1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 #include <linux/timer.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "trace.h" 25 #include <trace/events/f2fs.h> 26 27 #define __reverse_ffz(x) __reverse_ffs(~(x)) 28 29 static struct kmem_cache *discard_entry_slab; 30 static struct kmem_cache *bio_entry_slab; 31 static struct kmem_cache *sit_entry_set_slab; 32 static struct kmem_cache *inmem_entry_slab; 33 34 static unsigned long __reverse_ulong(unsigned char *str) 35 { 36 unsigned long tmp = 0; 37 int shift = 24, idx = 0; 38 39 #if BITS_PER_LONG == 64 40 shift = 56; 41 #endif 42 while (shift >= 0) { 43 tmp |= (unsigned long)str[idx++] << shift; 44 shift -= BITS_PER_BYTE; 45 } 46 return tmp; 47 } 48 49 /* 50 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 51 * MSB and LSB are reversed in a byte by f2fs_set_bit. 52 */ 53 static inline unsigned long __reverse_ffs(unsigned long word) 54 { 55 int num = 0; 56 57 #if BITS_PER_LONG == 64 58 if ((word & 0xffffffff00000000UL) == 0) 59 num += 32; 60 else 61 word >>= 32; 62 #endif 63 if ((word & 0xffff0000) == 0) 64 num += 16; 65 else 66 word >>= 16; 67 68 if ((word & 0xff00) == 0) 69 num += 8; 70 else 71 word >>= 8; 72 73 if ((word & 0xf0) == 0) 74 num += 4; 75 else 76 word >>= 4; 77 78 if ((word & 0xc) == 0) 79 num += 2; 80 else 81 word >>= 2; 82 83 if ((word & 0x2) == 0) 84 num += 1; 85 return num; 86 } 87 88 /* 89 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 90 * f2fs_set_bit makes MSB and LSB reversed in a byte. 91 * @size must be integral times of unsigned long. 92 * Example: 93 * MSB <--> LSB 94 * f2fs_set_bit(0, bitmap) => 1000 0000 95 * f2fs_set_bit(7, bitmap) => 0000 0001 96 */ 97 static unsigned long __find_rev_next_bit(const unsigned long *addr, 98 unsigned long size, unsigned long offset) 99 { 100 const unsigned long *p = addr + BIT_WORD(offset); 101 unsigned long result = size; 102 unsigned long tmp; 103 104 if (offset >= size) 105 return size; 106 107 size -= (offset & ~(BITS_PER_LONG - 1)); 108 offset %= BITS_PER_LONG; 109 110 while (1) { 111 if (*p == 0) 112 goto pass; 113 114 tmp = __reverse_ulong((unsigned char *)p); 115 116 tmp &= ~0UL >> offset; 117 if (size < BITS_PER_LONG) 118 tmp &= (~0UL << (BITS_PER_LONG - size)); 119 if (tmp) 120 goto found; 121 pass: 122 if (size <= BITS_PER_LONG) 123 break; 124 size -= BITS_PER_LONG; 125 offset = 0; 126 p++; 127 } 128 return result; 129 found: 130 return result - size + __reverse_ffs(tmp); 131 } 132 133 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 134 unsigned long size, unsigned long offset) 135 { 136 const unsigned long *p = addr + BIT_WORD(offset); 137 unsigned long result = size; 138 unsigned long tmp; 139 140 if (offset >= size) 141 return size; 142 143 size -= (offset & ~(BITS_PER_LONG - 1)); 144 offset %= BITS_PER_LONG; 145 146 while (1) { 147 if (*p == ~0UL) 148 goto pass; 149 150 tmp = __reverse_ulong((unsigned char *)p); 151 152 if (offset) 153 tmp |= ~0UL << (BITS_PER_LONG - offset); 154 if (size < BITS_PER_LONG) 155 tmp |= ~0UL >> size; 156 if (tmp != ~0UL) 157 goto found; 158 pass: 159 if (size <= BITS_PER_LONG) 160 break; 161 size -= BITS_PER_LONG; 162 offset = 0; 163 p++; 164 } 165 return result; 166 found: 167 return result - size + __reverse_ffz(tmp); 168 } 169 170 void register_inmem_page(struct inode *inode, struct page *page) 171 { 172 struct f2fs_inode_info *fi = F2FS_I(inode); 173 struct inmem_pages *new; 174 175 f2fs_trace_pid(page); 176 177 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 178 SetPagePrivate(page); 179 180 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 181 182 /* add atomic page indices to the list */ 183 new->page = page; 184 INIT_LIST_HEAD(&new->list); 185 186 /* increase reference count with clean state */ 187 mutex_lock(&fi->inmem_lock); 188 get_page(page); 189 list_add_tail(&new->list, &fi->inmem_pages); 190 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 191 mutex_unlock(&fi->inmem_lock); 192 193 trace_f2fs_register_inmem_page(page, INMEM); 194 } 195 196 static int __revoke_inmem_pages(struct inode *inode, 197 struct list_head *head, bool drop, bool recover) 198 { 199 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 200 struct inmem_pages *cur, *tmp; 201 int err = 0; 202 203 list_for_each_entry_safe(cur, tmp, head, list) { 204 struct page *page = cur->page; 205 206 if (drop) 207 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 208 209 lock_page(page); 210 211 if (recover) { 212 struct dnode_of_data dn; 213 struct node_info ni; 214 215 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 216 217 set_new_dnode(&dn, inode, NULL, NULL, 0); 218 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 219 err = -EAGAIN; 220 goto next; 221 } 222 get_node_info(sbi, dn.nid, &ni); 223 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 224 cur->old_addr, ni.version, true, true); 225 f2fs_put_dnode(&dn); 226 } 227 next: 228 /* we don't need to invalidate this in the sccessful status */ 229 if (drop || recover) 230 ClearPageUptodate(page); 231 set_page_private(page, 0); 232 ClearPagePrivate(page); 233 f2fs_put_page(page, 1); 234 235 list_del(&cur->list); 236 kmem_cache_free(inmem_entry_slab, cur); 237 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 238 } 239 return err; 240 } 241 242 void drop_inmem_pages(struct inode *inode) 243 { 244 struct f2fs_inode_info *fi = F2FS_I(inode); 245 246 clear_inode_flag(inode, FI_ATOMIC_FILE); 247 248 mutex_lock(&fi->inmem_lock); 249 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 250 mutex_unlock(&fi->inmem_lock); 251 } 252 253 static int __commit_inmem_pages(struct inode *inode, 254 struct list_head *revoke_list) 255 { 256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 257 struct f2fs_inode_info *fi = F2FS_I(inode); 258 struct inmem_pages *cur, *tmp; 259 struct f2fs_io_info fio = { 260 .sbi = sbi, 261 .type = DATA, 262 .op = REQ_OP_WRITE, 263 .op_flags = WRITE_SYNC | REQ_PRIO, 264 .encrypted_page = NULL, 265 }; 266 bool submit_bio = false; 267 int err = 0; 268 269 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 270 struct page *page = cur->page; 271 272 lock_page(page); 273 if (page->mapping == inode->i_mapping) { 274 trace_f2fs_commit_inmem_page(page, INMEM); 275 276 set_page_dirty(page); 