1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (test_opt(sbi, LFS)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 189 struct f2fs_inode_info *fi = F2FS_I(inode); 190 struct inmem_pages *new; 191 192 f2fs_trace_pid(page); 193 194 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 195 196 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 197 198 /* add atomic page indices to the list */ 199 new->page = page; 200 INIT_LIST_HEAD(&new->list); 201 202 /* increase reference count with clean state */ 203 mutex_lock(&fi->inmem_lock); 204 get_page(page); 205 list_add_tail(&new->list, &fi->inmem_pages); 206 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 207 if (list_empty(&fi->inmem_ilist)) 208 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 209 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 210 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 211 mutex_unlock(&fi->inmem_lock); 212 213 trace_f2fs_register_inmem_page(page, INMEM); 214 } 215 216 static int __revoke_inmem_pages(struct inode *inode, 217 struct list_head *head, bool drop, bool recover, 218 bool trylock) 219 { 220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 221 struct inmem_pages *cur, *tmp; 222 int err = 0; 223 224 list_for_each_entry_safe(cur, tmp, head, list) { 225 struct page *page = cur->page; 226 227 if (drop) 228 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 229 230 if (trylock) { 231 /* 232 * to avoid deadlock in between page lock and 233 * inmem_lock. 234 */ 235 if (!trylock_page(page)) 236 continue; 237 } else { 238 lock_page(page); 239 } 240 241 f2fs_wait_on_page_writeback(page, DATA, true, true); 242 243 if (recover) { 244 struct dnode_of_data dn; 245 struct node_info ni; 246 247 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 248 retry: 249 set_new_dnode(&dn, inode, NULL, NULL, 0); 250 err = f2fs_get_dnode_of_data(&dn, page->index, 251 LOOKUP_NODE); 252 if (err) { 253 if (err == -ENOMEM) { 254 congestion_wait(BLK_RW_ASYNC, HZ/50); 255 cond_resched(); 256 goto retry; 257 } 258 err = -EAGAIN; 259 goto next; 260 } 261 262 err = f2fs_get_node_info(sbi, dn.nid, &ni); 263 if (err) { 264 f2fs_put_dnode(&dn); 265 return err; 266 } 267 268 if (cur->old_addr == NEW_ADDR) { 269 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 270 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 271 } else 272 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 273 cur->old_addr, ni.version, true, true); 274 f2fs_put_dnode(&dn); 275 } 276 next: 277 /* we don't need to invalidate this in the sccessful status */ 278 if (drop || recover) { 279 ClearPageUptodate(page); 280 clear_cold_data(page); 281 } 282 f2fs_clear_page_private(page); 283 f2fs_put_page(page, 1); 284 285 list_del(&cur->list); 286 kmem_cache_free(inmem_entry_slab, cur); 287 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 288 } 289 return err; 290 } 291 292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 293 { 294 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 295 struct inode *inode; 296 struct f2fs_inode_info *fi; 297 next: 298 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 299 if (list_empty(head)) { 300 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 301 return; 302 } 303 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 304 inode = igrab(&fi->vfs_inode); 305 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 306 307 if (inode) { 308 if (gc_failure) { 309 if (fi->i_gc_failures[GC_FAILURE_ATOMIC]) 310 goto drop; 311 goto skip; 312 } 313 drop: 314 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 315 f2fs_drop_inmem_pages(inode); 316 iput(inode); 317 } 318 skip: 319 congestion_wait(BLK_RW_ASYNC, HZ/50); 320 cond_resched(); 321 goto next; 322 } 323 324 void f2fs_drop_inmem_pages(struct inode *inode) 325 { 326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 327 struct f2fs_inode_info *fi = F2FS_I(inode); 328 329 while (!list_empty(&fi->inmem_pages)) { 330 mutex_lock(&fi->inmem_lock); 331 __revoke_inmem_pages(inode, &fi->inmem_pages, 332 true, false, true); 333 334 if (list_empty(&fi->inmem_pages)) { 335 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 336 if (!list_empty(&fi->inmem_ilist)) 337 list_del_init(&fi->inmem_ilist); 338 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 339 } 340 mutex_unlock(&fi->inmem_lock); 341 } 342 343 clear_inode_flag(inode, FI_ATOMIC_FILE); 344 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 345 stat_dec_atomic_write(inode); 346 } 347 348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 349 { 350 struct f2fs_inode_info *fi = F2FS_I(inode); 351 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 352 struct list_head *head = &fi->inmem_pages; 353 struct inmem_pages *cur = NULL; 354 355 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 356 357 mutex_lock(&fi->inmem_lock); 358 list_for_each_entry(cur, head, list) { 359 if (cur->page == page) 360 break; 361 } 362 363 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 364 list_del(&cur->list); 365 mutex_unlock(&fi->inmem_lock); 366 367 dec_page_count(sbi, F2FS_INMEM_PAGES); 368 kmem_cache_free(inmem_entry_slab, cur); 369 370 ClearPageUptodate(page); 371 f2fs_clear_page_private(page); 372 f2fs_put_page(page, 0); 373 374 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 375 } 376 377 static int __f2fs_commit_inmem_pages(struct inode *inode) 378 { 379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 380 struct f2fs_inode_info *fi = F2FS_I(inode); 381 struct inmem_pages *cur, *tmp; 382 struct f2fs_io_info fio = { 383 .sbi = sbi, 384 .ino = inode->i_ino, 385 .type = DATA, 386 .op = REQ_OP_WRITE, 387 .op_flags = REQ_SYNC | REQ_PRIO, 388 .io_type = FS_DATA_IO, 389 }; 390 struct list_head revoke_list; 391 bool submit_bio = false; 392 int err = 0; 393 394 INIT_LIST_HEAD(&revoke_list); 395 396 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 397 struct page *page = cur->page; 398 399 lock_page(page); 400 if (page->mapping == inode->i_mapping) { 401 trace_f2fs_commit_inmem_page(page, INMEM); 402 403 f2fs_wait_on_page_writeback(page, DATA, true, true); 404 405 set_page_dirty(page); 406 if (clear_page_dirty_for_io(page)) { 407 inode_dec_dirty_pages(inode); 408 f2fs_remove_dirty_inode(inode); 409 } 410 retry: 411 fio.page = page; 412 fio.old_blkaddr = NULL_ADDR; 413 fio.encrypted_page = NULL; 414 fio.need_lock = LOCK_DONE; 415 err = f2fs_do_write_data_page(&fio); 416 if (err) { 417 if (err == -ENOMEM) { 418 congestion_wait(BLK_RW_ASYNC, HZ/50); 419 cond_resched(); 420 goto retry; 421 } 422 unlock_page(page); 423 break; 424 } 425 /* record old blkaddr for revoking */ 426 cur->old_addr = fio.old_blkaddr; 427 submit_bio = true; 428 } 429 unlock_page(page); 430 list_move_tail(&cur->list, &revoke_list); 431 } 432 433 if (submit_bio) 434 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 435 436 if (err) { 437 /* 438 * try to revoke all committed pages, but still we could fail 439 * due to no memory or other reason, if that happened, EAGAIN 440 * will be returned, which means in such case, transaction is 441 * already not integrity, caller should use journal to do the 442 * recovery or rewrite & commit last transaction. For other 443 * error number, revoking was done by filesystem itself. 444 */ 445 err = __revoke_inmem_pages(inode, &revoke_list, 446 false, true, false); 447 448 /* drop all uncommitted pages */ 449 __revoke_inmem_pages(inode, &fi->inmem_pages, 450 true, false, false); 451 } else { 452 __revoke_inmem_pages(inode, &revoke_list, 453 false, false, false); 454 } 455 456 return err; 457 } 458 459 int f2fs_commit_inmem_pages(struct inode *inode) 460 { 461 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 462 struct f2fs_inode_info *fi = F2FS_I(inode); 463 int err; 464 465 f2fs_balance_fs(sbi, true); 466 467 down_write(&fi->i_gc_rwsem[WRITE]); 468 469 f2fs_lock_op(sbi); 470 set_inode_flag(inode, FI_ATOMIC_COMMIT); 471 472 mutex_lock(&fi->inmem_lock); 473 err = __f2fs_commit_inmem_pages(inode); 474 475 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 476 if (!list_empty(&fi->inmem_ilist)) 477 list_del_init(&fi->inmem_ilist); 478 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 479 mutex_unlock(&fi->inmem_lock); 480 481 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 482 483 f2fs_unlock_op(sbi); 484 up_write(&fi->i_gc_rwsem[WRITE]); 485 486 return err; 487 } 488 489 /* 490 * This function balances dirty node and dentry pages. 491 * In addition, it controls garbage collection. 492 */ 493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 494 { 495 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 496 f2fs_show_injection_info(FAULT_CHECKPOINT); 497 f2fs_stop_checkpoint(sbi, false); 498 } 499 500 /* balance_fs_bg is able to be pending */ 501 if (need && excess_cached_nats(sbi)) 502 f2fs_balance_fs_bg(sbi); 503 504 if (f2fs_is_checkpoint_ready(sbi)) 505 return; 506 507 /* 508 * We should do GC or end up with checkpoint, if there are so many dirty 509 * dir/node pages without enough free segments. 510 */ 511 if (has_not_enough_free_secs(sbi, 0, 0)) { 512 mutex_lock(&sbi->gc_mutex); 513 f2fs_gc(sbi, false, false, NULL_SEGNO); 514 } 515 } 516 517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 518 { 519 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 520 return; 521 522 /* try to shrink extent cache when there is no enough memory */ 523 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 524 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 525 526 /* check the # of cached NAT entries */ 527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 528 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 529 530 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 531 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 532 else 533 f2fs_build_free_nids(sbi, false, false); 534 535 if (!is_idle(sbi, REQ_TIME) && 536 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 537 return; 538 539 /* checkpoint is the only way to shrink partial cached entries */ 540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 541 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 542 excess_prefree_segs(sbi) || 543 excess_dirty_nats(sbi) || 544 excess_dirty_nodes(sbi) || 545 f2fs_time_over(sbi, CP_TIME)) { 546 if (test_opt(sbi, DATA_FLUSH)) { 547 struct blk_plug plug; 548 549 blk_start_plug(&plug); 550 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 551 blk_finish_plug(&plug); 552 } 553 f2fs_sync_fs(sbi->sb, true); 554 stat_inc_bg_cp_count(sbi->stat_info); 555 } 556 } 557 558 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 559 struct block_device *bdev) 560 { 561 struct bio *bio; 562 int ret; 563 564 bio = f2fs_bio_alloc(sbi, 0, false); 565 if (!bio) 566 return -ENOMEM; 567 568 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 569 bio_set_dev(bio, bdev); 570 ret = submit_bio_wait(bio); 571 bio_put(bio); 572 573 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 574 test_opt(sbi, FLUSH_MERGE), ret); 575 return ret; 576 } 577 578 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 579 { 580 int ret = 0; 581 int i; 582 583 if (!f2fs_is_multi_device(sbi)) 584 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 585 586 for (i = 0; i < sbi->s_ndevs; i++) { 587 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 588 continue; 589 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 590 if (ret) 591 break; 592 } 593 return ret; 594 } 595 596 static int issue_flush_thread(void *data) 597 { 598 struct f2fs_sb_info *sbi = data; 599 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 600 wait_queue_head_t *q = &fcc->flush_wait_queue; 601 repeat: 602 if (kthread_should_stop()) 603 return 0; 604 605 sb_start_intwrite(sbi->sb); 606 607 if (!llist_empty(&fcc->issue_list)) { 608 struct flush_cmd *cmd, *next; 609 int ret; 610 611 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 612 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 613 614 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 615 616 ret = submit_flush_wait(sbi, cmd->ino); 617 atomic_inc(&fcc->issued_flush); 618 619 llist_for_each_entry_safe(cmd, next, 620 fcc->dispatch_list, llnode) { 621 cmd->ret = ret; 622 complete(&cmd->wait); 623 } 624 fcc->dispatch_list = NULL; 625 } 626 627 sb_end_intwrite(sbi->sb); 628 629 wait_event_interruptible(*q, 630 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 631 goto repeat; 632 } 633 634 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 635 { 636 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 637 struct flush_cmd cmd; 638 int ret; 639 640 if (test_opt(sbi, NOBARRIER)) 641 return 0; 642 643 if (!test_opt(sbi, FLUSH_MERGE)) { 644 atomic_inc(&fcc->queued_flush); 645 ret = submit_flush_wait(sbi, ino); 646 atomic_dec(&fcc->queued_flush); 647 atomic_inc(&fcc->issued_flush); 648 return ret; 649 } 650 651 if (atomic_inc_return(&fcc->queued_flush) == 1 || 652 f2fs_is_multi_device(sbi)) { 653 ret = submit_flush_wait(sbi, ino); 654 atomic_dec(&fcc->queued_flush); 655 656 atomic_inc(&fcc->issued_flush); 657 return ret; 658 } 659 660 cmd.ino = ino; 661 init_completion(&cmd.wait); 662 663 llist_add(&cmd.llnode, &fcc->issue_list); 664 665 /* update issue_list before we wake up issue_flush thread */ 666 smp_mb(); 667 668 if (waitqueue_active(&fcc->flush_wait_queue)) 669 wake_up(&fcc->flush_wait_queue); 670 671 if (fcc->f2fs_issue_flush) { 672 wait_for_completion(&cmd.wait); 673 atomic_dec(&fcc->queued_flush); 674 } else { 675 struct llist_node *list; 676 677 list = llist_del_all(&fcc->issue_list); 678 if (!list) { 679 wait_for_completion(&cmd.wait); 680 atomic_dec(&fcc->queued_flush); 681 } else { 682 struct flush_cmd *tmp, *next; 683 684 ret = submit_flush_wait(sbi, ino); 685 686 llist_for_each_entry_safe(tmp, next, list, llnode) { 687 if (tmp == &cmd) { 688 cmd.ret = ret; 689 atomic_dec(&fcc->queued_flush); 690 continue; 691 } 692 tmp->ret = ret; 693 complete(&tmp->wait); 694 } 695 } 696 } 697 698 return cmd.ret; 699 } 700 701 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 702 { 703 dev_t dev = sbi->sb->s_bdev->bd_dev; 704 struct flush_cmd_control *fcc; 705 int err = 0; 706 707 if (SM_I(sbi)->fcc_info) { 708 fcc = SM_I(sbi)->fcc_info; 709 if (fcc->f2fs_issue_flush) 710 return err; 711 goto init_thread; 712 } 713 714 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 715 if (!fcc) 716 return -ENOMEM; 717 atomic_set(&fcc->issued_flush, 0); 718 atomic_set(&fcc->queued_flush, 0); 719 init_waitqueue_head(&fcc->flush_wait_queue); 720 init_llist_head(&fcc->issue_list); 721 SM_I(sbi)->fcc_info = fcc; 722 if (!test_opt(sbi, FLUSH_MERGE)) 723 return err; 724 725 init_thread: 726 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 727 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 728 if (IS_ERR(fcc->f2fs_issue_flush)) { 729 err = PTR_ERR(fcc->f2fs_issue_flush); 730 kvfree(fcc); 731 SM_I(sbi)->fcc_info = NULL; 732 return err; 733 } 734 735 return err; 736 } 737 738 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 739 { 740 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 741 742 if (fcc && fcc->f2fs_issue_flush) { 743 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 744 745 fcc->f2fs_issue_flush = NULL; 746 kthread_stop(flush_thread); 747 } 748 if (free) { 749 kvfree(fcc); 750 SM_I(sbi)->fcc_info = NULL; 751 } 752 } 753 754 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 755 { 756 int ret = 0, i; 757 758 if (!f2fs_is_multi_device(sbi)) 759 return 0; 760 761 for (i = 1; i < sbi->s_ndevs; i++) { 762 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 763 continue; 764 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 765 if (ret) 766 break; 767 768 spin_lock(&sbi->dev_lock); 769 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 770 spin_unlock(&sbi->dev_lock); 771 } 772 773 return ret; 774 } 775 776 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 777 enum dirty_type dirty_type) 778 { 779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 780 781 /* need not be added */ 782 if (IS_CURSEG(sbi, segno)) 783 return; 784 785 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 786 dirty_i->nr_dirty[dirty_type]++; 787 788 if (dirty_type == DIRTY) { 789 struct seg_entry *sentry = get_seg_entry(sbi, segno); 790 enum dirty_type t = sentry->type; 791 792 if (unlikely(t >= DIRTY)) { 793 f2fs_bug_on(sbi, 1); 794 return; 795 } 796 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 797 dirty_i->nr_dirty[t]++; 798 } 799 } 800 801 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 802 enum dirty_type dirty_type) 803 { 804 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 805 806 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 807 dirty_i->nr_dirty[dirty_type]--; 808 809 if (dirty_type == DIRTY) { 810 struct seg_entry *sentry = get_seg_entry(sbi, segno); 811 enum dirty_type t = sentry->type; 812 813 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 814 dirty_i->nr_dirty[t]--; 815 816 if (get_valid_blocks(sbi, segno, true) == 0) 817 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 818 dirty_i->victim_secmap); 819 } 820 } 821 822 /* 823 * Should not occur error such as -ENOMEM. 