xref: /openbmc/linux/fs/f2fs/segment.c (revision 8b8dd65f72ccbf7111eb97c4c4f5b5df2a412a07)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171 	struct f2fs_inode_info *fi = F2FS_I(inode);
172 	struct inmem_pages *new;
173 
174 	f2fs_trace_pid(page);
175 
176 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 	SetPagePrivate(page);
178 
179 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180 
181 	/* add atomic page indices to the list */
182 	new->page = page;
183 	INIT_LIST_HEAD(&new->list);
184 
185 	/* increase reference count with clean state */
186 	mutex_lock(&fi->inmem_lock);
187 	get_page(page);
188 	list_add_tail(&new->list, &fi->inmem_pages);
189 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 	mutex_unlock(&fi->inmem_lock);
191 
192 	trace_f2fs_register_inmem_page(page, INMEM);
193 }
194 
195 static int __revoke_inmem_pages(struct inode *inode,
196 				struct list_head *head, bool drop, bool recover)
197 {
198 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 	struct inmem_pages *cur, *tmp;
200 	int err = 0;
201 
202 	list_for_each_entry_safe(cur, tmp, head, list) {
203 		struct page *page = cur->page;
204 
205 		if (drop)
206 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207 
208 		lock_page(page);
209 
210 		if (recover) {
211 			struct dnode_of_data dn;
212 			struct node_info ni;
213 
214 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215 
216 			set_new_dnode(&dn, inode, NULL, NULL, 0);
217 			if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218 				err = -EAGAIN;
219 				goto next;
220 			}
221 			get_node_info(sbi, dn.nid, &ni);
222 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223 					cur->old_addr, ni.version, true, true);
224 			f2fs_put_dnode(&dn);
225 		}
226 next:
227 		/* we don't need to invalidate this in the sccessful status */
228 		if (drop || recover)
229 			ClearPageUptodate(page);
230 		set_page_private(page, 0);
231 		ClearPagePrivate(page);
232 		f2fs_put_page(page, 1);
233 
234 		list_del(&cur->list);
235 		kmem_cache_free(inmem_entry_slab, cur);
236 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237 	}
238 	return err;
239 }
240 
241 void drop_inmem_pages(struct inode *inode)
242 {
243 	struct f2fs_inode_info *fi = F2FS_I(inode);
244 
245 	mutex_lock(&fi->inmem_lock);
246 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
247 	mutex_unlock(&fi->inmem_lock);
248 
249 	clear_inode_flag(inode, FI_ATOMIC_FILE);
250 	stat_dec_atomic_write(inode);
251 }
252 
253 void drop_inmem_page(struct inode *inode, struct page *page)
254 {
255 	struct f2fs_inode_info *fi = F2FS_I(inode);
256 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257 	struct list_head *head = &fi->inmem_pages;
258 	struct inmem_pages *cur = NULL;
259 
260 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
261 
262 	mutex_lock(&fi->inmem_lock);
263 	list_for_each_entry(cur, head, list) {
264 		if (cur->page == page)
265 			break;
266 	}
267 
268 	f2fs_bug_on(sbi, !cur || cur->page != page);
269 	list_del(&cur->list);
270 	mutex_unlock(&fi->inmem_lock);
271 
272 	dec_page_count(sbi, F2FS_INMEM_PAGES);
273 	kmem_cache_free(inmem_entry_slab, cur);
274 
275 	ClearPageUptodate(page);
276 	set_page_private(page, 0);
277 	ClearPagePrivate(page);
278 	f2fs_put_page(page, 0);
279 
280 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
281 }
282 
283 static int __commit_inmem_pages(struct inode *inode,
284 					struct list_head *revoke_list)
285 {
286 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
287 	struct f2fs_inode_info *fi = F2FS_I(inode);
288 	struct inmem_pages *cur, *tmp;
289 	struct f2fs_io_info fio = {
290 		.sbi = sbi,
291 		.type = DATA,
292 		.op = REQ_OP_WRITE,
293 		.op_flags = REQ_SYNC | REQ_PRIO,
294 		.encrypted_page = NULL,
295 	};
296 	pgoff_t last_idx = ULONG_MAX;
297 	int err = 0;
298 
299 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
300 		struct page *page = cur->page;
301 
302 		lock_page(page);
303 		if (page->mapping == inode->i_mapping) {
304 			trace_f2fs_commit_inmem_page(page, INMEM);
305 
306 			set_page_dirty(page);
307 			f2fs_wait_on_page_writeback(page, DATA, true);
308 			if (clear_page_dirty_for_io(page)) {
309 				inode_dec_dirty_pages(inode);
310 				remove_dirty_inode(inode);
311 			}
312 
313 			fio.page = page;
314 			err = do_write_data_page(&fio);
315 			if (err) {
316 				unlock_page(page);
317 				break;
318 			}
319 
320 			/* record old blkaddr for revoking */
321 			cur->old_addr = fio.old_blkaddr;
322 			last_idx = page->index;
323 		}
324 		unlock_page(page);
325 		list_move_tail(&cur->list, revoke_list);
326 	}
327 
328 	if (last_idx != ULONG_MAX)
329 		f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
330 							DATA, WRITE);
331 
332 	if (!err)
333 		__revoke_inmem_pages(inode, revoke_list, false, false);
334 
335 	return err;
336 }
337 
338 int commit_inmem_pages(struct inode *inode)
339 {
340 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
341 	struct f2fs_inode_info *fi = F2FS_I(inode);
342 	struct list_head revoke_list;
343 	int err;
344 
345 	INIT_LIST_HEAD(&revoke_list);
346 	f2fs_balance_fs(sbi, true);
347 	f2fs_lock_op(sbi);
348 
349 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
350 
351 	mutex_lock(&fi->inmem_lock);
352 	err = __commit_inmem_pages(inode, &revoke_list);
353 	if (err) {
354 		int ret;
355 		/*
356 		 * try to revoke all committed pages, but still we could fail
357 		 * due to no memory or other reason, if that happened, EAGAIN
358 		 * will be returned, which means in such case, transaction is
359 		 * already not integrity, caller should use journal to do the
360 		 * recovery or rewrite & commit last transaction. For other
361 		 * error number, revoking was done by filesystem itself.
362 		 */
363 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
364 		if (ret)
365 			err = ret;
366 
367 		/* drop all uncommitted pages */
368 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
369 	}
370 	mutex_unlock(&fi->inmem_lock);
371 
372 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
373 
374 	f2fs_unlock_op(sbi);
375 	return err;
376 }
377 
378 /*
379  * This function balances dirty node and dentry pages.
380  * In addition, it controls garbage collection.
381  */
382 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
383 {
384 #ifdef CONFIG_F2FS_FAULT_INJECTION
385 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
386 		f2fs_show_injection_info(FAULT_CHECKPOINT);
387 		f2fs_stop_checkpoint(sbi, false);
388 	}
389 #endif
390 
391 	if (!need)
392 		return;
393 
394 	/* balance_fs_bg is able to be pending */
395 	if (excess_cached_nats(sbi))
396 		f2fs_balance_fs_bg(sbi);
397 
398 	/*
399 	 * We should do GC or end up with checkpoint, if there are so many dirty
400 	 * dir/node pages without enough free segments.
401 	 */
402 	if (has_not_enough_free_secs(sbi, 0, 0)) {
403 		mutex_lock(&sbi->gc_mutex);
404 		f2fs_gc(sbi, false, false);
405 	}
406 }
407 
408 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
409 {
410 	/* try to shrink extent cache when there is no enough memory */
411 	if (!available_free_memory(sbi, EXTENT_CACHE))
412 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
413 
414 	/* check the # of cached NAT entries */
415 	if (!available_free_memory(sbi, NAT_ENTRIES))
416 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
417 
418 	if (!available_free_memory(sbi, FREE_NIDS))
419 		try_to_free_nids(sbi, MAX_FREE_NIDS);
420 	else
421 		build_free_nids(sbi, false, false);
422 
423 	if (!is_idle(sbi))
424 		return;
425 
426 	/* checkpoint is the only way to shrink partial cached entries */
427 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
428 			!available_free_memory(sbi, INO_ENTRIES) ||
429 			excess_prefree_segs(sbi) ||
430 			excess_dirty_nats(sbi) ||
431 			f2fs_time_over(sbi, CP_TIME)) {
432 		if (test_opt(sbi, DATA_FLUSH)) {
433 			struct blk_plug plug;
434 
435 			blk_start_plug(&plug);
436 			sync_dirty_inodes(sbi, FILE_INODE);
437 			blk_finish_plug(&plug);
438 		}
439 		f2fs_sync_fs(sbi->sb, true);
440 		stat_inc_bg_cp_count(sbi->stat_info);
441 	}
442 }
443 
444 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
445 				struct block_device *bdev)
446 {
447 	struct bio *bio = f2fs_bio_alloc(0);
448 	int ret;
449 
450 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
451 	bio->bi_bdev = bdev;
452 	ret = submit_bio_wait(bio);
453 	bio_put(bio);
454 
455 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
456 				test_opt(sbi, FLUSH_MERGE), ret);
457 	return ret;
458 }
459 
460 static int submit_flush_wait(struct f2fs_sb_info *sbi)
461 {
462 	int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
463 	int i;
464 
465 	if (!sbi->s_ndevs || ret)
466 		return ret;
467 
468 	for (i = 1; i < sbi->s_ndevs; i++) {
469 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
470 		if (ret)
471 			break;
472 	}
473 	return ret;
474 }
475 
476 static int issue_flush_thread(void *data)
477 {
478 	struct f2fs_sb_info *sbi = data;
479 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
480 	wait_queue_head_t *q = &fcc->flush_wait_queue;
481 repeat:
482 	if (kthread_should_stop())
483 		return 0;
484 
485 	if (!llist_empty(&fcc->issue_list)) {
486 		struct flush_cmd *cmd, *next;
487 		int ret;
488 
489 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
490 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
491 
492 		ret = submit_flush_wait(sbi);
493 		atomic_inc(&fcc->issued_flush);
494 
495 		llist_for_each_entry_safe(cmd, next,
496 					  fcc->dispatch_list, llnode) {
497 			cmd->ret = ret;
498 			complete(&cmd->wait);
499 		}
500 		fcc->dispatch_list = NULL;
501 	}
502 
503 	wait_event_interruptible(*q,
504 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
505 	goto repeat;
506 }
507 
508 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
509 {
510 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
511 	struct flush_cmd cmd;
512 	int ret;
513 
514 	if (test_opt(sbi, NOBARRIER))
515 		return 0;
516 
517 	if (!test_opt(sbi, FLUSH_MERGE)) {
518 		ret = submit_flush_wait(sbi);
519 		atomic_inc(&fcc->issued_flush);
520 		return ret;
521 	}
522 
523 	if (!atomic_read(&fcc->issing_flush)) {
524 		atomic_inc(&fcc->issing_flush);
525 		ret = submit_flush_wait(sbi);
526 		atomic_dec(&fcc->issing_flush);
527 
528 		atomic_inc(&fcc->issued_flush);
529 		return ret;
530 	}
531 
532 	init_completion(&cmd.wait);
533 
534 	atomic_inc(&fcc->issing_flush);
535 	llist_add(&cmd.llnode, &fcc->issue_list);
536 
537 	if (!fcc->dispatch_list)
538 		wake_up(&fcc->flush_wait_queue);
539 
540 	if (fcc->f2fs_issue_flush) {
541 		wait_for_completion(&cmd.wait);
542 		atomic_dec(&fcc->issing_flush);
543 	} else {
544 		llist_del_all(&fcc->issue_list);
545 		atomic_set(&fcc->issing_flush, 0);
546 	}
547 
548 	return cmd.ret;
549 }
550 
551 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
552 {
553 	dev_t dev = sbi->sb->s_bdev->bd_dev;
554 	struct flush_cmd_control *fcc;
555 	int err = 0;
556 
557 	if (SM_I(sbi)->fcc_info) {
558 		fcc = SM_I(sbi)->fcc_info;
559 		goto init_thread;
560 	}
561 
562 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
563 	if (!fcc)
564 		return -ENOMEM;
565 	atomic_set(&fcc->issued_flush, 0);
566 	atomic_set(&fcc->issing_flush, 0);
567 	init_waitqueue_head(&fcc->flush_wait_queue);
568 	init_llist_head(&fcc->issue_list);
569 	SM_I(sbi)->fcc_info = fcc;
570 init_thread:
571 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
572 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
573 	if (IS_ERR(fcc->f2fs_issue_flush)) {
574 		err = PTR_ERR(fcc->f2fs_issue_flush);
575 		kfree(fcc);
576 		SM_I(sbi)->fcc_info = NULL;
577 		return err;
578 	}
579 
580 	return err;
581 }
582 
583 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
584 {
585 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
586 
587 	if (fcc && fcc->f2fs_issue_flush) {
588 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
589 
590 		fcc->f2fs_issue_flush = NULL;
591 		kthread_stop(flush_thread);
592 	}
593 	if (free) {
594 		kfree(fcc);
595 		SM_I(sbi)->fcc_info = NULL;
596 	}
597 }
598 
599 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
600 		enum dirty_type dirty_type)
601 {
602 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
603 
604 	/* need not be added */
605 	if (IS_CURSEG(sbi, segno))
606 		return;
607 
608 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
609 		dirty_i->nr_dirty[dirty_type]++;
610 
611 	if (dirty_type == DIRTY) {
612 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
613 		enum dirty_type t = sentry->type;
614 
615 		if (unlikely(t >= DIRTY)) {
616 			f2fs_bug_on(sbi, 1);
617 			return;
618 		}
619 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
620 			dirty_i->nr_dirty[t]++;
621 	}
622 }
623 
624 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
625 		enum dirty_type dirty_type)
626 {
627 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
628 
629 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
630 		dirty_i->nr_dirty[dirty_type]--;
631 
632 	if (dirty_type == DIRTY) {
633 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
634 		enum dirty_type t = sentry->type;
635 
636 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
637 			dirty_i->nr_dirty[t]--;
638 
639 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
640 			clear_bit(GET_SECNO(sbi, segno),
641 						dirty_i->victim_secmap);
642 	}
643 }
644 
645 /*
646  * Should not occur error such as -ENOMEM.