277 f2fs_wait_on_page_writeback(page, DATA, true); 278 if (clear_page_dirty_for_io(page)) { 279 inode_dec_dirty_pages(inode); 280 remove_dirty_inode(inode); 281 } 282 283 fio.page = page; 284 err = do_write_data_page(&fio); 285 if (err) { 286 unlock_page(page); 287 break; 288 } 289 290 /* record old blkaddr for revoking */ 291 cur->old_addr = fio.old_blkaddr; 292 293 clear_cold_data(page); 294 submit_bio = true; 295 } 296 unlock_page(page); 297 list_move_tail(&cur->list, revoke_list); 298 } 299 300 if (submit_bio) 301 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 302 303 if (!err) 304 __revoke_inmem_pages(inode, revoke_list, false, false); 305 306 return err; 307 } 308 309 int commit_inmem_pages(struct inode *inode) 310 { 311 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 312 struct f2fs_inode_info *fi = F2FS_I(inode); 313 struct list_head revoke_list; 314 int err; 315 316 INIT_LIST_HEAD(&revoke_list); 317 f2fs_balance_fs(sbi, true); 318 f2fs_lock_op(sbi); 319 320 mutex_lock(&fi->inmem_lock); 321 err = __commit_inmem_pages(inode, &revoke_list); 322 if (err) { 323 int ret; 324 /* 325 * try to revoke all committed pages, but still we could fail 326 * due to no memory or other reason, if that happened, EAGAIN 327 * will be returned, which means in such case, transaction is 328 * already not integrity, caller should use journal to do the 329 * recovery or rewrite & commit last transaction. For other 330 * error number, revoking was done by filesystem itself. 331 */ 332 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 333 if (ret) 334 err = ret; 335 336 /* drop all uncommitted pages */ 337 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 338 } 339 mutex_unlock(&fi->inmem_lock); 340 341 f2fs_unlock_op(sbi); 342 return err; 343 } 344 345 /* 346 * This function balances dirty node and dentry pages. 347 * In addition, it controls garbage collection. 348 */ 349 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 350 { 351 #ifdef CONFIG_F2FS_FAULT_INJECTION 352 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 353 f2fs_stop_checkpoint(sbi, false); 354 #endif 355 356 if (!need) 357 return; 358 359 /* balance_fs_bg is able to be pending */ 360 if (excess_cached_nats(sbi)) 361 f2fs_balance_fs_bg(sbi); 362 363 /* 364 * We should do GC or end up with checkpoint, if there are so many dirty 365 * dir/node pages without enough free segments. 366 */ 367 if (has_not_enough_free_secs(sbi, 0, 0)) { 368 mutex_lock(&sbi->gc_mutex); 369 f2fs_gc(sbi, false); 370 } 371 } 372 373 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 374 { 375 /* try to shrink extent cache when there is no enough memory */ 376 if (!available_free_memory(sbi, EXTENT_CACHE)) 377 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 378 379 /* check the # of cached NAT entries */ 380 if (!available_free_memory(sbi, NAT_ENTRIES)) 381 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 382 383 if (!available_free_memory(sbi, FREE_NIDS)) 384 try_to_free_nids(sbi, MAX_FREE_NIDS); 385 else 386 build_free_nids(sbi, false); 387 388 /* checkpoint is the only way to shrink partial cached entries */ 389 if (!available_free_memory(sbi, NAT_ENTRIES) || 390 !available_free_memory(sbi, INO_ENTRIES) || 391 excess_prefree_segs(sbi) || 392 excess_dirty_nats(sbi) || 393 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) { 394 if (test_opt(sbi, DATA_FLUSH)) { 395 struct blk_plug plug; 396 397 blk_start_plug(&plug); 398 sync_dirty_inodes(sbi, FILE_INODE); 399 blk_finish_plug(&plug); 400 } 401 f2fs_sync_fs(sbi->sb, true); 402 stat_inc_bg_cp_count(sbi->stat_info); 403 } 404 } 405 406 static int issue_flush_thread(void *data) 407 { 408 struct f2fs_sb_info *sbi = data; 409 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 410 wait_queue_head_t *q = &fcc->flush_wait_queue; 411 repeat: 412 if (kthread_should_stop()) 413 return 0; 414 415 if (!llist_empty(&fcc->issue_list)) { 416 struct bio *bio; 417 struct flush_cmd *cmd, *next; 418 int ret; 419 420 bio = f2fs_bio_alloc(0); 421 422 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 423 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 424 425 bio->bi_bdev = sbi->sb->s_bdev; 426 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 427 ret = submit_bio_wait(bio); 428 429 llist_for_each_entry_safe(cmd, next, 430 fcc->dispatch_list, llnode) { 431 cmd->ret = ret; 432 complete(&cmd->wait); 433 } 434 bio_put(bio); 435 fcc->dispatch_list = NULL; 436 } 437 438 wait_event_interruptible(*q, 439 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 440 goto repeat; 441 } 442 443 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 444 { 445 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 446 struct flush_cmd cmd; 447 448 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 449 test_opt(sbi, FLUSH_MERGE)); 450 451 if (test_opt(sbi, NOBARRIER)) 452 return 0; 453 454 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) { 455 struct bio *bio = f2fs_bio_alloc(0); 456 int ret; 457 458 atomic_inc(&fcc->submit_flush); 459 bio->bi_bdev = sbi->sb->s_bdev; 460 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 461 ret = submit_bio_wait(bio); 462 atomic_dec(&fcc->submit_flush); 463 bio_put(bio); 464 return ret; 465 } 466 467 init_completion(&cmd.wait); 468 469 atomic_inc(&fcc->submit_flush); 470 llist_add(&cmd.llnode, &fcc->issue_list); 471 472 if (!fcc->dispatch_list) 473 wake_up(&fcc->flush_wait_queue); 474 475 wait_for_completion(&cmd.wait); 476 atomic_dec(&fcc->submit_flush); 477 478 return cmd.ret; 479 } 480 481 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 482 { 483 dev_t dev = sbi->sb->s_bdev->bd_dev; 484 struct flush_cmd_control *fcc; 485 int err = 0; 486 487 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 488 if (!fcc) 489 return -ENOMEM; 490 atomic_set(&fcc->submit_flush, 0); 491 init_waitqueue_head(&fcc->flush_wait_queue); 492 init_llist_head(&fcc->issue_list); 493 SM_I(sbi)->cmd_control_info = fcc; 494 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 495 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 496 if (IS_ERR(fcc->f2fs_issue_flush)) { 497 err = PTR_ERR(fcc->f2fs_issue_flush); 498 kfree(fcc); 499 SM_I(sbi)->cmd_control_info = NULL; 500 return err; 501 } 502 503 return err; 504 } 505 506 