824 * Adding dirty entry into seglist is not critical operation. 825 * If a given segment is one of current working segments, it won't be added. 826 */ 827 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 828 { 829 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 830 unsigned short valid_blocks, ckpt_valid_blocks; 831 832 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 833 return; 834 835 mutex_lock(&dirty_i->seglist_lock); 836 837 valid_blocks = get_valid_blocks(sbi, segno, false); 838 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 839 840 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 841 ckpt_valid_blocks == sbi->blocks_per_seg)) { 842 __locate_dirty_segment(sbi, segno, PRE); 843 __remove_dirty_segment(sbi, segno, DIRTY); 844 } else if (valid_blocks < sbi->blocks_per_seg) { 845 __locate_dirty_segment(sbi, segno, DIRTY); 846 } else { 847 /* Recovery routine with SSR needs this */ 848 __remove_dirty_segment(sbi, segno, DIRTY); 849 } 850 851 mutex_unlock(&dirty_i->seglist_lock); 852 } 853 854 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 855 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 856 { 857 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 858 unsigned int segno; 859 860 mutex_lock(&dirty_i->seglist_lock); 861 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 862 if (get_valid_blocks(sbi, segno, false)) 863 continue; 864 if (IS_CURSEG(sbi, segno)) 865 continue; 866 __locate_dirty_segment(sbi, segno, PRE); 867 __remove_dirty_segment(sbi, segno, DIRTY); 868 } 869 mutex_unlock(&dirty_i->seglist_lock); 870 } 871 872 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi) 873 { 874 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 875 block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg; 876 block_t holes[2] = {0, 0}; /* DATA and NODE */ 877 struct seg_entry *se; 878 unsigned int segno; 879 880 mutex_lock(&dirty_i->seglist_lock); 881 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 882 se = get_seg_entry(sbi, segno); 883 if (IS_NODESEG(se->type)) 884 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 885 else 886 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 887 } 888 mutex_unlock(&dirty_i->seglist_lock); 889 890 if (holes[DATA] > ovp || holes[NODE] > ovp) 891 return -EAGAIN; 892 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 893 dirty_segments(sbi) > overprovision_segments(sbi)) 894 return -EAGAIN; 895 return 0; 896 } 897 898 /* This is only used by SBI_CP_DISABLED */ 899 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 900 { 901 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 902 unsigned int segno = 0; 903 904 mutex_lock(&dirty_i->seglist_lock); 905 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 906 if (get_valid_blocks(sbi, segno, false)) 907 continue; 908 if (get_ckpt_valid_blocks(sbi, segno)) 909 continue; 910 mutex_unlock(&dirty_i->seglist_lock); 911 return segno; 912 } 913 mutex_unlock(&dirty_i->seglist_lock); 914 return NULL_SEGNO; 915 } 916 917 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 918 struct block_device *bdev, block_t lstart, 919 block_t start, block_t len) 920 { 921 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 922 struct list_head *pend_list; 923 struct discard_cmd *dc; 924 925 f2fs_bug_on(sbi, !len); 926 927 pend_list = &dcc->pend_list[plist_idx(len)]; 928 929 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 930 INIT_LIST_HEAD(&dc->list); 931 dc->bdev = bdev; 932 dc->lstart = lstart; 933 dc->start = start; 934 dc->len = len; 935 dc->ref = 0; 936 dc->state = D_PREP; 937 dc->queued = 0; 938 dc->error = 0; 939 init_completion(&dc->wait); 940 list_add_tail(&dc->list, pend_list); 941 spin_lock_init(&dc->lock); 942 dc->bio_ref = 0; 943 atomic_inc(&dcc->discard_cmd_cnt); 944 dcc->undiscard_blks += len; 945 946 return dc; 947 } 948 949 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 950 struct block_device *bdev, block_t lstart, 951 block_t start, block_t len, 952 struct rb_node *parent, struct rb_node **p, 953 bool leftmost) 954 { 955 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 956 struct discard_cmd *dc; 957 958 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 959 960 rb_link_node(&dc->rb_node, parent, p); 961 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 962 963 return dc; 964 } 965 966 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 967 struct discard_cmd *dc) 968 { 969 if (dc->state == D_DONE) 970 atomic_sub(dc->queued, &dcc->queued_discard); 971 972 list_del(&dc->list); 973 rb_erase_cached(&dc->rb_node, &dcc->root); 974 dcc->undiscard_blks -= dc->len; 975 976 kmem_cache_free(discard_cmd_slab, dc); 977 978 atomic_dec(&dcc->discard_cmd_cnt); 979 } 980 981 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 982 struct discard_cmd *dc) 983 { 984 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 985 unsigned long flags; 986 987 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 988 989 spin_lock_irqsave(&dc->lock, flags); 990 if (dc->bio_ref) { 991 spin_unlock_irqrestore(&dc->lock, flags); 992 return; 993 } 994 spin_unlock_irqrestore(&dc->lock, flags); 995 996 f2fs_bug_on(sbi, dc->ref); 997 998 if (dc->error == -EOPNOTSUPP) 999 dc->error = 0; 1000 1001 if (dc->error) 1002 printk_ratelimited( 1003 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d", 1004 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error); 1005 __detach_discard_cmd(dcc, dc); 1006 } 1007 1008 static void f2fs_submit_discard_endio(struct bio *bio) 1009 { 1010 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1011 unsigned long flags; 1012 1013 dc->error = blk_status_to_errno(bio->bi_status); 1014 1015 spin_lock_irqsave(&dc->lock, flags); 1016 dc->bio_ref--; 1017 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1018 dc->state = D_DONE; 1019 complete_all(&dc->wait); 1020 } 1021 spin_unlock_irqrestore(&dc->lock, flags); 1022 bio_put(bio); 1023 } 1024 1025 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1026 block_t start, block_t end) 1027 { 1028 #ifdef CONFIG_F2FS_CHECK_FS 1029 struct seg_entry *sentry; 1030 unsigned int segno; 1031 block_t blk = start; 1032 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1033 unsigned long *map; 1034 1035 while (blk < end) { 1036 segno = GET_SEGNO(sbi, blk); 1037 sentry = get_seg_entry(sbi, segno); 1038 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1039 1040 if (end < START_BLOCK(sbi, segno + 1)) 1041 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1042 else 1043 size = max_blocks; 1044 map = (unsigned long *)(sentry->cur_valid_map); 1045 offset = __find_rev_next_bit(map, size, offset); 1046 f2fs_bug_on(sbi, offset != size); 1047 blk = START_BLOCK(sbi, segno + 1); 1048 } 1049 #endif 1050 } 1051 1052 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1053 struct discard_policy *dpolicy, 1054 int discard_type, unsigned int granularity) 1055 { 1056 /* common policy */ 1057 dpolicy->type = discard_type; 1058 dpolicy->sync = true; 1059 dpolicy->ordered = false; 1060 dpolicy->granularity = granularity; 1061 1062 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1063 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1064 dpolicy->timeout = 0; 1065 1066 if (discard_type == DPOLICY_BG) { 1067 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1068 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1069 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1070 dpolicy->io_aware = true; 1071 dpolicy->sync = false; 1072 dpolicy->ordered = true; 1073 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1074 dpolicy->granularity = 1; 1075 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1076 } 1077 } else if (discard_type == DPOLICY_FORCE) { 1078 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1079 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1080 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1081 dpolicy->io_aware = false; 1082 } else if (discard_type == DPOLICY_FSTRIM) { 1083 dpolicy->io_aware = false; 1084 } else if (discard_type == DPOLICY_UMOUNT) { 1085 dpolicy->max_requests = UINT_MAX; 1086 dpolicy->io_aware = false; 1087 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1088 dpolicy->granularity = 1; 1089 } 1090 } 1091 1092 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1093 struct block_device *bdev, block_t lstart, 1094 block_t start, block_t len); 1095 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1096 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1097 struct discard_policy *dpolicy, 1098 struct discard_cmd *dc, 1099 unsigned int *issued) 1100 { 1101 struct block_device *bdev = dc->bdev; 1102 struct request_queue *q = bdev_get_queue(bdev); 1103 unsigned int max_discard_blocks = 1104 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1105 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1106 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1107 &(dcc->fstrim_list) : &(dcc->wait_list); 1108 int flag = dpolicy->sync ? REQ_SYNC : 0; 1109 block_t lstart, start, len, total_len; 1110 int err = 0; 1111 1112 if (dc->state != D_PREP) 1113 return 0; 1114 1115 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1116 return 0; 1117 1118 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1119 1120 lstart = dc->lstart; 1121 start = dc->start; 1122 len = dc->len; 1123 total_len = len; 1124 1125 dc->len = 0; 1126 1127 while (total_len && *issued < dpolicy->max_requests && !err) { 1128 struct bio *bio = NULL; 1129 unsigned long flags; 1130 bool last = true; 1131 1132 if (len > max_discard_blocks) { 1133 len = max_discard_blocks; 1134 last = false; 1135 } 1136 1137 (*issued)++; 1138 if (*issued == dpolicy->max_requests) 1139 last = true; 1140 1141 dc->len += len; 1142 1143 if (time_to_inject(sbi, FAULT_DISCARD)) { 1144 f2fs_show_injection_info(FAULT_DISCARD); 1145 err = -EIO; 1146 goto submit; 1147 } 1148 err = __blkdev_issue_discard(bdev, 1149 SECTOR_FROM_BLOCK(start), 1150 SECTOR_FROM_BLOCK(len), 1151 GFP_NOFS, 0, &bio); 1152 submit: 1153 if (err) { 1154 spin_lock_irqsave(&dc->lock, flags); 1155 if (dc->state == D_PARTIAL) 1156 dc->state = D_SUBMIT; 1157 spin_unlock_irqrestore(&dc->lock, flags); 1158 1159 break; 1160 } 1161 1162 f2fs_bug_on(sbi, !bio); 1163 1164 /* 1165 * should keep before submission to avoid D_DONE 1166 * right away 1167 */ 1168 spin_lock_irqsave(&dc->lock, flags); 1169 if (last) 1170 dc->state = D_SUBMIT; 1171 else 1172 dc->state = D_PARTIAL; 1173 dc->bio_ref++; 1174 spin_unlock_irqrestore(&dc->lock, flags); 1175 1176 atomic_inc(&dcc->queued_discard); 1177 dc->queued++; 1178 list_move_tail(&dc->list, wait_list); 1179 1180 /* sanity check on discard range */ 1181 __check_sit_bitmap(sbi, lstart, lstart + len); 1182 1183 bio->bi_private = dc; 1184 bio->bi_end_io = f2fs_submit_discard_endio; 1185 bio->bi_opf |= flag; 1186 submit_bio(bio); 1187 1188 atomic_inc(&dcc->issued_discard); 1189 1190 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1191 1192 lstart += len; 1193 start += len; 1194 total_len -= len; 1195 len = total_len; 1196 } 1197 1198 if (!err && len) 1199 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1200 return err; 1201 } 1202 1203 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1204 struct block_device *bdev, block_t lstart, 1205 block_t start, block_t len, 1206 struct rb_node **insert_p, 1207 struct rb_node *insert_parent) 1208 { 1209 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1210 struct rb_node **p; 1211 struct rb_node *parent = NULL; 1212 struct discard_cmd *dc = NULL; 1213 bool leftmost = true; 1214 1215 if (insert_p && insert_parent) { 1216 parent = insert_parent; 1217 p = insert_p; 1218 goto do_insert; 1219 } 1220 1221 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1222 lstart, &leftmost); 1223 do_insert: 1224 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1225 p, leftmost); 1226 if (!dc) 1227 return NULL; 1228 1229 return dc; 1230 } 1231 1232 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1233 struct discard_cmd *dc) 1234 { 1235 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1236 } 1237 1238 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1239 struct discard_cmd *dc, block_t blkaddr) 1240 { 1241 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1242 struct discard_info di = dc->di; 1243 bool modified = false; 1244 1245 if (dc->state == D_DONE || dc->len == 1) { 1246 __remove_discard_cmd(sbi, dc); 1247 return; 1248 } 1249 1250 dcc->undiscard_blks -= di.len; 1251 1252 if (blkaddr > di.lstart) { 1253 dc->len = blkaddr - dc->lstart; 1254 dcc->undiscard_blks += dc->len; 1255 __relocate_discard_cmd(dcc, dc); 1256 modified = true; 1257 } 1258 1259 if (blkaddr < di.lstart + di.len - 1) { 1260 if (modified) { 1261 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1262 di.start + blkaddr + 1 - di.lstart, 1263 di.lstart + di.len - 1 - blkaddr, 1264 NULL, NULL); 1265 } else { 1266 dc->lstart++; 1267 dc->len--; 1268 dc->start++; 1269 dcc->undiscard_blks += dc->len; 1270 __relocate_discard_cmd(dcc, dc); 1271 } 1272 } 1273 } 1274 1275 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1276 struct block_device *bdev, block_t lstart, 1277 block_t start, block_t len) 1278 { 1279 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1280 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1281 struct discard_cmd *dc; 1282 struct discard_info di = {0}; 1283 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1284 struct request_queue *q = bdev_get_queue(bdev); 1285 unsigned int max_discard_blocks = 1286 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1287 block_t end = lstart + len; 1288 1289 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1290 