xref: /openbmc/linux/fs/f2fs/segment.c (revision 6ce19aff0b8cd386860855185c6cd79337fc4d2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include <trace/events/f2fs.h>
24 
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26 
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *discard_cmd_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31 
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 	unsigned long tmp = 0;
35 	int shift = 24, idx = 0;
36 
37 #if BITS_PER_LONG == 64
38 	shift = 56;
39 #endif
40 	while (shift >= 0) {
41 		tmp |= (unsigned long)str[idx++] << shift;
42 		shift -= BITS_PER_BYTE;
43 	}
44 	return tmp;
45 }
46 
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 	int num = 0;
54 
55 #if BITS_PER_LONG == 64
56 	if ((word & 0xffffffff00000000UL) == 0)
57 		num += 32;
58 	else
59 		word >>= 32;
60 #endif
61 	if ((word & 0xffff0000) == 0)
62 		num += 16;
63 	else
64 		word >>= 16;
65 
66 	if ((word & 0xff00) == 0)
67 		num += 8;
68 	else
69 		word >>= 8;
70 
71 	if ((word & 0xf0) == 0)
72 		num += 4;
73 	else
74 		word >>= 4;
75 
76 	if ((word & 0xc) == 0)
77 		num += 2;
78 	else
79 		word >>= 2;
80 
81 	if ((word & 0x2) == 0)
82 		num += 1;
83 	return num;
84 }
85 
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 			unsigned long size, unsigned long offset)
97 {
98 	const unsigned long *p = addr + BIT_WORD(offset);
99 	unsigned long result = size;
100 	unsigned long tmp;
101 
102 	if (offset >= size)
103 		return size;
104 
105 	size -= (offset & ~(BITS_PER_LONG - 1));
106 	offset %= BITS_PER_LONG;
107 
108 	while (1) {
109 		if (*p == 0)
110 			goto pass;
111 
112 		tmp = __reverse_ulong((unsigned char *)p);
113 
114 		tmp &= ~0UL >> offset;
115 		if (size < BITS_PER_LONG)
116 			tmp &= (~0UL << (BITS_PER_LONG - size));
117 		if (tmp)
118 			goto found;
119 pass:
120 		if (size <= BITS_PER_LONG)
121 			break;
122 		size -= BITS_PER_LONG;
123 		offset = 0;
124 		p++;
125 	}
126 	return result;
127 found:
128 	return result - size + __reverse_ffs(tmp);
129 }
130 
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 			unsigned long size, unsigned long offset)
133 {
134 	const unsigned long *p = addr + BIT_WORD(offset);
135 	unsigned long result = size;
136 	unsigned long tmp;
137 
138 	if (offset >= size)
139 		return size;
140 
141 	size -= (offset & ~(BITS_PER_LONG - 1));
142 	offset %= BITS_PER_LONG;
143 
144 	while (1) {
145 		if (*p == ~0UL)
146 			goto pass;
147 
148 		tmp = __reverse_ulong((unsigned char *)p);
149 
150 		if (offset)
151 			tmp |= ~0UL << (BITS_PER_LONG - offset);
152 		if (size < BITS_PER_LONG)
153 			tmp |= ~0UL >> size;
154 		if (tmp != ~0UL)
155 			goto found;
156 pass:
157 		if (size <= BITS_PER_LONG)
158 			break;
159 		size -= BITS_PER_LONG;
160 		offset = 0;
161 		p++;
162 	}
163 	return result;
164 found:
165 	return result - size + __reverse_ffz(tmp);
166 }
167 
168 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
169 {
170 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
171 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
172 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
173 
174 	if (f2fs_lfs_mode(sbi))
175 		return false;
176 	if (sbi->gc_mode == GC_URGENT_HIGH)
177 		return true;
178 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
179 		return true;
180 
181 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
182 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
183 }
184 
185 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
186 {
187 	struct inmem_pages *new;
188 
189 	set_page_private_atomic(page);
190 
191 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
192 
193 	/* add atomic page indices to the list */
194 	new->page = page;
195 	INIT_LIST_HEAD(&new->list);
196 
197 	/* increase reference count with clean state */
198 	get_page(page);
199 	mutex_lock(&F2FS_I(inode)->inmem_lock);
200 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
201 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
202 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
203 
204 	trace_f2fs_register_inmem_page(page, INMEM);
205 }
206 
207 static int __revoke_inmem_pages(struct inode *inode,
208 				struct list_head *head, bool drop, bool recover,
209 				bool trylock)
210 {
211 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
212 	struct inmem_pages *cur, *tmp;
213 	int err = 0;
214 
215 	list_for_each_entry_safe(cur, tmp, head, list) {
216 		struct page *page = cur->page;
217 
218 		if (drop)
219 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
220 
221 		if (trylock) {
222 			/*
223 			 * to avoid deadlock in between page lock and
224 			 * inmem_lock.
225 			 */
226 			if (!trylock_page(page))
227 				continue;
228 		} else {
229 			lock_page(page);
230 		}
231 
232 		f2fs_wait_on_page_writeback(page, DATA, true, true);
233 
234 		if (recover) {
235 			struct dnode_of_data dn;
236 			struct node_info ni;
237 
238 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239 retry:
240 			set_new_dnode(&dn, inode, NULL, NULL, 0);
241 			err = f2fs_get_dnode_of_data(&dn, page->index,
242 								LOOKUP_NODE);
243 			if (err) {
244 				if (err == -ENOMEM) {
245 					congestion_wait(BLK_RW_ASYNC,
246 							DEFAULT_IO_TIMEOUT);
247 					cond_resched();
248 					goto retry;
249 				}
250 				err = -EAGAIN;
251 				goto next;
252 			}
253 
254 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
255 			if (err) {
256 				f2fs_put_dnode(&dn);
257 				return err;
258 			}
259 
260 			if (cur->old_addr == NEW_ADDR) {
261 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 			} else
264 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265 					cur->old_addr, ni.version, true, true);
266 			f2fs_put_dnode(&dn);
267 		}
268 next:
269 		/* we don't need to invalidate this in the sccessful status */
270 		if (drop || recover) {
271 			ClearPageUptodate(page);
272 			clear_page_private_gcing(page);
273 		}
274 		detach_page_private(page);
275 		set_page_private(page, 0);
276 		f2fs_put_page(page, 1);
277 
278 		list_del(&cur->list);
279 		kmem_cache_free(inmem_entry_slab, cur);
280 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
281 	}
282 	return err;
283 }
284 
285 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
286 {
287 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
288 	struct inode *inode;
289 	struct f2fs_inode_info *fi;
290 	unsigned int count = sbi->atomic_files;
291 	unsigned int looped = 0;
292 next:
293 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
294 	if (list_empty(head)) {
295 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
296 		return;
297 	}
298 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
299 	inode = igrab(&fi->vfs_inode);
300 	if (inode)
301 		list_move_tail(&fi->inmem_ilist, head);
302 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
303 
304 	if (inode) {
305 		if (gc_failure) {
306 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
307 				goto skip;
308 		}
309 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
310 		f2fs_drop_inmem_pages(inode);
311 skip:
312 		iput(inode);
313 	}
314 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
315 	cond_resched();
316 	if (gc_failure) {
317 		if (++looped >= count)
318 			return;
319 	}
320 	goto next;
321 }
322 
323 void f2fs_drop_inmem_pages(struct inode *inode)
324 {
325 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
326 	struct f2fs_inode_info *fi = F2FS_I(inode);
327 
328 	do {
329 		mutex_lock(&fi->inmem_lock);
330 		if (list_empty(&fi->inmem_pages)) {
331 			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
332 
333 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
334 			if (!list_empty(&fi->inmem_ilist))
335 				list_del_init(&fi->inmem_ilist);
336 			if (f2fs_is_atomic_file(inode)) {
337 				clear_inode_flag(inode, FI_ATOMIC_FILE);
338 				sbi->atomic_files--;
339 			}
340 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
341 
342 			mutex_unlock(&fi->inmem_lock);
343 			break;
344 		}
345 		__revoke_inmem_pages(inode, &fi->inmem_pages,
346 						true, false, true);
347 		mutex_unlock(&fi->inmem_lock);
348 	} while (1);
349 }
350 
351 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
352 {
353 	struct f2fs_inode_info *fi = F2FS_I(inode);
354 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
355 	struct list_head *head = &fi->inmem_pages;
356 	struct inmem_pages *cur = NULL;
357 
358 	f2fs_bug_on(sbi, !page_private_atomic(page));
359 
360 	mutex_lock(&fi->inmem_lock);
361 	list_for_each_entry(cur, head, list) {
362 		if (cur->page == page)
363 			break;
364 	}
365 
366 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
367 	list_del(&cur->list);
368 	mutex_unlock(&fi->inmem_lock);
369 
370 	dec_page_count(sbi, F2FS_INMEM_PAGES);
371 	kmem_cache_free(inmem_entry_slab, cur);
372 
373 	ClearPageUptodate(page);
374 	clear_page_private_atomic(page);
375 	f2fs_put_page(page, 0);
376 
377 	detach_page_private(page);
378 	set_page_private(page, 0);
379 
380 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
381 }
382 
383 static int __f2fs_commit_inmem_pages(struct inode *inode)
384 {
385 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
386 	struct f2fs_inode_info *fi = F2FS_I(inode);
387 	struct inmem_pages *cur, *tmp;
388 	struct f2fs_io_info fio = {
389 		.sbi = sbi,
390 		.ino = inode->i_ino,
391 		.type = DATA,
392 		.op = REQ_OP_WRITE,
393 		.op_flags = REQ_SYNC | REQ_PRIO,
394 		.io_type = FS_DATA_IO,
395 	};
396 	struct list_head revoke_list;
397 	bool submit_bio = false;
398 	int err = 0;
399 
400 	INIT_LIST_HEAD(&revoke_list);
401 
402 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
403 		struct page *page = cur->page;
404 
405 		lock_page(page);
406 		if (page->mapping == inode->i_mapping) {
407 			trace_f2fs_commit_inmem_page(page, INMEM);
408 
409 			f2fs_wait_on_page_writeback(page, DATA, true, true);
410 
411 			set_page_dirty(page);
412 			if (clear_page_dirty_for_io(page)) {
413 				inode_dec_dirty_pages(inode);
414 				f2fs_remove_dirty_inode(inode);
415 			}
416 retry:
417 			fio.page = page;
418 			fio.old_blkaddr = NULL_ADDR;
419 			fio.encrypted_page = NULL;
420 			fio.need_lock = LOCK_DONE;
421 			err = f2fs_do_write_data_page(&fio);
422 			if (err) {
423 				if (err == -ENOMEM) {
424 					congestion_wait(BLK_RW_ASYNC,
425 							DEFAULT_IO_TIMEOUT);
426 					cond_resched();
427 					goto retry;
428 				}
429 				unlock_page(page);
430 				break;
431 			}
432 			/* record old blkaddr for revoking */
433 			cur->old_addr = fio.old_blkaddr;
434 			submit_bio = true;
435 		}
436 		unlock_page(page);
437 		list_move_tail(&cur->list, &revoke_list);
438 	}
439 
440 	if (submit_bio)
441 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
442 
443 	if (err) {
444 		/*
445 		 * try to revoke all committed pages, but still we could fail
446 		 * due to no memory or other reason, if that happened, EAGAIN
447 		 * will be returned, which means in such case, transaction is
448 		 * already not integrity, caller should use journal to do the
449 		 * recovery or rewrite & commit last transaction. For other
450 		 * error number, revoking was done by filesystem itself.
451 		 */
452 		err = __revoke_inmem_pages(inode, &revoke_list,
453 						false, true, false);
454 
455 		/* drop all uncommitted pages */
456 		__revoke_inmem_pages(inode, &fi->inmem_pages,
457 						true, false, false);
458 	} else {
459 		__revoke_inmem_pages(inode, &revoke_list,
460 						false, false, false);
461 	}
462 
463 	return err;
464 }
465 
466 int f2fs_commit_inmem_pages(struct inode *inode)
467 {
468 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
469 	struct f2fs_inode_info *fi = F2FS_I(inode);
470 	int err;
471 
472 	f2fs_balance_fs(sbi, true);
473 
474 	down_write(&fi->i_gc_rwsem[WRITE]);
475 
476 	f2fs_lock_op(sbi);
477 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
478 
479 	mutex_lock(&fi->inmem_lock);
480 	err = __f2fs_commit_inmem_pages(inode);
481 	mutex_unlock(&fi->inmem_lock);
482 
483 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
484 
485 	f2fs_unlock_op(sbi);
486 	up_write(&fi->i_gc_rwsem[WRITE]);
487 
488 	return err;
489 }
490 
491 /*
492  * This function balances dirty node and dentry pages.
493  * In addition, it controls garbage collection.
494  */
495 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
496 {
497 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
498 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
499 		f2fs_stop_checkpoint(sbi, false);
500 	}
501 
502 	/* balance_fs_bg is able to be pending */
503 	if (need && excess_cached_nats(sbi))
504 		f2fs_balance_fs_bg(sbi, false);
505 
506 	if (!f2fs_is_checkpoint_ready(sbi))
507 		return;
508 
509 	/*
510 	 * We should do GC or end up with checkpoint, if there are so many dirty
511 	 * dir/node pages without enough free segments.
512 	 */
513 	if (has_not_enough_free_secs(sbi, 0, 0)) {
514 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
515 					sbi->gc_thread->f2fs_gc_task) {
516 			DEFINE_WAIT(wait);
517 
518 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
519 						TASK_UNINTERRUPTIBLE);
520 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
521 			io_schedule();
522 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
523 		} else {
524 			down_write(&sbi->gc_lock);
525 			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
526 		}
527 	}
528 }
529 
530 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
531 {
532 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
533 		return;
534 
535 	/* try to shrink extent cache when there is no enough memory */
536 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
537 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
538 
539 	/* check the # of cached NAT entries */
540 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
541 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
542 
543 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
544 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
545 	else
546 		f2fs_build_free_nids(sbi, false, false);
547 
548 	if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
549 		excess_prefree_segs(sbi))
550 		goto do_sync;
551 
552 	/* there is background inflight IO or foreground operation recently */
553 	if (is_inflight_io(sbi, REQ_TIME) ||
554 		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
555 		return;
556 
557 	/* exceed periodical checkpoint timeout threshold */
558 	if (f2fs_time_over(sbi, CP_TIME))
559 		goto do_sync;
560 
561 	/* checkpoint is the only way to shrink partial cached entries */
562 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
563 		f2fs_available_free_memory(sbi, INO_ENTRIES))
564 		return;
565 
566 do_sync:
567 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
568 		struct blk_plug plug;
569 
570 		mutex_lock(&sbi->flush_lock);
571 
572 		blk_start_plug(&plug);
573 		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
574 		blk_finish_plug(&plug);
575 
576 		mutex_unlock(&sbi->flush_lock);
577 	}
578 	f2fs_sync_fs(sbi->sb, true);
579 	stat_inc_bg_cp_count(sbi->stat_info);
580 }
581 
582 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
583 				struct block_device *bdev)
584 {
585 	int ret = blkdev_issue_flush(bdev);
586 
587 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
588 				test_opt(sbi, FLUSH_MERGE), ret);
589 	return ret;
590 }
591 
592 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
593 {
594 	int ret = 0;
595 	int i;
596 
597 	if (!f2fs_is_multi_device(sbi))
598 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
599 
600 	for (i = 0; i < sbi->s_ndevs; i++) {
601 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
602 			continue;
603 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
604 		if (ret)
605 			break;
606 	}
607 	return ret;
608 }
609 
610 static int issue_flush_thread(void *data)
611 {
612 	struct f2fs_sb_info *sbi = data;
613 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 	wait_queue_head_t *q = &fcc->flush_wait_queue;
615 repeat:
616 	if (kthread_should_stop())
617 		return 0;
618 
619 	if (!llist_empty(&fcc->issue_list)) {
620 		struct flush_cmd *cmd, *next;
621 		int ret;
622 
623 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
624 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
625 
626 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
627 
628 		ret = submit_flush_wait(sbi, cmd->ino);
629 		atomic_inc(&fcc->issued_flush);
630 
631 		llist_for_each_entry_safe(cmd, next,
632 					  fcc->dispatch_list, llnode) {
633 			cmd->ret = ret;
634 			complete(&cmd->wait);
635 		}
636 		fcc->dispatch_list = NULL;
637 	}
638 
639 	wait_event_interruptible(*q,
640 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
641 	goto repeat;
642 }
643 
644 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
645 {
646 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
647 	struct flush_cmd cmd;
648 	int ret;
649 
650 	if (test_opt(sbi, NOBARRIER))
651 		return 0;
652 
653 	if (!test_opt(sbi, FLUSH_MERGE)) {
654 		atomic_inc(&fcc->queued_flush);
655 		ret = submit_flush_wait(sbi, ino);
656 		atomic_dec(&fcc->queued_flush);
657 		atomic_inc(&fcc->issued_flush);
658 		return ret;
659 	}
660 
661 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
662 	    f2fs_is_multi_device(sbi)) {
663 		ret = submit_flush_wait(sbi, ino);
664 		atomic_dec(&fcc->queued_flush);
665 
666 		atomic_inc(&fcc->issued_flush);
667 		return ret;
668 	}
669 
670 	cmd.ino = ino;
671 	init_completion(&cmd.wait);
672 
673 	llist_add(&cmd.llnode, &fcc->issue_list);
674 
675 	/*
676 	 * update issue_list before we wake up issue_flush thread, this
677 	 * smp_mb() pairs with another barrier in ___wait_event(), see
678 	 * more details in comments of waitqueue_active().
