1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include <trace/events/f2fs.h> 24 25 #define __reverse_ffz(x) __reverse_ffs(~(x)) 26 27 static struct kmem_cache *discard_entry_slab; 28 static struct kmem_cache *discard_cmd_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 static unsigned long __reverse_ulong(unsigned char *str) 33 { 34 unsigned long tmp = 0; 35 int shift = 24, idx = 0; 36 37 #if BITS_PER_LONG == 64 38 shift = 56; 39 #endif 40 while (shift >= 0) { 41 tmp |= (unsigned long)str[idx++] << shift; 42 shift -= BITS_PER_BYTE; 43 } 44 return tmp; 45 } 46 47 /* 48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 49 * MSB and LSB are reversed in a byte by f2fs_set_bit. 50 */ 51 static inline unsigned long __reverse_ffs(unsigned long word) 52 { 53 int num = 0; 54 55 #if BITS_PER_LONG == 64 56 if ((word & 0xffffffff00000000UL) == 0) 57 num += 32; 58 else 59 word >>= 32; 60 #endif 61 if ((word & 0xffff0000) == 0) 62 num += 16; 63 else 64 word >>= 16; 65 66 if ((word & 0xff00) == 0) 67 num += 8; 68 else 69 word >>= 8; 70 71 if ((word & 0xf0) == 0) 72 num += 4; 73 else 74 word >>= 4; 75 76 if ((word & 0xc) == 0) 77 num += 2; 78 else 79 word >>= 2; 80 81 if ((word & 0x2) == 0) 82 num += 1; 83 return num; 84 } 85 86 /* 87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 88 * f2fs_set_bit makes MSB and LSB reversed in a byte. 89 * @size must be integral times of unsigned long. 90 * Example: 91 * MSB <--> LSB 92 * f2fs_set_bit(0, bitmap) => 1000 0000 93 * f2fs_set_bit(7, bitmap) => 0000 0001 94 */ 95 static unsigned long __find_rev_next_bit(const unsigned long *addr, 96 unsigned long size, unsigned long offset) 97 { 98 const unsigned long *p = addr + BIT_WORD(offset); 99 unsigned long result = size; 100 unsigned long tmp; 101 102 if (offset >= size) 103 return size; 104 105 size -= (offset & ~(BITS_PER_LONG - 1)); 106 offset %= BITS_PER_LONG; 107 108 while (1) { 109 if (*p == 0) 110 goto pass; 111 112 tmp = __reverse_ulong((unsigned char *)p); 113 114 tmp &= ~0UL >> offset; 115 if (size < BITS_PER_LONG) 116 tmp &= (~0UL << (BITS_PER_LONG - size)); 117 if (tmp) 118 goto found; 119 pass: 120 if (size <= BITS_PER_LONG) 121 break; 122 size -= BITS_PER_LONG; 123 offset = 0; 124 p++; 125 } 126 return result; 127 found: 128 return result - size + __reverse_ffs(tmp); 129 } 130 131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 132 unsigned long size, unsigned long offset) 133 { 134 const unsigned long *p = addr + BIT_WORD(offset); 135 unsigned long result = size; 136 unsigned long tmp; 137 138 if (offset >= size) 139 return size; 140 141 size -= (offset & ~(BITS_PER_LONG - 1)); 142 offset %= BITS_PER_LONG; 143 144 while (1) { 145 if (*p == ~0UL) 146 goto pass; 147 148 tmp = __reverse_ulong((unsigned char *)p); 149 150 if (offset) 151 tmp |= ~0UL << (BITS_PER_LONG - offset); 152 if (size < BITS_PER_LONG) 153 tmp |= ~0UL >> size; 154 if (tmp != ~0UL) 155 goto found; 156 pass: 157 if (size <= BITS_PER_LONG) 158 break; 159 size -= BITS_PER_LONG; 160 offset = 0; 161 p++; 162 } 163 return result; 164 found: 165 return result - size + __reverse_ffz(tmp); 166 } 167 168 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 169 { 170 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 171 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 172 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 173 174 if (f2fs_lfs_mode(sbi)) 175 return false; 176 if (sbi->gc_mode == GC_URGENT_HIGH) 177 return true; 178 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 179 return true; 180 181 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 182 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 183 } 184 185 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 186 { 187 struct inmem_pages *new; 188 189 set_page_private_atomic(page); 190 191 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 192 193 /* add atomic page indices to the list */ 194 new->page = page; 195 INIT_LIST_HEAD(&new->list); 196 197 /* increase reference count with clean state */ 198 get_page(page); 199 mutex_lock(&F2FS_I(inode)->inmem_lock); 200 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 201 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 202 mutex_unlock(&F2FS_I(inode)->inmem_lock); 203 204 trace_f2fs_register_inmem_page(page, INMEM); 205 } 206 207 static int __revoke_inmem_pages(struct inode *inode, 208 struct list_head *head, bool drop, bool recover, 209 bool trylock) 210 { 211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 212 struct inmem_pages *cur, *tmp; 213 int err = 0; 214 215 list_for_each_entry_safe(cur, tmp, head, list) { 216 struct page *page = cur->page; 217 218 if (drop) 219 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 220 221 if (trylock) { 222 /* 223 * to avoid deadlock in between page lock and 224 * inmem_lock. 225 */ 226 if (!trylock_page(page)) 227 continue; 228 } else { 229 lock_page(page); 230 } 231 232 f2fs_wait_on_page_writeback(page, DATA, true, true); 233 234 if (recover) { 235 struct dnode_of_data dn; 236 struct node_info ni; 237 238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 239 retry: 240 set_new_dnode(&dn, inode, NULL, NULL, 0); 241 err = f2fs_get_dnode_of_data(&dn, page->index, 242 LOOKUP_NODE); 243 if (err) { 244 if (err == -ENOMEM) { 245 congestion_wait(BLK_RW_ASYNC, 246 DEFAULT_IO_TIMEOUT); 247 cond_resched(); 248 goto retry; 249 } 250 err = -EAGAIN; 251 goto next; 252 } 253 254 err = f2fs_get_node_info(sbi, dn.nid, &ni); 255 if (err) { 256 f2fs_put_dnode(&dn); 257 return err; 258 } 259 260 if (cur->old_addr == NEW_ADDR) { 261 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 262 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 263 } else 264 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 265 cur->old_addr, ni.version, true, true); 266 f2fs_put_dnode(&dn); 267 } 268 next: 269 /* we don't need to invalidate this in the sccessful status */ 270 if (drop || recover) { 271 ClearPageUptodate(page); 272 clear_page_private_gcing(page); 273 } 274 detach_page_private(page); 275 set_page_private(page, 0); 276 f2fs_put_page(page, 1); 277 278 list_del(&cur->list); 279 kmem_cache_free(inmem_entry_slab, cur); 280 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 281 } 282 return err; 283 } 284 285 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 286 { 287 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 288 struct inode *inode; 289 struct f2fs_inode_info *fi; 290 unsigned int count = sbi->atomic_files; 291 unsigned int looped = 0; 292 next: 293 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 294 if (list_empty(head)) { 295 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 296 return; 297 } 298 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 299 inode = igrab(&fi->vfs_inode); 300 if (inode) 301 list_move_tail(&fi->inmem_ilist, head); 302 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 303 304 if (inode) { 305 if (gc_failure) { 306 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 307 goto skip; 308 } 309 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 310 f2fs_drop_inmem_pages(inode); 311 skip: 312 iput(inode); 313 } 314 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 315 cond_resched(); 316 if (gc_failure) { 317 if (++looped >= count) 318 return; 319 } 320 goto next; 321 } 322 323 void f2fs_drop_inmem_pages(struct inode *inode) 324 { 325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 326 struct f2fs_inode_info *fi = F2FS_I(inode); 327 328 do { 329 mutex_lock(&fi->inmem_lock); 330 if (list_empty(&fi->inmem_pages)) { 331 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 332 333 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 334 if (!list_empty(&fi->inmem_ilist)) 335 list_del_init(&fi->inmem_ilist); 336 if (f2fs_is_atomic_file(inode)) { 337 clear_inode_flag(inode, FI_ATOMIC_FILE); 338 sbi->atomic_files--; 339 } 340 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 341 342 mutex_unlock(&fi->inmem_lock); 343 break; 344 } 345 __revoke_inmem_pages(inode, &fi->inmem_pages, 346 true, false, true); 347 mutex_unlock(&fi->inmem_lock); 348 } while (1); 349 } 350 351 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 352 { 353 struct f2fs_inode_info *fi = F2FS_I(inode); 354 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 355 struct list_head *head = &fi->inmem_pages; 356 struct inmem_pages *cur = NULL; 357 358 f2fs_bug_on(sbi, !page_private_atomic(page)); 359 360 mutex_lock(&fi->inmem_lock); 361 list_for_each_entry(cur, head, list) { 362 if (cur->page == page) 363 break; 364 } 365 366 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 367 list_del(&cur->list); 368 mutex_unlock(&fi->inmem_lock); 369 370 dec_page_count(sbi, F2FS_INMEM_PAGES); 371 kmem_cache_free(inmem_entry_slab, cur); 372 373 ClearPageUptodate(page); 374 clear_page_private_atomic(page); 375 f2fs_put_page(page, 0); 376 377 detach_page_private(page); 378 set_page_private(page, 0); 379 380 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 381 } 382 383 static int __f2fs_commit_inmem_pages(struct inode *inode) 384 { 385 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 386 struct f2fs_inode_info *fi = F2FS_I(inode); 387 struct inmem_pages *cur, *tmp; 388 struct f2fs_io_info fio = { 389 .sbi = sbi, 390 .ino = inode->i_ino, 391 .type = DATA, 392 .op = REQ_OP_WRITE, 393 .op_flags = REQ_SYNC | REQ_PRIO, 394 .io_type = FS_DATA_IO, 395 }; 396 struct list_head revoke_list; 397 bool submit_bio = false; 398 int err = 0; 399 400 INIT_LIST_HEAD(&revoke_list); 401 402 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 403 struct page *page = cur->page; 404 405 lock_page(page); 406 if (page->mapping == inode->i_mapping) { 407 trace_f2fs_commit_inmem_page(page, INMEM); 408 409 f2fs_wait_on_page_writeback(page, DATA, true, true); 410 411 set_page_dirty(page); 412 if (clear_page_dirty_for_io(page)) { 413 inode_dec_dirty_pages(inode); 414 f2fs_remove_dirty_inode(inode); 415 } 416 retry: 417 fio.page = page; 418 fio.old_blkaddr = NULL_ADDR; 419 fio.encrypted_page = NULL; 420 fio.need_lock = LOCK_DONE; 421 err = f2fs_do_write_data_page(&fio); 422 if (err) { 423 if (err == -ENOMEM) { 424 congestion_wait(BLK_RW_ASYNC, 425 DEFAULT_IO_TIMEOUT); 426 cond_resched(); 427 goto retry; 428 } 429 unlock_page(page); 430 break; 431 } 432 /* record old blkaddr for revoking */ 433 cur->old_addr = fio.old_blkaddr; 434 submit_bio = true; 435 } 436 unlock_page(page); 437 list_move_tail(&cur->list, &revoke_list); 438 } 439 440 if (submit_bio) 441 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 442 443 if (err) { 444 /* 445 * try to revoke all committed pages, but still we could fail 446 * due to no memory or other reason, if that happened, EAGAIN 447 * will be returned, which means in such case, transaction is 448 * already not integrity, caller should use journal to do the 449 * recovery or rewrite & commit last transaction. For other 450 * error number, revoking was done by filesystem itself. 451 */ 452 err = __revoke_inmem_pages(inode, &revoke_list, 453 false, true, false); 454 455 /* drop all uncommitted pages */ 456 __revoke_inmem_pages(inode, &fi->inmem_pages, 457 true, false, false); 458 } else { 459 __revoke_inmem_pages(inode, &revoke_list, 460 false, false, false); 461 } 462 463 return err; 464 } 465 466 int f2fs_commit_inmem_pages(struct inode *inode) 467 { 468 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 469 struct f2fs_inode_info *fi = F2FS_I(inode); 470 int err; 471 472 f2fs_balance_fs(sbi, true); 473 474 down_write(&fi->i_gc_rwsem[WRITE]); 475 476 f2fs_lock_op(sbi); 477 set_inode_flag(inode, FI_ATOMIC_COMMIT); 478 479 mutex_lock(&fi->inmem_lock); 480 err = __f2fs_commit_inmem_pages(inode); 481 mutex_unlock(&fi->inmem_lock); 482 483 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 484 485 f2fs_unlock_op(sbi); 486 up_write(&fi->i_gc_rwsem[WRITE]); 487 488 return err; 489 } 490 491 /* 492 * This function balances dirty node and dentry pages. 493 * In addition, it controls garbage collection. 494 */ 495 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 496 { 497 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 498 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 499 f2fs_stop_checkpoint(sbi, false); 500 } 501 502 /* balance_fs_bg is able to be pending */ 503 if (need && excess_cached_nats(sbi)) 504 f2fs_balance_fs_bg(sbi, false); 505 506 if (!f2fs_is_checkpoint_ready(sbi)) 507 return; 508 509 /* 510 * We should do GC or end up with checkpoint, if there are so many dirty 511 * dir/node pages without enough free segments. 512 */ 513 if (has_not_enough_free_secs(sbi, 0, 0)) { 514 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 515 sbi->gc_thread->f2fs_gc_task) { 516 DEFINE_WAIT(wait); 517 518 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 519 TASK_UNINTERRUPTIBLE); 520 wake_up(&sbi->gc_thread->gc_wait_queue_head); 521 io_schedule(); 522 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 523 } else { 524 down_write(&sbi->gc_lock); 525 f2fs_gc(sbi, false, false, false, NULL_SEGNO); 526 } 527 } 528 } 529 530 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 531 { 532 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 533 return; 534 535 /* try to shrink extent cache when there is no enough memory */ 536 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 537 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 538 539 /* check the # of cached NAT entries */ 540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 541 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 542 543 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 544 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 545 else 546 f2fs_build_free_nids(sbi, false, false); 547 548 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) || 549 excess_prefree_segs(sbi)) 550 goto do_sync; 551 552 /* there is background inflight IO or foreground operation recently */ 553 if (is_inflight_io(sbi, REQ_TIME) || 554 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem))) 555 return; 556 557 /* exceed periodical checkpoint timeout threshold */ 558 if (f2fs_time_over(sbi, CP_TIME)) 559 goto do_sync; 560 561 /* checkpoint is the only way to shrink partial cached entries */ 562 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) || 563 f2fs_available_free_memory(sbi, INO_ENTRIES)) 564 return; 565 566 do_sync: 567 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 568 struct blk_plug plug; 569 570 mutex_lock(&sbi->flush_lock); 571 572 blk_start_plug(&plug); 573 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 574 blk_finish_plug(&plug); 575 576 mutex_unlock(&sbi->flush_lock); 577 } 578 f2fs_sync_fs(sbi->sb, true); 579 stat_inc_bg_cp_count(sbi->stat_info); 580 } 581 582 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 583 struct block_device *bdev) 584 { 585 int ret = blkdev_issue_flush(bdev); 586 587 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 588 test_opt(sbi, FLUSH_MERGE), ret); 589 return ret; 590 } 591 592 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 593 { 594 int ret = 0; 595 int i; 596 597 if (!f2fs_is_multi_device(sbi)) 598 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 599 600 for (i = 0; i < sbi->s_ndevs; i++) { 601 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 602 continue; 603 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 604 if (ret) 605 break; 606 } 607 return ret; 608 } 609 610 static int issue_flush_thread(void *data) 611 { 612 struct f2fs_sb_info *sbi = data; 613 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 614 wait_queue_head_t *q = &fcc->flush_wait_queue; 615 repeat: 616 if (kthread_should_stop()) 617 return 0; 618 619 if (!llist_empty(&fcc->issue_list)) { 620 struct flush_cmd *cmd, *next; 621 int ret; 622 623 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 624 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 625 626 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 627 628 ret = submit_flush_wait(sbi, cmd->ino); 629 atomic_inc(&fcc->issued_flush); 630 631 llist_for_each_entry_safe(cmd, next, 632 fcc->dispatch_list, llnode) { 633 cmd->ret = ret; 634 complete(&cmd->wait); 635 } 636 fcc->dispatch_list = NULL; 637 } 638 639 wait_event_interruptible(*q, 640 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 641 goto repeat; 642 } 643 644 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 645 { 646 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 647 struct flush_cmd cmd; 648 int ret; 649 650 if (test_opt(sbi, NOBARRIER)) 651 return 0; 652 653 if (!test_opt(sbi, FLUSH_MERGE)) { 654 atomic_inc(&fcc->queued_flush); 655 ret = submit_flush_wait(sbi, ino); 656 atomic_dec(&fcc->queued_flush); 657 atomic_inc(&fcc->issued_flush); 658 return ret; 659 } 660 661 if (atomic_inc_return(&fcc->queued_flush) == 1 || 662 f2fs_is_multi_device(sbi)) { 663 ret = submit_flush_wait(sbi, ino); 664 atomic_dec(&fcc->queued_flush); 665 666 atomic_inc(&fcc->issued_flush); 667 return ret; 668 } 669 670 cmd.ino = ino; 671 init_completion(&cmd.wait); 672 673 llist_add(&cmd.llnode, &fcc->issue_list); 674 675 /* 676 * update issue_list before we wake up issue_flush thread, this 677 * smp_mb() pairs with another barrier in ___wait_event(), see 678 * more details in comments of waitqueue_active(). 