exist_node_summaries(sbi)) { 3592 struct f2fs_summary *ns = &sum->entries[0]; 3593 int i; 3594 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3595 ns->version = 0; 3596 ns->ofs_in_node = 0; 3597 } 3598 } else { 3599 err = f2fs_restore_node_summary(sbi, segno, sum); 3600 if (err) 3601 goto out; 3602 } 3603 } 3604 3605 /* set uncompleted segment to curseg */ 3606 curseg = CURSEG_I(sbi, type); 3607 mutex_lock(&curseg->curseg_mutex); 3608 3609 /* update journal info */ 3610 down_write(&curseg->journal_rwsem); 3611 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3612 up_write(&curseg->journal_rwsem); 3613 3614 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3615 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3616 curseg->next_segno = segno; 3617 reset_curseg(sbi, type, 0); 3618 curseg->alloc_type = ckpt->alloc_type[type]; 3619 curseg->next_blkoff = blk_off; 3620 mutex_unlock(&curseg->curseg_mutex); 3621 out: 3622 f2fs_put_page(new, 1); 3623 return err; 3624 } 3625 3626 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3627 { 3628 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3629 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3630 int type = CURSEG_HOT_DATA; 3631 int err; 3632 3633 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3634 int npages = f2fs_npages_for_summary_flush(sbi, true); 3635 3636 if (npages >= 2) 3637 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3638 META_CP, true); 3639 3640 /* restore for compacted data summary */ 3641 err = read_compacted_summaries(sbi); 3642 if (err) 3643 return err; 3644 type = CURSEG_HOT_NODE; 3645 } 3646 3647 if (__exist_node_summaries(sbi)) 3648 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3649 NR_CURSEG_TYPE - type, META_CP, true); 3650 3651 for (; type <= CURSEG_COLD_NODE; type++) { 3652 err = read_normal_summaries(sbi, type); 3653 if (err) 3654 return err; 3655 } 3656 3657 /* sanity check for summary blocks */ 3658 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3659 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3660 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3661 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3662 return -EINVAL; 3663 } 3664 3665 return 0; 3666 } 3667 3668 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3669 { 3670 struct page *page; 3671 unsigned char *kaddr; 3672 struct f2fs_summary *summary; 3673 struct curseg_info *seg_i; 3674 int written_size = 0; 3675 int i, j; 3676 3677 page = f2fs_grab_meta_page(sbi, blkaddr++); 3678 kaddr = (unsigned char *)page_address(page); 3679 memset(kaddr, 0, PAGE_SIZE); 3680 3681 /* Step 1: write nat cache */ 3682 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3683 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3684 written_size += SUM_JOURNAL_SIZE; 3685 3686 /* Step 2: write sit cache */ 3687 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3688 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3689 written_size += SUM_JOURNAL_SIZE; 3690 3691 /* Step 3: write summary entries */ 3692 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3693 unsigned short blkoff; 3694 seg_i = CURSEG_I(sbi, i); 3695 if (sbi->ckpt->alloc_type[i] == SSR) 3696 blkoff = sbi->blocks_per_seg; 3697 else 3698 blkoff = curseg_blkoff(sbi, i); 3699 3700 for (j = 0; j < blkoff; j++) { 3701 if (!page) { 3702 page = f2fs_grab_meta_page(sbi, blkaddr++); 3703 kaddr = (unsigned char *)page_address(page); 3704 memset(kaddr, 0, PAGE_SIZE); 3705 written_size = 0; 3706 } 3707 summary = (struct f2fs_summary *)(kaddr + written_size); 3708 *summary = seg_i->sum_blk->entries[j]; 3709 written_size += SUMMARY_SIZE; 3710 3711 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3712 SUM_FOOTER_SIZE) 3713 continue; 3714 3715 set_page_dirty(page); 3716 f2fs_put_page(page, 1); 3717 page = NULL; 3718 } 3719 } 3720 if (page) { 3721 set_page_dirty(page); 3722 f2fs_put_page(page, 1); 3723 } 3724 } 3725 3726 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3727 block_t blkaddr, int type) 3728 { 3729 int i, end; 3730 if (IS_DATASEG(type)) 3731 end = type + NR_CURSEG_DATA_TYPE; 3732 else 3733 end = type + NR_CURSEG_NODE_TYPE; 3734 3735 for (i = type; i < end; i++) 3736 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3737 } 3738 3739 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3740 { 3741 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3742 write_compacted_summaries(sbi, start_blk); 3743 else 3744 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3745 } 3746 3747 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3748 { 3749 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3750 } 3751 3752 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3753 unsigned int val, int alloc) 3754 { 3755 int i; 3756 3757 if (type == NAT_JOURNAL) { 3758 for (i = 0; i < nats_in_cursum(journal); i++) { 3759 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3760 