NULL, lstart, 1291 (struct rb_entry **)&prev_dc, 1292 (struct rb_entry **)&next_dc, 1293 &insert_p, &insert_parent, true, NULL); 1294 if (dc) 1295 prev_dc = dc; 1296 1297 if (!prev_dc) { 1298 di.lstart = lstart; 1299 di.len = next_dc ? next_dc->lstart - lstart : len; 1300 di.len = min(di.len, len); 1301 di.start = start; 1302 } 1303 1304 while (1) { 1305 struct rb_node *node; 1306 bool merged = false; 1307 struct discard_cmd *tdc = NULL; 1308 1309 if (prev_dc) { 1310 di.lstart = prev_dc->lstart + prev_dc->len; 1311 if (di.lstart < lstart) 1312 di.lstart = lstart; 1313 if (di.lstart >= end) 1314 break; 1315 1316 if (!next_dc || next_dc->lstart > end) 1317 di.len = end - di.lstart; 1318 else 1319 di.len = next_dc->lstart - di.lstart; 1320 di.start = start + di.lstart - lstart; 1321 } 1322 1323 if (!di.len) 1324 goto next; 1325 1326 if (prev_dc && prev_dc->state == D_PREP && 1327 prev_dc->bdev == bdev && 1328 __is_discard_back_mergeable(&di, &prev_dc->di, 1329 max_discard_blocks)) { 1330 prev_dc->di.len += di.len; 1331 dcc->undiscard_blks += di.len; 1332 __relocate_discard_cmd(dcc, prev_dc); 1333 di = prev_dc->di; 1334 tdc = prev_dc; 1335 merged = true; 1336 } 1337 1338 if (next_dc && next_dc->state == D_PREP && 1339 next_dc->bdev == bdev && 1340 __is_discard_front_mergeable(&di, &next_dc->di, 1341 max_discard_blocks)) { 1342 next_dc->di.lstart = di.lstart; 1343 next_dc->di.len += di.len; 1344 next_dc->di.start = di.start; 1345 dcc->undiscard_blks += di.len; 1346 __relocate_discard_cmd(dcc, next_dc); 1347 if (tdc) 1348 __remove_discard_cmd(sbi, tdc); 1349 merged = true; 1350 } 1351 1352 if (!merged) { 1353 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1354 di.len, NULL, NULL); 1355 } 1356 next: 1357 prev_dc = next_dc; 1358 if (!prev_dc) 1359 break; 1360 1361 node = rb_next(&prev_dc->rb_node); 1362 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1363 } 1364 } 1365 1366 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1367 struct block_device *bdev, block_t blkstart, block_t blklen) 1368 { 1369 block_t lblkstart = blkstart; 1370 1371 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1372 1373 if (f2fs_is_multi_device(sbi)) { 1374 int devi = f2fs_target_device_index(sbi, blkstart); 1375 1376 blkstart -= FDEV(devi).start_blk; 1377 } 1378 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1379 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1380 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1381 return 0; 1382 } 1383 1384 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1385 struct discard_policy *dpolicy) 1386 { 1387 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1388 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1389 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1390 struct discard_cmd *dc; 1391 struct blk_plug plug; 1392 unsigned int pos = dcc->next_pos; 1393 unsigned int issued = 0; 1394 bool io_interrupted = false; 1395 1396 mutex_lock(&dcc->cmd_lock); 1397 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1398 NULL, pos, 1399 (struct rb_entry **)&prev_dc, 1400 (struct rb_entry **)&next_dc, 1401 &insert_p, &insert_parent, true, NULL); 1402 if (!dc) 1403 dc = next_dc; 1404 1405 blk_start_plug(&plug); 1406 1407 while (dc) { 1408 struct rb_node *node; 1409 int err = 0; 1410 1411 if (dc->state != D_PREP) 1412 goto next; 1413 1414 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1415 io_interrupted = true; 1416 break; 1417 } 1418 1419 dcc->next_pos = dc->lstart + dc->len; 1420 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1421 1422 if (issued >= dpolicy->max_requests) 1423 break; 1424 next: 1425 node = rb_next(&dc->rb_node); 1426 if (err) 1427 __remove_discard_cmd(sbi, dc); 1428 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1429 } 1430 1431 blk_finish_plug(&plug); 1432 1433 if (!dc) 1434 dcc->next_pos = 0; 1435 1436 mutex_unlock(&dcc->cmd_lock); 1437 1438 if (!issued && io_interrupted) 1439 issued = -1; 1440 1441 return issued; 1442 } 1443 1444 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1445 struct discard_policy *dpolicy) 1446 { 1447 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1448 struct list_head *pend_list; 1449 struct discard_cmd *dc, *tmp; 1450 struct blk_plug plug; 1451 int i, issued = 0; 1452 bool io_interrupted = false; 1453 1454 if (dpolicy->timeout != 0) 1455 f2fs_update_time(sbi, dpolicy->timeout); 1456 1457 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1458 if (dpolicy->timeout != 0 && 1459 f2fs_time_over(sbi, dpolicy->timeout)) 1460 break; 1461 1462 if (i + 1 < dpolicy->granularity) 1463 break; 1464 1465 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1466 return __issue_discard_cmd_orderly(sbi, dpolicy); 1467 1468 pend_list = &dcc->pend_list[i]; 1469 1470 mutex_lock(&dcc->cmd_lock); 1471 if (list_empty(pend_list)) 1472 goto next; 1473 if (unlikely(dcc->rbtree_check)) 1474 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1475 &dcc->root)); 1476 blk_start_plug(&plug); 1477 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1478 f2fs_bug_on(sbi, dc->state != D_PREP); 1479 1480 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1481 !is_idle(sbi, DISCARD_TIME)) { 1482 io_interrupted = true; 1483 break; 1484 } 1485 1486 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1487 1488 if (issued >= dpolicy->max_requests) 1489 break; 1490 } 1491 blk_finish_plug(&plug); 1492 next: 1493 mutex_unlock(&dcc->cmd_lock); 1494 1495 if (issued >= dpolicy->max_requests || io_interrupted) 1496 break; 1497 } 1498 1499 if (!issued && io_interrupted) 1500 issued = -1; 1501 1502 return issued; 1503 } 1504 1505 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1506 { 1507 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1508 struct list_head *pend_list; 1509 struct discard_cmd *dc, *tmp; 1510 int i; 1511 bool dropped = false; 1512 1513 mutex_lock(&dcc->cmd_lock); 1514 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1515 pend_list = &dcc->pend_list[i]; 1516 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1517 f2fs_bug_on(sbi, dc->state != D_PREP); 1518 __remove_discard_cmd(sbi, dc); 1519 dropped = true; 1520 } 1521 } 1522 mutex_unlock(&dcc->cmd_lock); 1523 1524 return dropped; 1525 } 1526 1527 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1528 { 1529 __drop_discard_cmd(sbi); 1530 } 1531 1532 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1533 struct discard_cmd *dc) 1534 { 1535 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1536 unsigned int len = 0; 1537 1538 wait_for_completion_io(&dc->wait); 1539 mutex_lock(&dcc->cmd_lock); 1540 f2fs_bug_on(sbi, dc->state != D_DONE); 1541 dc->ref--; 1542 if (!dc->ref) { 1543 if (!dc->error) 1544 len = dc->len; 1545 __remove_discard_cmd(sbi, dc); 1546 } 1547 mutex_unlock(&dcc->cmd_lock); 1548 1549 return len; 1550 } 1551 1552 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1553 struct discard_policy *dpolicy, 1554 block_t start, block_t end) 1555 { 1556 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1557 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1558 &(dcc->fstrim_list) : &(dcc->wait_list); 1559 struct discard_cmd *dc, *tmp; 1560 bool need_wait; 1561 unsigned int trimmed = 0; 1562 1563 next: 1564 need_wait = false; 1565 1566 mutex_lock(&dcc->cmd_lock); 1567 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1568 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1569 continue; 1570 if (dc->len < dpolicy->granularity) 1571 continue; 1572 if (dc->state == D_DONE && !dc->ref) { 1573 wait_for_completion_io(&dc->wait); 1574 if (!dc->error) 1575 trimmed += dc->len; 1576 __remove_discard_cmd(sbi, dc); 1577 } else { 1578 dc->ref++; 1579 need_wait = true; 1580 break; 1581 } 1582 } 1583 mutex_unlock(&dcc->cmd_lock); 1584 1585 if (need_wait) { 1586 trimmed += __wait_one_discard_bio(sbi, dc); 1587 goto next; 1588 } 1589 1590 return trimmed; 1591 } 1592 1593 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1594 struct discard_policy *dpolicy) 1595 { 1596 struct discard_policy dp; 1597 unsigned int discard_blks; 1598 1599 if (dpolicy) 1600 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1601 1602 /* wait all */ 1603 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1604 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1605 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1606 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1607 1608 return discard_blks; 1609 } 1610 1611 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1612 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1613 { 1614 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1615 struct discard_cmd *dc; 1616 bool need_wait = false; 1617 1618 mutex_lock(&dcc->cmd_lock); 1619 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1620 NULL, blkaddr); 1621 if (dc) { 1622 if (dc->state == D_PREP) { 1623 __punch_discard_cmd(sbi, dc, blkaddr); 1624 } else { 1625 dc->ref++; 1626 need_wait = true; 1627 } 1628 } 1629 mutex_unlock(&dcc->cmd_lock); 1630 1631 if (need_wait) 1632 __wait_one_discard_bio(sbi, dc); 1633 } 1634 1635 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1636 { 1637 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1638 1639 if (dcc && dcc->f2fs_issue_discard) { 1640 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1641 1642 dcc->f2fs_issue_discard = NULL; 1643 kthread_stop(discard_thread); 1644 } 1645 } 1646 1647 /* This comes from f2fs_put_super */ 1648 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1649 { 1650 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1651 struct discard_policy dpolicy; 1652 bool dropped; 1653 1654 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1655 dcc->discard_granularity); 1656 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT; 1657 __issue_discard_cmd(sbi, &dpolicy); 1658 dropped = __drop_discard_cmd(sbi); 1659 1660 /* just to make sure there is no pending discard commands */ 1661 __wait_all_discard_cmd(sbi, NULL); 1662 1663 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1664 return dropped; 1665 } 1666 1667 static int issue_discard_thread(void *data) 1668 { 1669 struct f2fs_sb_info *sbi = data; 1670 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1671 wait_queue_head_t *q = &dcc->discard_wait_queue; 1672 struct discard_policy dpolicy; 1673 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1674 int issued; 1675 1676 set_freezable(); 1677 1678 do { 1679 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1680 dcc->discard_granularity); 1681 1682 wait_event_interruptible_timeout(*q, 1683 kthread_should_stop() || freezing(current) || 1684 dcc->discard_wake, 1685 msecs_to_jiffies(wait_ms)); 1686 1687 if (dcc->discard_wake) 1688 dcc->discard_wake = 0; 1689 1690 /* clean up pending candidates before going to sleep */ 1691 if (atomic_read(&dcc->queued_discard)) 1692 __wait_all_discard_cmd(sbi, NULL); 1693 1694 if (try_to_freeze()) 1695 continue; 1696 if (f2fs_readonly(sbi->sb)) 1697 continue; 1698 if (kthread_should_stop()) 1699 return 0; 1700 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1701 wait_ms = dpolicy.max_interval; 1702 continue; 1703 } 1704 1705 if (sbi->gc_mode == GC_URGENT) 1706 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1707 1708 sb_start_intwrite(sbi->sb); 1709 1710 issued = __issue_discard_cmd(sbi, &dpolicy); 1711 if (issued > 0) { 1712 __wait_all_discard_cmd(sbi, &dpolicy); 1713 wait_ms = dpolicy.min_interval; 1714 } else if (issued == -1){ 1715 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1716 if (!wait_ms) 1717 wait_ms = dpolicy.mid_interval; 1718 } else { 1719 wait_ms = dpolicy.max_interval; 1720 } 1721 1722 sb_end_intwrite(sbi->sb); 1723 1724 } while (!kthread_should_stop()); 1725 return 0; 1726 } 1727 1728 #ifdef CONFIG_BLK_DEV_ZONED 1729 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1730 struct block_device *bdev, block_t blkstart, block_t blklen) 1731 { 1732 sector_t sector, nr_sects; 1733 block_t lblkstart = blkstart; 1734 int devi = 0; 1735 1736 if (f2fs_is_multi_device(sbi)) { 1737 devi = f2fs_target_device_index(sbi, blkstart); 1738 if (blkstart < FDEV(devi).start_blk || 1739 blkstart > FDEV(devi).end_blk) { 1740 f2fs_msg(sbi->sb, KERN_ERR, "Invalid block %x", 1741 blkstart); 1742 return -EIO; 1743 } 1744 blkstart -= FDEV(devi).start_blk; 1745 } 1746 1747 /* For sequential zones, reset the zone write pointer */ 1748 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1749 sector = SECTOR_FROM_BLOCK(blkstart); 1750 nr_sects = SECTOR_FROM_BLOCK(blklen); 1751 1752 if (sector & (bdev_zone_sectors(bdev) - 1) || 1753 nr_sects != bdev_zone_sectors(bdev)) { 1754 f2fs_msg(sbi->sb, KERN_ERR, 1755 "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1756 devi, sbi->s_ndevs ? FDEV(devi).path: "", 1757 blkstart, blklen); 1758 return -EIO; 1759 } 1760 trace_f2fs_issue_reset_zone(bdev, blkstart); 1761 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS); 1762 } 1763 1764 /* For conventional zones, use regular discard if supported */ 1765 if (!blk_queue_discard(bdev_get_queue(bdev))) 1766 return 0; 1767 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1768 } 1769 #endif 1770 1771 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1772 struct block_device *bdev, block_t blkstart, block_t blklen) 1773 { 1774 #ifdef CONFIG_BLK_DEV_ZONED 1775 if (f2fs_sb_has_blkzoned(sbi) && 1776 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 1777 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1778 #endif 1779 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1780 } 1781 1782 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1783 block_t blkstart, block_t blklen) 1784 { 1785 sector_t start = blkstart, len = 0; 1786 struct block_device *bdev; 1787 struct seg_entry *se; 1788 unsigned int offset; 1789 block_t i; 1790 int err = 0; 1791 1792 bdev = f2fs_target_device(sbi, blkstart, NULL); 1793 1794 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1795 if (i != start) { 1796 struct block_device *bdev2 = 1797 f2fs_target_device(sbi, i, NULL); 1798 1799 if (bdev2 != bdev) { 1800 err = __issue_discard_async(sbi, bdev, 1801 start, len); 1802 if (err) 1803 return err; 1804 bdev = bdev2; 1805 start = i; 1806 len = 0; 1807 } 1808 } 1809 1810 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1811 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1812 1813 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1814 sbi->discard_blks--; 1815 } 1816 1817 if (len) 1818 err = __issue_discard_async(sbi, bdev, start, len); 1819 return err; 1820 } 1821 1822 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1823 bool check_only) 1824 { 1825 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1826 int max_blocks = sbi->blocks_per_seg; 1827 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1828 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1829 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1830 unsigned long *discard_map = (unsigned long *)se->discard_map; 1831 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1832 unsigned int start = 0, end = -1; 1833 bool force = (cpc->reason & CP_DISCARD); 1834 struct discard_entry *de = NULL; 1835 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1836 int i; 1837 1838 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1839 return false; 1840 1841 if (!force) { 1842 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1843 