679 */ 680 smp_mb(); 681 682 if (waitqueue_active(&fcc->flush_wait_queue)) 683 wake_up(&fcc->flush_wait_queue); 684 685 if (fcc->f2fs_issue_flush) { 686 wait_for_completion(&cmd.wait); 687 atomic_dec(&fcc->queued_flush); 688 } else { 689 struct llist_node *list; 690 691 list = llist_del_all(&fcc->issue_list); 692 if (!list) { 693 wait_for_completion(&cmd.wait); 694 atomic_dec(&fcc->queued_flush); 695 } else { 696 struct flush_cmd *tmp, *next; 697 698 ret = submit_flush_wait(sbi, ino); 699 700 llist_for_each_entry_safe(tmp, next, list, llnode) { 701 if (tmp == &cmd) { 702 cmd.ret = ret; 703 atomic_dec(&fcc->queued_flush); 704 continue; 705 } 706 tmp->ret = ret; 707 complete(&tmp->wait); 708 } 709 } 710 } 711 712 return cmd.ret; 713 } 714 715 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 716 { 717 dev_t dev = sbi->sb->s_bdev->bd_dev; 718 struct flush_cmd_control *fcc; 719 int err = 0; 720 721 if (SM_I(sbi)->fcc_info) { 722 fcc = SM_I(sbi)->fcc_info; 723 if (fcc->f2fs_issue_flush) 724 return err; 725 goto init_thread; 726 } 727 728 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 729 if (!fcc) 730 return -ENOMEM; 731 atomic_set(&fcc->issued_flush, 0); 732 atomic_set(&fcc->queued_flush, 0); 733 init_waitqueue_head(&fcc->flush_wait_queue); 734 init_llist_head(&fcc->issue_list); 735 SM_I(sbi)->fcc_info = fcc; 736 if (!test_opt(sbi, FLUSH_MERGE)) 737 return err; 738 739 init_thread: 740 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 741 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 742 if (IS_ERR(fcc->f2fs_issue_flush)) { 743 err = PTR_ERR(fcc->f2fs_issue_flush); 744 kfree(fcc); 745 SM_I(sbi)->fcc_info = NULL; 746 return err; 747 } 748 749 return err; 750 } 751 752 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 753 { 754 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 755 756 if (fcc && fcc->f2fs_issue_flush) { 757 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 758 759 fcc->f2fs_issue_flush = NULL; 760 kthread_stop(flush_thread); 761 } 762 if (free) { 763 kfree(fcc); 764 SM_I(sbi)->fcc_info = NULL; 765 } 766 } 767 768 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 769 { 770 int ret = 0, i; 771 772 if (!f2fs_is_multi_device(sbi)) 773 return 0; 774 775 if (test_opt(sbi, NOBARRIER)) 776 return 0; 777 778 for (i = 1; i < sbi->s_ndevs; i++) { 779 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 780 continue; 781 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 782 if (ret) 783 break; 784 785 spin_lock(&sbi->dev_lock); 786 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 787 spin_unlock(&sbi->dev_lock); 788 } 789 790 return ret; 791 } 792 793 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 794 enum dirty_type dirty_type) 795 { 796 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 797 798 /* need not be added */ 799 if (IS_CURSEG(sbi, segno)) 800 return; 801 802 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 803 dirty_i->nr_dirty[dirty_type]++; 804 805 if (dirty_type == DIRTY) { 806 struct seg_entry *sentry = get_seg_entry(sbi, segno); 807 enum dirty_type t = sentry->type; 808 809 if (unlikely(t >= DIRTY)) { 810 f2fs_bug_on(sbi, 1); 811 return; 812 } 813 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 814 dirty_i->nr_dirty[t]++; 815 816 if (__is_large_section(sbi)) { 817 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 818 block_t valid_blocks = 819 get_valid_blocks(sbi, segno, true); 820 821 f2fs_bug_on(sbi, unlikely(!valid_blocks || 822 valid_blocks == BLKS_PER_SEC(sbi))); 823 824 if (!IS_CURSEC(sbi, secno)) 825 set_bit(secno, dirty_i->dirty_secmap); 826 } 827 } 828 } 829 830 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 831 enum dirty_type dirty_type) 832 { 833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 834 block_t valid_blocks; 835 836 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 837 dirty_i->nr_dirty[dirty_type]--; 838 839 if (dirty_type == DIRTY) { 840 struct seg_entry *sentry = get_seg_entry(sbi, segno); 841 enum dirty_type t = sentry->type; 842 843 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 844 dirty_i->nr_dirty[t]--; 845 846 valid_blocks = get_valid_blocks(sbi, segno, true); 847 if (valid_blocks == 0) { 848 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 849 dirty_i->victim_secmap); 850 #ifdef CONFIG_F2FS_CHECK_FS 851 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 852 #endif 853 } 854 if (__is_large_section(sbi)) { 855 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 856 857 if (!valid_blocks || 858 valid_blocks == BLKS_PER_SEC(sbi)) { 859 clear_bit(secno, dirty_i->dirty_secmap); 860 return; 861 } 862 863 if (!IS_CURSEC(sbi, secno)) 864 set_bit(secno, dirty_i->dirty_secmap); 865 } 866 } 867 } 868 869 /* 870 * Should not occur error such as -ENOMEM. 871 * Adding dirty entry into seglist is not critical operation. 872 * If a given segment is one of current working segments, it won't be added. 873 */ 874 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 875 { 876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 877 unsigned short valid_blocks, ckpt_valid_blocks; 878 unsigned int usable_blocks; 879 880 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 881 return; 882 883 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 884 mutex_lock(&dirty_i->seglist_lock); 885 886 valid_blocks = get_valid_blocks(sbi, segno, false); 887 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 888 889 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 890 ckpt_valid_blocks == usable_blocks)) { 891 __locate_dirty_segment(sbi, segno, PRE); 892 __remove_dirty_segment(sbi, segno, DIRTY); 893 } else if (valid_blocks < usable_blocks) { 894 __locate_dirty_segment(sbi, segno, DIRTY); 895 } else { 896 /* Recovery routine with SSR needs this */ 897 __remove_dirty_segment(sbi, segno, DIRTY); 898 } 899 900 mutex_unlock(&dirty_i->seglist_lock); 901 } 902 903 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 904 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 905 { 906 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 907 unsigned int segno; 908 909 mutex_lock(&dirty_i->seglist_lock); 910 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 911 if (get_valid_blocks(sbi, segno, false)) 912 continue; 913 if (IS_CURSEG(sbi, segno)) 914 continue; 915 __locate_dirty_segment(sbi, segno, PRE); 916 __remove_dirty_segment(sbi, segno, DIRTY); 917 } 918 mutex_unlock(&dirty_i->seglist_lock); 919 } 920 921 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 922 { 923 int ovp_hole_segs = 924 (overprovision_segments(sbi) - reserved_segments(sbi)); 925 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 926 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 927 block_t holes[2] = {0, 0}; /* DATA and NODE */ 928 block_t unusable; 929 struct seg_entry *se; 930 unsigned int segno; 931 932 mutex_lock(&dirty_i->seglist_lock); 933 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 934 se = get_seg_entry(sbi, segno); 935 if (IS_NODESEG(se->type)) 936 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 937 se->valid_blocks; 938 else 939 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 940 se->valid_blocks; 941 } 942 mutex_unlock(&dirty_i->seglist_lock); 943 944 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 945 if (unusable > ovp_holes) 946 return unusable - ovp_holes; 947 return 0; 948 } 949 950 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 951 { 952 int ovp_hole_segs = 953 (overprovision_segments(sbi) - reserved_segments(sbi)); 954 if (unusable > F2FS_OPTION(sbi).unusable_cap) 955 return -EAGAIN; 956 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 957 dirty_segments(sbi) > ovp_hole_segs) 958 return -EAGAIN; 959 return 0; 960 } 961 962 /* This is only used by SBI_CP_DISABLED */ 963 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 964 { 965 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 966 unsigned int segno = 0; 967 968 mutex_lock(&dirty_i->seglist_lock); 969 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 970 if (get_valid_blocks(sbi, segno, false)) 971 continue; 972 if (get_ckpt_valid_blocks(sbi, segno, false)) 973 continue; 974 mutex_unlock(&dirty_i->seglist_lock); 975 return segno; 976 } 977 mutex_unlock(&dirty_i->seglist_lock); 978 return NULL_SEGNO; 979 } 980 981 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 982 struct block_device *bdev, block_t lstart, 983 block_t start, block_t len) 984 { 985 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 986 struct list_head *pend_list; 987 struct discard_cmd *dc; 988 989 f2fs_bug_on(sbi, !len); 990 991 pend_list = &dcc->pend_list[plist_idx(len)]; 992 993 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 994 INIT_LIST_HEAD(&dc->list); 995 dc->bdev = bdev; 996 dc->lstart = lstart; 997 dc->start = start; 998 dc->len = len; 999 dc->ref = 0; 1000 dc->state = D_PREP; 1001 dc->queued = 0; 1002 dc->error = 0; 1003 init_completion(&dc->wait); 1004 list_add_tail(&dc->list, pend_list); 1005 spin_lock_init(&dc->lock); 1006 dc->bio_ref = 0; 1007 atomic_inc(&dcc->discard_cmd_cnt); 1008 dcc->undiscard_blks += len; 1009 1010 return dc; 1011 } 1012 1013 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 1014 struct block_device *bdev, block_t lstart, 1015 block_t start, block_t len, 1016 struct rb_node *parent, struct rb_node **p, 1017 bool leftmost) 1018 { 1019 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1020 struct discard_cmd *dc; 1021 1022 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1023 1024 rb_link_node(&dc->rb_node, parent, p); 1025 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1026 1027 return dc; 1028 } 1029 1030 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1031 struct discard_cmd *dc) 1032 { 1033 if (dc->state == D_DONE) 1034 atomic_sub(dc->queued, &dcc->queued_discard); 1035 1036 list_del(&dc->list); 1037 rb_erase_cached(&dc->rb_node, &dcc->root); 1038 dcc->undiscard_blks -= dc->len; 1039 1040 kmem_cache_free(discard_cmd_slab, dc); 1041 1042 atomic_dec(&dcc->discard_cmd_cnt); 1043 } 1044 1045 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1046 struct discard_cmd *dc) 1047 { 1048 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1049 unsigned long flags; 1050 1051 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1052 1053 spin_lock_irqsave(&dc->lock, flags); 1054 if (dc->bio_ref) { 1055 spin_unlock_irqrestore(&dc->lock, flags); 1056 return; 1057 } 1058 spin_unlock_irqrestore(&dc->lock, flags); 1059 1060 f2fs_bug_on(sbi, dc->ref); 1061 1062 if (dc->error == -EOPNOTSUPP) 1063 dc->error = 0; 1064 1065 if (dc->error) 1066 printk_ratelimited( 1067 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1068 KERN_INFO, sbi->sb->s_id, 1069 dc->lstart, dc->start, dc->len, dc->error); 1070 __detach_discard_cmd(dcc, dc); 1071 } 1072 1073 static void f2fs_submit_discard_endio(struct bio *bio) 1074 { 1075 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1076 unsigned long flags; 1077 1078 spin_lock_irqsave(&dc->lock, flags); 1079 if (!dc->error) 1080 dc->error = blk_status_to_errno(bio->bi_status); 1081 dc->bio_ref--; 1082 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1083 dc->state = D_DONE; 1084 complete_all(&dc->wait); 1085 } 1086 spin_unlock_irqrestore(&dc->lock, flags); 1087 bio_put(bio); 1088 } 1089 1090 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1091 block_t start, block_t end) 1092 { 1093 #ifdef CONFIG_F2FS_CHECK_FS 1094 struct seg_entry *sentry; 1095 unsigned int segno; 1096 block_t blk = start; 1097 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1098 unsigned long *map; 1099 1100 while (blk < end) { 1101 segno = GET_SEGNO(sbi, blk); 1102 sentry = get_seg_entry(sbi, segno); 1103 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1104 1105 if (end < START_BLOCK(sbi, segno + 1)) 1106 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1107 else 1108 size = max_blocks; 1109 map = (unsigned long *)(sentry->cur_valid_map); 1110 offset = __find_rev_next_bit(map, size, offset); 1111 f2fs_bug_on(sbi, offset != size); 1112 blk = START_BLOCK(sbi, segno + 1); 1113 } 1114 #endif 1115 } 1116 1117 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1118 struct discard_policy *dpolicy, 1119 int discard_type, unsigned int granularity) 1120 { 1121 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1122 1123 /* common policy */ 1124 dpolicy->type = discard_type; 1125 dpolicy->sync = true; 1126 dpolicy->ordered = false; 1127 dpolicy->granularity = granularity; 1128 1129 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1130 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1131 dpolicy->timeout = false; 1132 1133 if (discard_type == DPOLICY_BG) { 1134 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1135 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1136 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1137 dpolicy->io_aware = true; 1138 dpolicy->sync = false; 1139 dpolicy->ordered = true; 1140 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1141 dpolicy->granularity = 1; 1142 if (atomic_read(&dcc->discard_cmd_cnt)) 1143 dpolicy->max_interval = 1144 DEF_MIN_DISCARD_ISSUE_TIME; 1145 } 1146 } else if (discard_type == DPOLICY_FORCE) { 1147 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1148 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1149 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1150 dpolicy->io_aware = false; 1151 } else if (discard_type == DPOLICY_FSTRIM) { 1152 dpolicy->io_aware = false; 1153 } else if (discard_type == DPOLICY_UMOUNT) { 1154 dpolicy->io_aware = false; 1155 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1156 dpolicy->granularity = 1; 1157 dpolicy->timeout = true; 1158 } 1159 } 1160 1161 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1162 struct block_device *bdev, block_t lstart, 1163 block_t start, block_t len); 1164 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1165 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1166 struct discard_policy *dpolicy, 1167 struct discard_cmd *dc, 1168 unsigned int *issued) 1169 { 1170 struct block_device *bdev = dc->bdev; 1171 struct request_queue *q = bdev_get_queue(bdev); 1172 unsigned int max_discard_blocks = 1173 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1174 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1175 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1176 &(dcc->fstrim_list) : &(dcc->wait_list); 1177 int flag = dpolicy->sync ? REQ_SYNC : 0; 1178 block_t lstart, start, len, total_len; 1179 int err = 0; 1180 1181 if (dc->state != D_PREP) 1182 return 0; 1183 1184 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1185 return 0; 1186 1187 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1188 1189 lstart = dc->lstart; 1190 start = dc->start; 1191 len = dc->len; 1192 total_len = len; 1193 1194 dc->len = 0; 1195 1196 while (total_len && *issued < dpolicy->max_requests && !err) { 1197 struct bio *bio = NULL; 1198 unsigned long flags; 1199 bool last = true; 1200 1201 if (len > max_discard_blocks) { 1202 len = max_discard_blocks; 1203 last = false; 1204 } 1205 1206 (*issued)++; 1207 if (*issued == dpolicy->max_requests) 1208 last = true; 1209 1210 dc->len += len; 1211 1212 if (time_to_inject(sbi, FAULT_DISCARD)) { 1213 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1214 err = -EIO; 1215 goto submit; 1216 } 1217 err = __blkdev_issue_discard(bdev, 1218 SECTOR_FROM_BLOCK(start), 1219 SECTOR_FROM_BLOCK(len), 1220 GFP_NOFS, 0, &bio); 1221 submit: 1222 if (err) { 1223 spin_lock_irqsave(&dc->lock, flags); 1224 if (dc->state == D_PARTIAL) 1225 dc->state = D_SUBMIT; 1226 spin_unlock_irqrestore(&dc->lock, flags); 1227 1228 break; 1229 } 1230 1231 f2fs_bug_on(sbi, !bio); 1232 1233 /* 1234 * should keep before submission to avoid D_DONE 1235 * right away 1236 */ 1237 spin_lock_irqsave(&dc->lock, flags); 1238 if (last) 1239 dc->state = D_SUBMIT; 1240 else 1241 dc->state = D_PARTIAL; 1242 dc->bio_ref++; 1243 spin_unlock_irqrestore(&dc->lock, flags); 1244 1245 atomic_inc(&dcc->queued_discard); 1246 dc->queued++; 1247 list_move_tail(&dc->list, wait_list); 1248 1249 /* sanity check on discard range */ 1250 __check_sit_bitmap(sbi, lstart, lstart + len); 1251 1252 bio->bi_private = dc; 1253 bio->bi_end_io = f2fs_submit_discard_endio; 1254 bio->bi_opf |= flag; 1255 submit_bio(bio); 1256 1257 atomic_inc(&dcc->issued_discard); 1258 1259 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1260 1261 lstart += len; 1262 start += len; 1263 total_len -= len; 1264 len = total_len; 1265 } 1266 1267 if (!err && len) { 1268 dcc->undiscard_blks -= len; 1269 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1270 } 1271 return err; 1272 } 1273 1274 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1275 struct block_device *bdev, block_t lstart, 1276 block_t start, block_t len, 1277 struct rb_node **insert_p, 1278 struct rb_node *insert_parent) 1279 { 1280 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1281 struct rb_node **p; 1282 struct rb_node *parent = NULL; 1283 bool leftmost = true; 1284 1285 if (insert_p && insert_parent) { 1286 parent = insert_parent; 1287 p = insert_p; 1288 goto do_insert; 1289 } 1290 1291 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1292 lstart, &leftmost); 1293 do_insert: 1294 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1295 p, leftmost); 1296 } 1297 1298 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1299 struct discard_cmd *dc) 1300 { 1301 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1302 } 1303 1304 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1305 struct discard_cmd *dc, block_t blkaddr) 1306 { 1307 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1308 struct discard_info di = dc->di; 1309 bool modified = false; 1310 1311 if (dc->state == D_DONE || dc->len == 1) { 1312 __remove_discard_cmd(sbi, dc); 1313 return; 1314 } 1315 1316 dcc->undiscard_blks -= di.len; 1317 1318 if (blkaddr > di.lstart) { 1319 dc->len = blkaddr - dc->lstart; 1320 dcc->undiscard_blks += dc->len; 1321 __relocate_discard_cmd(dcc, dc); 1322 modified = true; 1323 } 1324 1325 if (blkaddr < di.lstart + di.len - 1) { 1326 if (modified) { 1327 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1328 di.start + blkaddr + 1 - di.lstart, 1329 di.lstart + di.len - 1 - blkaddr, 1330 NULL, NULL); 1331 } else { 1332 dc->lstart++; 1333 dc->len--; 1334 dc->start++; 1335 dcc->undiscard_blks += dc->len; 1336 __relocate_discard_cmd(dcc, dc); 1337 } 1338 } 1339 } 1340 1341 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1342 struct block_device *bdev, block_t lstart, 1343 block_t start, block_t len) 1344 { 1345 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1346 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1347 struct discard_cmd *dc; 1348 struct discard_info di = {0}; 1349 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1350 struct request_queue *q = bdev_get_queue(bdev); 1351 unsigned int max_discard_blocks = 1352 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1353 block_t end = lstart + len; 1354 1355 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1356 NULL, lstart, 1357 (struct rb_entry **)&prev_dc, 1358 (struct rb_entry **)&next_dc, 1359 &insert_p, &insert_parent, true, NULL); 1360 if (dc) 1361 prev_dc = dc; 1362 1363 if (!prev_dc) { 1364 di.lstart = lstart; 1365 di.len = next_dc ? next_dc->lstart - lstart : len; 1366 di.len = min(di.len, len); 1367 di.start = start; 1368 } 1369 1370 while (1) { 1371 struct rb_node *node; 1372 bool merged = false; 1373 struct discard_cmd *tdc = NULL; 1374 1375 if (prev_dc) { 1376 di.lstart = prev_dc->lstart + prev_dc->len; 1377 if (di.lstart < lstart) 1378 di.lstart = lstart; 1379 if (di.lstart >= end) 1380 break; 1381 1382 if (!next_dc || next_dc->lstart > end) 1383 di.len = end - di.lstart; 1384 else 1385 di.len = next_dc->lstart - di.lstart; 1386 di.start = start + di.lstart - lstart; 1387 } 1388 1389 if (!di.len) 1390 goto next; 1391 1392 if (prev_dc && prev_dc->state == D_PREP && 1393 prev_dc->bdev == bdev && 1394 __is_discard_back_mergeable(&di, &prev_dc->di, 1395 max_discard_blocks)) { 1396 prev_dc->di.len += di.len; 1397 dcc->undiscard_blks += di.len; 1398 __relocate_discard_cmd(dcc, prev_dc); 1399 di = prev_dc->di; 1400 tdc = prev_dc; 1401 merged = true; 1402 } 1403 1404 if (next_dc && next_dc->state == D_PREP && 1405 next_dc->bdev == bdev && 1406 __is_discard_front_mergeable(&di, &next_dc->di, 1407 max_discard_blocks)) { 1408 next_dc->di.lstart = di.lstart; 1409 next_dc->di.len += di.len; 1410 next_dc->di.start = di.start; 1411 dcc->undiscard_blks += di.len; 1412 __relocate_discard_cmd(dcc, next_dc); 1413 if (tdc) 1414 __remove_discard_cmd(sbi, tdc); 1415 merged = true; 1416 } 1417 1418 if (!merged) { 1419 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1420 di.len, NULL, NULL); 1421 } 1422 next: 1423 prev_dc = next_dc; 