xref: /openbmc/linux/fs/f2fs/segment.c (revision 95175dafc4399ab5b9e937da205b2a6927b19227)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174 
175 	if (test_opt(sbi, LFS))
176 		return false;
177 	if (sbi->gc_mode == GC_URGENT)
178 		return true;
179 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 		return true;
181 
182 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185 
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 	struct f2fs_inode_info *fi = F2FS_I(inode);
190 	struct inmem_pages *new;
191 
192 	f2fs_trace_pid(page);
193 
194 	f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195 
196 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
197 
198 	/* add atomic page indices to the list */
199 	new->page = page;
200 	INIT_LIST_HEAD(&new->list);
201 
202 	/* increase reference count with clean state */
203 	mutex_lock(&fi->inmem_lock);
204 	get_page(page);
205 	list_add_tail(&new->list, &fi->inmem_pages);
206 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
207 	if (list_empty(&fi->inmem_ilist))
208 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
209 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
210 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
211 	mutex_unlock(&fi->inmem_lock);
212 
213 	trace_f2fs_register_inmem_page(page, INMEM);
214 }
215 
216 static int __revoke_inmem_pages(struct inode *inode,
217 				struct list_head *head, bool drop, bool recover,
218 				bool trylock)
219 {
220 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 	struct inmem_pages *cur, *tmp;
222 	int err = 0;
223 
224 	list_for_each_entry_safe(cur, tmp, head, list) {
225 		struct page *page = cur->page;
226 
227 		if (drop)
228 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229 
230 		if (trylock) {
231 			/*
232 			 * to avoid deadlock in between page lock and
233 			 * inmem_lock.
234 			 */
235 			if (!trylock_page(page))
236 				continue;
237 		} else {
238 			lock_page(page);
239 		}
240 
241 		f2fs_wait_on_page_writeback(page, DATA, true, true);
242 
243 		if (recover) {
244 			struct dnode_of_data dn;
245 			struct node_info ni;
246 
247 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
248 retry:
249 			set_new_dnode(&dn, inode, NULL, NULL, 0);
250 			err = f2fs_get_dnode_of_data(&dn, page->index,
251 								LOOKUP_NODE);
252 			if (err) {
253 				if (err == -ENOMEM) {
254 					congestion_wait(BLK_RW_ASYNC, HZ/50);
255 					cond_resched();
256 					goto retry;
257 				}
258 				err = -EAGAIN;
259 				goto next;
260 			}
261 
262 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
263 			if (err) {
264 				f2fs_put_dnode(&dn);
265 				return err;
266 			}
267 
268 			if (cur->old_addr == NEW_ADDR) {
269 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
270 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
271 			} else
272 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
273 					cur->old_addr, ni.version, true, true);
274 			f2fs_put_dnode(&dn);
275 		}
276 next:
277 		/* we don't need to invalidate this in the sccessful status */
278 		if (drop || recover) {
279 			ClearPageUptodate(page);
280 			clear_cold_data(page);
281 		}
282 		f2fs_clear_page_private(page);
283 		f2fs_put_page(page, 1);
284 
285 		list_del(&cur->list);
286 		kmem_cache_free(inmem_entry_slab, cur);
287 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
288 	}
289 	return err;
290 }
291 
292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
293 {
294 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
295 	struct inode *inode;
296 	struct f2fs_inode_info *fi;
297 next:
298 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
299 	if (list_empty(head)) {
300 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
301 		return;
302 	}
303 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
304 	inode = igrab(&fi->vfs_inode);
305 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
306 
307 	if (inode) {
308 		if (gc_failure) {
309 			if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
310 				goto drop;
311 			goto skip;
312 		}
313 drop:
314 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
315 		f2fs_drop_inmem_pages(inode);
316 		iput(inode);
317 	}
318 skip:
319 	congestion_wait(BLK_RW_ASYNC, HZ/50);
320 	cond_resched();
321 	goto next;
322 }
323 
324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327 	struct f2fs_inode_info *fi = F2FS_I(inode);
328 
329 	while (!list_empty(&fi->inmem_pages)) {
330 		mutex_lock(&fi->inmem_lock);
331 		__revoke_inmem_pages(inode, &fi->inmem_pages,
332 						true, false, true);
333 
334 		if (list_empty(&fi->inmem_pages)) {
335 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 			if (!list_empty(&fi->inmem_ilist))
337 				list_del_init(&fi->inmem_ilist);
338 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
339 		}
340 		mutex_unlock(&fi->inmem_lock);
341 	}
342 
343 	clear_inode_flag(inode, FI_ATOMIC_FILE);
344 	fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
345 	stat_dec_atomic_write(inode);
346 }
347 
348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
349 {
350 	struct f2fs_inode_info *fi = F2FS_I(inode);
351 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
352 	struct list_head *head = &fi->inmem_pages;
353 	struct inmem_pages *cur = NULL;
354 
355 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
356 
357 	mutex_lock(&fi->inmem_lock);
358 	list_for_each_entry(cur, head, list) {
359 		if (cur->page == page)
360 			break;
361 	}
362 
363 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
364 	list_del(&cur->list);
365 	mutex_unlock(&fi->inmem_lock);
366 
367 	dec_page_count(sbi, F2FS_INMEM_PAGES);
368 	kmem_cache_free(inmem_entry_slab, cur);
369 
370 	ClearPageUptodate(page);
371 	f2fs_clear_page_private(page);
372 	f2fs_put_page(page, 0);
373 
374 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
375 }
376 
377 static int __f2fs_commit_inmem_pages(struct inode *inode)
378 {
379 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380 	struct f2fs_inode_info *fi = F2FS_I(inode);
381 	struct inmem_pages *cur, *tmp;
382 	struct f2fs_io_info fio = {
383 		.sbi = sbi,
384 		.ino = inode->i_ino,
385 		.type = DATA,
386 		.op = REQ_OP_WRITE,
387 		.op_flags = REQ_SYNC | REQ_PRIO,
388 		.io_type = FS_DATA_IO,
389 	};
390 	struct list_head revoke_list;
391 	bool submit_bio = false;
392 	int err = 0;
393 
394 	INIT_LIST_HEAD(&revoke_list);
395 
396 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
397 		struct page *page = cur->page;
398 
399 		lock_page(page);
400 		if (page->mapping == inode->i_mapping) {
401 			trace_f2fs_commit_inmem_page(page, INMEM);
402 
403 			f2fs_wait_on_page_writeback(page, DATA, true, true);
404 
405 			set_page_dirty(page);
406 			if (clear_page_dirty_for_io(page)) {
407 				inode_dec_dirty_pages(inode);
408 				f2fs_remove_dirty_inode(inode);
409 			}
410 retry:
411 			fio.page = page;
412 			fio.old_blkaddr = NULL_ADDR;
413 			fio.encrypted_page = NULL;
414 			fio.need_lock = LOCK_DONE;
415 			err = f2fs_do_write_data_page(&fio);
416 			if (err) {
417 				if (err == -ENOMEM) {
418 					congestion_wait(BLK_RW_ASYNC, HZ/50);
419 					cond_resched();
420 					goto retry;
421 				}
422 				unlock_page(page);
423 				break;
424 			}
425 			/* record old blkaddr for revoking */
426 			cur->old_addr = fio.old_blkaddr;
427 			submit_bio = true;
428 		}
429 		unlock_page(page);
430 		list_move_tail(&cur->list, &revoke_list);
431 	}
432 
433 	if (submit_bio)
434 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
435 
436 	if (err) {
437 		/*
438 		 * try to revoke all committed pages, but still we could fail
439 		 * due to no memory or other reason, if that happened, EAGAIN
440 		 * will be returned, which means in such case, transaction is
441 		 * already not integrity, caller should use journal to do the
442 		 * recovery or rewrite & commit last transaction. For other
443 		 * error number, revoking was done by filesystem itself.
444 		 */
445 		err = __revoke_inmem_pages(inode, &revoke_list,
446 						false, true, false);
447 
448 		/* drop all uncommitted pages */
449 		__revoke_inmem_pages(inode, &fi->inmem_pages,
450 						true, false, false);
451 	} else {
452 		__revoke_inmem_pages(inode, &revoke_list,
453 						false, false, false);
454 	}
455 
456 	return err;
457 }
458 
459 int f2fs_commit_inmem_pages(struct inode *inode)
460 {
461 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
462 	struct f2fs_inode_info *fi = F2FS_I(inode);
463 	int err;
464 
465 	f2fs_balance_fs(sbi, true);
466 
467 	down_write(&fi->i_gc_rwsem[WRITE]);
468 
469 	f2fs_lock_op(sbi);
470 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
471 
472 	mutex_lock(&fi->inmem_lock);
473 	err = __f2fs_commit_inmem_pages(inode);
474 
475 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
476 	if (!list_empty(&fi->inmem_ilist))
477 		list_del_init(&fi->inmem_ilist);
478 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
479 	mutex_unlock(&fi->inmem_lock);
480 
481 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
482 
483 	f2fs_unlock_op(sbi);
484 	up_write(&fi->i_gc_rwsem[WRITE]);
485 
486 	return err;
487 }
488 
489 /*
490  * This function balances dirty node and dentry pages.
491  * In addition, it controls garbage collection.
492  */
493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
494 {
495 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
496 		f2fs_show_injection_info(FAULT_CHECKPOINT);
497 		f2fs_stop_checkpoint(sbi, false);
498 	}
499 
500 	/* balance_fs_bg is able to be pending */
501 	if (need && excess_cached_nats(sbi))
502 		f2fs_balance_fs_bg(sbi);
503 
504 	if (f2fs_is_checkpoint_ready(sbi))
505 		return;
506 
507 	/*
508 	 * We should do GC or end up with checkpoint, if there are so many dirty
509 	 * dir/node pages without enough free segments.
510 	 */
511 	if (has_not_enough_free_secs(sbi, 0, 0)) {
512 		mutex_lock(&sbi->gc_mutex);
513 		f2fs_gc(sbi, false, false, NULL_SEGNO);
514 	}
515 }
516 
517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
518 {
519 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
520 		return;
521 
522 	/* try to shrink extent cache when there is no enough memory */
523 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
524 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
525 
526 	/* check the # of cached NAT entries */
527 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
528 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
529 
530 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
531 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
532 	else
533 		f2fs_build_free_nids(sbi, false, false);
534 
535 	if (!is_idle(sbi, REQ_TIME) &&
536 		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
537 		return;
538 
539 	/* checkpoint is the only way to shrink partial cached entries */
540 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
541 			!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
542 			excess_prefree_segs(sbi) ||
543 			excess_dirty_nats(sbi) ||
544 			excess_dirty_nodes(sbi) ||
545 			f2fs_time_over(sbi, CP_TIME)) {
546 		if (test_opt(sbi, DATA_FLUSH)) {
547 			struct blk_plug plug;
548 
549 			blk_start_plug(&plug);
550 			f2fs_sync_dirty_inodes(sbi, FILE_INODE);
551 			blk_finish_plug(&plug);
552 		}
553 		f2fs_sync_fs(sbi->sb, true);
554 		stat_inc_bg_cp_count(sbi->stat_info);
555 	}
556 }
557 
558 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
559 				struct block_device *bdev)
560 {
561 	struct bio *bio;
562 	int ret;
563 
564 	bio = f2fs_bio_alloc(sbi, 0, false);
565 	if (!bio)
566 		return -ENOMEM;
567 
568 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
569 	bio_set_dev(bio, bdev);
570 	ret = submit_bio_wait(bio);
571 	bio_put(bio);
572 
573 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
574 				test_opt(sbi, FLUSH_MERGE), ret);
575 	return ret;
576 }
577 
578 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
579 {
580 	int ret = 0;
581 	int i;
582 
583 	if (!f2fs_is_multi_device(sbi))
584 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
585 
586 	for (i = 0; i < sbi->s_ndevs; i++) {
587 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
588 			continue;
589 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
590 		if (ret)
591 			break;
592 	}
593 	return ret;
594 }
595 
596 static int issue_flush_thread(void *data)
597 {
598 	struct f2fs_sb_info *sbi = data;
599 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
600 	wait_queue_head_t *q = &fcc->flush_wait_queue;
601 repeat:
602 	if (kthread_should_stop())
603 		return 0;
604 
605 	sb_start_intwrite(sbi->sb);
606 
607 	if (!llist_empty(&fcc->issue_list)) {
608 		struct flush_cmd *cmd, *next;
609 		int ret;
610 
611 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
612 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
613 
614 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
615 
616 		ret = submit_flush_wait(sbi, cmd->ino);
617 		atomic_inc(&fcc->issued_flush);
618 
619 		llist_for_each_entry_safe(cmd, next,
620 					  fcc->dispatch_list, llnode) {
621 			cmd->ret = ret;
622 			complete(&cmd->wait);
623 		}
624 		fcc->dispatch_list = NULL;
625 	}
626 
627 	sb_end_intwrite(sbi->sb);
628 
629 	wait_event_interruptible(*q,
630 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
631 	goto repeat;
632 }
633 
634 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
635 {
636 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
637 	struct flush_cmd cmd;
638 	int ret;
639 
640 	if (test_opt(sbi, NOBARRIER))
641 		return 0;
642 
643 	if (!test_opt(sbi, FLUSH_MERGE)) {
644 		atomic_inc(&fcc->queued_flush);
645 		ret = submit_flush_wait(sbi, ino);
646 		atomic_dec(&fcc->queued_flush);
647 		atomic_inc(&fcc->issued_flush);
648 		return ret;
649 	}
650 
651 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
652 	    f2fs_is_multi_device(sbi)) {
653 		ret = submit_flush_wait(sbi, ino);
654 		atomic_dec(&fcc->queued_flush);
655 
656 		atomic_inc(&fcc->issued_flush);
657 		return ret;
658 	}
659 
660 	cmd.ino = ino;
661 	init_completion(&cmd.wait);
662 
663 	llist_add(&cmd.llnode, &fcc->issue_list);
664 
665 	/* update issue_list before we wake up issue_flush thread */
666 	smp_mb();
667 
668 	if (waitqueue_active(&fcc->flush_wait_queue))
669 		wake_up(&fcc->flush_wait_queue);
670 
671 	if (fcc->f2fs_issue_flush) {
672 		wait_for_completion(&cmd.wait);
673 		atomic_dec(&fcc->queued_flush);
674 	} else {
675 		struct llist_node *list;
676 
677 		list = llist_del_all(&fcc->issue_list);
678 		if (!list) {
679 			wait_for_completion(&cmd.wait);
680 			atomic_dec(&fcc->queued_flush);
681 		} else {
682 			struct flush_cmd *tmp, *next;
683 
684 			ret = submit_flush_wait(sbi, ino);
685 
686 			llist_for_each_entry_safe(tmp, next, list, llnode) {
687 				if (tmp == &cmd) {
688 					cmd.ret = ret;
689 					atomic_dec(&fcc->queued_flush);
690 					continue;
691 				}
692 				tmp->ret = ret;
693 				complete(&tmp->wait);
694 			}
695 		}
696 	}
697 
698 	return cmd.ret;
699 }
700 
701 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
702 {
703 	dev_t dev = sbi->sb->s_bdev->bd_dev;
704 	struct flush_cmd_control *fcc;
705 	int err = 0;
706 
707 	if (SM_I(sbi)->fcc_info) {
708 		fcc = SM_I(sbi)->fcc_info;
709 		if (fcc->f2fs_issue_flush)
710 			return err;
711 		goto init_thread;
712 	}
713 
714 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
715 	if (!fcc)
716 		return -ENOMEM;
717 	atomic_set(&fcc->issued_flush, 0);
718 	atomic_set(&fcc->queued_flush, 0);
719 	init_waitqueue_head(&fcc->flush_wait_queue);
720 	init_llist_head(&fcc->issue_list);
721 	SM_I(sbi)->fcc_info = fcc;
722 	if (!test_opt(sbi, FLUSH_MERGE))
723 		return err;
724 
725 init_thread:
726 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
727 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
728 	if (IS_ERR(fcc->f2fs_issue_flush)) {
729 		err = PTR_ERR(fcc->f2fs_issue_flush);
730 		kvfree(fcc);
731 		SM_I(sbi)->fcc_info = NULL;
732 		return err;
733 	}
734 
735 	return err;
736 }
737 
738 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
739 {
740 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
741 
742 	if (fcc && fcc->f2fs_issue_flush) {
743 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
744 
745 		fcc->f2fs_issue_flush = NULL;
746 		kthread_stop(flush_thread);
747 	}
748 	if (free) {
749 		kvfree(fcc);
750 		SM_I(sbi)->fcc_info = NULL;
751 	}
752 }
753 
754 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
755 {
756 	int ret = 0, i;
757 
758 	if (!f2fs_is_multi_device(sbi))
759 		return 0;
760 
761 	for (i = 1; i < sbi->s_ndevs; i++) {
762 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
763 			continue;
764 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
765 		if (ret)
766 			break;
767 
768 		spin_lock(&sbi->dev_lock);
769 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
770 		spin_unlock(&sbi->dev_lock);
771 	}
772 
773 	return ret;
774 }
775 
776 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
777 		enum dirty_type dirty_type)
778 {
779 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780 
781 	/* need not be added */
782 	if (IS_CURSEG(sbi, segno))
783 		return;
784 
785 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
786 		dirty_i->nr_dirty[dirty_type]++;
787 
788 	if (dirty_type == DIRTY) {
789 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
790 		enum dirty_type t = sentry->type;
791 
792 		if (unlikely(t >= DIRTY)) {
793 			f2fs_bug_on(sbi, 1);
794 			return;
795 		}
796 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
797 			dirty_i->nr_dirty[t]++;
798 	}
799 }
800 
801 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
802 		enum dirty_type dirty_type)
803 {
804 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
805 
806 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
807 		dirty_i->nr_dirty[dirty_type]--;
808 
809 	if (dirty_type == DIRTY) {
810 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
811 		enum dirty_type t = sentry->type;
812 
813 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
814 			dirty_i->nr_dirty[t]--;
815 
816 		if (get_valid_blocks(sbi, segno, true) == 0)
817 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
818 						dirty_i->victim_secmap);
819 	}
820 }
821 
822 /*
823  * Should not occur error such as -ENOMEM.