SM_I(sbi)->dcc_info->nr_discards >= 1844 SM_I(sbi)->dcc_info->max_discards) 1845 return false; 1846 } 1847 1848 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1849 for (i = 0; i < entries; i++) 1850 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1851 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1852 1853 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1854 SM_I(sbi)->dcc_info->max_discards) { 1855 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1856 if (start >= max_blocks) 1857 break; 1858 1859 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1860 if (force && start && end != max_blocks 1861 && (end - start) < cpc->trim_minlen) 1862 continue; 1863 1864 if (check_only) 1865 return true; 1866 1867 if (!de) { 1868 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1869 GFP_F2FS_ZERO); 1870 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1871 list_add_tail(&de->list, head); 1872 } 1873 1874 for (i = start; i < end; i++) 1875 __set_bit_le(i, (void *)de->discard_map); 1876 1877 SM_I(sbi)->dcc_info->nr_discards += end - start; 1878 } 1879 return false; 1880 } 1881 1882 static void release_discard_addr(struct discard_entry *entry) 1883 { 1884 list_del(&entry->list); 1885 kmem_cache_free(discard_entry_slab, entry); 1886 } 1887 1888 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1889 { 1890 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1891 struct discard_entry *entry, *this; 1892 1893 /* drop caches */ 1894 list_for_each_entry_safe(entry, this, head, list) 1895 release_discard_addr(entry); 1896 } 1897 1898 /* 1899 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1900 */ 1901 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1902 { 1903 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1904 unsigned int segno; 1905 1906 mutex_lock(&dirty_i->seglist_lock); 1907 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1908 __set_test_and_free(sbi, segno); 1909 mutex_unlock(&dirty_i->seglist_lock); 1910 } 1911 1912 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1913 struct cp_control *cpc) 1914 { 1915 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1916 struct list_head *head = &dcc->entry_list; 1917 struct discard_entry *entry, *this; 1918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1919 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1920 unsigned int start = 0, end = -1; 1921 unsigned int secno, start_segno; 1922 bool force = (cpc->reason & CP_DISCARD); 1923 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 1924 1925 mutex_lock(&dirty_i->seglist_lock); 1926 1927 while (1) { 1928 int i; 1929 1930 if (need_align && end != -1) 1931 end--; 1932 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1933 if (start >= MAIN_SEGS(sbi)) 1934 break; 1935 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1936 start + 1); 1937 1938 if (need_align) { 1939 start = rounddown(start, sbi->segs_per_sec); 1940 end = roundup(end, sbi->segs_per_sec); 1941 } 1942 1943 for (i = start; i < end; i++) { 1944 if (test_and_clear_bit(i, prefree_map)) 1945 dirty_i->nr_dirty[PRE]--; 1946 } 1947 1948 if (!f2fs_realtime_discard_enable(sbi)) 1949 continue; 1950 1951 if (force && start >= cpc->trim_start && 1952 (end - 1) <= cpc->trim_end) 1953 continue; 1954 1955 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) { 1956 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1957 (end - start) << sbi->log_blocks_per_seg); 1958 continue; 1959 } 1960 next: 1961 secno = GET_SEC_FROM_SEG(sbi, start); 1962 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1963 if (!IS_CURSEC(sbi, secno) && 1964 !get_valid_blocks(sbi, start, true)) 1965 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1966 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1967 1968 start = start_segno + sbi->segs_per_sec; 1969 if (start < end) 1970 goto next; 1971 else 1972 end = start - 1; 1973 } 1974 mutex_unlock(&dirty_i->seglist_lock); 1975 1976 /* send small discards */ 1977 list_for_each_entry_safe(entry, this, head, list) { 1978 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1979 bool is_valid = test_bit_le(0, entry->discard_map); 1980 1981 find_next: 1982 if (is_valid) { 1983 next_pos = find_next_zero_bit_le(entry->discard_map, 1984 sbi->blocks_per_seg, cur_pos); 1985 len = next_pos - cur_pos; 1986 1987 if (f2fs_sb_has_blkzoned(sbi) || 1988 (force && len < cpc->trim_minlen)) 1989 goto skip; 1990 1991 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1992 len); 1993 total_len += len; 1994 } else { 1995 next_pos = find_next_bit_le(entry->discard_map, 1996 sbi->blocks_per_seg, cur_pos); 1997 } 1998 skip: 1999 cur_pos = next_pos; 2000 is_valid = !is_valid; 2001 2002 if (cur_pos < sbi->blocks_per_seg) 2003 goto find_next; 2004 2005 release_discard_addr(entry); 2006 dcc->nr_discards -= total_len; 2007 } 2008 2009 wake_up_discard_thread(sbi, false); 2010 } 2011 2012 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2013 { 2014 dev_t dev = sbi->sb->s_bdev->bd_dev; 2015 struct discard_cmd_control *dcc; 2016 int err = 0, i; 2017 2018 if (SM_I(sbi)->dcc_info) { 2019 dcc = SM_I(sbi)->dcc_info; 2020 goto init_thread; 2021 } 2022 2023 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2024 if (!dcc) 2025 return -ENOMEM; 2026 2027 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2028 INIT_LIST_HEAD(&dcc->entry_list); 2029 for (i = 0; i < MAX_PLIST_NUM; i++) 2030 INIT_LIST_HEAD(&dcc->pend_list[i]); 2031 INIT_LIST_HEAD(&dcc->wait_list); 2032 INIT_LIST_HEAD(&dcc->fstrim_list); 2033 mutex_init(&dcc->cmd_lock); 2034 atomic_set(&dcc->issued_discard, 0); 2035 atomic_set(&dcc->queued_discard, 0); 2036 atomic_set(&dcc->discard_cmd_cnt, 0); 2037 dcc->nr_discards = 0; 2038 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2039 dcc->undiscard_blks = 0; 2040 dcc->next_pos = 0; 2041 dcc->root = RB_ROOT_CACHED; 2042 dcc->rbtree_check = false; 2043 2044 init_waitqueue_head(&dcc->discard_wait_queue); 2045 SM_I(sbi)->dcc_info = dcc; 2046 init_thread: 2047 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2048 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2049 if (IS_ERR(dcc->f2fs_issue_discard)) { 2050 err = PTR_ERR(dcc->f2fs_issue_discard); 2051 kvfree(dcc); 2052 SM_I(sbi)->dcc_info = NULL; 2053 return err; 2054 } 2055 2056 return err; 2057 } 2058 2059 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2060 { 2061 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2062 2063 if (!dcc) 2064 return; 2065 2066 f2fs_stop_discard_thread(sbi); 2067 2068 kvfree(dcc); 2069 SM_I(sbi)->dcc_info = NULL; 2070 } 2071 2072 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2073 { 2074 struct sit_info *sit_i = SIT_I(sbi); 2075 2076 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2077 sit_i->dirty_sentries++; 2078 return false; 2079 } 2080 2081 return true; 2082 } 2083 2084 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2085 unsigned int segno, int modified) 2086 { 2087 struct seg_entry *se = get_seg_entry(sbi, segno); 2088 se->type = type; 2089 if (modified) 2090 __mark_sit_entry_dirty(sbi, segno); 2091 } 2092 2093 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2094 { 2095 struct seg_entry *se; 2096 unsigned int segno, offset; 2097 long int new_vblocks; 2098 bool exist; 2099 #ifdef CONFIG_F2FS_CHECK_FS 2100 bool mir_exist; 2101 #endif 2102 2103 segno = GET_SEGNO(sbi, blkaddr); 2104 2105 se = get_seg_entry(sbi, segno); 2106 new_vblocks = se->valid_blocks + del; 2107 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2108 2109 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2110 (new_vblocks > sbi->blocks_per_seg))); 2111 2112 se->valid_blocks = new_vblocks; 2113 se->mtime = get_mtime(sbi, false); 2114 if (se->mtime > SIT_I(sbi)->max_mtime) 2115 SIT_I(sbi)->max_mtime = se->mtime; 2116 2117 /* Update valid block bitmap */ 2118 if (del > 0) { 2119 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2120 #ifdef CONFIG_F2FS_CHECK_FS 2121 mir_exist = f2fs_test_and_set_bit(offset, 2122 se->cur_valid_map_mir); 2123 if (unlikely(exist != mir_exist)) { 2124 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 2125 "when setting bitmap, blk:%u, old bit:%d", 2126 blkaddr, exist); 2127 f2fs_bug_on(sbi, 1); 2128 } 2129 #endif 2130 if (unlikely(exist)) { 2131 f2fs_msg(sbi->sb, KERN_ERR, 2132 "Bitmap was wrongly set, blk:%u", blkaddr); 2133 f2fs_bug_on(sbi, 1); 2134 se->valid_blocks--; 2135 del = 0; 2136 } 2137 2138 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2139 sbi->discard_blks--; 2140 2141 /* don't overwrite by SSR to keep node chain */ 2142 if (IS_NODESEG(se->type) && 2143 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2144 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2145 se->ckpt_valid_blocks++; 2146 } 2147 } else { 2148 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2149 #ifdef CONFIG_F2FS_CHECK_FS 2150 mir_exist = f2fs_test_and_clear_bit(offset, 2151 se->cur_valid_map_mir); 2152 if (unlikely(exist != mir_exist)) { 2153 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 2154 "when clearing bitmap, blk:%u, old bit:%d", 2155 blkaddr, exist); 2156 f2fs_bug_on(sbi, 1); 2157 } 2158 #endif 2159 if (unlikely(!exist)) { 2160 f2fs_msg(sbi->sb, KERN_ERR, 2161 "Bitmap was wrongly cleared, blk:%u", blkaddr); 2162 f2fs_bug_on(sbi, 1); 2163 se->valid_blocks++; 2164 del = 0; 2165 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2166 /* 2167 * If checkpoints are off, we must not reuse data that 2168 * was used in the previous checkpoint. If it was used 2169 * before, we must track that to know how much space we 2170 * really have. 2171 */ 2172 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2173 sbi->unusable_block_count++; 2174 } 2175 2176 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2177 sbi->discard_blks++; 2178 } 2179 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2180 se->ckpt_valid_blocks += del; 2181 2182 __mark_sit_entry_dirty(sbi, segno); 2183 2184 /* update total number of valid blocks to be written in ckpt area */ 2185 SIT_I(sbi)->written_valid_blocks += del; 2186 2187 if (__is_large_section(sbi)) 2188 get_sec_entry(sbi, segno)->valid_blocks += del; 2189 } 2190 2191 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2192 { 2193 unsigned int segno = GET_SEGNO(sbi, addr); 2194 struct sit_info *sit_i = SIT_I(sbi); 2195 2196 f2fs_bug_on(sbi, addr == NULL_ADDR); 2197 if (addr == NEW_ADDR) 2198 return; 2199 2200 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2201 2202 /* add it into sit main buffer */ 2203 down_write(&sit_i->sentry_lock); 2204 2205 update_sit_entry(sbi, addr, -1); 2206 2207 /* add it into dirty seglist */ 2208 locate_dirty_segment(sbi, segno); 2209 2210 up_write(&sit_i->sentry_lock); 2211 } 2212 2213 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2214 { 2215 struct sit_info *sit_i = SIT_I(sbi); 2216 unsigned int segno, offset; 2217 struct seg_entry *se; 2218 bool is_cp = false; 2219 2220 if (!is_valid_data_blkaddr(sbi, blkaddr)) 2221 return true; 2222 2223 down_read(&sit_i->sentry_lock); 2224 2225 segno = GET_SEGNO(sbi, blkaddr); 2226 se = get_seg_entry(sbi, segno); 2227 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2228 2229 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2230 is_cp = true; 2231 2232 up_read(&sit_i->sentry_lock); 2233 2234 return is_cp; 2235 } 2236 2237 /* 2238 * This function should be resided under the curseg_mutex lock 2239 */ 2240 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2241 struct f2fs_summary *sum) 2242 { 2243 struct curseg_info *curseg = CURSEG_I(sbi, type); 2244 void *addr = curseg->sum_blk; 2245 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2246 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2247 } 2248 2249 /* 2250 * Calculate the number of current summary pages for writing 2251 */ 2252 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2253 { 2254 int valid_sum_count = 0; 2255 int i, sum_in_page; 2256 2257 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2258 if (sbi->ckpt->alloc_type[i] == SSR) 2259 valid_sum_count += sbi->blocks_per_seg; 2260 else { 2261 if (for_ra) 2262 valid_sum_count += le16_to_cpu( 2263 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2264 else 2265 valid_sum_count += curseg_blkoff(sbi, i); 2266 } 2267 } 2268 2269 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2270 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2271 if (valid_sum_count <= sum_in_page) 2272 return 1; 2273 else if ((valid_sum_count - sum_in_page) <= 2274 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2275 return 2; 2276 return 3; 2277 } 2278 2279 /* 2280 * Caller should put this summary page 2281 */ 2282 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2283 { 2284 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2285 } 2286 2287 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2288 void *src, block_t blk_addr) 2289 { 2290 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2291 2292 memcpy(page_address(page), src, PAGE_SIZE); 2293 set_page_dirty(page); 2294 f2fs_put_page(page, 1); 2295 } 2296 2297 static void write_sum_page(struct f2fs_sb_info *sbi, 2298 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2299 { 2300 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2301 } 2302 2303 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2304 int type, block_t blk_addr) 2305 { 2306 struct curseg_info *curseg = CURSEG_I(sbi, type); 2307 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2308 struct f2fs_summary_block *src = curseg->sum_blk; 2309 struct f2fs_summary_block *dst; 2310 2311 dst = (struct f2fs_summary_block *)page_address(page); 2312 memset(dst, 0, PAGE_SIZE); 2313 2314 mutex_lock(&curseg->curseg_mutex); 2315 2316 down_read(&curseg->journal_rwsem); 2317 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2318 up_read(&curseg->journal_rwsem); 2319 2320 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2321 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2322 2323 mutex_unlock(&curseg->curseg_mutex); 2324 2325 set_page_dirty(page); 2326 f2fs_put_page(page, 1); 2327 } 2328 2329 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2330 { 2331 struct curseg_info *curseg = CURSEG_I(sbi, type); 2332 unsigned int segno = curseg->segno + 1; 2333 struct free_segmap_info *free_i = FREE_I(sbi); 2334 2335 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2336 return !test_bit(segno, free_i->free_segmap); 2337 return 0; 2338 } 2339 2340 /* 2341 * Find a new segment from the free segments bitmap to right order 2342 * This function should be returned with success, otherwise BUG 2343 */ 2344 static void get_new_segment(struct f2fs_sb_info *sbi, 2345 unsigned int *newseg, bool new_sec, int dir) 2346 { 2347 struct free_segmap_info *free_i = FREE_I(sbi); 2348 unsigned int segno, secno, zoneno; 2349 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2350 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2351 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2352 unsigned int left_start = hint; 2353 bool init = true; 2354 int go_left = 0; 2355 int i; 2356 2357 spin_lock(&free_i->segmap_lock); 2358 2359 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2360 segno = find_next_zero_bit(free_i->free_segmap, 2361 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2362 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2363 goto got_it; 2364 } 2365 find_other_zone: 