1424 if (!prev_dc) 1425 break; 1426 1427 node = rb_next(&prev_dc->rb_node); 1428 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1429 } 1430 } 1431 1432 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1433 struct block_device *bdev, block_t blkstart, block_t blklen) 1434 { 1435 block_t lblkstart = blkstart; 1436 1437 if (!f2fs_bdev_support_discard(bdev)) 1438 return 0; 1439 1440 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1441 1442 if (f2fs_is_multi_device(sbi)) { 1443 int devi = f2fs_target_device_index(sbi, blkstart); 1444 1445 blkstart -= FDEV(devi).start_blk; 1446 } 1447 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1448 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1449 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1450 return 0; 1451 } 1452 1453 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1454 struct discard_policy *dpolicy) 1455 { 1456 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1457 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1458 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1459 struct discard_cmd *dc; 1460 struct blk_plug plug; 1461 unsigned int pos = dcc->next_pos; 1462 unsigned int issued = 0; 1463 bool io_interrupted = false; 1464 1465 mutex_lock(&dcc->cmd_lock); 1466 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1467 NULL, pos, 1468 (struct rb_entry **)&prev_dc, 1469 (struct rb_entry **)&next_dc, 1470 &insert_p, &insert_parent, true, NULL); 1471 if (!dc) 1472 dc = next_dc; 1473 1474 blk_start_plug(&plug); 1475 1476 while (dc) { 1477 struct rb_node *node; 1478 int err = 0; 1479 1480 if (dc->state != D_PREP) 1481 goto next; 1482 1483 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1484 io_interrupted = true; 1485 break; 1486 } 1487 1488 dcc->next_pos = dc->lstart + dc->len; 1489 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1490 1491 if (issued >= dpolicy->max_requests) 1492 break; 1493 next: 1494 node = rb_next(&dc->rb_node); 1495 if (err) 1496 __remove_discard_cmd(sbi, dc); 1497 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1498 } 1499 1500 blk_finish_plug(&plug); 1501 1502 if (!dc) 1503 dcc->next_pos = 0; 1504 1505 mutex_unlock(&dcc->cmd_lock); 1506 1507 if (!issued && io_interrupted) 1508 issued = -1; 1509 1510 return issued; 1511 } 1512 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1513 struct discard_policy *dpolicy); 1514 1515 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1516 struct discard_policy *dpolicy) 1517 { 1518 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1519 struct list_head *pend_list; 1520 struct discard_cmd *dc, *tmp; 1521 struct blk_plug plug; 1522 int i, issued; 1523 bool io_interrupted = false; 1524 1525 if (dpolicy->timeout) 1526 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1527 1528 retry: 1529 issued = 0; 1530 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1531 if (dpolicy->timeout && 1532 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1533 break; 1534 1535 if (i + 1 < dpolicy->granularity) 1536 break; 1537 1538 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1539 return __issue_discard_cmd_orderly(sbi, dpolicy); 1540 1541 pend_list = &dcc->pend_list[i]; 1542 1543 mutex_lock(&dcc->cmd_lock); 1544 if (list_empty(pend_list)) 1545 goto next; 1546 if (unlikely(dcc->rbtree_check)) 1547 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1548 &dcc->root, false)); 1549 blk_start_plug(&plug); 1550 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1551 f2fs_bug_on(sbi, dc->state != D_PREP); 1552 1553 if (dpolicy->timeout && 1554 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1555 break; 1556 1557 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1558 !is_idle(sbi, DISCARD_TIME)) { 1559 io_interrupted = true; 1560 break; 1561 } 1562 1563 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1564 1565 if (issued >= dpolicy->max_requests) 1566 break; 1567 } 1568 blk_finish_plug(&plug); 1569 next: 1570 mutex_unlock(&dcc->cmd_lock); 1571 1572 if (issued >= dpolicy->max_requests || io_interrupted) 1573 break; 1574 } 1575 1576 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1577 __wait_all_discard_cmd(sbi, dpolicy); 1578 goto retry; 1579 } 1580 1581 if (!issued && io_interrupted) 1582 issued = -1; 1583 1584 return issued; 1585 } 1586 1587 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1588 { 1589 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1590 struct list_head *pend_list; 1591 struct discard_cmd *dc, *tmp; 1592 int i; 1593 bool dropped = false; 1594 1595 mutex_lock(&dcc->cmd_lock); 1596 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1597 pend_list = &dcc->pend_list[i]; 1598 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1599 f2fs_bug_on(sbi, dc->state != D_PREP); 1600 __remove_discard_cmd(sbi, dc); 1601 dropped = true; 1602 } 1603 } 1604 mutex_unlock(&dcc->cmd_lock); 1605 1606 return dropped; 1607 } 1608 1609 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1610 { 1611 __drop_discard_cmd(sbi); 1612 } 1613 1614 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1615 struct discard_cmd *dc) 1616 { 1617 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1618 unsigned int len = 0; 1619 1620 wait_for_completion_io(&dc->wait); 1621 mutex_lock(&dcc->cmd_lock); 1622 f2fs_bug_on(sbi, dc->state != D_DONE); 1623 dc->ref--; 1624 if (!dc->ref) { 1625 if (!dc->error) 1626 len = dc->len; 1627 __remove_discard_cmd(sbi, dc); 1628 } 1629 mutex_unlock(&dcc->cmd_lock); 1630 1631 return len; 1632 } 1633 1634 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1635 struct discard_policy *dpolicy, 1636 block_t start, block_t end) 1637 { 1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1639 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1640 &(dcc->fstrim_list) : &(dcc->wait_list); 1641 struct discard_cmd *dc, *tmp; 1642 bool need_wait; 1643 unsigned int trimmed = 0; 1644 1645 next: 1646 need_wait = false; 1647 1648 mutex_lock(&dcc->cmd_lock); 1649 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1650 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1651 continue; 1652 if (dc->len < dpolicy->granularity) 1653 continue; 1654 if (dc->state == D_DONE && !dc->ref) { 1655 wait_for_completion_io(&dc->wait); 1656 if (!dc->error) 1657 trimmed += dc->len; 1658 __remove_discard_cmd(sbi, dc); 1659 } else { 1660 dc->ref++; 1661 need_wait = true; 1662 break; 1663 } 1664 } 1665 mutex_unlock(&dcc->cmd_lock); 1666 1667 if (need_wait) { 1668 trimmed += __wait_one_discard_bio(sbi, dc); 1669 goto next; 1670 } 1671 1672 return trimmed; 1673 } 1674 1675 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1676 struct discard_policy *dpolicy) 1677 { 1678 struct discard_policy dp; 1679 unsigned int discard_blks; 1680 1681 if (dpolicy) 1682 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1683 1684 /* wait all */ 1685 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1686 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1687 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1688 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1689 1690 return discard_blks; 1691 } 1692 1693 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1694 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1695 { 1696 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1697 struct discard_cmd *dc; 1698 bool need_wait = false; 1699 1700 mutex_lock(&dcc->cmd_lock); 1701 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1702 NULL, blkaddr); 1703 if (dc) { 1704 if (dc->state == D_PREP) { 1705 __punch_discard_cmd(sbi, dc, blkaddr); 1706 } else { 1707 dc->ref++; 1708 need_wait = true; 1709 } 1710 } 1711 mutex_unlock(&dcc->cmd_lock); 1712 1713 if (need_wait) 1714 __wait_one_discard_bio(sbi, dc); 1715 } 1716 1717 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1718 { 1719 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1720 1721 if (dcc && dcc->f2fs_issue_discard) { 1722 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1723 1724 dcc->f2fs_issue_discard = NULL; 1725 kthread_stop(discard_thread); 1726 } 1727 } 1728 1729 /* This comes from f2fs_put_super */ 1730 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1731 { 1732 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1733 struct discard_policy dpolicy; 1734 bool dropped; 1735 1736 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1737 dcc->discard_granularity); 1738 __issue_discard_cmd(sbi, &dpolicy); 1739 dropped = __drop_discard_cmd(sbi); 1740 1741 /* just to make sure there is no pending discard commands */ 1742 __wait_all_discard_cmd(sbi, NULL); 1743 1744 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1745 return dropped; 1746 } 1747 1748 static int issue_discard_thread(void *data) 1749 { 1750 struct f2fs_sb_info *sbi = data; 1751 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1752 wait_queue_head_t *q = &dcc->discard_wait_queue; 1753 struct discard_policy dpolicy; 1754 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1755 int issued; 1756 1757 set_freezable(); 1758 1759 do { 1760 if (sbi->gc_mode == GC_URGENT_HIGH || 1761 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1762 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1763 else 1764 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1765 dcc->discard_granularity); 1766 1767 if (!atomic_read(&dcc->discard_cmd_cnt)) 1768 wait_ms = dpolicy.max_interval; 1769 1770 wait_event_interruptible_timeout(*q, 1771 kthread_should_stop() || freezing(current) || 1772 dcc->discard_wake, 1773 msecs_to_jiffies(wait_ms)); 1774 1775 if (dcc->discard_wake) 1776 dcc->discard_wake = 0; 1777 1778 /* clean up pending candidates before going to sleep */ 1779 if (atomic_read(&dcc->queued_discard)) 1780 __wait_all_discard_cmd(sbi, NULL); 1781 1782 if (try_to_freeze()) 1783 continue; 1784 if (f2fs_readonly(sbi->sb)) 1785 continue; 1786 if (kthread_should_stop()) 1787 return 0; 1788 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1789 wait_ms = dpolicy.max_interval; 1790 continue; 1791 } 1792 if (!atomic_read(&dcc->discard_cmd_cnt)) 1793 continue; 1794 1795 sb_start_intwrite(sbi->sb); 1796 1797 issued = __issue_discard_cmd(sbi, &dpolicy); 1798 if (issued > 0) { 1799 __wait_all_discard_cmd(sbi, &dpolicy); 1800 wait_ms = dpolicy.min_interval; 1801 } else if (issued == -1) { 1802 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1803 if (!wait_ms) 1804 wait_ms = dpolicy.mid_interval; 1805 } else { 1806 wait_ms = dpolicy.max_interval; 1807 } 1808 1809 sb_end_intwrite(sbi->sb); 1810 1811 } while (!kthread_should_stop()); 1812 return 0; 1813 } 1814 1815 #ifdef CONFIG_BLK_DEV_ZONED 1816 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1817 struct block_device *bdev, block_t blkstart, block_t blklen) 1818 { 1819 sector_t sector, nr_sects; 1820 block_t lblkstart = blkstart; 1821 int devi = 0; 1822 1823 if (f2fs_is_multi_device(sbi)) { 1824 devi = f2fs_target_device_index(sbi, blkstart); 1825 if (blkstart < FDEV(devi).start_blk || 1826 blkstart > FDEV(devi).end_blk) { 1827 f2fs_err(sbi, "Invalid block %x", blkstart); 1828 return -EIO; 1829 } 1830 blkstart -= FDEV(devi).start_blk; 1831 } 1832 1833 /* For sequential zones, reset the zone write pointer */ 1834 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1835 sector = SECTOR_FROM_BLOCK(blkstart); 1836 nr_sects = SECTOR_FROM_BLOCK(blklen); 1837 1838 if (sector & (bdev_zone_sectors(bdev) - 1) || 1839 nr_sects != bdev_zone_sectors(bdev)) { 1840 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1841 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1842 blkstart, blklen); 1843 return -EIO; 1844 } 1845 trace_f2fs_issue_reset_zone(bdev, blkstart); 1846 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1847 sector, nr_sects, GFP_NOFS); 1848 } 1849 1850 /* For conventional zones, use regular discard if supported */ 1851 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1852 } 1853 #endif 1854 1855 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1856 struct block_device *bdev, block_t blkstart, block_t blklen) 1857 { 1858 #ifdef CONFIG_BLK_DEV_ZONED 1859 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1860 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1861 #endif 1862 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1863 } 1864 1865 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1866 block_t blkstart, block_t blklen) 1867 { 1868 sector_t start = blkstart, len = 0; 1869 struct block_device *bdev; 1870 struct seg_entry *se; 1871 unsigned int offset; 1872 block_t i; 1873 int err = 0; 1874 1875 bdev = f2fs_target_device(sbi, blkstart, NULL); 1876 1877 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1878 if (i != start) { 1879 struct block_device *bdev2 = 1880 f2fs_target_device(sbi, i, NULL); 1881 1882 if (bdev2 != bdev) { 1883 err = __issue_discard_async(sbi, bdev, 1884 start, len); 1885 if (err) 1886 return err; 1887 bdev = bdev2; 1888 start = i; 1889 len = 0; 1890 } 1891 } 1892 1893 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1894 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1895 1896 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1897 sbi->discard_blks--; 1898 } 1899 1900 if (len) 1901 err = __issue_discard_async(sbi, bdev, start, len); 1902 return err; 1903 } 1904 1905 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1906 bool check_only) 1907 { 1908 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1909 int max_blocks = sbi->blocks_per_seg; 1910 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1911 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1912 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1913 unsigned long *discard_map = (unsigned long *)se->discard_map; 1914 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1915 unsigned int start = 0, end = -1; 1916 bool force = (cpc->reason & CP_DISCARD); 1917 struct discard_entry *de = NULL; 1918 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1919 int i; 1920 1921 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1922 return false; 1923 1924 if (!force) { 1925 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1926 SM_I(sbi)->dcc_info->nr_discards >= 1927 SM_I(sbi)->dcc_info->max_discards) 1928 return false; 1929 } 1930 1931 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1932 for (i = 0; i < entries; i++) 1933 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1934 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1935 1936 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1937 SM_I(sbi)->dcc_info->max_discards) { 1938 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1939 if (start >= max_blocks) 1940 break; 1941 1942 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1943 if (force && start && end != max_blocks 1944 && (end - start) < cpc->trim_minlen) 1945 continue; 1946 1947 if (check_only) 1948 return true; 1949 1950 if (!de) { 1951 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1952 GFP_F2FS_ZERO); 1953 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1954 list_add_tail(&de->list, head); 1955 } 1956 1957 for (i = start; i < end; i++) 1958 __set_bit_le(i, (void *)de->discard_map); 1959 1960 SM_I(sbi)->dcc_info->nr_discards += end - start; 1961 } 1962 return false; 1963 } 1964 1965 static void release_discard_addr(struct discard_entry *entry) 1966 { 1967 list_del(&entry->list); 1968 kmem_cache_free(discard_entry_slab, entry); 1969 } 1970 1971 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1972 { 1973 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1974 struct discard_entry *entry, *this; 1975 1976 /* drop caches */ 1977 list_for_each_entry_safe(entry, this, head, list) 1978 release_discard_addr(entry); 1979 } 1980 1981 /* 1982 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1983 */ 1984 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1985 { 1986 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1987 unsigned int segno; 1988 1989 mutex_lock(&dirty_i->seglist_lock); 1990 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1991 __set_test_and_free(sbi, segno, false); 1992 mutex_unlock(&dirty_i->seglist_lock); 1993 } 1994 1995 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1996 struct cp_control *cpc) 1997 { 1998 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1999 struct list_head *head = &dcc->entry_list; 2000 struct discard_entry *entry, *this; 2001 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2002 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2003 unsigned int start = 0, end = -1; 2004 unsigned int secno, start_segno; 2005 bool force = (cpc->reason & CP_DISCARD); 2006 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 2007 2008 mutex_lock(&dirty_i->seglist_lock); 2009 2010 while (1) { 2011 int i; 2012 2013 if (need_align && end != -1) 2014 end--; 2015 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2016 if (start >= MAIN_SEGS(sbi)) 2017 break; 2018 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2019 start + 1); 2020 2021 if (need_align) { 2022 start = rounddown(start, sbi->segs_per_sec); 2023 end = roundup(end, sbi->segs_per_sec); 2024 } 2025 2026 for (i = start; i < end; i++) { 2027 if (test_and_clear_bit(i, prefree_map)) 2028 dirty_i->nr_dirty[PRE]--; 2029 } 2030 2031 if (!f2fs_realtime_discard_enable(sbi)) 2032 continue; 2033 2034 if (force && start >= cpc->trim_start && 2035 (end - 1) <= cpc->trim_end) 2036 continue; 2037 2038 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 2039 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2040 (end - start) << sbi->log_blocks_per_seg); 2041 continue; 2042 } 2043 next: 2044 secno = GET_SEC_FROM_SEG(sbi, start); 2045 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2046 if (!IS_CURSEC(sbi, secno) && 2047 !get_valid_blocks(sbi, start, true)) 2048 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2049 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2050 2051 start = start_segno + sbi->segs_per_sec; 2052 if (start < end) 2053 goto next; 2054 else 2055 end = start - 1; 2056 } 2057 mutex_unlock(&dirty_i->seglist_lock); 2058 2059 /* send small discards */ 2060 list_for_each_entry_safe(entry, this, head, list) { 2061 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2062 bool is_valid = test_bit_le(0, entry->discard_map); 2063 2064 find_next: 2065 if (is_valid) { 2066 next_pos = find_next_zero_bit_le(entry->discard_map, 2067 sbi->blocks_per_seg, cur_pos); 2068 len = next_pos - cur_pos; 2069 2070 if (f2fs_sb_has_blkzoned(sbi) || 2071 (force && len < cpc->trim_minlen)) 2072 goto skip; 2073 2074 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2075 len); 2076 total_len += len; 2077 } else { 2078 next_pos = find_next_bit_le(entry->discard_map, 2079 sbi->blocks_per_seg, cur_pos); 2080 } 2081 skip: 2082 cur_pos = next_pos; 2083 is_valid = !is_valid; 2084 2085 if (cur_pos < sbi->blocks_per_seg) 2086 goto find_next; 2087 2088 release_discard_addr(entry); 2089 dcc->nr_discards -= total_len; 2090 } 2091 2092 wake_up_discard_thread(sbi, false); 2093 } 2094 2095 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2096 { 2097 dev_t dev = sbi->sb->s_bdev->bd_dev; 2098 struct discard_cmd_control *dcc; 2099 int err = 0, i; 2100 2101 if (SM_I(sbi)->dcc_info) { 2102 dcc = SM_I(sbi)->dcc_info; 2103 goto init_thread; 2104 } 2105 2106 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2107 if (!dcc) 2108 return -ENOMEM; 2109 2110 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2111 INIT_LIST_HEAD(&dcc->entry_list); 2112 for (i = 0; i < MAX_PLIST_NUM; i++) 2113 INIT_LIST_HEAD(&dcc->pend_list[i]); 2114 INIT_LIST_HEAD(&dcc->wait_list); 2115 INIT_LIST_HEAD(&dcc->fstrim_list); 2116 mutex_init(&dcc->cmd_lock); 2117 atomic_set(&dcc->issued_discard, 0); 2118 atomic_set(&dcc->queued_discard, 0); 2119 atomic_set(&dcc->discard_cmd_cnt, 0); 2120 dcc->nr_discards = 0; 2121 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2122 dcc->undiscard_blks = 0; 2123 dcc->next_pos = 0; 2124 dcc->root = RB_ROOT_CACHED; 2125 dcc->rbtree_check = false; 2126 2127 init_waitqueue_head(&dcc->discard_wait_queue); 2128 SM_I(sbi)->dcc_info = dcc; 2129 init_thread: 2130 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2131 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2132 if (IS_ERR(dcc->f2fs_issue_discard)) { 2133 err = PTR_ERR(dcc->f2fs_issue_discard); 2134 kfree(dcc); 2135 SM_I(sbi)->dcc_info = NULL; 2136 return err; 2137 } 2138 2139 return err; 2140 } 2141 2142 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2143 { 2144 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2145 2146 if (!dcc) 2147 return; 2148 2149 f2fs_stop_discard_thread(sbi); 2150 2151 /* 2152 * Recovery can cache discard commands, so in error path of 2153 * fill_super(), it needs to give a chance to handle them. 2154 */ 2155 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2156 f2fs_issue_discard_timeout(sbi); 2157 2158 kfree(dcc); 2159 SM_I(sbi)->dcc_info = NULL; 2160 } 2161 2162 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2163 { 2164 struct sit_info *sit_i = SIT_I(sbi); 2165 2166 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2167 sit_i->dirty_sentries++; 2168 return false; 2169 } 2170 2171 return true; 2172 } 2173 2174 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2175 unsigned int segno, int modified) 2176 { 2177 struct seg_entry *se = get_seg_entry(sbi, segno); 2178 2179 se->type = type; 2180 if (modified) 2181 __mark_sit_entry_dirty(sbi, segno); 2182 } 2183 2184 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2185 block_t blkaddr) 2186 { 2187 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2188 2189 if (segno == NULL_SEGNO) 2190 return 0; 2191 return get_seg_entry(sbi, segno)->mtime; 2192 } 2193 2194 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2195 unsigned long long old_mtime) 2196 { 2197 struct seg_entry *se; 2198 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2199 unsigned long long ctime = get_mtime(sbi, false); 2200 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2201 2202 if (segno == NULL_SEGNO) 2203 return; 2204 2205 se = get_seg_entry(sbi, segno); 2206 2207 if (!se->mtime) 2208 se->mtime = mtime; 2209 else 2210 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2211 se->valid_blocks + 1); 2212 2213 if (ctime > SIT_I(sbi)->max_mtime) 2214 SIT_I(sbi)->max_mtime = ctime; 2215 } 2216 2217 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2218 { 2219 struct seg_entry *se; 2220 unsigned int segno, offset; 2221 long int new_vblocks; 2222 bool exist; 2223 #ifdef CONFIG_F2FS_CHECK_FS 2224 bool mir_exist; 2225 #endif 2226 2227 segno = GET_SEGNO(sbi, blkaddr); 2228 2229 se = get_seg_entry(sbi, segno); 2230 new_vblocks = se->valid_blocks + del; 2231 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2232 2233 f2fs_bug_on(sbi, (new_vblocks < 0 || 2234 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2235 2236 se->valid_blocks = new_vblocks; 2237 2238 /* Update valid block bitmap */ 2239 if (del > 0) { 2240 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2241 #ifdef CONFIG_F2FS_CHECK_FS 2242 mir_exist = f2fs_test_and_set_bit(offset, 2243 se->cur_valid_map_mir); 2244 if (unlikely(exist != mir_exist)) { 2245 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2246 blkaddr, exist); 2247 f2fs_bug_on(sbi, 1); 2248 } 2249 #endif 2250 if (unlikely(exist)) { 2251 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2252 blkaddr); 2253 f2fs_bug_on(sbi, 1); 2254 se->valid_blocks--; 2255 del = 0; 2256 } 2257 2258 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2259 sbi->discard_blks--; 2260 2261 /* 2262 * SSR should never reuse block which is checkpointed 2263 * or newly invalidated. 2264 */ 2265 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2266 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2267 se->ckpt_valid_blocks++; 2268 } 2269 } else { 2270 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2271 #ifdef CONFIG_F2FS_CHECK_FS 2272 mir_exist = f2fs_test_and_clear_bit(offset, 2273 se->cur_valid_map_mir); 2274 if (unlikely(exist != mir_exist)) { 2275 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2276 blkaddr, exist); 2277 f2fs_bug_on(sbi, 1); 2278 } 2279 #endif 2280 if (unlikely(!exist)) { 2281 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2282 blkaddr); 2283 f2fs_bug_on(sbi, 1); 2284 se->valid_blocks++; 2285 del = 0; 2286 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2287 /* 2288 * If checkpoints are off, we must not reuse data that 2289 * was used in the previous checkpoint. If it was used 2290 * before, we must track that to know how much space we 2291 * really have. 2292 */ 2293 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2294 spin_lock(&sbi->stat_lock); 2295 sbi->unusable_block_count++; 2296 spin_unlock(&sbi->stat_lock); 2297 } 2298 } 2299 2300 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2301 sbi->discard_blks++; 2302 } 2303 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2304 se->ckpt_valid_blocks += del; 2305 2306 __mark_sit_entry_dirty(sbi, segno); 2307 2308 /* update total number of valid blocks to be written in ckpt area */ 2309 SIT_I(sbi)->written_valid_blocks += del; 2310 2311 if (__is_large_section(sbi)) 2312 get_sec_entry(sbi, segno)->valid_blocks += del; 2313 } 2314 2315 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2316 { 2317 unsigned int segno = GET_SEGNO(sbi, addr); 2318 struct sit_info *sit_i = SIT_I(sbi); 2319 2320 f2fs_bug_on(sbi, addr == NULL_ADDR); 2321 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2322 return; 2323 2324 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2325 f2fs_invalidate_compress_page(sbi, addr); 2326 2327 /* add it into sit main buffer */ 2328 down_write(&sit_i->sentry_lock); 2329 2330 update_segment_mtime(sbi, addr, 0); 2331 update_sit_entry(sbi, addr, -1); 2332 2333 /* add it into dirty seglist */ 2334 locate_dirty_segment(sbi, segno); 2335 2336 up_write(&sit_i->sentry_lock); 2337 } 2338 2339 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2340 { 2341 struct sit_info *sit_i = SIT_I(sbi); 2342 unsigned int segno, offset; 2343 struct seg_entry *se; 2344 bool is_cp = false; 2345 2346 if (!__is_valid_data_blkaddr(blkaddr)) 2347 return true; 2348 2349 down_read(&sit_i->sentry_lock); 2350 2351 segno = GET_SEGNO(sbi, blkaddr); 2352 se = get_seg_entry(sbi, segno); 2353 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2354 2355 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2356 is_cp = true; 2357 2358 up_read(&sit_i->sentry_lock); 2359 2360 return is_cp; 2361 } 2362 2363 /* 2364 * This function should be resided under the curseg_mutex lock 2365 */ 2366 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2367 struct f2fs_summary *sum) 2368 { 2369 struct curseg_info *curseg = CURSEG_I(sbi, type); 2370 void *addr = curseg->sum_blk; 2371 2372 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2373 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2374 } 2375 2376 /* 2377 * Calculate the number of current summary pages for writing 2378 */ 2379 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2380 { 2381 int valid_sum_count = 0; 2382 int i, sum_in_page; 2383 2384 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2385 if (sbi->ckpt->alloc_type[i] == SSR) 2386 valid_sum_count += sbi->blocks_per_seg; 2387 else { 2388 if (for_ra) 2389 valid_sum_count += le16_to_cpu( 2390 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2391 else 2392 valid_sum_count += curseg_blkoff(sbi, i); 2393 } 2394 } 2395 2396 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2397 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2398 if (valid_sum_count <= sum_in_page) 2399 return 1; 2400 else if ((valid_sum_count - sum_in_page) <= 2401 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2402 return 2; 2403 return 3; 2404 } 2405 2406 /* 2407 * Caller should put this summary page 2408 */ 2409 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2410 { 2411 if (unlikely(f2fs_cp_error(sbi))) 2412 return ERR_PTR(-EIO); 2413 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2414 } 2415 2416 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2417 void *src, block_t blk_addr) 2418 { 2419 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2420 2421 memcpy(page_address(page), src, PAGE_SIZE); 2422 set_page_dirty(page); 2423 f2fs_put_page(page, 1); 2424 } 2425 2426 static void write_sum_page(struct f2fs_sb_info *sbi, 2427 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2428 { 2429 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2430 } 2431 2432 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2433 int type, block_t blk_addr) 2434 { 2435 struct curseg_info *curseg = CURSEG_I(sbi, type); 2436 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2437 struct f2fs_summary_block *src = curseg->sum_blk; 2438 struct f2fs_summary_block *dst; 2439 2440 dst = (struct f2fs_summary_block *)page_address(page); 2441 memset(dst, 0, PAGE_SIZE); 2442 2443 mutex_lock(&curseg->curseg_mutex); 2444 2445 down_read(&curseg->journal_rwsem); 2446 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2447 up_read(&curseg->journal_rwsem); 2448 2449 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2450 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2451 2452 mutex_unlock(&curseg->curseg_mutex); 2453 2454 set_page_dirty(page); 2455 f2fs_put_page(page, 1); 2456 } 2457 2458 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2459 struct curseg_info *curseg, int type) 2460 { 2461 unsigned int segno = curseg->segno + 1; 2462 struct free_segmap_info *free_i = FREE_I(sbi); 2463 2464 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2465 return !test_bit(segno, free_i->free_segmap); 2466 return 0; 2467 } 2468 2469 /* 2470 * Find a new segment from the free segments bitmap to right order 2471 * This function should be returned with success, otherwise BUG 2472 */ 2473 static void get_new_segment(struct f2fs_sb_info *sbi, 2474 unsigned int *newseg, bool new_sec, int dir) 2475 { 2476 struct free_segmap_info *free_i = FREE_I(sbi); 2477 unsigned int segno, secno, zoneno; 2478 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2479 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2480 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2481 unsigned int left_start = hint; 2482 bool init = true; 2483 int go_left = 0; 2484 int i; 2485 2486 spin_lock(&free_i->segmap_lock); 2487 2488 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2489 segno = find_next_zero_bit(free_i->free_segmap, 2490 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2491 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2492 goto got_it; 2493 } 2494 find_other_zone: 2495 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2496 if (secno >= MAIN_SECS(sbi)) { 2497 if (dir == ALLOC_RIGHT) { 2498 secno = find_next_zero_bit(free_i->free_secmap, 2499 MAIN_SECS(sbi), 0); 2500 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2501 } else { 2502 go_left = 1; 2503 left_start = hint - 1; 2504 } 2505 } 2506 if (go_left == 0) 2507 goto skip_left; 2508 2509 while (test_bit(left_start, free_i->free_secmap)) { 2510 if (left_start > 0) { 2511 left_start--; 2512 continue; 2513 } 2514 left_start = find_next_zero_bit(free_i->free_secmap, 2515 MAIN_SECS(sbi), 0); 2516 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2517 break; 2518 } 2519 secno = left_start; 2520 skip_left: 2521 segno = GET_SEG_FROM_SEC(sbi, secno); 2522 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2523 2524 /* give up on finding another zone */ 2525 if (!init) 2526 goto got_it; 2527 if (sbi->secs_per_zone == 1) 2528 goto got_it; 2529 if (zoneno == old_zoneno) 2530 goto got_it; 2531 if (dir == ALLOC_LEFT) { 2532 if (!go_left && zoneno + 1 >= total_zones) 2533 goto got_it; 2534 if (go_left && zoneno == 0) 2535 goto got_it; 2536 } 2537 for (i = 0; i < NR_CURSEG_TYPE; i++) 2538 if (CURSEG_I(sbi, i)->zone == zoneno) 2539 break; 2540 2541 if (i < NR_CURSEG_TYPE) { 2542 /* zone is in user, try another */ 2543 if (go_left) 2544 hint = zoneno * sbi->secs_per_zone - 1; 2545 else if (zoneno + 1 >= total_zones) 2546 hint = 0; 2547 else 2548 hint = (zoneno + 1) * sbi->secs_per_zone; 2549 init = false; 2550 goto find_other_zone; 2551 } 2552 got_it: 2553 /* set it as dirty segment in free segmap */ 2554 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2555 __set_inuse(sbi, segno); 2556 *newseg = segno; 2557 spin_unlock(&free_i->segmap_lock); 2558 } 2559 2560 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2561 { 2562 struct curseg_info *curseg = CURSEG_I(sbi, type); 2563 struct summary_footer *sum_footer; 2564 unsigned short seg_type = curseg->seg_type; 2565 2566 curseg->inited = true; 2567 curseg->segno = curseg->next_segno; 2568 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2569 curseg->next_blkoff = 0; 2570 curseg->next_segno = NULL_SEGNO; 2571 2572 sum_footer = &(curseg->sum_blk->footer); 2573 memset(sum_footer, 0, sizeof(struct summary_footer)); 2574 2575 sanity_check_seg_type(sbi, seg_type); 2576 2577 if (IS_DATASEG(seg_type)) 2578 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2579 if (IS_NODESEG(seg_type)) 2580 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2581 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2582 } 2583 2584 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2585 { 2586 struct curseg_info *curseg = CURSEG_I(sbi, type); 2587 unsigned short seg_type = curseg->seg_type; 2588 2589 sanity_check_seg_type(sbi, seg_type); 2590 2591 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2592 if (__is_large_section(sbi)) 2593 return curseg->segno; 2594 2595 /* inmem log may not locate on any segment after mount */ 2596 if (!curseg->inited) 2597 return 0; 2598 2599 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2600 return 0; 2601 2602 if (test_opt(sbi, NOHEAP) && 2603 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2604 return 0; 2605 2606 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2607 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2608 2609 /* find segments from 0 to reuse freed segments */ 2610 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2611 return 0; 2612 2613 return curseg->segno; 2614 } 2615 2616 /* 2617 * Allocate a current working segment. 2618 * This function always allocates a free segment in LFS manner. 2619 */ 2620 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2621 { 2622 struct curseg_info *curseg = CURSEG_I(sbi, type); 2623 unsigned short seg_type = curseg->seg_type; 2624 unsigned int segno = curseg->segno; 2625 int dir = ALLOC_LEFT; 2626 2627 if (curseg->inited) 2628 write_sum_page(sbi, curseg->sum_blk, 2629 GET_SUM_BLOCK(sbi, segno)); 2630 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2631 dir = ALLOC_RIGHT; 2632 2633 if (test_opt(sbi, NOHEAP)) 2634 dir = ALLOC_RIGHT; 2635 2636 segno = __get_next_segno(sbi, type); 2637 get_new_segment(sbi, &segno, new_sec, dir); 2638 curseg->next_segno = segno; 2639 reset_curseg(sbi, type, 1); 2640 curseg->alloc_type = LFS; 2641 } 2642 2643 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2644 int segno, block_t start) 2645 { 2646 struct seg_entry *se = get_seg_entry(sbi, segno); 2647 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2648 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2649 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2650 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2651 int i; 2652 2653 for (i = 0; i < entries; i++) 2654 target_map[i] = ckpt_map[i] | cur_map[i]; 2655 2656 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2657 } 2658 2659 /* 2660 * If a segment is written by LFS manner, next block offset is just obtained 2661 * by increasing the current block offset. However, if a segment is written by 2662 * SSR manner, next block offset obtained by calling __next_free_blkoff 2663 */ 2664 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2665 struct curseg_info *seg) 2666 { 2667 if (seg->alloc_type == SSR) 2668 seg->next_blkoff = 2669 __next_free_blkoff(sbi, seg->segno, 2670 seg->next_blkoff + 1); 2671 else 2672 seg->next_blkoff++; 2673 } 2674 2675 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2676 { 2677 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2678 } 2679 2680 /* 2681 * This function always allocates a used segment(from dirty seglist) by SSR 2682 * manner, so it should recover the existing segment information of valid blocks 2683 */ 2684 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) 2685 { 2686 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2687 struct curseg_info *curseg = CURSEG_I(sbi, type); 2688 unsigned int new_segno = curseg->next_segno; 2689 struct f2fs_summary_block *sum_node; 2690 struct page *sum_page; 2691 2692 if (flush) 2693 write_sum_page(sbi, curseg->sum_blk, 2694 GET_SUM_BLOCK(sbi, curseg->segno)); 2695 2696 __set_test_and_inuse(sbi, new_segno); 2697 2698 mutex_lock(&dirty_i->seglist_lock); 2699 __remove_dirty_segment(sbi, new_segno, PRE); 2700 __remove_dirty_segment(sbi, new_segno, DIRTY); 2701 mutex_unlock(&dirty_i->seglist_lock); 2702 2703 reset_curseg(sbi, type, 1); 2704 curseg->alloc_type = SSR; 2705 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2706 2707 sum_page = f2fs_get_sum_page(sbi, new_segno); 2708 if (IS_ERR(sum_page)) { 2709 /* GC won't be able to use stale summary pages by cp_error */ 2710 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2711 return; 2712 } 2713 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2714 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2715 f2fs_put_page(sum_page, 1); 2716 } 2717 2718 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2719 int alloc_mode, unsigned long long age); 2720 2721 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2722 int target_type, int alloc_mode, 2723 unsigned long long age) 2724 { 2725 struct curseg_info *curseg = CURSEG_I(sbi, type); 2726 2727 curseg->seg_type = target_type; 2728 2729 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2730 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2731 2732 curseg->seg_type = se->type; 2733 change_curseg(sbi, type, true); 2734 } else { 2735 /* allocate cold segment by default */ 2736 curseg->seg_type = CURSEG_COLD_DATA; 2737 new_curseg(sbi, type, true); 2738 } 2739 stat_inc_seg_type(sbi, curseg); 2740 } 2741 2742 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2743 { 2744 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2745 2746 if (!sbi->am.atgc_enabled) 2747 return; 2748 2749 down_read(&SM_I(sbi)->curseg_lock); 2750 2751 mutex_lock(&curseg->curseg_mutex); 2752 down_write(&SIT_I(sbi)->sentry_lock); 2753 2754 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2755 2756 up_write(&SIT_I(sbi)->sentry_lock); 2757 mutex_unlock(&curseg->curseg_mutex); 2758 2759 up_read(&SM_I(sbi)->curseg_lock); 2760 2761 } 2762 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2763 { 2764 __f2fs_init_atgc_curseg(sbi); 2765 } 2766 2767 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2768 { 2769 struct curseg_info *curseg = CURSEG_I(sbi, type); 2770 2771 mutex_lock(&curseg->curseg_mutex); 2772 if (!curseg->inited) 2773 goto out; 2774 2775 if (get_valid_blocks(sbi, curseg->segno, false)) { 2776 write_sum_page(sbi, curseg->sum_blk, 2777 GET_SUM_BLOCK(sbi, curseg->segno)); 2778 } else { 2779 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2780 __set_test_and_free(sbi, curseg->segno, true); 2781 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2782 } 2783 out: 2784 mutex_unlock(&curseg->curseg_mutex); 2785 } 2786 2787 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2788 { 2789 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2790 2791 if (sbi->am.atgc_enabled) 2792 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2793 } 2794 2795 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2796 { 2797 struct curseg_info *curseg = CURSEG_I(sbi, type); 2798 2799 mutex_lock(&curseg->curseg_mutex); 2800 if (!curseg->inited) 2801 goto out; 2802 if (get_valid_blocks(sbi, curseg->segno, false)) 2803 goto out; 2804 2805 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2806 __set_test_and_inuse(sbi, curseg->segno); 2807 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2808 out: 2809 mutex_unlock(&curseg->curseg_mutex); 2810 } 2811 2812 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2813 { 2814 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2815 2816 if (sbi->am.atgc_enabled) 2817 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2818 } 2819 2820 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2821 int alloc_mode, unsigned long long age) 2822 { 2823 struct curseg_info *curseg = CURSEG_I(sbi, type); 2824 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2825 unsigned segno = NULL_SEGNO; 2826 unsigned short seg_type = curseg->seg_type; 2827 int i, cnt; 2828 bool reversed = false; 2829 2830 sanity_check_seg_type(sbi, seg_type); 2831 2832 /* f2fs_need_SSR() already forces to do this */ 2833 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2834 curseg->next_segno = segno; 2835 return 1; 2836 } 2837 2838 /* For node segments, let's do SSR more intensively */ 2839 if (IS_NODESEG(seg_type)) { 2840 if (seg_type >= CURSEG_WARM_NODE) { 2841 reversed = true; 2842 i = CURSEG_COLD_NODE; 2843 } else { 2844 i = CURSEG_HOT_NODE; 2845 } 2846 cnt = NR_CURSEG_NODE_TYPE; 2847 } else { 2848 if (seg_type >= CURSEG_WARM_DATA) { 2849 reversed = true; 2850 i = CURSEG_COLD_DATA; 2851 } else { 2852 i = CURSEG_HOT_DATA; 2853 } 2854 cnt = NR_CURSEG_DATA_TYPE; 2855 } 2856 2857 for (; cnt-- > 0; reversed ? i-- : i++) { 2858 if (i == seg_type) 2859 continue; 2860 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2861 curseg->next_segno = segno; 2862 return 1; 2863 } 2864 } 2865 2866 /* find valid_blocks=0 in dirty list */ 2867 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2868 segno = get_free_segment(sbi); 2869 if (segno != NULL_SEGNO) { 2870 curseg->next_segno = segno; 2871 return 1; 2872 } 2873 } 2874 return 0; 2875 } 2876 2877 /* 2878 * flush out current segment and replace it with new segment 2879 * This function should be returned with success, otherwise BUG 2880 */ 2881 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2882 int type, bool force) 2883 { 2884 struct curseg_info *curseg = CURSEG_I(sbi, type); 2885 2886 if (force) 2887 new_curseg(sbi, type, true); 2888 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2889 curseg->seg_type == CURSEG_WARM_NODE) 2890 new_curseg(sbi, type, false); 2891 else if (curseg->alloc_type == LFS && 2892 is_next_segment_free(sbi, curseg, type) && 2893 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2894 new_curseg(sbi, type, false); 2895 else if (f2fs_need_SSR(sbi) && 2896 get_ssr_segment(sbi, type, SSR, 0)) 2897 change_curseg(sbi, type, true); 2898 else 2899 new_curseg(sbi, type, false); 2900 2901 stat_inc_seg_type(sbi, curseg); 2902 } 2903 2904 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2905 unsigned int start, unsigned int end) 2906 { 2907 struct curseg_info *curseg = CURSEG_I(sbi, type); 2908 unsigned int segno; 2909 2910 down_read(&SM_I(sbi)->curseg_lock); 2911 mutex_lock(&curseg->curseg_mutex); 2912 down_write(&SIT_I(sbi)->sentry_lock); 2913 2914 segno = CURSEG_I(sbi, type)->segno; 2915 if (segno < start || segno > end) 2916 goto unlock; 2917 2918 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2919 change_curseg(sbi, type, true); 2920 else 2921 new_curseg(sbi, type, true); 2922 2923 stat_inc_seg_type(sbi, curseg); 2924 2925 locate_dirty_segment(sbi, segno); 2926 unlock: 2927 up_write(&SIT_I(sbi)->sentry_lock); 2928 2929 if (segno != curseg->segno) 2930 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2931 type, segno, curseg->segno); 2932 2933 mutex_unlock(&curseg->curseg_mutex); 2934 up_read(&SM_I(sbi)->curseg_lock); 2935 } 2936 2937 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 2938 bool new_sec, bool force) 2939 { 2940 struct curseg_info *curseg = CURSEG_I(sbi, type); 2941 unsigned int old_segno; 2942 2943 if (!curseg->inited) 2944 goto alloc; 2945 2946 if (force || curseg->next_blkoff || 2947 get_valid_blocks(sbi, curseg->segno, new_sec)) 2948 goto alloc; 2949 2950 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 2951 return; 2952 alloc: 2953 old_segno = curseg->segno; 2954 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 2955 locate_dirty_segment(sbi, old_segno); 2956 } 2957 2958 static void __allocate_new_section(struct f2fs_sb_info *sbi, 2959 int type, bool force) 2960 { 2961 __allocate_new_segment(sbi, type, true, force); 2962 } 2963 2964 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 2965 { 2966 down_read(&SM_I(sbi)->curseg_lock); 2967 down_write(&SIT_I(sbi)->sentry_lock); 2968 __allocate_new_section(sbi, type, force); 2969 up_write(&SIT_I(sbi)->sentry_lock); 2970 up_read(&SM_I(sbi)->curseg_lock); 2971 } 2972 2973 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2974 { 2975 int i; 2976 2977 down_read(&SM_I(sbi)->curseg_lock); 2978 down_write(&SIT_I(sbi)->sentry_lock); 2979 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2980 __allocate_new_segment(sbi, i, false, false); 2981 up_write(&SIT_I(sbi)->sentry_lock); 2982 up_read(&SM_I(sbi)->curseg_lock); 2983 } 2984 2985 static const struct segment_allocation default_salloc_ops = { 2986 .allocate_segment = allocate_segment_by_default, 2987 }; 2988 2989 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2990 struct cp_control *cpc) 2991 { 2992 __u64 trim_start = cpc->trim_start; 2993 bool has_candidate = false; 2994 2995 down_write(&SIT_I(sbi)->sentry_lock); 2996 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2997 if (add_discard_addrs(sbi, cpc, true)) { 2998 has_candidate = true; 2999 break; 3000 } 3001 } 3002 up_write(&SIT_I(sbi)->sentry_lock); 3003 3004 cpc->trim_start = trim_start; 3005 return has_candidate; 3006 } 3007 3008 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3009 struct discard_policy *dpolicy, 3010 unsigned int start, unsigned int end) 3011 { 3012 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3013 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3014 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3015 struct discard_cmd *dc; 3016 struct blk_plug plug; 3017 int issued; 3018 unsigned int trimmed = 0; 3019 3020 next: 3021 issued = 0; 3022 3023 mutex_lock(&dcc->cmd_lock); 3024 if (unlikely(dcc->rbtree_check)) 3025 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 3026 &dcc->root, false)); 3027 3028 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 3029 NULL, start, 3030 (struct rb_entry **)&prev_dc, 3031 (struct rb_entry **)&next_dc, 3032 &insert_p, &insert_parent, true, NULL); 3033 if (!dc) 3034 dc = next_dc; 3035 3036 blk_start_plug(&plug); 3037 3038 while (dc && dc->lstart <= end) { 3039 struct rb_node *node; 3040 int err = 0; 3041 3042 if (dc->len < dpolicy->granularity) 3043 goto skip; 3044 3045 if (dc->state != D_PREP) { 3046 list_move_tail(&dc->list, &dcc->fstrim_list); 3047 goto skip; 3048 } 3049 3050 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3051 3052 if (issued >= dpolicy->max_requests) { 3053 start = dc->lstart + dc->len; 3054 3055 if (err) 3056 __remove_discard_cmd(sbi, dc); 3057 3058 blk_finish_plug(&plug); 3059 mutex_unlock(&dcc->cmd_lock); 3060 trimmed += __wait_all_discard_cmd(sbi, NULL); 3061 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 3062 goto next; 3063 } 3064 skip: 3065 node = rb_next(&dc->rb_node); 3066 if (err) 3067 __remove_discard_cmd(sbi, dc); 3068 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3069 3070 if (fatal_signal_pending(current)) 3071 break; 3072 } 3073 3074 blk_finish_plug(&plug); 3075 mutex_unlock(&dcc->cmd_lock); 3076 3077 return trimmed; 3078 } 3079 3080 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3081 { 3082 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3083 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3084 unsigned int start_segno, end_segno; 3085 block_t start_block, end_block; 3086 struct cp_control cpc; 3087 struct discard_policy dpolicy; 3088 unsigned long long trimmed = 0; 3089 int err = 0; 3090 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3091 3092 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3093 return -EINVAL; 3094 3095 if (end < MAIN_BLKADDR(sbi)) 3096 goto out; 3097 3098 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3099 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3100 return -EFSCORRUPTED; 3101 } 3102 3103 /* start/end segment number in main_area */ 3104 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3105 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3106 GET_SEGNO(sbi, end); 3107 if (need_align) { 3108 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3109 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3110 } 3111 3112 cpc.reason = CP_DISCARD; 3113 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3114 cpc.trim_start = start_segno; 3115 cpc.trim_end = end_segno; 3116 3117 if (sbi->discard_blks == 0) 3118 goto out; 3119 3120 down_write(&sbi->gc_lock); 3121 err = f2fs_write_checkpoint(sbi, &cpc); 3122 up_write(&sbi->gc_lock); 3123 if (err) 3124 goto out; 3125 3126 /* 3127 * We filed discard candidates, but actually we don't need to wait for 3128 * all of them, since they'll be issued in idle time along with runtime 3129 * discard option. User configuration looks like using runtime discard 3130 * or periodic fstrim instead of it. 3131 */ 3132 if (f2fs_realtime_discard_enable(sbi)) 3133 goto out; 3134 3135 start_block = START_BLOCK(sbi, start_segno); 3136 end_block = START_BLOCK(sbi, end_segno + 1); 3137 3138 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3139 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3140 start_block, end_block); 3141 3142 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3143 start_block, end_block); 3144 out: 3145 if (!err) 3146 range->len = F2FS_BLK_TO_BYTES(trimmed); 3147 return err; 3148 } 3149 3150 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3151 struct curseg_info *curseg) 3152 { 3153 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3154 curseg->segno); 3155 } 3156 3157 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3158 { 3159 switch (hint) { 3160 case WRITE_LIFE_SHORT: 3161 return CURSEG_HOT_DATA; 3162 case WRITE_LIFE_EXTREME: 3163 return CURSEG_COLD_DATA; 3164 default: 3165 return CURSEG_WARM_DATA; 3166 } 3167 } 3168 3169 /* This returns write hints for each segment type. This hints will be 3170 * passed down to block layer. There are mapping tables which depend on 3171 * the mount option 'whint_mode'. 3172 * 3173 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 3174 * 3175 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 3176 * 3177 * User F2FS Block 3178 * ---- ---- ----- 3179 * META WRITE_LIFE_NOT_SET 3180 * HOT_NODE " 3181 * WARM_NODE " 3182 * COLD_NODE " 3183 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3184 * extension list " " 3185 * 3186 * -- buffered io 3187 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3188 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3189 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3190 * WRITE_LIFE_NONE " " 3191 * WRITE_LIFE_MEDIUM " " 3192 * WRITE_LIFE_LONG " " 3193 * 3194 * -- direct io 3195 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3196 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3197 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3198 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3199 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3200 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3201 * 3202 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 3203 * 3204 * User F2FS Block 3205 * ---- ---- ----- 3206 * META WRITE_LIFE_MEDIUM; 3207 * HOT_NODE WRITE_LIFE_NOT_SET 3208 * WARM_NODE " 3209 * COLD_NODE WRITE_LIFE_NONE 3210 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3211 * extension list " " 3212 * 3213 * -- buffered io 3214 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3215 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3216 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 3217 * WRITE_LIFE_NONE " " 3218 * WRITE_LIFE_MEDIUM " " 3219 * WRITE_LIFE_LONG " " 3220 * 3221 * -- direct io 3222 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3223 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3224 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3225 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3226 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3227 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3228 */ 3229 3230 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3231 enum page_type type, enum temp_type temp) 3232 { 3233 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 3234 if (type == DATA) { 3235 if (temp == WARM) 3236 return WRITE_LIFE_NOT_SET; 3237 else if (temp == HOT) 3238 return WRITE_LIFE_SHORT; 3239 else if (temp == COLD) 3240 return WRITE_LIFE_EXTREME; 3241 } else { 3242 return WRITE_LIFE_NOT_SET; 3243 } 3244 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 3245 if (type == DATA) { 3246 if (temp == WARM) 3247 return WRITE_LIFE_LONG; 3248 else if (temp == HOT) 3249 return WRITE_LIFE_SHORT; 3250 else if (temp == COLD) 3251 return WRITE_LIFE_EXTREME; 3252 } else if (type == NODE) { 3253 if (temp == WARM || temp == HOT) 3254 return WRITE_LIFE_NOT_SET; 3255 else if (temp == COLD) 3256 return WRITE_LIFE_NONE; 3257 } else if (type == META) { 3258 return WRITE_LIFE_MEDIUM; 3259 } 3260 } 3261 return WRITE_LIFE_NOT_SET; 3262 } 3263 3264 static int __get_segment_type_2(struct f2fs_io_info *fio) 3265 { 3266 if (fio->type == DATA) 3267 return CURSEG_HOT_DATA; 3268 else 3269 return CURSEG_HOT_NODE; 3270 } 3271 3272 static int __get_segment_type_4(struct f2fs_io_info *fio) 3273 { 3274 if (fio->type == DATA) { 3275 struct inode *inode = fio->page->mapping->host; 3276 3277 if (S_ISDIR(inode->i_mode)) 3278 return CURSEG_HOT_DATA; 3279 else 3280 return CURSEG_COLD_DATA; 3281 } else { 3282 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3283 return CURSEG_WARM_NODE; 3284 else 3285 return CURSEG_COLD_NODE; 3286 } 3287 } 3288 3289 static int __get_segment_type_6(struct f2fs_io_info *fio) 3290 { 3291 if (fio->type == DATA) { 3292 struct inode *inode = fio->page->mapping->host; 3293 3294 if (page_private_gcing(fio->page)) { 3295 if (fio->sbi->am.atgc_enabled && 3296 (fio->io_type == FS_DATA_IO) && 3297 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3298 return CURSEG_ALL_DATA_ATGC; 3299 else 3300 return CURSEG_COLD_DATA; 3301 } 3302 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3303 return CURSEG_COLD_DATA; 3304 if (file_is_hot(inode) || 3305 is_inode_flag_set(inode, FI_HOT_DATA) || 3306 f2fs_is_atomic_file(inode) || 3307 f2fs_is_volatile_file(inode)) 3308 return CURSEG_HOT_DATA; 3309 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3310 } else { 3311 if (IS_DNODE(fio->page)) 3312 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3313 CURSEG_HOT_NODE; 3314 return CURSEG_COLD_NODE; 3315 } 3316 } 3317 3318 static int __get_segment_type(struct f2fs_io_info *fio) 3319 { 3320 int type = 0; 3321 3322 switch (F2FS_OPTION(fio->sbi).active_logs) { 3323 case 2: 3324 type = __get_segment_type_2(fio); 3325 break; 3326 case 4: 3327 type = __get_segment_type_4(fio); 3328 break; 3329 case 6: 3330 type = __get_segment_type_6(fio); 3331 break; 3332 default: 3333 f2fs_bug_on(fio->sbi, true); 3334 } 3335 3336 if (IS_HOT(type)) 3337 fio->temp = HOT; 3338 else if (IS_WARM(type)) 3339 fio->temp = WARM; 3340 else 3341 fio->temp = COLD; 3342 return type; 3343 } 3344 3345 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3346 block_t old_blkaddr, block_t *new_blkaddr, 3347 struct f2fs_summary *sum, int type, 3348 struct f2fs_io_info *fio) 3349 { 3350 struct sit_info *sit_i = SIT_I(sbi); 3351 struct curseg_info *curseg = CURSEG_I(sbi, type); 3352 unsigned long long old_mtime; 3353 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3354 struct seg_entry *se = NULL; 3355 3356 down_read(&SM_I(sbi)->curseg_lock); 3357 3358 mutex_lock(&curseg->curseg_mutex); 3359 down_write(&sit_i->sentry_lock); 3360 3361 if (from_gc) { 3362 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3363 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3364 sanity_check_seg_type(sbi, se->type); 3365 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3366 } 3367 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3368 3369 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3370 3371 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3372 3373 /* 3374 * __add_sum_entry should be resided under the curseg_mutex 3375 * because, this function updates a summary entry in the 3376 * current summary block. 3377 */ 3378 __add_sum_entry(sbi, type, sum); 3379 3380 __refresh_next_blkoff(sbi, curseg); 3381 3382 stat_inc_block_count(sbi, curseg); 3383 3384 if (from_gc) { 3385 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3386 } else { 3387 update_segment_mtime(sbi, old_blkaddr, 0); 3388 old_mtime = 0; 3389 } 3390 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3391 3392 /* 3393 * SIT information should be updated before segment allocation, 3394 * since SSR needs latest valid block information. 