679 	 */
680 	smp_mb();
681 
682 	if (waitqueue_active(&fcc->flush_wait_queue))
683 		wake_up(&fcc->flush_wait_queue);
684 
685 	if (fcc->f2fs_issue_flush) {
686 		wait_for_completion(&cmd.wait);
687 		atomic_dec(&fcc->queued_flush);
688 	} else {
689 		struct llist_node *list;
690 
691 		list = llist_del_all(&fcc->issue_list);
692 		if (!list) {
693 			wait_for_completion(&cmd.wait);
694 			atomic_dec(&fcc->queued_flush);
695 		} else {
696 			struct flush_cmd *tmp, *next;
697 
698 			ret = submit_flush_wait(sbi, ino);
699 
700 			llist_for_each_entry_safe(tmp, next, list, llnode) {
701 				if (tmp == &cmd) {
702 					cmd.ret = ret;
703 					atomic_dec(&fcc->queued_flush);
704 					continue;
705 				}
706 				tmp->ret = ret;
707 				complete(&tmp->wait);
708 			}
709 		}
710 	}
711 
712 	return cmd.ret;
713 }
714 
715 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
716 {
717 	dev_t dev = sbi->sb->s_bdev->bd_dev;
718 	struct flush_cmd_control *fcc;
719 	int err = 0;
720 
721 	if (SM_I(sbi)->fcc_info) {
722 		fcc = SM_I(sbi)->fcc_info;
723 		if (fcc->f2fs_issue_flush)
724 			return err;
725 		goto init_thread;
726 	}
727 
728 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
729 	if (!fcc)
730 		return -ENOMEM;
731 	atomic_set(&fcc->issued_flush, 0);
732 	atomic_set(&fcc->queued_flush, 0);
733 	init_waitqueue_head(&fcc->flush_wait_queue);
734 	init_llist_head(&fcc->issue_list);
735 	SM_I(sbi)->fcc_info = fcc;
736 	if (!test_opt(sbi, FLUSH_MERGE))
737 		return err;
738 
739 init_thread:
740 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
741 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
742 	if (IS_ERR(fcc->f2fs_issue_flush)) {
743 		err = PTR_ERR(fcc->f2fs_issue_flush);
744 		kfree(fcc);
745 		SM_I(sbi)->fcc_info = NULL;
746 		return err;
747 	}
748 
749 	return err;
750 }
751 
752 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
753 {
754 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
755 
756 	if (fcc && fcc->f2fs_issue_flush) {
757 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
758 
759 		fcc->f2fs_issue_flush = NULL;
760 		kthread_stop(flush_thread);
761 	}
762 	if (free) {
763 		kfree(fcc);
764 		SM_I(sbi)->fcc_info = NULL;
765 	}
766 }
767 
768 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
769 {
770 	int ret = 0, i;
771 
772 	if (!f2fs_is_multi_device(sbi))
773 		return 0;
774 
775 	if (test_opt(sbi, NOBARRIER))
776 		return 0;
777 
778 	for (i = 1; i < sbi->s_ndevs; i++) {
779 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
780 			continue;
781 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
782 		if (ret)
783 			break;
784 
785 		spin_lock(&sbi->dev_lock);
786 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
787 		spin_unlock(&sbi->dev_lock);
788 	}
789 
790 	return ret;
791 }
792 
793 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
794 		enum dirty_type dirty_type)
795 {
796 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
797 
798 	/* need not be added */
799 	if (IS_CURSEG(sbi, segno))
800 		return;
801 
802 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
803 		dirty_i->nr_dirty[dirty_type]++;
804 
805 	if (dirty_type == DIRTY) {
806 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
807 		enum dirty_type t = sentry->type;
808 
809 		if (unlikely(t >= DIRTY)) {
810 			f2fs_bug_on(sbi, 1);
811 			return;
812 		}
813 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
814 			dirty_i->nr_dirty[t]++;
815 
816 		if (__is_large_section(sbi)) {
817 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
818 			block_t valid_blocks =
819 				get_valid_blocks(sbi, segno, true);
820 
821 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
822 					valid_blocks == BLKS_PER_SEC(sbi)));
823 
824 			if (!IS_CURSEC(sbi, secno))
825 				set_bit(secno, dirty_i->dirty_secmap);
826 		}
827 	}
828 }
829 
830 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
831 		enum dirty_type dirty_type)
832 {
833 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 	block_t valid_blocks;
835 
836 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
837 		dirty_i->nr_dirty[dirty_type]--;
838 
839 	if (dirty_type == DIRTY) {
840 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
841 		enum dirty_type t = sentry->type;
842 
843 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
844 			dirty_i->nr_dirty[t]--;
845 
846 		valid_blocks = get_valid_blocks(sbi, segno, true);
847 		if (valid_blocks == 0) {
848 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
849 						dirty_i->victim_secmap);
850 #ifdef CONFIG_F2FS_CHECK_FS
851 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
852 #endif
853 		}
854 		if (__is_large_section(sbi)) {
855 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
856 
857 			if (!valid_blocks ||
858 					valid_blocks == BLKS_PER_SEC(sbi)) {
859 				clear_bit(secno, dirty_i->dirty_secmap);
860 				return;
861 			}
862 
863 			if (!IS_CURSEC(sbi, secno))
864 				set_bit(secno, dirty_i->dirty_secmap);
865 		}
866 	}
867 }
868 
869 /*
870  * Should not occur error such as -ENOMEM.
871  * Adding dirty entry into seglist is not critical operation.
872  * If a given segment is one of current working segments, it won't be added.
873  */
874 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
875 {
876 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877 	unsigned short valid_blocks, ckpt_valid_blocks;
878 	unsigned int usable_blocks;
879 
880 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
881 		return;
882 
883 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
884 	mutex_lock(&dirty_i->seglist_lock);
885 
886 	valid_blocks = get_valid_blocks(sbi, segno, false);
887 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
888 
889 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
890 		ckpt_valid_blocks == usable_blocks)) {
891 		__locate_dirty_segment(sbi, segno, PRE);
892 		__remove_dirty_segment(sbi, segno, DIRTY);
893 	} else if (valid_blocks < usable_blocks) {
894 		__locate_dirty_segment(sbi, segno, DIRTY);
895 	} else {
896 		/* Recovery routine with SSR needs this */
897 		__remove_dirty_segment(sbi, segno, DIRTY);
898 	}
899 
900 	mutex_unlock(&dirty_i->seglist_lock);
901 }
902 
903 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
904 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
905 {
906 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
907 	unsigned int segno;
908 
909 	mutex_lock(&dirty_i->seglist_lock);
910 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
911 		if (get_valid_blocks(sbi, segno, false))
912 			continue;
913 		if (IS_CURSEG(sbi, segno))
914 			continue;
915 		__locate_dirty_segment(sbi, segno, PRE);
916 		__remove_dirty_segment(sbi, segno, DIRTY);
917 	}
918 	mutex_unlock(&dirty_i->seglist_lock);
919 }
920 
921 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
922 {
923 	int ovp_hole_segs =
924 		(overprovision_segments(sbi) - reserved_segments(sbi));
925 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
926 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
927 	block_t holes[2] = {0, 0};	/* DATA and NODE */
928 	block_t unusable;
929 	struct seg_entry *se;
930 	unsigned int segno;
931 
932 	mutex_lock(&dirty_i->seglist_lock);
933 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
934 		se = get_seg_entry(sbi, segno);
935 		if (IS_NODESEG(se->type))
936 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
937 							se->valid_blocks;
938 		else
939 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
940 							se->valid_blocks;
941 	}
942 	mutex_unlock(&dirty_i->seglist_lock);
943 
944 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
945 	if (unusable > ovp_holes)
946 		return unusable - ovp_holes;
947 	return 0;
948 }
949 
950 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
951 {
952 	int ovp_hole_segs =
953 		(overprovision_segments(sbi) - reserved_segments(sbi));
954 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
955 		return -EAGAIN;
956 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
957 		dirty_segments(sbi) > ovp_hole_segs)
958 		return -EAGAIN;
959 	return 0;
960 }
961 
962 /* This is only used by SBI_CP_DISABLED */
963 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
964 {
965 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
966 	unsigned int segno = 0;
967 
968 	mutex_lock(&dirty_i->seglist_lock);
969 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
970 		if (get_valid_blocks(sbi, segno, false))
971 			continue;
972 		if (get_ckpt_valid_blocks(sbi, segno, false))
973 			continue;
974 		mutex_unlock(&dirty_i->seglist_lock);
975 		return segno;
976 	}
977 	mutex_unlock(&dirty_i->seglist_lock);
978 	return NULL_SEGNO;
979 }
980 
981 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
982 		struct block_device *bdev, block_t lstart,
983 		block_t start, block_t len)
984 {
985 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
986 	struct list_head *pend_list;
987 	struct discard_cmd *dc;
988 
989 	f2fs_bug_on(sbi, !len);
990 
991 	pend_list = &dcc->pend_list[plist_idx(len)];
992 
993 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
994 	INIT_LIST_HEAD(&dc->list);
995 	dc->bdev = bdev;
996 	dc->lstart = lstart;
997 	dc->start = start;
998 	dc->len = len;
999 	dc->ref = 0;
1000 	dc->state = D_PREP;
1001 	dc->queued = 0;
1002 	dc->error = 0;
1003 	init_completion(&dc->wait);
1004 	list_add_tail(&dc->list, pend_list);
1005 	spin_lock_init(&dc->lock);
1006 	dc->bio_ref = 0;
1007 	atomic_inc(&dcc->discard_cmd_cnt);
1008 	dcc->undiscard_blks += len;
1009 
1010 	return dc;
1011 }
1012 
1013 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1014 				struct block_device *bdev, block_t lstart,
1015 				block_t start, block_t len,
1016 				struct rb_node *parent, struct rb_node **p,
1017 				bool leftmost)
1018 {
1019 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1020 	struct discard_cmd *dc;
1021 
1022 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1023 
1024 	rb_link_node(&dc->rb_node, parent, p);
1025 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1026 
1027 	return dc;
1028 }
1029 
1030 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1031 							struct discard_cmd *dc)
1032 {
1033 	if (dc->state == D_DONE)
1034 		atomic_sub(dc->queued, &dcc->queued_discard);
1035 
1036 	list_del(&dc->list);
1037 	rb_erase_cached(&dc->rb_node, &dcc->root);
1038 	dcc->undiscard_blks -= dc->len;
1039 
1040 	kmem_cache_free(discard_cmd_slab, dc);
1041 
1042 	atomic_dec(&dcc->discard_cmd_cnt);
1043 }
1044 
1045 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1046 							struct discard_cmd *dc)
1047 {
1048 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1049 	unsigned long flags;
1050 
1051 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1052 
1053 	spin_lock_irqsave(&dc->lock, flags);
1054 	if (dc->bio_ref) {
1055 		spin_unlock_irqrestore(&dc->lock, flags);
1056 		return;
1057 	}
1058 	spin_unlock_irqrestore(&dc->lock, flags);
1059 
1060 	f2fs_bug_on(sbi, dc->ref);
1061 
1062 	if (dc->error == -EOPNOTSUPP)
1063 		dc->error = 0;
1064 
1065 	if (dc->error)
1066 		printk_ratelimited(
1067 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068 			KERN_INFO, sbi->sb->s_id,
1069 			dc->lstart, dc->start, dc->len, dc->error);
1070 	__detach_discard_cmd(dcc, dc);
1071 }
1072 
1073 static void f2fs_submit_discard_endio(struct bio *bio)
1074 {
1075 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1076 	unsigned long flags;
1077 
1078 	spin_lock_irqsave(&dc->lock, flags);
1079 	if (!dc->error)
1080 		dc->error = blk_status_to_errno(bio->bi_status);
1081 	dc->bio_ref--;
1082 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1083 		dc->state = D_DONE;
1084 		complete_all(&dc->wait);
1085 	}
1086 	spin_unlock_irqrestore(&dc->lock, flags);
1087 	bio_put(bio);
1088 }
1089 
1090 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1091 				block_t start, block_t end)
1092 {
1093 #ifdef CONFIG_F2FS_CHECK_FS
1094 	struct seg_entry *sentry;
1095 	unsigned int segno;
1096 	block_t blk = start;
1097 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1098 	unsigned long *map;
1099 
1100 	while (blk < end) {
1101 		segno = GET_SEGNO(sbi, blk);
1102 		sentry = get_seg_entry(sbi, segno);
1103 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1104 
1105 		if (end < START_BLOCK(sbi, segno + 1))
1106 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1107 		else
1108 			size = max_blocks;
1109 		map = (unsigned long *)(sentry->cur_valid_map);
1110 		offset = __find_rev_next_bit(map, size, offset);
1111 		f2fs_bug_on(sbi, offset != size);
1112 		blk = START_BLOCK(sbi, segno + 1);
1113 	}
1114 #endif
1115 }
1116 
1117 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1118 				struct discard_policy *dpolicy,
1119 				int discard_type, unsigned int granularity)
1120 {
1121 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122 
1123 	/* common policy */
1124 	dpolicy->type = discard_type;
1125 	dpolicy->sync = true;
1126 	dpolicy->ordered = false;
1127 	dpolicy->granularity = granularity;
1128 
1129 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1130 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1131 	dpolicy->timeout = false;
1132 
1133 	if (discard_type == DPOLICY_BG) {
1134 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1136 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1137 		dpolicy->io_aware = true;
1138 		dpolicy->sync = false;
1139 		dpolicy->ordered = true;
1140 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1141 			dpolicy->granularity = 1;
1142 			if (atomic_read(&dcc->discard_cmd_cnt))
1143 				dpolicy->max_interval =
1144 					DEF_MIN_DISCARD_ISSUE_TIME;
1145 		}
1146 	} else if (discard_type == DPOLICY_FORCE) {
1147 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150 		dpolicy->io_aware = false;
1151 	} else if (discard_type == DPOLICY_FSTRIM) {
1152 		dpolicy->io_aware = false;
1153 	} else if (discard_type == DPOLICY_UMOUNT) {
1154 		dpolicy->io_aware = false;
1155 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1156 		dpolicy->granularity = 1;
1157 		dpolicy->timeout = true;
1158 	}
1159 }
1160 
1161 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1162 				struct block_device *bdev, block_t lstart,
1163 				block_t start, block_t len);
1164 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1166 						struct discard_policy *dpolicy,
1167 						struct discard_cmd *dc,
1168 						unsigned int *issued)
1169 {
1170 	struct block_device *bdev = dc->bdev;
1171 	struct request_queue *q = bdev_get_queue(bdev);
1172 	unsigned int max_discard_blocks =
1173 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1174 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1175 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1176 					&(dcc->fstrim_list) : &(dcc->wait_list);
1177 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1178 	block_t lstart, start, len, total_len;
1179 	int err = 0;
1180 
1181 	if (dc->state != D_PREP)
1182 		return 0;
1183 
1184 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1185 		return 0;
1186 
1187 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1188 
1189 	lstart = dc->lstart;
1190 	start = dc->start;
1191 	len = dc->len;
1192 	total_len = len;
1193 
1194 	dc->len = 0;
1195 
1196 	while (total_len && *issued < dpolicy->max_requests && !err) {
1197 		struct bio *bio = NULL;
1198 		unsigned long flags;
1199 		bool last = true;
1200 
1201 		if (len > max_discard_blocks) {
1202 			len = max_discard_blocks;
1203 			last = false;
1204 		}
1205 
1206 		(*issued)++;
1207 		if (*issued == dpolicy->max_requests)
1208 			last = true;
1209 
1210 		dc->len += len;
1211 
1212 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1213 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1214 			err = -EIO;
1215 			goto submit;
1216 		}
1217 		err = __blkdev_issue_discard(bdev,
1218 					SECTOR_FROM_BLOCK(start),
1219 					SECTOR_FROM_BLOCK(len),
1220 					GFP_NOFS, 0, &bio);
1221 submit:
1222 		if (err) {
1223 			spin_lock_irqsave(&dc->lock, flags);
1224 			if (dc->state == D_PARTIAL)
1225 				dc->state = D_SUBMIT;
1226 			spin_unlock_irqrestore(&dc->lock, flags);
1227 
1228 			break;
1229 		}
1230 
1231 		f2fs_bug_on(sbi, !bio);
1232 
1233 		/*
1234 		 * should keep before submission to avoid D_DONE
1235 		 * right away
1236 		 */
1237 		spin_lock_irqsave(&dc->lock, flags);
1238 		if (last)
1239 			dc->state = D_SUBMIT;
1240 		else
1241 			dc->state = D_PARTIAL;
1242 		dc->bio_ref++;
1243 		spin_unlock_irqrestore(&dc->lock, flags);
1244 
1245 		atomic_inc(&dcc->queued_discard);
1246 		dc->queued++;
1247 		list_move_tail(&dc->list, wait_list);
1248 
1249 		/* sanity check on discard range */
1250 		__check_sit_bitmap(sbi, lstart, lstart + len);
1251 
1252 		bio->bi_private = dc;
1253 		bio->bi_end_io = f2fs_submit_discard_endio;
1254 		bio->bi_opf |= flag;
1255 		submit_bio(bio);
1256 
1257 		atomic_inc(&dcc->issued_discard);
1258 
1259 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1260 
1261 		lstart += len;
1262 		start += len;
1263 		total_len -= len;
1264 		len = total_len;
1265 	}
1266 
1267 	if (!err && len) {
1268 		dcc->undiscard_blks -= len;
1269 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1270 	}
1271 	return err;
1272 }
1273 
1274 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1275 				struct block_device *bdev, block_t lstart,
1276 				block_t start, block_t len,
1277 				struct rb_node **insert_p,
1278 				struct rb_node *insert_parent)
1279 {
1280 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281 	struct rb_node **p;
1282 	struct rb_node *parent = NULL;
1283 	bool leftmost = true;
1284 
1285 	if (insert_p && insert_parent) {
1286 		parent = insert_parent;
1287 		p = insert_p;
1288 		goto do_insert;
1289 	}
1290 
1291 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1292 							lstart, &leftmost);
1293 do_insert:
1294 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1295 								p, leftmost);
1296 }
1297 
1298 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1299 						struct discard_cmd *dc)
1300 {
1301 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1302 }
1303 
1304 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1305 				struct discard_cmd *dc, block_t blkaddr)
1306 {
1307 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1308 	struct discard_info di = dc->di;
1309 	bool modified = false;
1310 
1311 	if (dc->state == D_DONE || dc->len == 1) {
1312 		__remove_discard_cmd(sbi, dc);
1313 		return;
1314 	}
1315 
1316 	dcc->undiscard_blks -= di.len;
1317 
1318 	if (blkaddr > di.lstart) {
1319 		dc->len = blkaddr - dc->lstart;
1320 		dcc->undiscard_blks += dc->len;
1321 		__relocate_discard_cmd(dcc, dc);
1322 		modified = true;
1323 	}
1324 
1325 	if (blkaddr < di.lstart + di.len - 1) {
1326 		if (modified) {
1327 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1328 					di.start + blkaddr + 1 - di.lstart,
1329 					di.lstart + di.len - 1 - blkaddr,
1330 					NULL, NULL);
1331 		} else {
1332 			dc->lstart++;
1333 			dc->len--;
1334 			dc->start++;
1335 			dcc->undiscard_blks += dc->len;
1336 			__relocate_discard_cmd(dcc, dc);
1337 		}
1338 	}
1339 }
1340 
1341 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1342 				struct block_device *bdev, block_t lstart,
1343 				block_t start, block_t len)
1344 {
1345 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1347 	struct discard_cmd *dc;
1348 	struct discard_info di = {0};
1349 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1350 	struct request_queue *q = bdev_get_queue(bdev);
1351 	unsigned int max_discard_blocks =
1352 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1353 	block_t end = lstart + len;
1354 
1355 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1356 					NULL, lstart,
1357 					(struct rb_entry **)&prev_dc,
1358 					(struct rb_entry **)&next_dc,
1359 					&insert_p, &insert_parent, true, NULL);
1360 	if (dc)
1361 		prev_dc = dc;
1362 
1363 	if (!prev_dc) {
1364 		di.lstart = lstart;
1365 		di.len = next_dc ? next_dc->lstart - lstart : len;
1366 		di.len = min(di.len, len);
1367 		di.start = start;
1368 	}
1369 
1370 	while (1) {
1371 		struct rb_node *node;
1372 		bool merged = false;
1373 		struct discard_cmd *tdc = NULL;
1374 
1375 		if (prev_dc) {
1376 			di.lstart = prev_dc->lstart + prev_dc->len;
1377 			if (di.lstart < lstart)
1378 				di.lstart = lstart;
1379 			if (di.lstart >= end)
1380 				break;
1381 
1382 			if (!next_dc || next_dc->lstart > end)
1383 				di.len = end - di.lstart;
1384 			else
1385 				di.len = next_dc->lstart - di.lstart;
1386 			di.start = start + di.lstart - lstart;
1387 		}
1388 
1389 		if (!di.len)
1390 			goto next;
1391 
1392 		if (prev_dc && prev_dc->state == D_PREP &&
1393 			prev_dc->bdev == bdev &&
1394 			__is_discard_back_mergeable(&di, &prev_dc->di,
1395 							max_discard_blocks)) {
1396 			prev_dc->di.len += di.len;
1397 			dcc->undiscard_blks += di.len;
1398 			__relocate_discard_cmd(dcc, prev_dc);
1399 			di = prev_dc->di;
1400 			tdc = prev_dc;
1401 			merged = true;
1402 		}
1403 
1404 		if (next_dc && next_dc->state == D_PREP &&
1405 			next_dc->bdev == bdev &&
1406 			__is_discard_front_mergeable(&di, &next_dc->di,
1407 							max_discard_blocks)) {
1408 			next_dc->di.lstart = di.lstart;
1409 			next_dc->di.len += di.len;
1410 			next_dc->di.start = di.start;
1411 			dcc->undiscard_blks += di.len;
1412 			__relocate_discard_cmd(dcc, next_dc);
1413 			if (tdc)
1414 				__remove_discard_cmd(sbi, tdc);
1415 			merged = true;
1416 		}
1417 
1418 		if (!merged) {
1419 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1420 							di.len, NULL, NULL);