2366 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2367 if (secno >= MAIN_SECS(sbi)) { 2368 if (dir == ALLOC_RIGHT) { 2369 secno = find_next_zero_bit(free_i->free_secmap, 2370 MAIN_SECS(sbi), 0); 2371 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2372 } else { 2373 go_left = 1; 2374 left_start = hint - 1; 2375 } 2376 } 2377 if (go_left == 0) 2378 goto skip_left; 2379 2380 while (test_bit(left_start, free_i->free_secmap)) { 2381 if (left_start > 0) { 2382 left_start--; 2383 continue; 2384 } 2385 left_start = find_next_zero_bit(free_i->free_secmap, 2386 MAIN_SECS(sbi), 0); 2387 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2388 break; 2389 } 2390 secno = left_start; 2391 skip_left: 2392 segno = GET_SEG_FROM_SEC(sbi, secno); 2393 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2394 2395 /* give up on finding another zone */ 2396 if (!init) 2397 goto got_it; 2398 if (sbi->secs_per_zone == 1) 2399 goto got_it; 2400 if (zoneno == old_zoneno) 2401 goto got_it; 2402 if (dir == ALLOC_LEFT) { 2403 if (!go_left && zoneno + 1 >= total_zones) 2404 goto got_it; 2405 if (go_left && zoneno == 0) 2406 goto got_it; 2407 } 2408 for (i = 0; i < NR_CURSEG_TYPE; i++) 2409 if (CURSEG_I(sbi, i)->zone == zoneno) 2410 break; 2411 2412 if (i < NR_CURSEG_TYPE) { 2413 /* zone is in user, try another */ 2414 if (go_left) 2415 hint = zoneno * sbi->secs_per_zone - 1; 2416 else if (zoneno + 1 >= total_zones) 2417 hint = 0; 2418 else 2419 hint = (zoneno + 1) * sbi->secs_per_zone; 2420 init = false; 2421 goto find_other_zone; 2422 } 2423 got_it: 2424 /* set it as dirty segment in free segmap */ 2425 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2426 __set_inuse(sbi, segno); 2427 *newseg = segno; 2428 spin_unlock(&free_i->segmap_lock); 2429 } 2430 2431 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2432 { 2433 struct curseg_info *curseg = CURSEG_I(sbi, type); 2434 struct summary_footer *sum_footer; 2435 2436 curseg->segno = curseg->next_segno; 2437 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2438 curseg->next_blkoff = 0; 2439 curseg->next_segno = NULL_SEGNO; 2440 2441 sum_footer = &(curseg->sum_blk->footer); 2442 memset(sum_footer, 0, sizeof(struct summary_footer)); 2443 if (IS_DATASEG(type)) 2444 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2445 if (IS_NODESEG(type)) 2446 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2447 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2448 } 2449 2450 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2451 { 2452 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2453 if (__is_large_section(sbi)) 2454 return CURSEG_I(sbi, type)->segno; 2455 2456 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2457 return 0; 2458 2459 if (test_opt(sbi, NOHEAP) && 2460 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2461 return 0; 2462 2463 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2464 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2465 2466 /* find segments from 0 to reuse freed segments */ 2467 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2468 return 0; 2469 2470 return CURSEG_I(sbi, type)->segno; 2471 } 2472 2473 /* 2474 * Allocate a current working segment. 2475 * This function always allocates a free segment in LFS manner. 2476 */ 2477 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2478 { 2479 struct curseg_info *curseg = CURSEG_I(sbi, type); 2480 unsigned int segno = curseg->segno; 2481 int dir = ALLOC_LEFT; 2482 2483 write_sum_page(sbi, curseg->sum_blk, 2484 GET_SUM_BLOCK(sbi, segno)); 2485 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2486 dir = ALLOC_RIGHT; 2487 2488 if (test_opt(sbi, NOHEAP)) 2489 dir = ALLOC_RIGHT; 2490 2491 segno = __get_next_segno(sbi, type); 2492 get_new_segment(sbi, &segno, new_sec, dir); 2493 curseg->next_segno = segno; 2494 reset_curseg(sbi, type, 1); 2495 curseg->alloc_type = LFS; 2496 } 2497 2498 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2499 struct curseg_info *seg, block_t start) 2500 { 2501 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2502 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2503 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2504 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2505 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2506 int i, pos; 2507 2508 for (i = 0; i < entries; i++) 2509 target_map[i] = ckpt_map[i] | cur_map[i]; 2510 2511 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2512 2513 seg->next_blkoff = pos; 2514 } 2515 2516 /* 2517 * If a segment is written by LFS manner, next block offset is just obtained 2518 * by increasing the current block offset. However, if a segment is written by 2519 * SSR manner, next block offset obtained by calling __next_free_blkoff 2520 */ 2521 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2522 struct curseg_info *seg) 2523 { 2524 if (seg->alloc_type == SSR) 2525 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2526 else 2527 seg->next_blkoff++; 2528 } 2529 2530 /* 2531 * This function always allocates a used segment(from dirty seglist) by SSR 2532 * manner, so it should recover the existing segment information of valid blocks 2533 */ 2534 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2535 { 2536 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2537 struct curseg_info *curseg = CURSEG_I(sbi, type); 2538 unsigned int new_segno = curseg->next_segno; 2539 struct f2fs_summary_block *sum_node; 2540 struct page *sum_page; 2541 2542 write_sum_page(sbi, curseg->sum_blk, 2543 GET_SUM_BLOCK(sbi, curseg->segno)); 2544 __set_test_and_inuse(sbi, new_segno); 2545 2546 mutex_lock(&dirty_i->seglist_lock); 2547 __remove_dirty_segment(sbi, new_segno, PRE); 2548 __remove_dirty_segment(sbi, new_segno, DIRTY); 2549 mutex_unlock(&dirty_i->seglist_lock); 2550 2551 reset_curseg(sbi, type, 1); 2552 curseg->alloc_type = SSR; 2553 __next_free_blkoff(sbi, curseg, 0); 2554 2555 sum_page = f2fs_get_sum_page(sbi, new_segno); 2556 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2557 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2558 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2559 f2fs_put_page(sum_page, 1); 2560 } 2561 2562 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2563 { 2564 struct curseg_info *curseg = CURSEG_I(sbi, type); 2565 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2566 unsigned segno = NULL_SEGNO; 2567 int i, cnt; 2568 bool reversed = false; 2569 2570 /* f2fs_need_SSR() already forces to do this */ 2571 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2572 curseg->next_segno = segno; 2573 return 1; 2574 } 2575 2576 /* For node segments, let's do SSR more intensively */ 2577 if (IS_NODESEG(type)) { 2578 if (type >= CURSEG_WARM_NODE) { 2579 reversed = true; 2580 i = CURSEG_COLD_NODE; 2581 } else { 2582 i = CURSEG_HOT_NODE; 2583 } 2584 cnt = NR_CURSEG_NODE_TYPE; 2585 } else { 2586 if (type >= CURSEG_WARM_DATA) { 2587 reversed = true; 2588 i = CURSEG_COLD_DATA; 2589 } else { 2590 i = CURSEG_HOT_DATA; 2591 } 2592 cnt = NR_CURSEG_DATA_TYPE; 2593 } 2594 2595 for (; cnt-- > 0; reversed ? i-- : i++) { 2596 if (i == type) 2597 continue; 2598 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2599 curseg->next_segno = segno; 2600 return 1; 2601 } 2602 } 2603 2604 /* find valid_blocks=0 in dirty list */ 2605 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2606 segno = get_free_segment(sbi); 2607 if (segno != NULL_SEGNO) { 2608 curseg->next_segno = segno; 2609 return 1; 2610 } 2611 } 2612 return 0; 2613 } 2614 2615 /* 2616 * flush out current segment and replace it with new segment 2617 * This function should be returned with success, otherwise BUG 2618 */ 2619 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2620 int type, bool force) 2621 { 2622 struct curseg_info *curseg = CURSEG_I(sbi, type); 2623 2624 if (force) 2625 new_curseg(sbi, type, true); 2626 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2627 type == CURSEG_WARM_NODE) 2628 new_curseg(sbi, type, false); 2629 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2630 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2631 new_curseg(sbi, type, false); 2632 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2633 change_curseg(sbi, type); 2634 else 2635 new_curseg(sbi, type, false); 2636 2637 stat_inc_seg_type(sbi, curseg); 2638 } 2639 2640 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2641 { 2642 struct curseg_info *curseg; 2643 unsigned int old_segno; 2644 int i; 2645 2646 down_write(&SIT_I(sbi)->sentry_lock); 2647 2648 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2649 curseg = CURSEG_I(sbi, i); 2650 old_segno = curseg->segno; 2651 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2652 locate_dirty_segment(sbi, old_segno); 2653 } 2654 2655 up_write(&SIT_I(sbi)->sentry_lock); 2656 } 2657 2658 static const struct segment_allocation default_salloc_ops = { 2659 .allocate_segment = allocate_segment_by_default, 2660 }; 2661 2662 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2663 struct cp_control *cpc) 2664 { 2665 __u64 trim_start = cpc->trim_start; 2666 bool has_candidate = false; 2667 2668 down_write(&SIT_I(sbi)->sentry_lock); 2669 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2670 if (add_discard_addrs(sbi, cpc, true)) { 2671 has_candidate = true; 2672 break; 2673 } 2674 } 2675 up_write(&SIT_I(sbi)->sentry_lock); 2676 2677 cpc->trim_start = trim_start; 2678 return has_candidate; 2679 } 2680 2681 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2682 struct discard_policy *dpolicy, 2683 unsigned int start, unsigned int end) 2684 { 2685 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2686 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2687 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2688 struct discard_cmd *dc; 2689 struct blk_plug plug; 2690 int issued; 2691 unsigned int trimmed = 0; 2692 2693 next: 2694 issued = 0; 2695 2696 mutex_lock(&dcc->cmd_lock); 2697 if (unlikely(dcc->rbtree_check)) 2698 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2699 &dcc->root)); 2700 2701 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2702 NULL, start, 2703 (struct rb_entry **)&prev_dc, 2704 (struct rb_entry **)&next_dc, 2705 &insert_p, &insert_parent, true, NULL); 2706 if (!dc) 2707 dc = next_dc; 2708 2709 blk_start_plug(&plug); 2710 2711 while (dc && dc->lstart <= end) { 2712 struct rb_node *node; 2713 int err = 0; 2714 2715 if (dc->len < dpolicy->granularity) 2716 goto skip; 2717 2718 if (dc->state != D_PREP) { 2719 list_move_tail(&dc->list, &dcc->fstrim_list); 2720 goto skip; 2721 } 2722 2723 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2724 2725 if (issued >= dpolicy->max_requests) { 2726 start = dc->lstart + dc->len; 2727 2728 if (err) 2729 __remove_discard_cmd(sbi, dc); 2730 2731 blk_finish_plug(&plug); 2732 mutex_unlock(&dcc->cmd_lock); 2733 trimmed += __wait_all_discard_cmd(sbi, NULL); 2734 congestion_wait(BLK_RW_ASYNC, HZ/50); 2735 goto next; 2736 } 2737 skip: 2738 node = rb_next(&dc->rb_node); 2739 if (err) 2740 __remove_discard_cmd(sbi, dc); 2741 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2742 2743 if (fatal_signal_pending(current)) 2744 break; 2745 } 2746 2747 blk_finish_plug(&plug); 2748 mutex_unlock(&dcc->cmd_lock); 2749 2750 return trimmed; 2751 } 2752 2753 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2754 { 2755 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2756 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2757 unsigned int start_segno, end_segno; 2758 block_t start_block, end_block; 2759 struct cp_control cpc; 2760 struct discard_policy dpolicy; 2761 unsigned long long trimmed = 0; 2762 int err = 0; 2763 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 2764 2765 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2766 return -EINVAL; 2767 2768 if (end < MAIN_BLKADDR(sbi)) 2769 goto out; 2770 2771 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2772 f2fs_msg(sbi->sb, KERN_WARNING, 2773 "Found FS corruption, run fsck to fix."); 2774 return -EIO; 2775 } 2776 2777 /* start/end segment number in main_area */ 2778 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2779 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2780 GET_SEGNO(sbi, end); 2781 if (need_align) { 2782 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2783 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2784 } 2785 2786 cpc.reason = CP_DISCARD; 2787 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2788 cpc.trim_start = start_segno; 2789 cpc.trim_end = end_segno; 2790 2791 if (sbi->discard_blks == 0) 2792 goto out; 2793 2794 mutex_lock(&sbi->gc_mutex); 2795 err = f2fs_write_checkpoint(sbi, &cpc); 2796 mutex_unlock(&sbi->gc_mutex); 2797 if (err) 2798 goto out; 2799 2800 /* 2801 * We filed discard candidates, but actually we don't need to wait for 2802 * all of them, since they'll be issued in idle time along with runtime 2803 * discard option. User configuration looks like using runtime discard 2804 * or periodic fstrim instead of it. 2805 */ 2806 if (f2fs_realtime_discard_enable(sbi)) 2807 goto out; 2808 2809 start_block = START_BLOCK(sbi, start_segno); 2810 end_block = START_BLOCK(sbi, end_segno + 1); 2811 2812 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2813 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2814 start_block, end_block); 2815 2816 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2817 start_block, end_block); 2818 out: 2819 if (!err) 2820 range->len = F2FS_BLK_TO_BYTES(trimmed); 2821 return err; 2822 } 2823 2824 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2825 { 2826 struct curseg_info *curseg = CURSEG_I(sbi, type); 2827 if (curseg->next_blkoff < sbi->blocks_per_seg) 2828 return true; 2829 return false; 2830 } 2831 2832 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2833 { 2834 switch (hint) { 2835 case WRITE_LIFE_SHORT: 2836 return CURSEG_HOT_DATA; 2837 case WRITE_LIFE_EXTREME: 2838 return CURSEG_COLD_DATA; 2839 default: 2840 return CURSEG_WARM_DATA; 2841 } 2842 } 2843 2844 /* This returns write hints for each segment type. This hints will be 2845 * passed down to block layer. There are mapping tables which depend on 2846 * the mount option 'whint_mode'. 