647  * Adding dirty entry into seglist is not critical operation.
648  * If a given segment is one of current working segments, it won't be added.
649  */
650 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
651 {
652 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
653 	unsigned short valid_blocks;
654 
655 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
656 		return;
657 
658 	mutex_lock(&dirty_i->seglist_lock);
659 
660 	valid_blocks = get_valid_blocks(sbi, segno, 0);
661 
662 	if (valid_blocks == 0) {
663 		__locate_dirty_segment(sbi, segno, PRE);
664 		__remove_dirty_segment(sbi, segno, DIRTY);
665 	} else if (valid_blocks < sbi->blocks_per_seg) {
666 		__locate_dirty_segment(sbi, segno, DIRTY);
667 	} else {
668 		/* Recovery routine with SSR needs this */
669 		__remove_dirty_segment(sbi, segno, DIRTY);
670 	}
671 
672 	mutex_unlock(&dirty_i->seglist_lock);
673 }
674 
675 static void __add_discard_cmd(struct f2fs_sb_info *sbi,
676 		struct block_device *bdev, block_t lstart,
677 		block_t start, block_t len)
678 {
679 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
680 	struct list_head *cmd_list = &(dcc->discard_cmd_list);
681 	struct discard_cmd *dc;
682 
683 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
684 	INIT_LIST_HEAD(&dc->list);
685 	dc->bdev = bdev;
686 	dc->lstart = lstart;
687 	dc->start = start;
688 	dc->len = len;
689 	dc->state = D_PREP;
690 	dc->error = 0;
691 	init_completion(&dc->wait);
692 
693 	mutex_lock(&dcc->cmd_lock);
694 	list_add_tail(&dc->list, cmd_list);
695 	mutex_unlock(&dcc->cmd_lock);
696 }
697 
698 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc)
699 {
700 	if (dc->state == D_DONE)
701 		atomic_dec(&(SM_I(sbi)->dcc_info->issing_discard));
702 
703 	if (dc->error == -EOPNOTSUPP)
704 		dc->error = 0;
705 
706 	if (dc->error)
707 		f2fs_msg(sbi->sb, KERN_INFO,
708 				"Issue discard failed, ret: %d", dc->error);
709 	list_del(&dc->list);
710 	kmem_cache_free(discard_cmd_slab, dc);
711 }
712 
713 static void f2fs_submit_discard_endio(struct bio *bio)
714 {
715 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
716 
717 	complete(&dc->wait);
718 	dc->error = bio->bi_error;
719 	dc->state = D_DONE;
720 	bio_put(bio);
721 }
722 
723 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
724 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
725 				struct discard_cmd *dc)
726 {
727 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
728 	struct bio *bio = NULL;
729 
730 	if (dc->state != D_PREP)
731 		return;
732 
733 	dc->error = __blkdev_issue_discard(dc->bdev,
734 				SECTOR_FROM_BLOCK(dc->start),
735 				SECTOR_FROM_BLOCK(dc->len),
736 				GFP_NOFS, 0, &bio);
737 	if (!dc->error) {
738 		/* should keep before submission to avoid D_DONE right away */
739 		dc->state = D_SUBMIT;
740 		atomic_inc(&dcc->issued_discard);
741 		atomic_inc(&dcc->issing_discard);
742 		if (bio) {
743 			bio->bi_private = dc;
744 			bio->bi_end_io = f2fs_submit_discard_endio;
745 			bio->bi_opf |= REQ_SYNC;
746 			submit_bio(bio);
747 		}
748 	} else {
749 		__remove_discard_cmd(sbi, dc);
750 	}
751 }
752 
753 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
754 		struct block_device *bdev, block_t blkstart, block_t blklen)
755 {
756 	block_t lblkstart = blkstart;
757 
758 	trace_f2fs_issue_discard(bdev, blkstart, blklen);
759 
760 	if (sbi->s_ndevs) {
761 		int devi = f2fs_target_device_index(sbi, blkstart);
762 
763 		blkstart -= FDEV(devi).start_blk;
764 	}
765 	__add_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
766 	wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
767 	return 0;
768 }
769 
770 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
771 				struct discard_cmd *dc, block_t blkaddr)
772 {
773 	block_t end_block = START_BLOCK(sbi, GET_SEGNO(sbi, blkaddr) + 1);
774 
775 	if (dc->state == D_DONE || dc->lstart + dc->len <= end_block) {
776 		__remove_discard_cmd(sbi, dc);
777 		return;
778 	}
779 
780 	if (blkaddr - dc->lstart < dc->lstart + dc->len - end_block) {
781 		dc->start += (end_block - dc->lstart);
782 		dc->len -= (end_block - dc->lstart);
783 		dc->lstart = end_block;
784 	} else {
785 		dc->len = blkaddr - dc->lstart;
786 	}
787 }
788 
789 /* This should be covered by global mutex, &sit_i->sentry_lock */
790 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
791 {
792 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
793 	struct list_head *wait_list = &(dcc->discard_cmd_list);
794 	struct discard_cmd *dc, *tmp;
795 	struct blk_plug plug;
796 
797 	mutex_lock(&dcc->cmd_lock);
798 
799 	blk_start_plug(&plug);
800 
801 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
802 
803 		if (blkaddr == NULL_ADDR) {
804 			__submit_discard_cmd(sbi, dc);
805 			continue;
806 		}
807 
808 		if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) {
809 			if (dc->state == D_SUBMIT)
810 				wait_for_completion_io(&dc->wait);
811 			__punch_discard_cmd(sbi, dc, blkaddr);
812 		}
813 	}
814 	blk_finish_plug(&plug);
815 
816 	/* this comes from f2fs_put_super */
817 	if (blkaddr == NULL_ADDR) {
818 		list_for_each_entry_safe(dc, tmp, wait_list, list) {
819 			wait_for_completion_io(&dc->wait);
820 			__remove_discard_cmd(sbi, dc);
821 		}
822 	}
823 	mutex_unlock(&dcc->cmd_lock);
824 }
825 
826 static int issue_discard_thread(void *data)
827 {
828 	struct f2fs_sb_info *sbi = data;
829 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
830 	wait_queue_head_t *q = &dcc->discard_wait_queue;
831 	struct list_head *cmd_list = &dcc->discard_cmd_list;
832 	struct discard_cmd *dc, *tmp;
833 	struct blk_plug plug;
834 	int iter = 0;
835 repeat:
836 	if (kthread_should_stop())
837 		return 0;
838 
839 	blk_start_plug(&plug);
840 
841 	mutex_lock(&dcc->cmd_lock);
842 	list_for_each_entry_safe(dc, tmp, cmd_list, list) {
843 
844 		if (is_idle(sbi))
845 			__submit_discard_cmd(sbi, dc);
846 
847 		if (dc->state == D_PREP && iter++ > DISCARD_ISSUE_RATE)
848 			break;
849 		if (dc->state == D_DONE)
850 			__remove_discard_cmd(sbi, dc);
851 	}
852 	mutex_unlock(&dcc->cmd_lock);
853 
854 	blk_finish_plug(&plug);
855 
856 	iter = 0;
857 	congestion_wait(BLK_RW_SYNC, HZ/50);
858 
859 	wait_event_interruptible(*q,
860 		kthread_should_stop() || !list_empty(&dcc->discard_cmd_list));
861 	goto repeat;
862 }
863 
864 #ifdef CONFIG_BLK_DEV_ZONED
865 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
866 		struct block_device *bdev, block_t blkstart, block_t blklen)
867 {
868 	sector_t sector, nr_sects;
869 	block_t lblkstart = blkstart;
870 	int devi = 0;
871 
872 	if (sbi->s_ndevs) {
873 		devi = f2fs_target_device_index(sbi, blkstart);
874 		blkstart -= FDEV(devi).start_blk;
875 	}
876 
877 	/*
878 	 * We need to know the type of the zone: for conventional zones,
879 	 * use regular discard if the drive supports it. For sequential
880 	 * zones, reset the zone write pointer.