return i; 3761 } 3762 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3763 return update_nats_in_cursum(journal, 1); 3764 } else if (type == SIT_JOURNAL) { 3765 for (i = 0; i < sits_in_cursum(journal); i++) 3766 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3767 return i; 3768 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3769 return update_sits_in_cursum(journal, 1); 3770 } 3771 return -1; 3772 } 3773 3774 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3775 unsigned int segno) 3776 { 3777 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3778 } 3779 3780 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3781 unsigned int start) 3782 { 3783 struct sit_info *sit_i = SIT_I(sbi); 3784 struct page *page; 3785 pgoff_t src_off, dst_off; 3786 3787 src_off = current_sit_addr(sbi, start); 3788 dst_off = next_sit_addr(sbi, src_off); 3789 3790 page = f2fs_grab_meta_page(sbi, dst_off); 3791 seg_info_to_sit_page(sbi, page, start); 3792 3793 set_page_dirty(page); 3794 set_to_next_sit(sit_i, start); 3795 3796 return page; 3797 } 3798 3799 static struct sit_entry_set *grab_sit_entry_set(void) 3800 { 3801 struct sit_entry_set *ses = 3802 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3803 3804 ses->entry_cnt = 0; 3805 INIT_LIST_HEAD(&ses->set_list); 3806 return ses; 3807 } 3808 3809 static void release_sit_entry_set(struct sit_entry_set *ses) 3810 { 3811 list_del(&ses->set_list); 3812 kmem_cache_free(sit_entry_set_slab, ses); 3813 } 3814 3815 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3816 struct list_head *head) 3817 { 3818 struct sit_entry_set *next = ses; 3819 3820 if (list_is_last(&ses->set_list, head)) 3821 return; 3822 3823 list_for_each_entry_continue(next, head, set_list) 3824 if (ses->entry_cnt <= next->entry_cnt) 3825 break; 3826 3827 list_move_tail(&ses->set_list, &next->set_list); 3828 } 3829 3830 static void add_sit_entry(unsigned int segno, struct list_head *head) 3831 { 3832 struct sit_entry_set *ses; 3833 unsigned int start_segno = START_SEGNO(segno); 3834 3835 list_for_each_entry(ses, head, set_list) { 3836 if (ses->start_segno == start_segno) { 3837 ses->entry_cnt++; 3838 adjust_sit_entry_set(ses, head); 3839 return; 3840 } 3841 } 3842 3843 ses = grab_sit_entry_set(); 3844 3845 ses->start_segno = start_segno; 3846 ses->entry_cnt++; 3847 list_add(&ses->set_list, head); 3848 } 3849 3850 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3851 { 3852 struct f2fs_sm_info *sm_info = SM_I(sbi); 3853 struct list_head *set_list = &sm_info->sit_entry_set; 3854 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3855 unsigned int segno; 3856 3857 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3858 add_sit_entry(segno, set_list); 3859 } 3860 3861 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3862 { 3863 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3864 struct f2fs_journal *journal = curseg->journal; 3865 int i; 3866 3867 down_write(&curseg->journal_rwsem); 3868 for (i = 0; i < sits_in_cursum(journal); i++) { 3869 unsigned int segno; 3870 bool dirtied; 3871 3872 segno = le32_to_cpu(segno_in_journal(journal, i)); 3873 dirtied = __mark_sit_entry_dirty(sbi, segno); 3874 3875 if (!dirtied) 3876 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3877 } 3878 update_sits_in_cursum(journal, -i); 3879 up_write(&curseg->journal_rwsem); 3880 } 3881 3882 /* 3883 * CP calls this function, which flushes SIT entries including sit_journal, 3884 * and moves prefree segs to free segs. 3885 */ 3886 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3887 { 3888 struct sit_info *sit_i = SIT_I(sbi); 3889 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3890 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3891 struct f2fs_journal *journal = curseg->journal; 3892 struct sit_entry_set *ses, *tmp; 3893 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3894 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 3895 struct seg_entry *se; 3896 3897 down_write(&sit_i->sentry_lock); 3898 3899 if (!sit_i->dirty_sentries) 3900 goto out; 3901 3902 /* 3903 * add and account sit entries of dirty bitmap in sit entry 3904 * set temporarily 3905 */ 3906 add_sits_in_set(sbi); 3907 3908 /* 3909 * if there are no enough space in journal to store dirty sit 3910 * entries, remove all entries from journal and add and account 3911 * them in sit entry set. 3912 */ 3913 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 3914 !to_journal) 3915 remove_sits_in_journal(sbi); 3916 3917 /* 3918 * there are two steps to flush sit entries: 3919 * #1, flush sit entries to journal in current cold data summary block. 