2847 * 2848 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2849 * 2850 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2851 * 2852 * User F2FS Block 2853 * ---- ---- ----- 2854 * META WRITE_LIFE_NOT_SET 2855 * HOT_NODE " 2856 * WARM_NODE " 2857 * COLD_NODE " 2858 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2859 * extension list " " 2860 * 2861 * -- buffered io 2862 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2863 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2864 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2865 * WRITE_LIFE_NONE " " 2866 * WRITE_LIFE_MEDIUM " " 2867 * WRITE_LIFE_LONG " " 2868 * 2869 * -- direct io 2870 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2871 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2872 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2873 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2874 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2875 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2876 * 2877 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2878 * 2879 * User F2FS Block 2880 * ---- ---- ----- 2881 * META WRITE_LIFE_MEDIUM; 2882 * HOT_NODE WRITE_LIFE_NOT_SET 2883 * WARM_NODE " 2884 * COLD_NODE WRITE_LIFE_NONE 2885 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2886 * extension list " " 2887 * 2888 * -- buffered io 2889 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2890 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2891 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2892 * WRITE_LIFE_NONE " " 2893 * WRITE_LIFE_MEDIUM " " 2894 * WRITE_LIFE_LONG " " 2895 * 2896 * -- direct io 2897 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2898 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2899 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2900 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2901 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2902 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2903 */ 2904 2905 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2906 enum page_type type, enum temp_type temp) 2907 { 2908 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2909 if (type == DATA) { 2910 if (temp == WARM) 2911 return WRITE_LIFE_NOT_SET; 2912 else if (temp == HOT) 2913 return WRITE_LIFE_SHORT; 2914 else if (temp == COLD) 2915 return WRITE_LIFE_EXTREME; 2916 } else { 2917 return WRITE_LIFE_NOT_SET; 2918 } 2919 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2920 if (type == DATA) { 2921 if (temp == WARM) 2922 return WRITE_LIFE_LONG; 2923 else if (temp == HOT) 2924 return WRITE_LIFE_SHORT; 2925 else if (temp == COLD) 2926 return WRITE_LIFE_EXTREME; 2927 } else if (type == NODE) { 2928 if (temp == WARM || temp == HOT) 2929 return WRITE_LIFE_NOT_SET; 2930 else if (temp == COLD) 2931 return WRITE_LIFE_NONE; 2932 } else if (type == META) { 2933 return WRITE_LIFE_MEDIUM; 2934 } 2935 } 2936 return WRITE_LIFE_NOT_SET; 2937 } 2938 2939 static int __get_segment_type_2(struct f2fs_io_info *fio) 2940 { 2941 if (fio->type == DATA) 2942 return CURSEG_HOT_DATA; 2943 else 2944 return CURSEG_HOT_NODE; 2945 } 2946 2947 static int __get_segment_type_4(struct f2fs_io_info *fio) 2948 { 2949 if (fio->type == DATA) { 2950 struct inode *inode = fio->page->mapping->host; 2951 2952 if (S_ISDIR(inode->i_mode)) 2953 return CURSEG_HOT_DATA; 2954 else 2955 return CURSEG_COLD_DATA; 2956 } else { 2957 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 2958 return CURSEG_WARM_NODE; 2959 else 2960 return CURSEG_COLD_NODE; 2961 } 2962 } 2963 2964 static int __get_segment_type_6(struct f2fs_io_info *fio) 2965 { 2966 if (fio->type == DATA) { 2967 struct inode *inode = fio->page->mapping->host; 2968 2969 if (is_cold_data(fio->page) || file_is_cold(inode)) 2970 return CURSEG_COLD_DATA; 2971 if (file_is_hot(inode) || 2972 is_inode_flag_set(inode, FI_HOT_DATA) || 2973 f2fs_is_atomic_file(inode) || 2974 f2fs_is_volatile_file(inode)) 2975 return CURSEG_HOT_DATA; 2976 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 2977 } else { 2978 if (IS_DNODE(fio->page)) 2979 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 2980 CURSEG_HOT_NODE; 2981 return CURSEG_COLD_NODE; 2982 } 2983 } 2984 2985 static int __get_segment_type(struct f2fs_io_info *fio) 2986 { 2987 int type = 0; 2988 2989 switch (F2FS_OPTION(fio->sbi).active_logs) { 2990 case 2: 2991 type = __get_segment_type_2(fio); 2992 break; 2993 case 4: 2994 type = __get_segment_type_4(fio); 2995 break; 2996 case 6: 2997 type = __get_segment_type_6(fio); 2998 break; 2999 default: 3000 f2fs_bug_on(fio->sbi, true); 3001 } 3002 3003 if (IS_HOT(type)) 3004 fio->temp = HOT; 3005 else if (IS_WARM(type)) 3006 fio->temp = WARM; 3007 else 3008 fio->temp = COLD; 3009 return type; 3010 } 3011 3012 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3013 block_t old_blkaddr, block_t *new_blkaddr, 3014 struct f2fs_summary *sum, int type, 3015 struct f2fs_io_info *fio, bool add_list) 3016 { 3017 struct sit_info *sit_i = SIT_I(sbi); 3018 struct curseg_info *curseg = CURSEG_I(sbi, type); 3019 3020 down_read(&SM_I(sbi)->curseg_lock); 3021 3022 mutex_lock(&curseg->curseg_mutex); 3023 down_write(&sit_i->sentry_lock); 3024 3025 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3026 3027 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3028 3029 /* 3030 * __add_sum_entry should be resided under the curseg_mutex 3031 * because, this function updates a summary entry in the 3032 * current summary block. 3033 */ 3034 __add_sum_entry(sbi, type, sum); 3035 3036 __refresh_next_blkoff(sbi, curseg); 3037 3038 stat_inc_block_count(sbi, curseg); 3039 3040 /* 3041 * SIT information should be updated before segment allocation, 3042 * since SSR needs latest valid block information. 3043 */ 3044 update_sit_entry(sbi, *new_blkaddr, 1); 3045 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3046 update_sit_entry(sbi, old_blkaddr, -1); 3047 3048 if (!__has_curseg_space(sbi, type)) 3049 sit_i->s_ops->allocate_segment(sbi, type, false); 3050 3051 /* 3052 * segment dirty status should be updated after segment allocation, 3053 * so we just need to update status only one time after previous 3054 * segment being closed. 3055 */ 3056 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3057 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3058 3059 up_write(&sit_i->sentry_lock); 3060 3061 if (page && IS_NODESEG(type)) { 3062 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3063 3064 f2fs_inode_chksum_set(sbi, page); 3065 } 3066 3067 if (add_list) { 3068 struct f2fs_bio_info *io; 3069 3070 INIT_LIST_HEAD(&fio->list); 3071 fio->in_list = true; 3072 fio->retry = false; 3073 io = sbi->write_io[fio->type] + fio->temp; 3074 spin_lock(&io->io_lock); 3075 list_add_tail(&fio->list, &io->io_list); 3076 spin_unlock(&io->io_lock); 3077 } 3078 3079 mutex_unlock(&curseg->curseg_mutex); 3080 3081 up_read(&SM_I(sbi)->curseg_lock); 3082 } 3083 3084 static void update_device_state(struct f2fs_io_info *fio) 3085 { 3086 struct f2fs_sb_info *sbi = fio->sbi; 3087 unsigned int devidx; 3088 3089 if (!f2fs_is_multi_device(sbi)) 3090 return; 3091 3092 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3093 3094 /* update device state for fsync */ 3095 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3096 3097 /* update device state for checkpoint */ 3098 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3099 spin_lock(&sbi->dev_lock); 3100 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3101 spin_unlock(&sbi->dev_lock); 3102 } 3103 } 3104 3105 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3106 { 3107 int type = __get_segment_type(fio); 3108 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 3109 3110 if (keep_order) 3111 down_read(&fio->sbi->io_order_lock); 3112 reallocate: 3113 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3114 &fio->new_blkaddr, sum, type, fio, true); 3115 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3116 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3117 fio->old_blkaddr, fio->old_blkaddr); 3118 3119 /* writeout dirty page into bdev */ 3120 f2fs_submit_page_write(fio); 3121 if (fio->retry) { 3122 fio->old_blkaddr = fio->new_blkaddr; 3123 goto reallocate; 3124 } 3125 3126 update_device_state(fio); 3127 3128 if (keep_order) 3129 up_read(&fio->sbi->io_order_lock); 3130 } 3131 3132 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3133 enum iostat_type io_type) 3134 { 3135 struct f2fs_io_info fio = { 3136 .sbi = sbi, 3137 .type = META, 3138 .temp = HOT, 3139 .op = REQ_OP_WRITE, 3140 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3141 .old_blkaddr = page->index, 3142 .new_blkaddr = page->index, 3143 .page = page, 3144 .encrypted_page = NULL, 3145 .in_list = false, 3146 }; 3147 3148 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3149 fio.op_flags &= ~REQ_META; 3150 3151 set_page_writeback(page); 3152 ClearPageError(page); 3153 f2fs_submit_page_write(&fio); 3154 3155 stat_inc_meta_count(sbi, page->index); 3156 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3157 } 3158 3159 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3160 { 3161 struct f2fs_summary sum; 3162 3163 set_summary(&sum, nid, 0, 0); 3164 do_write_page(&sum, fio); 3165 3166 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3167 } 3168 3169 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3170 struct f2fs_io_info *fio) 3171 { 3172 struct f2fs_sb_info *sbi = fio->sbi; 3173 struct f2fs_summary sum; 3174 3175 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3176 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3177 do_write_page(&sum, fio); 3178 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3179 3180 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3181 } 3182 3183 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3184 { 3185 int err; 3186 struct f2fs_sb_info *sbi = fio->sbi; 3187 3188 fio->new_blkaddr = fio->old_blkaddr; 3189 /* i/o temperature is needed for passing down write hints */ 3190 __get_segment_type(fio); 3191 3192 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi, 3193 GET_SEGNO(sbi, fio->new_blkaddr))->type)); 3194 3195 stat_inc_inplace_blocks(fio->sbi); 3196 3197 err = f2fs_submit_page_bio(fio); 3198 if (!err) { 3199 update_device_state(fio); 3200 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3201 } 3202 3203 return err; 3204 } 3205 3206 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3207 unsigned int segno) 3208 { 3209 int i; 3210 3211 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3212 if (CURSEG_I(sbi, i)->segno == segno) 3213 break; 3214 } 3215 return i; 3216 } 3217 3218 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3219 block_t old_blkaddr, block_t new_blkaddr, 3220 bool recover_curseg, bool recover_newaddr) 3221 { 3222 struct sit_info *sit_i = SIT_I(sbi); 3223 struct curseg_info *curseg; 3224 unsigned int segno, old_cursegno; 3225 struct seg_entry *se; 3226 int type; 3227 unsigned short old_blkoff; 3228 3229 segno = GET_SEGNO(sbi, new_blkaddr); 3230 se = get_seg_entry(sbi, segno); 3231 type = se->type; 3232 3233 down_write(&SM_I(sbi)->curseg_lock); 3234 3235 if (!recover_curseg) { 3236 /* for recovery flow */ 3237 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3238 if (old_blkaddr == NULL_ADDR) 3239 type = CURSEG_COLD_DATA; 3240 else 3241 type = CURSEG_WARM_DATA; 3242 } 3243 } else { 3244 if (IS_CURSEG(sbi, segno)) { 3245 /* se->type is volatile as SSR allocation */ 3246 type = __f2fs_get_curseg(sbi, segno); 3247 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3248 } else { 3249 type = CURSEG_WARM_DATA; 3250 } 3251 } 3252 3253 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3254 curseg = CURSEG_I(sbi, type); 3255 3256 mutex_lock(&curseg->curseg_mutex); 3257 down_write(&sit_i->sentry_lock); 3258 3259 old_cursegno = curseg->segno; 3260 old_blkoff = curseg->next_blkoff; 3261 3262 /* change the current segment */ 3263 if (segno != curseg->segno) { 3264 curseg->next_segno = segno; 3265 change_curseg(sbi, type); 3266 } 3267 3268 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3269 __add_sum_entry(sbi, type, sum); 3270 3271 if (!recover_curseg || recover_newaddr) 3272 update_sit_entry(sbi, new_blkaddr, 1); 3273 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3274 invalidate_mapping_pages(META_MAPPING(sbi), 3275 old_blkaddr, old_blkaddr); 3276 update_sit_entry(sbi, old_blkaddr, -1); 3277 } 3278 3279 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3280 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3281 3282 locate_dirty_segment(sbi, old_cursegno); 3283 3284 if (recover_curseg) { 3285 if (old_cursegno != curseg->segno) { 3286 curseg->next_segno = old_cursegno; 3287 change_curseg(sbi, type); 3288 } 3289 curseg->next_blkoff = old_blkoff; 3290 } 3291 3292 up_write(&sit_i->sentry_lock); 3293 mutex_unlock(&curseg->curseg_mutex); 3294 up_write(&SM_I(sbi)->curseg_lock); 3295 } 3296 3297 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3298 block_t old_addr, block_t new_addr, 3299 unsigned char version, bool recover_curseg, 3300 bool recover_newaddr) 3301 { 3302 struct f2fs_summary sum; 3303 3304 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3305 3306 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3307 recover_curseg, recover_newaddr); 3308 3309 f2fs_update_data_blkaddr(dn, new_addr); 3310 } 3311 3312 void f2fs_wait_on_page_writeback(struct page *page, 3313 enum page_type type, bool ordered, bool locked) 3314 { 3315 if (PageWriteback(page)) { 3316 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3317 3318 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3319 if (ordered) { 3320 wait_on_page_writeback(page); 3321 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3322 } else { 3323 wait_for_stable_page(page); 3324 } 3325 } 3326 } 3327 3328 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3329 { 3330 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3331 struct page *cpage; 3332 3333 if (!f2fs_post_read_required(inode)) 3334 return; 3335 3336 if (!is_valid_data_blkaddr(sbi, blkaddr)) 3337 return; 3338 3339 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3340 if (cpage) { 3341 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3342 f2fs_put_page(cpage, 1); 3343 } 3344 } 3345 3346 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3347 block_t len) 3348 { 3349 block_t i; 3350 3351 for (i = 0; i < len; i++) 3352 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3353 } 3354 3355 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3356 { 3357 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3358 struct curseg_info *seg_i; 3359 unsigned char *kaddr; 3360 struct page *page; 3361 block_t start; 3362 int i, j, offset; 3363 3364 start = start_sum_block(sbi); 3365 3366 page = f2fs_get_meta_page(sbi, start++); 3367 if (IS_ERR(page)) 3368 return PTR_ERR(page); 3369 kaddr = (unsigned char *)page_address(page); 3370 3371 /* Step 1: restore nat cache */ 3372 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3373 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3374 3375 /* Step 2: restore sit cache */ 3376 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3377 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3378 offset = 2 * SUM_JOURNAL_SIZE; 3379 3380 /* Step 3: restore summary entries */ 3381 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3382 unsigned short blk_off; 3383 unsigned int segno; 3384 3385 seg_i = CURSEG_I(sbi, i); 3386 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3387 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3388 seg_i->next_segno = segno; 3389 reset_curseg(sbi, i, 0); 3390 seg_i->alloc_type = ckpt->alloc_type[i]; 3391 seg_i->next_blkoff = blk_off; 3392 3393 if (seg_i->alloc_type == SSR) 3394 blk_off = sbi->blocks_per_seg; 3395 3396 for (j = 0; j < blk_off; j++) { 3397 struct f2fs_summary *s; 3398 s = (struct f2fs_summary *)(kaddr + offset); 3399 seg_i->sum_blk->entries[j] = *s; 3400 offset += SUMMARY_SIZE; 3401 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3402 SUM_FOOTER_SIZE) 3403 continue; 3404 3405 f2fs_put_page(page, 1); 3406 page = NULL; 3407 3408 page = f2fs_get_meta_page(sbi, start++); 3409 if (IS_ERR(page)) 3410 return PTR_ERR(page); 3411 kaddr = (unsigned char *)page_address(page); 3412 offset = 0; 3413 } 3414 } 3415 f2fs_put_page(page, 1); 3416 return 0; 3417 } 3418 3419 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3420 { 3421 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3422 struct f2fs_summary_block *sum; 3423 struct