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 507 { 508 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 509 510 if (fcc && fcc->f2fs_issue_flush) 511 kthread_stop(fcc->f2fs_issue_flush); 512 kfree(fcc); 513 SM_I(sbi)->cmd_control_info = NULL; 514 } 515 516 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 517 enum dirty_type dirty_type) 518 { 519 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 520 521 /* need not be added */ 522 if (IS_CURSEG(sbi, segno)) 523 return; 524 525 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 526 dirty_i->nr_dirty[dirty_type]++; 527 528 if (dirty_type == DIRTY) { 529 struct seg_entry *sentry = get_seg_entry(sbi, segno); 530 enum dirty_type t = sentry->type; 531 532 if (unlikely(t >= DIRTY)) { 533 f2fs_bug_on(sbi, 1); 534 return; 535 } 536 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 537 dirty_i->nr_dirty[t]++; 538 } 539 } 540 541 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 542 enum dirty_type dirty_type) 543 { 544 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 545 546 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 547 dirty_i->nr_dirty[dirty_type]--; 548 549 if (dirty_type == DIRTY) { 550 struct seg_entry *sentry = get_seg_entry(sbi, segno); 551 enum dirty_type t = sentry->type; 552 553 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 554 dirty_i->nr_dirty[t]--; 555 556 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 557 clear_bit(GET_SECNO(sbi, segno), 558 dirty_i->victim_secmap); 559 } 560 } 561 562 /* 563 * Should not occur error such as -ENOMEM. 564 * Adding dirty entry into seglist is not critical operation. 565 * If a given segment is one of current working segments, it won't be added. 566 */ 567 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 568 { 569 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 570 unsigned short valid_blocks; 571 572 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 573 return; 574 575 mutex_lock(&dirty_i->seglist_lock); 576 577 valid_blocks = get_valid_blocks(sbi, segno, 0); 578 579 if (valid_blocks == 0) { 580 __locate_dirty_segment(sbi, segno, PRE); 581 __remove_dirty_segment(sbi, segno, DIRTY); 582 } else if (valid_blocks < sbi->blocks_per_seg) { 583 __locate_dirty_segment(sbi, segno, DIRTY); 584 } else { 585 /* Recovery routine with SSR needs this */ 586 __remove_dirty_segment(sbi, segno, DIRTY); 587 } 588 589 mutex_unlock(&dirty_i->seglist_lock); 590 } 591 592 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi, 593 struct bio *bio) 594 { 595 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 596 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 597 598 INIT_LIST_HEAD(&be->list); 599 be->bio = bio; 600 init_completion(&be->event); 601 list_add_tail(&be->list, wait_list); 602 603 return be; 604 } 605 606 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi) 607 { 608 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 609 struct bio_entry *be, *tmp; 610 611 list_for_each_entry_safe(be, tmp, wait_list, list) { 612 struct bio *bio = be->bio; 613 int err; 614 615 wait_for_completion_io(&be->event); 616 err = be->error; 617 if (err == -EOPNOTSUPP) 618 err = 0; 619 620 if (err) 621 f2fs_msg(sbi->sb, KERN_INFO, 622 "Issue discard failed, ret: %d", err); 623 624 bio_put(bio); 625 list_del(&be->list); 626 kmem_cache_free(bio_entry_slab, be); 627 } 628 } 629 630 static void f2fs_submit_bio_wait_endio(struct bio *bio) 631 { 632 struct bio_entry *be = (struct bio_entry *)bio->bi_private; 633 634 be->error = bio->bi_error; 635 complete(&be->event); 636 } 637 638 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 639 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, 640 block_t blkstart, block_t blklen) 641 { 642 struct block_device *bdev = sbi->sb->s_bdev; 643 struct bio *bio = NULL; 644 int err; 645 646 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 647 648 err = __blkdev_issue_discard(bdev, 649 SECTOR_FROM_BLOCK(blkstart), 650 SECTOR_FROM_BLOCK(blklen), 651 GFP_NOFS, 0, &bio); 652 if (!err && bio) { 653 struct bio_entry *be = __add_bio_entry(sbi, bio); 654 655 bio->bi_private = be; 656 bio->bi_end_io = f2fs_submit_bio_wait_endio; 657 bio->bi_opf |= REQ_SYNC; 658 submit_bio(bio); 659 } 660 661 return err; 662 } 663 664 #ifdef CONFIG_BLK_DEV_ZONED 665 static int f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 666 block_t blkstart, block_t blklen) 667 { 668 sector_t sector = SECTOR_FROM_BLOCK(blkstart); 669 sector_t nr_sects = SECTOR_FROM_BLOCK(blklen); 670 struct block_device *bdev = sbi->sb->s_bdev; 671 672 if (nr_sects != bdev_zone_size(bdev)) { 673 f2fs_msg(sbi->sb, KERN_INFO, 674 "Unaligned discard attempted (sector %llu + %llu)", 675 (unsigned long long)sector, 676 (unsigned long long)nr_sects); 677 return -EIO; 678 } 679 680 /* 681 * We need to know the type of the zone: for conventional zones, 682 * use regular discard if the drive supports it. For sequential 683 * zones, reset the zone write pointer. 684 */ 685 switch (get_blkz_type(sbi, blkstart)) { 686 687 case BLK_ZONE_TYPE_CONVENTIONAL: 688 if (!blk_queue_discard(bdev_get_queue(bdev))) 689 return 0; 690 return __f2fs_issue_discard_async(sbi, blkstart, 691 blklen); 692 693 case BLK_ZONE_TYPE_SEQWRITE_REQ: 694 case BLK_ZONE_TYPE_SEQWRITE_PREF: 695 trace_f2fs_issue_reset_zone(sbi->sb, blkstart); 696 return blkdev_reset_zones(bdev, sector, 697 nr_sects, GFP_NOFS); 698 default: 699 /* Unknown zone type: broken device ? */ 700 return -EIO; 701 } 702 } 703 #endif 704 705 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 706 block_t blkstart, block_t blklen) 707 { 708 struct seg_entry *se; 709 unsigned int offset; 710 block_t i; 711 712 for (i = blkstart; i < blkstart + blklen; i++) { 713 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 714 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 715 716 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 717 sbi->discard_blks--; 718 } 719 720 #ifdef CONFIG_BLK_DEV_ZONED 721 if (f2fs_sb_mounted_blkzoned(sbi->sb)) 722 return f2fs_issue_discard_zone(sbi, blkstart, blklen); 723 #endif 724 return __f2fs_issue_discard_async(sbi, blkstart, blklen); 725 } 726 727 static void __add_discard_entry(struct f2fs_sb_info *sbi, 728 struct cp_control *cpc, struct seg_entry *se, 729 