3920 * #2, flush sit entries to sit page. 3921 */ 3922 list_for_each_entry_safe(ses, tmp, head, set_list) { 3923 struct page *page = NULL; 3924 struct f2fs_sit_block *raw_sit = NULL; 3925 unsigned int start_segno = ses->start_segno; 3926 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3927 (unsigned long)MAIN_SEGS(sbi)); 3928 unsigned int segno = start_segno; 3929 3930 if (to_journal && 3931 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3932 to_journal = false; 3933 3934 if (to_journal) { 3935 down_write(&curseg->journal_rwsem); 3936 } else { 3937 page = get_next_sit_page(sbi, start_segno); 3938 raw_sit = page_address(page); 3939 } 3940 3941 /* flush dirty sit entries in region of current sit set */ 3942 for_each_set_bit_from(segno, bitmap, end) { 3943 int offset, sit_offset; 3944 3945 se = get_seg_entry(sbi, segno); 3946 #ifdef CONFIG_F2FS_CHECK_FS 3947 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3948 SIT_VBLOCK_MAP_SIZE)) 3949 f2fs_bug_on(sbi, 1); 3950 #endif 3951 3952 /* add discard candidates */ 3953 if (!(cpc->reason & CP_DISCARD)) { 3954 cpc->trim_start = segno; 3955 add_discard_addrs(sbi, cpc, false); 3956 } 3957 3958 if (to_journal) { 3959 offset = f2fs_lookup_journal_in_cursum(journal, 3960 SIT_JOURNAL, segno, 1); 3961 f2fs_bug_on(sbi, offset < 0); 3962 segno_in_journal(journal, offset) = 3963 cpu_to_le32(segno); 3964 seg_info_to_raw_sit(se, 3965 &sit_in_journal(journal, offset)); 3966 check_block_count(sbi, segno, 3967 &sit_in_journal(journal, offset)); 3968 } else { 3969 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3970 seg_info_to_raw_sit(se, 3971 &raw_sit->entries[sit_offset]); 3972 check_block_count(sbi, segno, 3973 &raw_sit->entries[sit_offset]); 3974 } 3975 3976 __clear_bit(segno, bitmap); 3977 sit_i->dirty_sentries--; 3978 ses->entry_cnt--; 3979 } 3980 3981 if (to_journal) 3982 up_write(&curseg->journal_rwsem); 3983 else 3984 f2fs_put_page(page, 1); 3985 3986 f2fs_bug_on(sbi, ses->entry_cnt); 3987 release_sit_entry_set(ses); 3988 } 3989 3990 f2fs_bug_on(sbi, !list_empty(head)); 3991 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3992 out: 3993 if (cpc->reason & CP_DISCARD) { 3994 __u64 trim_start = cpc->trim_start; 3995 3996 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3997 add_discard_addrs(sbi, cpc, false); 3998 3999 cpc->trim_start = trim_start; 4000 } 4001 up_write(&sit_i->sentry_lock); 4002 4003 set_prefree_as_free_segments(sbi); 4004 } 4005 4006 static int build_sit_info(struct f2fs_sb_info *sbi) 4007 { 4008 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4009 struct sit_info *sit_i; 4010 unsigned int sit_segs, start; 4011 char *src_bitmap, *bitmap; 4012 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4013 4014 /* allocate memory for SIT information */ 4015 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4016 if (!sit_i) 4017 return -ENOMEM; 4018 4019 SM_I(sbi)->sit_info = sit_i; 4020 4021 sit_i->sentries = 4022 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4023 MAIN_SEGS(sbi)), 4024 GFP_KERNEL); 4025 if (!sit_i->sentries) 4026 return -ENOMEM; 4027 4028 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4029 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4030 GFP_KERNEL); 4031 if (!sit_i->dirty_sentries_bitmap) 4032 return -ENOMEM; 4033 4034 #ifdef CONFIG_F2FS_CHECK_FS 4035 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 4036 #else 4037 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 4038 #endif 4039 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4040 if (!sit_i->bitmap) 4041 return -ENOMEM; 4042 4043 bitmap = sit_i->bitmap; 4044 4045 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4046 sit_i->sentries[start].cur_valid_map = bitmap; 4047 bitmap += SIT_VBLOCK_MAP_SIZE; 4048 4049 sit_i->sentries[start].ckpt_valid_map = bitmap; 4050 bitmap += SIT_VBLOCK_MAP_SIZE; 4051 4052 #ifdef CONFIG_F2FS_CHECK_FS 4053 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4054 bitmap += SIT_VBLOCK_MAP_SIZE; 4055 #endif 4056 4057 sit_i->sentries[start].discard_map = bitmap; 4058 bitmap += SIT_VBLOCK_MAP_SIZE; 4059 } 4060 4061 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4062 if (!sit_i->tmp_map) 4063 return -ENOMEM; 4064 4065 if (__is_large_section(sbi)) { 4066 sit_i->sec_entries = 4067 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4068 MAIN_SECS(sbi)), 4069 GFP_KERNEL); 4070 if (!sit_i->sec_entries) 4071 return -ENOMEM; 4072 } 4073 4074 /* get information related with SIT */ 4075 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4076 4077 /* setup SIT bitmap from ckeckpoint pack */ 4078 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4079 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4080 4081 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4082 if (!sit_i->sit_bitmap) 4083 return -ENOMEM; 4084 4085 #ifdef CONFIG_F2FS_CHECK_FS 4086 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4087 sit_bitmap_size, GFP_KERNEL); 4088 if (!sit_i->sit_bitmap_mir) 4089 return -ENOMEM; 4090 4091 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4092 main_bitmap_size, GFP_KERNEL); 4093 if (!sit_i->invalid_segmap) 4094 return -ENOMEM; 4095 #endif 4096 4097 /* init SIT information */ 4098 sit_i->s_ops = &default_salloc_ops; 4099 4100 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4101 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4102 sit_i->written_valid_blocks = 0; 4103 sit_i->bitmap_size = sit_bitmap_size; 4104 sit_i->dirty_sentries = 0; 4105 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4106 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4107 sit_i->mounted_time = ktime_get_boottime_seconds(); 4108 init_rwsem(&sit_i->sentry_lock); 4109 return 0; 4110 } 4111 4112 static int build_free_segmap(struct f2fs_sb_info *sbi) 4113 { 4114 struct free_segmap_info *free_i; 4115 unsigned int bitmap_size, sec_bitmap_size; 4116 4117 /* allocate memory for free segmap information */ 4118 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4119 if (!free_i) 4120 return -ENOMEM; 4121 4122 SM_I(sbi)->free_info = free_i; 4123 4124 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4125 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4126 if (!free_i->free_segmap) 4127 return -ENOMEM; 4128 4129 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4130 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4131 if (!free_i->free_secmap) 4132 return -ENOMEM; 4133 4134 /* set all segments as dirty temporarily */ 4135 memset(free_i->free_segmap, 0xff, bitmap_size); 4136 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4137 4138 /* init free segmap information */ 4139 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4140 free_i->free_segments = 0; 4141 free_i->free_sections = 0; 4142 spin_lock_init(&free_i->segmap_lock); 4143 return 0; 4144 } 4145 4146 static int build_curseg(struct f2fs_sb_info *sbi) 4147 { 4148 struct curseg_info *array; 4149 int i; 4150 4151 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 4152 GFP_KERNEL); 4153 if (!array) 4154 return -ENOMEM; 4155 4156 SM_I(sbi)->curseg_array = array; 4157 4158 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4159 mutex_init(&array[i].curseg_mutex); 4160 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4161 if (!array[i].sum_blk) 4162 return -ENOMEM; 4163 init_rwsem(&array[i].journal_rwsem); 4164 array[i].journal = f2fs_kzalloc(sbi, 4165 sizeof(struct f2fs_journal), GFP_KERNEL); 4166 if (!array[i].journal) 4167 return -ENOMEM; 4168 array[i].segno = NULL_SEGNO; 4169 array[i].next_blkoff = 0; 4170 } 4171 return restore_curseg_summaries(sbi); 4172 } 4173 4174 static int build_sit_entries(struct f2fs_sb_info *sbi) 4175 { 4176 struct sit_info *sit_i = SIT_I(sbi); 4177 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4178 struct f2fs_journal *journal = curseg->journal; 4179 struct seg_entry *se; 4180 struct f2fs_sit_entry sit; 4181 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4182 unsigned int i, start, end; 4183 unsigned int readed, start_blk = 0; 4184 int err = 0; 4185 block_t total_node_blocks = 0; 4186 4187 do { 4188 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4189 META_SIT, true); 4190 4191 start = start_blk * sit_i->sents_per_block; 4192 end = (start_blk + readed) * sit_i->sents_per_block; 4193 4194 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4195 struct f2fs_sit_block *sit_blk; 4196 struct page *page; 4197 4198 se = &sit_i->sentries[start]; 4199 page = get_current_sit_page(sbi, start); 4200 if (IS_ERR(page)) 4201 return PTR_ERR(page); 4202 sit_blk = (struct f2fs_sit_block *)page_address(page); 4203 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4204 f2fs_put_page(page, 1); 4205 4206 err = check_block_count(sbi, start, &sit); 4207 if (err) 4208 return err; 4209 seg_info_from_raw_sit(se, &sit); 4210 if (IS_NODESEG(se->type)) 4211 total_node_blocks += se->valid_blocks; 4212 4213 /* build discard map only one time */ 4214 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4215 memset(se->discard_map, 0xff, 4216 SIT_VBLOCK_MAP_SIZE); 4217 } else { 4218 memcpy(se->discard_map, 4219 se->cur_valid_map, 4220 SIT_VBLOCK_MAP_SIZE); 4221 sbi->discard_blks += 4222 sbi->blocks_per_seg - 4223 se->valid_blocks; 4224 } 4225 4226 if (__is_large_section(sbi)) 4227 get_sec_entry(sbi, start)->valid_blocks += 4228 se->valid_blocks; 4229 } 4230 start_blk += readed; 4231 } while (start_blk < sit_blk_cnt); 4232 4233 down_read(&curseg->journal_rwsem); 4234 for (i = 0; i < sits_in_cursum(journal); i++) { 4235 unsigned int old_valid_blocks; 4236 4237 start = le32_to_cpu(segno_in_journal(journal, i)); 4238 if (start >= MAIN_SEGS(sbi)) { 4239 f2fs_err(sbi, "Wrong journal entry on segno %u", 4240 start); 4241 err = -EFSCORRUPTED; 4242 break; 4243 } 4244 4245 se = &sit_i->sentries[start]; 4246 sit = sit_in_journal(journal, i); 4247 4248 old_valid_blocks = se->valid_blocks; 4249 if (IS_NODESEG(se->type)) 4250 total_node_blocks -= old_valid_blocks; 4251 4252 err = check_block_count(sbi, start, &sit); 4253 if (err) 4254 break; 4255 seg_info_from_raw_sit(se, &sit); 