curseg_info *curseg; 3424 struct page *new; 3425 unsigned short blk_off; 3426 unsigned int segno = 0; 3427 block_t blk_addr = 0; 3428 int err = 0; 3429 3430 /* get segment number and block addr */ 3431 if (IS_DATASEG(type)) { 3432 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3433 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3434 CURSEG_HOT_DATA]); 3435 if (__exist_node_summaries(sbi)) 3436 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3437 else 3438 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3439 } else { 3440 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3441 CURSEG_HOT_NODE]); 3442 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3443 CURSEG_HOT_NODE]); 3444 if (__exist_node_summaries(sbi)) 3445 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3446 type - CURSEG_HOT_NODE); 3447 else 3448 blk_addr = GET_SUM_BLOCK(sbi, segno); 3449 } 3450 3451 new = f2fs_get_meta_page(sbi, blk_addr); 3452 if (IS_ERR(new)) 3453 return PTR_ERR(new); 3454 sum = (struct f2fs_summary_block *)page_address(new); 3455 3456 if (IS_NODESEG(type)) { 3457 if (__exist_node_summaries(sbi)) { 3458 struct f2fs_summary *ns = &sum->entries[0]; 3459 int i; 3460 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3461 ns->version = 0; 3462 ns->ofs_in_node = 0; 3463 } 3464 } else { 3465 err = f2fs_restore_node_summary(sbi, segno, sum); 3466 if (err) 3467 goto out; 3468 } 3469 } 3470 3471 /* set uncompleted segment to curseg */ 3472 curseg = CURSEG_I(sbi, type); 3473 mutex_lock(&curseg->curseg_mutex); 3474 3475 /* update journal info */ 3476 down_write(&curseg->journal_rwsem); 3477 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3478 up_write(&curseg->journal_rwsem); 3479 3480 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3481 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3482 curseg->next_segno = segno; 3483 reset_curseg(sbi, type, 0); 3484 curseg->alloc_type = ckpt->alloc_type[type]; 3485 curseg->next_blkoff = blk_off; 3486 mutex_unlock(&curseg->curseg_mutex); 3487 out: 3488 f2fs_put_page(new, 1); 3489 return err; 3490 } 3491 3492 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3493 { 3494 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3495 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3496 int type = CURSEG_HOT_DATA; 3497 int err; 3498 3499 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3500 int npages = f2fs_npages_for_summary_flush(sbi, true); 3501 3502 if (npages >= 2) 3503 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3504 META_CP, true); 3505 3506 /* restore for compacted data summary */ 3507 err = read_compacted_summaries(sbi); 3508 if (err) 3509 return err; 3510 type = CURSEG_HOT_NODE; 3511 } 3512 3513 if (__exist_node_summaries(sbi)) 3514 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3515 NR_CURSEG_TYPE - type, META_CP, true); 3516 3517 for (; type <= CURSEG_COLD_NODE; type++) { 3518 err = read_normal_summaries(sbi, type); 3519 if (err) 3520 return err; 3521 } 3522 3523 /* sanity check for summary blocks */ 3524 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3525 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) 3526 return -EINVAL; 3527 3528 return 0; 3529 } 3530 3531 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3532 { 3533 struct page *page; 3534 unsigned char *kaddr; 3535 struct f2fs_summary *summary; 3536 struct curseg_info *seg_i; 3537 int written_size = 0; 3538 int i, j; 3539 3540 page = f2fs_grab_meta_page(sbi, blkaddr++); 3541 kaddr = (unsigned char *)page_address(page); 3542 memset(kaddr, 0, PAGE_SIZE); 3543 3544 /* Step 1: write nat cache */ 3545 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3546 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3547 written_size += SUM_JOURNAL_SIZE; 3548 3549 /* Step 2: write sit cache */ 3550 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3551 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3552 written_size += SUM_JOURNAL_SIZE; 3553 3554 /* Step 3: write summary entries */ 3555 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3556 unsigned short blkoff; 3557 seg_i = CURSEG_I(sbi, i); 3558 if (sbi->ckpt->alloc_type[i] == SSR) 3559 blkoff = sbi->blocks_per_seg; 3560 else 3561 blkoff = curseg_blkoff(sbi, i); 3562 3563 for (j = 0; j < blkoff; j++) { 3564 if (!page) { 3565 page = f2fs_grab_meta_page(sbi, blkaddr++); 3566 kaddr = (unsigned char *)page_address(page); 3567 memset(kaddr, 0, PAGE_SIZE); 3568 written_size = 0; 3569 } 3570 summary = (struct f2fs_summary *)(kaddr + written_size); 3571 *summary = seg_i->sum_blk->entries[j]; 3572 written_size += SUMMARY_SIZE; 3573 3574 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3575 SUM_FOOTER_SIZE) 3576 continue; 3577 3578 set_page_dirty(page); 3579 f2fs_put_page(page, 1); 3580 page = NULL; 3581 } 3582 } 3583 if (page) { 3584 set_page_dirty(page); 3585 f2fs_put_page(page, 1); 3586 } 3587 } 3588 3589 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3590 block_t blkaddr, int type) 3591 { 3592 int i, end; 3593 if (IS_DATASEG(type)) 3594 end = type + NR_CURSEG_DATA_TYPE; 3595 else 3596 end = type + NR_CURSEG_NODE_TYPE; 3597 3598 for (i = type; i < end; i++) 3599 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3600 } 3601 3602 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3603 { 3604 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3605 write_compacted_summaries(sbi, start_blk); 3606 else 3607 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3608 } 3609 3610 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3611 { 3612 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3613 } 3614 3615 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3616 unsigned int val, int alloc) 3617 { 3618 int i; 3619 3620 if (type == NAT_JOURNAL) { 3621 for (i = 0; i < nats_in_cursum(journal); i++) { 3622 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3623 return i; 3624 } 3625 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3626 return update_nats_in_cursum(journal, 1); 3627 } else if (type == SIT_JOURNAL) { 3628 for (i = 0; i < sits_in_cursum(journal); i++) 3629 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3630 return i; 3631 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3632 return update_sits_in_cursum(journal, 1); 3633 } 3634 return -1; 3635 } 3636 3637 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3638 unsigned int segno) 3639 { 3640 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3641 } 3642 3643 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3644 unsigned int start) 3645 { 3646 struct sit_info *sit_i = SIT_I(sbi); 3647 struct page *page; 3648 pgoff_t src_off, dst_off; 3649 3650 src_off = current_sit_addr(sbi, start); 3651 dst_off = next_sit_addr(sbi, src_off); 3652 3653 page = f2fs_grab_meta_page(sbi, dst_off); 3654 seg_info_to_sit_page(sbi, page, start); 3655 3656 set_page_dirty(page); 3657 set_to_next_sit(sit_i, start); 3658 3659 return page; 3660 } 3661 3662 static struct sit_entry_set *grab_sit_entry_set(void) 3663 { 3664 struct sit_entry_set *ses = 3665 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3666 3667 ses->entry_cnt = 0; 3668 INIT_LIST_HEAD(&ses->set_list); 3669 return ses; 3670 } 3671 3672 static void release_sit_entry_set(struct sit_entry_set *ses) 3673 { 3674 list_del(&ses->set_list); 3675 kmem_cache_free(sit_entry_set_slab, ses); 3676 } 3677 3678 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3679 struct list_head *head) 3680 { 3681 struct sit_entry_set *next = ses; 3682 3683 if (list_is_last(&ses->set_list, head)) 3684 return; 3685 3686 list_for_each_entry_continue(next, head, set_list) 3687 if (ses->entry_cnt <= next->entry_cnt) 3688 break; 3689 3690 list_move_tail(&ses->set_list, &next->set_list); 3691 } 3692 3693 static void add_sit_entry(unsigned int segno, struct list_head *head) 3694 { 3695 struct sit_entry_set *ses; 3696 unsigned int start_segno = START_SEGNO(segno); 3697 3698 list_for_each_entry(ses, head, set_list) { 3699 if (ses->start_segno == start_segno) { 3700 ses->entry_cnt++; 3701 adjust_sit_entry_set(ses, head); 3702 return; 3703 } 3704 } 3705 3706 ses = grab_sit_entry_set(); 3707 3708 ses->start_segno = start_segno; 3709 ses->entry_cnt++; 3710 list_add(&ses->set_list, head); 3711 } 3712 3713 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3714 { 3715 struct f2fs_sm_info *sm_info = SM_I(sbi); 3716 struct list_head *set_list = &sm_info->sit_entry_set; 3717 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3718 unsigned int segno; 3719 3720 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3721 add_sit_entry(segno, set_list); 3722 } 3723 3724 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3725 { 3726 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3727 struct f2fs_journal *journal = curseg->journal; 3728 int i; 3729 3730 down_write(&curseg->journal_rwsem); 3731 for (i = 0; i < sits_in_cursum(journal); i++) { 3732 unsigned int segno; 3733 bool dirtied; 3734 3735 segno = le32_to_cpu(segno_in_journal(journal, i)); 3736 dirtied = __mark_sit_entry_dirty(sbi, segno); 3737 3738 if (!dirtied) 3739 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3740 } 3741 update_sits_in_cursum(journal, -i); 3742 up_write(&curseg->journal_rwsem); 3743 } 3744 3745 /* 3746 * CP calls this function, which flushes SIT entries including sit_journal, 3747 * and moves prefree segs to free segs. 3748 */ 3749 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3750 { 3751 struct sit_info *sit_i = SIT_I(sbi); 3752 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3753 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3754 struct f2fs_journal *journal = curseg->journal; 3755 struct sit_entry_set *ses, *tmp; 3756 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3757 bool to_journal = true; 3758 struct seg_entry *se; 3759 3760 down_write(&sit_i->sentry_lock); 3761 3762 if (!sit_i->dirty_sentries) 3763 goto out; 3764 3765 /* 3766 * add and account sit entries of dirty bitmap in sit entry 3767 * set temporarily 3768 */ 3769 add_sits_in_set(sbi); 3770 3771 /* 3772 * if there are no enough space in journal to store dirty sit 3773 * entries, remove all entries from journal and add and account 3774 * them in sit entry set. 3775 */ 3776 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 3777 remove_sits_in_journal(sbi); 3778 3779 /* 3780 * there are two steps to flush sit entries: 3781 * #1, flush sit entries to journal in current cold data summary block. 3782 * #2, flush sit entries to sit page. 3783 */ 3784 list_for_each_entry_safe(ses, tmp, head, set_list) { 3785 struct page *page = NULL; 3786 struct f2fs_sit_block *raw_sit = NULL; 3787 unsigned int start_segno = ses->start_segno; 3788 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3789 (unsigned long)MAIN_SEGS(sbi)); 3790 unsigned int segno = start_segno; 3791 3792 if (to_journal && 3793 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3794 to_journal = false; 3795 3796 if (to_journal) { 3797 down_write(&curseg->journal_rwsem); 3798 } else { 3799 page = get_next_sit_page(sbi, start_segno); 3800 raw_sit = page_address(page); 3801 } 3802 3803 /* flush dirty sit entries in region of current sit set */ 3804 for_each_set_bit_from(segno, bitmap, end) { 3805 int offset, sit_offset; 3806 3807 se = get_seg_entry(sbi, segno); 3808 #ifdef CONFIG_F2FS_CHECK_FS 3809 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3810 SIT_VBLOCK_MAP_SIZE)) 3811 f2fs_bug_on(sbi, 1); 3812 #endif 3813 3814 /* add discard candidates */ 3815 if (!(cpc->reason & CP_DISCARD)) { 3816 cpc->trim_start = segno; 3817 add_discard_addrs(sbi, cpc, false); 3818 } 3819 3820 if (to_journal) { 3821 offset = f2fs_lookup_journal_in_cursum(journal, 3822 SIT_JOURNAL, segno, 1); 3823 f2fs_bug_on(sbi, offset < 0); 3824 segno_in_journal(journal, offset) = 3825 cpu_to_le32(segno); 3826 seg_info_to_raw_sit(se, 3827 &sit_in_journal(journal, offset)); 3828 check_block_count(sbi, segno, 3829 &sit_in_journal(journal, offset)); 3830 } else { 3831 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3832 seg_info_to_raw_sit(se, 3833 &raw_sit->entries[sit_offset]); 3834 check_block_count(sbi, segno, 3835 &raw_sit->entries[sit_offset]); 3836 } 3837 3838 __clear_bit(segno, bitmap); 3839 sit_i->dirty_sentries--; 3840 ses->entry_cnt--; 3841 } 3842 3843 if (to_journal) 3844 up_write(&curseg->journal_rwsem); 3845 else 3846 f2fs_put_page(page, 1); 3847 3848 f2fs_bug_on(sbi, ses->entry_cnt); 3849 release_sit_entry_set(ses); 3850 } 3851 3852 f2fs_bug_on(sbi, !list_empty(head)); 3853 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3854 out: 3855 if (cpc->reason & CP_DISCARD) { 3856 __u64 trim_start = cpc->trim_start; 3857 3858 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3859 add_discard_addrs(sbi, cpc, false); 3860 3861 cpc->trim_start = trim_start; 3862 } 3863 up_write(&sit_i->sentry_lock); 3864 3865 set_prefree_as_free_segments(sbi); 3866 } 3867 3868 static int build_sit_info(struct f2fs_sb_info *sbi) 3869 { 3870 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3871 struct sit_info *sit_i; 3872 unsigned int sit_segs, start; 3873 char *src_bitmap; 3874 unsigned int bitmap_size; 3875 3876 /* allocate memory for SIT information */ 3877 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3878 if (!sit_i) 3879 return -ENOMEM; 3880 3881 SM_I(sbi)->sit_info = sit_i; 3882 3883 sit_i->sentries = 3884 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 3885 MAIN_SEGS(sbi)), 3886 GFP_KERNEL); 3887 if (!sit_i->sentries) 3888 return -ENOMEM; 3889 3890 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3891 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size, 3892 GFP_KERNEL); 3893 if (!sit_i->dirty_sentries_bitmap) 3894 return -ENOMEM; 3895 3896 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3897 sit_i->sentries[start].cur_valid_map 3898 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3899 sit_i->sentries[start].ckpt_valid_map 3900 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3901 if (!sit_i->sentries[start].cur_valid_map || 3902 !sit_i->sentries[start].ckpt_valid_map) 3903 return -ENOMEM; 3904 3905 #ifdef CONFIG_F2FS_CHECK_FS 3906 sit_i->sentries[start].cur_valid_map_mir 3907 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3908 if (!sit_i->sentries[start].cur_valid_map_mir) 3909 return -ENOMEM; 3910 #endif 3911 3912 sit_i->sentries[start].discard_map 3913 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, 3914 GFP_KERNEL); 3915 if (!sit_i->sentries[start].discard_map) 3916 return -ENOMEM; 3917 } 3918 3919 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3920 if (!sit_i->tmp_map) 3921 return -ENOMEM; 3922 3923 if (__is_large_section(sbi)) { 3924 sit_i->sec_entries = 3925 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 3926 MAIN_SECS(sbi)), 3927 GFP_KERNEL); 3928 if (!sit_i->sec_entries) 3929 return -ENOMEM; 3930 } 3931 3932 /* get information related with SIT */ 3933 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 3934 3935 /* setup SIT bitmap from ckeckpoint pack */ 3936 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 3937 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 3938 3939 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3940 if (!sit_i->sit_bitmap) 3941 return -ENOMEM; 3942 3943 #ifdef CONFIG_F2FS_CHECK_FS 3944 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3945 if (!sit_i->sit_bitmap_mir) 3946 return -ENOMEM; 3947 #endif 3948 3949 /* init SIT information */ 3950 sit_i->s_ops = &default_salloc_ops; 3951 3952 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 3953 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 3954 sit_i->written_valid_blocks = 0; 3955 sit_i->bitmap_size = bitmap_size; 3956 sit_i->dirty_sentries = 0; 3957 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 3958 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 3959 sit_i->mounted_time = ktime_get_real_seconds(); 3960 init_rwsem(&sit_i->sentry_lock); 3961 return 0; 3962 } 3963 3964 static int build_free_segmap(struct f2fs_sb_info *sbi) 3965 { 3966 struct free_segmap_info *free_i; 3967 unsigned int bitmap_size, sec_bitmap_size; 3968 3969 /* allocate memory for free segmap information */ 3970 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 3971 if (!free_i) 3972 return -ENOMEM; 3973 3974 SM_I(sbi)->free_info = free_i; 3975 3976 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3977 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 3978 if (!free_i->free_segmap) 3979 return -ENOMEM; 3980 3981 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3982 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 3983 if (!free_i->free_secmap) 3984 return -ENOMEM; 3985 3986 /* set all segments as dirty temporarily */ 3987 memset(free_i->free_segmap, 0xff, bitmap_size); 3988 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 3989 3990 /* init free segmap information */ 3991 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 3992 free_i->free_segments = 0; 3993 free_i->free_sections = 0; 3994 spin_lock_init(&free_i->segmap_lock); 3995 return 0; 3996 } 3997 3998 static int build_curseg(struct f2fs_sb_info *sbi) 3999 { 4000 struct curseg_info *array; 4001 int i; 4002 4003 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 4004 GFP_KERNEL); 4005 if (!array) 4006 return -ENOMEM; 4007 4008 SM_I(sbi)->curseg_array = array; 4009 4010 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4011 mutex_init(&array[i].curseg_mutex); 4012 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4013 if (!array[i].sum_blk) 4014 return -ENOMEM; 4015 init_rwsem(&array[i].journal_rwsem); 4016 array[i].journal = f2fs_kzalloc(sbi, 4017 sizeof(struct f2fs_journal), GFP_KERNEL); 4018 if (!array[i].journal) 4019 return -ENOMEM; 4020 array[i].segno = NULL_SEGNO; 4021 array[i].next_blkoff = 0; 4022 } 4023 return restore_curseg_summaries(sbi); 4024 } 4025 4026 static int build_sit_entries(struct f2fs_sb_info *sbi) 4027 { 4028 struct sit_info *sit_i = SIT_I(sbi); 4029 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4030 struct f2fs_journal *journal = curseg->journal; 4031 struct seg_entry *se; 4032 struct f2fs_sit_entry sit; 4033 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4034 unsigned int i, start, end; 4035 unsigned int readed, start_blk = 0; 4036 int err = 0; 4037 block_t total_node_blocks = 0; 4038 4039 do { 4040 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4041 META_SIT, true); 4042 4043 start = start_blk * sit_i->sents_per_block; 4044 end = (start_blk + readed) * sit_i->sents_per_block; 4045 4046 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4047 struct f2fs_sit_block *sit_blk; 4048 struct page *page; 4049 4050 se = &sit_i->sentries[start]; 4051 page = get_current_sit_page(sbi, start); 4052 if (IS_ERR(page)) 4053 return PTR_ERR(page); 4054 sit_blk = (struct f2fs_sit_block *)page_address(page); 4055 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4056 f2fs_put_page(page, 1); 4057 4058 err = check_block_count(sbi, start, &sit); 4059 if (err) 4060 return err; 4061 seg_info_from_raw_sit(se, &sit); 4062 if (IS_NODESEG(se->type)) 4063 total_node_blocks += se->valid_blocks; 4064 4065 /* build discard map only one time */ 4066 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4067 memset(se->discard_map, 0xff, 4068 SIT_VBLOCK_MAP_SIZE); 4069 } else { 4070 memcpy(se->discard_map, 4071 se->cur_valid_map, 4072 SIT_VBLOCK_MAP_SIZE); 4073 sbi->discard_blks += 4074 sbi->blocks_per_seg - 4075 se->valid_blocks; 4076 } 4077 4078 if (__is_large_section(sbi)) 4079 get_sec_entry(sbi, start)->valid_blocks += 4080 se->valid_blocks; 4081 } 4082 start_blk += readed; 4083 } while (start_blk < sit_blk_cnt); 4084 4085 down_read(&curseg->journal_rwsem); 4086 for (i = 0; i < sits_in_cursum(journal); i++) { 4087 unsigned int old_valid_blocks; 4088 4089 start = le32_to_cpu(segno_in_journal(journal, i)); 4090 if (start >= MAIN_SEGS(sbi)) { 4091 f2fs_msg(sbi->sb, KERN_ERR, 4092 "Wrong journal entry on segno %u", 4093 start); 4094 set_sbi_flag(sbi, SBI_NEED_FSCK); 4095 err = -EINVAL; 4096 break; 4097 } 4098 4099 se = &sit_i->sentries[start]; 4100 sit = sit_in_journal(journal, i); 4101 4102 old_valid_blocks = se->valid_blocks; 4103 if (IS_NODESEG(se->type)) 4104 total_node_blocks -= old_valid_blocks; 4105 4106 err = check_block_count(sbi, start, &sit); 4107 if (err) 4108 break; 4109 seg_info_from_raw_sit(se, &sit); 4110 if (IS_NODESEG(se->type)) 4111 total_node_blocks += se->valid_blocks; 4112 4113 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4114 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4115 } else { 4116 memcpy(se->discard_map, se->cur_valid_map, 4117 SIT_VBLOCK_MAP_SIZE); 4118 sbi->discard_blks += old_valid_blocks; 4119 sbi->discard_blks -= se->valid_blocks; 4120 } 4121 4122 if (__is_large_section(sbi)) { 4123 get_sec_entry(sbi, start)->valid_blocks += 4124 se->valid_blocks; 4125 get_sec_entry(sbi, start)->valid_blocks -= 4126 old_valid_blocks; 4127 } 4128 } 4129 up_read(&curseg->journal_rwsem); 4130 4131 if (!err && total_node_blocks != valid_node_count(sbi)) { 4132 f2fs_msg(sbi->sb, KERN_ERR, 4133 "SIT is corrupted node# %u vs %u", 4134 total_node_blocks, valid_node_count(sbi)); 4135 set_sbi_flag(sbi, SBI_NEED_FSCK); 4136 err = -EINVAL; 4137 } 4138 4139 return err; 4140 } 4141 4142 static void init_free_segmap(struct f2fs_sb_info *sbi) 4143 { 4144 unsigned int start; 4145 int type; 4146 4147 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4148 struct seg_entry *sentry = get_seg_entry(sbi, start); 4149 if (!sentry->valid_blocks) 4150 __set_free(sbi, start); 4151 else 4152 SIT_I(sbi)->written_valid_blocks += 4153 sentry->valid_blocks; 4154 } 4155 4156 /* set use the current segments */ 4157 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4158 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4159 __set_test_and_inuse(sbi, curseg_t->segno); 4160 } 4161 } 4162 4163 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4164 { 4165 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4166 struct free_segmap_info *free_i = FREE_I(sbi); 4167 unsigned int segno = 0, offset = 0; 4168 unsigned short valid_blocks; 4169 4170 while (1) { 4171 /* find dirty segment based on free segmap */ 4172 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4173 if (segno >= MAIN_SEGS(sbi)) 4174 break; 4175 offset = segno + 1; 4176 valid_blocks = get_valid_blocks(sbi, segno, false); 4177 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4178 continue; 4179 if (valid_blocks > sbi->blocks_per_seg) { 4180 f2fs_bug_on(sbi, 1); 4181 continue; 4182 } 4183 mutex_lock(&dirty_i->seglist_lock); 4184 __locate_dirty_segment(sbi, segno, DIRTY); 4185 mutex_unlock(&dirty_i->seglist_lock); 4186 } 4187 } 4188 4189 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4190 { 4191 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4192 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4193 4194 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4195 if (!dirty_i->victim_secmap) 4196 return -ENOMEM; 4197 return 0; 4198 } 4199 4200 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4201 { 4202 struct dirty_seglist_info *dirty_i; 4203 unsigned int bitmap_size, i; 4204 4205 /* allocate memory for dirty segments list information */ 4206 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4207 GFP_KERNEL); 4208 if (!dirty_i) 4209 return -ENOMEM; 4210 4211 SM_I(sbi)->dirty_info = dirty_i; 4212 mutex_init(&dirty_i->seglist_lock); 4213 4214 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4215 4216 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4217 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4218 GFP_KERNEL); 4219 if (!dirty_i->dirty_segmap[i]) 4220 return -ENOMEM; 4221 } 4222 4223 init_dirty_segmap(sbi); 4224 return init_victim_secmap(sbi); 4225 } 4226 4227 /* 4228 * Update min, max modified time for cost-benefit GC algorithm 4229 */ 4230 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4231 { 4232 struct sit_info *sit_i = SIT_I(sbi); 4233 unsigned int segno; 4234 4235 down_write(&sit_i->sentry_lock); 4236 4237 sit_i->min_mtime = ULLONG_MAX; 4238 4239 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4240 unsigned int i; 4241 unsigned long long mtime = 0; 4242 4243 for (i = 0; i < sbi->segs_per_sec; i++) 4244 mtime += get_seg_entry(sbi, segno + i)->mtime; 4245 4246 mtime = div_u64(mtime, sbi->segs_per_sec); 4247 4248 if (sit_i->min_mtime > mtime) 4249 sit_i->min_mtime = mtime; 4250 } 4251 sit_i->max_mtime = get_mtime(sbi, false); 4252 up_write(&sit_i->sentry_lock); 4253 } 4254 4255 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4256 { 4257 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4258 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4259 struct f2fs_sm_info *sm_info; 4260 int err; 4261 4262 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4263 if (!sm_info) 4264 return -ENOMEM; 4265 4266 /* init sm info */ 4267 sbi->sm_info = sm_info; 4268 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4269 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4270 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4271 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4272 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4273 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4274 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4275 sm_info->rec_prefree_segments = sm_info->main_segments * 4276 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4277 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4278 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4279 4280 if (!test_opt(sbi, LFS)) 4281 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4282 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4283 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4284 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4285 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4286 sm_info->min_ssr_sections = reserved_sections(sbi); 4287 4288 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4289 4290 init_rwsem(&sm_info->curseg_lock); 4291 4292 if (!f2fs_readonly(sbi->sb)) { 4293 err = f2fs_create_flush_cmd_control(sbi); 4294 if (err) 4295 return err; 4296 } 4297 4298 err = create_discard_cmd_control(sbi); 4299 if (err) 4300 return err; 4301 4302 err = build_sit_info(sbi); 4303 if (err) 4304 return err; 4305 err = build_free_segmap(sbi); 4306 if (err) 4307 return err; 4308 err = build_curseg(sbi); 4309 if (err) 4310 return err; 4311 4312 /* reinit free segmap based on SIT */ 4313 err = build_sit_entries(sbi); 4314 if (err) 4315 return err; 4316 4317 init_free_segmap(sbi); 4318 err = build_dirty_segmap(sbi); 4319 if (err) 4320 return err; 4321 4322 init_min_max_mtime(sbi); 4323 return 0; 4324 } 4325 4326 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4327 enum dirty_type dirty_type) 4328 { 4329 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4330 4331 mutex_lock(&dirty_i->seglist_lock); 4332 kvfree(dirty_i->dirty_segmap[dirty_type]); 4333 dirty_i->nr_dirty[dirty_type] = 0; 4334 mutex_unlock(&dirty_i->seglist_lock); 4335 } 4336 4337 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4338 { 4339 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4340 kvfree(dirty_i->victim_secmap); 4341 } 4342 4343 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4344 { 4345 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4346 int i; 4347 4348 if (!dirty_i) 4349 return; 4350 4351 /* discard pre-free/dirty segments list */ 4352 for (i = 0; i < NR_DIRTY_TYPE; i++) 4353 discard_dirty_segmap(sbi, i); 4354 4355 destroy_victim_secmap(sbi); 4356 SM_I(sbi)->dirty_info = NULL; 4357 kvfree(dirty_i); 4358 } 4359 4360 static void destroy_curseg(struct f2fs_sb_info *sbi) 4361 { 4362 struct curseg_info *array = SM_I(sbi)->curseg_array; 4363 int i; 4364 4365 if (!array) 4366 return; 4367 SM_I(sbi)->curseg_array = NULL; 4368 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4369 kvfree(array[i].sum_blk); 4370 kvfree(array[i].journal); 4371 } 4372 kvfree(array); 4373 } 4374 4375 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4376 { 4377 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4378 if (!free_i) 4379 return; 4380 SM_I(sbi)->free_info = NULL; 4381 kvfree(free_i->free_segmap); 4382 kvfree(free_i->free_secmap); 4383 kvfree(free_i); 4384 } 4385 4386 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4387 { 4388 struct sit_info *sit_i = SIT_I(sbi); 4389 unsigned int start; 4390 4391 if (!sit_i) 4392 return; 4393 4394 if (sit_i->sentries) { 4395 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4396 kvfree(sit_i->sentries[start].cur_valid_map); 4397 #ifdef CONFIG_F2FS_CHECK_FS 4398 kvfree(sit_i->sentries[start].cur_valid_map_mir); 4399 #endif 4400 kvfree(sit_i->sentries[start].ckpt_valid_map); 4401 kvfree(sit_i->sentries[start].discard_map); 4402 } 4403 } 4404 kvfree(sit_i->tmp_map); 4405 4406 kvfree(sit_i->sentries); 4407 kvfree(sit_i->sec_entries); 4408 kvfree(sit_i->dirty_sentries_bitmap); 4409 4410 SM_I(sbi)->sit_info = NULL; 4411 kvfree(sit_i->sit_bitmap); 4412 #ifdef CONFIG_F2FS_CHECK_FS 4413 kvfree(sit_i->sit_bitmap_mir); 4414 #endif 4415 kvfree(sit_i); 4416 } 4417 4418 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4419 { 4420 struct f2fs_sm_info *sm_info = SM_I(sbi); 4421 4422 if (!sm_info) 4423 return; 4424 f2fs_destroy_flush_cmd_control(sbi, true); 4425 destroy_discard_cmd_control(sbi); 4426 destroy_dirty_segmap(sbi); 4427 destroy_curseg(sbi); 4428 destroy_free_segmap(sbi); 4429 destroy_sit_info(sbi); 4430 sbi->sm_info = NULL; 4431 kvfree(sm_info); 4432 } 4433 4434 int __init f2fs_create_segment_manager_caches(void) 4435 { 4436 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4437 sizeof(struct discard_entry)); 4438 if (!discard_entry_slab) 4439 goto fail; 4440 4441 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4442 sizeof(struct discard_cmd)); 4443 if (!discard_cmd_slab) 4444 goto destroy_discard_entry; 4445 4446 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4447 sizeof(struct sit_entry_set)); 4448 if (!sit_entry_set_slab) 4449 goto destroy_discard_cmd; 4450 4451 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4452 sizeof(struct inmem_pages)); 4453 if (!inmem_entry_slab) 4454 goto destroy_sit_entry_set; 4455 return 0; 4456 4457 destroy_sit_entry_set: 4458 kmem_cache_destroy(sit_entry_set_slab); 4459 destroy_discard_cmd: 4460 kmem_cache_destroy(discard_cmd_slab); 4461 destroy_discard_entry: 4462 kmem_cache_destroy(discard_entry_slab); 4463 fail: 4464 return -ENOMEM; 4465 } 4466 4467 void f2fs_destroy_segment_manager_caches(void) 4468 { 4469 kmem_cache_destroy(sit_entry_set_slab); 4470 kmem_cache_destroy(discard_cmd_slab); 4471 kmem_cache_destroy(discard_entry_slab); 4472 kmem_cache_destroy(inmem_entry_slab); 4473 } 4474