unsigned int start, unsigned int end) 730 { 731 struct list_head *head = &SM_I(sbi)->discard_list; 732 struct discard_entry *new, *last; 733 734 if (!list_empty(head)) { 735 last = list_last_entry(head, struct discard_entry, list); 736 if (START_BLOCK(sbi, cpc->trim_start) + start == 737 last->blkaddr + last->len) { 738 last->len += end - start; 739 goto done; 740 } 741 } 742 743 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 744 INIT_LIST_HEAD(&new->list); 745 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 746 new->len = end - start; 747 list_add_tail(&new->list, head); 748 done: 749 SM_I(sbi)->nr_discards += end - start; 750 } 751 752 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 753 { 754 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 755 int max_blocks = sbi->blocks_per_seg; 756 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 757 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 758 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 759 unsigned long *discard_map = (unsigned long *)se->discard_map; 760 unsigned long *dmap = SIT_I(sbi)->tmp_map; 761 unsigned int start = 0, end = -1; 762 bool force = (cpc->reason == CP_DISCARD); 763 int i; 764 765 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 766 return; 767 768 if (!force) { 769 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 770 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 771 return; 772 } 773 774 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 775 for (i = 0; i < entries; i++) 776 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 777 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 778 779 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 780 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 781 if (start >= max_blocks) 782 break; 783 784 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 785 if (force && start && end != max_blocks 786 && (end - start) < cpc->trim_minlen) 787 continue; 788 789 __add_discard_entry(sbi, cpc, se, start, end); 790 } 791 } 792 793 void release_discard_addrs(struct f2fs_sb_info *sbi) 794 { 795 struct list_head *head = &(SM_I(sbi)->discard_list); 796 struct discard_entry *entry, *this; 797 798 /* drop caches */ 799 list_for_each_entry_safe(entry, this, head, list) { 800 list_del(&entry->list); 801 kmem_cache_free(discard_entry_slab, entry); 802 } 803 } 804 805 /* 806 * Should call clear_prefree_segments after checkpoint is done. 807 */ 808 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 809 { 810 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 811 unsigned int segno; 812 813 mutex_lock(&dirty_i->seglist_lock); 814 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 815 __set_test_and_free(sbi, segno); 816 mutex_unlock(&dirty_i->seglist_lock); 817 } 818 819 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 820 { 821 struct list_head *head = &(SM_I(sbi)->discard_list); 822 struct discard_entry *entry, *this; 823 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 824 struct blk_plug plug; 825 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 826 unsigned int start = 0, end = -1; 827 unsigned int secno, start_segno; 828 bool force = (cpc->reason == CP_DISCARD); 829 830 blk_start_plug(&plug); 831 832 mutex_lock(&dirty_i->seglist_lock); 833 834 while (1) { 835 int i; 836 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 837 if (start >= MAIN_SEGS(sbi)) 838 break; 839 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 840 start + 1); 841 842 for (i = start; i < end; i++) 843 clear_bit(i, prefree_map); 844 845 dirty_i->nr_dirty[PRE] -= end - start; 846 847 if (force || !test_opt(sbi, DISCARD)) 848 continue; 849 850 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 851 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 852 (end - start) << sbi->log_blocks_per_seg); 853 continue; 854 } 855 next: 856 secno = GET_SECNO(sbi, start); 857 start_segno = secno * sbi->segs_per_sec; 858 if (!IS_CURSEC(sbi, secno) && 859 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 860 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 861 sbi->segs_per_sec << sbi->log_blocks_per_seg); 862 863 start = start_segno + sbi->segs_per_sec; 864 if (start < end) 865 goto next; 866 } 867 mutex_unlock(&dirty_i->seglist_lock); 868 869 /* send small discards */ 870 list_for_each_entry_safe(entry, this, head, list) { 871 if (force && entry->len < cpc->trim_minlen) 872 goto skip; 873 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 874 cpc->trimmed += entry->len; 875 skip: 876 list_del(&entry->list); 877 SM_I(sbi)->nr_discards -= entry->len; 878 kmem_cache_free(discard_entry_slab, entry); 879 } 880 881 blk_finish_plug(&plug); 882 } 883 884 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 885 { 886 struct sit_info *sit_i = SIT_I(sbi); 887 888 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 889 sit_i->dirty_sentries++; 890 return false; 891 } 892 893 return true; 894 } 895 896 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 897 unsigned int segno, int modified) 898 { 899 struct seg_entry *se = get_seg_entry(sbi, segno); 900 se->type = type; 901 if (modified) 902 __mark_sit_entry_dirty(sbi, segno); 903 } 904 905 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 906 { 907 struct seg_entry *se; 908 unsigned int segno, offset; 909 long int new_vblocks; 910 911 segno = GET_SEGNO(sbi, blkaddr); 912 913 se = get_seg_entry(sbi, segno); 914 new_vblocks = se->valid_blocks + del; 915 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 916 917 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 918 (new_vblocks > sbi->blocks_per_seg))); 919 920 se->valid_blocks = new_vblocks; 921 se->mtime = get_mtime(sbi); 922 SIT_I(sbi)->max_mtime = se->mtime; 923 924 /* Update valid block bitmap */ 925 if (del > 0) { 926 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 927 f2fs_bug_on(sbi, 1); 928 if (f2fs_discard_en(sbi) && 929 !f2fs_test_and_set_bit(offset, se->discard_map)) 930 sbi->discard_blks--; 931 } else { 932 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 933 f2fs_bug_on(sbi, 1); 934 if (f2fs_discard_en(sbi) && 935 f2fs_test_and_clear_bit(offset, se->discard_map)) 936 sbi->discard_blks++; 937 } 938 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 