1421 		}
1422  next:
1423 		prev_dc = next_dc;
1424 		if (!prev_dc)
1425 			break;
1426 
1427 		node = rb_next(&prev_dc->rb_node);
1428 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429 	}
1430 }
1431 
1432 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1433 		struct block_device *bdev, block_t blkstart, block_t blklen)
1434 {
1435 	block_t lblkstart = blkstart;
1436 
1437 	if (!f2fs_bdev_support_discard(bdev))
1438 		return 0;
1439 
1440 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1441 
1442 	if (f2fs_is_multi_device(sbi)) {
1443 		int devi = f2fs_target_device_index(sbi, blkstart);
1444 
1445 		blkstart -= FDEV(devi).start_blk;
1446 	}
1447 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1448 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1449 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1450 	return 0;
1451 }
1452 
1453 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1454 					struct discard_policy *dpolicy)
1455 {
1456 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1459 	struct discard_cmd *dc;
1460 	struct blk_plug plug;
1461 	unsigned int pos = dcc->next_pos;
1462 	unsigned int issued = 0;
1463 	bool io_interrupted = false;
1464 
1465 	mutex_lock(&dcc->cmd_lock);
1466 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1467 					NULL, pos,
1468 					(struct rb_entry **)&prev_dc,
1469 					(struct rb_entry **)&next_dc,
1470 					&insert_p, &insert_parent, true, NULL);
1471 	if (!dc)
1472 		dc = next_dc;
1473 
1474 	blk_start_plug(&plug);
1475 
1476 	while (dc) {
1477 		struct rb_node *node;
1478 		int err = 0;
1479 
1480 		if (dc->state != D_PREP)
1481 			goto next;
1482 
1483 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1484 			io_interrupted = true;
1485 			break;
1486 		}
1487 
1488 		dcc->next_pos = dc->lstart + dc->len;
1489 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1490 
1491 		if (issued >= dpolicy->max_requests)
1492 			break;
1493 next:
1494 		node = rb_next(&dc->rb_node);
1495 		if (err)
1496 			__remove_discard_cmd(sbi, dc);
1497 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1498 	}
1499 
1500 	blk_finish_plug(&plug);
1501 
1502 	if (!dc)
1503 		dcc->next_pos = 0;
1504 
1505 	mutex_unlock(&dcc->cmd_lock);
1506 
1507 	if (!issued && io_interrupted)
1508 		issued = -1;
1509 
1510 	return issued;
1511 }
1512 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1513 					struct discard_policy *dpolicy);
1514 
1515 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1516 					struct discard_policy *dpolicy)
1517 {
1518 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519 	struct list_head *pend_list;
1520 	struct discard_cmd *dc, *tmp;
1521 	struct blk_plug plug;
1522 	int i, issued;
1523 	bool io_interrupted = false;
1524 
1525 	if (dpolicy->timeout)
1526 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1527 
1528 retry:
1529 	issued = 0;
1530 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1531 		if (dpolicy->timeout &&
1532 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533 			break;
1534 
1535 		if (i + 1 < dpolicy->granularity)
1536 			break;
1537 
1538 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1539 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1540 
1541 		pend_list = &dcc->pend_list[i];
1542 
1543 		mutex_lock(&dcc->cmd_lock);
1544 		if (list_empty(pend_list))
1545 			goto next;
1546 		if (unlikely(dcc->rbtree_check))
1547 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1548 							&dcc->root, false));
1549 		blk_start_plug(&plug);
1550 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1551 			f2fs_bug_on(sbi, dc->state != D_PREP);
1552 
1553 			if (dpolicy->timeout &&
1554 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1555 				break;
1556 
1557 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1558 						!is_idle(sbi, DISCARD_TIME)) {
1559 				io_interrupted = true;
1560 				break;
1561 			}
1562 
1563 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1564 
1565 			if (issued >= dpolicy->max_requests)
1566 				break;
1567 		}
1568 		blk_finish_plug(&plug);
1569 next:
1570 		mutex_unlock(&dcc->cmd_lock);
1571 
1572 		if (issued >= dpolicy->max_requests || io_interrupted)
1573 			break;
1574 	}
1575 
1576 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1577 		__wait_all_discard_cmd(sbi, dpolicy);
1578 		goto retry;
1579 	}
1580 
1581 	if (!issued && io_interrupted)
1582 		issued = -1;
1583 
1584 	return issued;
1585 }
1586 
1587 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1588 {
1589 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590 	struct list_head *pend_list;
1591 	struct discard_cmd *dc, *tmp;
1592 	int i;
1593 	bool dropped = false;
1594 
1595 	mutex_lock(&dcc->cmd_lock);
1596 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1597 		pend_list = &dcc->pend_list[i];
1598 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1599 			f2fs_bug_on(sbi, dc->state != D_PREP);
1600 			__remove_discard_cmd(sbi, dc);
1601 			dropped = true;
1602 		}
1603 	}
1604 	mutex_unlock(&dcc->cmd_lock);
1605 
1606 	return dropped;
1607 }
1608 
1609 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1610 {
1611 	__drop_discard_cmd(sbi);
1612 }
1613 
1614 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1615 							struct discard_cmd *dc)
1616 {
1617 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618 	unsigned int len = 0;
1619 
1620 	wait_for_completion_io(&dc->wait);
1621 	mutex_lock(&dcc->cmd_lock);
1622 	f2fs_bug_on(sbi, dc->state != D_DONE);
1623 	dc->ref--;
1624 	if (!dc->ref) {
1625 		if (!dc->error)
1626 			len = dc->len;
1627 		__remove_discard_cmd(sbi, dc);
1628 	}
1629 	mutex_unlock(&dcc->cmd_lock);
1630 
1631 	return len;
1632 }
1633 
1634 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1635 						struct discard_policy *dpolicy,
1636 						block_t start, block_t end)
1637 {
1638 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1640 					&(dcc->fstrim_list) : &(dcc->wait_list);
1641 	struct discard_cmd *dc, *tmp;
1642 	bool need_wait;
1643 	unsigned int trimmed = 0;
1644 
1645 next:
1646 	need_wait = false;
1647 
1648 	mutex_lock(&dcc->cmd_lock);
1649 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1650 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1651 			continue;
1652 		if (dc->len < dpolicy->granularity)
1653 			continue;
1654 		if (dc->state == D_DONE && !dc->ref) {
1655 			wait_for_completion_io(&dc->wait);
1656 			if (!dc->error)
1657 				trimmed += dc->len;
1658 			__remove_discard_cmd(sbi, dc);
1659 		} else {
1660 			dc->ref++;
1661 			need_wait = true;
1662 			break;
1663 		}
1664 	}
1665 	mutex_unlock(&dcc->cmd_lock);
1666 
1667 	if (need_wait) {
1668 		trimmed += __wait_one_discard_bio(sbi, dc);
1669 		goto next;
1670 	}
1671 
1672 	return trimmed;
1673 }
1674 
1675 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1676 						struct discard_policy *dpolicy)
1677 {
1678 	struct discard_policy dp;
1679 	unsigned int discard_blks;
1680 
1681 	if (dpolicy)
1682 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1683 
1684 	/* wait all */
1685 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1686 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1687 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1688 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1689 
1690 	return discard_blks;
1691 }
1692 
1693 /* This should be covered by global mutex, &sit_i->sentry_lock */
1694 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1695 {
1696 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 	struct discard_cmd *dc;
1698 	bool need_wait = false;
1699 
1700 	mutex_lock(&dcc->cmd_lock);
1701 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1702 							NULL, blkaddr);
1703 	if (dc) {
1704 		if (dc->state == D_PREP) {
1705 			__punch_discard_cmd(sbi, dc, blkaddr);
1706 		} else {
1707 			dc->ref++;
1708 			need_wait = true;
1709 		}
1710 	}
1711 	mutex_unlock(&dcc->cmd_lock);
1712 
1713 	if (need_wait)
1714 		__wait_one_discard_bio(sbi, dc);
1715 }
1716 
1717 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1718 {
1719 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720 
1721 	if (dcc && dcc->f2fs_issue_discard) {
1722 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1723 
1724 		dcc->f2fs_issue_discard = NULL;
1725 		kthread_stop(discard_thread);
1726 	}
1727 }
1728 
1729 /* This comes from f2fs_put_super */
1730 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1731 {
1732 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 	struct discard_policy dpolicy;
1734 	bool dropped;
1735 
1736 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1737 					dcc->discard_granularity);
1738 	__issue_discard_cmd(sbi, &dpolicy);
1739 	dropped = __drop_discard_cmd(sbi);
1740 
1741 	/* just to make sure there is no pending discard commands */
1742 	__wait_all_discard_cmd(sbi, NULL);
1743 
1744 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1745 	return dropped;
1746 }
1747 
1748 static int issue_discard_thread(void *data)
1749 {
1750 	struct f2fs_sb_info *sbi = data;
1751 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1752 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1753 	struct discard_policy dpolicy;
1754 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1755 	int issued;
1756 
1757 	set_freezable();
1758 
1759 	do {
1760 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1761 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1762 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1763 		else
1764 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1765 						dcc->discard_granularity);
1766 
1767 		if (!atomic_read(&dcc->discard_cmd_cnt))
1768 		       wait_ms = dpolicy.max_interval;
1769 
1770 		wait_event_interruptible_timeout(*q,
1771 				kthread_should_stop() || freezing(current) ||
1772 				dcc->discard_wake,
1773 				msecs_to_jiffies(wait_ms));
1774 
1775 		if (dcc->discard_wake)
1776 			dcc->discard_wake = 0;
1777 
1778 		/* clean up pending candidates before going to sleep */
1779 		if (atomic_read(&dcc->queued_discard))
1780 			__wait_all_discard_cmd(sbi, NULL);
1781 
1782 		if (try_to_freeze())
1783 			continue;
1784 		if (f2fs_readonly(sbi->sb))
1785 			continue;
1786 		if (kthread_should_stop())
1787 			return 0;
1788 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1789 			wait_ms = dpolicy.max_interval;
1790 			continue;
1791 		}
1792 		if (!atomic_read(&dcc->discard_cmd_cnt))
1793 			continue;
1794 
1795 		sb_start_intwrite(sbi->sb);
1796 
1797 		issued = __issue_discard_cmd(sbi, &dpolicy);
1798 		if (issued > 0) {
1799 			__wait_all_discard_cmd(sbi, &dpolicy);
1800 			wait_ms = dpolicy.min_interval;
1801 		} else if (issued == -1) {
1802 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1803 			if (!wait_ms)
1804 				wait_ms = dpolicy.mid_interval;
1805 		} else {
1806 			wait_ms = dpolicy.max_interval;
1807 		}
1808 
1809 		sb_end_intwrite(sbi->sb);
1810 
1811 	} while (!kthread_should_stop());
1812 	return 0;
1813 }
1814 
1815 #ifdef CONFIG_BLK_DEV_ZONED
1816 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1817 		struct block_device *bdev, block_t blkstart, block_t blklen)
1818 {
1819 	sector_t sector, nr_sects;
1820 	block_t lblkstart = blkstart;
1821 	int devi = 0;
1822 
1823 	if (f2fs_is_multi_device(sbi)) {
1824 		devi = f2fs_target_device_index(sbi, blkstart);
1825 		if (blkstart < FDEV(devi).start_blk ||
1826 		    blkstart > FDEV(devi).end_blk) {
1827 			f2fs_err(sbi, "Invalid block %x", blkstart);
1828 			return -EIO;
1829 		}
1830 		blkstart -= FDEV(devi).start_blk;
1831 	}
1832 
1833 	/* For sequential zones, reset the zone write pointer */
1834 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1835 		sector = SECTOR_FROM_BLOCK(blkstart);
1836 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1837 
1838 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1839 				nr_sects != bdev_zone_sectors(bdev)) {
1840 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1842 				 blkstart, blklen);
1843 			return -EIO;
1844 		}
1845 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1846 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1847 					sector, nr_sects, GFP_NOFS);
1848 	}
1849 
1850 	/* For conventional zones, use regular discard if supported */
1851 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1852 }
1853 #endif
1854 
1855 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1856 		struct block_device *bdev, block_t blkstart, block_t blklen)
1857 {
1858 #ifdef CONFIG_BLK_DEV_ZONED
1859 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1860 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1861 #endif
1862 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1863 }
1864 
1865 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1866 				block_t blkstart, block_t blklen)
1867 {
1868 	sector_t start = blkstart, len = 0;
1869 	struct block_device *bdev;
1870 	struct seg_entry *se;
1871 	unsigned int offset;
1872 	block_t i;
1873 	int err = 0;
1874 
1875 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1876 
1877 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1878 		if (i != start) {
1879 			struct block_device *bdev2 =
1880 				f2fs_target_device(sbi, i, NULL);
1881 
1882 			if (bdev2 != bdev) {
1883 				err = __issue_discard_async(sbi, bdev,
1884 						start, len);
1885 				if (err)
1886 					return err;
1887 				bdev = bdev2;
1888 				start = i;
1889 				len = 0;
1890 			}
1891 		}
1892 
1893 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1894 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1895 
1896 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1897 			sbi->discard_blks--;
1898 	}
1899 
1900 	if (len)
1901 		err = __issue_discard_async(sbi, bdev, start, len);
1902 	return err;
1903 }
1904 
1905 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1906 							bool check_only)
1907 {
1908 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1909 	int max_blocks = sbi->blocks_per_seg;
1910 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1911 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1912 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1913 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1914 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1915 	unsigned int start = 0, end = -1;
1916 	bool force = (cpc->reason & CP_DISCARD);
1917 	struct discard_entry *de = NULL;
1918 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1919 	int i;
1920 
1921 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1922 		return false;
1923 
1924 	if (!force) {
1925 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1926 			SM_I(sbi)->dcc_info->nr_discards >=
1927 				SM_I(sbi)->dcc_info->max_discards)
1928 			return false;
1929 	}
1930 
1931 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1932 	for (i = 0; i < entries; i++)
1933 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1934 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1935 
1936 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1937 				SM_I(sbi)->dcc_info->max_discards) {
1938 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1939 		if (start >= max_blocks)
1940 			break;
1941 
1942 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1943 		if (force && start && end != max_blocks
1944 					&& (end - start) < cpc->trim_minlen)
1945 			continue;
1946 
1947 		if (check_only)
1948 			return true;
1949 
1950 		if (!de) {
1951 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1952 								GFP_F2FS_ZERO);
1953 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1954 			list_add_tail(&de->list, head);
1955 		}
1956 
1957 		for (i = start; i < end; i++)
1958 			__set_bit_le(i, (void *)de->discard_map);
1959 
1960 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1961 	}
1962 	return false;
1963 }
1964 
1965 static void release_discard_addr(struct discard_entry *entry)
1966 {
1967 	list_del(&entry->list);
1968 	kmem_cache_free(discard_entry_slab, entry);
1969 }
1970 
1971 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1972 {
1973 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1974 	struct discard_entry *entry, *this;
1975 
1976 	/* drop caches */
1977 	list_for_each_entry_safe(entry, this, head, list)
1978 		release_discard_addr(entry);
1979 }
1980 
1981 /*
1982  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1983  */
1984 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1985 {
1986 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1987 	unsigned int segno;
1988 
1989 	mutex_lock(&dirty_i->seglist_lock);
1990 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1991 		__set_test_and_free(sbi, segno, false);
1992 	mutex_unlock(&dirty_i->seglist_lock);
1993 }
1994 
1995 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1996 						struct cp_control *cpc)
1997 {
1998 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1999 	struct list_head *head = &dcc->entry_list;
2000 	struct discard_entry *entry, *this;
2001 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2003 	unsigned int start = 0, end = -1;
2004 	unsigned int secno, start_segno;
2005 	bool force = (cpc->reason & CP_DISCARD);
2006 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2007 
2008 	mutex_lock(&dirty_i->seglist_lock);
2009 
2010 	while (1) {
2011 		int i;
2012 
2013 		if (need_align && end != -1)
2014 			end--;
2015 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2016 		if (start >= MAIN_SEGS(sbi))
2017 			break;
2018 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2019 								start + 1);
2020 
2021 		if (need_align) {
2022 			start = rounddown(start, sbi->segs_per_sec);
2023 			end = roundup(end, sbi->segs_per_sec);
2024 		}
2025 
2026 		for (i = start; i < end; i++) {
2027 			if (test_and_clear_bit(i, prefree_map))
2028 				dirty_i->nr_dirty[PRE]--;
2029 		}
2030 
2031 		if (!f2fs_realtime_discard_enable(sbi))
2032 			continue;
2033 
2034 		if (force && start >= cpc->trim_start &&
2035 					(end - 1) <= cpc->trim_end)
2036 				continue;
2037 
2038 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2039 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2040 				(end - start) << sbi->log_blocks_per_seg);
2041 			continue;
2042 		}
2043 next:
2044 		secno = GET_SEC_FROM_SEG(sbi, start);
2045 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2046 		if (!IS_CURSEC(sbi, secno) &&
2047 			!get_valid_blocks(sbi, start, true))
2048 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2049 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2050 
2051 		start = start_segno + sbi->segs_per_sec;
2052 		if (start < end)
2053 			goto next;
2054 		else
2055 			end = start - 1;
2056 	}
2057 	mutex_unlock(&dirty_i->seglist_lock);
2058 
2059 	/* send small discards */
2060 	list_for_each_entry_safe(entry, this, head, list) {
2061 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2062 		bool is_valid = test_bit_le(0, entry->discard_map);
2063 
2064 find_next:
2065 		if (is_valid) {
2066 			next_pos = find_next_zero_bit_le(entry->discard_map,
2067 					sbi->blocks_per_seg, cur_pos);
2068 			len = next_pos - cur_pos;
2069 
2070 			if (f2fs_sb_has_blkzoned(sbi) ||
2071 			    (force && len < cpc->trim_minlen))
2072 				goto skip;
2073 
2074 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2075 									len);
2076 			total_len += len;
2077 		} else {
2078 			next_pos = find_next_bit_le(entry->discard_map,
2079 					sbi->blocks_per_seg, cur_pos);
2080 		}
2081 skip:
2082 		cur_pos = next_pos;
2083 		is_valid = !is_valid;
2084 
2085 		if (cur_pos < sbi->blocks_per_seg)
2086 			goto find_next;
2087 
2088 		release_discard_addr(entry);
2089 		dcc->nr_discards -= total_len;
2090 	}
2091 
2092 	wake_up_discard_thread(sbi, false);
2093 }
2094 
2095 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2096 {
2097 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2098 	struct discard_cmd_control *dcc;
2099 	int err = 0, i;
2100 
2101 	if (SM_I(sbi)->dcc_info) {
2102 		dcc = SM_I(sbi)->dcc_info;
2103 		goto init_thread;
2104 	}
2105 
2106 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2107 	if (!dcc)
2108 		return -ENOMEM;
2109 
2110 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2111 	INIT_LIST_HEAD(&dcc->entry_list);
2112 	for (i = 0; i < MAX_PLIST_NUM; i++)
2113 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2114 	INIT_LIST_HEAD(&dcc->wait_list);
2115 	INIT_LIST_HEAD(&dcc->fstrim_list);
2116 	mutex_init(&dcc->cmd_lock);
2117 	atomic_set(&dcc->issued_discard, 0);
2118 	atomic_set(&dcc->queued_discard, 0);
2119 	atomic_set(&dcc->discard_cmd_cnt, 0);
2120 	dcc->nr_discards = 0;
2121 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2122 	dcc->undiscard_blks = 0;
2123 	dcc->next_pos = 0;
2124 	dcc->root = RB_ROOT_CACHED;
2125 	dcc->rbtree_check = false;
2126 
2127 	init_waitqueue_head(&dcc->discard_wait_queue);
2128 	SM_I(sbi)->dcc_info = dcc;
2129 init_thread:
2130 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2131 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2132 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2133 		err = PTR_ERR(dcc->f2fs_issue_discard);
2134 		kfree(dcc);
2135 		SM_I(sbi)->dcc_info = NULL;
2136 		return err;
2137 	}
2138 
2139 	return err;
2140 }
2141 
2142 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2143 {
2144 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145 
2146 	if (!dcc)
2147 		return;
2148 
2149 	f2fs_stop_discard_thread(sbi);
2150 
2151 	/*
2152 	 * Recovery can cache discard commands, so in error path of
2153 	 * fill_super(), it needs to give a chance to handle them.