824  * Adding dirty entry into seglist is not critical operation.
825  * If a given segment is one of current working segments, it won't be added.
826  */
827 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
828 {
829 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
830 	unsigned short valid_blocks, ckpt_valid_blocks;
831 
832 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
833 		return;
834 
835 	mutex_lock(&dirty_i->seglist_lock);
836 
837 	valid_blocks = get_valid_blocks(sbi, segno, false);
838 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
839 
840 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
841 				ckpt_valid_blocks == sbi->blocks_per_seg)) {
842 		__locate_dirty_segment(sbi, segno, PRE);
843 		__remove_dirty_segment(sbi, segno, DIRTY);
844 	} else if (valid_blocks < sbi->blocks_per_seg) {
845 		__locate_dirty_segment(sbi, segno, DIRTY);
846 	} else {
847 		/* Recovery routine with SSR needs this */
848 		__remove_dirty_segment(sbi, segno, DIRTY);
849 	}
850 
851 	mutex_unlock(&dirty_i->seglist_lock);
852 }
853 
854 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
855 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
856 {
857 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
858 	unsigned int segno;
859 
860 	mutex_lock(&dirty_i->seglist_lock);
861 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
862 		if (get_valid_blocks(sbi, segno, false))
863 			continue;
864 		if (IS_CURSEG(sbi, segno))
865 			continue;
866 		__locate_dirty_segment(sbi, segno, PRE);
867 		__remove_dirty_segment(sbi, segno, DIRTY);
868 	}
869 	mutex_unlock(&dirty_i->seglist_lock);
870 }
871 
872 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
873 {
874 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
875 	block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
876 	block_t holes[2] = {0, 0};	/* DATA and NODE */
877 	struct seg_entry *se;
878 	unsigned int segno;
879 
880 	mutex_lock(&dirty_i->seglist_lock);
881 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
882 		se = get_seg_entry(sbi, segno);
883 		if (IS_NODESEG(se->type))
884 			holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
885 		else
886 			holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
887 	}
888 	mutex_unlock(&dirty_i->seglist_lock);
889 
890 	if (holes[DATA] > ovp || holes[NODE] > ovp)
891 		return -EAGAIN;
892 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
893 		dirty_segments(sbi) > overprovision_segments(sbi))
894 		return -EAGAIN;
895 	return 0;
896 }
897 
898 /* This is only used by SBI_CP_DISABLED */
899 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
900 {
901 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
902 	unsigned int segno = 0;
903 
904 	mutex_lock(&dirty_i->seglist_lock);
905 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
906 		if (get_valid_blocks(sbi, segno, false))
907 			continue;
908 		if (get_ckpt_valid_blocks(sbi, segno))
909 			continue;
910 		mutex_unlock(&dirty_i->seglist_lock);
911 		return segno;
912 	}
913 	mutex_unlock(&dirty_i->seglist_lock);
914 	return NULL_SEGNO;
915 }
916 
917 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
918 		struct block_device *bdev, block_t lstart,
919 		block_t start, block_t len)
920 {
921 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
922 	struct list_head *pend_list;
923 	struct discard_cmd *dc;
924 
925 	f2fs_bug_on(sbi, !len);
926 
927 	pend_list = &dcc->pend_list[plist_idx(len)];
928 
929 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
930 	INIT_LIST_HEAD(&dc->list);
931 	dc->bdev = bdev;
932 	dc->lstart = lstart;
933 	dc->start = start;
934 	dc->len = len;
935 	dc->ref = 0;
936 	dc->state = D_PREP;
937 	dc->queued = 0;
938 	dc->error = 0;
939 	init_completion(&dc->wait);
940 	list_add_tail(&dc->list, pend_list);
941 	spin_lock_init(&dc->lock);
942 	dc->bio_ref = 0;
943 	atomic_inc(&dcc->discard_cmd_cnt);
944 	dcc->undiscard_blks += len;
945 
946 	return dc;
947 }
948 
949 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
950 				struct block_device *bdev, block_t lstart,
951 				block_t start, block_t len,
952 				struct rb_node *parent, struct rb_node **p,
953 				bool leftmost)
954 {
955 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
956 	struct discard_cmd *dc;
957 
958 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
959 
960 	rb_link_node(&dc->rb_node, parent, p);
961 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
962 
963 	return dc;
964 }
965 
966 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
967 							struct discard_cmd *dc)
968 {
969 	if (dc->state == D_DONE)
970 		atomic_sub(dc->queued, &dcc->queued_discard);
971 
972 	list_del(&dc->list);
973 	rb_erase_cached(&dc->rb_node, &dcc->root);
974 	dcc->undiscard_blks -= dc->len;
975 
976 	kmem_cache_free(discard_cmd_slab, dc);
977 
978 	atomic_dec(&dcc->discard_cmd_cnt);
979 }
980 
981 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
982 							struct discard_cmd *dc)
983 {
984 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
985 	unsigned long flags;
986 
987 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
988 
989 	spin_lock_irqsave(&dc->lock, flags);
990 	if (dc->bio_ref) {
991 		spin_unlock_irqrestore(&dc->lock, flags);
992 		return;
993 	}
994 	spin_unlock_irqrestore(&dc->lock, flags);
995 
996 	f2fs_bug_on(sbi, dc->ref);
997 
998 	if (dc->error == -EOPNOTSUPP)
999 		dc->error = 0;
1000 
1001 	if (dc->error)
1002 		printk_ratelimited(
1003 			"%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1004 			KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1005 	__detach_discard_cmd(dcc, dc);
1006 }
1007 
1008 static void f2fs_submit_discard_endio(struct bio *bio)
1009 {
1010 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1011 	unsigned long flags;
1012 
1013 	dc->error = blk_status_to_errno(bio->bi_status);
1014 
1015 	spin_lock_irqsave(&dc->lock, flags);
1016 	dc->bio_ref--;
1017 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1018 		dc->state = D_DONE;
1019 		complete_all(&dc->wait);
1020 	}
1021 	spin_unlock_irqrestore(&dc->lock, flags);
1022 	bio_put(bio);
1023 }
1024 
1025 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1026 				block_t start, block_t end)
1027 {
1028 #ifdef CONFIG_F2FS_CHECK_FS
1029 	struct seg_entry *sentry;
1030 	unsigned int segno;
1031 	block_t blk = start;
1032 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1033 	unsigned long *map;
1034 
1035 	while (blk < end) {
1036 		segno = GET_SEGNO(sbi, blk);
1037 		sentry = get_seg_entry(sbi, segno);
1038 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1039 
1040 		if (end < START_BLOCK(sbi, segno + 1))
1041 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1042 		else
1043 			size = max_blocks;
1044 		map = (unsigned long *)(sentry->cur_valid_map);
1045 		offset = __find_rev_next_bit(map, size, offset);
1046 		f2fs_bug_on(sbi, offset != size);
1047 		blk = START_BLOCK(sbi, segno + 1);
1048 	}
1049 #endif
1050 }
1051 
1052 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1053 				struct discard_policy *dpolicy,
1054 				int discard_type, unsigned int granularity)
1055 {
1056 	/* common policy */
1057 	dpolicy->type = discard_type;
1058 	dpolicy->sync = true;
1059 	dpolicy->ordered = false;
1060 	dpolicy->granularity = granularity;
1061 
1062 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1063 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1064 	dpolicy->timeout = 0;
1065 
1066 	if (discard_type == DPOLICY_BG) {
1067 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1068 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1069 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1070 		dpolicy->io_aware = true;
1071 		dpolicy->sync = false;
1072 		dpolicy->ordered = true;
1073 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1074 			dpolicy->granularity = 1;
1075 			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1076 		}
1077 	} else if (discard_type == DPOLICY_FORCE) {
1078 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1079 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1080 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1081 		dpolicy->io_aware = false;
1082 	} else if (discard_type == DPOLICY_FSTRIM) {
1083 		dpolicy->io_aware = false;
1084 	} else if (discard_type == DPOLICY_UMOUNT) {
1085 		dpolicy->max_requests = UINT_MAX;
1086 		dpolicy->io_aware = false;
1087 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1088 		dpolicy->granularity = 1;
1089 	}
1090 }
1091 
1092 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1093 				struct block_device *bdev, block_t lstart,
1094 				block_t start, block_t len);
1095 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1096 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1097 						struct discard_policy *dpolicy,
1098 						struct discard_cmd *dc,
1099 						unsigned int *issued)
1100 {
1101 	struct block_device *bdev = dc->bdev;
1102 	struct request_queue *q = bdev_get_queue(bdev);
1103 	unsigned int max_discard_blocks =
1104 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1105 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1106 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1107 					&(dcc->fstrim_list) : &(dcc->wait_list);
1108 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1109 	block_t lstart, start, len, total_len;
1110 	int err = 0;
1111 
1112 	if (dc->state != D_PREP)
1113 		return 0;
1114 
1115 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1116 		return 0;
1117 
1118 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1119 
1120 	lstart = dc->lstart;
1121 	start = dc->start;
1122 	len = dc->len;
1123 	total_len = len;
1124 
1125 	dc->len = 0;
1126 
1127 	while (total_len && *issued < dpolicy->max_requests && !err) {
1128 		struct bio *bio = NULL;
1129 		unsigned long flags;
1130 		bool last = true;
1131 
1132 		if (len > max_discard_blocks) {
1133 			len = max_discard_blocks;
1134 			last = false;
1135 		}
1136 
1137 		(*issued)++;
1138 		if (*issued == dpolicy->max_requests)
1139 			last = true;
1140 
1141 		dc->len += len;
1142 
1143 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1144 			f2fs_show_injection_info(FAULT_DISCARD);
1145 			err = -EIO;
1146 			goto submit;
1147 		}
1148 		err = __blkdev_issue_discard(bdev,
1149 					SECTOR_FROM_BLOCK(start),
1150 					SECTOR_FROM_BLOCK(len),
1151 					GFP_NOFS, 0, &bio);
1152 submit:
1153 		if (err) {
1154 			spin_lock_irqsave(&dc->lock, flags);
1155 			if (dc->state == D_PARTIAL)
1156 				dc->state = D_SUBMIT;
1157 			spin_unlock_irqrestore(&dc->lock, flags);
1158 
1159 			break;
1160 		}
1161 
1162 		f2fs_bug_on(sbi, !bio);
1163 
1164 		/*
1165 		 * should keep before submission to avoid D_DONE
1166 		 * right away
1167 		 */
1168 		spin_lock_irqsave(&dc->lock, flags);
1169 		if (last)
1170 			dc->state = D_SUBMIT;
1171 		else
1172 			dc->state = D_PARTIAL;
1173 		dc->bio_ref++;
1174 		spin_unlock_irqrestore(&dc->lock, flags);
1175 
1176 		atomic_inc(&dcc->queued_discard);
1177 		dc->queued++;
1178 		list_move_tail(&dc->list, wait_list);
1179 
1180 		/* sanity check on discard range */
1181 		__check_sit_bitmap(sbi, lstart, lstart + len);
1182 
1183 		bio->bi_private = dc;
1184 		bio->bi_end_io = f2fs_submit_discard_endio;
1185 		bio->bi_opf |= flag;
1186 		submit_bio(bio);
1187 
1188 		atomic_inc(&dcc->issued_discard);
1189 
1190 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1191 
1192 		lstart += len;
1193 		start += len;
1194 		total_len -= len;
1195 		len = total_len;
1196 	}
1197 
1198 	if (!err && len)
1199 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1200 	return err;
1201 }
1202 
1203 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1204 				struct block_device *bdev, block_t lstart,
1205 				block_t start, block_t len,
1206 				struct rb_node **insert_p,
1207 				struct rb_node *insert_parent)
1208 {
1209 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1210 	struct rb_node **p;
1211 	struct rb_node *parent = NULL;
1212 	struct discard_cmd *dc = NULL;
1213 	bool leftmost = true;
1214 
1215 	if (insert_p && insert_parent) {
1216 		parent = insert_parent;
1217 		p = insert_p;
1218 		goto do_insert;
1219 	}
1220 
1221 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1222 							lstart, &leftmost);
1223 do_insert:
1224 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1225 								p, leftmost);
1226 	if (!dc)
1227 		return NULL;
1228 
1229 	return dc;
1230 }
1231 
1232 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1233 						struct discard_cmd *dc)
1234 {
1235 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1236 }
1237 
1238 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1239 				struct discard_cmd *dc, block_t blkaddr)
1240 {
1241 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1242 	struct discard_info di = dc->di;
1243 	bool modified = false;
1244 
1245 	if (dc->state == D_DONE || dc->len == 1) {
1246 		__remove_discard_cmd(sbi, dc);
1247 		return;
1248 	}
1249 
1250 	dcc->undiscard_blks -= di.len;
1251 
1252 	if (blkaddr > di.lstart) {
1253 		dc->len = blkaddr - dc->lstart;
1254 		dcc->undiscard_blks += dc->len;
1255 		__relocate_discard_cmd(dcc, dc);
1256 		modified = true;
1257 	}
1258 
1259 	if (blkaddr < di.lstart + di.len - 1) {
1260 		if (modified) {
1261 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1262 					di.start + blkaddr + 1 - di.lstart,
1263 					di.lstart + di.len - 1 - blkaddr,
1264 					NULL, NULL);
1265 		} else {
1266 			dc->lstart++;
1267 			dc->len--;
1268 			dc->start++;
1269 			dcc->undiscard_blks += dc->len;
1270 			__relocate_discard_cmd(dcc, dc);
1271 		}
1272 	}
1273 }
1274 
1275 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1276 				struct block_device *bdev, block_t lstart,
1277 				block_t start, block_t len)
1278 {
1279 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1280 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1281 	struct discard_cmd *dc;
1282 	struct discard_info di = {0};
1283 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1284 	struct request_queue *q = bdev_get_queue(bdev);
1285 	unsigned int max_discard_blocks =
1286 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1287 	block_t end = lstart + len;
1288 
1289 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1290 					NULL, lstart,
1291 					(struct rb_entry **)&prev_dc,
1292 					(struct rb_entry **)&next_dc,
1293 					&insert_p, &insert_parent, true, NULL);
1294 	if (dc)
1295 		prev_dc = dc;
1296 
1297 	if (!prev_dc) {
1298 		di.lstart = lstart;
1299 		di.len = next_dc ? next_dc->lstart - lstart : len;
1300 		di.len = min(di.len, len);
1301 		di.start = start;
1302 	}
1303 
1304 	while (1) {
1305 		struct rb_node *node;
1306 		bool merged = false;
1307 		struct discard_cmd *tdc = NULL;
1308 
1309 		if (prev_dc) {
1310 			di.lstart = prev_dc->lstart + prev_dc->len;
1311 			if (di.lstart < lstart)
1312 				di.lstart = lstart;
1313 			if (di.lstart >= end)
1314 				break;
1315 
1316 			if (!next_dc || next_dc->lstart > end)
1317 				di.len = end - di.lstart;
1318 			else
1319 				di.len = next_dc->lstart - di.lstart;
1320 			di.start = start + di.lstart - lstart;
1321 		}
1322 
1323 		if (!di.len)
1324 			goto next;
1325 
1326 		if (prev_dc && prev_dc->state == D_PREP &&
1327 			prev_dc->bdev == bdev &&
1328 			__is_discard_back_mergeable(&di, &prev_dc->di,
1329 							max_discard_blocks)) {
1330 			prev_dc->di.len += di.len;
1331 			dcc->undiscard_blks += di.len;
1332 			__relocate_discard_cmd(dcc, prev_dc);
1333 			di = prev_dc->di;
1334 			tdc = prev_dc;
1335 			merged = true;
1336 		}
1337 
1338 		if (next_dc && next_dc->state == D_PREP &&
1339 			next_dc->bdev == bdev &&
1340 			__is_discard_front_mergeable(&di, &next_dc->di,
1341 							max_discard_blocks)) {
1342 			next_dc->di.lstart = di.lstart;
1343 			next_dc->di.len += di.len;
1344 			next_dc->di.start = di.start;
1345 			dcc->undiscard_blks += di.len;
1346 			__relocate_discard_cmd(dcc, next_dc);
1347 			if (tdc)
1348 				__remove_discard_cmd(sbi, tdc);
1349 			merged = true;
1350 		}
1351 
1352 		if (!merged) {
1353 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1354 							di.len, NULL, NULL);
1355 		}
1356  next:
1357 		prev_dc = next_dc;
1358 		if (!prev_dc)
1359 			break;
1360 
1361 		node = rb_next(&prev_dc->rb_node);
1362 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1363 	}
1364 }
1365 
1366 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1367 		struct block_device *bdev, block_t blkstart, block_t blklen)
1368 {
1369 	block_t lblkstart = blkstart;
1370 
1371 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1372 
1373 	if (f2fs_is_multi_device(sbi)) {