939 se->ckpt_valid_blocks += del; 940 941 __mark_sit_entry_dirty(sbi, segno); 942 943 /* update total number of valid blocks to be written in ckpt area */ 944 SIT_I(sbi)->written_valid_blocks += del; 945 946 if (sbi->segs_per_sec > 1) 947 get_sec_entry(sbi, segno)->valid_blocks += del; 948 } 949 950 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 951 { 952 update_sit_entry(sbi, new, 1); 953 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 954 update_sit_entry(sbi, old, -1); 955 956 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 957 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 958 } 959 960 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 961 { 962 unsigned int segno = GET_SEGNO(sbi, addr); 963 struct sit_info *sit_i = SIT_I(sbi); 964 965 f2fs_bug_on(sbi, addr == NULL_ADDR); 966 if (addr == NEW_ADDR) 967 return; 968 969 /* add it into sit main buffer */ 970 mutex_lock(&sit_i->sentry_lock); 971 972 update_sit_entry(sbi, addr, -1); 973 974 /* add it into dirty seglist */ 975 locate_dirty_segment(sbi, segno); 976 977 mutex_unlock(&sit_i->sentry_lock); 978 } 979 980 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 981 { 982 struct sit_info *sit_i = SIT_I(sbi); 983 unsigned int segno, offset; 984 struct seg_entry *se; 985 bool is_cp = false; 986 987 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 988 return true; 989 990 mutex_lock(&sit_i->sentry_lock); 991 992 segno = GET_SEGNO(sbi, blkaddr); 993 se = get_seg_entry(sbi, segno); 994 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 995 996 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 997 is_cp = true; 998 999 mutex_unlock(&sit_i->sentry_lock); 1000 1001 return is_cp; 1002 } 1003 1004 /* 1005 * This function should be resided under the curseg_mutex lock 1006 */ 1007 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1008 struct f2fs_summary *sum) 1009 { 1010 struct curseg_info *curseg = CURSEG_I(sbi, type); 1011 void *addr = curseg->sum_blk; 1012 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1013 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1014 } 1015 1016 /* 1017 * Calculate the number of current summary pages for writing 1018 */ 1019 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1020 { 1021 int valid_sum_count = 0; 1022 int i, sum_in_page; 1023 1024 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1025 if (sbi->ckpt->alloc_type[i] == SSR) 1026 valid_sum_count += sbi->blocks_per_seg; 1027 else { 1028 if (for_ra) 1029 valid_sum_count += le16_to_cpu( 1030 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1031 else 1032 valid_sum_count += curseg_blkoff(sbi, i); 1033 } 1034 } 1035 1036 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1037 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1038 if (valid_sum_count <= sum_in_page) 1039 return 1; 1040 else if ((valid_sum_count - sum_in_page) <= 1041 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1042 return 2; 1043 return 3; 1044 } 1045 1046 /* 1047 * Caller should put this summary page 1048 */ 1049 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1050 { 1051 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1052 } 1053 1054 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1055 { 1056 struct page *page = grab_meta_page(sbi, blk_addr); 1057 void *dst = page_address(page); 1058 1059 if (src) 1060 memcpy(dst, src, PAGE_SIZE); 1061 else 1062 memset(dst, 0, PAGE_SIZE); 1063 set_page_dirty(page); 1064 f2fs_put_page(page, 1); 1065 } 1066 1067 static void write_sum_page(struct f2fs_sb_info *sbi, 1068 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1069 { 1070 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1071 } 1072 1073 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1074 int type, block_t blk_addr) 1075 { 1076 struct curseg_info *curseg = CURSEG_I(sbi, type); 1077 struct page *page = grab_meta_page(sbi, blk_addr); 1078 struct f2fs_summary_block *src = curseg->sum_blk; 1079 struct f2fs_summary_block *dst; 1080 1081 dst = (struct f2fs_summary_block *)page_address(page); 1082 1083 mutex_lock(&curseg->curseg_mutex); 1084 1085 down_read(&curseg->journal_rwsem); 1086 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1087 up_read(&curseg->journal_rwsem); 1088 1089 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1090 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1091 1092 mutex_unlock(&curseg->curseg_mutex); 1093 1094 set_page_dirty(page); 1095 f2fs_put_page(page, 1); 1096 } 1097 1098 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 1099 { 1100 struct curseg_info *curseg = CURSEG_I(sbi, type); 1101 unsigned int segno = curseg->segno + 1; 1102 struct free_segmap_info *free_i = FREE_I(sbi); 1103 1104 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 1105 return !test_bit(segno, free_i->free_segmap); 1106 return 0; 1107 } 1108 1109 /* 1110 * Find a new segment from the free segments bitmap to right order 1111 * This function should be returned with success, otherwise BUG 1112 */ 1113 static void get_new_segment(struct f2fs_sb_info *sbi, 1114 unsigned int *newseg, bool new_sec, int dir) 1115 { 1116 struct free_segmap_info *free_i = FREE_I(sbi); 1117 unsigned int segno, secno, zoneno; 1118 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1119 unsigned int hint = *newseg / sbi->segs_per_sec; 1120 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1121 unsigned int left_start = hint; 1122 bool init = true; 1123 int go_left = 0; 1124 int i; 1125 1126 spin_lock(&free_i->segmap_lock); 1127 1128 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1129 segno = find_next_zero_bit(free_i->free_segmap, 1130 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1131 if (segno < (hint + 1) * sbi->segs_per_sec) 1132 goto got_it; 1133 } 1134 find_other_zone: 1135 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1136 if (secno >= MAIN_SECS(sbi)) { 1137 if (dir == ALLOC_RIGHT) { 1138 secno = find_next_zero_bit(free_i->free_secmap, 1139 MAIN_SECS(sbi), 0); 1140 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1141 } else { 1142 go_left = 1; 1143 left_start = hint - 1; 1144 } 1145 } 1146 if (go_left == 0) 1147 goto skip_left; 1148 1149 while (test_bit(left_start, free_i->free_secmap)) { 1150 if (left_start > 0) { 1151 left_start--; 