3395 */ 3396 update_sit_entry(sbi, *new_blkaddr, 1); 3397 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3398 update_sit_entry(sbi, old_blkaddr, -1); 3399 3400 if (!__has_curseg_space(sbi, curseg)) { 3401 if (from_gc) 3402 get_atssr_segment(sbi, type, se->type, 3403 AT_SSR, se->mtime); 3404 else 3405 sit_i->s_ops->allocate_segment(sbi, type, false); 3406 } 3407 /* 3408 * segment dirty status should be updated after segment allocation, 3409 * so we just need to update status only one time after previous 3410 * segment being closed. 3411 */ 3412 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3413 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3414 3415 up_write(&sit_i->sentry_lock); 3416 3417 if (page && IS_NODESEG(type)) { 3418 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3419 3420 f2fs_inode_chksum_set(sbi, page); 3421 } 3422 3423 if (fio) { 3424 struct f2fs_bio_info *io; 3425 3426 if (F2FS_IO_ALIGNED(sbi)) 3427 fio->retry = false; 3428 3429 INIT_LIST_HEAD(&fio->list); 3430 fio->in_list = true; 3431 io = sbi->write_io[fio->type] + fio->temp; 3432 spin_lock(&io->io_lock); 3433 list_add_tail(&fio->list, &io->io_list); 3434 spin_unlock(&io->io_lock); 3435 } 3436 3437 mutex_unlock(&curseg->curseg_mutex); 3438 3439 up_read(&SM_I(sbi)->curseg_lock); 3440 } 3441 3442 static void update_device_state(struct f2fs_io_info *fio) 3443 { 3444 struct f2fs_sb_info *sbi = fio->sbi; 3445 unsigned int devidx; 3446 3447 if (!f2fs_is_multi_device(sbi)) 3448 return; 3449 3450 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3451 3452 /* update device state for fsync */ 3453 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3454 3455 /* update device state for checkpoint */ 3456 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3457 spin_lock(&sbi->dev_lock); 3458 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3459 spin_unlock(&sbi->dev_lock); 3460 } 3461 } 3462 3463 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3464 { 3465 int type = __get_segment_type(fio); 3466 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3467 3468 if (keep_order) 3469 down_read(&fio->sbi->io_order_lock); 3470 reallocate: 3471 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3472 &fio->new_blkaddr, sum, type, fio); 3473 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) { 3474 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3475 fio->old_blkaddr, fio->old_blkaddr); 3476 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr); 3477 } 3478 3479 /* writeout dirty page into bdev */ 3480 f2fs_submit_page_write(fio); 3481 if (fio->retry) { 3482 fio->old_blkaddr = fio->new_blkaddr; 3483 goto reallocate; 3484 } 3485 3486 update_device_state(fio); 3487 3488 if (keep_order) 3489 up_read(&fio->sbi->io_order_lock); 3490 } 3491 3492 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3493 enum iostat_type io_type) 3494 { 3495 struct f2fs_io_info fio = { 3496 .sbi = sbi, 3497 .type = META, 3498 .temp = HOT, 3499 .op = REQ_OP_WRITE, 3500 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3501 .old_blkaddr = page->index, 3502 .new_blkaddr = page->index, 3503 .page = page, 3504 .encrypted_page = NULL, 3505 .in_list = false, 3506 }; 3507 3508 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3509 fio.op_flags &= ~REQ_META; 3510 3511 set_page_writeback(page); 3512 ClearPageError(page); 3513 f2fs_submit_page_write(&fio); 3514 3515 stat_inc_meta_count(sbi, page->index); 3516 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3517 } 3518 3519 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3520 { 3521 struct f2fs_summary sum; 3522 3523 set_summary(&sum, nid, 0, 0); 3524 do_write_page(&sum, fio); 3525 3526 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3527 } 3528 3529 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3530 struct f2fs_io_info *fio) 3531 { 3532 struct f2fs_sb_info *sbi = fio->sbi; 3533 struct f2fs_summary sum; 3534 3535 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3536 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3537 do_write_page(&sum, fio); 3538 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3539 3540 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3541 } 3542 3543 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3544 { 3545 int err; 3546 struct f2fs_sb_info *sbi = fio->sbi; 3547 unsigned int segno; 3548 3549 fio->new_blkaddr = fio->old_blkaddr; 3550 /* i/o temperature is needed for passing down write hints */ 3551 __get_segment_type(fio); 3552 3553 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3554 3555 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3556 set_sbi_flag(sbi, SBI_NEED_FSCK); 3557 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3558 __func__, segno); 3559 err = -EFSCORRUPTED; 3560 goto drop_bio; 3561 } 3562 3563 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || f2fs_cp_error(sbi)) { 3564 err = -EIO; 3565 goto drop_bio; 3566 } 3567 3568 stat_inc_inplace_blocks(fio->sbi); 3569 3570 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3571 err = f2fs_merge_page_bio(fio); 3572 else 3573 err = f2fs_submit_page_bio(fio); 3574 if (!err) { 3575 update_device_state(fio); 3576 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3577 } 3578 3579 return err; 3580 drop_bio: 3581 if (fio->bio && *(fio->bio)) { 3582 struct bio *bio = *(fio->bio); 3583 3584 bio->bi_status = BLK_STS_IOERR; 3585 bio_endio(bio); 3586 *(fio->bio) = NULL; 3587 } 3588 return err; 3589 } 3590 3591 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3592 unsigned int segno) 3593 { 3594 int i; 3595 3596 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3597 if (CURSEG_I(sbi, i)->segno == segno) 3598 break; 3599 } 3600 return i; 3601 } 3602 3603 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3604 block_t old_blkaddr, block_t new_blkaddr, 3605 bool recover_curseg, bool recover_newaddr, 3606 bool from_gc) 3607 { 3608 struct sit_info *sit_i = SIT_I(sbi); 3609 struct curseg_info *curseg; 3610 unsigned int segno, old_cursegno; 3611 struct seg_entry *se; 3612 int type; 3613 unsigned short old_blkoff; 3614 unsigned char old_alloc_type; 3615 3616 segno = GET_SEGNO(sbi, new_blkaddr); 3617 se = get_seg_entry(sbi, segno); 3618 type = se->type; 3619 3620 down_write(&SM_I(sbi)->curseg_lock); 3621 3622 if (!recover_curseg) { 3623 /* for recovery flow */ 3624 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3625 if (old_blkaddr == NULL_ADDR) 3626 type = CURSEG_COLD_DATA; 3627 else 3628 type = CURSEG_WARM_DATA; 3629 } 3630 } else { 3631 if (IS_CURSEG(sbi, segno)) { 3632 /* se->type is volatile as SSR allocation */ 3633 type = __f2fs_get_curseg(sbi, segno); 3634 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3635 } else { 3636 type = CURSEG_WARM_DATA; 3637 } 3638 } 3639 3640 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3641 curseg = CURSEG_I(sbi, type); 3642 3643 mutex_lock(&curseg->curseg_mutex); 3644 down_write(&sit_i->sentry_lock); 3645 3646 old_cursegno = curseg->segno; 3647 old_blkoff = curseg->next_blkoff; 3648 old_alloc_type = curseg->alloc_type; 3649 3650 /* change the current segment */ 3651 if (segno != curseg->segno) { 3652 curseg->next_segno = segno; 3653 change_curseg(sbi, type, true); 3654 } 3655 3656 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3657 __add_sum_entry(sbi, type, sum); 3658 3659 if (!recover_curseg || recover_newaddr) { 3660 if (!from_gc) 3661 update_segment_mtime(sbi, new_blkaddr, 0); 3662 update_sit_entry(sbi, new_blkaddr, 1); 3663 } 3664 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3665 invalidate_mapping_pages(META_MAPPING(sbi), 3666 old_blkaddr, old_blkaddr); 3667 f2fs_invalidate_compress_page(sbi, old_blkaddr); 3668 if (!from_gc) 3669 update_segment_mtime(sbi, old_blkaddr, 0); 3670 update_sit_entry(sbi, old_blkaddr, -1); 3671 } 3672 3673 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3674 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3675 3676 locate_dirty_segment(sbi, old_cursegno); 3677 3678 if (recover_curseg) { 3679 if (old_cursegno != curseg->segno) { 3680 curseg->next_segno = old_cursegno; 3681 change_curseg(sbi, type, true); 3682 } 3683 curseg->next_blkoff = old_blkoff; 3684 curseg->alloc_type = old_alloc_type; 3685 } 3686 3687 up_write(&sit_i->sentry_lock); 3688 mutex_unlock(&curseg->curseg_mutex); 3689 up_write(&SM_I(sbi)->curseg_lock); 3690 } 3691 3692 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3693 block_t old_addr, block_t new_addr, 3694 unsigned char version, bool recover_curseg, 3695 bool recover_newaddr) 3696 { 3697 struct f2fs_summary sum; 3698 3699 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3700 3701 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3702 recover_curseg, recover_newaddr, false); 3703 3704 f2fs_update_data_blkaddr(dn, new_addr); 3705 } 3706 3707 void f2fs_wait_on_page_writeback(struct page *page, 3708 enum page_type type, bool ordered, bool locked) 3709 { 3710 if (PageWriteback(page)) { 3711 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3712 3713 /* submit cached LFS IO */ 3714 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3715 /* sbumit cached IPU IO */ 3716 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3717 if (ordered) { 3718 wait_on_page_writeback(page); 3719 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3720 } else { 3721 wait_for_stable_page(page); 3722 } 3723 } 3724 } 3725 3726 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3727 { 3728 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3729 struct page *cpage; 3730 3731 if (!f2fs_post_read_required(inode)) 3732 return; 3733 3734 if (!__is_valid_data_blkaddr(blkaddr)) 3735 return; 3736 3737 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3738 if (cpage) { 3739 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3740 f2fs_put_page(cpage, 1); 3741 } 3742 } 3743 3744 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3745 block_t len) 3746 { 3747 block_t i; 3748 3749 for (i = 0; i < len; i++) 3750 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3751 } 3752 3753 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3754 { 3755 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3756 struct curseg_info *seg_i; 3757 unsigned char *kaddr; 3758 struct page *page; 3759 block_t start; 3760 int i, j, offset; 3761 3762 start = start_sum_block(sbi); 3763 3764 page = f2fs_get_meta_page(sbi, start++); 3765 if (IS_ERR(page)) 3766 return PTR_ERR(page); 3767 kaddr = (unsigned char *)page_address(page); 3768 3769 /* Step 1: restore nat cache */ 3770 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3771 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3772 3773 /* Step 2: restore sit cache */ 3774 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3775 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3776 offset = 2 * SUM_JOURNAL_SIZE; 3777 3778 /* Step 3: restore summary entries */ 3779 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3780 unsigned short blk_off; 3781 unsigned int segno; 3782 3783 seg_i = CURSEG_I(sbi, i); 3784 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3785 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3786 seg_i->next_segno = segno; 3787 reset_curseg(sbi, i, 0); 3788 seg_i->alloc_type = ckpt->alloc_type[i]; 3789 seg_i->next_blkoff = blk_off; 3790 3791 if (seg_i->alloc_type == SSR) 3792 blk_off = sbi->blocks_per_seg; 3793 3794 for (j = 0; j < blk_off; j++) { 3795 struct f2fs_summary *s; 3796 3797 s = (struct f2fs_summary *)(kaddr + offset); 3798 seg_i->sum_blk->entries[j] = *s; 3799 offset += SUMMARY_SIZE; 3800 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3801 SUM_FOOTER_SIZE) 3802 continue; 3803 3804 f2fs_put_page(page, 1); 3805 page = NULL; 3806 3807 page = f2fs_get_meta_page(sbi, start++); 3808 if (IS_ERR(page)) 3809 return PTR_ERR(page); 3810 kaddr = (unsigned char *)page_address(page); 3811 offset = 0; 3812 } 3813 } 3814 f2fs_put_page(page, 1); 3815 return 0; 3816 } 3817 3818 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3819 { 3820 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3821 struct f2fs_summary_block *sum; 3822 struct curseg_info *curseg; 3823 struct page *new; 3824 unsigned short blk_off; 3825 unsigned int segno = 0; 3826 block_t blk_addr = 0; 3827 int err = 0; 3828 3829 /* get segment number and block addr */ 3830 if (IS_DATASEG(type)) { 3831 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3832 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3833 CURSEG_HOT_DATA]); 3834 if (__exist_node_summaries(sbi)) 3835 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3836 else 3837 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3838 } else { 3839 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3840 CURSEG_HOT_NODE]); 3841 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3842 CURSEG_HOT_NODE]); 3843 if (__exist_node_summaries(sbi)) 3844 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3845 type - CURSEG_HOT_NODE); 3846 else 3847 blk_addr = GET_SUM_BLOCK(sbi, segno); 3848 } 3849 3850 new = f2fs_get_meta_page(sbi, blk_addr); 3851 if (IS_ERR(new)) 3852 return PTR_ERR(new); 3853 sum = (struct f2fs_summary_block *)page_address(new); 3854 3855 if (IS_NODESEG(type)) { 3856 if (__exist_node_summaries(sbi)) { 3857 struct f2fs_summary *ns = &sum->entries[0]; 3858 int i; 3859 3860 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3861 ns->version = 0; 3862 ns->ofs_in_node = 0; 3863 } 3864 } else { 3865 err = f2fs_restore_node_summary(sbi, segno, sum); 3866 if (err) 3867 goto out; 3868 } 3869 } 3870 3871 /* set uncompleted segment to curseg */ 3872 curseg = CURSEG_I(sbi, type); 3873 mutex_lock(&curseg->curseg_mutex); 3874 3875 /* update journal info */ 3876 down_write(&curseg->journal_rwsem); 3877 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3878 up_write(&curseg->journal_rwsem); 3879 3880 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3881 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3882 curseg->next_segno = segno; 3883 reset_curseg(sbi, type, 0); 3884 curseg->alloc_type = ckpt->alloc_type[type]; 3885 curseg->next_blkoff = blk_off; 3886 mutex_unlock(&curseg->curseg_mutex); 3887 out: 3888 f2fs_put_page(new, 1); 3889 return err; 3890 } 3891 3892 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3893 { 3894 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3895 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3896 int type = CURSEG_HOT_DATA; 3897 int err; 3898 3899 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3900 int npages = f2fs_npages_for_summary_flush(sbi, true); 3901 3902 if (npages >= 2) 3903 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3904 META_CP, true); 3905 3906 /* restore for compacted data summary */ 3907 err = read_compacted_summaries(sbi); 3908 if (err) 3909 return err; 3910 type = CURSEG_HOT_NODE; 3911 } 3912 3913 if (__exist_node_summaries(sbi)) 3914 f2fs_ra_meta_pages(sbi, 3915 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3916 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3917 3918 for (; type <= CURSEG_COLD_NODE; type++) { 3919 err = read_normal_summaries(sbi, type); 3920 if (err) 3921 return err; 3922 } 3923 3924 /* sanity check for summary blocks */ 3925 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3926 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3927 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 3928 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3929 return -EINVAL; 3930 } 3931 3932 return 0; 3933 } 3934 3935 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3936 { 3937 struct page *page; 3938 unsigned char *kaddr; 3939 struct f2fs_summary *summary; 3940 struct curseg_info *seg_i; 3941 int written_size = 0; 3942 int i, j; 3943 3944 page = f2fs_grab_meta_page(sbi, blkaddr++); 3945 kaddr = (unsigned char *)page_address(page); 3946 memset(kaddr, 0, PAGE_SIZE); 3947 3948 /* Step 1: write nat cache */ 3949 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3950 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3951 written_size += SUM_JOURNAL_SIZE; 3952 3953 /* Step 2: write sit cache */ 3954 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3955 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3956 written_size += SUM_JOURNAL_SIZE; 3957 3958 /* Step 3: write summary entries */ 3959 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3960 unsigned short blkoff; 3961 3962 seg_i = CURSEG_I(sbi, i); 3963 if (sbi->ckpt->alloc_type[i] == SSR) 3964 blkoff = sbi->blocks_per_seg; 3965 else 3966 blkoff = curseg_blkoff(sbi, i); 3967 3968 for (j = 0; j < blkoff; j++) { 3969 if (!page) { 3970 page = f2fs_grab_meta_page(sbi, blkaddr++); 3971 kaddr = (unsigned char *)page_address(page); 3972 memset(kaddr, 0, PAGE_SIZE); 3973 written_size = 0; 3974 } 3975 summary = (struct f2fs_summary *)(kaddr + written_size); 3976 *summary = seg_i->sum_blk->entries[j]; 3977 written_size += SUMMARY_SIZE; 3978 3979 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3980 SUM_FOOTER_SIZE) 3981 continue; 3982 3983 set_page_dirty(page); 3984 f2fs_put_page(page, 1); 3985 page = NULL; 3986 } 3987 } 3988 if (page) { 3989 set_page_dirty(page); 3990 f2fs_put_page(page, 1); 3991 } 3992 } 3993 3994 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3995 block_t blkaddr, int type) 3996 { 3997 int i, end; 3998 3999 if (IS_DATASEG(type)) 4000 end = type + NR_CURSEG_DATA_TYPE; 4001 else 4002 end = type + NR_CURSEG_NODE_TYPE; 4003 4004 for (i = type; i < end; i++) 4005 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4006 } 4007 4008 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4009 { 4010 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4011 write_compacted_summaries(sbi, start_blk); 4012 else 4013 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4014 } 4015 4016 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4017 { 4018 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4019 } 4020 4021 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4022 unsigned int val, int alloc) 4023 { 4024 int i; 4025 4026 if (type == NAT_JOURNAL) { 4027 for (i = 0; i < nats_in_cursum(journal); i++) { 4028 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4029 return i; 4030 } 4031 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4032 return update_nats_in_cursum(journal, 1); 4033 } else if (type == SIT_JOURNAL) { 4034 for (i = 0; i < sits_in_cursum(journal); i++) 4035 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4036 return i; 4037 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4038 return update_sits_in_cursum(journal, 1); 4039 } 4040 return -1; 4041 } 4042 4043 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4044 unsigned int segno) 4045 { 4046 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4047 } 4048 4049 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4050 unsigned int start) 4051 { 4052 struct sit_info *sit_i = SIT_I(sbi); 4053 struct page *page; 4054 pgoff_t src_off, dst_off; 4055 4056 src_off = current_sit_addr(sbi, start); 4057 dst_off = next_sit_addr(sbi, src_off); 4058 4059 page = f2fs_grab_meta_page(sbi, dst_off); 