1374 		int devi = f2fs_target_device_index(sbi, blkstart);
1375 
1376 		blkstart -= FDEV(devi).start_blk;
1377 	}
1378 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1379 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1380 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1381 	return 0;
1382 }
1383 
1384 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1385 					struct discard_policy *dpolicy)
1386 {
1387 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1388 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1389 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1390 	struct discard_cmd *dc;
1391 	struct blk_plug plug;
1392 	unsigned int pos = dcc->next_pos;
1393 	unsigned int issued = 0;
1394 	bool io_interrupted = false;
1395 
1396 	mutex_lock(&dcc->cmd_lock);
1397 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1398 					NULL, pos,
1399 					(struct rb_entry **)&prev_dc,
1400 					(struct rb_entry **)&next_dc,
1401 					&insert_p, &insert_parent, true, NULL);
1402 	if (!dc)
1403 		dc = next_dc;
1404 
1405 	blk_start_plug(&plug);
1406 
1407 	while (dc) {
1408 		struct rb_node *node;
1409 		int err = 0;
1410 
1411 		if (dc->state != D_PREP)
1412 			goto next;
1413 
1414 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1415 			io_interrupted = true;
1416 			break;
1417 		}
1418 
1419 		dcc->next_pos = dc->lstart + dc->len;
1420 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1421 
1422 		if (issued >= dpolicy->max_requests)
1423 			break;
1424 next:
1425 		node = rb_next(&dc->rb_node);
1426 		if (err)
1427 			__remove_discard_cmd(sbi, dc);
1428 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429 	}
1430 
1431 	blk_finish_plug(&plug);
1432 
1433 	if (!dc)
1434 		dcc->next_pos = 0;
1435 
1436 	mutex_unlock(&dcc->cmd_lock);
1437 
1438 	if (!issued && io_interrupted)
1439 		issued = -1;
1440 
1441 	return issued;
1442 }
1443 
1444 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1445 					struct discard_policy *dpolicy)
1446 {
1447 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1448 	struct list_head *pend_list;
1449 	struct discard_cmd *dc, *tmp;
1450 	struct blk_plug plug;
1451 	int i, issued = 0;
1452 	bool io_interrupted = false;
1453 
1454 	if (dpolicy->timeout != 0)
1455 		f2fs_update_time(sbi, dpolicy->timeout);
1456 
1457 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1458 		if (dpolicy->timeout != 0 &&
1459 				f2fs_time_over(sbi, dpolicy->timeout))
1460 			break;
1461 
1462 		if (i + 1 < dpolicy->granularity)
1463 			break;
1464 
1465 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1466 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1467 
1468 		pend_list = &dcc->pend_list[i];
1469 
1470 		mutex_lock(&dcc->cmd_lock);
1471 		if (list_empty(pend_list))
1472 			goto next;
1473 		if (unlikely(dcc->rbtree_check))
1474 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1475 								&dcc->root));
1476 		blk_start_plug(&plug);
1477 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1478 			f2fs_bug_on(sbi, dc->state != D_PREP);
1479 
1480 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1481 						!is_idle(sbi, DISCARD_TIME)) {
1482 				io_interrupted = true;
1483 				break;
1484 			}
1485 
1486 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1487 
1488 			if (issued >= dpolicy->max_requests)
1489 				break;
1490 		}
1491 		blk_finish_plug(&plug);
1492 next:
1493 		mutex_unlock(&dcc->cmd_lock);
1494 
1495 		if (issued >= dpolicy->max_requests || io_interrupted)
1496 			break;
1497 	}
1498 
1499 	if (!issued && io_interrupted)
1500 		issued = -1;
1501 
1502 	return issued;
1503 }
1504 
1505 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1506 {
1507 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1508 	struct list_head *pend_list;
1509 	struct discard_cmd *dc, *tmp;
1510 	int i;
1511 	bool dropped = false;
1512 
1513 	mutex_lock(&dcc->cmd_lock);
1514 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1515 		pend_list = &dcc->pend_list[i];
1516 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1517 			f2fs_bug_on(sbi, dc->state != D_PREP);
1518 			__remove_discard_cmd(sbi, dc);
1519 			dropped = true;
1520 		}
1521 	}
1522 	mutex_unlock(&dcc->cmd_lock);
1523 
1524 	return dropped;
1525 }
1526 
1527 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1528 {
1529 	__drop_discard_cmd(sbi);
1530 }
1531 
1532 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1533 							struct discard_cmd *dc)
1534 {
1535 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1536 	unsigned int len = 0;
1537 
1538 	wait_for_completion_io(&dc->wait);
1539 	mutex_lock(&dcc->cmd_lock);
1540 	f2fs_bug_on(sbi, dc->state != D_DONE);
1541 	dc->ref--;
1542 	if (!dc->ref) {
1543 		if (!dc->error)
1544 			len = dc->len;
1545 		__remove_discard_cmd(sbi, dc);
1546 	}
1547 	mutex_unlock(&dcc->cmd_lock);
1548 
1549 	return len;
1550 }
1551 
1552 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1553 						struct discard_policy *dpolicy,
1554 						block_t start, block_t end)
1555 {
1556 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1557 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1558 					&(dcc->fstrim_list) : &(dcc->wait_list);
1559 	struct discard_cmd *dc, *tmp;
1560 	bool need_wait;
1561 	unsigned int trimmed = 0;
1562 
1563 next:
1564 	need_wait = false;
1565 
1566 	mutex_lock(&dcc->cmd_lock);
1567 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1568 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1569 			continue;
1570 		if (dc->len < dpolicy->granularity)
1571 			continue;
1572 		if (dc->state == D_DONE && !dc->ref) {
1573 			wait_for_completion_io(&dc->wait);
1574 			if (!dc->error)
1575 				trimmed += dc->len;
1576 			__remove_discard_cmd(sbi, dc);
1577 		} else {
1578 			dc->ref++;
1579 			need_wait = true;
1580 			break;
1581 		}
1582 	}
1583 	mutex_unlock(&dcc->cmd_lock);
1584 
1585 	if (need_wait) {
1586 		trimmed += __wait_one_discard_bio(sbi, dc);
1587 		goto next;
1588 	}
1589 
1590 	return trimmed;
1591 }
1592 
1593 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1594 						struct discard_policy *dpolicy)
1595 {
1596 	struct discard_policy dp;
1597 	unsigned int discard_blks;
1598 
1599 	if (dpolicy)
1600 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1601 
1602 	/* wait all */
1603 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1604 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1605 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1606 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1607 
1608 	return discard_blks;
1609 }
1610 
1611 /* This should be covered by global mutex, &sit_i->sentry_lock */
1612 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1613 {
1614 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1615 	struct discard_cmd *dc;
1616 	bool need_wait = false;
1617 
1618 	mutex_lock(&dcc->cmd_lock);
1619 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1620 							NULL, blkaddr);
1621 	if (dc) {
1622 		if (dc->state == D_PREP) {
1623 			__punch_discard_cmd(sbi, dc, blkaddr);
1624 		} else {
1625 			dc->ref++;
1626 			need_wait = true;
1627 		}
1628 	}
1629 	mutex_unlock(&dcc->cmd_lock);
1630 
1631 	if (need_wait)
1632 		__wait_one_discard_bio(sbi, dc);
1633 }
1634 
1635 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1636 {
1637 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1638 
1639 	if (dcc && dcc->f2fs_issue_discard) {
1640 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1641 
1642 		dcc->f2fs_issue_discard = NULL;
1643 		kthread_stop(discard_thread);
1644 	}
1645 }
1646 
1647 /* This comes from f2fs_put_super */
1648 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1649 {
1650 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1651 	struct discard_policy dpolicy;
1652 	bool dropped;
1653 
1654 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1655 					dcc->discard_granularity);
1656 	dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1657 	__issue_discard_cmd(sbi, &dpolicy);
1658 	dropped = __drop_discard_cmd(sbi);
1659 
1660 	/* just to make sure there is no pending discard commands */
1661 	__wait_all_discard_cmd(sbi, NULL);
1662 
1663 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1664 	return dropped;
1665 }
1666 
1667 static int issue_discard_thread(void *data)
1668 {
1669 	struct f2fs_sb_info *sbi = data;
1670 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1671 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1672 	struct discard_policy dpolicy;
1673 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1674 	int issued;
1675 
1676 	set_freezable();
1677 
1678 	do {
1679 		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1680 					dcc->discard_granularity);
1681 
1682 		wait_event_interruptible_timeout(*q,
1683 				kthread_should_stop() || freezing(current) ||
1684 				dcc->discard_wake,
1685 				msecs_to_jiffies(wait_ms));
1686 
1687 		if (dcc->discard_wake)
1688 			dcc->discard_wake = 0;
1689 
1690 		/* clean up pending candidates before going to sleep */
1691 		if (atomic_read(&dcc->queued_discard))
1692 			__wait_all_discard_cmd(sbi, NULL);
1693 
1694 		if (try_to_freeze())
1695 			continue;
1696 		if (f2fs_readonly(sbi->sb))
1697 			continue;
1698 		if (kthread_should_stop())
1699 			return 0;
1700 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1701 			wait_ms = dpolicy.max_interval;
1702 			continue;
1703 		}
1704 
1705 		if (sbi->gc_mode == GC_URGENT)
1706 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1707 
1708 		sb_start_intwrite(sbi->sb);
1709 
1710 		issued = __issue_discard_cmd(sbi, &dpolicy);
1711 		if (issued > 0) {
1712 			__wait_all_discard_cmd(sbi, &dpolicy);
1713 			wait_ms = dpolicy.min_interval;
1714 		} else if (issued == -1){
1715 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1716 			if (!wait_ms)
1717 				wait_ms = dpolicy.mid_interval;
1718 		} else {
1719 			wait_ms = dpolicy.max_interval;
1720 		}
1721 
1722 		sb_end_intwrite(sbi->sb);
1723 
1724 	} while (!kthread_should_stop());
1725 	return 0;
1726 }
1727 
1728 #ifdef CONFIG_BLK_DEV_ZONED
1729 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1730 		struct block_device *bdev, block_t blkstart, block_t blklen)
1731 {
1732 	sector_t sector, nr_sects;
1733 	block_t lblkstart = blkstart;
1734 	int devi = 0;
1735 
1736 	if (f2fs_is_multi_device(sbi)) {
1737 		devi = f2fs_target_device_index(sbi, blkstart);
1738 		if (blkstart < FDEV(devi).start_blk ||
1739 		    blkstart > FDEV(devi).end_blk) {
1740 			f2fs_msg(sbi->sb, KERN_ERR, "Invalid block %x",
1741 				 blkstart);
1742 			return -EIO;
1743 		}
1744 		blkstart -= FDEV(devi).start_blk;
1745 	}
1746 
1747 	/* For sequential zones, reset the zone write pointer */
1748 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1749 		sector = SECTOR_FROM_BLOCK(blkstart);
1750 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1751 
1752 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1753 				nr_sects != bdev_zone_sectors(bdev)) {
1754 			f2fs_msg(sbi->sb, KERN_ERR,
1755 				"(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1756 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
1757 				blkstart, blklen);
1758 			return -EIO;
1759 		}
1760 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1761 		return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1762 	}
1763 
1764 	/* For conventional zones, use regular discard if supported */
1765 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1766 		return 0;
1767 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1768 }
1769 #endif
1770 
1771 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1772 		struct block_device *bdev, block_t blkstart, block_t blklen)
1773 {
1774 #ifdef CONFIG_BLK_DEV_ZONED
1775 	if (f2fs_sb_has_blkzoned(sbi) &&
1776 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1777 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1778 #endif
1779 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1780 }
1781 
1782 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1783 				block_t blkstart, block_t blklen)
1784 {
1785 	sector_t start = blkstart, len = 0;
1786 	struct block_device *bdev;
1787 	struct seg_entry *se;
1788 	unsigned int offset;
1789 	block_t i;
1790 	int err = 0;
1791 
1792 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1793 
1794 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1795 		if (i != start) {
1796 			struct block_device *bdev2 =
1797 				f2fs_target_device(sbi, i, NULL);
1798 
1799 			if (bdev2 != bdev) {
1800 				err = __issue_discard_async(sbi, bdev,
1801 						start, len);
1802 				if (err)
1803 					return err;
1804 				bdev = bdev2;
1805 				start = i;
1806 				len = 0;
1807 			}
1808 		}
1809 
1810 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1811 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1812 
1813 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1814 			sbi->discard_blks--;
1815 	}
1816 
1817 	if (len)
1818 		err = __issue_discard_async(sbi, bdev, start, len);
1819 	return err;
1820 }
1821 
1822 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1823 							bool check_only)
1824 {
1825 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1826 	int max_blocks = sbi->blocks_per_seg;
1827 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1828 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1829 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1830 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1831 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1832 	unsigned int start = 0, end = -1;
1833 	bool force = (cpc->reason & CP_DISCARD);
1834 	struct discard_entry *de = NULL;
1835 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1836 	int i;
1837 
1838 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1839 		return false;
1840 
1841 	if (!force) {
1842 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1843 			SM_I(sbi)->dcc_info->nr_discards >=
1844 				SM_I(sbi)->dcc_info->max_discards)
1845 			return false;
1846 	}
1847 
1848 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1849 	for (i = 0; i < entries; i++)
1850 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1851 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1852 
1853 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1854 				SM_I(sbi)->dcc_info->max_discards) {
1855 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1856 		if (start >= max_blocks)
1857 			break;
1858 
1859 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1860 		if (force && start && end != max_blocks
1861 					&& (end - start) < cpc->trim_minlen)
1862 			continue;
1863 
1864 		if (check_only)
1865 			return true;
1866 
1867 		if (!de) {
1868 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1869 								GFP_F2FS_ZERO);
1870 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1871 			list_add_tail(&de->list, head);
1872 		}
1873 
1874 		for (i = start; i < end; i++)
1875 			__set_bit_le(i, (void *)de->discard_map);
1876 
1877 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1878 	}
1879 	return false;
1880 }
1881 
1882 static void release_discard_addr(struct discard_entry *entry)
1883 {
1884 	list_del(&entry->list);
1885 	kmem_cache_free(discard_entry_slab, entry);
1886 }
1887 
1888 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1889 {
1890 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1891 	struct discard_entry *entry, *this;
1892 
1893 	/* drop caches */
1894 	list_for_each_entry_safe(entry, this, head, list)
1895 		release_discard_addr(entry);
1896 }
1897 
1898 /*
1899  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1900  */
1901 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1902 {
1903 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1904 	unsigned int segno;
1905 
1906 	mutex_lock(&dirty_i->seglist_lock);
1907 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1908 		__set_test_and_free(sbi, segno);
1909 	mutex_unlock(&dirty_i->seglist_lock);
1910 }
1911 
1912 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1913 						struct cp_control *cpc)
1914 {
1915 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1916 	struct list_head *head = &dcc->entry_list;
1917 	struct discard_entry *entry, *this;
1918 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1919 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1920 	unsigned int start = 0, end = -1;
1921 	unsigned int secno, start_segno;
1922 	bool force = (cpc->reason & CP_DISCARD);
1923 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1924 
1925 	mutex_lock(&dirty_i->seglist_lock);
1926 
1927 	while (1) {
1928 		int i;
1929 
1930 		if (need_align && end != -1)
1931 			end--;