881 	 */
882 	switch (get_blkz_type(sbi, bdev, blkstart)) {
883 
884 	case BLK_ZONE_TYPE_CONVENTIONAL:
885 		if (!blk_queue_discard(bdev_get_queue(bdev)))
886 			return 0;
887 		return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
888 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
889 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
890 		sector = SECTOR_FROM_BLOCK(blkstart);
891 		nr_sects = SECTOR_FROM_BLOCK(blklen);
892 
893 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
894 				nr_sects != bdev_zone_sectors(bdev)) {
895 			f2fs_msg(sbi->sb, KERN_INFO,
896 				"(%d) %s: Unaligned discard attempted (block %x + %x)",
897 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
898 				blkstart, blklen);
899 			return -EIO;
900 		}
901 		trace_f2fs_issue_reset_zone(bdev, blkstart);
902 		return blkdev_reset_zones(bdev, sector,
903 					  nr_sects, GFP_NOFS);
904 	default:
905 		/* Unknown zone type: broken device ? */
906 		return -EIO;
907 	}
908 }
909 #endif
910 
911 static int __issue_discard_async(struct f2fs_sb_info *sbi,
912 		struct block_device *bdev, block_t blkstart, block_t blklen)
913 {
914 #ifdef CONFIG_BLK_DEV_ZONED
915 	if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
916 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
917 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
918 #endif
919 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
920 }
921 
922 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
923 				block_t blkstart, block_t blklen)
924 {
925 	sector_t start = blkstart, len = 0;
926 	struct block_device *bdev;
927 	struct seg_entry *se;
928 	unsigned int offset;
929 	block_t i;
930 	int err = 0;
931 
932 	bdev = f2fs_target_device(sbi, blkstart, NULL);
933 
934 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
935 		if (i != start) {
936 			struct block_device *bdev2 =
937 				f2fs_target_device(sbi, i, NULL);
938 
939 			if (bdev2 != bdev) {
940 				err = __issue_discard_async(sbi, bdev,
941 						start, len);
942 				if (err)
943 					return err;
944 				bdev = bdev2;
945 				start = i;
946 				len = 0;
947 			}
948 		}
949 
950 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
951 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
952 
953 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
954 			sbi->discard_blks--;
955 	}
956 
957 	if (len)
958 		err = __issue_discard_async(sbi, bdev, start, len);
959 	return err;
960 }
961 
962 static void __add_discard_entry(struct f2fs_sb_info *sbi,
963 		struct cp_control *cpc, struct seg_entry *se,
964 		unsigned int start, unsigned int end)
965 {
966 	struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list;
967 	struct discard_entry *new, *last;
968 
969 	if (!list_empty(head)) {
970 		last = list_last_entry(head, struct discard_entry, list);
971 		if (START_BLOCK(sbi, cpc->trim_start) + start ==
972 				last->blkaddr + last->len &&
973 				last->len < MAX_DISCARD_BLOCKS(sbi)) {
974 			last->len += end - start;
975 			goto done;
976 		}
977 	}
978 
979 	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
980 	INIT_LIST_HEAD(&new->list);
981 	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
982 	new->len = end - start;
983 	list_add_tail(&new->list, head);
984 done:
985 	SM_I(sbi)->dcc_info->nr_discards += end - start;
986 }
987 
988 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
989 							bool check_only)
990 {
991 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
992 	int max_blocks = sbi->blocks_per_seg;
993 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
994 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
995 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
996 	unsigned long *discard_map = (unsigned long *)se->discard_map;
997 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
998 	unsigned int start = 0, end = -1;
999 	bool force = (cpc->reason == CP_DISCARD);
1000 	int i;
1001 
1002 	if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1003 		return false;
1004 
1005 	if (!force) {
1006 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1007 			SM_I(sbi)->dcc_info->nr_discards >=
1008 				SM_I(sbi)->dcc_info->max_discards)
1009 			return false;
1010 	}
1011 
1012 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1013 	for (i = 0; i < entries; i++)
1014 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1015 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1016 
1017 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1018 				SM_I(sbi)->dcc_info->max_discards) {
1019 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1020 		if (start >= max_blocks)
1021 			break;
1022 
1023 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1024 		if (force && start && end != max_blocks
1025 					&& (end - start) < cpc->trim_minlen)
1026 			continue;
1027 
1028 		if (check_only)
1029 			return true;
1030 
1031 		__add_discard_entry(sbi, cpc, se, start, end);
1032 	}
1033 	return false;
1034 }
1035 
1036 void release_discard_addrs(struct f2fs_sb_info *sbi)
1037 {
1038 	struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
1039 	struct discard_entry *entry, *this;
1040 
1041 	/* drop caches */
1042 	list_for_each_entry_safe(entry, this, head, list) {
1043 		list_del(&entry->list);
1044 		kmem_cache_free(discard_entry_slab, entry);
1045 	}
1046 }
1047 
1048 /*
1049  * Should call clear_prefree_segments after checkpoint is done.
1050  */
1051 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1052 {
1053 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1054 	unsigned int segno;
1055 
1056 	mutex_lock(&dirty_i->seglist_lock);
1057 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1058 		__set_test_and_free(sbi, segno);
1059 	mutex_unlock(&dirty_i->seglist_lock);
1060 }
1061 
1062 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1063 {
1064 	struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
1065 	struct discard_entry *entry, *this;
1066 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1067 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1068 	unsigned int start = 0, end = -1;
1069 	unsigned int secno, start_segno;
1070 	bool force = (cpc->reason == CP_DISCARD);
1071 
1072 	mutex_lock(&dirty_i->seglist_lock);
1073 
1074 	while (1) {
1075 		int i;
1076 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1077 		if (start >= MAIN_SEGS(sbi))
1078 			break;
1079 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1080 								start + 1);
1081 
1082 		for (i = start; i < end; i++)
1083 			clear_bit(i, prefree_map);
1084 
1085 		dirty_i->nr_dirty[PRE] -= end - start;
1086 
1087 		if (!test_opt(sbi, DISCARD))
1088 			continue;
1089 
1090 		if (force && start >= cpc->trim_start &&
1091 					(end - 1) <= cpc->trim_end)
1092 				continue;
1093 
1094 		if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1095 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1096 				(end - start) << sbi->log_blocks_per_seg);
1097 			continue;
1098 		}
1099 next:
1100 		secno = GET_SECNO(sbi, start);
1101 		start_segno = secno * sbi->segs_per_sec;
1102 		if (!IS_CURSEC(sbi, secno) &&
1103 			!get_valid_blocks(sbi, start, sbi->segs_per_sec))
1104 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1105 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1106 
1107 		start = start_segno + sbi->segs_per_sec;
1108 		if (start < end)
1109 			goto next;
1110 		else
1111 			end = start - 1;
1112 	}
1113 	mutex_unlock(&dirty_i->seglist_lock);
1114 
1115 	/* send small discards */
1116 	list_for_each_entry_safe(entry, this, head, list) {
1117 		if (force && entry->len < cpc->trim_minlen)
1118 			goto skip;
1119 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
1120 		cpc->trimmed += entry->len;
1121 skip:
1122 		list_del(&entry->list);
1123 		SM_I(sbi)->dcc_info->nr_discards -= entry->len;
1124 		kmem_cache_free(discard_entry_slab, entry);
1125 	}
1126 }
1127 
1128 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1129 {
1130 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1131 	struct discard_cmd_control *dcc;
1132 	int err = 0;
1133 
1134 	if (SM_I(sbi)->dcc_info) {
1135 		dcc = SM_I(sbi)->dcc_info;
1136 		goto init_thread;
1137 	}
1138 
1139 	dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1140 	if (!dcc)
1141 		return -ENOMEM;
1142 
1143 	INIT_LIST_HEAD(&dcc->discard_entry_list);
1144 	INIT_LIST_HEAD(&dcc->discard_cmd_list);
1145 	mutex_init(&dcc->cmd_lock);
1146 	atomic_set(&dcc->issued_discard, 0);
1147 	atomic_set(&dcc->issing_discard, 0);
1148 	dcc->nr_discards = 0;
1149 	dcc->max_discards = 0;
1150 
1151 	init_waitqueue_head(&dcc->discard_wait_queue);
1152 	SM_I(sbi)->dcc_info = dcc;
1153 init_thread:
1154 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1155 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1156 	if (IS_ERR(dcc->f2fs_issue_discard)) {
1157 		err = PTR_ERR(dcc->f2fs_issue_discard);
1158 		kfree(dcc);
1159 		SM_I(sbi)->dcc_info = NULL;
1160 		return err;
1161 	}
1162 
1163 	return err;
1164 }
1165 
1166 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free)
1167 {
1168 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1169 
1170 	if (dcc && dcc->f2fs_issue_discard) {
1171 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1172 
1173 		dcc->f2fs_issue_discard = NULL;
1174 		kthread_stop(discard_thread);
1175 	}
1176 	if (free) {
1177 		kfree(dcc);
1178 		SM_I(sbi)->dcc_info = NULL;
1179 	}
1180 }
1181 
1182 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1183 {
1184 	struct sit_info *sit_i = SIT_I(sbi);
1185 
1186 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1187 		sit_i->dirty_sentries++;
1188 		return false;
1189 	}
1190 
1191 	return true;
1192 }
1193 
1194 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1195 					unsigned int segno, int modified)
1196 {
1197 	struct seg_entry *se = get_seg_entry(sbi, segno);
1198 	se->type = type;
1199 	if (modified)
1200 		__mark_sit_entry_dirty(sbi, segno);
1201 }
1202 
1203 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1204 {
1205 	struct seg_entry *se;
1206 	unsigned int segno, offset;
1207 	long int new_vblocks;
1208 
1209 	segno = GET_SEGNO(sbi, blkaddr);