4060 seg_info_to_sit_page(sbi, page, start); 4061 4062 set_page_dirty(page); 4063 set_to_next_sit(sit_i, start); 4064 4065 return page; 4066 } 4067 4068 static struct sit_entry_set *grab_sit_entry_set(void) 4069 { 4070 struct sit_entry_set *ses = 4071 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 4072 4073 ses->entry_cnt = 0; 4074 INIT_LIST_HEAD(&ses->set_list); 4075 return ses; 4076 } 4077 4078 static void release_sit_entry_set(struct sit_entry_set *ses) 4079 { 4080 list_del(&ses->set_list); 4081 kmem_cache_free(sit_entry_set_slab, ses); 4082 } 4083 4084 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4085 struct list_head *head) 4086 { 4087 struct sit_entry_set *next = ses; 4088 4089 if (list_is_last(&ses->set_list, head)) 4090 return; 4091 4092 list_for_each_entry_continue(next, head, set_list) 4093 if (ses->entry_cnt <= next->entry_cnt) 4094 break; 4095 4096 list_move_tail(&ses->set_list, &next->set_list); 4097 } 4098 4099 static void add_sit_entry(unsigned int segno, struct list_head *head) 4100 { 4101 struct sit_entry_set *ses; 4102 unsigned int start_segno = START_SEGNO(segno); 4103 4104 list_for_each_entry(ses, head, set_list) { 4105 if (ses->start_segno == start_segno) { 4106 ses->entry_cnt++; 4107 adjust_sit_entry_set(ses, head); 4108 return; 4109 } 4110 } 4111 4112 ses = grab_sit_entry_set(); 4113 4114 ses->start_segno = start_segno; 4115 ses->entry_cnt++; 4116 list_add(&ses->set_list, head); 4117 } 4118 4119 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4120 { 4121 struct f2fs_sm_info *sm_info = SM_I(sbi); 4122 struct list_head *set_list = &sm_info->sit_entry_set; 4123 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4124 unsigned int segno; 4125 4126 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4127 add_sit_entry(segno, set_list); 4128 } 4129 4130 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4131 { 4132 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4133 struct f2fs_journal *journal = curseg->journal; 4134 int i; 4135 4136 down_write(&curseg->journal_rwsem); 4137 for (i = 0; i < sits_in_cursum(journal); i++) { 4138 unsigned int segno; 4139 bool dirtied; 4140 4141 segno = le32_to_cpu(segno_in_journal(journal, i)); 4142 dirtied = __mark_sit_entry_dirty(sbi, segno); 4143 4144 if (!dirtied) 4145 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4146 } 4147 update_sits_in_cursum(journal, -i); 4148 up_write(&curseg->journal_rwsem); 4149 } 4150 4151 /* 4152 * CP calls this function, which flushes SIT entries including sit_journal, 4153 * and moves prefree segs to free segs. 4154 */ 4155 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4156 { 4157 struct sit_info *sit_i = SIT_I(sbi); 4158 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4159 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4160 struct f2fs_journal *journal = curseg->journal; 4161 struct sit_entry_set *ses, *tmp; 4162 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4163 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4164 struct seg_entry *se; 4165 4166 down_write(&sit_i->sentry_lock); 4167 4168 if (!sit_i->dirty_sentries) 4169 goto out; 4170 4171 /* 4172 * add and account sit entries of dirty bitmap in sit entry 4173 * set temporarily 4174 */ 4175 add_sits_in_set(sbi); 4176 4177 /* 4178 * if there are no enough space in journal to store dirty sit 4179 * entries, remove all entries from journal and add and account 4180 * them in sit entry set. 4181 */ 4182 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4183 !to_journal) 4184 remove_sits_in_journal(sbi); 4185 4186 /* 4187 * there are two steps to flush sit entries: 4188 * #1, flush sit entries to journal in current cold data summary block. 4189 * #2, flush sit entries to sit page. 4190 */ 4191 list_for_each_entry_safe(ses, tmp, head, set_list) { 4192 struct page *page = NULL; 4193 struct f2fs_sit_block *raw_sit = NULL; 4194 unsigned int start_segno = ses->start_segno; 4195 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4196 (unsigned long)MAIN_SEGS(sbi)); 4197 unsigned int segno = start_segno; 4198 4199 if (to_journal && 4200 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4201 to_journal = false; 4202 4203 if (to_journal) { 4204 down_write(&curseg->journal_rwsem); 4205 } else { 4206 page = get_next_sit_page(sbi, start_segno); 4207 raw_sit = page_address(page); 4208 } 4209 4210 /* flush dirty sit entries in region of current sit set */ 4211 for_each_set_bit_from(segno, bitmap, end) { 4212 int offset, sit_offset; 4213 4214 se = get_seg_entry(sbi, segno); 4215 #ifdef CONFIG_F2FS_CHECK_FS 4216 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4217 SIT_VBLOCK_MAP_SIZE)) 4218 f2fs_bug_on(sbi, 1); 4219 #endif 4220 4221 /* add discard candidates */ 4222 if (!(cpc->reason & CP_DISCARD)) { 4223 cpc->trim_start = segno; 4224 add_discard_addrs(sbi, cpc, false); 4225 } 4226 4227 if (to_journal) { 4228 offset = f2fs_lookup_journal_in_cursum(journal, 4229 SIT_JOURNAL, segno, 1); 4230 f2fs_bug_on(sbi, offset < 0); 4231 segno_in_journal(journal, offset) = 4232 cpu_to_le32(segno); 4233 seg_info_to_raw_sit(se, 4234 &sit_in_journal(journal, offset)); 4235 check_block_count(sbi, segno, 4236 &sit_in_journal(journal, offset)); 4237 } else { 4238 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4239 seg_info_to_raw_sit(se, 4240 &raw_sit->entries[sit_offset]); 4241 check_block_count(sbi, segno, 4242 &raw_sit->entries[sit_offset]); 4243 } 4244 4245 __clear_bit(segno, bitmap); 4246 sit_i->dirty_sentries--; 4247 ses->entry_cnt--; 4248 } 4249 4250 if (to_journal) 4251 up_write(&curseg->journal_rwsem); 4252 else 4253 f2fs_put_page(page, 1); 4254 4255 f2fs_bug_on(sbi, ses->entry_cnt); 4256 release_sit_entry_set(ses); 4257 } 4258 4259 f2fs_bug_on(sbi, !list_empty(head)); 4260 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4261 out: 4262 if (cpc->reason & CP_DISCARD) { 4263 __u64 trim_start = cpc->trim_start; 4264 4265 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4266 add_discard_addrs(sbi, cpc, false); 4267 4268 cpc->trim_start = trim_start; 4269 } 4270 up_write(&sit_i->sentry_lock); 4271 4272 set_prefree_as_free_segments(sbi); 4273 } 4274 4275 static int build_sit_info(struct f2fs_sb_info *sbi) 4276 { 4277 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4278 struct sit_info *sit_i; 4279 unsigned int sit_segs, start; 4280 char *src_bitmap, *bitmap; 4281 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4282 4283 /* allocate memory for SIT information */ 4284 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4285 if (!sit_i) 4286 return -ENOMEM; 4287 4288 SM_I(sbi)->sit_info = sit_i; 4289 4290 sit_i->sentries = 4291 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4292 MAIN_SEGS(sbi)), 4293 GFP_KERNEL); 4294 if (!sit_i->sentries) 4295 return -ENOMEM; 4296 4297 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4298 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4299 GFP_KERNEL); 4300 if (!sit_i->dirty_sentries_bitmap) 4301 return -ENOMEM; 4302 4303 #ifdef CONFIG_F2FS_CHECK_FS 4304 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 4305 #else 4306 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 4307 #endif 4308 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4309 if (!sit_i->bitmap) 4310 return -ENOMEM; 4311 4312 bitmap = sit_i->bitmap; 4313 4314 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4315 sit_i->sentries[start].cur_valid_map = bitmap; 4316 bitmap += SIT_VBLOCK_MAP_SIZE; 4317 4318 sit_i->sentries[start].ckpt_valid_map = bitmap; 4319 bitmap += SIT_VBLOCK_MAP_SIZE; 4320 4321 #ifdef CONFIG_F2FS_CHECK_FS 4322 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4323 bitmap += SIT_VBLOCK_MAP_SIZE; 4324 #endif 4325 4326 sit_i->sentries[start].discard_map = bitmap; 4327 bitmap += SIT_VBLOCK_MAP_SIZE; 4328 } 4329 4330 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4331 if (!sit_i->tmp_map) 4332 return -ENOMEM; 4333 4334 if (__is_large_section(sbi)) { 4335 sit_i->sec_entries = 4336 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4337 MAIN_SECS(sbi)), 4338 GFP_KERNEL); 4339 if (!sit_i->sec_entries) 4340 return -ENOMEM; 4341 } 4342 4343 /* get information related with SIT */ 4344 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4345 4346 /* setup SIT bitmap from ckeckpoint pack */ 4347 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4348 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4349 4350 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4351 if (!sit_i->sit_bitmap) 4352 return -ENOMEM; 4353 4354 #ifdef CONFIG_F2FS_CHECK_FS 4355 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4356 sit_bitmap_size, GFP_KERNEL); 4357 if (!sit_i->sit_bitmap_mir) 4358 return -ENOMEM; 4359 4360 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4361 main_bitmap_size, GFP_KERNEL); 4362 if (!sit_i->invalid_segmap) 4363 return -ENOMEM; 4364 #endif 4365 4366 /* init SIT information */ 4367 sit_i->s_ops = &default_salloc_ops; 4368 4369 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4370 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4371 sit_i->written_valid_blocks = 0; 4372 sit_i->bitmap_size = sit_bitmap_size; 4373 sit_i->dirty_sentries = 0; 4374 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4375 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4376 sit_i->mounted_time = ktime_get_boottime_seconds(); 4377 init_rwsem(&sit_i->sentry_lock); 4378 return 0; 4379 } 4380 4381 static int build_free_segmap(struct f2fs_sb_info *sbi) 4382 { 4383 struct free_segmap_info *free_i; 4384 unsigned int bitmap_size, sec_bitmap_size; 4385 4386 /* allocate memory for free segmap information */ 4387 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4388 if (!free_i) 4389 return -ENOMEM; 4390 4391 SM_I(sbi)->free_info = free_i; 4392 4393 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4394 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4395 if (!free_i->free_segmap) 4396 return -ENOMEM; 4397 4398 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4399 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4400 if (!free_i->free_secmap) 4401 return -ENOMEM; 4402 4403 /* set all segments as dirty temporarily */ 4404 memset(free_i->free_segmap, 0xff, bitmap_size); 4405 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4406 4407 /* init free segmap information */ 4408 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4409 free_i->free_segments = 0; 4410 free_i->free_sections = 0; 4411 spin_lock_init(&free_i->segmap_lock); 4412 return 0; 4413 } 4414 4415 static int build_curseg(struct f2fs_sb_info *sbi) 4416 { 4417 struct curseg_info *array; 4418 int i; 4419 4420 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4421 sizeof(*array)), GFP_KERNEL); 4422 if (!array) 4423 return -ENOMEM; 4424 4425 SM_I(sbi)->curseg_array = array; 4426 4427 for (i = 0; i < NO_CHECK_TYPE; i++) { 4428 mutex_init(&array[i].curseg_mutex); 4429 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4430 if (!array[i].sum_blk) 4431 return -ENOMEM; 4432 init_rwsem(&array[i].journal_rwsem); 4433 array[i].journal = f2fs_kzalloc(sbi, 4434 sizeof(struct f2fs_journal), GFP_KERNEL); 4435 if (!array[i].journal) 4436 return -ENOMEM; 4437 if (i < NR_PERSISTENT_LOG) 4438 array[i].seg_type = CURSEG_HOT_DATA + i; 4439 else if (i == CURSEG_COLD_DATA_PINNED) 4440 array[i].seg_type = CURSEG_COLD_DATA; 4441 else if (i == CURSEG_ALL_DATA_ATGC) 4442 array[i].seg_type = CURSEG_COLD_DATA; 4443 array[i].segno = NULL_SEGNO; 4444 array[i].next_blkoff = 0; 4445 array[i].inited = false; 4446 } 4447 return restore_curseg_summaries(sbi); 4448 } 4449 4450 static int build_sit_entries(struct f2fs_sb_info *sbi) 4451 { 4452 struct sit_info *sit_i = SIT_I(sbi); 4453 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4454 struct f2fs_journal *journal = curseg->journal; 4455 struct seg_entry *se; 4456 struct f2fs_sit_entry sit; 4457 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4458 unsigned int i, start, end; 4459 unsigned int readed, start_blk = 0; 4460 int err = 0; 4461 block_t total_node_blocks = 0; 4462 4463 do { 4464 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4465 META_SIT, true); 4466 4467 start = start_blk * sit_i->sents_per_block; 4468 end = (start_blk + readed) * sit_i->sents_per_block; 4469 4470 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4471 struct f2fs_sit_block *sit_blk; 4472 struct page *page; 4473 4474 se = &sit_i->sentries[start]; 4475 page = get_current_sit_page(sbi, start); 4476 if (IS_ERR(page)) 4477 return PTR_ERR(page); 4478 sit_blk = (struct f2fs_sit_block *)page_address(page); 4479 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4480 f2fs_put_page(page, 1); 4481 4482 err = check_block_count(sbi, start, &sit); 4483 if (err) 4484 return err; 4485 seg_info_from_raw_sit(se, &sit); 4486 if (IS_NODESEG(se->type)) 4487 total_node_blocks += se->valid_blocks; 4488 4489 /* build discard map only one time */ 4490 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4491 memset(se->discard_map, 0xff, 4492 SIT_VBLOCK_MAP_SIZE); 4493 } else { 4494 memcpy(se->discard_map, 4495 se->cur_valid_map, 4496 SIT_VBLOCK_MAP_SIZE); 4497 sbi->discard_blks += 4498 sbi->blocks_per_seg - 4499 se->valid_blocks; 4500 } 4501 4502 if (__is_large_section(sbi)) 4503 get_sec_entry(sbi, start)->valid_blocks += 4504 se->valid_blocks; 4505 } 4506 start_blk += readed; 4507 } while (start_blk < sit_blk_cnt); 4508 4509 down_read(&curseg->journal_rwsem); 4510 for (i = 0; i < sits_in_cursum(journal); i++) { 4511 unsigned int old_valid_blocks; 4512 4513 start = le32_to_cpu(segno_in_journal(journal, i)); 4514 if (start >= MAIN_SEGS(sbi)) { 4515 f2fs_err(sbi, "Wrong journal entry on segno %u", 4516 start); 4517 err = -EFSCORRUPTED; 4518 break; 4519 } 4520 4521 se = &sit_i->sentries[start]; 4522 sit = sit_in_journal(journal, i); 4523 4524 old_valid_blocks = se->valid_blocks; 4525 if (IS_NODESEG(se->type)) 4526 total_node_blocks -= old_valid_blocks; 4527 4528 err = check_block_count(sbi, start, &sit); 4529 if (err) 4530 break; 4531 seg_info_from_raw_sit(se, &sit); 4532 if (IS_NODESEG(se->type)) 4533 total_node_blocks += se->valid_blocks; 4534 4535 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4536 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4537 } else { 4538 memcpy(se->discard_map, se->cur_valid_map, 4539 SIT_VBLOCK_MAP_SIZE); 4540 sbi->discard_blks += old_valid_blocks; 4541 sbi->discard_blks -= se->valid_blocks; 4542 } 4543 4544 if (__is_large_section(sbi)) { 4545 get_sec_entry(sbi, start)->valid_blocks += 4546 se->valid_blocks; 4547 get_sec_entry(sbi, start)->valid_blocks -= 4548 old_valid_blocks; 4549 } 4550 } 4551 up_read(&curseg->journal_rwsem); 4552 4553 if (!err && total_node_blocks != valid_node_count(sbi)) { 4554 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4555 total_node_blocks, valid_node_count(sbi)); 4556 err = -EFSCORRUPTED; 4557 } 4558 4559 return err; 4560 } 4561 4562 static void init_free_segmap(struct f2fs_sb_info *sbi) 4563 { 4564 unsigned int start; 4565 int type; 4566 struct seg_entry *sentry; 4567 4568 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4569 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4570 continue; 4571 sentry = get_seg_entry(sbi, start); 4572 if (!sentry->valid_blocks) 4573 __set_free(sbi, start); 4574 else 4575 SIT_I(sbi)->written_valid_blocks += 4576 sentry->valid_blocks; 4577 } 4578 4579 /* set use the current segments */ 4580 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4581 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4582 4583 __set_test_and_inuse(sbi, curseg_t->segno); 4584 } 4585 } 4586 4587 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4588 { 4589 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4590 struct free_segmap_info *free_i = FREE_I(sbi); 4591 unsigned int segno = 0, offset = 0, secno; 4592 block_t valid_blocks, usable_blks_in_seg; 4593 block_t blks_per_sec = BLKS_PER_SEC(sbi); 4594 4595 while (1) { 4596 /* find dirty segment based on free segmap */ 4597 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4598 if (segno >= MAIN_SEGS(sbi)) 4599 break; 4600 offset = segno + 1; 4601 valid_blocks = get_valid_blocks(sbi, segno, false); 4602 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4603 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4604 continue; 4605 if (valid_blocks > usable_blks_in_seg) { 4606 f2fs_bug_on(sbi, 1); 4607 continue; 4608 } 4609 mutex_lock(&dirty_i->seglist_lock); 4610 __locate_dirty_segment(sbi, segno, DIRTY); 4611 mutex_unlock(&dirty_i->seglist_lock); 4612 } 4613 4614 if (!