1932 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1933 		if (start >= MAIN_SEGS(sbi))
1934 			break;
1935 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1936 								start + 1);
1937 
1938 		if (need_align) {
1939 			start = rounddown(start, sbi->segs_per_sec);
1940 			end = roundup(end, sbi->segs_per_sec);
1941 		}
1942 
1943 		for (i = start; i < end; i++) {
1944 			if (test_and_clear_bit(i, prefree_map))
1945 				dirty_i->nr_dirty[PRE]--;
1946 		}
1947 
1948 		if (!f2fs_realtime_discard_enable(sbi))
1949 			continue;
1950 
1951 		if (force && start >= cpc->trim_start &&
1952 					(end - 1) <= cpc->trim_end)
1953 				continue;
1954 
1955 		if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1956 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1957 				(end - start) << sbi->log_blocks_per_seg);
1958 			continue;
1959 		}
1960 next:
1961 		secno = GET_SEC_FROM_SEG(sbi, start);
1962 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1963 		if (!IS_CURSEC(sbi, secno) &&
1964 			!get_valid_blocks(sbi, start, true))
1965 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1966 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1967 
1968 		start = start_segno + sbi->segs_per_sec;
1969 		if (start < end)
1970 			goto next;
1971 		else
1972 			end = start - 1;
1973 	}
1974 	mutex_unlock(&dirty_i->seglist_lock);
1975 
1976 	/* send small discards */
1977 	list_for_each_entry_safe(entry, this, head, list) {
1978 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1979 		bool is_valid = test_bit_le(0, entry->discard_map);
1980 
1981 find_next:
1982 		if (is_valid) {
1983 			next_pos = find_next_zero_bit_le(entry->discard_map,
1984 					sbi->blocks_per_seg, cur_pos);
1985 			len = next_pos - cur_pos;
1986 
1987 			if (f2fs_sb_has_blkzoned(sbi) ||
1988 			    (force && len < cpc->trim_minlen))
1989 				goto skip;
1990 
1991 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1992 									len);
1993 			total_len += len;
1994 		} else {
1995 			next_pos = find_next_bit_le(entry->discard_map,
1996 					sbi->blocks_per_seg, cur_pos);
1997 		}
1998 skip:
1999 		cur_pos = next_pos;
2000 		is_valid = !is_valid;
2001 
2002 		if (cur_pos < sbi->blocks_per_seg)
2003 			goto find_next;
2004 
2005 		release_discard_addr(entry);
2006 		dcc->nr_discards -= total_len;
2007 	}
2008 
2009 	wake_up_discard_thread(sbi, false);
2010 }
2011 
2012 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2013 {
2014 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2015 	struct discard_cmd_control *dcc;
2016 	int err = 0, i;
2017 
2018 	if (SM_I(sbi)->dcc_info) {
2019 		dcc = SM_I(sbi)->dcc_info;
2020 		goto init_thread;
2021 	}
2022 
2023 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2024 	if (!dcc)
2025 		return -ENOMEM;
2026 
2027 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2028 	INIT_LIST_HEAD(&dcc->entry_list);
2029 	for (i = 0; i < MAX_PLIST_NUM; i++)
2030 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2031 	INIT_LIST_HEAD(&dcc->wait_list);
2032 	INIT_LIST_HEAD(&dcc->fstrim_list);
2033 	mutex_init(&dcc->cmd_lock);
2034 	atomic_set(&dcc->issued_discard, 0);
2035 	atomic_set(&dcc->queued_discard, 0);
2036 	atomic_set(&dcc->discard_cmd_cnt, 0);
2037 	dcc->nr_discards = 0;
2038 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2039 	dcc->undiscard_blks = 0;
2040 	dcc->next_pos = 0;
2041 	dcc->root = RB_ROOT_CACHED;
2042 	dcc->rbtree_check = false;
2043 
2044 	init_waitqueue_head(&dcc->discard_wait_queue);
2045 	SM_I(sbi)->dcc_info = dcc;
2046 init_thread:
2047 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2048 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2049 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2050 		err = PTR_ERR(dcc->f2fs_issue_discard);
2051 		kvfree(dcc);
2052 		SM_I(sbi)->dcc_info = NULL;
2053 		return err;
2054 	}
2055 
2056 	return err;
2057 }
2058 
2059 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2060 {
2061 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2062 
2063 	if (!dcc)
2064 		return;
2065 
2066 	f2fs_stop_discard_thread(sbi);
2067 
2068 	kvfree(dcc);
2069 	SM_I(sbi)->dcc_info = NULL;
2070 }
2071 
2072 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2073 {
2074 	struct sit_info *sit_i = SIT_I(sbi);
2075 
2076 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2077 		sit_i->dirty_sentries++;
2078 		return false;
2079 	}
2080 
2081 	return true;
2082 }
2083 
2084 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2085 					unsigned int segno, int modified)
2086 {
2087 	struct seg_entry *se = get_seg_entry(sbi, segno);
2088 	se->type = type;
2089 	if (modified)
2090 		__mark_sit_entry_dirty(sbi, segno);
2091 }
2092 
2093 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2094 {
2095 	struct seg_entry *se;
2096 	unsigned int segno, offset;
2097 	long int new_vblocks;
2098 	bool exist;
2099 #ifdef CONFIG_F2FS_CHECK_FS
2100 	bool mir_exist;
2101 #endif
2102 
2103 	segno = GET_SEGNO(sbi, blkaddr);
2104 
2105 	se = get_seg_entry(sbi, segno);
2106 	new_vblocks = se->valid_blocks + del;
2107 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2108 
2109 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2110 				(new_vblocks > sbi->blocks_per_seg)));
2111 
2112 	se->valid_blocks = new_vblocks;
2113 	se->mtime = get_mtime(sbi, false);
2114 	if (se->mtime > SIT_I(sbi)->max_mtime)
2115 		SIT_I(sbi)->max_mtime = se->mtime;
2116 
2117 	/* Update valid block bitmap */
2118 	if (del > 0) {
2119 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2120 #ifdef CONFIG_F2FS_CHECK_FS
2121 		mir_exist = f2fs_test_and_set_bit(offset,
2122 						se->cur_valid_map_mir);
2123 		if (unlikely(exist != mir_exist)) {
2124 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2125 				"when setting bitmap, blk:%u, old bit:%d",
2126 				blkaddr, exist);
2127 			f2fs_bug_on(sbi, 1);
2128 		}
2129 #endif
2130 		if (unlikely(exist)) {
2131 			f2fs_msg(sbi->sb, KERN_ERR,
2132 				"Bitmap was wrongly set, blk:%u", blkaddr);
2133 			f2fs_bug_on(sbi, 1);
2134 			se->valid_blocks--;
2135 			del = 0;
2136 		}
2137 
2138 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2139 			sbi->discard_blks--;
2140 
2141 		/* don't overwrite by SSR to keep node chain */
2142 		if (IS_NODESEG(se->type) &&
2143 				!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2144 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2145 				se->ckpt_valid_blocks++;
2146 		}
2147 	} else {
2148 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2149 #ifdef CONFIG_F2FS_CHECK_FS
2150 		mir_exist = f2fs_test_and_clear_bit(offset,
2151 						se->cur_valid_map_mir);
2152 		if (unlikely(exist != mir_exist)) {
2153 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2154 				"when clearing bitmap, blk:%u, old bit:%d",
2155 				blkaddr, exist);
2156 			f2fs_bug_on(sbi, 1);
2157 		}
2158 #endif
2159 		if (unlikely(!exist)) {
2160 			f2fs_msg(sbi->sb, KERN_ERR,
2161 				"Bitmap was wrongly cleared, blk:%u", blkaddr);
2162 			f2fs_bug_on(sbi, 1);
2163 			se->valid_blocks++;
2164 			del = 0;
2165 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2166 			/*
2167 			 * If checkpoints are off, we must not reuse data that
2168 			 * was used in the previous checkpoint. If it was used
2169 			 * before, we must track that to know how much space we
2170 			 * really have.
2171 			 */
2172 			if (f2fs_test_bit(offset, se->ckpt_valid_map))
2173 				sbi->unusable_block_count++;
2174 		}
2175 
2176 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2177 			sbi->discard_blks++;
2178 	}
2179 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2180 		se->ckpt_valid_blocks += del;
2181 
2182 	__mark_sit_entry_dirty(sbi, segno);
2183 
2184 	/* update total number of valid blocks to be written in ckpt area */
2185 	SIT_I(sbi)->written_valid_blocks += del;
2186 
2187 	if (__is_large_section(sbi))
2188 		get_sec_entry(sbi, segno)->valid_blocks += del;
2189 }
2190 
2191 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2192 {
2193 	unsigned int segno = GET_SEGNO(sbi, addr);
2194 	struct sit_info *sit_i = SIT_I(sbi);
2195 
2196 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2197 	if (addr == NEW_ADDR)
2198 		return;
2199 
2200 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2201 
2202 	/* add it into sit main buffer */
2203 	down_write(&sit_i->sentry_lock);
2204 
2205 	update_sit_entry(sbi, addr, -1);
2206 
2207 	/* add it into dirty seglist */
2208 	locate_dirty_segment(sbi, segno);
2209 
2210 	up_write(&sit_i->sentry_lock);
2211 }
2212 
2213 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2214 {
2215 	struct sit_info *sit_i = SIT_I(sbi);
2216 	unsigned int segno, offset;
2217 	struct seg_entry *se;
2218 	bool is_cp = false;
2219 
2220 	if (!is_valid_data_blkaddr(sbi, blkaddr))
2221 		return true;
2222 
2223 	down_read(&sit_i->sentry_lock);
2224 
2225 	segno = GET_SEGNO(sbi, blkaddr);
2226 	se = get_seg_entry(sbi, segno);
2227 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2228 
2229 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2230 		is_cp = true;
2231 
2232 	up_read(&sit_i->sentry_lock);
2233 
2234 	return is_cp;
2235 }
2236 
2237 /*
2238  * This function should be resided under the curseg_mutex lock
2239  */
2240 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2241 					struct f2fs_summary *sum)
2242 {
2243 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2244 	void *addr = curseg->sum_blk;
2245 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2246 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2247 }
2248 
2249 /*
2250  * Calculate the number of current summary pages for writing
2251  */
2252 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2253 {
2254 	int valid_sum_count = 0;
2255 	int i, sum_in_page;
2256 
2257 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2258 		if (sbi->ckpt->alloc_type[i] == SSR)
2259 			valid_sum_count += sbi->blocks_per_seg;
2260 		else {
2261 			if (for_ra)
2262 				valid_sum_count += le16_to_cpu(
2263 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2264 			else
2265 				valid_sum_count += curseg_blkoff(sbi, i);
2266 		}
2267 	}
2268 
2269 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2270 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2271 	if (valid_sum_count <= sum_in_page)
2272 		return 1;
2273 	else if ((valid_sum_count - sum_in_page) <=
2274 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2275 		return 2;
2276 	return 3;
2277 }
2278 
2279 /*
2280  * Caller should put this summary page
2281  */
2282 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2283 {
2284 	return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2285 }
2286 
2287 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2288 					void *src, block_t blk_addr)
2289 {
2290 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2291 
2292 	memcpy(page_address(page), src, PAGE_SIZE);
2293 	set_page_dirty(page);
2294 	f2fs_put_page(page, 1);
2295 }
2296 
2297 static void write_sum_page(struct f2fs_sb_info *sbi,
2298 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2299 {
2300 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2301 }
2302 
2303 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2304 						int type, block_t blk_addr)
2305 {
2306 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2307 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2308 	struct f2fs_summary_block *src = curseg->sum_blk;
2309 	struct f2fs_summary_block *dst;
2310 
2311 	dst = (struct f2fs_summary_block *)page_address(page);
2312 	memset(dst, 0, PAGE_SIZE);
2313 
2314 	mutex_lock(&curseg->curseg_mutex);
2315 
2316 	down_read(&curseg->journal_rwsem);
2317 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2318 	up_read(&curseg->journal_rwsem);
2319 
2320 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2321 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2322 
2323 	mutex_unlock(&curseg->curseg_mutex);
2324 
2325 	set_page_dirty(page);
2326 	f2fs_put_page(page, 1);
2327 }
2328 
2329 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2330 {
2331 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2332 	unsigned int segno = curseg->segno + 1;
2333 	struct free_segmap_info *free_i = FREE_I(sbi);
2334 
2335 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2336 		return !test_bit(segno, free_i->free_segmap);
2337 	return 0;
2338 }
2339 
2340 /*
2341  * Find a new segment from the free segments bitmap to right order
2342  * This function should be returned with success, otherwise BUG
2343  */
2344 static void get_new_segment(struct f2fs_sb_info *sbi,
2345 			unsigned int *newseg, bool new_sec, int dir)
2346 {
2347 	struct free_segmap_info *free_i = FREE_I(sbi);
2348 	unsigned int segno, secno, zoneno;
2349 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2350 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2351 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2352 	unsigned int left_start = hint;
2353 	bool init = true;
2354 	int go_left = 0;
2355 	int i;
2356 
2357 	spin_lock(&free_i->segmap_lock);
2358 
2359 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2360 		segno = find_next_zero_bit(free_i->free_segmap,
2361 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2362 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2363 			goto got_it;
2364 	}
2365 find_other_zone:
2366 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2367 	if (secno >= MAIN_SECS(sbi)) {
2368 		if (dir == ALLOC_RIGHT) {
2369 			secno = find_next_zero_bit(free_i->free_secmap,
2370 							MAIN_SECS(sbi), 0);
2371 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2372 		} else {
2373 			go_left = 1;
2374 			left_start = hint - 1;
2375 		}
2376 	}
2377 	if (go_left == 0)
2378 		goto skip_left;
2379 
2380 	while (test_bit(left_start, free_i->free_secmap)) {
2381 		if (left_start > 0) {
2382 			left_start--;
2383 			continue;
2384 		}
2385 		left_start = find_next_zero_bit(free_i->free_secmap,
2386 							MAIN_SECS(sbi), 0);
2387 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2388 		break;
2389 	}
2390 	secno = left_start;
2391 skip_left:
2392 	segno = GET_SEG_FROM_SEC(sbi, secno);
2393 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2394 
2395 	/* give up on finding another zone */
2396 	if (!init)
2397 		goto got_it;
2398 	if (sbi->secs_per_zone == 1)
2399 		goto got_it;
2400 	if (zoneno == old_zoneno)
2401 		goto got_it;
2402 	if (dir == ALLOC_LEFT) {
2403 		if (!go_left && zoneno + 1 >= total_zones)
2404 			goto got_it;
2405 		if (go_left && zoneno == 0)
2406 			goto got_it;
2407 	}
2408 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2409 		if (CURSEG_I(sbi, i)->zone == zoneno)
2410 			break;
2411 
2412 	if (i < NR_CURSEG_TYPE) {
2413 		/* zone is in user, try another */
2414 		if (go_left)
2415 			hint = zoneno * sbi->secs_per_zone - 1;
2416 		else if (zoneno + 1 >= total_zones)
2417 			hint = 0;
2418 		else
2419 			hint = (zoneno + 1) * sbi->secs_per_zone;
2420 		init = false;
2421 		goto find_other_zone;
2422 	}
2423 got_it:
2424 	/* set it as dirty segment in free segmap */
2425 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2426 	__set_inuse(sbi, segno);
2427 	*newseg = segno;
2428 	spin_unlock(&free_i->segmap_lock);
2429 }
2430 
2431 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2432 {
2433 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2434 	struct summary_footer *sum_footer;
2435 
2436 	curseg->segno = curseg->next_segno;
2437 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2438 	curseg->next_blkoff = 0;
2439 	curseg->next_segno = NULL_SEGNO;
2440 
2441 	sum_footer = &(curseg->sum_blk->footer);
2442 	memset(sum_footer, 0, sizeof(struct summary_footer));
2443 	if (IS_DATASEG(type))
2444 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2445 	if (IS_NODESEG(type))
2446 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2447 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2448 }
2449 
2450 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2451 {
2452 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2453 	if (__is_large_section(sbi))
2454 		return CURSEG_I(sbi, type)->segno;
2455 
2456 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2457 		return 0;
2458 
2459 	if (test_opt(sbi, NOHEAP) &&
2460 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2461 		return 0;
2462 
2463 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2464 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2465 
2466 	/* find segments from 0 to reuse freed segments */
2467 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2468 		return 0;
2469 
2470 	return CURSEG_I(sbi, type)->segno;
2471 }
2472 
2473 /*
2474  * Allocate a current working segment.