2154 	 */
2155 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2156 		f2fs_issue_discard_timeout(sbi);
2157 
2158 	kfree(dcc);
2159 	SM_I(sbi)->dcc_info = NULL;
2160 }
2161 
2162 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2163 {
2164 	struct sit_info *sit_i = SIT_I(sbi);
2165 
2166 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2167 		sit_i->dirty_sentries++;
2168 		return false;
2169 	}
2170 
2171 	return true;
2172 }
2173 
2174 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2175 					unsigned int segno, int modified)
2176 {
2177 	struct seg_entry *se = get_seg_entry(sbi, segno);
2178 
2179 	se->type = type;
2180 	if (modified)
2181 		__mark_sit_entry_dirty(sbi, segno);
2182 }
2183 
2184 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2185 								block_t blkaddr)
2186 {
2187 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2188 
2189 	if (segno == NULL_SEGNO)
2190 		return 0;
2191 	return get_seg_entry(sbi, segno)->mtime;
2192 }
2193 
2194 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2195 						unsigned long long old_mtime)
2196 {
2197 	struct seg_entry *se;
2198 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2199 	unsigned long long ctime = get_mtime(sbi, false);
2200 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2201 
2202 	if (segno == NULL_SEGNO)
2203 		return;
2204 
2205 	se = get_seg_entry(sbi, segno);
2206 
2207 	if (!se->mtime)
2208 		se->mtime = mtime;
2209 	else
2210 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2211 						se->valid_blocks + 1);
2212 
2213 	if (ctime > SIT_I(sbi)->max_mtime)
2214 		SIT_I(sbi)->max_mtime = ctime;
2215 }
2216 
2217 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2218 {
2219 	struct seg_entry *se;
2220 	unsigned int segno, offset;
2221 	long int new_vblocks;
2222 	bool exist;
2223 #ifdef CONFIG_F2FS_CHECK_FS
2224 	bool mir_exist;
2225 #endif
2226 
2227 	segno = GET_SEGNO(sbi, blkaddr);
2228 
2229 	se = get_seg_entry(sbi, segno);
2230 	new_vblocks = se->valid_blocks + del;
2231 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232 
2233 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2234 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2235 
2236 	se->valid_blocks = new_vblocks;
2237 
2238 	/* Update valid block bitmap */
2239 	if (del > 0) {
2240 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2241 #ifdef CONFIG_F2FS_CHECK_FS
2242 		mir_exist = f2fs_test_and_set_bit(offset,
2243 						se->cur_valid_map_mir);
2244 		if (unlikely(exist != mir_exist)) {
2245 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2246 				 blkaddr, exist);
2247 			f2fs_bug_on(sbi, 1);
2248 		}
2249 #endif
2250 		if (unlikely(exist)) {
2251 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2252 				 blkaddr);
2253 			f2fs_bug_on(sbi, 1);
2254 			se->valid_blocks--;
2255 			del = 0;
2256 		}
2257 
2258 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2259 			sbi->discard_blks--;
2260 
2261 		/*
2262 		 * SSR should never reuse block which is checkpointed
2263 		 * or newly invalidated.
2264 		 */
2265 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2266 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2267 				se->ckpt_valid_blocks++;
2268 		}
2269 	} else {
2270 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2271 #ifdef CONFIG_F2FS_CHECK_FS
2272 		mir_exist = f2fs_test_and_clear_bit(offset,
2273 						se->cur_valid_map_mir);
2274 		if (unlikely(exist != mir_exist)) {
2275 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2276 				 blkaddr, exist);
2277 			f2fs_bug_on(sbi, 1);
2278 		}
2279 #endif
2280 		if (unlikely(!exist)) {
2281 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2282 				 blkaddr);
2283 			f2fs_bug_on(sbi, 1);
2284 			se->valid_blocks++;
2285 			del = 0;
2286 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2287 			/*
2288 			 * If checkpoints are off, we must not reuse data that
2289 			 * was used in the previous checkpoint. If it was used
2290 			 * before, we must track that to know how much space we
2291 			 * really have.
2292 			 */
2293 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2294 				spin_lock(&sbi->stat_lock);
2295 				sbi->unusable_block_count++;
2296 				spin_unlock(&sbi->stat_lock);
2297 			}
2298 		}
2299 
2300 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2301 			sbi->discard_blks++;
2302 	}
2303 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2304 		se->ckpt_valid_blocks += del;
2305 
2306 	__mark_sit_entry_dirty(sbi, segno);
2307 
2308 	/* update total number of valid blocks to be written in ckpt area */
2309 	SIT_I(sbi)->written_valid_blocks += del;
2310 
2311 	if (__is_large_section(sbi))
2312 		get_sec_entry(sbi, segno)->valid_blocks += del;
2313 }
2314 
2315 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2316 {
2317 	unsigned int segno = GET_SEGNO(sbi, addr);
2318 	struct sit_info *sit_i = SIT_I(sbi);
2319 
2320 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2321 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2322 		return;
2323 
2324 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2325 	f2fs_invalidate_compress_page(sbi, addr);
2326 
2327 	/* add it into sit main buffer */
2328 	down_write(&sit_i->sentry_lock);
2329 
2330 	update_segment_mtime(sbi, addr, 0);
2331 	update_sit_entry(sbi, addr, -1);
2332 
2333 	/* add it into dirty seglist */
2334 	locate_dirty_segment(sbi, segno);
2335 
2336 	up_write(&sit_i->sentry_lock);
2337 }
2338 
2339 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2340 {
2341 	struct sit_info *sit_i = SIT_I(sbi);
2342 	unsigned int segno, offset;
2343 	struct seg_entry *se;
2344 	bool is_cp = false;
2345 
2346 	if (!__is_valid_data_blkaddr(blkaddr))
2347 		return true;
2348 
2349 	down_read(&sit_i->sentry_lock);
2350 
2351 	segno = GET_SEGNO(sbi, blkaddr);
2352 	se = get_seg_entry(sbi, segno);
2353 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2354 
2355 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2356 		is_cp = true;
2357 
2358 	up_read(&sit_i->sentry_lock);
2359 
2360 	return is_cp;
2361 }
2362 
2363 /*
2364  * This function should be resided under the curseg_mutex lock
2365  */
2366 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2367 					struct f2fs_summary *sum)
2368 {
2369 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2370 	void *addr = curseg->sum_blk;
2371 
2372 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2373 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2374 }
2375 
2376 /*
2377  * Calculate the number of current summary pages for writing
2378  */
2379 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2380 {
2381 	int valid_sum_count = 0;
2382 	int i, sum_in_page;
2383 
2384 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2385 		if (sbi->ckpt->alloc_type[i] == SSR)
2386 			valid_sum_count += sbi->blocks_per_seg;
2387 		else {
2388 			if (for_ra)
2389 				valid_sum_count += le16_to_cpu(
2390 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2391 			else
2392 				valid_sum_count += curseg_blkoff(sbi, i);
2393 		}
2394 	}
2395 
2396 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2397 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2398 	if (valid_sum_count <= sum_in_page)
2399 		return 1;
2400 	else if ((valid_sum_count - sum_in_page) <=
2401 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2402 		return 2;
2403 	return 3;
2404 }
2405 
2406 /*
2407  * Caller should put this summary page
2408  */
2409 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2410 {
2411 	if (unlikely(f2fs_cp_error(sbi)))
2412 		return ERR_PTR(-EIO);
2413 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2414 }
2415 
2416 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2417 					void *src, block_t blk_addr)
2418 {
2419 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2420 
2421 	memcpy(page_address(page), src, PAGE_SIZE);
2422 	set_page_dirty(page);
2423 	f2fs_put_page(page, 1);
2424 }
2425 
2426 static void write_sum_page(struct f2fs_sb_info *sbi,
2427 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2428 {
2429 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2430 }
2431 
2432 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2433 						int type, block_t blk_addr)
2434 {
2435 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2436 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2437 	struct f2fs_summary_block *src = curseg->sum_blk;
2438 	struct f2fs_summary_block *dst;
2439 
2440 	dst = (struct f2fs_summary_block *)page_address(page);
2441 	memset(dst, 0, PAGE_SIZE);
2442 
2443 	mutex_lock(&curseg->curseg_mutex);
2444 
2445 	down_read(&curseg->journal_rwsem);
2446 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2447 	up_read(&curseg->journal_rwsem);
2448 
2449 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2450 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2451 
2452 	mutex_unlock(&curseg->curseg_mutex);
2453 
2454 	set_page_dirty(page);
2455 	f2fs_put_page(page, 1);
2456 }
2457 
2458 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2459 				struct curseg_info *curseg, int type)
2460 {
2461 	unsigned int segno = curseg->segno + 1;
2462 	struct free_segmap_info *free_i = FREE_I(sbi);
2463 
2464 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2465 		return !test_bit(segno, free_i->free_segmap);
2466 	return 0;
2467 }
2468 
2469 /*
2470  * Find a new segment from the free segments bitmap to right order
2471  * This function should be returned with success, otherwise BUG
2472  */
2473 static void get_new_segment(struct f2fs_sb_info *sbi,
2474 			unsigned int *newseg, bool new_sec, int dir)
2475 {
2476 	struct free_segmap_info *free_i = FREE_I(sbi);
2477 	unsigned int segno, secno, zoneno;
2478 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2479 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2480 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2481 	unsigned int left_start = hint;
2482 	bool init = true;
2483 	int go_left = 0;
2484 	int i;
2485 
2486 	spin_lock(&free_i->segmap_lock);
2487 
2488 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2489 		segno = find_next_zero_bit(free_i->free_segmap,
2490 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2491 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2492 			goto got_it;
2493 	}
2494 find_other_zone:
2495 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2496 	if (secno >= MAIN_SECS(sbi)) {
2497 		if (dir == ALLOC_RIGHT) {
2498 			secno = find_next_zero_bit(free_i->free_secmap,
2499 							MAIN_SECS(sbi), 0);
2500 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2501 		} else {
2502 			go_left = 1;
2503 			left_start = hint - 1;
2504 		}
2505 	}
2506 	if (go_left == 0)
2507 		goto skip_left;
2508 
2509 	while (test_bit(left_start, free_i->free_secmap)) {
2510 		if (left_start > 0) {
2511 			left_start--;
2512 			continue;
2513 		}
2514 		left_start = find_next_zero_bit(free_i->free_secmap,
2515 							MAIN_SECS(sbi), 0);
2516 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2517 		break;
2518 	}
2519 	secno = left_start;
2520 skip_left:
2521 	segno = GET_SEG_FROM_SEC(sbi, secno);
2522 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2523 
2524 	/* give up on finding another zone */
2525 	if (!init)
2526 		goto got_it;
2527 	if (sbi->secs_per_zone == 1)
2528 		goto got_it;
2529 	if (zoneno == old_zoneno)
2530 		goto got_it;
2531 	if (dir == ALLOC_LEFT) {
2532 		if (!go_left && zoneno + 1 >= total_zones)
2533 			goto got_it;
2534 		if (go_left && zoneno == 0)
2535 			goto got_it;
2536 	}
2537 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2538 		if (CURSEG_I(sbi, i)->zone == zoneno)
2539 			break;
2540 
2541 	if (i < NR_CURSEG_TYPE) {
2542 		/* zone is in user, try another */
2543 		if (go_left)
2544 			hint = zoneno * sbi->secs_per_zone - 1;
2545 		else if (zoneno + 1 >= total_zones)
2546 			hint = 0;
2547 		else
2548 			hint = (zoneno + 1) * sbi->secs_per_zone;
2549 		init = false;
2550 		goto find_other_zone;
2551 	}
2552 got_it:
2553 	/* set it as dirty segment in free segmap */
2554 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2555 	__set_inuse(sbi, segno);
2556 	*newseg = segno;
2557 	spin_unlock(&free_i->segmap_lock);
2558 }
2559 
2560 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2561 {
2562 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2563 	struct summary_footer *sum_footer;
2564 	unsigned short seg_type = curseg->seg_type;
2565 
2566 	curseg->inited = true;
2567 	curseg->segno = curseg->next_segno;
2568 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2569 	curseg->next_blkoff = 0;
2570 	curseg->next_segno = NULL_SEGNO;
2571 
2572 	sum_footer = &(curseg->sum_blk->footer);
2573 	memset(sum_footer, 0, sizeof(struct summary_footer));
2574 
2575 	sanity_check_seg_type(sbi, seg_type);
2576 
2577 	if (IS_DATASEG(seg_type))
2578 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2579 	if (IS_NODESEG(seg_type))
2580 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2581 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2582 }
2583 
2584 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2585 {
2586 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2587 	unsigned short seg_type = curseg->seg_type;
2588 
2589 	sanity_check_seg_type(sbi, seg_type);
2590 
2591 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2592 	if (__is_large_section(sbi))
2593 		return curseg->segno;
2594 
2595 	/* inmem log may not locate on any segment after mount */
2596 	if (!curseg->inited)
2597 		return 0;
2598 
2599 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600 		return 0;
2601 
2602 	if (test_opt(sbi, NOHEAP) &&
2603 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2604 		return 0;
2605 
2606 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2607 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2608 
2609 	/* find segments from 0 to reuse freed segments */
2610 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2611 		return 0;
2612 
2613 	return curseg->segno;
2614 }
2615 
2616 /*
2617  * Allocate a current working segment.
2618  * This function always allocates a free segment in LFS manner.