1210 
1211 	se = get_seg_entry(sbi, segno);
1212 	new_vblocks = se->valid_blocks + del;
1213 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1214 
1215 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1216 				(new_vblocks > sbi->blocks_per_seg)));
1217 
1218 	se->valid_blocks = new_vblocks;
1219 	se->mtime = get_mtime(sbi);
1220 	SIT_I(sbi)->max_mtime = se->mtime;
1221 
1222 	/* Update valid block bitmap */
1223 	if (del > 0) {
1224 		if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
1225 #ifdef CONFIG_F2FS_CHECK_FS
1226 			if (f2fs_test_and_set_bit(offset,
1227 						se->cur_valid_map_mir))
1228 				f2fs_bug_on(sbi, 1);
1229 			else
1230 				WARN_ON(1);
1231 #else
1232 			f2fs_bug_on(sbi, 1);
1233 #endif
1234 		}
1235 		if (f2fs_discard_en(sbi) &&
1236 			!f2fs_test_and_set_bit(offset, se->discard_map))
1237 			sbi->discard_blks--;
1238 
1239 		/* don't overwrite by SSR to keep node chain */
1240 		if (se->type == CURSEG_WARM_NODE) {
1241 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1242 				se->ckpt_valid_blocks++;
1243 		}
1244 	} else {
1245 		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
1246 #ifdef CONFIG_F2FS_CHECK_FS
1247 			if (!f2fs_test_and_clear_bit(offset,
1248 						se->cur_valid_map_mir))
1249 				f2fs_bug_on(sbi, 1);
1250 			else
1251 				WARN_ON(1);
1252 #else
1253 			f2fs_bug_on(sbi, 1);
1254 #endif
1255 		}
1256 		if (f2fs_discard_en(sbi) &&
1257 			f2fs_test_and_clear_bit(offset, se->discard_map))
1258 			sbi->discard_blks++;
1259 	}
1260 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1261 		se->ckpt_valid_blocks += del;
1262 
1263 	__mark_sit_entry_dirty(sbi, segno);
1264 
1265 	/* update total number of valid blocks to be written in ckpt area */
1266 	SIT_I(sbi)->written_valid_blocks += del;
1267 
1268 	if (sbi->segs_per_sec > 1)
1269 		get_sec_entry(sbi, segno)->valid_blocks += del;
1270 }
1271 
1272 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1273 {
1274 	update_sit_entry(sbi, new, 1);
1275 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1276 		update_sit_entry(sbi, old, -1);
1277 
1278 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1279 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1280 }
1281 
1282 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1283 {
1284 	unsigned int segno = GET_SEGNO(sbi, addr);
1285 	struct sit_info *sit_i = SIT_I(sbi);
1286 
1287 	f2fs_bug_on(sbi, addr == NULL_ADDR);
1288 	if (addr == NEW_ADDR)
1289 		return;
1290 
1291 	/* add it into sit main buffer */
1292 	mutex_lock(&sit_i->sentry_lock);
1293 
1294 	update_sit_entry(sbi, addr, -1);
1295 
1296 	/* add it into dirty seglist */
1297 	locate_dirty_segment(sbi, segno);
1298 
1299 	mutex_unlock(&sit_i->sentry_lock);
1300 }
1301 
1302 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1303 {
1304 	struct sit_info *sit_i = SIT_I(sbi);
1305 	unsigned int segno, offset;
1306 	struct seg_entry *se;
1307 	bool is_cp = false;
1308 
1309 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1310 		return true;
1311 
1312 	mutex_lock(&sit_i->sentry_lock);
1313 
1314 	segno = GET_SEGNO(sbi, blkaddr);
1315 	se = get_seg_entry(sbi, segno);
1316 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1317 
1318 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
1319 		is_cp = true;
1320 
1321 	mutex_unlock(&sit_i->sentry_lock);
1322 
1323 	return is_cp;
1324 }
1325 
1326 /*
1327  * This function should be resided under the curseg_mutex lock
1328  */
1329 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1330 					struct f2fs_summary *sum)
1331 {
1332 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1333 	void *addr = curseg->sum_blk;
1334 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1335 	memcpy(addr, sum, sizeof(struct f2fs_summary));
1336 }
1337 
1338 /*
1339  * Calculate the number of current summary pages for writing
1340  */
1341 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1342 {
1343 	int valid_sum_count = 0;
1344 	int i, sum_in_page;
1345 
1346 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1347 		if (sbi->ckpt->alloc_type[i] == SSR)
1348 			valid_sum_count += sbi->blocks_per_seg;
1349 		else {
1350 			if (for_ra)
1351 				valid_sum_count += le16_to_cpu(
1352 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1353 			else
1354 				valid_sum_count += curseg_blkoff(sbi, i);
1355 		}
1356 	}
1357 
1358 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1359 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1360 	if (valid_sum_count <= sum_in_page)
1361 		return 1;
1362 	else if ((valid_sum_count - sum_in_page) <=
1363 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1364 		return 2;
1365 	return 3;
1366 }
1367 
1368 /*
1369  * Caller should put this summary page
1370  */
1371 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1372 {
1373 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1374 }
1375 
1376 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1377 {
1378 	struct page *page = grab_meta_page(sbi, blk_addr);
1379 	void *dst = page_address(page);
1380 
1381 	if (src)
1382 		memcpy(dst, src, PAGE_SIZE);
1383 	else
1384 		memset(dst, 0, PAGE_SIZE);
1385 	set_page_dirty(page);
1386 	f2fs_put_page(page, 1);
1387 }
1388 
1389 static void write_sum_page(struct f2fs_sb_info *sbi,
1390 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
1391 {
1392 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
1393 }
1394 
1395 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1396 						int type, block_t blk_addr)
1397 {
1398 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1399 	struct page *page = grab_meta_page(sbi, blk_addr);
1400 	struct f2fs_summary_block *src = curseg->sum_blk;
1401 	struct f2fs_summary_block *dst;
1402 
1403 	dst = (struct f2fs_summary_block *)page_address(page);
1404 
1405 	mutex_lock(&curseg->curseg_mutex);
1406 
1407 	down_read(&curseg->journal_rwsem);
1408 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1409 	up_read(&curseg->journal_rwsem);
1410 
1411 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1412 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1413 
1414 	mutex_unlock(&curseg->curseg_mutex);
1415 
1416 	set_page_dirty(page);
1417 	f2fs_put_page(page, 1);
1418 }
1419 
1420 /*
1421  * Find a new segment from the free segments bitmap to right order
1422  * This function should be returned with success, otherwise BUG
1423  */
1424 static void get_new_segment(struct f2fs_sb_info *sbi,
1425 			unsigned int *newseg, bool new_sec, int dir)
1426 {
1427 	struct free_segmap_info *free_i = FREE_I(sbi);
1428 	unsigned int segno, secno, zoneno;
1429 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1430 	unsigned int hint = *newseg / sbi->segs_per_sec;
1431 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1432 	unsigned int left_start = hint;
1433 	bool init = true;
1434 	int go_left = 0;
1435 	int i;
1436 
1437 	spin_lock(&free_i->segmap_lock);
1438 
1439 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1440 		segno = find_next_zero_bit(free_i->free_segmap,
1441 				(hint + 1) * sbi->segs_per_sec, *newseg + 1);
1442 		if (segno < (hint + 1) * sbi->segs_per_sec)
1443 			goto got_it;
1444 	}
1445 find_other_zone:
1446 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1447 	if (secno >= MAIN_SECS(sbi)) {
1448 		if (dir == ALLOC_RIGHT) {
1449 			secno = find_next_zero_bit(free_i->free_secmap,
1450 							MAIN_SECS(sbi), 0);
1451 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1452 		} else {
1453 			go_left = 1;
1454 			left_start = hint - 1;
1455 		}
1456 	}
1457 	if (go_left == 0)
1458 		goto skip_left;
1459 
1460 	while (test_bit(left_start, free_i->free_secmap)) {
1461 		if (left_start > 0) {
1462 			left_start--;
1463 			continue;
1464 		}
1465 		left_start = find_next_zero_bit(free_i->free_secmap,
1466 							MAIN_SECS(sbi), 0);
1467 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1468 		break;
1469 	}
1470 	secno = left_start;
1471 skip_left:
1472 	hint = secno;
1473 	segno = secno * sbi->segs_per_sec;
1474 	zoneno = secno / sbi->secs_per_zone;
1475 
1476 	/* give up on finding another zone */
1477 	if (!init)
1478 		goto got_it;
1479 	if (sbi->secs_per_zone == 1)
1480 		goto got_it;
1481 	if (zoneno == old_zoneno)
1482 		goto got_it;
1483 	if (dir == ALLOC_LEFT) {
1484 		if (!go_left && zoneno + 1 >= total_zones)
1485 			goto got_it;
1486 		if (go_left && zoneno == 0)
1487 			goto got_it;
1488 	}
1489 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1490 		if (CURSEG_I(sbi, i)->zone == zoneno)
1491 			break;
1492 
1493 	if (i < NR_CURSEG_TYPE) {
1494 		/* zone is in user, try another */
1495 		if (go_left)
1496 			hint = zoneno * sbi->secs_per_zone - 1;
1497 		else if (zoneno + 1 >= total_zones)
1498 			hint = 0;
1499 		else
1500 			hint = (zoneno + 1) * sbi->secs_per_zone;
1501 		init = false;
1502 		goto find_other_zone;
1503 	}
1504 got_it:
1505 	/* set it as dirty segment in free segmap */
1506 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1507 	__set_inuse(sbi, segno);
1508 	*newseg = segno;
1509 	spin_unlock(&free_i->segmap_lock);
1510 }
1511 
1512 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1513 {
1514 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1515 	struct summary_footer *sum_footer;
1516 
1517 	curseg->segno = curseg->next_segno;
1518 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1519 	curseg->next_blkoff = 0;
1520 	curseg->next_segno = NULL_SEGNO;
1521 
1522 	sum_footer = &(curseg->sum_blk->footer);
1523 	memset(sum_footer, 0, sizeof(struct summary_footer));
1524 	if (IS_DATASEG(type))
1525 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1526 	if (IS_NODESEG(type))
1527 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1528 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
1529 }
1530 
1531 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
1532 {
1533 	if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
1534 		return 0;
1535 
1536 	return CURSEG_I(sbi, type)->segno;
1537 }
1538 
1539 /*
1540  * Allocate a current working segment.
1541  * This function always allocates a free segment in LFS manner.