2475  * This function always allocates a free segment in LFS manner.
2476  */
2477 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2478 {
2479 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2480 	unsigned int segno = curseg->segno;
2481 	int dir = ALLOC_LEFT;
2482 
2483 	write_sum_page(sbi, curseg->sum_blk,
2484 				GET_SUM_BLOCK(sbi, segno));
2485 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2486 		dir = ALLOC_RIGHT;
2487 
2488 	if (test_opt(sbi, NOHEAP))
2489 		dir = ALLOC_RIGHT;
2490 
2491 	segno = __get_next_segno(sbi, type);
2492 	get_new_segment(sbi, &segno, new_sec, dir);
2493 	curseg->next_segno = segno;
2494 	reset_curseg(sbi, type, 1);
2495 	curseg->alloc_type = LFS;
2496 }
2497 
2498 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2499 			struct curseg_info *seg, block_t start)
2500 {
2501 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2502 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2503 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2504 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2505 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2506 	int i, pos;
2507 
2508 	for (i = 0; i < entries; i++)
2509 		target_map[i] = ckpt_map[i] | cur_map[i];
2510 
2511 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2512 
2513 	seg->next_blkoff = pos;
2514 }
2515 
2516 /*
2517  * If a segment is written by LFS manner, next block offset is just obtained
2518  * by increasing the current block offset. However, if a segment is written by
2519  * SSR manner, next block offset obtained by calling __next_free_blkoff
2520  */
2521 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2522 				struct curseg_info *seg)
2523 {
2524 	if (seg->alloc_type == SSR)
2525 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2526 	else
2527 		seg->next_blkoff++;
2528 }
2529 
2530 /*
2531  * This function always allocates a used segment(from dirty seglist) by SSR
2532  * manner, so it should recover the existing segment information of valid blocks
2533  */
2534 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2535 {
2536 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2537 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2538 	unsigned int new_segno = curseg->next_segno;
2539 	struct f2fs_summary_block *sum_node;
2540 	struct page *sum_page;
2541 
2542 	write_sum_page(sbi, curseg->sum_blk,
2543 				GET_SUM_BLOCK(sbi, curseg->segno));
2544 	__set_test_and_inuse(sbi, new_segno);
2545 
2546 	mutex_lock(&dirty_i->seglist_lock);
2547 	__remove_dirty_segment(sbi, new_segno, PRE);
2548 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2549 	mutex_unlock(&dirty_i->seglist_lock);
2550 
2551 	reset_curseg(sbi, type, 1);
2552 	curseg->alloc_type = SSR;
2553 	__next_free_blkoff(sbi, curseg, 0);
2554 
2555 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2556 	f2fs_bug_on(sbi, IS_ERR(sum_page));
2557 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2558 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2559 	f2fs_put_page(sum_page, 1);
2560 }
2561 
2562 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2563 {
2564 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2565 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2566 	unsigned segno = NULL_SEGNO;
2567 	int i, cnt;
2568 	bool reversed = false;
2569 
2570 	/* f2fs_need_SSR() already forces to do this */
2571 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2572 		curseg->next_segno = segno;
2573 		return 1;
2574 	}
2575 
2576 	/* For node segments, let's do SSR more intensively */
2577 	if (IS_NODESEG(type)) {
2578 		if (type >= CURSEG_WARM_NODE) {
2579 			reversed = true;
2580 			i = CURSEG_COLD_NODE;
2581 		} else {
2582 			i = CURSEG_HOT_NODE;
2583 		}
2584 		cnt = NR_CURSEG_NODE_TYPE;
2585 	} else {
2586 		if (type >= CURSEG_WARM_DATA) {
2587 			reversed = true;
2588 			i = CURSEG_COLD_DATA;
2589 		} else {
2590 			i = CURSEG_HOT_DATA;
2591 		}
2592 		cnt = NR_CURSEG_DATA_TYPE;
2593 	}
2594 
2595 	for (; cnt-- > 0; reversed ? i-- : i++) {
2596 		if (i == type)
2597 			continue;
2598 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2599 			curseg->next_segno = segno;
2600 			return 1;
2601 		}
2602 	}
2603 
2604 	/* find valid_blocks=0 in dirty list */
2605 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2606 		segno = get_free_segment(sbi);
2607 		if (segno != NULL_SEGNO) {
2608 			curseg->next_segno = segno;
2609 			return 1;
2610 		}
2611 	}
2612 	return 0;
2613 }
2614 
2615 /*
2616  * flush out current segment and replace it with new segment
2617  * This function should be returned with success, otherwise BUG
2618  */
2619 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2620 						int type, bool force)
2621 {
2622 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2623 
2624 	if (force)
2625 		new_curseg(sbi, type, true);
2626 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2627 					type == CURSEG_WARM_NODE)
2628 		new_curseg(sbi, type, false);
2629 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2630 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2631 		new_curseg(sbi, type, false);
2632 	else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2633 		change_curseg(sbi, type);
2634 	else
2635 		new_curseg(sbi, type, false);
2636 
2637 	stat_inc_seg_type(sbi, curseg);
2638 }
2639 
2640 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2641 {
2642 	struct curseg_info *curseg;
2643 	unsigned int old_segno;
2644 	int i;
2645 
2646 	down_write(&SIT_I(sbi)->sentry_lock);
2647 
2648 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2649 		curseg = CURSEG_I(sbi, i);
2650 		old_segno = curseg->segno;
2651 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2652 		locate_dirty_segment(sbi, old_segno);
2653 	}
2654 
2655 	up_write(&SIT_I(sbi)->sentry_lock);
2656 }
2657 
2658 static const struct segment_allocation default_salloc_ops = {
2659 	.allocate_segment = allocate_segment_by_default,
2660 };
2661 
2662 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2663 						struct cp_control *cpc)
2664 {
2665 	__u64 trim_start = cpc->trim_start;
2666 	bool has_candidate = false;
2667 
2668 	down_write(&SIT_I(sbi)->sentry_lock);
2669 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2670 		if (add_discard_addrs(sbi, cpc, true)) {
2671 			has_candidate = true;
2672 			break;
2673 		}
2674 	}
2675 	up_write(&SIT_I(sbi)->sentry_lock);
2676 
2677 	cpc->trim_start = trim_start;
2678 	return has_candidate;
2679 }
2680 
2681 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2682 					struct discard_policy *dpolicy,
2683 					unsigned int start, unsigned int end)
2684 {
2685 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2686 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2687 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2688 	struct discard_cmd *dc;
2689 	struct blk_plug plug;
2690 	int issued;
2691 	unsigned int trimmed = 0;
2692 
2693 next:
2694 	issued = 0;
2695 
2696 	mutex_lock(&dcc->cmd_lock);
2697 	if (unlikely(dcc->rbtree_check))
2698 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2699 								&dcc->root));
2700 
2701 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2702 					NULL, start,
2703 					(struct rb_entry **)&prev_dc,
2704 					(struct rb_entry **)&next_dc,
2705 					&insert_p, &insert_parent, true, NULL);
2706 	if (!dc)
2707 		dc = next_dc;
2708 
2709 	blk_start_plug(&plug);
2710 
2711 	while (dc && dc->lstart <= end) {
2712 		struct rb_node *node;
2713 		int err = 0;
2714 
2715 		if (dc->len < dpolicy->granularity)
2716 			goto skip;
2717 
2718 		if (dc->state != D_PREP) {
2719 			list_move_tail(&dc->list, &dcc->fstrim_list);
2720 			goto skip;
2721 		}
2722 
2723 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2724 
2725 		if (issued >= dpolicy->max_requests) {
2726 			start = dc->lstart + dc->len;
2727 
2728 			if (err)
2729 				__remove_discard_cmd(sbi, dc);
2730 
2731 			blk_finish_plug(&plug);
2732 			mutex_unlock(&dcc->cmd_lock);
2733 			trimmed += __wait_all_discard_cmd(sbi, NULL);
2734 			congestion_wait(BLK_RW_ASYNC, HZ/50);
2735 			goto next;
2736 		}
2737 skip:
2738 		node = rb_next(&dc->rb_node);
2739 		if (err)
2740 			__remove_discard_cmd(sbi, dc);
2741 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2742 
2743 		if (fatal_signal_pending(current))
2744 			break;
2745 	}
2746 
2747 	blk_finish_plug(&plug);
2748 	mutex_unlock(&dcc->cmd_lock);
2749 
2750 	return trimmed;
2751 }
2752 
2753 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2754 {
2755 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2756 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2757 	unsigned int start_segno, end_segno;
2758 	block_t start_block, end_block;
2759 	struct cp_control cpc;
2760 	struct discard_policy dpolicy;
2761 	unsigned long long trimmed = 0;
2762 	int err = 0;
2763 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2764 
2765 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2766 		return -EINVAL;
2767 
2768 	if (end < MAIN_BLKADDR(sbi))
2769 		goto out;
2770 
2771 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2772 		f2fs_msg(sbi->sb, KERN_WARNING,
2773 			"Found FS corruption, run fsck to fix.");
2774 		return -EIO;
2775 	}
2776 
2777 	/* start/end segment number in main_area */
2778 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2779 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2780 						GET_SEGNO(sbi, end);
2781 	if (need_align) {
2782 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
2783 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2784 	}
2785 
2786 	cpc.reason = CP_DISCARD;
2787 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2788 	cpc.trim_start = start_segno;
2789 	cpc.trim_end = end_segno;
2790 
2791 	if (sbi->discard_blks == 0)
2792 		goto out;
2793 
2794 	mutex_lock(&sbi->gc_mutex);
2795 	err = f2fs_write_checkpoint(sbi, &cpc);
2796 	mutex_unlock(&sbi->gc_mutex);
2797 	if (err)
2798 		goto out;
2799 
2800 	/*
2801 	 * We filed discard candidates, but actually we don't need to wait for
2802 	 * all of them, since they'll be issued in idle time along with runtime
2803 	 * discard option. User configuration looks like using runtime discard
2804 	 * or periodic fstrim instead of it.
2805 	 */
2806 	if (f2fs_realtime_discard_enable(sbi))
2807 		goto out;
2808 
2809 	start_block = START_BLOCK(sbi, start_segno);
2810 	end_block = START_BLOCK(sbi, end_segno + 1);
2811 
2812 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2813 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2814 					start_block, end_block);
2815 
2816 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2817 					start_block, end_block);
2818 out:
2819 	if (!err)
2820 		range->len = F2FS_BLK_TO_BYTES(trimmed);
2821 	return err;
2822 }
2823 
2824 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2825 {
2826 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2827 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2828 		return true;
2829 	return false;
2830 }
2831 
2832 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2833 {
2834 	switch (hint) {
2835 	case WRITE_LIFE_SHORT:
2836 		return CURSEG_HOT_DATA;
2837 	case WRITE_LIFE_EXTREME:
2838 		return CURSEG_COLD_DATA;
2839 	default:
2840 		return CURSEG_WARM_DATA;
2841 	}
2842 }
2843 
2844 /* This returns write hints for each segment type. This hints will be
2845  * passed down to block layer. There are mapping tables which depend on
2846  * the mount option 'whint_mode'.