2619  */
2620 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2621 {
2622 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2623 	unsigned short seg_type = curseg->seg_type;
2624 	unsigned int segno = curseg->segno;
2625 	int dir = ALLOC_LEFT;
2626 
2627 	if (curseg->inited)
2628 		write_sum_page(sbi, curseg->sum_blk,
2629 				GET_SUM_BLOCK(sbi, segno));
2630 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2631 		dir = ALLOC_RIGHT;
2632 
2633 	if (test_opt(sbi, NOHEAP))
2634 		dir = ALLOC_RIGHT;
2635 
2636 	segno = __get_next_segno(sbi, type);
2637 	get_new_segment(sbi, &segno, new_sec, dir);
2638 	curseg->next_segno = segno;
2639 	reset_curseg(sbi, type, 1);
2640 	curseg->alloc_type = LFS;
2641 }
2642 
2643 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2644 					int segno, block_t start)
2645 {
2646 	struct seg_entry *se = get_seg_entry(sbi, segno);
2647 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2648 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2649 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2650 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2651 	int i;
2652 
2653 	for (i = 0; i < entries; i++)
2654 		target_map[i] = ckpt_map[i] | cur_map[i];
2655 
2656 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2657 }
2658 
2659 /*
2660  * If a segment is written by LFS manner, next block offset is just obtained
2661  * by increasing the current block offset. However, if a segment is written by
2662  * SSR manner, next block offset obtained by calling __next_free_blkoff
2663  */
2664 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2665 				struct curseg_info *seg)
2666 {
2667 	if (seg->alloc_type == SSR)
2668 		seg->next_blkoff =
2669 			__next_free_blkoff(sbi, seg->segno,
2670 						seg->next_blkoff + 1);
2671 	else
2672 		seg->next_blkoff++;
2673 }
2674 
2675 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2676 {
2677 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2678 }
2679 
2680 /*
2681  * This function always allocates a used segment(from dirty seglist) by SSR
2682  * manner, so it should recover the existing segment information of valid blocks
2683  */
2684 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2685 {
2686 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2687 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2688 	unsigned int new_segno = curseg->next_segno;
2689 	struct f2fs_summary_block *sum_node;
2690 	struct page *sum_page;
2691 
2692 	if (flush)
2693 		write_sum_page(sbi, curseg->sum_blk,
2694 					GET_SUM_BLOCK(sbi, curseg->segno));
2695 
2696 	__set_test_and_inuse(sbi, new_segno);
2697 
2698 	mutex_lock(&dirty_i->seglist_lock);
2699 	__remove_dirty_segment(sbi, new_segno, PRE);
2700 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2701 	mutex_unlock(&dirty_i->seglist_lock);
2702 
2703 	reset_curseg(sbi, type, 1);
2704 	curseg->alloc_type = SSR;
2705 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2706 
2707 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2708 	if (IS_ERR(sum_page)) {
2709 		/* GC won't be able to use stale summary pages by cp_error */
2710 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2711 		return;
2712 	}
2713 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2714 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2715 	f2fs_put_page(sum_page, 1);
2716 }
2717 
2718 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2719 				int alloc_mode, unsigned long long age);
2720 
2721 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2722 					int target_type, int alloc_mode,
2723 					unsigned long long age)
2724 {
2725 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2726 
2727 	curseg->seg_type = target_type;
2728 
2729 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2730 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2731 
2732 		curseg->seg_type = se->type;
2733 		change_curseg(sbi, type, true);
2734 	} else {
2735 		/* allocate cold segment by default */
2736 		curseg->seg_type = CURSEG_COLD_DATA;
2737 		new_curseg(sbi, type, true);
2738 	}
2739 	stat_inc_seg_type(sbi, curseg);
2740 }
2741 
2742 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2743 {
2744 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2745 
2746 	if (!sbi->am.atgc_enabled)
2747 		return;
2748 
2749 	down_read(&SM_I(sbi)->curseg_lock);
2750 
2751 	mutex_lock(&curseg->curseg_mutex);
2752 	down_write(&SIT_I(sbi)->sentry_lock);
2753 
2754 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2755 
2756 	up_write(&SIT_I(sbi)->sentry_lock);
2757 	mutex_unlock(&curseg->curseg_mutex);
2758 
2759 	up_read(&SM_I(sbi)->curseg_lock);
2760 
2761 }
2762 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2763 {
2764 	__f2fs_init_atgc_curseg(sbi);
2765 }
2766 
2767 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2768 {
2769 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2770 
2771 	mutex_lock(&curseg->curseg_mutex);
2772 	if (!curseg->inited)
2773 		goto out;
2774 
2775 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2776 		write_sum_page(sbi, curseg->sum_blk,
2777 				GET_SUM_BLOCK(sbi, curseg->segno));
2778 	} else {
2779 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2780 		__set_test_and_free(sbi, curseg->segno, true);
2781 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2782 	}
2783 out:
2784 	mutex_unlock(&curseg->curseg_mutex);
2785 }
2786 
2787 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2788 {
2789 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2790 
2791 	if (sbi->am.atgc_enabled)
2792 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2793 }
2794 
2795 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2796 {
2797 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2798 
2799 	mutex_lock(&curseg->curseg_mutex);
2800 	if (!curseg->inited)
2801 		goto out;
2802 	if (get_valid_blocks(sbi, curseg->segno, false))
2803 		goto out;
2804 
2805 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2806 	__set_test_and_inuse(sbi, curseg->segno);
2807 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2808 out:
2809 	mutex_unlock(&curseg->curseg_mutex);
2810 }
2811 
2812 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2813 {
2814 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2815 
2816 	if (sbi->am.atgc_enabled)
2817 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2818 }
2819 
2820 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2821 				int alloc_mode, unsigned long long age)
2822 {
2823 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2824 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2825 	unsigned segno = NULL_SEGNO;
2826 	unsigned short seg_type = curseg->seg_type;
2827 	int i, cnt;
2828 	bool reversed = false;
2829 
2830 	sanity_check_seg_type(sbi, seg_type);
2831 
2832 	/* f2fs_need_SSR() already forces to do this */
2833 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2834 		curseg->next_segno = segno;
2835 		return 1;
2836 	}
2837 
2838 	/* For node segments, let's do SSR more intensively */
2839 	if (IS_NODESEG(seg_type)) {
2840 		if (seg_type >= CURSEG_WARM_NODE) {
2841 			reversed = true;
2842 			i = CURSEG_COLD_NODE;
2843 		} else {
2844 			i = CURSEG_HOT_NODE;
2845 		}
2846 		cnt = NR_CURSEG_NODE_TYPE;
2847 	} else {
2848 		if (seg_type >= CURSEG_WARM_DATA) {
2849 			reversed = true;
2850 			i = CURSEG_COLD_DATA;
2851 		} else {
2852 			i = CURSEG_HOT_DATA;
2853 		}
2854 		cnt = NR_CURSEG_DATA_TYPE;
2855 	}
2856 
2857 	for (; cnt-- > 0; reversed ? i-- : i++) {
2858 		if (i == seg_type)
2859 			continue;
2860 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2861 			curseg->next_segno = segno;
2862 			return 1;
2863 		}
2864 	}
2865 
2866 	/* find valid_blocks=0 in dirty list */
2867 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2868 		segno = get_free_segment(sbi);
2869 		if (segno != NULL_SEGNO) {
2870 			curseg->next_segno = segno;
2871 			return 1;
2872 		}
2873 	}
2874 	return 0;
2875 }
2876 
2877 /*
2878  * flush out current segment and replace it with new segment
2879  * This function should be returned with success, otherwise BUG
2880  */
2881 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2882 						int type, bool force)
2883 {
2884 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2885 
2886 	if (force)
2887 		new_curseg(sbi, type, true);
2888 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2889 					curseg->seg_type == CURSEG_WARM_NODE)
2890 		new_curseg(sbi, type, false);
2891 	else if (curseg->alloc_type == LFS &&
2892 			is_next_segment_free(sbi, curseg, type) &&
2893 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2894 		new_curseg(sbi, type, false);
2895 	else if (f2fs_need_SSR(sbi) &&
2896 			get_ssr_segment(sbi, type, SSR, 0))
2897 		change_curseg(sbi, type, true);
2898 	else
2899 		new_curseg(sbi, type, false);
2900 
2901 	stat_inc_seg_type(sbi, curseg);
2902 }
2903 
2904 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2905 					unsigned int start, unsigned int end)
2906 {
2907 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2908 	unsigned int segno;
2909 
2910 	down_read(&SM_I(sbi)->curseg_lock);
2911 	mutex_lock(&curseg->curseg_mutex);
2912 	down_write(&SIT_I(sbi)->sentry_lock);
2913 
2914 	segno = CURSEG_I(sbi, type)->segno;
2915 	if (segno < start || segno > end)
2916 		goto unlock;
2917 
2918 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2919 		change_curseg(sbi, type, true);
2920 	else
2921 		new_curseg(sbi, type, true);
2922 
2923 	stat_inc_seg_type(sbi, curseg);
2924 
2925 	locate_dirty_segment(sbi, segno);
2926 unlock:
2927 	up_write(&SIT_I(sbi)->sentry_lock);
2928 
2929 	if (segno != curseg->segno)
2930 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2931 			    type, segno, curseg->segno);
2932 
2933 	mutex_unlock(&curseg->curseg_mutex);
2934 	up_read(&SM_I(sbi)->curseg_lock);
2935 }
2936 
2937 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2938 						bool new_sec, bool force)
2939 {
2940 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2941 	unsigned int old_segno;
2942 
2943 	if (!curseg->inited)
2944 		goto alloc;
2945 
2946 	if (force || curseg->next_blkoff ||
2947 		get_valid_blocks(sbi, curseg->segno, new_sec))
2948 		goto alloc;
2949 
2950 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2951 		return;
2952 alloc:
2953 	old_segno = curseg->segno;
2954 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2955 	locate_dirty_segment(sbi, old_segno);
2956 }
2957 
2958 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2959 						int type, bool force)
2960 {
2961 	__allocate_new_segment(sbi, type, true, force);
2962 }
2963 
2964 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2965 {
2966 	down_read(&SM_I(sbi)->curseg_lock);
2967 	down_write(&SIT_I(sbi)->sentry_lock);
2968 	__allocate_new_section(sbi, type, force);
2969 	up_write(&SIT_I(sbi)->sentry_lock);
2970 	up_read(&SM_I(sbi)->curseg_lock);
2971 }
2972 
2973 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2974 {
2975 	int i;
2976 
2977 	down_read(&SM_I(sbi)->curseg_lock);
2978 	down_write(&SIT_I(sbi)->sentry_lock);
2979 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2980 		__allocate_new_segment(sbi, i, false, false);
2981 	up_write(&SIT_I(sbi)->sentry_lock);
2982 	up_read(&SM_I(sbi)->curseg_lock);
2983 }
2984 
2985 static const struct segment_allocation default_salloc_ops = {
2986 	.allocate_segment = allocate_segment_by_default,
2987 };
2988 
2989 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2990 						struct cp_control *cpc)
2991 {
2992 	__u64 trim_start = cpc->trim_start;
2993 	bool has_candidate = false;
2994 
2995 	down_write(&SIT_I(sbi)->sentry_lock);
2996 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2997 		if (add_discard_addrs(sbi, cpc, true)) {
2998 			has_candidate = true;
2999 			break;
3000 		}
3001 	}
3002 	up_write(&SIT_I(sbi)->sentry_lock);
3003 
3004 	cpc->trim_start = trim_start;
3005 	return has_candidate;
3006 }
3007 
3008 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3009 					struct discard_policy *dpolicy,
3010 					unsigned int start, unsigned int end)
3011 {
3012 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3013 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3014 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3015 	struct discard_cmd *dc;
3016 	struct blk_plug plug;
3017 	int issued;
3018 	unsigned int trimmed = 0;
3019 
3020 next:
3021 	issued = 0;
3022 
3023 	mutex_lock(&dcc->cmd_lock);
3024 	if (unlikely(dcc->rbtree_check))
3025 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3026 							&dcc->root, false));
3027 
3028 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3029 					NULL, start,
3030 					(struct rb_entry **)&prev_dc,
3031 					(struct rb_entry **)&next_dc,
3032 					&insert_p, &insert_parent, true, NULL);
3033 	if (!dc)
3034 		dc = next_dc;
3035 
3036 	blk_start_plug(&plug);
3037 
3038 	while (dc && dc->lstart <= end) {
3039 		struct rb_node *node;
3040 		int err = 0;
3041 
3042 		if (dc->len < dpolicy->granularity)
3043 			goto skip;
3044 
3045 		if (dc->state != D_PREP) {
3046 			list_move_tail(&dc->list, &dcc->fstrim_list);
3047 			goto skip;
3048 		}
3049 
3050 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3051 
3052 		if (issued >= dpolicy->max_requests) {
3053 			start = dc->lstart + dc->len;
3054 
3055 			if (err)
3056 				__remove_discard_cmd(sbi, dc);
3057 
3058 			blk_finish_plug(&plug);
3059 			mutex_unlock(&dcc->cmd_lock);
3060 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3061 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3062 			goto next;
3063 		}
3064 skip:
3065 		node = rb_next(&dc->rb_node);
3066 		if (err)
3067 			__remove_discard_cmd(sbi, dc);
3068 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3069 
3070 		if (fatal_signal_pending(current))
3071 			break;
3072 	}
3073 
3074 	blk_finish_plug(&plug);
3075 	mutex_unlock(&dcc->cmd_lock);
3076 
3077 	return trimmed;
3078 }
3079 
3080 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3081 {
3082 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3083 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3084 	unsigned int start_segno, end_segno;
3085 	block_t start_block, end_block;
3086 	struct cp_control cpc;
3087 	struct discard_policy dpolicy;
3088 	unsigned long long trimmed = 0;
3089 	int err = 0;
3090 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3091 
3092 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3093 		return -EINVAL;
3094 
3095 	if (end < MAIN_BLKADDR(sbi))
3096 		goto out;
3097 
3098 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3099 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3100 		return -EFSCORRUPTED;
3101 	}
3102 
3103 	/* start/end segment number in main_area */
3104 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3105 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3106 						GET_SEGNO(sbi, end);
3107 	if (need_align) {
3108 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3109 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3110 	}
3111 
3112 	cpc.reason = CP_DISCARD;
3113 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3114 	cpc.trim_start = start_segno;
3115 	cpc.trim_end = end_segno;
3116 
3117 	if (sbi->discard_blks == 0)
3118 		goto out;
3119 
3120 	down_write(&sbi->gc_lock);
3121 	err = f2fs_write_checkpoint(sbi, &cpc);
3122 	up_write(&sbi->gc_lock);
3123 	if (err)
3124 		goto out;
3125 
3126 	/*
3127 	 * We filed discard candidates, but actually we don't need to wait for
3128 	 * all of them, since they'll be issued in idle time along with runtime
3129 	 * discard option. User configuration looks like using runtime discard
3130 	 * or periodic fstrim instead of it.
3131 	 */
3132 	if (f2fs_realtime_discard_enable(sbi))
3133 		goto out;
3134 
3135 	start_block = START_BLOCK(sbi, start_segno);
3136 	end_block = START_BLOCK(sbi, end_segno + 1);
3137 
3138 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3139 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3140 					start_block, end_block);
3141 
3142 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3143 					start_block, end_block);
3144 out:
3145 	if (!err)
3146 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3147 	return err;
3148 }
3149 
3150 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3151 					struct curseg_info *curseg)
3152 {
3153 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3154 							curseg->segno);
3155 }
3156 
3157 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3158 {
3159 	switch (hint) {
3160 	case WRITE_LIFE_SHORT:
3161 		return CURSEG_HOT_DATA;
3162 	case WRITE_LIFE_EXTREME:
3163 		return CURSEG_COLD_DATA;
3164 	default:
3165 		return CURSEG_WARM_DATA;
3166 	}
3167 }
3168 
3169 /* This returns write hints for each segment type. This hints will be
3170  * passed down to block layer. There are mapping tables which depend on
3171  * the mount option 'whint_mode'.
3172  *
3173  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3174  *
3175  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3176  *
3177  * User                  F2FS                     Block
3178  * ----                  ----                     -----
3179  *                       META                     WRITE_LIFE_NOT_SET
3180  *                       HOT_NODE                 "
3181  *                       WARM_NODE                "
3182  *                       COLD_NODE                "
3183  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3184  * extension list        "                        "
3185  *
3186  * -- buffered io
3187  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3188  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3189  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3190  * WRITE_LIFE_NONE       "                        "
3191  * WRITE_LIFE_MEDIUM     "                        "
3192  * WRITE_LIFE_LONG       "                        "
3193  *
3194  * -- direct io
3195  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3196  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3197  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3198  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3199  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3200  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3201  *
3202  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3203  *
3204  * User                  F2FS                     Block
3205  * ----                  ----                     -----
3206  *                       META                     WRITE_LIFE_MEDIUM;
3207  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3208  *                       WARM_NODE                "
3209  *                       COLD_NODE                WRITE_LIFE_NONE
3210  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3211  * extension list        "                        "
3212  *
3213  * -- buffered io
3214  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3215  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3216  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3217  * WRITE_LIFE_NONE       "                        "
3218  * WRITE_LIFE_MEDIUM     "                        "
3219  * WRITE_LIFE_LONG       "                        "
3220  *
3221  * -- direct io
3222  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3223  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3224  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3225  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3226  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3227  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3228  */
3229 
3230 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3231 				enum page_type type, enum temp_type temp)
3232 {
3233 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3234 		if (type == DATA) {
3235 			if (temp == WARM)
3236 				return WRITE_LIFE_NOT_SET;
3237 			else if (temp == HOT)
3238 				return WRITE_LIFE_SHORT;
3239 			else if (temp == COLD)
3240 				return WRITE_LIFE_EXTREME;
3241 		} else {
3242 			return WRITE_LIFE_NOT_SET;
3243 		}
3244 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3245 		if (type == DATA) {
3246 			if (temp == WARM)
3247 				return WRITE_LIFE_LONG;
3248 			else if (temp == HOT)
3249 				return WRITE_LIFE_SHORT;
3250 			else if (temp == COLD)
3251 				return WRITE_LIFE_EXTREME;
3252 		} else if (type == NODE) {
3253 			if (temp == WARM || temp == HOT)
3254 				return WRITE_LIFE_NOT_SET;
3255 			else if (temp == COLD)
3256 				return WRITE_LIFE_NONE;
3257 		} else if (type == META) {
3258 			return WRITE_LIFE_MEDIUM;
3259 		}
3260 	}
3261 	return WRITE_LIFE_NOT_SET;
3262 }
3263 
3264 static int __get_segment_type_2(struct f2fs_io_info *fio)
3265 {
3266 	if (fio->type == DATA)
3267 		return CURSEG_HOT_DATA;
3268 	else
3269 		return CURSEG_HOT_NODE;
3270 }
3271 
3272 static int __get_segment_type_4(struct f2fs_io_info *fio)
3273 {
3274 	if (fio->type == DATA) {
3275 		struct inode *inode = fio->page->mapping->host;
3276 
3277 		if (S_ISDIR(inode->i_mode))
3278 			return CURSEG_HOT_DATA;
3279 		else
3280 			return CURSEG_COLD_DATA;
3281 	} else {
3282 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3283 			return CURSEG_WARM_NODE;
3284 		else
3285 			return CURSEG_COLD_NODE;
3286 	}
3287 }
3288 
3289 static int __get_segment_type_6(struct f2fs_io_info *fio)
3290 {
3291 	if (fio->type == DATA) {
3292 		struct inode *inode = fio->page->mapping->host;
3293 
3294 		if (page_private_gcing(fio->page)) {
3295 			if (fio->sbi->am.atgc_enabled &&
3296 				(fio->io_type == FS_DATA_IO) &&
3297 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3298 				return CURSEG_ALL_DATA_ATGC;
3299 			else
3300 				return CURSEG_COLD_DATA;
3301 		}
3302 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3303 			return CURSEG_COLD_DATA;
3304 		if (file_is_hot(inode) ||
3305 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3306 				f2fs_is_atomic_file(inode) ||
3307 				f2fs_is_volatile_file(inode))
3308 			return CURSEG_HOT_DATA;
3309 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3310 	} else {
3311 		if (IS_DNODE(fio->page))
3312 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3313 						CURSEG_HOT_NODE;
3314 		return CURSEG_COLD_NODE;
3315 	}
3316 }
3317 
3318 static int __get_segment_type(struct f2fs_io_info *fio)
3319 {
3320 	int type = 0;
3321 
3322 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3323 	case 2:
3324 		type = __get_segment_type_2(fio);
3325 		break;
3326 	case 4:
3327 		type = __get_segment_type_4(fio);
3328 		break;
3329 	case 6:
3330 		type = __get_segment_type_6(fio);
3331 		break;
3332 	default:
3333 		f2fs_bug_on(fio->sbi, true);
3334 	}
3335 
3336 	if (IS_HOT(type))
3337 		fio->temp = HOT;
3338 	else if (IS_WARM(type))
3339 		fio->temp = WARM;
3340 	else
3341 		fio->temp = COLD;
3342 	return type;
3343 }
3344 
3345 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3346 		block_t old_blkaddr, block_t *new_blkaddr,
3347 		struct f2fs_summary *sum, int type,
3348 		struct f2fs_io_info *fio)
3349 {
3350 	struct sit_info *sit_i = SIT_I(sbi);
3351 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3352 	unsigned long long old_mtime;
3353 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3354 	struct seg_entry *se = NULL;
3355 
3356 	down_read(&SM_I(sbi)->curseg_lock);
3357 
3358 	mutex_lock(&curseg->curseg_mutex);
3359 	down_write(&sit_i->sentry_lock);
3360 
3361 	if (from_gc) {
3362 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3363 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3364 		sanity_check_seg_type(sbi, se->type);
3365 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3366 	}
3367 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3368 
3369 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3370 
3371 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3372 
3373 	/*
3374 	 * __add_sum_entry should be resided under the curseg_mutex
3375 	 * because, this function updates a summary entry in the
3376 	 * current summary block.
3377 	 */
3378 	__add_sum_entry(sbi, type, sum);
3379 
3380 	__refresh_next_blkoff(sbi, curseg);
3381 
3382 	stat_inc_block_count(sbi, curseg);
3383 
3384 	if (from_gc) {
3385 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3386 	} else {
3387 		update_segment_mtime(sbi, old_blkaddr, 0);
3388 		old_mtime = 0;
3389 	}
3390 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3391 
3392 	/*
3393 	 * SIT information should be updated before segment allocation,
3394 	 * since SSR needs latest valid block information.