4256 if (IS_NODESEG(se->type)) 4257 total_node_blocks += se->valid_blocks; 4258 4259 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4260 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4261 } else { 4262 memcpy(se->discard_map, se->cur_valid_map, 4263 SIT_VBLOCK_MAP_SIZE); 4264 sbi->discard_blks += old_valid_blocks; 4265 sbi->discard_blks -= se->valid_blocks; 4266 } 4267 4268 if (__is_large_section(sbi)) { 4269 get_sec_entry(sbi, start)->valid_blocks += 4270 se->valid_blocks; 4271 get_sec_entry(sbi, start)->valid_blocks -= 4272 old_valid_blocks; 4273 } 4274 } 4275 up_read(&curseg->journal_rwsem); 4276 4277 if (!err && total_node_blocks != valid_node_count(sbi)) { 4278 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4279 total_node_blocks, valid_node_count(sbi)); 4280 err = -EFSCORRUPTED; 4281 } 4282 4283 return err; 4284 } 4285 4286 static void init_free_segmap(struct f2fs_sb_info *sbi) 4287 { 4288 unsigned int start; 4289 int type; 4290 4291 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4292 struct seg_entry *sentry = get_seg_entry(sbi, start); 4293 if (!sentry->valid_blocks) 4294 __set_free(sbi, start); 4295 else 4296 SIT_I(sbi)->written_valid_blocks += 4297 sentry->valid_blocks; 4298 } 4299 4300 /* set use the current segments */ 4301 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4302 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4303 __set_test_and_inuse(sbi, curseg_t->segno); 4304 } 4305 } 4306 4307 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4308 { 4309 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4310 struct free_segmap_info *free_i = FREE_I(sbi); 4311 unsigned int segno = 0, offset = 0, secno; 4312 unsigned short valid_blocks; 4313 unsigned short blks_per_sec = BLKS_PER_SEC(sbi); 4314 4315 while (1) { 4316 /* find dirty segment based on free segmap */ 4317 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4318 if (segno >= MAIN_SEGS(sbi)) 4319 break; 4320 offset = segno + 1; 4321 valid_blocks = get_valid_blocks(sbi, segno, false); 4322 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4323 continue; 4324 if (valid_blocks > sbi->blocks_per_seg) { 4325 f2fs_bug_on(sbi, 1); 4326 continue; 4327 } 4328 mutex_lock(&dirty_i->seglist_lock); 4329 __locate_dirty_segment(sbi, segno, DIRTY); 4330 mutex_unlock(&dirty_i->seglist_lock); 4331 } 4332 4333 if (!__is_large_section(sbi)) 4334 return; 4335 4336 mutex_lock(&dirty_i->seglist_lock); 4337 for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) { 4338 valid_blocks = get_valid_blocks(sbi, segno, true); 4339 secno = GET_SEC_FROM_SEG(sbi, segno); 4340 4341 if (!valid_blocks || valid_blocks == blks_per_sec) 4342 continue; 4343 if (IS_CURSEC(sbi, secno)) 4344 continue; 4345 set_bit(secno, dirty_i->dirty_secmap); 4346 } 4347 mutex_unlock(&dirty_i->seglist_lock); 4348 } 4349 4350 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4351 { 4352 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4353 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4354 4355 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4356 if (!dirty_i->victim_secmap) 4357 return -ENOMEM; 4358 return 0; 4359 } 4360 4361 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4362 { 4363 struct dirty_seglist_info *dirty_i; 4364 unsigned int bitmap_size, i; 4365 4366 /* allocate memory for dirty segments list information */ 4367 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4368 GFP_KERNEL); 4369 if (!dirty_i) 4370 return -ENOMEM; 4371 4372 SM_I(sbi)->dirty_info = dirty_i; 4373 mutex_init(&dirty_i->seglist_lock); 4374 4375 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4376 4377 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4378 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4379 GFP_KERNEL); 4380 if (!dirty_i->dirty_segmap[i]) 4381 return -ENOMEM; 4382 } 4383 4384 if (__is_large_section(sbi)) { 4385 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4386 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4387 bitmap_size, GFP_KERNEL); 4388 if (!dirty_i->dirty_secmap) 4389 return -ENOMEM; 4390 } 4391 4392 init_dirty_segmap(sbi); 4393 return init_victim_secmap(sbi); 4394 } 4395 4396 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4397 { 4398 int i; 4399 4400 /* 4401 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4402 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4403 */ 4404 for (i = 0; i < NO_CHECK_TYPE; i++) { 4405 struct curseg_info *curseg = CURSEG_I(sbi, i); 4406 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4407 unsigned int blkofs = curseg->next_blkoff; 4408 4409 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4410 goto out; 4411 4412 if (curseg->alloc_type == SSR) 4413 continue; 4414 4415 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4416 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4417 continue; 4418 out: 4419 f2fs_err(sbi, 4420 