1152 continue; 1153 } 1154 left_start = find_next_zero_bit(free_i->free_secmap, 1155 MAIN_SECS(sbi), 0); 1156 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1157 break; 1158 } 1159 secno = left_start; 1160 skip_left: 1161 hint = secno; 1162 segno = secno * sbi->segs_per_sec; 1163 zoneno = secno / sbi->secs_per_zone; 1164 1165 /* give up on finding another zone */ 1166 if (!init) 1167 goto got_it; 1168 if (sbi->secs_per_zone == 1) 1169 goto got_it; 1170 if (zoneno == old_zoneno) 1171 goto got_it; 1172 if (dir == ALLOC_LEFT) { 1173 if (!go_left && zoneno + 1 >= total_zones) 1174 goto got_it; 1175 if (go_left && zoneno == 0) 1176 goto got_it; 1177 } 1178 for (i = 0; i < NR_CURSEG_TYPE; i++) 1179 if (CURSEG_I(sbi, i)->zone == zoneno) 1180 break; 1181 1182 if (i < NR_CURSEG_TYPE) { 1183 /* zone is in user, try another */ 1184 if (go_left) 1185 hint = zoneno * sbi->secs_per_zone - 1; 1186 else if (zoneno + 1 >= total_zones) 1187 hint = 0; 1188 else 1189 hint = (zoneno + 1) * sbi->secs_per_zone; 1190 init = false; 1191 goto find_other_zone; 1192 } 1193 got_it: 1194 /* set it as dirty segment in free segmap */ 1195 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1196 __set_inuse(sbi, segno); 1197 *newseg = segno; 1198 spin_unlock(&free_i->segmap_lock); 1199 } 1200 1201 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1202 { 1203 struct curseg_info *curseg = CURSEG_I(sbi, type); 1204 struct summary_footer *sum_footer; 1205 1206 curseg->segno = curseg->next_segno; 1207 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1208 curseg->next_blkoff = 0; 1209 curseg->next_segno = NULL_SEGNO; 1210 1211 sum_footer = &(curseg->sum_blk->footer); 1212 memset(sum_footer, 0, sizeof(struct summary_footer)); 1213 if (IS_DATASEG(type)) 1214 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1215 if (IS_NODESEG(type)) 1216 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1217 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1218 } 1219 1220 /* 1221 * Allocate a current working segment. 1222 * This function always allocates a free segment in LFS manner. 1223 */ 1224 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1225 { 1226 struct curseg_info *curseg = CURSEG_I(sbi, type); 1227 unsigned int segno = curseg->segno; 1228 int dir = ALLOC_LEFT; 1229 1230 write_sum_page(sbi, curseg->sum_blk, 1231 GET_SUM_BLOCK(sbi, segno)); 1232 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1233 dir = ALLOC_RIGHT; 1234 1235 if (test_opt(sbi, NOHEAP)) 1236 dir = ALLOC_RIGHT; 1237 1238 get_new_segment(sbi, &segno, new_sec, dir); 1239 curseg->next_segno = segno; 1240 reset_curseg(sbi, type, 1); 1241 curseg->alloc_type = LFS; 1242 } 1243 1244 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1245 struct curseg_info *seg, block_t start) 1246 { 1247 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1248 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1249 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1250 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1251 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1252 int i, pos; 1253 1254 for (i = 0; i < entries; i++) 1255 target_map[i] = ckpt_map[i] | cur_map[i]; 1256 1257 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1258 1259 seg->next_blkoff = pos; 1260 } 1261 1262 /* 1263 * If a segment is written by LFS manner, next block offset is just obtained 1264 * by increasing the current block offset. However, if a segment is written by 1265 * SSR manner, next block offset obtained by calling __next_free_blkoff 1266 */ 1267 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1268 struct curseg_info *seg) 1269 { 1270 if (seg->alloc_type == SSR) 1271 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1272 else 1273 seg->next_blkoff++; 1274 } 1275 1276 /* 1277 * This function always allocates a used segment(from dirty seglist) by SSR 1278 * manner, so it should recover the existing segment information of valid blocks 1279 */ 1280 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1281 { 1282 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1283 struct curseg_info *curseg = CURSEG_I(sbi, type); 1284 unsigned int new_segno = curseg->next_segno; 1285 struct f2fs_summary_block *sum_node; 1286 struct page *sum_page; 1287 1288 write_sum_page(sbi, curseg->sum_blk, 1289 GET_SUM_BLOCK(sbi, curseg->segno)); 1290 __set_test_and_inuse(sbi, new_segno); 1291 1292 mutex_lock(&dirty_i->seglist_lock); 1293 __remove_dirty_segment(sbi, new_segno, PRE); 1294 __remove_dirty_segment(sbi, new_segno, DIRTY); 1295 mutex_unlock(&dirty_i->seglist_lock); 1296 1297 reset_curseg(sbi, type, 1); 1298 curseg->alloc_type = SSR; 1299 __next_free_blkoff(sbi, curseg, 0); 1300 1301 if (reuse) { 1302 sum_page = get_sum_page(sbi, new_segno); 1303 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1304 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1305 f2fs_put_page(sum_page, 1); 1306 } 1307 } 1308 1309 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1310 { 1311 struct curseg_info *curseg = CURSEG_I(sbi, type); 1312 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1313 1314 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0)) 1315 return v_ops->get_victim(sbi, 1316 &(curseg)->next_segno, BG_GC, type, SSR); 1317 1318 /* For data segments, let's do SSR more intensively */ 1319 for (; type >= CURSEG_HOT_DATA; type--) 1320 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1321 BG_GC, type, SSR)) 1322 return 1; 1323 return 0; 1324 } 1325 1326 /* 1327 * flush out current segment and replace it with new segment 1328 * This function should be returned with success, otherwise BUG 1329 */ 1330 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1331 int type, bool force) 1332 { 1333 struct curseg_info *curseg = CURSEG_I(sbi, type); 1334 1335 if (force) 1336 new_curseg(sbi, type, true); 1337 else if (type == CURSEG_WARM_NODE) 1338 new_curseg(sbi, type, false); 1339 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1340 new_curseg(sbi, type, false); 1341 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1342 change_curseg(sbi, type, true); 1343 else 1344 new_curseg(sbi, type, false); 1345 1346 stat_inc_seg_type(sbi, curseg); 1347 } 1348 1349 void allocate_new_segments(struct f2fs_sb_info *sbi) 1350 { 1351 