3395 	 */
3396 	update_sit_entry(sbi, *new_blkaddr, 1);
3397 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3398 		update_sit_entry(sbi, old_blkaddr, -1);
3399 
3400 	if (!__has_curseg_space(sbi, curseg)) {
3401 		if (from_gc)
3402 			get_atssr_segment(sbi, type, se->type,
3403 						AT_SSR, se->mtime);
3404 		else
3405 			sit_i->s_ops->allocate_segment(sbi, type, false);
3406 	}
3407 	/*
3408 	 * segment dirty status should be updated after segment allocation,
3409 	 * so we just need to update status only one time after previous
3410 	 * segment being closed.
3411 	 */
3412 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3413 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3414 
3415 	up_write(&sit_i->sentry_lock);
3416 
3417 	if (page && IS_NODESEG(type)) {
3418 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3419 
3420 		f2fs_inode_chksum_set(sbi, page);
3421 	}
3422 
3423 	if (fio) {
3424 		struct f2fs_bio_info *io;
3425 
3426 		if (F2FS_IO_ALIGNED(sbi))
3427 			fio->retry = false;
3428 
3429 		INIT_LIST_HEAD(&fio->list);
3430 		fio->in_list = true;
3431 		io = sbi->write_io[fio->type] + fio->temp;
3432 		spin_lock(&io->io_lock);
3433 		list_add_tail(&fio->list, &io->io_list);
3434 		spin_unlock(&io->io_lock);
3435 	}
3436 
3437 	mutex_unlock(&curseg->curseg_mutex);
3438 
3439 	up_read(&SM_I(sbi)->curseg_lock);
3440 }
3441 
3442 static void update_device_state(struct f2fs_io_info *fio)
3443 {
3444 	struct f2fs_sb_info *sbi = fio->sbi;
3445 	unsigned int devidx;
3446 
3447 	if (!f2fs_is_multi_device(sbi))
3448 		return;
3449 
3450 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3451 
3452 	/* update device state for fsync */
3453 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3454 
3455 	/* update device state for checkpoint */
3456 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3457 		spin_lock(&sbi->dev_lock);
3458 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3459 		spin_unlock(&sbi->dev_lock);
3460 	}
3461 }
3462 
3463 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3464 {
3465 	int type = __get_segment_type(fio);
3466 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3467 
3468 	if (keep_order)
3469 		down_read(&fio->sbi->io_order_lock);
3470 reallocate:
3471 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3472 			&fio->new_blkaddr, sum, type, fio);
3473 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3474 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3475 					fio->old_blkaddr, fio->old_blkaddr);
3476 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3477 	}
3478 
3479 	/* writeout dirty page into bdev */
3480 	f2fs_submit_page_write(fio);
3481 	if (fio->retry) {
3482 		fio->old_blkaddr = fio->new_blkaddr;
3483 		goto reallocate;
3484 	}
3485 
3486 	update_device_state(fio);
3487 
3488 	if (keep_order)
3489 		up_read(&fio->sbi->io_order_lock);
3490 }
3491 
3492 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3493 					enum iostat_type io_type)
3494 {
3495 	struct f2fs_io_info fio = {
3496 		.sbi = sbi,
3497 		.type = META,
3498 		.temp = HOT,
3499 		.op = REQ_OP_WRITE,
3500 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3501 		.old_blkaddr = page->index,
3502 		.new_blkaddr = page->index,
3503 		.page = page,
3504 		.encrypted_page = NULL,
3505 		.in_list = false,
3506 	};
3507 
3508 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3509 		fio.op_flags &= ~REQ_META;
3510 
3511 	set_page_writeback(page);
3512 	ClearPageError(page);
3513 	f2fs_submit_page_write(&fio);
3514 
3515 	stat_inc_meta_count(sbi, page->index);
3516 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3517 }
3518 
3519 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3520 {
3521 	struct f2fs_summary sum;
3522 
3523 	set_summary(&sum, nid, 0, 0);
3524 	do_write_page(&sum, fio);
3525 
3526 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3527 }
3528 
3529 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3530 					struct f2fs_io_info *fio)
3531 {
3532 	struct f2fs_sb_info *sbi = fio->sbi;
3533 	struct f2fs_summary sum;
3534 
3535 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3536 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3537 	do_write_page(&sum, fio);
3538 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3539 
3540 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3541 }
3542 
3543 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3544 {
3545 	int err;
3546 	struct f2fs_sb_info *sbi = fio->sbi;
3547 	unsigned int segno;
3548 
3549 	fio->new_blkaddr = fio->old_blkaddr;
3550 	/* i/o temperature is needed for passing down write hints */
3551 	__get_segment_type(fio);
3552 
3553 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3554 
3555 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3556 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3557 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3558 			  __func__, segno);
3559 		err = -EFSCORRUPTED;
3560 		goto drop_bio;
3561 	}
3562 
3563 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || f2fs_cp_error(sbi)) {
3564 		err = -EIO;
3565 		goto drop_bio;
3566 	}
3567 
3568 	stat_inc_inplace_blocks(fio->sbi);
3569 
3570 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3571 		err = f2fs_merge_page_bio(fio);
3572 	else
3573 		err = f2fs_submit_page_bio(fio);
3574 	if (!err) {
3575 		update_device_state(fio);
3576 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3577 	}
3578 
3579 	return err;
3580 drop_bio:
3581 	if (fio->bio && *(fio->bio)) {
3582 		struct bio *bio = *(fio->bio);
3583 
3584 		bio->bi_status = BLK_STS_IOERR;
3585 		bio_endio(bio);
3586 		*(fio->bio) = NULL;
3587 	}
3588 	return err;
3589 }
3590 
3591 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3592 						unsigned int segno)
3593 {
3594 	int i;
3595 
3596 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3597 		if (CURSEG_I(sbi, i)->segno == segno)
3598 			break;
3599 	}
3600 	return i;
3601 }
3602 
3603 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3604 				block_t old_blkaddr, block_t new_blkaddr,
3605 				bool recover_curseg, bool recover_newaddr,
3606 				bool from_gc)
3607 {
3608 	struct sit_info *sit_i = SIT_I(sbi);
3609 	struct curseg_info *curseg;
3610 	unsigned int segno, old_cursegno;
3611 	struct seg_entry *se;
3612 	int type;
3613 	unsigned short old_blkoff;
3614 	unsigned char old_alloc_type;
3615 
3616 	segno = GET_SEGNO(sbi, new_blkaddr);
3617 	se = get_seg_entry(sbi, segno);
3618 	type = se->type;
3619 
3620 	down_write(&SM_I(sbi)->curseg_lock);
3621 
3622 	if (!recover_curseg) {
3623 		/* for recovery flow */
3624 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3625 			if (old_blkaddr == NULL_ADDR)
3626 				type = CURSEG_COLD_DATA;
3627 			else
3628 				type = CURSEG_WARM_DATA;
3629 		}
3630 	} else {
3631 		if (IS_CURSEG(sbi, segno)) {
3632 			/* se->type is volatile as SSR allocation */
3633 			type = __f2fs_get_curseg(sbi, segno);
3634 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3635 		} else {
3636 			type = CURSEG_WARM_DATA;
3637 		}
3638 	}
3639 
3640 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3641 	curseg = CURSEG_I(sbi, type);
3642 
3643 	mutex_lock(&curseg->curseg_mutex);
3644 	down_write(&sit_i->sentry_lock);
3645 
3646 	old_cursegno = curseg->segno;
3647 	old_blkoff = curseg->next_blkoff;
3648 	old_alloc_type = curseg->alloc_type;
3649 
3650 	/* change the current segment */
3651 	if (segno != curseg->segno) {
3652 		curseg->next_segno = segno;
3653 		change_curseg(sbi, type, true);
3654 	}
3655 
3656 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3657 	__add_sum_entry(sbi, type, sum);
3658 
3659 	if (!recover_curseg || recover_newaddr) {
3660 		if (!from_gc)
3661 			update_segment_mtime(sbi, new_blkaddr, 0);
3662 		update_sit_entry(sbi, new_blkaddr, 1);
3663 	}
3664 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3665 		invalidate_mapping_pages(META_MAPPING(sbi),
3666 					old_blkaddr, old_blkaddr);
3667 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3668 		if (!from_gc)
3669 			update_segment_mtime(sbi, old_blkaddr, 0);
3670 		update_sit_entry(sbi, old_blkaddr, -1);
3671 	}
3672 
3673 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3674 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3675 
3676 	locate_dirty_segment(sbi, old_cursegno);
3677 
3678 	if (recover_curseg) {
3679 		if (old_cursegno != curseg->segno) {
3680 			curseg->next_segno = old_cursegno;
3681 			change_curseg(sbi, type, true);
3682 		}
3683 		curseg->next_blkoff = old_blkoff;
3684 		curseg->alloc_type = old_alloc_type;
3685 	}
3686 
3687 	up_write(&sit_i->sentry_lock);
3688 	mutex_unlock(&curseg->curseg_mutex);
3689 	up_write(&SM_I(sbi)->curseg_lock);
3690 }
3691 
3692 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3693 				block_t old_addr, block_t new_addr,
3694 				unsigned char version, bool recover_curseg,
3695 				bool recover_newaddr)
3696 {
3697 	struct f2fs_summary sum;
3698 
3699 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3700 
3701 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3702 					recover_curseg, recover_newaddr, false);
3703 
3704 	f2fs_update_data_blkaddr(dn, new_addr);
3705 }
3706 
3707 void f2fs_wait_on_page_writeback(struct page *page,
3708 				enum page_type type, bool ordered, bool locked)
3709 {
3710 	if (PageWriteback(page)) {
3711 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3712 
3713 		/* submit cached LFS IO */
3714 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3715 		/* sbumit cached IPU IO */
3716 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3717 		if (ordered) {
3718 			wait_on_page_writeback(page);
3719 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3720 		} else {
3721 			wait_for_stable_page(page);
3722 		}
3723 	}
3724 }
3725 
3726 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3727 {
3728 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3729 	struct page *cpage;
3730 
3731 	if (!f2fs_post_read_required(inode))
3732 		return;
3733 
3734 	if (!__is_valid_data_blkaddr(blkaddr))
3735 		return;
3736 
3737 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3738 	if (cpage) {
3739 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3740 		f2fs_put_page(cpage, 1);
3741 	}
3742 }
3743 
3744 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3745 								block_t len)
3746 {
3747 	block_t i;
3748 
3749 	for (i = 0; i < len; i++)
3750 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3751 }
3752 
3753 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3754 {
3755 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3756 	struct curseg_info *seg_i;
3757 	unsigned char *kaddr;
3758 	struct page *page;
3759 	block_t start;
3760 	int i, j, offset;
3761 
3762 	start = start_sum_block(sbi);
3763 
3764 	page = f2fs_get_meta_page(sbi, start++);
3765 	if (IS_ERR(page))
3766 		return PTR_ERR(page);
3767 	kaddr = (unsigned char *)page_address(page);
3768 
3769 	/* Step 1: restore nat cache */
3770 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3771 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3772 
3773 	/* Step 2: restore sit cache */
3774 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3775 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3776 	offset = 2 * SUM_JOURNAL_SIZE;
3777 
3778 	/* Step 3: restore summary entries */
3779 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3780 		unsigned short blk_off;
3781 		unsigned int segno;
3782 
3783 		seg_i = CURSEG_I(sbi, i);
3784 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3785 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3786 		seg_i->next_segno = segno;
3787 		reset_curseg(sbi, i, 0);
3788 		seg_i->alloc_type = ckpt->alloc_type[i];
3789 		seg_i->next_blkoff = blk_off;
3790 
3791 		if (seg_i->alloc_type == SSR)
3792 			blk_off = sbi->blocks_per_seg;
3793 
3794 		for (j = 0; j < blk_off; j++) {
3795 			struct f2fs_summary *s;
3796 
3797 			s = (struct f2fs_summary *)(kaddr + offset);
3798 			seg_i->sum_blk->entries[j] = *s;
3799 			offset += SUMMARY_SIZE;
3800 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3801 						SUM_FOOTER_SIZE)
3802 				continue;
3803 
3804 			f2fs_put_page(page, 1);
3805 			page = NULL;
3806 
3807 			page = f2fs_get_meta_page(sbi, start++);
3808 			if (IS_ERR(page))
3809 				return PTR_ERR(page);
3810 			kaddr = (unsigned char *)page_address(page);
3811 			offset = 0;
3812 		}
3813 	}
3814 	f2fs_put_page(page, 1);
3815 	return 0;
3816 }
3817 
3818 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3819 {
3820 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3821 	struct f2fs_summary_block *sum;
3822 	struct curseg_info *curseg;
3823 	struct page *new;
3824 	unsigned short blk_off;
3825 	unsigned int segno = 0;
3826 	block_t blk_addr = 0;
3827 	int err = 0;
3828 
3829 	/* get segment number and block addr */
3830 	if (IS_DATASEG(type)) {
3831 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3832 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3833 							CURSEG_HOT_DATA]);
3834 		if (__exist_node_summaries(sbi))
3835 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3836 		else
3837 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3838 	} else {
3839 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3840 							CURSEG_HOT_NODE]);
3841 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3842 							CURSEG_HOT_NODE]);
3843 		if (__exist_node_summaries(sbi))
3844 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3845 							type - CURSEG_HOT_NODE);
3846 		else
3847 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3848 	}
3849 
3850 	new = f2fs_get_meta_page(sbi, blk_addr);
3851 	if (IS_ERR(new))
3852 		return PTR_ERR(new);
3853 	sum = (struct f2fs_summary_block *)page_address(new);
3854 
3855 	if (IS_NODESEG(type)) {
3856 		if (__exist_node_summaries(sbi)) {
3857 			struct f2fs_summary *ns = &sum->entries[0];
3858 			int i;
3859 
3860 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3861 				ns->version = 0;
3862 				ns->ofs_in_node = 0;
3863 			}
3864 		} else {
3865 			err = f2fs_restore_node_summary(sbi, segno, sum);
3866 			if (err)
3867 				goto out;
3868 		}
3869 	}
3870 
3871 	/* set uncompleted segment to curseg */
3872 	curseg = CURSEG_I(sbi, type);
3873 	mutex_lock(&curseg->curseg_mutex);
3874 
3875 	/* update journal info */
3876 	down_write(&curseg->journal_rwsem);
3877 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3878 	up_write(&curseg->journal_rwsem);
3879 
3880 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3881 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3882 	curseg->next_segno = segno;
3883 	reset_curseg(sbi, type, 0);
3884 	curseg->alloc_type = ckpt->alloc_type[type];
3885 	curseg->next_blkoff = blk_off;
3886 	mutex_unlock(&curseg->curseg_mutex);
3887 out:
3888 	f2fs_put_page(new, 1);
3889 	return err;
3890 }
3891 
3892 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3893 {
3894 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3895 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3896 	int type = CURSEG_HOT_DATA;
3897 	int err;
3898 
3899 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3900 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3901 
3902 		if (npages >= 2)
3903 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3904 							META_CP, true);
3905 
3906 		/* restore for compacted data summary */
3907 		err = read_compacted_summaries(sbi);
3908 		if (err)
3909 			return err;
3910 		type = CURSEG_HOT_NODE;
3911 	}
3912 
3913 	if (__exist_node_summaries(sbi))
3914 		f2fs_ra_meta_pages(sbi,
3915 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3916 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3917 
3918 	for (; type <= CURSEG_COLD_NODE; type++) {
3919 		err = read_normal_summaries(sbi, type);
3920 		if (err)
3921 			return err;
3922 	}
3923 
3924 	/* sanity check for summary blocks */
3925 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3926 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3927 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3928 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3929 		return -EINVAL;
3930 	}
3931 
3932 	return 0;
3933 }
3934 
3935 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3936 {
3937 	struct page *page;
3938 	unsigned char *kaddr;
3939 	struct f2fs_summary *summary;
3940 	struct curseg_info *seg_i;
3941 	int written_size = 0;
3942 	int i, j;
3943 
3944 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3945 	kaddr = (unsigned char *)page_address(page);
3946 	memset(kaddr, 0, PAGE_SIZE);
3947 
3948 	/* Step 1: write nat cache */
3949 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3950 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3951 	written_size += SUM_JOURNAL_SIZE;
3952 
3953 	/* Step 2: write sit cache */
3954 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3955 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3956 	written_size += SUM_JOURNAL_SIZE;
3957 
3958 	/* Step 3: write summary entries */
3959 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3960 		unsigned short blkoff;
3961 
3962 		seg_i = CURSEG_I(sbi, i);
3963 		if (sbi->ckpt->alloc_type[i] == SSR)
3964 			blkoff = sbi->blocks_per_seg;
3965 		else
3966 			blkoff = curseg_blkoff(sbi, i);
3967 
3968 		for (j = 0; j < blkoff; j++) {
3969 			if (!page) {
3970 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3971 				kaddr = (unsigned char *)page_address(page);
3972 				memset(kaddr, 0, PAGE_SIZE);
3973 				written_size = 0;
3974 			}
3975 			summary = (struct f2fs_summary *)(kaddr + written_size);
3976 			*summary = seg_i->sum_blk->entries[j];
3977 			written_size += SUMMARY_SIZE;
3978 
3979 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3980 							SUM_FOOTER_SIZE)
3981 				continue;
3982 
3983 			set_page_dirty(page);
3984 			f2fs_put_page(page, 1);
3985 			page = NULL;
3986 		}
3987 	}
3988 	if (page) {
3989 		set_page_dirty(page);
3990 		f2fs_put_page(page, 1);
3991 	}
3992 }
3993 
3994 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3995 					block_t blkaddr, int type)
3996 {
3997 	int i, end;
3998 
3999 	if (IS_DATASEG(type))
4000 		end = type + NR_CURSEG_DATA_TYPE;
4001 	else
4002 		end = type + NR_CURSEG_NODE_TYPE;
4003 
4004 	for (i = type; i < end; i++)
4005 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4006 }
4007 
4008 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4009 {
4010 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4011 		write_compacted_summaries(sbi, start_blk);
4012 	else
4013 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4014 }
4015 
4016 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4017 {
4018 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4019 }
4020 
4021 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4022 					unsigned int val, int alloc)
4023 {
4024 	int i;
4025 
4026 	if (type == NAT_JOURNAL) {
4027 		for (i = 0; i < nats_in_cursum(journal); i++) {
4028 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4029 				return i;
4030 		}
4031 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4032 			return update_nats_in_cursum(journal, 1);
4033 	} else if (type == SIT_JOURNAL) {
4034 		for (i = 0; i < sits_in_cursum(journal); i++)
4035 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4036 				return i;
4037 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4038 			return update_sits_in_cursum(journal, 1);
4039 	}
4040 	return -1;
4041 }
4042 
4043 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4044 					unsigned int segno)
4045 {
4046 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4047 }
4048 
4049 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4050 					unsigned int start)
4051 {
4052 	struct sit_info *sit_i = SIT_I(sbi);
4053 	struct page *page;
4054 	pgoff_t src_off, dst_off;
4055 
4056 	src_off = current_sit_addr(sbi, start);
4057 	dst_off = next_sit_addr(sbi, src_off);
4058 
4059 	page = f2fs_grab_meta_page(sbi, dst_off);
4060 	seg_info_to_sit_page(sbi, page, start);
4061 
4062 	set_page_dirty(page);
4063 	set_to_next_sit(sit_i, start);
4064 
4065 	return page;
4066 }
4067 
4068 static struct sit_entry_set *grab_sit_entry_set(void)
4069 {
4070 	struct sit_entry_set *ses =
4071 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4072 
4073 	ses->entry_cnt = 0;
4074 	INIT_LIST_HEAD(&ses->set_list);
4075 	return ses;
4076 }
4077 
4078 static void release_sit_entry_set(struct sit_entry_set *ses)
4079 {
4080 	list_del(&ses->set_list);
4081 	kmem_cache_free(sit_entry_set_slab, ses);
4082 }
4083 
4084 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4085 						struct list_head *head)
4086 {
4087 	struct sit_entry_set *next = ses;
4088 
4089 	if (list_is_last(&ses->set_list, head))
4090 		return;
4091 
4092 	list_for_each_entry_continue(next, head, set_list)
4093 		if (ses->entry_cnt <= next->entry_cnt)
4094 			break;
4095 
4096 	list_move_tail(&ses->set_list, &next->set_list);
4097 }
4098 
4099 static void add_sit_entry(unsigned int segno, struct list_head *head)
4100 {
4101 	struct sit_entry_set *ses;
4102 	unsigned int start_segno = START_SEGNO(segno);
4103 
4104 	list_for_each_entry(ses, head, set_list) {
4105 		if (ses->start_segno == start_segno) {
4106 			ses->entry_cnt++;
4107 			adjust_sit_entry_set(ses, head);
4108 			return;
4109 		}
4110 	}
4111 
4112 	ses = grab_sit_entry_set();
4113 
4114 	ses->start_segno = start_segno;
4115 	ses->entry_cnt++;
4116 	list_add(&ses->set_list, head);
4117 }
4118 
4119 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4120 {
4121 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4122 	struct list_head *set_list = &sm_info->sit_entry_set;
4123 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4124 	unsigned int segno;
4125 
4126 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4127 		add_sit_entry(segno, set_list);
4128 }
4129 
4130 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4131 {
4132 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4133 	struct f2fs_journal *journal = curseg->journal;
4134 	int i;
4135 
4136 	down_write(&curseg->journal_rwsem);
4137 	for (i = 0; i < sits_in_cursum(journal); i++) {
4138 		unsigned int segno;
4139 		bool dirtied;
4140 
4141 		segno = le32_to_cpu(segno_in_journal(journal, i));
4142 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4143 
4144 		if (!dirtied)
4145 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4146 	}
4147 	update_sits_in_cursum(journal, -i);
4148 	up_write(&curseg->journal_rwsem);
4149 }
4150 
4151 /*
4152  * CP calls this function, which flushes SIT entries including sit_journal,
4153  * and moves prefree segs to free segs.