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4421 i, curseg->segno, curseg->alloc_type, 4422 curseg->next_blkoff, blkofs); 4423 return -EFSCORRUPTED; 4424 } 4425 } 4426 return 0; 4427 } 4428 4429 #ifdef CONFIG_BLK_DEV_ZONED 4430 4431 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4432 struct f2fs_dev_info *fdev, 4433 struct blk_zone *zone) 4434 { 4435 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4436 block_t zone_block, wp_block, last_valid_block; 4437 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4438 int i, s, b, ret; 4439 struct seg_entry *se; 4440 4441 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4442 return 0; 4443 4444 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4445 wp_segno = GET_SEGNO(sbi, wp_block); 4446 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4447 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4448 zone_segno = GET_SEGNO(sbi, zone_block); 4449 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4450 4451 if (zone_segno >= MAIN_SEGS(sbi)) 4452 return 0; 4453 4454 /* 4455 * Skip check of zones cursegs point to, since 4456 * fix_curseg_write_pointer() checks them. 4457 */ 4458 for (i = 0; i < NO_CHECK_TYPE; i++) 4459 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4460 CURSEG_I(sbi, i)->segno)) 4461 return 0; 4462 4463 /* 4464 * Get last valid block of the zone. 4465 */ 4466 last_valid_block = zone_block - 1; 4467 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4468 segno = zone_segno + s; 4469 se = get_seg_entry(sbi, segno); 4470 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4471 if (f2fs_test_bit(b, se->cur_valid_map)) { 4472 last_valid_block = START_BLOCK(sbi, segno) + b; 4473 break; 4474 } 4475 if (last_valid_block >= zone_block) 4476 break; 4477 } 4478 4479 /* 4480 * If last valid block is beyond the write pointer, report the 4481 * inconsistency. This inconsistency does not cause write error 4482 * because the zone will not be selected for write operation until 4483 * it get discarded. Just report it. 4484 */ 4485 if (last_valid_block >= wp_block) { 4486 f2fs_notice(sbi, "Valid block beyond write pointer: " 4487 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4488 GET_SEGNO(sbi, last_valid_block), 4489 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4490 wp_segno, wp_blkoff); 4491 return 0; 4492 } 4493 4494 /* 4495 * If there is no valid block in the zone and if write pointer is 4496 * not at zone start, reset the write pointer. 4497 */ 4498 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4499 f2fs_notice(sbi, 4500 "Zone without valid block has non-zero write " 4501 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4502 wp_segno, wp_blkoff); 4503 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4504 zone->len >> log_sectors_per_block); 4505 if (ret) { 4506 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4507 fdev->path, ret); 4508 return ret; 4509 } 4510 } 4511 4512 return 0; 4513 } 4514 4515 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4516 block_t zone_blkaddr) 4517 { 4518 int i; 4519 4520 for (i = 0; i < sbi->s_ndevs; i++) { 4521 if (!bdev_is_zoned(FDEV(i).bdev)) 4522 continue; 4523 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4524 zone_blkaddr <= FDEV(i).end_blk)) 4525 return &FDEV(i); 4526 } 4527 4528 return NULL; 4529 } 4530 4531 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4532 void *data) { 4533 memcpy(data, zone, sizeof(struct blk_zone)); 4534 return 0; 4535 } 4536 4537 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4538 { 4539 struct curseg_info *cs = CURSEG_I(sbi, type); 4540 struct f2fs_dev_info *zbd; 4541 struct blk_zone zone; 4542 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4543 block_t cs_zone_block, wp_block; 4544 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4545 sector_t zone_sector; 4546 int err; 4547 4548 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4549 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4550 4551 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4552 if (!zbd) 4553 return 0; 4554 4555 /* report zone for the sector the curseg points to */ 4556 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4557 << log_sectors_per_block; 4558 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4559 report_one_zone_cb, &zone); 4560 if (err != 1) { 4561 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4562 zbd->path, err); 4563 return err; 4564 } 4565 4566 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4567 return 0; 4568 4569 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4570 wp_segno = GET_SEGNO(sbi, wp_block); 4571 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4572 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4573 4574 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4575 wp_sector_off == 0) 4576 return 0; 4577 4578 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4579 