struct curseg_info *curseg; 1352 unsigned int old_segno; 1353 int i; 1354 1355 if (test_opt(sbi, LFS)) 1356 return; 1357 1358 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1359 curseg = CURSEG_I(sbi, i); 1360 old_segno = curseg->segno; 1361 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1362 locate_dirty_segment(sbi, old_segno); 1363 } 1364 } 1365 1366 static const struct segment_allocation default_salloc_ops = { 1367 .allocate_segment = allocate_segment_by_default, 1368 }; 1369 1370 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1371 { 1372 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1373 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1374 unsigned int start_segno, end_segno; 1375 struct cp_control cpc; 1376 int err = 0; 1377 1378 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1379 return -EINVAL; 1380 1381 cpc.trimmed = 0; 1382 if (end <= MAIN_BLKADDR(sbi)) 1383 goto out; 1384 1385 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1386 f2fs_msg(sbi->sb, KERN_WARNING, 1387 "Found FS corruption, run fsck to fix."); 1388 goto out; 1389 } 1390 1391 /* start/end segment number in main_area */ 1392 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1393 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1394 GET_SEGNO(sbi, end); 1395 cpc.reason = CP_DISCARD; 1396 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1397 1398 /* do checkpoint to issue discard commands safely */ 1399 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1400 cpc.trim_start = start_segno; 1401 1402 if (sbi->discard_blks == 0) 1403 break; 1404 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1405 cpc.trim_end = end_segno; 1406 else 1407 cpc.trim_end = min_t(unsigned int, 1408 rounddown(start_segno + 1409 BATCHED_TRIM_SEGMENTS(sbi), 1410 sbi->segs_per_sec) - 1, end_segno); 1411 1412 mutex_lock(&sbi->gc_mutex); 1413 err = write_checkpoint(sbi, &cpc); 1414 mutex_unlock(&sbi->gc_mutex); 1415 if (err) 1416 break; 1417 1418 schedule(); 1419 } 1420 out: 1421 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1422 return err; 1423 } 1424 1425 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1426 { 1427 struct curseg_info *curseg = CURSEG_I(sbi, type); 1428 if (curseg->next_blkoff < sbi->blocks_per_seg) 1429 return true; 1430 return false; 1431 } 1432 1433 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1434 { 1435 if (p_type == DATA) 1436 return CURSEG_HOT_DATA; 1437 else 1438 return CURSEG_HOT_NODE; 1439 } 1440 1441 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1442 { 1443 if (p_type == DATA) { 1444 struct inode *inode = page->mapping->host; 1445 1446 if (S_ISDIR(inode->i_mode)) 1447 return CURSEG_HOT_DATA; 1448 else 1449 return CURSEG_COLD_DATA; 1450 } else { 1451 if (IS_DNODE(page) && is_cold_node(page)) 1452 return CURSEG_WARM_NODE; 1453 else 1454 return CURSEG_COLD_NODE; 1455 } 1456 } 1457 1458 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1459 { 1460 if (p_type == DATA) { 1461 struct inode *inode = page->mapping->host; 1462 1463 if (S_ISDIR(inode->i_mode)) 1464 return CURSEG_HOT_DATA; 1465 else if (is_cold_data(page) || file_is_cold(inode)) 1466 return CURSEG_COLD_DATA; 1467 else 1468 return CURSEG_WARM_DATA; 1469 } else { 1470 if (IS_DNODE(page)) 1471 return is_cold_node(page) ? CURSEG_WARM_NODE : 1472 CURSEG_HOT_NODE; 1473 else 1474 return CURSEG_COLD_NODE; 1475 } 1476 } 1477 1478 static int __get_segment_type(struct page *page, enum page_type p_type) 1479 { 1480 switch (F2FS_P_SB(page)->active_logs) { 1481 case 2: 1482 return __get_segment_type_2(page, p_type); 1483 case 4: 1484 return __get_segment_type_4(page, p_type); 1485 } 1486 /* NR_CURSEG_TYPE(6) logs by default */ 1487 f2fs_bug_on(F2FS_P_SB(page), 1488 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1489 return __get_segment_type_6(page, p_type); 1490 } 1491 1492 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1493 block_t old_blkaddr, block_t *new_blkaddr, 1494 struct f2fs_summary *sum, int type) 1495 { 1496 struct sit_info *sit_i = SIT_I(sbi); 1497 struct curseg_info *curseg = CURSEG_I(sbi, type); 1498 1499 mutex_lock(&curseg->curseg_mutex); 1500 mutex_lock(&sit_i->sentry_lock); 1501 1502 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1503 1504 /* 1505 * __add_sum_entry should be resided under the curseg_mutex 1506 * because, this function updates a summary entry in the 1507 * current summary block. 1508 */ 1509 __add_sum_entry(sbi, type, sum); 1510 1511 __refresh_next_blkoff(sbi, curseg); 1512 1513 stat_inc_block_count(sbi, curseg); 1514 1515 if (!__has_curseg_space(sbi, type)) 1516 sit_i->s_ops->allocate_segment(sbi, type, false); 1517 /* 1518 * SIT information should be updated before segment allocation, 1519 * since SSR needs latest valid block information. 1520 */ 1521 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1522 1523 mutex_unlock(&sit_i->sentry_lock); 1524 1525 if (page && IS_NODESEG(type)) 1526 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1527 1528 mutex_unlock(&curseg->curseg_mutex); 1529 } 1530 1531 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1532 { 1533 int type = __get_segment_type(fio->page, fio->type); 1534 1535 if (fio->type == NODE || fio->type == DATA) 1536 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1537 1538 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1539 &fio->new_blkaddr, sum, type); 1540 1541 /* writeout dirty page into bdev */ 1542 f2fs_submit_page_mbio(fio); 1543 1544 if (fio->type == NODE || fio->type == DATA) 1545 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1546 } 1547 1548 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1549 { 1550 struct f2fs_io_info fio = { 1551 .sbi = sbi, 1552 .type = META, 1553 .op = REQ_OP_WRITE, 1554 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO, 1555 .old_blkaddr = page->index, 1556 .new_blkaddr = page->index, 1557 .page = page, 1558 .encrypted_page = NULL, 1559 }; 1560 1561 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1562 fio.op_flags &= ~REQ_META; 1563 1564 set_page_writeback(page); 1565 f2fs_submit_page_mbio(&fio); 1566 } 1567 1568 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1569 { 1570 struct f2fs_summary sum; 1571 1572 set_summary(&sum, nid, 0, 0); 1573 do_write_page(&sum, fio); 