4154  */
4155 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4156 {
4157 	struct sit_info *sit_i = SIT_I(sbi);
4158 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4159 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4160 	struct f2fs_journal *journal = curseg->journal;
4161 	struct sit_entry_set *ses, *tmp;
4162 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4163 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4164 	struct seg_entry *se;
4165 
4166 	down_write(&sit_i->sentry_lock);
4167 
4168 	if (!sit_i->dirty_sentries)
4169 		goto out;
4170 
4171 	/*
4172 	 * add and account sit entries of dirty bitmap in sit entry
4173 	 * set temporarily
4174 	 */
4175 	add_sits_in_set(sbi);
4176 
4177 	/*
4178 	 * if there are no enough space in journal to store dirty sit
4179 	 * entries, remove all entries from journal and add and account
4180 	 * them in sit entry set.
4181 	 */
4182 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4183 								!to_journal)
4184 		remove_sits_in_journal(sbi);
4185 
4186 	/*
4187 	 * there are two steps to flush sit entries:
4188 	 * #1, flush sit entries to journal in current cold data summary block.
4189 	 * #2, flush sit entries to sit page.
4190 	 */
4191 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4192 		struct page *page = NULL;
4193 		struct f2fs_sit_block *raw_sit = NULL;
4194 		unsigned int start_segno = ses->start_segno;
4195 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4196 						(unsigned long)MAIN_SEGS(sbi));
4197 		unsigned int segno = start_segno;
4198 
4199 		if (to_journal &&
4200 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4201 			to_journal = false;
4202 
4203 		if (to_journal) {
4204 			down_write(&curseg->journal_rwsem);
4205 		} else {
4206 			page = get_next_sit_page(sbi, start_segno);
4207 			raw_sit = page_address(page);
4208 		}
4209 
4210 		/* flush dirty sit entries in region of current sit set */
4211 		for_each_set_bit_from(segno, bitmap, end) {
4212 			int offset, sit_offset;
4213 
4214 			se = get_seg_entry(sbi, segno);
4215 #ifdef CONFIG_F2FS_CHECK_FS
4216 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4217 						SIT_VBLOCK_MAP_SIZE))
4218 				f2fs_bug_on(sbi, 1);
4219 #endif
4220 
4221 			/* add discard candidates */
4222 			if (!(cpc->reason & CP_DISCARD)) {
4223 				cpc->trim_start = segno;
4224 				add_discard_addrs(sbi, cpc, false);
4225 			}
4226 
4227 			if (to_journal) {
4228 				offset = f2fs_lookup_journal_in_cursum(journal,
4229 							SIT_JOURNAL, segno, 1);
4230 				f2fs_bug_on(sbi, offset < 0);
4231 				segno_in_journal(journal, offset) =
4232 							cpu_to_le32(segno);
4233 				seg_info_to_raw_sit(se,
4234 					&sit_in_journal(journal, offset));
4235 				check_block_count(sbi, segno,
4236 					&sit_in_journal(journal, offset));
4237 			} else {
4238 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4239 				seg_info_to_raw_sit(se,
4240 						&raw_sit->entries[sit_offset]);
4241 				check_block_count(sbi, segno,
4242 						&raw_sit->entries[sit_offset]);
4243 			}
4244 
4245 			__clear_bit(segno, bitmap);
4246 			sit_i->dirty_sentries--;
4247 			ses->entry_cnt--;
4248 		}
4249 
4250 		if (to_journal)
4251 			up_write(&curseg->journal_rwsem);
4252 		else
4253 			f2fs_put_page(page, 1);
4254 
4255 		f2fs_bug_on(sbi, ses->entry_cnt);
4256 		release_sit_entry_set(ses);
4257 	}
4258 
4259 	f2fs_bug_on(sbi, !list_empty(head));
4260 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4261 out:
4262 	if (cpc->reason & CP_DISCARD) {
4263 		__u64 trim_start = cpc->trim_start;
4264 
4265 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4266 			add_discard_addrs(sbi, cpc, false);
4267 
4268 		cpc->trim_start = trim_start;
4269 	}
4270 	up_write(&sit_i->sentry_lock);
4271 
4272 	set_prefree_as_free_segments(sbi);
4273 }
4274 
4275 static int build_sit_info(struct f2fs_sb_info *sbi)
4276 {
4277 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4278 	struct sit_info *sit_i;
4279 	unsigned int sit_segs, start;
4280 	char *src_bitmap, *bitmap;
4281 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4282 
4283 	/* allocate memory for SIT information */
4284 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4285 	if (!sit_i)
4286 		return -ENOMEM;
4287 
4288 	SM_I(sbi)->sit_info = sit_i;
4289 
4290 	sit_i->sentries =
4291 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4292 					      MAIN_SEGS(sbi)),
4293 			      GFP_KERNEL);
4294 	if (!sit_i->sentries)
4295 		return -ENOMEM;
4296 
4297 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4298 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4299 								GFP_KERNEL);
4300 	if (!sit_i->dirty_sentries_bitmap)
4301 		return -ENOMEM;
4302 
4303 #ifdef CONFIG_F2FS_CHECK_FS
4304 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4305 #else
4306 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4307 #endif
4308 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4309 	if (!sit_i->bitmap)
4310 		return -ENOMEM;
4311 
4312 	bitmap = sit_i->bitmap;
4313 
4314 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4315 		sit_i->sentries[start].cur_valid_map = bitmap;
4316 		bitmap += SIT_VBLOCK_MAP_SIZE;
4317 
4318 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4319 		bitmap += SIT_VBLOCK_MAP_SIZE;
4320 
4321 #ifdef CONFIG_F2FS_CHECK_FS
4322 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4323 		bitmap += SIT_VBLOCK_MAP_SIZE;
4324 #endif
4325 
4326 		sit_i->sentries[start].discard_map = bitmap;
4327 		bitmap += SIT_VBLOCK_MAP_SIZE;
4328 	}
4329 
4330 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4331 	if (!sit_i->tmp_map)
4332 		return -ENOMEM;
4333 
4334 	if (__is_large_section(sbi)) {
4335 		sit_i->sec_entries =
4336 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4337 						      MAIN_SECS(sbi)),
4338 				      GFP_KERNEL);
4339 		if (!sit_i->sec_entries)
4340 			return -ENOMEM;
4341 	}
4342 
4343 	/* get information related with SIT */
4344 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4345 
4346 	/* setup SIT bitmap from ckeckpoint pack */
4347 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4348 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4349 
4350 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4351 	if (!sit_i->sit_bitmap)
4352 		return -ENOMEM;
4353 
4354 #ifdef CONFIG_F2FS_CHECK_FS
4355 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4356 					sit_bitmap_size, GFP_KERNEL);
4357 	if (!sit_i->sit_bitmap_mir)
4358 		return -ENOMEM;
4359 
4360 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4361 					main_bitmap_size, GFP_KERNEL);
4362 	if (!sit_i->invalid_segmap)
4363 		return -ENOMEM;
4364 #endif
4365 
4366 	/* init SIT information */
4367 	sit_i->s_ops = &default_salloc_ops;
4368 
4369 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4370 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4371 	sit_i->written_valid_blocks = 0;
4372 	sit_i->bitmap_size = sit_bitmap_size;
4373 	sit_i->dirty_sentries = 0;
4374 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4375 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4376 	sit_i->mounted_time = ktime_get_boottime_seconds();
4377 	init_rwsem(&sit_i->sentry_lock);
4378 	return 0;
4379 }
4380 
4381 static int build_free_segmap(struct f2fs_sb_info *sbi)
4382 {
4383 	struct free_segmap_info *free_i;
4384 	unsigned int bitmap_size, sec_bitmap_size;
4385 
4386 	/* allocate memory for free segmap information */
4387 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4388 	if (!free_i)
4389 		return -ENOMEM;
4390 
4391 	SM_I(sbi)->free_info = free_i;
4392 
4393 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4394 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4395 	if (!free_i->free_segmap)
4396 		return -ENOMEM;
4397 
4398 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4399 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4400 	if (!free_i->free_secmap)
4401 		return -ENOMEM;
4402 
4403 	/* set all segments as dirty temporarily */
4404 	memset(free_i->free_segmap, 0xff, bitmap_size);
4405 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4406 
4407 	/* init free segmap information */
4408 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4409 	free_i->free_segments = 0;
4410 	free_i->free_sections = 0;
4411 	spin_lock_init(&free_i->segmap_lock);
4412 	return 0;
4413 }
4414 
4415 static int build_curseg(struct f2fs_sb_info *sbi)
4416 {
4417 	struct curseg_info *array;
4418 	int i;
4419 
4420 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4421 					sizeof(*array)), GFP_KERNEL);
4422 	if (!array)
4423 		return -ENOMEM;
4424 
4425 	SM_I(sbi)->curseg_array = array;
4426 
4427 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4428 		mutex_init(&array[i].curseg_mutex);
4429 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4430 		if (!array[i].sum_blk)
4431 			return -ENOMEM;
4432 		init_rwsem(&array[i].journal_rwsem);
4433 		array[i].journal = f2fs_kzalloc(sbi,
4434 				sizeof(struct f2fs_journal), GFP_KERNEL);
4435 		if (!array[i].journal)
4436 			return -ENOMEM;
4437 		if (i < NR_PERSISTENT_LOG)
4438 			array[i].seg_type = CURSEG_HOT_DATA + i;
4439 		else if (i == CURSEG_COLD_DATA_PINNED)
4440 			array[i].seg_type = CURSEG_COLD_DATA;
4441 		else if (i == CURSEG_ALL_DATA_ATGC)
4442 			array[i].seg_type = CURSEG_COLD_DATA;
4443 		array[i].segno = NULL_SEGNO;
4444 		array[i].next_blkoff = 0;
4445 		array[i].inited = false;
4446 	}
4447 	return restore_curseg_summaries(sbi);
4448 }
4449 
4450 static int build_sit_entries(struct f2fs_sb_info *sbi)
4451 {
4452 	struct sit_info *sit_i = SIT_I(sbi);
4453 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4454 	struct f2fs_journal *journal = curseg->journal;
4455 	struct seg_entry *se;
4456 	struct f2fs_sit_entry sit;
4457 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4458 	unsigned int i, start, end;
4459 	unsigned int readed, start_blk = 0;
4460 	int err = 0;
4461 	block_t total_node_blocks = 0;
4462 
4463 	do {
4464 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4465 							META_SIT, true);
4466 
4467 		start = start_blk * sit_i->sents_per_block;
4468 		end = (start_blk + readed) * sit_i->sents_per_block;
4469 
4470 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4471 			struct f2fs_sit_block *sit_blk;
4472 			struct page *page;
4473 
4474 			se = &sit_i->sentries[start];
4475 			page = get_current_sit_page(sbi, start);
4476 			if (IS_ERR(page))
4477 				return PTR_ERR(page);
4478 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4479 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4480 			f2fs_put_page(page, 1);
4481 
4482 			err = check_block_count(sbi, start, &sit);
4483 			if (err)
4484 				return err;
4485 			seg_info_from_raw_sit(se, &sit);
4486 			if (IS_NODESEG(se->type))
4487 				total_node_blocks += se->valid_blocks;
4488 
4489 			/* build discard map only one time */
4490 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4491 				memset(se->discard_map, 0xff,
4492 					SIT_VBLOCK_MAP_SIZE);
4493 			} else {
4494 				memcpy(se->discard_map,
4495 					se->cur_valid_map,
4496 					SIT_VBLOCK_MAP_SIZE);
4497 				sbi->discard_blks +=
4498 					sbi->blocks_per_seg -
4499 					se->valid_blocks;
4500 			}
4501 
4502 			if (__is_large_section(sbi))
4503 				get_sec_entry(sbi, start)->valid_blocks +=
4504 							se->valid_blocks;
4505 		}
4506 		start_blk += readed;
4507 	} while (start_blk < sit_blk_cnt);
4508 
4509 	down_read(&curseg->journal_rwsem);
4510 	for (i = 0; i < sits_in_cursum(journal); i++) {
4511 		unsigned int old_valid_blocks;
4512 
4513 		start = le32_to_cpu(segno_in_journal(journal, i));
4514 		if (start >= MAIN_SEGS(sbi)) {
4515 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4516 				 start);
4517 			err = -EFSCORRUPTED;
4518 			break;
4519 		}
4520 
4521 		se = &sit_i->sentries[start];
4522 		sit = sit_in_journal(journal, i);
4523 
4524 		old_valid_blocks = se->valid_blocks;
4525 		if (IS_NODESEG(se->type))
4526 			total_node_blocks -= old_valid_blocks;
4527 
4528 		err = check_block_count(sbi, start, &sit);
4529 		if (err)
4530 			break;
4531 		seg_info_from_raw_sit(se, &sit);
4532 		if (IS_NODESEG(se->type))
4533 			total_node_blocks += se->valid_blocks;
4534 
4535 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4536 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4537 		} else {
4538 			memcpy(se->discard_map, se->cur_valid_map,
4539 						SIT_VBLOCK_MAP_SIZE);
4540 			sbi->discard_blks += old_valid_blocks;
4541 			sbi->discard_blks -= se->valid_blocks;
4542 		}
4543 
4544 		if (__is_large_section(sbi)) {
4545 			get_sec_entry(sbi, start)->valid_blocks +=
4546 							se->valid_blocks;
4547 			get_sec_entry(sbi, start)->valid_blocks -=
4548 							old_valid_blocks;
4549 		}
4550 	}
4551 	up_read(&curseg->journal_rwsem);
4552 
4553 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4554 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4555 			 total_node_blocks, valid_node_count(sbi));
4556 		err = -EFSCORRUPTED;
4557 	}
4558 
4559 	return err;
4560 }
4561 
4562 static void init_free_segmap(struct f2fs_sb_info *sbi)
4563 {
4564 	unsigned int start;
4565 	int type;
4566 	struct seg_entry *sentry;
4567 
4568 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4569 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4570 			continue;
4571 		sentry = get_seg_entry(sbi, start);
4572 		if (!sentry->valid_blocks)
4573 			__set_free(sbi, start);
4574 		else
4575 			SIT_I(sbi)->written_valid_blocks +=
4576 						sentry->valid_blocks;
4577 	}
4578 
4579 	/* set use the current segments */
4580 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4581 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4582 
4583 		__set_test_and_inuse(sbi, curseg_t->segno);
4584 	}
4585 }
4586 
4587 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4588 {
4589 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4590 	struct free_segmap_info *free_i = FREE_I(sbi);
4591 	unsigned int segno = 0, offset = 0, secno;
4592 	block_t valid_blocks, usable_blks_in_seg;
4593 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4594 
4595 	while (1) {
4596 		/* find dirty segment based on free segmap */
4597 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4598 		if (segno >= MAIN_SEGS(sbi))
4599 			break;
4600 		offset = segno + 1;
4601 		valid_blocks = get_valid_blocks(sbi, segno, false);
4602 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4603 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4604 			continue;
4605 		if (valid_blocks > usable_blks_in_seg) {
4606 			f2fs_bug_on(sbi, 1);
4607 			continue;
4608 		}
4609 		mutex_lock(&dirty_i->seglist_lock);
4610 		__locate_dirty_segment(sbi, segno, DIRTY);
4611 		mutex_unlock(&dirty_i->seglist_lock);
4612 	}
4613 
4614 	if (!__is_large_section(sbi))
4615 		return;
4616 
4617 	mutex_lock(&dirty_i->seglist_lock);
4618 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4619 		valid_blocks = get_valid_blocks(sbi, segno, true);
4620 		secno = GET_SEC_FROM_SEG(sbi, segno);
4621 
4622 		if (!valid_blocks || valid_blocks == blks_per_sec)
4623 			continue;
4624 		if (IS_CURSEC(sbi, secno))
4625 			continue;
4626 		set_bit(secno, dirty_i->dirty_secmap);
4627 	}
4628 	mutex_unlock(&dirty_i->seglist_lock);
4629 }
4630 
4631 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4632 {
4633 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4634 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4635 
4636 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4637 	if (!dirty_i->victim_secmap)
4638 		return -ENOMEM;
4639 	return 0;
4640 }
4641 
4642 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4643 {
4644 	struct dirty_seglist_info *dirty_i;
4645 	unsigned int bitmap_size, i;
4646 
4647 	/* allocate memory for dirty segments list information */
4648 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4649 								GFP_KERNEL);
4650 	if (!dirty_i)
4651 		return -ENOMEM;
4652 
4653 	SM_I(sbi)->dirty_info = dirty_i;
4654 	mutex_init(&dirty_i->seglist_lock);
4655 
4656 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4657 
4658 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4659 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4660 								GFP_KERNEL);
4661 		if (!dirty_i->dirty_segmap[i])
4662 			return -ENOMEM;
4663 	}
4664 
4665 	if (__is_large_section(sbi)) {
4666 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4667 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4668 						bitmap_size, GFP_KERNEL);
4669 		if (!dirty_i->dirty_secmap)
4670 			return -ENOMEM;
4671 	}
4672 
4673 	init_dirty_segmap(sbi);
4674 	return init_victim_secmap(sbi);
4675 }
4676 
4677 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4678 {
4679 	int i;
4680 
4681 	/*
4682 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4683 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4684 	 */
4685 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4686 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4687 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4688 		unsigned int blkofs = curseg->next_blkoff;
4689 
4690 		if (f2fs_sb_has_readonly(sbi) &&
4691 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4692 			continue;
4693 
4694 		sanity_check_seg_type(sbi, curseg->seg_type);
4695 
4696 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4697 			goto out;
4698 
4699 		if (curseg->alloc_type == SSR)
4700 			continue;
4701 
4702 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4703 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4704 				continue;
4705 out:
4706 			f2fs_err(sbi,
4707 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4708 				 i, curseg->segno, curseg->alloc_type,
4709 				 curseg->next_blkoff, blkofs);
4710 			return -EFSCORRUPTED;
4711 		}
4712 	}
4713 	return 0;
4714 }
4715 
4716 #ifdef CONFIG_BLK_DEV_ZONED
4717 
4718 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4719 				    struct f2fs_dev_info *fdev,
4720 				    struct blk_zone *zone)
4721 {
4722 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4723 	block_t zone_block, wp_block, last_valid_block;
4724 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4725 	int i, s, b, ret;
4726 	struct seg_entry *se;
4727 
4728 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4729 		return 0;
4730 
4731 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4732 	wp_segno = GET_SEGNO(sbi, wp_block);
4733 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4734 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4735 	zone_segno = GET_SEGNO(sbi, zone_block);
4736 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4737 
4738 	if (zone_segno >= MAIN_SEGS(sbi))
4739 		return 0;
4740 
4741 	/*
4742 	 * Skip check of zones cursegs point to, since
4743 	 * fix_curseg_write_pointer() checks them.