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4580 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4581 4582 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4583 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4584 allocate_segment_by_default(sbi, type, true); 4585 4586 /* check consistency of the zone curseg pointed to */ 4587 if (check_zone_write_pointer(sbi, zbd, &zone)) 4588 return -EIO; 4589 4590 /* check newly assigned zone */ 4591 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4592 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4593 4594 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4595 if (!zbd) 4596 return 0; 4597 4598 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4599 << log_sectors_per_block; 4600 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4601 report_one_zone_cb, &zone); 4602 if (err != 1) { 4603 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4604 zbd->path, err); 4605 return err; 4606 } 4607 4608 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4609 return 0; 4610 4611 if (zone.wp != zone.start) { 4612 f2fs_notice(sbi, 4613 "New zone for curseg[%d] is not yet discarded. " 4614 "Reset the zone: curseg[0x%x,0x%x]", 4615 type, cs->segno, cs->next_blkoff); 4616 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4617 zone_sector >> log_sectors_per_block, 4618 zone.len >> log_sectors_per_block); 4619 if (err) { 4620 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4621 zbd->path, err); 4622 return err; 4623 } 4624 } 4625 4626 return 0; 4627 } 4628 4629 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4630 { 4631 int i, ret; 4632 4633 for (i = 0; i < NO_CHECK_TYPE; i++) { 4634 ret = fix_curseg_write_pointer(sbi, i); 4635 if (ret) 4636 return ret; 4637 } 4638 4639 return 0; 4640 } 4641 4642 struct check_zone_write_pointer_args { 4643 struct f2fs_sb_info *sbi; 4644 struct f2fs_dev_info *fdev; 4645 }; 4646 4647 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4648 void *data) { 4649 struct check_zone_write_pointer_args *args; 4650 args = (struct check_zone_write_pointer_args *)data; 4651 4652 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4653 } 4654 4655 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4656 { 4657 int i, ret; 4658 struct check_zone_write_pointer_args args; 4659 4660 for (i = 0; i < sbi->s_ndevs; i++) { 4661 if (!bdev_is_zoned(FDEV(i).bdev)) 4662 continue; 4663 4664 args.sbi = sbi; 4665 args.fdev = &FDEV(i); 4666 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4667 check_zone_write_pointer_cb, &args); 4668 if (ret < 0) 4669 return ret; 4670 } 4671 4672 return 0; 4673 } 4674 #else 4675 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4676 { 4677 return 0; 4678 } 4679 4680 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4681 { 4682 return 0; 4683 } 4684 #endif 4685 4686 /* 4687 * Update min, max modified time for cost-benefit GC algorithm 4688 */ 4689 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4690 { 4691 struct sit_info *sit_i = SIT_I(sbi); 4692 unsigned int segno; 4693 4694 down_write(&sit_i->sentry_lock); 4695 4696 sit_i->min_mtime = ULLONG_MAX; 4697 4698 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4699 unsigned int i; 4700 unsigned long long mtime = 0; 4701 4702 for (i = 0; i < sbi->segs_per_sec; i++) 4703 mtime += get_seg_entry(sbi, segno + i)->mtime; 4704 4705 mtime = div_u64(mtime, sbi->segs_per_sec); 4706 4707 if (sit_i->min_mtime > mtime) 4708 sit_i->min_mtime = mtime; 4709 } 4710 sit_i->max_mtime = get_mtime(sbi, false); 4711 up_write(&sit_i->sentry_lock); 4712 } 4713 4714 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4715 { 4716 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4717 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4718 struct f2fs_sm_info *sm_info; 4719 int err; 4720 4721 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4722 if (!sm_info) 4723 return -ENOMEM; 4724 4725 /* init sm info */ 4726 sbi->sm_info = sm_info; 4727 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4728 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4729 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4730 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4731 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4732 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4733 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4734 sm_info->rec_prefree_segments = sm_info->main_segments * 4735 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4736 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4737 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4738 4739 if (!f2fs_lfs_mode(sbi)) 4740 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4741 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4742 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4743 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4744 