2847  *
2848  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2849  *
2850  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2851  *
2852  * User                  F2FS                     Block
2853  * ----                  ----                     -----
2854  *                       META                     WRITE_LIFE_NOT_SET
2855  *                       HOT_NODE                 "
2856  *                       WARM_NODE                "
2857  *                       COLD_NODE                "
2858  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2859  * extension list        "                        "
2860  *
2861  * -- buffered io
2862  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2863  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2864  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2865  * WRITE_LIFE_NONE       "                        "
2866  * WRITE_LIFE_MEDIUM     "                        "
2867  * WRITE_LIFE_LONG       "                        "
2868  *
2869  * -- direct io
2870  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2871  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2872  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2873  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2874  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2875  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2876  *
2877  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2878  *
2879  * User                  F2FS                     Block
2880  * ----                  ----                     -----
2881  *                       META                     WRITE_LIFE_MEDIUM;
2882  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2883  *                       WARM_NODE                "
2884  *                       COLD_NODE                WRITE_LIFE_NONE
2885  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2886  * extension list        "                        "
2887  *
2888  * -- buffered io
2889  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2890  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2891  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2892  * WRITE_LIFE_NONE       "                        "
2893  * WRITE_LIFE_MEDIUM     "                        "
2894  * WRITE_LIFE_LONG       "                        "
2895  *
2896  * -- direct io
2897  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2898  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2899  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2900  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2901  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2902  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2903  */
2904 
2905 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2906 				enum page_type type, enum temp_type temp)
2907 {
2908 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2909 		if (type == DATA) {
2910 			if (temp == WARM)
2911 				return WRITE_LIFE_NOT_SET;
2912 			else if (temp == HOT)
2913 				return WRITE_LIFE_SHORT;
2914 			else if (temp == COLD)
2915 				return WRITE_LIFE_EXTREME;
2916 		} else {
2917 			return WRITE_LIFE_NOT_SET;
2918 		}
2919 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2920 		if (type == DATA) {
2921 			if (temp == WARM)
2922 				return WRITE_LIFE_LONG;
2923 			else if (temp == HOT)
2924 				return WRITE_LIFE_SHORT;
2925 			else if (temp == COLD)
2926 				return WRITE_LIFE_EXTREME;
2927 		} else if (type == NODE) {
2928 			if (temp == WARM || temp == HOT)
2929 				return WRITE_LIFE_NOT_SET;
2930 			else if (temp == COLD)
2931 				return WRITE_LIFE_NONE;
2932 		} else if (type == META) {
2933 			return WRITE_LIFE_MEDIUM;
2934 		}
2935 	}
2936 	return WRITE_LIFE_NOT_SET;
2937 }
2938 
2939 static int __get_segment_type_2(struct f2fs_io_info *fio)
2940 {
2941 	if (fio->type == DATA)
2942 		return CURSEG_HOT_DATA;
2943 	else
2944 		return CURSEG_HOT_NODE;
2945 }
2946 
2947 static int __get_segment_type_4(struct f2fs_io_info *fio)
2948 {
2949 	if (fio->type == DATA) {
2950 		struct inode *inode = fio->page->mapping->host;
2951 
2952 		if (S_ISDIR(inode->i_mode))
2953 			return CURSEG_HOT_DATA;
2954 		else
2955 			return CURSEG_COLD_DATA;
2956 	} else {
2957 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2958 			return CURSEG_WARM_NODE;
2959 		else
2960 			return CURSEG_COLD_NODE;
2961 	}
2962 }
2963 
2964 static int __get_segment_type_6(struct f2fs_io_info *fio)
2965 {
2966 	if (fio->type == DATA) {
2967 		struct inode *inode = fio->page->mapping->host;
2968 
2969 		if (is_cold_data(fio->page) || file_is_cold(inode))
2970 			return CURSEG_COLD_DATA;
2971 		if (file_is_hot(inode) ||
2972 				is_inode_flag_set(inode, FI_HOT_DATA) ||
2973 				f2fs_is_atomic_file(inode) ||
2974 				f2fs_is_volatile_file(inode))
2975 			return CURSEG_HOT_DATA;
2976 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2977 	} else {
2978 		if (IS_DNODE(fio->page))
2979 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2980 						CURSEG_HOT_NODE;
2981 		return CURSEG_COLD_NODE;
2982 	}
2983 }
2984 
2985 static int __get_segment_type(struct f2fs_io_info *fio)
2986 {
2987 	int type = 0;
2988 
2989 	switch (F2FS_OPTION(fio->sbi).active_logs) {
2990 	case 2:
2991 		type = __get_segment_type_2(fio);
2992 		break;
2993 	case 4:
2994 		type = __get_segment_type_4(fio);
2995 		break;
2996 	case 6:
2997 		type = __get_segment_type_6(fio);
2998 		break;
2999 	default:
3000 		f2fs_bug_on(fio->sbi, true);
3001 	}
3002 
3003 	if (IS_HOT(type))
3004 		fio->temp = HOT;
3005 	else if (IS_WARM(type))
3006 		fio->temp = WARM;
3007 	else
3008 		fio->temp = COLD;
3009 	return type;
3010 }
3011 
3012 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3013 		block_t old_blkaddr, block_t *new_blkaddr,
3014 		struct f2fs_summary *sum, int type,
3015 		struct f2fs_io_info *fio, bool add_list)
3016 {
3017 	struct sit_info *sit_i = SIT_I(sbi);
3018 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3019 
3020 	down_read(&SM_I(sbi)->curseg_lock);
3021 
3022 	mutex_lock(&curseg->curseg_mutex);
3023 	down_write(&sit_i->sentry_lock);
3024 
3025 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3026 
3027 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3028 
3029 	/*
3030 	 * __add_sum_entry should be resided under the curseg_mutex
3031 	 * because, this function updates a summary entry in the
3032 	 * current summary block.
3033 	 */
3034 	__add_sum_entry(sbi, type, sum);
3035 
3036 	__refresh_next_blkoff(sbi, curseg);
3037 
3038 	stat_inc_block_count(sbi, curseg);
3039 
3040 	/*
3041 	 * SIT information should be updated before segment allocation,
3042 	 * since SSR needs latest valid block information.
3043 	 */
3044 	update_sit_entry(sbi, *new_blkaddr, 1);
3045 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3046 		update_sit_entry(sbi, old_blkaddr, -1);
3047 
3048 	if (!__has_curseg_space(sbi, type))
3049 		sit_i->s_ops->allocate_segment(sbi, type, false);
3050 
3051 	/*
3052 	 * segment dirty status should be updated after segment allocation,
3053 	 * so we just need to update status only one time after previous
3054 	 * segment being closed.
3055 	 */
3056 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3057 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3058 
3059 	up_write(&sit_i->sentry_lock);
3060 
3061 	if (page && IS_NODESEG(type)) {
3062 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3063 
3064 		f2fs_inode_chksum_set(sbi, page);
3065 	}
3066 
3067 	if (add_list) {
3068 		struct f2fs_bio_info *io;
3069 
3070 		INIT_LIST_HEAD(&fio->list);
3071 		fio->in_list = true;
3072 		fio->retry = false;
3073 		io = sbi->write_io[fio->type] + fio->temp;
3074 		spin_lock(&io->io_lock);
3075 		list_add_tail(&fio->list, &io->io_list);
3076 		spin_unlock(&io->io_lock);
3077 	}
3078 
3079 	mutex_unlock(&curseg->curseg_mutex);
3080 
3081 	up_read(&SM_I(sbi)->curseg_lock);
3082 }
3083 
3084 static void update_device_state(struct f2fs_io_info *fio)
3085 {
3086 	struct f2fs_sb_info *sbi = fio->sbi;
3087 	unsigned int devidx;
3088 
3089 	if (!f2fs_is_multi_device(sbi))
3090 		return;
3091 
3092 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3093 
3094 	/* update device state for fsync */
3095 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3096 
3097 	/* update device state for checkpoint */
3098 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3099 		spin_lock(&sbi->dev_lock);
3100 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3101 		spin_unlock(&sbi->dev_lock);
3102 	}
3103 }
3104 
3105 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3106 {
3107 	int type = __get_segment_type(fio);
3108 	bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3109 
3110 	if (keep_order)
3111 		down_read(&fio->sbi->io_order_lock);
3112 reallocate:
3113 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3114 			&fio->new_blkaddr, sum, type, fio, true);
3115 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3116 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3117 					fio->old_blkaddr, fio->old_blkaddr);
3118 
3119 	/* writeout dirty page into bdev */
3120 	f2fs_submit_page_write(fio);
3121 	if (fio->retry) {
3122 		fio->old_blkaddr = fio->new_blkaddr;
3123 		goto reallocate;
3124 	}
3125 
3126 	update_device_state(fio);
3127 
3128 	if (keep_order)
3129 		up_read(&fio->sbi->io_order_lock);
3130 }
3131 
3132 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3133 					enum iostat_type io_type)
3134 {
3135 	struct f2fs_io_info fio = {
3136 		.sbi = sbi,
3137 		.type = META,
3138 		.temp = HOT,
3139 		.op = REQ_OP_WRITE,
3140 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3141 		.old_blkaddr = page->index,
3142 		.new_blkaddr = page->index,
3143 		.page = page,
3144 		.encrypted_page = NULL,
3145 		.in_list = false,
3146 	};
3147 
3148 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3149 		fio.op_flags &= ~REQ_META;
3150 
3151 	set_page_writeback(page);
3152 	ClearPageError(page);
3153 	f2fs_submit_page_write(&fio);
3154 
3155 	stat_inc_meta_count(sbi, page->index);
3156 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3157 }
3158 
3159 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3160 {
3161 	struct f2fs_summary sum;
3162 
3163 	set_summary(&sum, nid, 0, 0);
3164 	do_write_page(&sum, fio);
3165 
3166 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3167 }
3168 
3169 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3170 					struct f2fs_io_info *fio)
3171 {
3172 	struct f2fs_sb_info *sbi = fio->sbi;
3173 	struct f2fs_summary sum;
3174 
3175 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3176 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3177 	do_write_page(&sum, fio);
3178 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3179 
3180 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3181 }
3182 
3183 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3184 {
3185 	int err;
3186 	struct f2fs_sb_info *sbi = fio->sbi;
3187 
3188 	fio->new_blkaddr = fio->old_blkaddr;
3189 	/* i/o temperature is needed for passing down write hints */
3190 	__get_segment_type(fio);
3191 
3192 	f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3193 			GET_SEGNO(sbi, fio->new_blkaddr))->type));
3194 
3195 	stat_inc_inplace_blocks(fio->sbi);
3196 
3197 	err = f2fs_submit_page_bio(fio);
3198 	if (!err) {
3199 		update_device_state(fio);
3200 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3201 	}
3202 
3203 	return err;
3204 }
3205 
3206 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3207 						unsigned int segno)
3208 {
3209 	int i;
3210 
3211 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3212 		if (CURSEG_I(sbi, i)->segno == segno)
3213 			break;
3214 	}
3215 	return i;
3216 }
3217 
3218 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3219 				block_t old_blkaddr, block_t new_blkaddr,
3220 				bool recover_curseg, bool recover_newaddr)
3221 {
3222 	struct sit_info *sit_i = SIT_I(sbi);
3223 	struct curseg_info *curseg;
3224 	unsigned int segno, old_cursegno;
3225 	struct seg_entry *se;
3226 	int type;
3227 	unsigned short old_blkoff;
3228 
3229 	segno = GET_SEGNO(sbi, new_blkaddr);
3230 	se = get_seg_entry(sbi, segno);
3231 	type = se->type;
3232 
3233 	down_write(&SM_I(sbi)->curseg_lock);
3234 
3235 	if (!recover_curseg) {
3236 		/* for recovery flow */
3237 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3238 			if (old_blkaddr == NULL_ADDR)
3239 				type = CURSEG_COLD_DATA;
3240 			else
3241 				type = CURSEG_WARM_DATA;
3242 		}
3243 	} else {
3244 		if (IS_CURSEG(sbi, segno)) {
3245 			/* se->type is volatile as SSR allocation */
3246 			type = __f2fs_get_curseg(sbi, segno);
3247 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3248 		} else {
3249 			type = CURSEG_WARM_DATA;
3250 		}
3251 	}
3252 
3253 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3254 	curseg = CURSEG_I(sbi, type);
3255 
3256 	mutex_lock(&curseg->curseg_mutex);
3257 	down_write(&sit_i->sentry_lock);
3258 
3259 	old_cursegno = curseg->segno;
3260 	old_blkoff = curseg->next_blkoff;
3261 
3262 	/* change the current segment */
3263 	if (segno != curseg->segno) {
3264 		curseg->next_segno = segno;
3265 		change_curseg(sbi, type);
3266 	}
3267 
3268 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3269 	__add_sum_entry(sbi, type, sum);
3270 
3271 	if (!recover_curseg || recover_newaddr)
3272 		update_sit_entry(sbi, new_blkaddr, 1);
3273 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3274 		invalidate_mapping_pages(META_MAPPING(sbi),
3275 					old_blkaddr, old_blkaddr);
3276 		update_sit_entry(sbi, old_blkaddr, -1);
3277 	}
3278 
3279 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3280 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3281 
3282 	locate_dirty_segment(sbi, old_cursegno);
3283 
3284 	if (recover_curseg) {
3285 		if (old_cursegno != curseg->segno) {
3286 			curseg->next_segno = old_cursegno;
3287 			change_curseg(sbi, type);
3288 		}
3289 		curseg->next_blkoff = old_blkoff;
3290 	}
3291 
3292 	up_write(&sit_i->sentry_lock);
3293 	mutex_unlock(&curseg->curseg_mutex);
3294 	up_write(&SM_I(sbi)->curseg_lock);
3295 }
3296 
3297 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3298 				block_t old_addr, block_t new_addr,
3299 				unsigned char version, bool recover_curseg,
3300 				bool recover_newaddr)
3301 {
3302 	struct f2fs_summary sum;
3303 
3304 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3305 
3306 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3307 					recover_curseg, recover_newaddr);
3308 
3309 	f2fs_update_data_blkaddr(dn, new_addr);
3310 }
3311 
3312 void f2fs_wait_on_page_writeback(struct page *page,
3313 				enum page_type type, bool ordered, bool locked)
3314 {
3315 	if (PageWriteback(page)) {
3316 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3317 
3318 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3319 		if (ordered) {
3320 			wait_on_page_writeback(page);
3321 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3322 		} else {
3323 			wait_for_stable_page(page);
3324 		}
3325 	}
3326 }
3327 
3328 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3329 {
3330 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3331 	struct page *cpage;
3332 
3333 	if (!f2fs_post_read_required(inode))
3334 		return;
3335 
3336 	if (!is_valid_data_blkaddr(sbi, blkaddr))
3337 		return;
3338 
3339 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3340 	if (cpage) {
3341 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3342 		f2fs_put_page(cpage, 1);
3343 	}
3344 }
3345 
3346 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3347 								block_t len)
3348 {
3349 	block_t i;
3350 
3351 	for (i = 0; i < len; i++)
3352 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3353 }
3354 
3355 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3356 {
3357 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3358 	struct curseg_info *seg_i;
3359 	unsigned char *kaddr;
3360 	struct page *page;
3361 	block_t start;
3362 	int i, j, offset;
3363 
3364 	start = start_sum_block(sbi);
3365 
3366 	page = f2fs_get_meta_page(sbi, start++);
3367 	if (IS_ERR(page))
3368 		return PTR_ERR(page);
3369 	kaddr = (unsigned char *)page_address(page);
3370 
3371 	/* Step 1: restore nat cache */
3372 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3373 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3374 
3375 	/* Step 2: restore sit cache */
3376 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3377 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3378 	offset = 2 * SUM_JOURNAL_SIZE;
3379 
3380 	/* Step 3: restore summary entries */
3381 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3382 		unsigned short blk_off;