1542  */
1543 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1544 {
1545 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1546 	unsigned int segno = curseg->segno;
1547 	int dir = ALLOC_LEFT;
1548 
1549 	write_sum_page(sbi, curseg->sum_blk,
1550 				GET_SUM_BLOCK(sbi, segno));
1551 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1552 		dir = ALLOC_RIGHT;
1553 
1554 	if (test_opt(sbi, NOHEAP))
1555 		dir = ALLOC_RIGHT;
1556 
1557 	segno = __get_next_segno(sbi, type);
1558 	get_new_segment(sbi, &segno, new_sec, dir);
1559 	curseg->next_segno = segno;
1560 	reset_curseg(sbi, type, 1);
1561 	curseg->alloc_type = LFS;
1562 }
1563 
1564 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1565 			struct curseg_info *seg, block_t start)
1566 {
1567 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1568 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1569 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
1570 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1571 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1572 	int i, pos;
1573 
1574 	for (i = 0; i < entries; i++)
1575 		target_map[i] = ckpt_map[i] | cur_map[i];
1576 
1577 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1578 
1579 	seg->next_blkoff = pos;
1580 }
1581 
1582 /*
1583  * If a segment is written by LFS manner, next block offset is just obtained
1584  * by increasing the current block offset. However, if a segment is written by
1585  * SSR manner, next block offset obtained by calling __next_free_blkoff
1586  */
1587 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1588 				struct curseg_info *seg)
1589 {
1590 	if (seg->alloc_type == SSR)
1591 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1592 	else
1593 		seg->next_blkoff++;
1594 }
1595 
1596 /*
1597  * This function always allocates a used segment(from dirty seglist) by SSR
1598  * manner, so it should recover the existing segment information of valid blocks
1599  */
1600 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1601 {
1602 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1603 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1604 	unsigned int new_segno = curseg->next_segno;
1605 	struct f2fs_summary_block *sum_node;
1606 	struct page *sum_page;
1607 
1608 	write_sum_page(sbi, curseg->sum_blk,
1609 				GET_SUM_BLOCK(sbi, curseg->segno));
1610 	__set_test_and_inuse(sbi, new_segno);
1611 
1612 	mutex_lock(&dirty_i->seglist_lock);
1613 	__remove_dirty_segment(sbi, new_segno, PRE);
1614 	__remove_dirty_segment(sbi, new_segno, DIRTY);
1615 	mutex_unlock(&dirty_i->seglist_lock);
1616 
1617 	reset_curseg(sbi, type, 1);
1618 	curseg->alloc_type = SSR;
1619 	__next_free_blkoff(sbi, curseg, 0);
1620 
1621 	if (reuse) {
1622 		sum_page = get_sum_page(sbi, new_segno);
1623 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1624 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1625 		f2fs_put_page(sum_page, 1);
1626 	}
1627 }
1628 
1629 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1630 {
1631 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1632 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1633 	int i, cnt;
1634 	bool reversed = false;
1635 
1636 	/* need_SSR() already forces to do this */
1637 	if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR))
1638 		return 1;
1639 
1640 	/* For node segments, let's do SSR more intensively */
1641 	if (IS_NODESEG(type)) {
1642 		if (type >= CURSEG_WARM_NODE) {
1643 			reversed = true;
1644 			i = CURSEG_COLD_NODE;
1645 		} else {
1646 			i = CURSEG_HOT_NODE;
1647 		}
1648 		cnt = NR_CURSEG_NODE_TYPE;
1649 	} else {
1650 		if (type >= CURSEG_WARM_DATA) {
1651 			reversed = true;
1652 			i = CURSEG_COLD_DATA;
1653 		} else {
1654 			i = CURSEG_HOT_DATA;
1655 		}
1656 		cnt = NR_CURSEG_DATA_TYPE;
1657 	}
1658 
1659 	for (; cnt-- > 0; reversed ? i-- : i++) {
1660 		if (i == type)
1661 			continue;
1662 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1663 						BG_GC, i, SSR))
1664 			return 1;
1665 	}
1666 	return 0;
1667 }
1668 
1669 /*
1670  * flush out current segment and replace it with new segment
1671  * This function should be returned with success, otherwise BUG
1672  */
1673 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1674 						int type, bool force)
1675 {
1676 	if (force)
1677 		new_curseg(sbi, type, true);
1678 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
1679 					type == CURSEG_WARM_NODE)
1680 		new_curseg(sbi, type, false);
1681 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1682 		change_curseg(sbi, type, true);
1683 	else
1684 		new_curseg(sbi, type, false);
1685 
1686 	stat_inc_seg_type(sbi, CURSEG_I(sbi, type));
1687 }
1688 
1689 void allocate_new_segments(struct f2fs_sb_info *sbi)
1690 {
1691 	struct curseg_info *curseg;
1692 	unsigned int old_segno;
1693 	int i;
1694 
1695 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1696 		curseg = CURSEG_I(sbi, i);
1697 		old_segno = curseg->segno;
1698 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1699 		locate_dirty_segment(sbi, old_segno);
1700 	}
1701 }
1702 
1703 static const struct segment_allocation default_salloc_ops = {
1704 	.allocate_segment = allocate_segment_by_default,
1705 };
1706 
1707 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1708 {
1709 	__u64 trim_start = cpc->trim_start;
1710 	bool has_candidate = false;
1711 
1712 	mutex_lock(&SIT_I(sbi)->sentry_lock);
1713 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
1714 		if (add_discard_addrs(sbi, cpc, true)) {
1715 			has_candidate = true;
1716 			break;
1717 		}
1718 	}
1719 	mutex_unlock(&SIT_I(sbi)->sentry_lock);
1720 
1721 	cpc->trim_start = trim_start;
1722 	return has_candidate;
1723 }
1724 
1725 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1726 {
1727 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1728 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1729 	unsigned int start_segno, end_segno;
1730 	struct cp_control cpc;
1731 	int err = 0;
1732 
1733 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1734 		return -EINVAL;
1735 
1736 	cpc.trimmed = 0;
1737 	if (end <= MAIN_BLKADDR(sbi))
1738 		goto out;
1739 
1740 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1741 		f2fs_msg(sbi->sb, KERN_WARNING,
1742 			"Found FS corruption, run fsck to fix.");
1743 		goto out;
1744 	}
1745 
1746 	/* start/end segment number in main_area */
1747 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1748 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1749 						GET_SEGNO(sbi, end);
1750 	cpc.reason = CP_DISCARD;
1751 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1752 
1753 	/* do checkpoint to issue discard commands safely */
1754 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1755 		cpc.trim_start = start_segno;
1756 
1757 		if (sbi->discard_blks == 0)
1758 			break;
1759 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1760 			cpc.trim_end = end_segno;
1761 		else
1762 			cpc.trim_end = min_t(unsigned int,
1763 				rounddown(start_segno +
1764 				BATCHED_TRIM_SEGMENTS(sbi),
1765 				sbi->segs_per_sec) - 1, end_segno);
1766 
1767 		mutex_lock(&sbi->gc_mutex);
1768 		err = write_checkpoint(sbi, &cpc);
1769 		mutex_unlock(&sbi->gc_mutex);
1770 		if (err)
1771 			break;
1772 
1773 		schedule();
1774 	}
1775 out:
1776 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1777 	return err;
1778 }
1779 
1780 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1781 {
1782 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1783 	if (curseg->next_blkoff < sbi->blocks_per_seg)
1784 		return true;
1785 	return false;
1786 }
1787 
1788 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1789 {
1790 	if (p_type == DATA)
1791 		return CURSEG_HOT_DATA;
1792 	else
1793 		return CURSEG_HOT_NODE;
1794 }
1795 
1796 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1797 {
1798 	if (p_type == DATA) {
1799 		struct inode *inode = page->mapping->host;
1800 
1801 		if (S_ISDIR(inode->i_mode))
1802 			return CURSEG_HOT_DATA;
1803 		else
1804 			return CURSEG_COLD_DATA;
1805 	} else {
1806 		if (IS_DNODE(page) && is_cold_node(page))
1807 			return CURSEG_WARM_NODE;
1808 		else
1809 			return CURSEG_COLD_NODE;
1810 	}
1811 }
1812 
1813 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1814 {
1815 	if (p_type == DATA) {
1816 		struct inode *inode = page->mapping->host;
1817 
1818 		if (S_ISDIR(inode->i_mode))
1819 			return CURSEG_HOT_DATA;
1820 		else if (is_cold_data(page) || file_is_cold(inode))
1821 			return CURSEG_COLD_DATA;
1822 		else
1823 			return CURSEG_WARM_DATA;
1824 	} else {
1825 		if (IS_DNODE(page))
1826 			return is_cold_node(page) ? CURSEG_WARM_NODE :
1827 						CURSEG_HOT_NODE;
1828 		else
1829 			return CURSEG_COLD_NODE;
1830 	}
1831 }
1832 
1833 static int __get_segment_type(struct page *page, enum page_type p_type)
1834 {
1835 	switch (F2FS_P_SB(page)->active_logs) {
1836 	case 2:
1837 		return __get_segment_type_2(page, p_type);
1838 	case 4:
1839 		return __get_segment_type_4(page, p_type);
1840 	}
1841 	/* NR_CURSEG_TYPE(6) logs by default */
1842 	f2fs_bug_on(F2FS_P_SB(page),
1843 		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1844 	return __get_segment_type_6(page, p_type);
1845 }
1846 
1847 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1848 		block_t old_blkaddr, block_t *new_blkaddr,
1849 		struct f2fs_summary *sum, int type)
1850 {
1851 	struct sit_info *sit_i = SIT_I(sbi);
1852 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1853 
1854 	mutex_lock(&curseg->curseg_mutex);
1855 	mutex_lock(&sit_i->sentry_lock);
1856 
1857 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1858 
1859 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
1860 
1861 	/*
1862 	 * __add_sum_entry should be resided under the curseg_mutex
1863 	 * because, this function updates a summary entry in the
1864 	 * current summary block.
1865 	 */
1866 	__add_sum_entry(sbi, type, sum);
1867 
1868 	__refresh_next_blkoff(sbi, curseg);
1869 
1870 	stat_inc_block_count(sbi, curseg);
1871 
1872 	/*
1873 	 * SIT information should be updated before segment allocation,
1874 	 * since SSR needs latest valid block information.
1875 	 */
1876 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1877 
1878 	if (!__has_curseg_space(sbi, type))
1879 		sit_i->s_ops->allocate_segment(sbi, type, false);
1880 
1881 	mutex_unlock(&sit_i->sentry_lock);
1882 
1883 	if (page && IS_NODESEG(type))
1884 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1885 
1886 	mutex_unlock(&curseg->curseg_mutex);
1887 }
1888 
1889 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1890 {
1891 	int type = __get_segment_type(fio->page, fio->type);
1892 	int err;
1893 
1894 	if (fio->type == NODE || fio->type == DATA)
1895 		mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1896 reallocate:
1897 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1898 					&fio->new_blkaddr, sum, type);
1899 
1900 	/* writeout dirty page into bdev */
1901 	err = f2fs_submit_page_mbio(fio);
1902 	if (err == -EAGAIN) {
1903 		fio->old_blkaddr = fio->new_blkaddr;
1904 		goto reallocate;
1905 	}
1906 
1907 	if (fio->type == NODE || fio->type == DATA)
1908 		mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1909 }
1910 
1911 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1912 {
1913 	struct f2fs_io_info fio = {
1914 		.sbi = sbi,
1915 		.type = META,
1916 		.op = REQ_OP_WRITE,
1917 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
1918 		.old_blkaddr = page->index,
1919 		.new_blkaddr = page->index,
1920 		.page = page,
1921 		.encrypted_page = NULL,
1922 	};
1923 
1924 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1925 		fio.op_flags &= ~REQ_META;
1926 
1927 	set_page_writeback(page);
1928 	f2fs_submit_page_mbio(&fio);
1929 }
1930 
1931 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1932 {
1933 	struct f2fs_summary sum;
1934 
1935 	set_summary(&sum, nid, 0, 0);
1936 	do_write_page(&sum, fio);
1937 }
1938 
1939 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1940 {
1941 	struct f2fs_sb_info *sbi = fio->sbi;
1942 	struct f2fs_summary sum;
1943 	struct node_info ni;
1944 
1945 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1946 	get_node_info(sbi, dn->nid, &ni);
1947 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1948 	do_write_page(&sum, fio);
1949 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1950 }
1951 
1952 void rewrite_data_page(struct f2fs_io_info *fio)
1953 {
1954 	fio->new_blkaddr = fio->old_blkaddr;
1955 	stat_inc_inplace_blocks(fio->sbi);
1956 	f2fs_submit_page_mbio(fio);
1957 }
1958 
1959 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1960 				block_t old_blkaddr, block_t new_blkaddr,
1961 				bool recover_curseg, bool recover_newaddr)
1962 {
1963 	struct sit_info *sit_i = SIT_I(sbi);
1964 	struct curseg_info *curseg;
1965 	unsigned int segno, old_cursegno;
1966 	struct seg_entry *se;
1967 	int type;
1968 	unsigned short old_blkoff;
1969 
1970 	segno = GET_SEGNO(sbi, new_blkaddr);
1971 	se = get_seg_entry(sbi, segno);
1972 	type = se->type;
1973 
1974 	if (!recover_curseg) {
1975 		/* for recovery flow */
1976 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1977 			if (old_blkaddr == NULL_ADDR)
1978 				type = CURSEG_COLD_DATA;
1979 			else
1980 				type = CURSEG_WARM_DATA;
1981 		}
1982 	} else {
1983 		if (!IS_CURSEG(sbi, segno))
1984 			type = CURSEG_WARM_DATA;
1985 	}
1986 
1987 	curseg = CURSEG_I(sbi, type);
1988 
1989 	mutex_lock(&curseg->curseg_mutex);
1990 	mutex_lock(&sit_i->sentry_lock);
1991 
1992 	old_cursegno = curseg->segno;
1993 	old_blkoff = curseg->next_blkoff;
1994 
1995 	/* change the current segment */
1996 	if (segno != curseg->segno) {
1997 		curseg->next_segno = segno;
1998 		change_curseg(sbi, type, true);
1999 	}
2000 