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4745 sm_info->min_ssr_sections = reserved_sections(sbi); 4746 4747 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4748 4749 init_rwsem(&sm_info->curseg_lock); 4750 4751 if (!f2fs_readonly(sbi->sb)) { 4752 err = f2fs_create_flush_cmd_control(sbi); 4753 if (err) 4754 return err; 4755 } 4756 4757 err = create_discard_cmd_control(sbi); 4758 if (err) 4759 return err; 4760 4761 err = build_sit_info(sbi); 4762 if (err) 4763 return err; 4764 err = build_free_segmap(sbi); 4765 if (err) 4766 return err; 4767 err = build_curseg(sbi); 4768 if (err) 4769 return err; 4770 4771 /* reinit free segmap based on SIT */ 4772 err = build_sit_entries(sbi); 4773 if (err) 4774 return err; 4775 4776 init_free_segmap(sbi); 4777 err = build_dirty_segmap(sbi); 4778 if (err) 4779 return err; 4780 4781 err = sanity_check_curseg(sbi); 4782 if (err) 4783 return err; 4784 4785 init_min_max_mtime(sbi); 4786 return 0; 4787 } 4788 4789 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4790 enum dirty_type dirty_type) 4791 { 4792 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4793 4794 mutex_lock(&dirty_i->seglist_lock); 4795 kvfree(dirty_i->dirty_segmap[dirty_type]); 4796 dirty_i->nr_dirty[dirty_type] = 0; 4797 mutex_unlock(&dirty_i->seglist_lock); 4798 } 4799 4800 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4801 { 4802 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4803 kvfree(dirty_i->victim_secmap); 4804 } 4805 4806 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4807 { 4808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4809 int i; 4810 4811 if (!dirty_i) 4812 return; 4813 4814 /* discard pre-free/dirty segments list */ 4815 for (i = 0; i < NR_DIRTY_TYPE; i++) 4816 discard_dirty_segmap(sbi, i); 4817 4818 if (__is_large_section(sbi)) { 4819 mutex_lock(&dirty_i->seglist_lock); 4820 kvfree(dirty_i->dirty_secmap); 4821 mutex_unlock(&dirty_i->seglist_lock); 4822 } 4823 4824 destroy_victim_secmap(sbi); 4825 SM_I(sbi)->dirty_info = NULL; 4826 kvfree(dirty_i); 4827 } 4828 4829 static void destroy_curseg(struct f2fs_sb_info *sbi) 4830 { 4831 struct curseg_info *array = SM_I(sbi)->curseg_array; 4832 int i; 4833 4834 if (!array) 4835 return; 4836 SM_I(sbi)->curseg_array = NULL; 4837 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4838 kvfree(array[i].sum_blk); 4839 kvfree(array[i].journal); 4840 } 4841 kvfree(array); 4842 } 4843 4844 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4845 { 4846 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4847 if (!free_i) 4848 return; 4849 SM_I(sbi)->free_info = NULL; 4850 kvfree(free_i->free_segmap); 4851 kvfree(free_i->free_secmap); 4852 kvfree(free_i); 4853 } 4854 4855 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4856 { 4857 struct sit_info *sit_i = SIT_I(sbi); 4858 4859 if (!sit_i) 4860 return; 4861 4862 if (sit_i->sentries) 4863 kvfree(sit_i->bitmap); 4864 kvfree(sit_i->tmp_map); 4865 4866 kvfree(sit_i->sentries); 4867 kvfree(sit_i->sec_entries); 4868 kvfree(sit_i->dirty_sentries_bitmap); 4869 4870 SM_I(sbi)->sit_info = NULL; 4871 kvfree(sit_i->sit_bitmap); 4872 #ifdef CONFIG_F2FS_CHECK_FS 4873 kvfree(sit_i->sit_bitmap_mir); 4874 kvfree(sit_i->invalid_segmap); 4875 #endif 4876 kvfree(sit_i); 4877 } 4878 4879 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4880 { 4881 struct f2fs_sm_info *sm_info = SM_I(sbi); 4882 4883 if (!sm_info) 4884 return; 4885 f2fs_destroy_flush_cmd_control(sbi, true); 4886 destroy_discard_cmd_control(sbi); 4887 destroy_dirty_segmap(sbi); 4888 destroy_curseg(sbi); 4889 destroy_free_segmap(sbi); 4890 destroy_sit_info(sbi); 4891 sbi->sm_info = NULL; 4892 kvfree(sm_info); 4893 } 4894 4895 int __init f2fs_create_segment_manager_caches(void) 4896 { 4897 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 4898 sizeof(struct discard_entry)); 4899 if (!discard_entry_slab) 4900 goto fail; 4901 4902 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 4903 sizeof(struct discard_cmd)); 4904 if (!discard_cmd_slab) 4905 goto destroy_discard_entry; 4906 4907 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 4908 sizeof(struct sit_entry_set)); 4909 if (!sit_entry_set_slab) 4910 goto destroy_discard_cmd; 4911 4912 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", 4913 sizeof(struct inmem_pages)); 4914 if (!inmem_entry_slab) 4915 goto destroy_sit_entry_set; 4916 return 0; 4917 4918 destroy_sit_entry_set: 4919 kmem_cache_destroy(sit_entry_set_slab); 4920 destroy_discard_cmd: 4921 kmem_cache_destroy(discard_cmd_slab); 4922 destroy_discard_entry: 4923 kmem_cache_destroy(discard_entry_slab); 4924 fail: 4925 return -ENOMEM; 4926 } 4927 4928 void f2fs_destroy_segment_manager_caches(void) 4929 { 4930 kmem_cache_destroy(sit_entry_set_slab); 4931 kmem_cache_destroy(discard_cmd_slab); 4932 kmem_cache_destroy(discard_entry_slab); 4933 kmem_cache_destroy(inmem_entry_slab); 4934 } 4935