3383 		unsigned int segno;
3384 
3385 		seg_i = CURSEG_I(sbi, i);
3386 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3387 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3388 		seg_i->next_segno = segno;
3389 		reset_curseg(sbi, i, 0);
3390 		seg_i->alloc_type = ckpt->alloc_type[i];
3391 		seg_i->next_blkoff = blk_off;
3392 
3393 		if (seg_i->alloc_type == SSR)
3394 			blk_off = sbi->blocks_per_seg;
3395 
3396 		for (j = 0; j < blk_off; j++) {
3397 			struct f2fs_summary *s;
3398 			s = (struct f2fs_summary *)(kaddr + offset);
3399 			seg_i->sum_blk->entries[j] = *s;
3400 			offset += SUMMARY_SIZE;
3401 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3402 						SUM_FOOTER_SIZE)
3403 				continue;
3404 
3405 			f2fs_put_page(page, 1);
3406 			page = NULL;
3407 
3408 			page = f2fs_get_meta_page(sbi, start++);
3409 			if (IS_ERR(page))
3410 				return PTR_ERR(page);
3411 			kaddr = (unsigned char *)page_address(page);
3412 			offset = 0;
3413 		}
3414 	}
3415 	f2fs_put_page(page, 1);
3416 	return 0;
3417 }
3418 
3419 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3420 {
3421 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3422 	struct f2fs_summary_block *sum;
3423 	struct curseg_info *curseg;
3424 	struct page *new;
3425 	unsigned short blk_off;
3426 	unsigned int segno = 0;
3427 	block_t blk_addr = 0;
3428 	int err = 0;
3429 
3430 	/* get segment number and block addr */
3431 	if (IS_DATASEG(type)) {
3432 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3433 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3434 							CURSEG_HOT_DATA]);
3435 		if (__exist_node_summaries(sbi))
3436 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3437 		else
3438 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3439 	} else {
3440 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3441 							CURSEG_HOT_NODE]);
3442 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3443 							CURSEG_HOT_NODE]);
3444 		if (__exist_node_summaries(sbi))
3445 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3446 							type - CURSEG_HOT_NODE);
3447 		else
3448 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3449 	}
3450 
3451 	new = f2fs_get_meta_page(sbi, blk_addr);
3452 	if (IS_ERR(new))
3453 		return PTR_ERR(new);
3454 	sum = (struct f2fs_summary_block *)page_address(new);
3455 
3456 	if (IS_NODESEG(type)) {
3457 		if (__exist_node_summaries(sbi)) {
3458 			struct f2fs_summary *ns = &sum->entries[0];
3459 			int i;
3460 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3461 				ns->version = 0;
3462 				ns->ofs_in_node = 0;
3463 			}
3464 		} else {
3465 			err = f2fs_restore_node_summary(sbi, segno, sum);
3466 			if (err)
3467 				goto out;
3468 		}
3469 	}
3470 
3471 	/* set uncompleted segment to curseg */
3472 	curseg = CURSEG_I(sbi, type);
3473 	mutex_lock(&curseg->curseg_mutex);
3474 
3475 	/* update journal info */
3476 	down_write(&curseg->journal_rwsem);
3477 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3478 	up_write(&curseg->journal_rwsem);
3479 
3480 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3481 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3482 	curseg->next_segno = segno;
3483 	reset_curseg(sbi, type, 0);
3484 	curseg->alloc_type = ckpt->alloc_type[type];
3485 	curseg->next_blkoff = blk_off;
3486 	mutex_unlock(&curseg->curseg_mutex);
3487 out:
3488 	f2fs_put_page(new, 1);
3489 	return err;
3490 }
3491 
3492 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3493 {
3494 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3495 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3496 	int type = CURSEG_HOT_DATA;
3497 	int err;
3498 
3499 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3500 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3501 
3502 		if (npages >= 2)
3503 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3504 							META_CP, true);
3505 
3506 		/* restore for compacted data summary */
3507 		err = read_compacted_summaries(sbi);
3508 		if (err)
3509 			return err;
3510 		type = CURSEG_HOT_NODE;
3511 	}
3512 
3513 	if (__exist_node_summaries(sbi))
3514 		f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3515 					NR_CURSEG_TYPE - type, META_CP, true);
3516 
3517 	for (; type <= CURSEG_COLD_NODE; type++) {
3518 		err = read_normal_summaries(sbi, type);
3519 		if (err)
3520 			return err;
3521 	}
3522 
3523 	/* sanity check for summary blocks */
3524 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3525 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3526 		return -EINVAL;
3527 
3528 	return 0;
3529 }
3530 
3531 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3532 {
3533 	struct page *page;
3534 	unsigned char *kaddr;
3535 	struct f2fs_summary *summary;
3536 	struct curseg_info *seg_i;
3537 	int written_size = 0;
3538 	int i, j;
3539 
3540 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3541 	kaddr = (unsigned char *)page_address(page);
3542 	memset(kaddr, 0, PAGE_SIZE);
3543 
3544 	/* Step 1: write nat cache */
3545 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3546 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3547 	written_size += SUM_JOURNAL_SIZE;
3548 
3549 	/* Step 2: write sit cache */
3550 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3551 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3552 	written_size += SUM_JOURNAL_SIZE;
3553 
3554 	/* Step 3: write summary entries */
3555 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3556 		unsigned short blkoff;
3557 		seg_i = CURSEG_I(sbi, i);
3558 		if (sbi->ckpt->alloc_type[i] == SSR)
3559 			blkoff = sbi->blocks_per_seg;
3560 		else
3561 			blkoff = curseg_blkoff(sbi, i);
3562 
3563 		for (j = 0; j < blkoff; j++) {
3564 			if (!page) {
3565 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3566 				kaddr = (unsigned char *)page_address(page);
3567 				memset(kaddr, 0, PAGE_SIZE);
3568 				written_size = 0;
3569 			}
3570 			summary = (struct f2fs_summary *)(kaddr + written_size);
3571 			*summary = seg_i->sum_blk->entries[j];
3572 			written_size += SUMMARY_SIZE;
3573 
3574 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3575 							SUM_FOOTER_SIZE)
3576 				continue;
3577 
3578 			set_page_dirty(page);
3579 			f2fs_put_page(page, 1);
3580 			page = NULL;
3581 		}
3582 	}
3583 	if (page) {
3584 		set_page_dirty(page);
3585 		f2fs_put_page(page, 1);
3586 	}
3587 }
3588 
3589 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3590 					block_t blkaddr, int type)
3591 {
3592 	int i, end;
3593 	if (IS_DATASEG(type))
3594 		end = type + NR_CURSEG_DATA_TYPE;
3595 	else
3596 		end = type + NR_CURSEG_NODE_TYPE;
3597 
3598 	for (i = type; i < end; i++)
3599 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3600 }
3601 
3602 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3603 {
3604 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3605 		write_compacted_summaries(sbi, start_blk);
3606 	else
3607 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3608 }
3609 
3610 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3611 {
3612 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3613 }
3614 
3615 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3616 					unsigned int val, int alloc)
3617 {
3618 	int i;
3619 
3620 	if (type == NAT_JOURNAL) {
3621 		for (i = 0; i < nats_in_cursum(journal); i++) {
3622 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3623 				return i;
3624 		}
3625 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3626 			return update_nats_in_cursum(journal, 1);
3627 	} else if (type == SIT_JOURNAL) {
3628 		for (i = 0; i < sits_in_cursum(journal); i++)
3629 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3630 				return i;
3631 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3632 			return update_sits_in_cursum(journal, 1);
3633 	}
3634 	return -1;
3635 }
3636 
3637 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3638 					unsigned int segno)
3639 {
3640 	return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3641 }
3642 
3643 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3644 					unsigned int start)
3645 {
3646 	struct sit_info *sit_i = SIT_I(sbi);
3647 	struct page *page;
3648 	pgoff_t src_off, dst_off;
3649 
3650 	src_off = current_sit_addr(sbi, start);
3651 	dst_off = next_sit_addr(sbi, src_off);
3652 
3653 	page = f2fs_grab_meta_page(sbi, dst_off);
3654 	seg_info_to_sit_page(sbi, page, start);
3655 
3656 	set_page_dirty(page);
3657 	set_to_next_sit(sit_i, start);
3658 
3659 	return page;
3660 }
3661 
3662 static struct sit_entry_set *grab_sit_entry_set(void)
3663 {
3664 	struct sit_entry_set *ses =
3665 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3666 
3667 	ses->entry_cnt = 0;
3668 	INIT_LIST_HEAD(&ses->set_list);
3669 	return ses;
3670 }
3671 
3672 static void release_sit_entry_set(struct sit_entry_set *ses)
3673 {
3674 	list_del(&ses->set_list);
3675 	kmem_cache_free(sit_entry_set_slab, ses);
3676 }
3677 
3678 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3679 						struct list_head *head)
3680 {
3681 	struct sit_entry_set *next = ses;
3682 
3683 	if (list_is_last(&ses->set_list, head))
3684 		return;
3685 
3686 	list_for_each_entry_continue(next, head, set_list)
3687 		if (ses->entry_cnt <= next->entry_cnt)
3688 			break;
3689 
3690 	list_move_tail(&ses->set_list, &next->set_list);
3691 }
3692 
3693 static void add_sit_entry(unsigned int segno, struct list_head *head)
3694 {
3695 	struct sit_entry_set *ses;
3696 	unsigned int start_segno = START_SEGNO(segno);
3697 
3698 	list_for_each_entry(ses, head, set_list) {
3699 		if (ses->start_segno == start_segno) {
3700 			ses->entry_cnt++;
3701 			adjust_sit_entry_set(ses, head);
3702 			return;
3703 		}
3704 	}
3705 
3706 	ses = grab_sit_entry_set();
3707 
3708 	ses->start_segno = start_segno;
3709 	ses->entry_cnt++;
3710 	list_add(&ses->set_list, head);
3711 }
3712 
3713 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3714 {
3715 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3716 	struct list_head *set_list = &sm_info->sit_entry_set;
3717 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3718 	unsigned int segno;
3719 
3720 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3721 		add_sit_entry(segno, set_list);
3722 }
3723 
3724 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3725 {
3726 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3727 	struct f2fs_journal *journal = curseg->journal;
3728 	int i;
3729 
3730 	down_write(&curseg->journal_rwsem);
3731 	for (i = 0; i < sits_in_cursum(journal); i++) {
3732 		unsigned int segno;
3733 		bool dirtied;
3734 
3735 		segno = le32_to_cpu(segno_in_journal(journal, i));
3736 		dirtied = __mark_sit_entry_dirty(sbi, segno);
3737 
3738 		if (!dirtied)
3739 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3740 	}
3741 	update_sits_in_cursum(journal, -i);
3742 	up_write(&curseg->journal_rwsem);
3743 }
3744 
3745 /*
3746  * CP calls this function, which flushes SIT entries including sit_journal,
3747  * and moves prefree segs to free segs.
3748  */
3749 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3750 {
3751 	struct sit_info *sit_i = SIT_I(sbi);
3752 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3753 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3754 	struct f2fs_journal *journal = curseg->journal;
3755 	struct sit_entry_set *ses, *tmp;
3756 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3757 	bool to_journal = true;
3758 	struct seg_entry *se;
3759 
3760 	down_write(&sit_i->sentry_lock);
3761 
3762 	if (!sit_i->dirty_sentries)
3763 		goto out;
3764 
3765 	/*
3766 	 * add and account sit entries of dirty bitmap in sit entry
3767 	 * set temporarily
3768 	 */
3769 	add_sits_in_set(sbi);
3770 
3771 	/*
3772 	 * if there are no enough space in journal to store dirty sit
3773 	 * entries, remove all entries from journal and add and account
3774 	 * them in sit entry set.
3775 	 */
3776 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3777 		remove_sits_in_journal(sbi);
3778 
3779 	/*
3780 	 * there are two steps to flush sit entries:
3781 	 * #1, flush sit entries to journal in current cold data summary block.
3782 	 * #2, flush sit entries to sit page.
3783 	 */
3784 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3785 		struct page *page = NULL;
3786 		struct f2fs_sit_block *raw_sit = NULL;
3787 		unsigned int start_segno = ses->start_segno;
3788 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3789 						(unsigned long)MAIN_SEGS(sbi));
3790 		unsigned int segno = start_segno;
3791 
3792 		if (to_journal &&
3793 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3794 			to_journal = false;
3795 
3796 		if (to_journal) {
3797 			down_write(&curseg->journal_rwsem);
3798 		} else {
3799 			page = get_next_sit_page(sbi, start_segno);
3800 			raw_sit = page_address(page);
3801 		}
3802 
3803 		/* flush dirty sit entries in region of current sit set */
3804 		for_each_set_bit_from(segno, bitmap, end) {
3805 			int offset, sit_offset;
3806 
3807 			se = get_seg_entry(sbi, segno);
3808 #ifdef CONFIG_F2FS_CHECK_FS
3809 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3810 						SIT_VBLOCK_MAP_SIZE))
3811 				f2fs_bug_on(sbi, 1);
3812 #endif
3813 
3814 			/* add discard candidates */
3815 			if (!(cpc->reason & CP_DISCARD)) {
3816 				cpc->trim_start = segno;
3817 				add_discard_addrs(sbi, cpc, false);
3818 			}
3819 
3820 			if (to_journal) {
3821 				offset = f2fs_lookup_journal_in_cursum(journal,
3822 							SIT_JOURNAL, segno, 1);
3823 				f2fs_bug_on(sbi, offset < 0);
3824 				segno_in_journal(journal, offset) =
3825 							cpu_to_le32(segno);
3826 				seg_info_to_raw_sit(se,
3827 					&sit_in_journal(journal, offset));
3828 				check_block_count(sbi, segno,
3829 					&sit_in_journal(journal, offset));
3830 			} else {
3831 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3832 				seg_info_to_raw_sit(se,
3833 						&raw_sit->entries[sit_offset]);
3834 				check_block_count(sbi, segno,
3835 						&raw_sit->entries[sit_offset]);
3836 			}
3837 
3838 			__clear_bit(segno, bitmap);
3839 			sit_i->dirty_sentries--;
3840 			ses->entry_cnt--;
3841 		}
3842 
3843 		if (to_journal)
3844 			up_write(&curseg->journal_rwsem);
3845 		else
3846 			f2fs_put_page(page, 1);
3847 
3848 		f2fs_bug_on(sbi, ses->entry_cnt);
3849 		release_sit_entry_set(ses);
3850 	}
3851 
3852 	f2fs_bug_on(sbi, !list_empty(head));
3853 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3854 out:
3855 	if (cpc->reason & CP_DISCARD) {
3856 		__u64 trim_start = cpc->trim_start;
3857 
3858 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3859 			add_discard_addrs(sbi, cpc, false);
3860 
3861 		cpc->trim_start = trim_start;
3862 	}
3863 	up_write(&sit_i->sentry_lock);
3864 
3865 	set_prefree_as_free_segments(sbi);
3866 }
3867 
3868 static int build_sit_info(struct f2fs_sb_info *sbi)
3869 {
3870 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3871 	struct sit_info *sit_i;
3872 	unsigned int sit_segs, start;
3873 	char *src_bitmap;
3874 	unsigned int bitmap_size;
3875 
3876 	/* allocate memory for SIT information */
3877 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3878 	if (!sit_i)
3879 		return -ENOMEM;
3880 
3881 	SM_I(sbi)->sit_info = sit_i;
3882 
3883 	sit_i->sentries =
3884 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3885 					      MAIN_SEGS(sbi)),
3886 			      GFP_KERNEL);
3887 	if (!sit_i->sentries)
3888 		return -ENOMEM;
3889 
3890 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3891 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3892 								GFP_KERNEL);
3893 	if (!sit_i->dirty_sentries_bitmap)
3894 		return -ENOMEM;
3895 
3896 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3897 		sit_i->sentries[start].cur_valid_map
3898 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3899 		sit_i->sentries[start].ckpt_valid_map
3900 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3901 		if (!sit_i->sentries[start].cur_valid_map ||
3902 				!sit_i->sentries[start].ckpt_valid_map)
3903 			return -ENOMEM;
3904 
3905 #ifdef CONFIG_F2FS_CHECK_FS
3906 		sit_i->sentries[start].cur_valid_map_mir
3907 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3908 		if (!sit_i->sentries[start].cur_valid_map_mir)
3909 			return -ENOMEM;
3910 #endif
3911 
3912 		sit_i->sentries[start].discard_map
3913 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3914 							GFP_KERNEL);
3915 		if (!sit_i->sentries[start].discard_map)
3916 			return -ENOMEM;
3917 	}
3918 
3919 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3920 	if (!sit_i->tmp_map)
3921 		return -ENOMEM;
3922 
3923 	if (__is_large_section(sbi)) {
3924 		sit_i->sec_entries =
3925 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3926 						      MAIN_SECS(sbi)),