2001 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2002 	__add_sum_entry(sbi, type, sum);
2003 
2004 	if (!recover_curseg || recover_newaddr)
2005 		update_sit_entry(sbi, new_blkaddr, 1);
2006 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2007 		update_sit_entry(sbi, old_blkaddr, -1);
2008 
2009 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2010 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2011 
2012 	locate_dirty_segment(sbi, old_cursegno);
2013 
2014 	if (recover_curseg) {
2015 		if (old_cursegno != curseg->segno) {
2016 			curseg->next_segno = old_cursegno;
2017 			change_curseg(sbi, type, true);
2018 		}
2019 		curseg->next_blkoff = old_blkoff;
2020 	}
2021 
2022 	mutex_unlock(&sit_i->sentry_lock);
2023 	mutex_unlock(&curseg->curseg_mutex);
2024 }
2025 
2026 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2027 				block_t old_addr, block_t new_addr,
2028 				unsigned char version, bool recover_curseg,
2029 				bool recover_newaddr)
2030 {
2031 	struct f2fs_summary sum;
2032 
2033 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2034 
2035 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2036 					recover_curseg, recover_newaddr);
2037 
2038 	f2fs_update_data_blkaddr(dn, new_addr);
2039 }
2040 
2041 void f2fs_wait_on_page_writeback(struct page *page,
2042 				enum page_type type, bool ordered)
2043 {
2044 	if (PageWriteback(page)) {
2045 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2046 
2047 		f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
2048 						0, page->index, type, WRITE);
2049 		if (ordered)
2050 			wait_on_page_writeback(page);
2051 		else
2052 			wait_for_stable_page(page);
2053 	}
2054 }
2055 
2056 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2057 							block_t blkaddr)
2058 {
2059 	struct page *cpage;
2060 
2061 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2062 		return;
2063 
2064 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2065 	if (cpage) {
2066 		f2fs_wait_on_page_writeback(cpage, DATA, true);
2067 		f2fs_put_page(cpage, 1);
2068 	}
2069 }
2070 
2071 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
2072 {
2073 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2074 	struct curseg_info *seg_i;
2075 	unsigned char *kaddr;
2076 	struct page *page;
2077 	block_t start;
2078 	int i, j, offset;
2079 
2080 	start = start_sum_block(sbi);
2081 
2082 	page = get_meta_page(sbi, start++);
2083 	kaddr = (unsigned char *)page_address(page);
2084 
2085 	/* Step 1: restore nat cache */
2086 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2087 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2088 
2089 	/* Step 2: restore sit cache */
2090 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2091 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2092 	offset = 2 * SUM_JOURNAL_SIZE;
2093 
2094 	/* Step 3: restore summary entries */
2095 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2096 		unsigned short blk_off;
2097 		unsigned int segno;
2098 
2099 		seg_i = CURSEG_I(sbi, i);
2100 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2101 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2102 		seg_i->next_segno = segno;
2103 		reset_curseg(sbi, i, 0);
2104 		seg_i->alloc_type = ckpt->alloc_type[i];
2105 		seg_i->next_blkoff = blk_off;
2106 
2107 		if (seg_i->alloc_type == SSR)
2108 			blk_off = sbi->blocks_per_seg;
2109 
2110 		for (j = 0; j < blk_off; j++) {
2111 			struct f2fs_summary *s;
2112 			s = (struct f2fs_summary *)(kaddr + offset);
2113 			seg_i->sum_blk->entries[j] = *s;
2114 			offset += SUMMARY_SIZE;
2115 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2116 						SUM_FOOTER_SIZE)
2117 				continue;
2118 
2119 			f2fs_put_page(page, 1);
2120 			page = NULL;
2121 
2122 			page = get_meta_page(sbi, start++);
2123 			kaddr = (unsigned char *)page_address(page);
2124 			offset = 0;
2125 		}
2126 	}
2127 	f2fs_put_page(page, 1);
2128 	return 0;
2129 }
2130 
2131 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2132 {
2133 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2134 	struct f2fs_summary_block *sum;
2135 	struct curseg_info *curseg;
2136 	struct page *new;
2137 	unsigned short blk_off;
2138 	unsigned int segno = 0;
2139 	block_t blk_addr = 0;
2140 
2141 	/* get segment number and block addr */
2142 	if (IS_DATASEG(type)) {
2143 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2144 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2145 							CURSEG_HOT_DATA]);
2146 		if (__exist_node_summaries(sbi))
2147 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2148 		else
2149 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2150 	} else {
2151 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
2152 							CURSEG_HOT_NODE]);
2153 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2154 							CURSEG_HOT_NODE]);
2155 		if (__exist_node_summaries(sbi))
2156 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2157 							type - CURSEG_HOT_NODE);
2158 		else
2159 			blk_addr = GET_SUM_BLOCK(sbi, segno);
2160 	}
2161 
2162 	new = get_meta_page(sbi, blk_addr);
2163 	sum = (struct f2fs_summary_block *)page_address(new);
2164 
2165 	if (IS_NODESEG(type)) {
2166 		if (__exist_node_summaries(sbi)) {
2167 			struct f2fs_summary *ns = &sum->entries[0];
2168 			int i;
2169 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2170 				ns->version = 0;
2171 				ns->ofs_in_node = 0;
2172 			}
2173 		} else {
2174 			int err;
2175 
2176 			err = restore_node_summary(sbi, segno, sum);
2177 			if (err) {
2178 				f2fs_put_page(new, 1);
2179 				return err;
2180 			}
2181 		}
2182 	}
2183 
2184 	/* set uncompleted segment to curseg */
2185 	curseg = CURSEG_I(sbi, type);
2186 	mutex_lock(&curseg->curseg_mutex);
2187 
2188 	/* update journal info */
2189 	down_write(&curseg->journal_rwsem);
2190 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2191 	up_write(&curseg->journal_rwsem);
2192 
2193 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2194 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2195 	curseg->next_segno = segno;
2196 	reset_curseg(sbi, type, 0);
2197 	curseg->alloc_type = ckpt->alloc_type[type];
2198 	curseg->next_blkoff = blk_off;
2199 	mutex_unlock(&curseg->curseg_mutex);
2200 	f2fs_put_page(new, 1);
2201 	return 0;
2202 }
2203 
2204 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2205 {
2206 	int type = CURSEG_HOT_DATA;
2207 	int err;
2208 
2209 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2210 		int npages = npages_for_summary_flush(sbi, true);
2211 
2212 		if (npages >= 2)
2213 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
2214 							META_CP, true);
2215 
2216 		/* restore for compacted data summary */
2217 		if (read_compacted_summaries(sbi))
2218 			return -EINVAL;
2219 		type = CURSEG_HOT_NODE;
2220 	}
2221 
2222 	if (__exist_node_summaries(sbi))
2223 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2224 					NR_CURSEG_TYPE - type, META_CP, true);
2225 
2226 	for (; type <= CURSEG_COLD_NODE; type++) {
2227 		err = read_normal_summaries(sbi, type);
2228 		if (err)
2229 			return err;
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2236 {
2237 	struct page *page;
2238 	unsigned char *kaddr;
2239 	struct f2fs_summary *summary;
2240 	struct curseg_info *seg_i;
2241 	int written_size = 0;
2242 	int i, j;
2243 
2244 	page = grab_meta_page(sbi, blkaddr++);
2245 	kaddr = (unsigned char *)page_address(page);
2246 
2247 	/* Step 1: write nat cache */
2248 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2249 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
2250 	written_size += SUM_JOURNAL_SIZE;
2251 
2252 	/* Step 2: write sit cache */
2253 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2254 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
2255 	written_size += SUM_JOURNAL_SIZE;
2256 
2257 	/* Step 3: write summary entries */
2258 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2259 		unsigned short blkoff;
2260 		seg_i = CURSEG_I(sbi, i);
2261 		if (sbi->ckpt->alloc_type[i] == SSR)
2262 			blkoff = sbi->blocks_per_seg;
2263 		else
2264 			blkoff = curseg_blkoff(sbi, i);
2265 
2266 		for (j = 0; j < blkoff; j++) {
2267 			if (!page) {
2268 				page = grab_meta_page(sbi, blkaddr++);
2269 				kaddr = (unsigned char *)page_address(page);
2270 				written_size = 0;
2271 			}
2272 			summary = (struct f2fs_summary *)(kaddr + written_size);
2273 			*summary = seg_i->sum_blk->entries[j];
2274 			written_size += SUMMARY_SIZE;
2275 
2276 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
2277 							SUM_FOOTER_SIZE)
2278 				continue;
2279 
2280 			set_page_dirty(page);
2281 			f2fs_put_page(page, 1);
2282 			page = NULL;
2283 		}
2284 	}
2285 	if (page) {
2286 		set_page_dirty(page);
2287 		f2fs_put_page(page, 1);
2288 	}
2289 }
2290 
2291 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2292 					block_t blkaddr, int type)
2293 {
2294 	int i, end;
2295 	if (IS_DATASEG(type))
2296 		end = type + NR_CURSEG_DATA_TYPE;
2297 	else
2298 		end = type + NR_CURSEG_NODE_TYPE;
2299 
2300 	for (i = type; i < end; i++)
2301 		write_current_sum_page(sbi, i, blkaddr + (i - type));
2302 }
2303 
2304 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2305 {
2306 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2307 		write_compacted_summaries(sbi, start_blk);
2308 	else
2309 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2310 }
2311 
2312 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2313 {
2314 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2315 }
2316 
2317 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2318 					unsigned int val, int alloc)
2319 {
2320 	int i;
2321 
2322 	if (type == NAT_JOURNAL) {
2323 		for (i = 0; i < nats_in_cursum(journal); i++) {
2324 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2325 				return i;
2326 		}
2327 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2328 			return update_nats_in_cursum(journal, 1);
2329 	} else if (type == SIT_JOURNAL) {
2330 		for (i = 0; i < sits_in_cursum(journal); i++)
2331 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2332 				return i;
2333 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2334 			return update_sits_in_cursum(journal, 1);
2335 	}
2336 	return -1;
2337 }
2338 
2339 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2340 					unsigned int segno)
2341 {
2342 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
2343 }
2344 
2345 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2346 					unsigned int start)
2347 {
2348 	struct sit_info *sit_i = SIT_I(sbi);
2349 	struct page *src_page, *dst_page;
2350 	pgoff_t src_off, dst_off;
2351 	void *src_addr, *dst_addr;
2352 
2353 	src_off = current_sit_addr(sbi, start);
2354 	dst_off = next_sit_addr(sbi, src_off);
2355 
2356 	/* get current sit block page without lock */
2357 	src_page = get_meta_page(sbi, src_off);
2358 	dst_page = grab_meta_page(sbi, dst_off);
2359 	f2fs_bug_on(sbi, PageDirty(src_page));
2360 
2361 	src_addr = page_address(src_page);
2362 	dst_addr = page_address(dst_page);
2363 	memcpy(dst_addr, src_addr, PAGE_SIZE);
2364 
2365 	set_page_dirty(dst_page);
2366 	f2fs_put_page(src_page, 1);
2367 
2368 	set_to_next_sit(sit_i, start);
2369 
2370 	return dst_page;
2371 }
2372 
2373 static struct sit_entry_set *grab_sit_entry_set(void)
2374 {
2375 	struct sit_entry_set *ses =
2376 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2377 
2378 	ses->entry_cnt = 0;
2379 	INIT_LIST_HEAD(&ses->set_list);
2380 	return ses;
2381 }
2382 
2383 static void release_sit_entry_set(struct sit_entry_set *ses)
2384 {
2385 	list_del(&ses->set_list);
2386 	kmem_cache_free(sit_entry_set_slab, ses);
2387 }
2388 
2389 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2390 						struct list_head *head)
2391 {
2392 	struct sit_entry_set *next = ses;
2393 
2394 	if (list_is_last(&ses->set_list, head))
2395 		return;
2396 
2397 	list_for_each_entry_continue(next, head, set_list)
2398 		if (ses->entry_cnt <= next->entry_cnt)
2399 			break;
2400 
2401 	list_move_tail(&ses->set_list, &next->set_list);
2402 }
2403 
2404 static void add_sit_entry(unsigned int segno, struct list_head *head)
2405 {
2406 	struct sit_entry_set *ses;
2407 	unsigned int start_segno = START_SEGNO(segno);
2408 
2409 	list_for_each_entry(ses, head, set_list) {
2410 		if (ses->start_segno == start_segno) {
2411 			ses->entry_cnt++;
2412 			adjust_sit_entry_set(ses, head);
2413 			return;
2414 		}
2415 	}
2416 
2417 	ses = grab_sit_entry_set();
2418 
2419 	ses->start_segno = start_segno;
2420 	ses->entry_cnt++;
2421 	list_add(&ses->set_list, head);
2422 }
2423 
2424 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2425 {
2426 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2427 	struct list_head *set_list = &sm_info->sit_entry_set;
2428 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2429 	unsigned int segno;
2430 
2431 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2432 		add_sit_entry(segno, set_list);
2433 }
2434 
2435 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2436 {
2437 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2438 	struct f2fs_journal *journal = curseg->journal;
2439 	int i;
2440 
2441 	down_write(&curseg->journal_rwsem);
2442 	for (i = 0; i < sits_in_cursum(journal); i++) {
2443 		unsigned int segno;
2444 		bool dirtied;
2445 
2446 		segno = le32_to_cpu(segno_in_journal(journal, i));
2447 		dirtied = __mark_sit_entry_dirty(sbi, segno);
2448 
2449 		if (!dirtied)
2450 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2451 	}
2452 	update_sits_in_cursum(journal, -i);
2453 	up_write(&curseg->journal_rwsem);
2454 }
2455 
2456 /*
2457  * CP calls this function, which flushes SIT entries including sit_journal,
2458  * and moves prefree segs to free segs.