__is_large_section(sbi)) 4615 return; 4616 4617 mutex_lock(&dirty_i->seglist_lock); 4618 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4619 valid_blocks = get_valid_blocks(sbi, segno, true); 4620 secno = GET_SEC_FROM_SEG(sbi, segno); 4621 4622 if (!valid_blocks || valid_blocks == blks_per_sec) 4623 continue; 4624 if (IS_CURSEC(sbi, secno)) 4625 continue; 4626 set_bit(secno, dirty_i->dirty_secmap); 4627 } 4628 mutex_unlock(&dirty_i->seglist_lock); 4629 } 4630 4631 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4632 { 4633 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4634 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4635 4636 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4637 if (!dirty_i->victim_secmap) 4638 return -ENOMEM; 4639 return 0; 4640 } 4641 4642 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4643 { 4644 struct dirty_seglist_info *dirty_i; 4645 unsigned int bitmap_size, i; 4646 4647 /* allocate memory for dirty segments list information */ 4648 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4649 GFP_KERNEL); 4650 if (!dirty_i) 4651 return -ENOMEM; 4652 4653 SM_I(sbi)->dirty_info = dirty_i; 4654 mutex_init(&dirty_i->seglist_lock); 4655 4656 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4657 4658 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4659 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4660 GFP_KERNEL); 4661 if (!dirty_i->dirty_segmap[i]) 4662 return -ENOMEM; 4663 } 4664 4665 if (__is_large_section(sbi)) { 4666 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4667 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4668 bitmap_size, GFP_KERNEL); 4669 if (!dirty_i->dirty_secmap) 4670 return -ENOMEM; 4671 } 4672 4673 init_dirty_segmap(sbi); 4674 return init_victim_secmap(sbi); 4675 } 4676 4677 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4678 { 4679 int i; 4680 4681 /* 4682 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4683 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4684 */ 4685 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4686 struct curseg_info *curseg = CURSEG_I(sbi, i); 4687 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4688 unsigned int blkofs = curseg->next_blkoff; 4689 4690 if (f2fs_sb_has_readonly(sbi) && 4691 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4692 continue; 4693 4694 sanity_check_seg_type(sbi, curseg->seg_type); 4695 4696 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4697 goto out; 4698 4699 if (curseg->alloc_type == SSR) 4700 continue; 4701 4702 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4703 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4704 continue; 4705 out: 4706 f2fs_err(sbi, 4707 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4708 i, curseg->segno, curseg->alloc_type, 4709 curseg->next_blkoff, blkofs); 4710 return -EFSCORRUPTED; 4711 } 4712 } 4713 return 0; 4714 } 4715 4716 #ifdef CONFIG_BLK_DEV_ZONED 4717 4718 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4719 struct f2fs_dev_info *fdev, 4720 struct blk_zone *zone) 4721 { 4722 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4723 block_t zone_block, wp_block, last_valid_block; 4724 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4725 int i, s, b, ret; 4726 struct seg_entry *se; 4727 4728 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4729 return 0; 4730 4731 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4732 wp_segno = GET_SEGNO(sbi, wp_block); 4733 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4734 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4735 zone_segno = GET_SEGNO(sbi, zone_block); 4736 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4737 4738 if (zone_segno >= MAIN_SEGS(sbi)) 4739 return 0; 4740 4741 /* 4742 * Skip check of zones cursegs point to, since 4743 * fix_curseg_write_pointer() checks them. 4744 */ 4745 for (i = 0; i < NO_CHECK_TYPE; i++) 4746 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4747 CURSEG_I(sbi, i)->segno)) 4748 return 0; 4749 4750 /* 4751 * Get last valid block of the zone. 4752 */ 4753 last_valid_block = zone_block - 1; 4754 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4755 segno = zone_segno + s; 4756 se = get_seg_entry(sbi, segno); 4757 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4758 if (f2fs_test_bit(b, se->cur_valid_map)) { 4759 last_valid_block = START_BLOCK(sbi, segno) + b; 4760 break; 4761 } 4762 if (last_valid_block >= zone_block) 4763 break; 4764 } 4765 4766 /* 4767 * If last valid block is beyond the write pointer, report the 4768 * inconsistency. This inconsistency does not cause write error 4769 * because the zone will not be selected for write operation until 4770 * it get discarded. Just report it. 4771 */ 4772 if (last_valid_block >= wp_block) { 4773 f2fs_notice(sbi, "Valid block beyond write pointer: " 4774 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4775 GET_SEGNO(sbi, last_valid_block), 4776 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4777 wp_segno, wp_blkoff); 4778 return 0; 4779 } 4780 4781 /* 4782 * If there is no valid block in the zone and if write pointer is 4783 * not at zone start, reset the write pointer. 4784 */ 4785 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4786 f2fs_notice(sbi, 4787 "Zone without valid block has non-zero write " 4788 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4789 wp_segno, wp_blkoff); 4790 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4791 zone->len >> log_sectors_per_block); 4792 if (ret) { 4793 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4794 fdev->path, ret); 4795 return ret; 4796 } 4797 } 4798 4799 return 0; 4800 } 4801 4802 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4803 block_t zone_blkaddr) 4804 { 4805 int i; 4806 4807 for (i = 0; i < sbi->s_ndevs; i++) { 4808 if (!bdev_is_zoned(FDEV(i).bdev)) 4809 continue; 4810 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4811 zone_blkaddr <= FDEV(i).end_blk)) 4812 return &FDEV(i); 4813 } 4814 4815 return NULL; 4816 } 4817 4818 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4819 void *data) 4820 { 4821 memcpy(data, zone, sizeof(struct blk_zone)); 4822 return 0; 4823 } 4824 4825 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4826 { 4827 struct curseg_info *cs = CURSEG_I(sbi, type); 4828 struct f2fs_dev_info *zbd; 4829 struct blk_zone zone; 4830 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4831 block_t cs_zone_block, wp_block; 4832 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4833 sector_t zone_sector; 4834 int err; 4835 4836 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4837 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4838 4839 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4840 if (!zbd) 4841 return 0; 4842 4843 /* report zone for the sector the curseg points to */ 4844 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4845 << log_sectors_per_block; 4846 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4847 report_one_zone_cb, &zone); 4848 if (err != 1) { 4849 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4850 zbd->path, err); 4851 return err; 4852 } 4853 4854 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4855 return 0; 4856 4857 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4858 wp_segno = GET_SEGNO(sbi, wp_block); 4859 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4860 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4861 4862 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4863 wp_sector_off == 0) 4864 return 0; 4865 4866 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4867 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4868 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4869 4870 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4871 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4872 4873 f2fs_allocate_new_section(sbi, type, true); 4874 4875 /* check consistency of the zone curseg pointed to */ 4876 if (check_zone_write_pointer(sbi, zbd, &zone)) 4877 return -EIO; 4878 4879 /* check newly assigned zone */ 4880 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4881 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4882 4883 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4884 if (!zbd) 4885 return 0; 4886 4887 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4888 << log_sectors_per_block; 4889 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4890 report_one_zone_cb, &zone); 4891 if (err != 1) { 4892 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4893 zbd->path, err); 4894 return err; 4895 } 4896 4897 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4898 return 0; 4899 4900 if (zone.wp != zone.start) { 4901 f2fs_notice(sbi, 4902 "New zone for curseg[%d] is not yet discarded. " 4903 "Reset the zone: curseg[0x%x,0x%x]", 4904 type, cs->segno, cs->next_blkoff); 4905 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4906 zone_sector >> log_sectors_per_block, 4907 zone.len >> log_sectors_per_block); 4908 if (err) { 4909 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4910 zbd->path, err); 4911 return err; 4912 } 4913 } 4914 4915 return 0; 4916 } 4917 4918 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4919 { 4920 int i, ret; 4921 4922 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4923 ret = fix_curseg_write_pointer(sbi, i); 4924 if (ret) 4925 return ret; 4926 } 4927 4928 return 0; 4929 } 4930 4931 struct check_zone_write_pointer_args { 4932 struct f2fs_sb_info *sbi; 4933 struct f2fs_dev_info *fdev; 4934 }; 4935 4936 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4937 void *data) 4938 { 4939 struct check_zone_write_pointer_args *args; 4940 4941 args = (struct check_zone_write_pointer_args *)data; 4942 4943 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4944 } 4945 4946 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4947 { 4948 int i, ret; 4949 struct check_zone_write_pointer_args args; 4950 4951 for (i = 0; i < sbi->s_ndevs; i++) { 4952 if (!bdev_is_zoned(FDEV(i).bdev)) 4953 continue; 4954 4955 args.sbi = sbi; 4956 args.fdev = &FDEV(i); 4957 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4958 check_zone_write_pointer_cb, &args); 4959 if (ret < 0) 4960 return ret; 4961 } 4962 4963 return 0; 4964 } 4965 4966 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 4967 unsigned int dev_idx) 4968 { 4969 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 4970 return true; 4971 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 4972 } 4973 4974 /* Return the zone index in the given device */ 4975 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 4976 int dev_idx) 4977 { 4978 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4979 4980 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 4981 sbi->log_blocks_per_blkz; 4982 } 4983 4984 /* 4985 * Return the usable segments in a section based on the zone's 4986 * corresponding zone capacity. Zone is equal to a section. 4987 */ 4988 static inline unsigned int f2fs_usable_zone_segs_in_sec( 4989 struct f2fs_sb_info *sbi, unsigned int segno) 4990 { 4991 unsigned int dev_idx, zone_idx, unusable_segs_in_sec; 4992 4993 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 4994 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 4995 4996 /* Conventional zone's capacity is always equal to zone size */ 4997 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4998 return sbi->segs_per_sec; 4999 5000 /* 5001 * If the zone_capacity_blocks array is NULL, then zone capacity 5002 * is equal to the zone size for all zones 5003 */ 5004 if (!FDEV(dev_idx).zone_capacity_blocks) 5005 return sbi->segs_per_sec; 5006 5007 /* Get the segment count beyond zone capacity block */ 5008 unusable_segs_in_sec = (sbi->blocks_per_blkz - 5009 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >> 5010 sbi->log_blocks_per_seg; 5011 return sbi->segs_per_sec - unusable_segs_in_sec; 5012 } 5013 5014 /* 5015 * Return the number of usable blocks in a segment. The number of blocks 5016 * returned is always equal to the number of blocks in a segment for 5017 * segments fully contained within a sequential zone capacity or a 5018 * conventional zone. For segments partially contained in a sequential 5019 * zone capacity, the number of usable blocks up to the zone capacity 5020 * is returned. 0 is returned in all other cases. 5021 */ 5022 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5023 struct f2fs_sb_info *sbi, unsigned int segno) 5024 { 5025 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5026 unsigned int zone_idx, dev_idx, secno; 5027 5028 secno = GET_SEC_FROM_SEG(sbi, segno); 5029 seg_start = START_BLOCK(sbi, segno); 5030 dev_idx = f2fs_target_device_index(sbi, seg_start); 5031 zone_idx = get_zone_idx(sbi, secno, dev_idx); 5032 5033 /* 5034 * Conventional zone's capacity is always equal to zone size, 5035 * so, blocks per segment is unchanged. 5036 */ 5037 if (is_conv_zone(sbi, zone_idx, dev_idx)) 5038 return sbi->blocks_per_seg; 5039 5040 if (!FDEV(dev_idx).zone_capacity_blocks) 5041 return sbi->blocks_per_seg; 5042 5043 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5044 sec_cap_blkaddr = sec_start_blkaddr + 5045 FDEV(dev_idx).zone_capacity_blocks[zone_idx]; 5046 5047 /* 5048 * If segment starts before zone capacity and spans beyond 5049 * zone capacity, then usable blocks are from seg start to 5050 * zone capacity. If the segment starts after the zone capacity, 5051 * then there are no usable blocks. 5052 */ 5053 if (seg_start >= sec_cap_blkaddr) 5054 return 0; 5055 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5056 return sec_cap_blkaddr - seg_start; 5057 5058 return sbi->blocks_per_seg; 5059 } 5060 #else 5061 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5062 { 5063 return 0; 5064 } 5065 5066 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5067 { 5068 return 0; 5069 } 5070 5071 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5072 unsigned int segno) 5073 { 5074 return 0; 5075 } 5076 5077 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 5078 unsigned int segno) 5079 { 5080 return 0; 5081 } 5082 #endif 5083 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5084 unsigned int segno) 5085 { 5086 if (f2fs_sb_has_blkzoned(sbi)) 5087 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5088 5089 return sbi->blocks_per_seg; 5090 } 5091 5092 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5093 unsigned int segno) 5094 { 5095 if (f2fs_sb_has_blkzoned(sbi)) 5096 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5097 5098 return sbi->segs_per_sec; 5099 } 5100 5101 /* 5102 * Update min, max modified time for cost-benefit GC algorithm 5103 */ 5104 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5105 { 5106 struct sit_info *sit_i = SIT_I(sbi); 5107 unsigned int segno; 5108 5109 down_write(&sit_i->sentry_lock); 5110 5111 sit_i->min_mtime = ULLONG_MAX; 5112 5113 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5114 unsigned int i; 5115 unsigned long long mtime = 0; 5116 5117 for (i = 0; i < sbi->segs_per_sec; i++) 5118 mtime += get_seg_entry(sbi, segno + i)->mtime; 5119 5120 mtime = div_u64(mtime, sbi->segs_per_sec); 5121 5122 if (sit_i->min_mtime > mtime) 5123 sit_i->min_mtime = mtime; 5124 } 5125 sit_i->max_mtime = get_mtime(sbi, false); 5126 sit_i->dirty_max_mtime = 0; 5127 up_write(&sit_i->sentry_lock); 5128 } 5129 5130 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5131 { 5132 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5133 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5134 struct f2fs_sm_info *sm_info; 5135 int err; 5136 5137 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5138 if (!sm_info) 5139 return -ENOMEM; 5140 5141 /* init sm info */ 5142 sbi->sm_info = sm_info; 5143 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5144 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5145 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5146 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5147 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5148 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5149 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5150 sm_info->rec_prefree_segments = sm_info->main_segments * 5151 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5152 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5153 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5154 5155 if (!f2fs_lfs_mode(sbi)) 5156 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5157 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5158 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5159 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 5160 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5161 sm_info->min_ssr_sections = reserved_sections(sbi); 5162 5163 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5164 5165 init_rwsem(&sm_info->curseg_lock); 5166 5167 if (!f2fs_readonly(sbi->sb)) { 5168 err = f2fs_create_flush_cmd_control(sbi); 5169 if (err) 5170 return err; 5171 } 5172 5173 err = create_discard_cmd_control(sbi); 5174 if (err) 5175 return err; 5176 5177 err = build_sit_info(sbi); 5178 if (err) 5179 return err; 5180 err = build_free_segmap(sbi); 5181 if (err) 5182 return err; 5183 err = build_curseg(sbi); 5184 if (err) 5185 return err; 5186 5187 /* reinit free segmap based on SIT */ 5188 err = build_sit_entries(sbi); 5189 if (err) 5190 return err; 5191 5192 init_free_segmap(sbi); 5193 err = build_dirty_segmap(sbi); 5194 if (err) 5195 return err; 5196 5197 err = sanity_check_curseg(sbi); 5198 if (err) 5199 return err; 5200 5201 init_min_max_mtime(sbi); 5202 return 0; 5203 } 5204 5205 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5206 enum dirty_type dirty_type) 5207 { 5208 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5209 5210 mutex_lock(&dirty_i->seglist_lock); 5211 kvfree(dirty_i->dirty_segmap[dirty_type]); 5212 dirty_i->nr_dirty[dirty_type] = 0; 5213 mutex_unlock(&dirty_i->seglist_lock); 5214 } 5215 5216 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5217 { 5218 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5219 5220 kvfree(dirty_i->victim_secmap); 5221 } 5222 5223 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5224 { 5225 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5226 int i; 5227 5228 if (!dirty_i) 5229 return; 5230 5231 /* discard pre-free/dirty segments list */ 5232 for (i = 0; i < NR_DIRTY_TYPE; i++) 5233 discard_dirty_segmap(sbi, i); 5234 5235 if (__is_large_section(sbi)) { 5236 mutex_lock(&dirty_i->seglist_lock); 5237 kvfree(dirty_i->dirty_secmap); 5238 mutex_unlock(&dirty_i->seglist_lock); 5239 } 5240 5241 destroy_victim_secmap(sbi); 5242 SM_I(sbi)->dirty_info = NULL; 5243 kfree(dirty_i); 5244 } 5245 5246 static void destroy_curseg(struct f2fs_sb_info *sbi) 5247 { 5248 struct curseg_info *array = SM_I(sbi)->curseg_array; 5249 int i; 5250 5251 if (!array) 5252 return; 5253 SM_I(sbi)->curseg_array = NULL; 5254 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5255 kfree(array[i].sum_blk); 5256 kfree(array[i].journal); 5257 } 5258 kfree(array); 5259 } 5260 5261 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5262 { 5263 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5264 5265 if (!free_i) 5266 return; 5267 SM_I(sbi)->free_info = NULL; 5268 kvfree(free_i->free_segmap); 5269 kvfree(free_i->free_secmap); 5270 kfree(free_i); 5271 } 5272 5273 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5274 { 5275 struct sit_info *sit_i = SIT_I(sbi); 5276 5277 if (!sit_i) 5278 return; 5279 5280 if (sit_i->sentries) 5281 kvfree(sit_i->bitmap); 5282 kfree(sit_i->tmp_map); 5283 5284 kvfree(sit_i->sentries); 5285 kvfree(sit_i->sec_entries); 5286 kvfree(sit_i->dirty_sentries_bitmap); 5287 5288 SM_I(sbi)->sit_info = NULL; 5289 kvfree(sit_i->sit_bitmap); 5290 #ifdef CONFIG_F2FS_CHECK_FS 5291 kvfree(sit_i->sit_bitmap_mir); 5292 kvfree(sit_i->invalid_segmap); 5293 #endif 5294 kfree(sit_i); 5295 } 5296 5297 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5298 { 5299 struct f2fs_sm_info *sm_info = SM_I(sbi); 5300 5301 if (!sm_info) 5302 return; 5303 f2fs_destroy_flush_cmd_control(sbi, true); 5304 destroy_discard_cmd_control(sbi); 5305 destroy_dirty_segmap(sbi); 5306 destroy_curseg(sbi); 5307 destroy_free_segmap(sbi); 5308 destroy_sit_info(sbi); 5309 sbi->sm_info = NULL; 5310 kfree(sm_info); 5311 } 5312 5313 int __init f2fs_create_segment_manager_caches(void) 5314 { 5315 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5316 sizeof(struct discard_entry)); 5317 if (!discard_entry_slab) 5318 goto fail; 5319 5320 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5321 sizeof(struct discard_cmd)); 5322 if (!discard_cmd_slab) 5323 goto destroy_discard_entry; 5324 5325 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5326 sizeof(struct sit_entry_set)); 5327 if (!sit_entry_set_slab) 5328 goto destroy_discard_cmd; 5329 5330 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", 5331 sizeof(struct inmem_pages)); 5332 if (!inmem_entry_slab) 5333 goto destroy_sit_entry_set; 5334 return 0; 5335 5336 destroy_sit_entry_set: 5337 kmem_cache_destroy(sit_entry_set_slab); 5338 destroy_discard_cmd: 5339 kmem_cache_destroy(discard_cmd_slab); 5340 destroy_discard_entry: 5341 kmem_cache_destroy(discard_entry_slab); 5342 fail: 5343 return -ENOMEM; 5344 } 5345 5346 void f2fs_destroy_segment_manager_caches(void) 5347 { 5348 kmem_cache_destroy(sit_entry_set_slab); 5349 kmem_cache_destroy(discard_cmd_slab); 5350 kmem_cache_destroy(discard_entry_slab); 5351 kmem_cache_destroy(inmem_entry_slab); 5352 } 5353