4744 	 */
4745 	for (i = 0; i < NO_CHECK_TYPE; i++)
4746 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4747 						   CURSEG_I(sbi, i)->segno))
4748 			return 0;
4749 
4750 	/*
4751 	 * Get last valid block of the zone.
4752 	 */
4753 	last_valid_block = zone_block - 1;
4754 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4755 		segno = zone_segno + s;
4756 		se = get_seg_entry(sbi, segno);
4757 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4758 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4759 				last_valid_block = START_BLOCK(sbi, segno) + b;
4760 				break;
4761 			}
4762 		if (last_valid_block >= zone_block)
4763 			break;
4764 	}
4765 
4766 	/*
4767 	 * If last valid block is beyond the write pointer, report the
4768 	 * inconsistency. This inconsistency does not cause write error
4769 	 * because the zone will not be selected for write operation until
4770 	 * it get discarded. Just report it.
4771 	 */
4772 	if (last_valid_block >= wp_block) {
4773 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4774 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4775 			    GET_SEGNO(sbi, last_valid_block),
4776 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4777 			    wp_segno, wp_blkoff);
4778 		return 0;
4779 	}
4780 
4781 	/*
4782 	 * If there is no valid block in the zone and if write pointer is
4783 	 * not at zone start, reset the write pointer.
4784 	 */
4785 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4786 		f2fs_notice(sbi,
4787 			    "Zone without valid block has non-zero write "
4788 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4789 			    wp_segno, wp_blkoff);
4790 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4791 					zone->len >> log_sectors_per_block);
4792 		if (ret) {
4793 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4794 				 fdev->path, ret);
4795 			return ret;
4796 		}
4797 	}
4798 
4799 	return 0;
4800 }
4801 
4802 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4803 						  block_t zone_blkaddr)
4804 {
4805 	int i;
4806 
4807 	for (i = 0; i < sbi->s_ndevs; i++) {
4808 		if (!bdev_is_zoned(FDEV(i).bdev))
4809 			continue;
4810 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4811 				zone_blkaddr <= FDEV(i).end_blk))
4812 			return &FDEV(i);
4813 	}
4814 
4815 	return NULL;
4816 }
4817 
4818 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4819 			      void *data)
4820 {
4821 	memcpy(data, zone, sizeof(struct blk_zone));
4822 	return 0;
4823 }
4824 
4825 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4826 {
4827 	struct curseg_info *cs = CURSEG_I(sbi, type);
4828 	struct f2fs_dev_info *zbd;
4829 	struct blk_zone zone;
4830 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4831 	block_t cs_zone_block, wp_block;
4832 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4833 	sector_t zone_sector;
4834 	int err;
4835 
4836 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4837 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4838 
4839 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4840 	if (!zbd)
4841 		return 0;
4842 
4843 	/* report zone for the sector the curseg points to */
4844 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4845 		<< log_sectors_per_block;
4846 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4847 				  report_one_zone_cb, &zone);
4848 	if (err != 1) {
4849 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4850 			 zbd->path, err);
4851 		return err;
4852 	}
4853 
4854 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4855 		return 0;
4856 
4857 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4858 	wp_segno = GET_SEGNO(sbi, wp_block);
4859 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4860 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4861 
4862 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4863 		wp_sector_off == 0)
4864 		return 0;
4865 
4866 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4867 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4868 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4869 
4870 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4871 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4872 
4873 	f2fs_allocate_new_section(sbi, type, true);
4874 
4875 	/* check consistency of the zone curseg pointed to */
4876 	if (check_zone_write_pointer(sbi, zbd, &zone))
4877 		return -EIO;
4878 
4879 	/* check newly assigned zone */
4880 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4881 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4882 
4883 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4884 	if (!zbd)
4885 		return 0;
4886 
4887 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4888 		<< log_sectors_per_block;
4889 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4890 				  report_one_zone_cb, &zone);
4891 	if (err != 1) {
4892 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4893 			 zbd->path, err);
4894 		return err;
4895 	}
4896 
4897 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4898 		return 0;
4899 
4900 	if (zone.wp != zone.start) {
4901 		f2fs_notice(sbi,
4902 			    "New zone for curseg[%d] is not yet discarded. "
4903 			    "Reset the zone: curseg[0x%x,0x%x]",
4904 			    type, cs->segno, cs->next_blkoff);
4905 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4906 				zone_sector >> log_sectors_per_block,
4907 				zone.len >> log_sectors_per_block);
4908 		if (err) {
4909 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4910 				 zbd->path, err);
4911 			return err;
4912 		}
4913 	}
4914 
4915 	return 0;
4916 }
4917 
4918 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4919 {
4920 	int i, ret;
4921 
4922 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4923 		ret = fix_curseg_write_pointer(sbi, i);
4924 		if (ret)
4925 			return ret;
4926 	}
4927 
4928 	return 0;
4929 }
4930 
4931 struct check_zone_write_pointer_args {
4932 	struct f2fs_sb_info *sbi;
4933 	struct f2fs_dev_info *fdev;
4934 };
4935 
4936 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4937 				      void *data)
4938 {
4939 	struct check_zone_write_pointer_args *args;
4940 
4941 	args = (struct check_zone_write_pointer_args *)data;
4942 
4943 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4944 }
4945 
4946 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4947 {
4948 	int i, ret;
4949 	struct check_zone_write_pointer_args args;
4950 
4951 	for (i = 0; i < sbi->s_ndevs; i++) {
4952 		if (!bdev_is_zoned(FDEV(i).bdev))
4953 			continue;
4954 
4955 		args.sbi = sbi;
4956 		args.fdev = &FDEV(i);
4957 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4958 					  check_zone_write_pointer_cb, &args);
4959 		if (ret < 0)
4960 			return ret;
4961 	}
4962 
4963 	return 0;
4964 }
4965 
4966 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4967 						unsigned int dev_idx)
4968 {
4969 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4970 		return true;
4971 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4972 }
4973 
4974 /* Return the zone index in the given device */
4975 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4976 					int dev_idx)
4977 {
4978 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4979 
4980 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4981 						sbi->log_blocks_per_blkz;
4982 }
4983 
4984 /*
4985  * Return the usable segments in a section based on the zone's
4986  * corresponding zone capacity. Zone is equal to a section.
4987  */
4988 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4989 		struct f2fs_sb_info *sbi, unsigned int segno)
4990 {
4991 	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4992 
4993 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4994 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4995 
4996 	/* Conventional zone's capacity is always equal to zone size */
4997 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4998 		return sbi->segs_per_sec;
4999 
5000 	/*
5001 	 * If the zone_capacity_blocks array is NULL, then zone capacity
5002 	 * is equal to the zone size for all zones
5003 	 */
5004 	if (!FDEV(dev_idx).zone_capacity_blocks)
5005 		return sbi->segs_per_sec;
5006 
5007 	/* Get the segment count beyond zone capacity block */
5008 	unusable_segs_in_sec = (sbi->blocks_per_blkz -
5009 				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5010 				sbi->log_blocks_per_seg;
5011 	return sbi->segs_per_sec - unusable_segs_in_sec;
5012 }
5013 
5014 /*
5015  * Return the number of usable blocks in a segment. The number of blocks
5016  * returned is always equal to the number of blocks in a segment for
5017  * segments fully contained within a sequential zone capacity or a
5018  * conventional zone. For segments partially contained in a sequential
5019  * zone capacity, the number of usable blocks up to the zone capacity
5020  * is returned. 0 is returned in all other cases.
5021  */
5022 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5023 			struct f2fs_sb_info *sbi, unsigned int segno)
5024 {
5025 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5026 	unsigned int zone_idx, dev_idx, secno;
5027 
5028 	secno = GET_SEC_FROM_SEG(sbi, segno);
5029 	seg_start = START_BLOCK(sbi, segno);
5030 	dev_idx = f2fs_target_device_index(sbi, seg_start);
5031 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5032 
5033 	/*
5034 	 * Conventional zone's capacity is always equal to zone size,
5035 	 * so, blocks per segment is unchanged.
5036 	 */
5037 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5038 		return sbi->blocks_per_seg;
5039 
5040 	if (!FDEV(dev_idx).zone_capacity_blocks)
5041 		return sbi->blocks_per_seg;
5042 
5043 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5044 	sec_cap_blkaddr = sec_start_blkaddr +
5045 				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5046 
5047 	/*
5048 	 * If segment starts before zone capacity and spans beyond
5049 	 * zone capacity, then usable blocks are from seg start to
5050 	 * zone capacity. If the segment starts after the zone capacity,
5051 	 * then there are no usable blocks.
5052 	 */
5053 	if (seg_start >= sec_cap_blkaddr)
5054 		return 0;
5055 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5056 		return sec_cap_blkaddr - seg_start;
5057 
5058 	return sbi->blocks_per_seg;
5059 }
5060 #else
5061 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5062 {
5063 	return 0;
5064 }
5065 
5066 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5067 {
5068 	return 0;
5069 }
5070 
5071 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5072 							unsigned int segno)
5073 {
5074 	return 0;
5075 }
5076 
5077 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5078 							unsigned int segno)
5079 {
5080 	return 0;
5081 }
5082 #endif
5083 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5084 					unsigned int segno)
5085 {
5086 	if (f2fs_sb_has_blkzoned(sbi))
5087 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5088 
5089 	return sbi->blocks_per_seg;
5090 }
5091 
5092 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5093 					unsigned int segno)
5094 {
5095 	if (f2fs_sb_has_blkzoned(sbi))
5096 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5097 
5098 	return sbi->segs_per_sec;
5099 }
5100 
5101 /*
5102  * Update min, max modified time for cost-benefit GC algorithm
5103  */
5104 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5105 {
5106 	struct sit_info *sit_i = SIT_I(sbi);
5107 	unsigned int segno;
5108 
5109 	down_write(&sit_i->sentry_lock);
5110 
5111 	sit_i->min_mtime = ULLONG_MAX;
5112 
5113 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5114 		unsigned int i;
5115 		unsigned long long mtime = 0;
5116 
5117 		for (i = 0; i < sbi->segs_per_sec; i++)
5118 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5119 
5120 		mtime = div_u64(mtime, sbi->segs_per_sec);
5121 
5122 		if (sit_i->min_mtime > mtime)
5123 			sit_i->min_mtime = mtime;
5124 	}
5125 	sit_i->max_mtime = get_mtime(sbi, false);
5126 	sit_i->dirty_max_mtime = 0;
5127 	up_write(&sit_i->sentry_lock);
5128 }
5129 
5130 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5131 {
5132 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5133 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5134 	struct f2fs_sm_info *sm_info;
5135 	int err;
5136 
5137 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5138 	if (!sm_info)
5139 		return -ENOMEM;
5140 
5141 	/* init sm info */
5142 	sbi->sm_info = sm_info;
5143 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5144 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5145 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5146 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5147 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5148 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5149 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5150 	sm_info->rec_prefree_segments = sm_info->main_segments *
5151 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5152 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5153 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5154 
5155 	if (!f2fs_lfs_mode(sbi))
5156 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5157 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5158 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5159 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5160 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5161 	sm_info->min_ssr_sections = reserved_sections(sbi);
5162 
5163 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5164 
5165 	init_rwsem(&sm_info->curseg_lock);
5166 
5167 	if (!f2fs_readonly(sbi->sb)) {
5168 		err = f2fs_create_flush_cmd_control(sbi);
5169 		if (err)
5170 			return err;
5171 	}
5172 
5173 	err = create_discard_cmd_control(sbi);
5174 	if (err)
5175 		return err;
5176 
5177 	err = build_sit_info(sbi);
5178 	if (err)
5179 		return err;
5180 	err = build_free_segmap(sbi);
5181 	if (err)
5182 		return err;
5183 	err = build_curseg(sbi);
5184 	if (err)
5185 		return err;
5186 
5187 	/* reinit free segmap based on SIT */
5188 	err = build_sit_entries(sbi);
5189 	if (err)
5190 		return err;
5191 
5192 	init_free_segmap(sbi);
5193 	err = build_dirty_segmap(sbi);
5194 	if (err)
5195 		return err;
5196 
5197 	err = sanity_check_curseg(sbi);
5198 	if (err)
5199 		return err;
5200 
5201 	init_min_max_mtime(sbi);
5202 	return 0;
5203 }
5204 
5205 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5206 		enum dirty_type dirty_type)
5207 {
5208 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5209 
5210 	mutex_lock(&dirty_i->seglist_lock);
5211 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5212 	dirty_i->nr_dirty[dirty_type] = 0;
5213 	mutex_unlock(&dirty_i->seglist_lock);
5214 }
5215 
5216 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5217 {
5218 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5219 
5220 	kvfree(dirty_i->victim_secmap);
5221 }
5222 
5223 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5224 {
5225 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5226 	int i;
5227 
5228 	if (!dirty_i)
5229 		return;
5230 
5231 	/* discard pre-free/dirty segments list */
5232 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5233 		discard_dirty_segmap(sbi, i);
5234 
5235 	if (__is_large_section(sbi)) {
5236 		mutex_lock(&dirty_i->seglist_lock);
5237 		kvfree(dirty_i->dirty_secmap);
5238 		mutex_unlock(&dirty_i->seglist_lock);
5239 	}
5240 
5241 	destroy_victim_secmap(sbi);
5242 	SM_I(sbi)->dirty_info = NULL;
5243 	kfree(dirty_i);
5244 }
5245 
5246 static void destroy_curseg(struct f2fs_sb_info *sbi)
5247 {
5248 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5249 	int i;
5250 
5251 	if (!array)
5252 		return;
5253 	SM_I(sbi)->curseg_array = NULL;
5254 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5255 		kfree(array[i].sum_blk);
5256 		kfree(array[i].journal);
5257 	}
5258 	kfree(array);
5259 }
5260 
5261 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5262 {
5263 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5264 
5265 	if (!free_i)
5266 		return;
5267 	SM_I(sbi)->free_info = NULL;
5268 	kvfree(free_i->free_segmap);
5269 	kvfree(free_i->free_secmap);
5270 	kfree(free_i);
5271 }
5272 
5273 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5274 {
5275 	struct sit_info *sit_i = SIT_I(sbi);
5276 
5277 	if (!sit_i)
5278 		return;
5279 
5280 	if (sit_i->sentries)
5281 		kvfree(sit_i->bitmap);
5282 	kfree(sit_i->tmp_map);
5283 
5284 	kvfree(sit_i->sentries);
5285 	kvfree(sit_i->sec_entries);
5286 	kvfree(sit_i->dirty_sentries_bitmap);
5287 
5288 	SM_I(sbi)->sit_info = NULL;
5289 	kvfree(sit_i->sit_bitmap);
5290 #ifdef CONFIG_F2FS_CHECK_FS
5291 	kvfree(sit_i->sit_bitmap_mir);
5292 	kvfree(sit_i->invalid_segmap);
5293 #endif
5294 	kfree(sit_i);
5295 }
5296 
5297 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5298 {
5299 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5300 
5301 	if (!sm_info)
5302 		return;
5303 	f2fs_destroy_flush_cmd_control(sbi, true);
5304 	destroy_discard_cmd_control(sbi);
5305 	destroy_dirty_segmap(sbi);
5306 	destroy_curseg(sbi);
5307 	destroy_free_segmap(sbi);
5308 	destroy_sit_info(sbi);
5309 	sbi->sm_info = NULL;
5310 	kfree(sm_info);
5311 }
5312 
5313 int __init f2fs_create_segment_manager_caches(void)
5314 {
5315 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5316 			sizeof(struct discard_entry));
5317 	if (!discard_entry_slab)
5318 		goto fail;
5319 
5320 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5321 			sizeof(struct discard_cmd));
5322 	if (!discard_cmd_slab)
5323 		goto destroy_discard_entry;
5324 
5325 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5326 			sizeof(struct sit_entry_set));
5327 	if (!sit_entry_set_slab)
5328 		goto destroy_discard_cmd;
5329 
5330 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5331 			sizeof(struct inmem_pages));
5332 	if (!inmem_entry_slab)
5333 		goto destroy_sit_entry_set;
5334 	return 0;
5335 
5336 destroy_sit_entry_set:
5337 	kmem_cache_destroy(sit_entry_set_slab);
5338 destroy_discard_cmd:
5339 	kmem_cache_destroy(discard_cmd_slab);
5340 destroy_discard_entry:
5341 	kmem_cache_destroy(discard_entry_slab);
5342 fail:
5343 	return -ENOMEM;
5344 }
5345 
5346 void f2fs_destroy_segment_manager_caches(void)
5347 {
5348 	kmem_cache_destroy(sit_entry_set_slab);
5349 	kmem_cache_destroy(discard_cmd_slab);
5350 	kmem_cache_destroy(discard_entry_slab);
5351 	kmem_cache_destroy(inmem_entry_slab);
5352 }
5353