2459  */
2460 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2461 {
2462 	struct sit_info *sit_i = SIT_I(sbi);
2463 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2464 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2465 	struct f2fs_journal *journal = curseg->journal;
2466 	struct sit_entry_set *ses, *tmp;
2467 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
2468 	bool to_journal = true;
2469 	struct seg_entry *se;
2470 
2471 	mutex_lock(&sit_i->sentry_lock);
2472 
2473 	if (!sit_i->dirty_sentries)
2474 		goto out;
2475 
2476 	/*
2477 	 * add and account sit entries of dirty bitmap in sit entry
2478 	 * set temporarily
2479 	 */
2480 	add_sits_in_set(sbi);
2481 
2482 	/*
2483 	 * if there are no enough space in journal to store dirty sit
2484 	 * entries, remove all entries from journal and add and account
2485 	 * them in sit entry set.
2486 	 */
2487 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2488 		remove_sits_in_journal(sbi);
2489 
2490 	/*
2491 	 * there are two steps to flush sit entries:
2492 	 * #1, flush sit entries to journal in current cold data summary block.
2493 	 * #2, flush sit entries to sit page.
2494 	 */
2495 	list_for_each_entry_safe(ses, tmp, head, set_list) {
2496 		struct page *page = NULL;
2497 		struct f2fs_sit_block *raw_sit = NULL;
2498 		unsigned int start_segno = ses->start_segno;
2499 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2500 						(unsigned long)MAIN_SEGS(sbi));
2501 		unsigned int segno = start_segno;
2502 
2503 		if (to_journal &&
2504 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2505 			to_journal = false;
2506 
2507 		if (to_journal) {
2508 			down_write(&curseg->journal_rwsem);
2509 		} else {
2510 			page = get_next_sit_page(sbi, start_segno);
2511 			raw_sit = page_address(page);
2512 		}
2513 
2514 		/* flush dirty sit entries in region of current sit set */
2515 		for_each_set_bit_from(segno, bitmap, end) {
2516 			int offset, sit_offset;
2517 
2518 			se = get_seg_entry(sbi, segno);
2519 
2520 			/* add discard candidates */
2521 			if (cpc->reason != CP_DISCARD) {
2522 				cpc->trim_start = segno;
2523 				add_discard_addrs(sbi, cpc, false);
2524 			}
2525 
2526 			if (to_journal) {
2527 				offset = lookup_journal_in_cursum(journal,
2528 							SIT_JOURNAL, segno, 1);
2529 				f2fs_bug_on(sbi, offset < 0);
2530 				segno_in_journal(journal, offset) =
2531 							cpu_to_le32(segno);
2532 				seg_info_to_raw_sit(se,
2533 					&sit_in_journal(journal, offset));
2534 			} else {
2535 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2536 				seg_info_to_raw_sit(se,
2537 						&raw_sit->entries[sit_offset]);
2538 			}
2539 
2540 			__clear_bit(segno, bitmap);
2541 			sit_i->dirty_sentries--;
2542 			ses->entry_cnt--;
2543 		}
2544 
2545 		if (to_journal)
2546 			up_write(&curseg->journal_rwsem);
2547 		else
2548 			f2fs_put_page(page, 1);
2549 
2550 		f2fs_bug_on(sbi, ses->entry_cnt);
2551 		release_sit_entry_set(ses);
2552 	}
2553 
2554 	f2fs_bug_on(sbi, !list_empty(head));
2555 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
2556 out:
2557 	if (cpc->reason == CP_DISCARD) {
2558 		__u64 trim_start = cpc->trim_start;
2559 
2560 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2561 			add_discard_addrs(sbi, cpc, false);
2562 
2563 		cpc->trim_start = trim_start;
2564 	}
2565 	mutex_unlock(&sit_i->sentry_lock);
2566 
2567 	set_prefree_as_free_segments(sbi);
2568 }
2569 
2570 static int build_sit_info(struct f2fs_sb_info *sbi)
2571 {
2572 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2573 	struct sit_info *sit_i;
2574 	unsigned int sit_segs, start;
2575 	char *src_bitmap;
2576 	unsigned int bitmap_size;
2577 
2578 	/* allocate memory for SIT information */
2579 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2580 	if (!sit_i)
2581 		return -ENOMEM;
2582 
2583 	SM_I(sbi)->sit_info = sit_i;
2584 
2585 	sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2586 					sizeof(struct seg_entry), GFP_KERNEL);
2587 	if (!sit_i->sentries)
2588 		return -ENOMEM;
2589 
2590 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2591 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2592 	if (!sit_i->dirty_sentries_bitmap)
2593 		return -ENOMEM;
2594 
2595 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2596 		sit_i->sentries[start].cur_valid_map
2597 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2598 		sit_i->sentries[start].ckpt_valid_map
2599 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2600 		if (!sit_i->sentries[start].cur_valid_map ||
2601 				!sit_i->sentries[start].ckpt_valid_map)
2602 			return -ENOMEM;
2603 
2604 #ifdef CONFIG_F2FS_CHECK_FS
2605 		sit_i->sentries[start].cur_valid_map_mir
2606 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2607 		if (!sit_i->sentries[start].cur_valid_map_mir)
2608 			return -ENOMEM;
2609 #endif
2610 
2611 		if (f2fs_discard_en(sbi)) {
2612 			sit_i->sentries[start].discard_map
2613 				= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2614 			if (!sit_i->sentries[start].discard_map)
2615 				return -ENOMEM;
2616 		}
2617 	}
2618 
2619 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2620 	if (!sit_i->tmp_map)
2621 		return -ENOMEM;
2622 
2623 	if (sbi->segs_per_sec > 1) {
2624 		sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2625 					sizeof(struct sec_entry), GFP_KERNEL);
2626 		if (!sit_i->sec_entries)
2627 			return -ENOMEM;
2628 	}
2629 
2630 	/* get information related with SIT */
2631 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2632 
2633 	/* setup SIT bitmap from ckeckpoint pack */
2634 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2635 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2636 
2637 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2638 	if (!sit_i->sit_bitmap)
2639 		return -ENOMEM;
2640 
2641 #ifdef CONFIG_F2FS_CHECK_FS
2642 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2643 	if (!sit_i->sit_bitmap_mir)
2644 		return -ENOMEM;
2645 #endif
2646 
2647 	/* init SIT information */
2648 	sit_i->s_ops = &default_salloc_ops;
2649 
2650 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2651 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2652 	sit_i->written_valid_blocks = 0;
2653 	sit_i->bitmap_size = bitmap_size;
2654 	sit_i->dirty_sentries = 0;
2655 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2656 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2657 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2658 	mutex_init(&sit_i->sentry_lock);
2659 	return 0;
2660 }
2661 
2662 static int build_free_segmap(struct f2fs_sb_info *sbi)
2663 {
2664 	struct free_segmap_info *free_i;
2665 	unsigned int bitmap_size, sec_bitmap_size;
2666 
2667 	/* allocate memory for free segmap information */
2668 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2669 	if (!free_i)
2670 		return -ENOMEM;
2671 
2672 	SM_I(sbi)->free_info = free_i;
2673 
2674 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2675 	free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2676 	if (!free_i->free_segmap)
2677 		return -ENOMEM;
2678 
2679 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2680 	free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2681 	if (!free_i->free_secmap)
2682 		return -ENOMEM;
2683 
2684 	/* set all segments as dirty temporarily */
2685 	memset(free_i->free_segmap, 0xff, bitmap_size);
2686 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2687 
2688 	/* init free segmap information */
2689 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2690 	free_i->free_segments = 0;
2691 	free_i->free_sections = 0;
2692 	spin_lock_init(&free_i->segmap_lock);
2693 	return 0;
2694 }
2695 
2696 static int build_curseg(struct f2fs_sb_info *sbi)
2697 {
2698 	struct curseg_info *array;
2699 	int i;
2700 
2701 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2702 	if (!array)
2703 		return -ENOMEM;
2704 
2705 	SM_I(sbi)->curseg_array = array;
2706 
2707 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2708 		mutex_init(&array[i].curseg_mutex);
2709 		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2710 		if (!array[i].sum_blk)
2711 			return -ENOMEM;
2712 		init_rwsem(&array[i].journal_rwsem);
2713 		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2714 							GFP_KERNEL);
2715 		if (!array[i].journal)
2716 			return -ENOMEM;
2717 		array[i].segno = NULL_SEGNO;
2718 		array[i].next_blkoff = 0;
2719 	}
2720 	return restore_curseg_summaries(sbi);
2721 }
2722 
2723 static void build_sit_entries(struct f2fs_sb_info *sbi)
2724 {
2725 	struct sit_info *sit_i = SIT_I(sbi);
2726 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2727 	struct f2fs_journal *journal = curseg->journal;
2728 	struct seg_entry *se;
2729 	struct f2fs_sit_entry sit;
2730 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2731 	unsigned int i, start, end;
2732 	unsigned int readed, start_blk = 0;
2733 
2734 	do {
2735 		readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2736 							META_SIT, true);
2737 
2738 		start = start_blk * sit_i->sents_per_block;
2739 		end = (start_blk + readed) * sit_i->sents_per_block;
2740 
2741 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2742 			struct f2fs_sit_block *sit_blk;
2743 			struct page *page;
2744 
2745 			se = &sit_i->sentries[start];
2746 			page = get_current_sit_page(sbi, start);
2747 			sit_blk = (struct f2fs_sit_block *)page_address(page);
2748 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2749 			f2fs_put_page(page, 1);
2750 
2751 			check_block_count(sbi, start, &sit);
2752 			seg_info_from_raw_sit(se, &sit);
2753 
2754 			/* build discard map only one time */
2755 			if (f2fs_discard_en(sbi)) {
2756 				memcpy(se->discard_map, se->cur_valid_map,
2757 							SIT_VBLOCK_MAP_SIZE);
2758 				sbi->discard_blks += sbi->blocks_per_seg -
2759 							se->valid_blocks;
2760 			}
2761 
2762 			if (sbi->segs_per_sec > 1)
2763 				get_sec_entry(sbi, start)->valid_blocks +=
2764 							se->valid_blocks;
2765 		}
2766 		start_blk += readed;
2767 	} while (start_blk < sit_blk_cnt);
2768 
2769 	down_read(&curseg->journal_rwsem);
2770 	for (i = 0; i < sits_in_cursum(journal); i++) {
2771 		unsigned int old_valid_blocks;
2772 
2773 		start = le32_to_cpu(segno_in_journal(journal, i));