3927 				      GFP_KERNEL);
3928 		if (!sit_i->sec_entries)
3929 			return -ENOMEM;
3930 	}
3931 
3932 	/* get information related with SIT */
3933 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3934 
3935 	/* setup SIT bitmap from ckeckpoint pack */
3936 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3937 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3938 
3939 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3940 	if (!sit_i->sit_bitmap)
3941 		return -ENOMEM;
3942 
3943 #ifdef CONFIG_F2FS_CHECK_FS
3944 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3945 	if (!sit_i->sit_bitmap_mir)
3946 		return -ENOMEM;
3947 #endif
3948 
3949 	/* init SIT information */
3950 	sit_i->s_ops = &default_salloc_ops;
3951 
3952 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3953 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3954 	sit_i->written_valid_blocks = 0;
3955 	sit_i->bitmap_size = bitmap_size;
3956 	sit_i->dirty_sentries = 0;
3957 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3958 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3959 	sit_i->mounted_time = ktime_get_real_seconds();
3960 	init_rwsem(&sit_i->sentry_lock);
3961 	return 0;
3962 }
3963 
3964 static int build_free_segmap(struct f2fs_sb_info *sbi)
3965 {
3966 	struct free_segmap_info *free_i;
3967 	unsigned int bitmap_size, sec_bitmap_size;
3968 
3969 	/* allocate memory for free segmap information */
3970 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3971 	if (!free_i)
3972 		return -ENOMEM;
3973 
3974 	SM_I(sbi)->free_info = free_i;
3975 
3976 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3977 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3978 	if (!free_i->free_segmap)
3979 		return -ENOMEM;
3980 
3981 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3982 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3983 	if (!free_i->free_secmap)
3984 		return -ENOMEM;
3985 
3986 	/* set all segments as dirty temporarily */
3987 	memset(free_i->free_segmap, 0xff, bitmap_size);
3988 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3989 
3990 	/* init free segmap information */
3991 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3992 	free_i->free_segments = 0;
3993 	free_i->free_sections = 0;
3994 	spin_lock_init(&free_i->segmap_lock);
3995 	return 0;
3996 }
3997 
3998 static int build_curseg(struct f2fs_sb_info *sbi)
3999 {
4000 	struct curseg_info *array;
4001 	int i;
4002 
4003 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4004 			     GFP_KERNEL);
4005 	if (!array)
4006 		return -ENOMEM;
4007 
4008 	SM_I(sbi)->curseg_array = array;
4009 
4010 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4011 		mutex_init(&array[i].curseg_mutex);
4012 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4013 		if (!array[i].sum_blk)
4014 			return -ENOMEM;
4015 		init_rwsem(&array[i].journal_rwsem);
4016 		array[i].journal = f2fs_kzalloc(sbi,
4017 				sizeof(struct f2fs_journal), GFP_KERNEL);
4018 		if (!array[i].journal)
4019 			return -ENOMEM;
4020 		array[i].segno = NULL_SEGNO;
4021 		array[i].next_blkoff = 0;
4022 	}
4023 	return restore_curseg_summaries(sbi);
4024 }
4025 
4026 static int build_sit_entries(struct f2fs_sb_info *sbi)
4027 {
4028 	struct sit_info *sit_i = SIT_I(sbi);
4029 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4030 	struct f2fs_journal *journal = curseg->journal;
4031 	struct seg_entry *se;
4032 	struct f2fs_sit_entry sit;
4033 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4034 	unsigned int i, start, end;
4035 	unsigned int readed, start_blk = 0;
4036 	int err = 0;
4037 	block_t total_node_blocks = 0;
4038 
4039 	do {
4040 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4041 							META_SIT, true);
4042 
4043 		start = start_blk * sit_i->sents_per_block;
4044 		end = (start_blk + readed) * sit_i->sents_per_block;
4045 
4046 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4047 			struct f2fs_sit_block *sit_blk;
4048 			struct page *page;
4049 
4050 			se = &sit_i->sentries[start];
4051 			page = get_current_sit_page(sbi, start);
4052 			if (IS_ERR(page))
4053 				return PTR_ERR(page);
4054 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4055 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4056 			f2fs_put_page(page, 1);
4057 
4058 			err = check_block_count(sbi, start, &sit);
4059 			if (err)
4060 				return err;
4061 			seg_info_from_raw_sit(se, &sit);
4062 			if (IS_NODESEG(se->type))
4063 				total_node_blocks += se->valid_blocks;
4064 
4065 			/* build discard map only one time */
4066 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4067 				memset(se->discard_map, 0xff,
4068 					SIT_VBLOCK_MAP_SIZE);
4069 			} else {
4070 				memcpy(se->discard_map,
4071 					se->cur_valid_map,
4072 					SIT_VBLOCK_MAP_SIZE);
4073 				sbi->discard_blks +=
4074 					sbi->blocks_per_seg -
4075 					se->valid_blocks;
4076 			}
4077 
4078 			if (__is_large_section(sbi))
4079 				get_sec_entry(sbi, start)->valid_blocks +=
4080 							se->valid_blocks;
4081 		}
4082 		start_blk += readed;
4083 	} while (start_blk < sit_blk_cnt);
4084 
4085 	down_read(&curseg->journal_rwsem);
4086 	for (i = 0; i < sits_in_cursum(journal); i++) {
4087 		unsigned int old_valid_blocks;
4088 
4089 		start = le32_to_cpu(segno_in_journal(journal, i));
4090 		if (start >= MAIN_SEGS(sbi)) {
4091 			f2fs_msg(sbi->sb, KERN_ERR,
4092 					"Wrong journal entry on segno %u",
4093 					start);
4094 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4095 			err = -EINVAL;
4096 			break;
4097 		}
4098 
4099 		se = &sit_i->sentries[start];
4100 		sit = sit_in_journal(journal, i);
4101 
4102 		old_valid_blocks = se->valid_blocks;
4103 		if (IS_NODESEG(se->type))
4104 			total_node_blocks -= old_valid_blocks;
4105 
4106 		err = check_block_count(sbi, start, &sit);
4107 		if (err)
4108 			break;
4109 		seg_info_from_raw_sit(se, &sit);
4110 		if (IS_NODESEG(se->type))
4111 			total_node_blocks += se->valid_blocks;
4112 
4113 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4114 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4115 		} else {
4116 			memcpy(se->discard_map, se->cur_valid_map,
4117 						SIT_VBLOCK_MAP_SIZE);
4118 			sbi->discard_blks += old_valid_blocks;
4119 			sbi->discard_blks -= se->valid_blocks;
4120 		}
4121 
4122 		if (__is_large_section(sbi)) {
4123 			get_sec_entry(sbi, start)->valid_blocks +=
4124 							se->valid_blocks;
4125 			get_sec_entry(sbi, start)->valid_blocks -=
4126 							old_valid_blocks;
4127 		}
4128 	}
4129 	up_read(&curseg->journal_rwsem);
4130 
4131 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4132 		f2fs_msg(sbi->sb, KERN_ERR,
4133 			"SIT is corrupted node# %u vs %u",
4134 			total_node_blocks, valid_node_count(sbi));
4135 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4136 		err = -EINVAL;
4137 	}
4138 
4139 	return err;
4140 }
4141 
4142 static void init_free_segmap(struct f2fs_sb_info *sbi)
4143 {
4144 	unsigned int start;
4145 	int type;
4146 
4147 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4148 		struct seg_entry *sentry = get_seg_entry(sbi, start);
4149 		if (!sentry->valid_blocks)
4150 			__set_free(sbi, start);
4151 		else
4152 			SIT_I(sbi)->written_valid_blocks +=
4153 						sentry->valid_blocks;
4154 	}
4155 
4156 	/* set use the current segments */
4157 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4158 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4159 		__set_test_and_inuse(sbi, curseg_t->segno);
4160 	}
4161 }
4162 
4163 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4164 {
4165 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4166 	struct free_segmap_info *free_i = FREE_I(sbi);
4167 	unsigned int segno = 0, offset = 0;
4168 	unsigned short valid_blocks;
4169 
4170 	while (1) {
4171 		/* find dirty segment based on free segmap */
4172 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4173 		if (segno >= MAIN_SEGS(sbi))
4174 			break;
4175 		offset = segno + 1;
4176 		valid_blocks = get_valid_blocks(sbi, segno, false);
4177 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4178 			continue;
4179 		if (valid_blocks > sbi->blocks_per_seg) {
4180 			f2fs_bug_on(sbi, 1);
4181 			continue;
4182 		}
4183 		mutex_lock(&dirty_i->seglist_lock);
4184 		__locate_dirty_segment(sbi, segno, DIRTY);
4185 		mutex_unlock(&dirty_i->seglist_lock);
4186 	}
4187 }
4188 
4189 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4190 {
4191 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4192 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4193 
4194 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4195 	if (!dirty_i->victim_secmap)
4196 		return -ENOMEM;
4197 	return 0;
4198 }
4199 
4200 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4201 {
4202 	struct dirty_seglist_info *dirty_i;
4203 	unsigned int bitmap_size, i;
4204 
4205 	/* allocate memory for dirty segments list information */
4206 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4207 								GFP_KERNEL);
4208 	if (!dirty_i)
4209 		return -ENOMEM;
4210 
4211 	SM_I(sbi)->dirty_info = dirty_i;
4212 	mutex_init(&dirty_i->seglist_lock);
4213 
4214 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4215 
4216 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4217 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4218 								GFP_KERNEL);
4219 		if (!dirty_i->dirty_segmap[i])
4220 			return -ENOMEM;
4221 	}
4222 
4223 	init_dirty_segmap(sbi);
4224 	return init_victim_secmap(sbi);
4225 }
4226 
4227 /*
4228  * Update min, max modified time for cost-benefit GC algorithm
4229  */
4230 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4231 {
4232 	struct sit_info *sit_i = SIT_I(sbi);
4233 	unsigned int segno;
4234 
4235 	down_write(&sit_i->sentry_lock);
4236 
4237 	sit_i->min_mtime = ULLONG_MAX;
4238 
4239 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4240 		unsigned int i;
4241 		unsigned long long mtime = 0;
4242 
4243 		for (i = 0; i < sbi->segs_per_sec; i++)
4244 			mtime += get_seg_entry(sbi, segno + i)->mtime;
4245 
4246 		mtime = div_u64(mtime, sbi->segs_per_sec);
4247 
4248 		if (sit_i->min_mtime > mtime)
4249 			sit_i->min_mtime = mtime;
4250 	}
4251 	sit_i->max_mtime = get_mtime(sbi, false);
4252 	up_write(&sit_i->sentry_lock);
4253 }
4254 
4255 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4256 {
4257 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4258 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4259 	struct f2fs_sm_info *sm_info;
4260 	int err;
4261 
4262 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4263 	if (!sm_info)
4264 		return -ENOMEM;
4265 
4266 	/* init sm info */
4267 	sbi->sm_info = sm_info;
4268 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4269 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4270 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4271 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4272 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4273 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4274 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4275 	sm_info->rec_prefree_segments = sm_info->main_segments *
4276 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4277 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4278 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4279 
4280 	if (!test_opt(sbi, LFS))
4281 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4282 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4283 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4284 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4285 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4286 	sm_info->min_ssr_sections = reserved_sections(sbi);
4287 
4288 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
4289 
4290 	init_rwsem(&sm_info->curseg_lock);
4291 
4292 	if (!f2fs_readonly(sbi->sb)) {
4293 		err = f2fs_create_flush_cmd_control(sbi);
4294 		if (err)
4295 			return err;
4296 	}
4297 
4298 	err = create_discard_cmd_control(sbi);
4299 	if (err)
4300 		return err;
4301 
4302 	err = build_sit_info(sbi);
4303 	if (err)
4304 		return err;
4305 	err = build_free_segmap(sbi);
4306 	if (err)
4307 		return err;
4308 	err = build_curseg(sbi);
4309 	if (err)
4310 		return err;
4311 
4312 	/* reinit free segmap based on SIT */
4313 	err = build_sit_entries(sbi);
4314 	if (err)
4315 		return err;
4316 
4317 	init_free_segmap(sbi);
4318 	err = build_dirty_segmap(sbi);
4319 	if (err)
4320 		return err;
4321 
4322 	init_min_max_mtime(sbi);
4323 	return 0;
4324 }
4325 
4326 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4327 		enum dirty_type dirty_type)
4328 {
4329 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4330 
4331 	mutex_lock(&dirty_i->seglist_lock);
4332 	kvfree(dirty_i->dirty_segmap[dirty_type]);
4333 	dirty_i->nr_dirty[dirty_type] = 0;
4334 	mutex_unlock(&dirty_i->seglist_lock);
4335 }
4336 
4337 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4338 {
4339 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4340 	kvfree(dirty_i->victim_secmap);
4341 }
4342 
4343 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4344 {
4345 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4346 	int i;
4347 
4348 	if (!dirty_i)
4349 		return;
4350 
4351 	/* discard pre-free/dirty segments list */
4352 	for (i = 0; i < NR_DIRTY_TYPE; i++)
4353 		discard_dirty_segmap(sbi, i);
4354 
4355 	destroy_victim_secmap(sbi);
4356 	SM_I(sbi)->dirty_info = NULL;
4357 	kvfree(dirty_i);
4358 }
4359 
4360 static void destroy_curseg(struct f2fs_sb_info *sbi)
4361 {
4362 	struct curseg_info *array = SM_I(sbi)->curseg_array;
4363 	int i;
4364 
4365 	if (!array)
4366 		return;
4367 	SM_I(sbi)->curseg_array = NULL;
4368 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4369 		kvfree(array[i].sum_blk);
4370 		kvfree(array[i].journal);
4371 	}
4372 	kvfree(array);
4373 }
4374 
4375 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4376 {
4377 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4378 	if (!free_i)
4379 		return;
4380 	SM_I(sbi)->free_info = NULL;
4381 	kvfree(free_i->free_segmap);
4382 	kvfree(free_i->free_secmap);
4383 	kvfree(free_i);
4384 }
4385 
4386 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4387 {
4388 	struct sit_info *sit_i = SIT_I(sbi);
4389 	unsigned int start;
4390 
4391 	if (!sit_i)
4392 		return;
4393 
4394 	if (sit_i->sentries) {
4395 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
4396 			kvfree(sit_i->sentries[start].cur_valid_map);
4397 #ifdef CONFIG_F2FS_CHECK_FS
4398 			kvfree(sit_i->sentries[start].cur_valid_map_mir);
4399 #endif
4400 			kvfree(sit_i->sentries[start].ckpt_valid_map);
4401 			kvfree(sit_i->sentries[start].discard_map);
4402 		}
4403 	}
4404 	kvfree(sit_i->tmp_map);
4405 
4406 	kvfree(sit_i->sentries);
4407 	kvfree(sit_i->sec_entries);
4408 	kvfree(sit_i->dirty_sentries_bitmap);
4409 
4410 	SM_I(sbi)->sit_info = NULL;
4411 	kvfree(sit_i->sit_bitmap);
4412 #ifdef CONFIG_F2FS_CHECK_FS
4413 	kvfree(sit_i->sit_bitmap_mir);
4414 #endif
4415 	kvfree(sit_i);
4416 }
4417 
4418 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4419 {
4420 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4421 
4422 	if (!sm_info)
4423 		return;
4424 	f2fs_destroy_flush_cmd_control(sbi, true);
4425 	destroy_discard_cmd_control(sbi);
4426 	destroy_dirty_segmap(sbi);
4427 	destroy_curseg(sbi);
4428 	destroy_free_segmap(sbi);
4429 	destroy_sit_info(sbi);
4430 	sbi->sm_info = NULL;
4431 	kvfree(sm_info);
4432 }
4433 
4434 int __init f2fs_create_segment_manager_caches(void)
4435 {
4436 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4437 			sizeof(struct discard_entry));
4438 	if (!discard_entry_slab)
4439 		goto fail;
4440 
4441 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4442 			sizeof(struct discard_cmd));
4443 	if (!discard_cmd_slab)
4444 		goto destroy_discard_entry;
4445 
4446 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4447 			sizeof(struct sit_entry_set));
4448 	if (!sit_entry_set_slab)
4449 		goto destroy_discard_cmd;
4450 
4451 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4452 			sizeof(struct inmem_pages));
4453 	if (!inmem_entry_slab)
4454 		goto destroy_sit_entry_set;
4455 	return 0;
4456 
4457 destroy_sit_entry_set:
4458 	kmem_cache_destroy(sit_entry_set_slab);
4459 destroy_discard_cmd:
4460 	kmem_cache_destroy(discard_cmd_slab);
4461 destroy_discard_entry:
4462 	kmem_cache_destroy(discard_entry_slab);
4463 fail:
4464 	return -ENOMEM;
4465 }
4466 
4467 void f2fs_destroy_segment_manager_caches(void)
4468 {
4469 	kmem_cache_destroy(sit_entry_set_slab);
4470 	kmem_cache_destroy(discard_cmd_slab);
4471 	kmem_cache_destroy(discard_entry_slab);
4472 	kmem_cache_destroy(inmem_entry_slab);
4473 }
4474