2774 		se = &sit_i->sentries[start];
2775 		sit = sit_in_journal(journal, i);
2776 
2777 		old_valid_blocks = se->valid_blocks;
2778 
2779 		check_block_count(sbi, start, &sit);
2780 		seg_info_from_raw_sit(se, &sit);
2781 
2782 		if (f2fs_discard_en(sbi)) {
2783 			memcpy(se->discard_map, se->cur_valid_map,
2784 						SIT_VBLOCK_MAP_SIZE);
2785 			sbi->discard_blks += old_valid_blocks -
2786 						se->valid_blocks;
2787 		}
2788 
2789 		if (sbi->segs_per_sec > 1)
2790 			get_sec_entry(sbi, start)->valid_blocks +=
2791 				se->valid_blocks - old_valid_blocks;
2792 	}
2793 	up_read(&curseg->journal_rwsem);
2794 }
2795 
2796 static void init_free_segmap(struct f2fs_sb_info *sbi)
2797 {
2798 	unsigned int start;
2799 	int type;
2800 
2801 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2802 		struct seg_entry *sentry = get_seg_entry(sbi, start);
2803 		if (!sentry->valid_blocks)
2804 			__set_free(sbi, start);
2805 		else
2806 			SIT_I(sbi)->written_valid_blocks +=
2807 						sentry->valid_blocks;
2808 	}
2809 
2810 	/* set use the current segments */
2811 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2812 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2813 		__set_test_and_inuse(sbi, curseg_t->segno);
2814 	}
2815 }
2816 
2817 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2818 {
2819 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2820 	struct free_segmap_info *free_i = FREE_I(sbi);
2821 	unsigned int segno = 0, offset = 0;
2822 	unsigned short valid_blocks;
2823 
2824 	while (1) {
2825 		/* find dirty segment based on free segmap */
2826 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2827 		if (segno >= MAIN_SEGS(sbi))
2828 			break;
2829 		offset = segno + 1;
2830 		valid_blocks = get_valid_blocks(sbi, segno, 0);
2831 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2832 			continue;
2833 		if (valid_blocks > sbi->blocks_per_seg) {
2834 			f2fs_bug_on(sbi, 1);
2835 			continue;
2836 		}
2837 		mutex_lock(&dirty_i->seglist_lock);
2838 		__locate_dirty_segment(sbi, segno, DIRTY);
2839 		mutex_unlock(&dirty_i->seglist_lock);
2840 	}
2841 }
2842 
2843 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2844 {
2845 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2846 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2847 
2848 	dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2849 	if (!dirty_i->victim_secmap)
2850 		return -ENOMEM;
2851 	return 0;
2852 }
2853 
2854 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2855 {
2856 	struct dirty_seglist_info *dirty_i;
2857 	unsigned int bitmap_size, i;
2858 
2859 	/* allocate memory for dirty segments list information */
2860 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2861 	if (!dirty_i)
2862 		return -ENOMEM;
2863 
2864 	SM_I(sbi)->dirty_info = dirty_i;
2865 	mutex_init(&dirty_i->seglist_lock);
2866 
2867 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2868 
2869 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2870 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2871 		if (!dirty_i->dirty_segmap[i])
2872 			return -ENOMEM;
2873 	}
2874 
2875 	init_dirty_segmap(sbi);
2876 	return init_victim_secmap(sbi);
2877 }
2878 
2879 /*
2880  * Update min, max modified time for cost-benefit GC algorithm
2881  */
2882 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2883 {
2884 	struct sit_info *sit_i = SIT_I(sbi);
2885 	unsigned int segno;
2886 
2887 	mutex_lock(&sit_i->sentry_lock);
2888 
2889 	sit_i->min_mtime = LLONG_MAX;
2890 
2891 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2892 		unsigned int i;
2893 		unsigned long long mtime = 0;
2894 
2895 		for (i = 0; i < sbi->segs_per_sec; i++)
2896 			mtime += get_seg_entry(sbi, segno + i)->mtime;
2897 
2898 		mtime = div_u64(mtime, sbi->segs_per_sec);
2899 
2900 		if (sit_i->min_mtime > mtime)
2901 			sit_i->min_mtime = mtime;
2902 	}
2903 	sit_i->max_mtime = get_mtime(sbi);
2904 	mutex_unlock(&sit_i->sentry_lock);
2905 }
2906 
2907 int build_segment_manager(struct f2fs_sb_info *sbi)
2908 {
2909 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2910 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2911 	struct f2fs_sm_info *sm_info;
2912 	int err;
2913 
2914 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2915 	if (!sm_info)
2916 		return -ENOMEM;
2917 
2918 	/* init sm info */
2919 	sbi->sm_info = sm_info;
2920 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2921 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2922 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2923 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2924 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2925 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2926 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2927 	sm_info->rec_prefree_segments = sm_info->main_segments *
2928 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2929 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2930 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2931 
2932 	if (!test_opt(sbi, LFS))
2933 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2934 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2935 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2936 
2937 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2938 
2939 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
2940 
2941 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2942 		err = create_flush_cmd_control(sbi);
2943 		if (err)
2944 			return err;
2945 	}
2946 
2947 	err = create_discard_cmd_control(sbi);
2948 	if (err)
2949 		return err;
2950 
2951 	err = build_sit_info(sbi);
2952 	if (err)
2953 		return err;
2954 	err = build_free_segmap(sbi);
2955 	if (err)
2956 		return err;
2957 	err = build_curseg(sbi);
2958 	if (err)
2959 		return err;
2960 
2961 	/* reinit free segmap based on SIT */
2962 	build_sit_entries(sbi);
2963 
2964 	init_free_segmap(sbi);
2965 	err = build_dirty_segmap(sbi);
2966 	if (err)
2967 		return err;
2968 
2969 	init_min_max_mtime(sbi);
2970 	return 0;
2971 }
2972 
2973 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2974 		enum dirty_type dirty_type)
2975 {
2976 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2977 
2978 	mutex_lock(&dirty_i->seglist_lock);
2979 	kvfree(dirty_i->dirty_segmap[dirty_type]);
2980 	dirty_i->nr_dirty[dirty_type] = 0;
2981 	mutex_unlock(&dirty_i->seglist_lock);
2982 }
2983 
2984 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2985 {
2986 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2987 	kvfree(dirty_i->victim_secmap);
2988 }
2989 
2990 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2991 {
2992 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2993 	int i;
2994 
2995 	if (!dirty_i)
2996 		return;
2997 
2998 	/* discard pre-free/dirty segments list */
2999 	for (i = 0; i < NR_DIRTY_TYPE; i++)
3000 		discard_dirty_segmap(sbi, i);
3001 
3002 	destroy_victim_secmap(sbi);
3003 	SM_I(sbi)->dirty_info = NULL;
3004 	kfree(dirty_i);
3005 }
3006 
3007 static void destroy_curseg(struct f2fs_sb_info *sbi)
3008 {
3009 	struct curseg_info *array = SM_I(sbi)->curseg_array;
3010 	int i;
3011 
3012 	if (!array)
3013 		return;
3014 	SM_I(sbi)->curseg_array = NULL;
3015 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3016 		kfree(array[i].sum_blk);
3017 		kfree(array[i].journal);
3018 	}
3019 	kfree(array);
3020 }
3021 
3022 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3023 {
3024 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3025 	if (!free_i)
3026 		return;
3027 	SM_I(sbi)->free_info = NULL;
3028 	kvfree(free_i->free_segmap);
3029 	kvfree(free_i->free_secmap);
3030 	kfree(free_i);
3031 }
3032 
3033 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3034 {
3035 	struct sit_info *sit_i = SIT_I(sbi);
3036 	unsigned int start;
3037 
3038 	if (!sit_i)
3039 		return;
3040 
3041 	if (sit_i->sentries) {
3042 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
3043 			kfree(sit_i->sentries[start].cur_valid_map);
3044 #ifdef CONFIG_F2FS_CHECK_FS
3045 			kfree(sit_i->sentries[start].cur_valid_map_mir);
3046 #endif
3047 			kfree(sit_i->sentries[start].ckpt_valid_map);
3048 			kfree(sit_i->sentries[start].discard_map);
3049 		}
3050 	}
3051 	kfree(sit_i->tmp_map);
3052 
3053 	kvfree(sit_i->sentries);
3054 	kvfree(sit_i->sec_entries);
3055 	kvfree(sit_i->dirty_sentries_bitmap);
3056 
3057 	SM_I(sbi)->sit_info = NULL;
3058 	kfree(sit_i->sit_bitmap);
3059 #ifdef CONFIG_F2FS_CHECK_FS
3060 	kfree(sit_i->sit_bitmap_mir);
3061 #endif
3062 	kfree(sit_i);
3063 }
3064 
3065 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3066 {
3067 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3068 
3069 	if (!sm_info)
3070 		return;
3071 	destroy_flush_cmd_control(sbi, true);
3072 	destroy_discard_cmd_control(sbi, true);
3073 	destroy_dirty_segmap(sbi);
3074 	destroy_curseg(sbi);
3075 	destroy_free_segmap(sbi);
3076 	destroy_sit_info(sbi);
3077 	sbi->sm_info = NULL;
3078 	kfree(sm_info);
3079 }
3080 
3081 int __init create_segment_manager_caches(void)
3082 {
3083 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3084 			sizeof(struct discard_entry));
3085 	if (!discard_entry_slab)
3086 		goto fail;
3087 
3088 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3089 			sizeof(struct discard_cmd));
3090 	if (!discard_cmd_slab)
3091 		goto destroy_discard_entry;
3092 
3093 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3094 			sizeof(struct sit_entry_set));
3095 	if (!sit_entry_set_slab)
3096 		goto destroy_discard_cmd;
3097 
3098 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3099 			sizeof(struct inmem_pages));
3100 	if (!inmem_entry_slab)
3101 		goto destroy_sit_entry_set;
3102 	return 0;
3103 
3104 destroy_sit_entry_set:
3105 	kmem_cache_destroy(sit_entry_set_slab);
3106 destroy_discard_cmd:
3107 	kmem_cache_destroy(discard_cmd_slab);
3108 destroy_discard_entry:
3109 	kmem_cache_destroy(discard_entry_slab);
3110 fail:
3111 	return -ENOMEM;
3112 }
3113 
3114 void destroy_segment_manager_caches(void)
3115 {
3116 	kmem_cache_destroy(sit_entry_set_slab);
3117 	kmem_cache_destroy(discard_cmd_slab);
3118 	kmem_cache_destroy(discard_entry_slab);
3119 	kmem_cache_destroy(inmem_entry_slab);
3120 }
3121