1574 } 1575 1576 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1577 { 1578 struct f2fs_sb_info *sbi = fio->sbi; 1579 struct f2fs_summary sum; 1580 struct node_info ni; 1581 1582 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1583 get_node_info(sbi, dn->nid, &ni); 1584 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1585 do_write_page(&sum, fio); 1586 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1587 } 1588 1589 void rewrite_data_page(struct f2fs_io_info *fio) 1590 { 1591 fio->new_blkaddr = fio->old_blkaddr; 1592 stat_inc_inplace_blocks(fio->sbi); 1593 f2fs_submit_page_mbio(fio); 1594 } 1595 1596 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1597 block_t old_blkaddr, block_t new_blkaddr, 1598 bool recover_curseg, bool recover_newaddr) 1599 { 1600 struct sit_info *sit_i = SIT_I(sbi); 1601 struct curseg_info *curseg; 1602 unsigned int segno, old_cursegno; 1603 struct seg_entry *se; 1604 int type; 1605 unsigned short old_blkoff; 1606 1607 segno = GET_SEGNO(sbi, new_blkaddr); 1608 se = get_seg_entry(sbi, segno); 1609 type = se->type; 1610 1611 if (!recover_curseg) { 1612 /* for recovery flow */ 1613 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1614 if (old_blkaddr == NULL_ADDR) 1615 type = CURSEG_COLD_DATA; 1616 else 1617 type = CURSEG_WARM_DATA; 1618 } 1619 } else { 1620 if (!IS_CURSEG(sbi, segno)) 1621 type = CURSEG_WARM_DATA; 1622 } 1623 1624 curseg = CURSEG_I(sbi, type); 1625 1626 mutex_lock(&curseg->curseg_mutex); 1627 mutex_lock(&sit_i->sentry_lock); 1628 1629 old_cursegno = curseg->segno; 1630 old_blkoff = curseg->next_blkoff; 1631 1632 /* change the current segment */ 1633 if (segno != curseg->segno) { 1634 curseg->next_segno = segno; 1635 change_curseg(sbi, type, true); 1636 } 1637 1638 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1639 __add_sum_entry(sbi, type, sum); 1640 1641 if (!recover_curseg || recover_newaddr) 1642 update_sit_entry(sbi, new_blkaddr, 1); 1643 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1644 update_sit_entry(sbi, old_blkaddr, -1); 1645 1646 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1647 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1648 1649 locate_dirty_segment(sbi, old_cursegno); 1650 1651 if (recover_curseg) { 1652 if (old_cursegno != curseg->segno) { 1653 curseg->next_segno = old_cursegno; 1654 change_curseg(sbi, type, true); 1655 } 1656 curseg->next_blkoff = old_blkoff; 1657 } 1658 1659 mutex_unlock(&sit_i->sentry_lock); 1660 mutex_unlock(&curseg->curseg_mutex); 1661 } 1662 1663 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1664 block_t old_addr, block_t new_addr, 1665 unsigned char version, bool recover_curseg, 1666 bool recover_newaddr) 1667 { 1668 struct f2fs_summary sum; 1669 1670 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1671 1672 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1673 recover_curseg, recover_newaddr); 1674 1675 f2fs_update_data_blkaddr(dn, new_addr); 1676 } 1677 1678 void f2fs_wait_on_page_writeback(struct page *page, 1679 enum page_type type, bool ordered) 1680 { 1681 if (PageWriteback(page)) { 1682 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1683 1684 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1685 if (ordered) 1686 wait_on_page_writeback(page); 1687 else 1688 wait_for_stable_page(page); 1689 } 1690 } 1691 1692 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1693 block_t blkaddr) 1694 { 1695 struct page *cpage; 1696 1697 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1698 return; 1699 1700 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1701 if (cpage) { 1702 f2fs_wait_on_page_writeback(cpage, DATA, true); 1703 f2fs_put_page(cpage, 1); 1704 } 1705 } 1706 1707 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1708 { 1709 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1710 struct curseg_info *seg_i; 1711 unsigned char *kaddr; 1712 struct page *page; 1713 block_t start; 1714 int i, j, offset; 1715 1716 start = start_sum_block(sbi); 1717 1718 page = get_meta_page(sbi, start++); 1719 kaddr = (unsigned char *)page_address(page); 1720 1721 /* Step 1: restore nat cache */ 1722 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1723 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1724 1725 /* Step 2: restore sit cache */ 1726 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1727 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1728 offset = 2 * SUM_JOURNAL_SIZE; 1729 1730 /* Step 3: restore summary entries */ 1731 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1732 unsigned short blk_off; 1733 unsigned int segno; 1734 1735 seg_i = CURSEG_I(sbi, i); 1736 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1737 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1738 seg_i->next_segno = segno; 1739 reset_curseg(sbi, i, 0); 1740 seg_i->alloc_type = ckpt->alloc_type[i]; 1741 seg_i->next_blkoff = blk_off; 1742 1743 if (seg_i->alloc_type == SSR) 1744 blk_off = sbi->blocks_per_seg; 1745 1746 for (j = 0; j < blk_off; j++) { 1747 struct f2fs_summary *s; 1748 s = (struct f2fs_summary *)(kaddr + offset); 1749 seg_i->sum_blk->entries[j] = *s; 1750 offset += SUMMARY_SIZE; 1751 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 1752 SUM_FOOTER_SIZE) 1753 continue; 1754 1755 f2fs_put_page(page, 1); 1756 page = NULL; 1757 1758 page = get_meta_page(sbi, start++); 1759 kaddr = (unsigned char *)page_address(page); 1760 offset = 0; 1761 } 1762 } 1763 f2fs_put_page(page, 1); 1764 return 0; 1765 } 1766 1767 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1768 { 1769 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1770 struct f2fs_summary_block *sum; 1771 struct curseg_info *curseg; 1772 struct page *new; 1773 unsigned short blk_off; 1774 unsigned int segno = 0; 1775 block_t blk_addr = 0; 1776 1777 /* get segment number and block addr */ 1778 if (IS_DATASEG(type)) { 1779 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1780 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1781 CURSEG_HOT_DATA]); 1782 if (__exist_node_summaries(sbi)) 1783 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1784 else 1785 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1786 } else { 1787 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1788 CURSEG_HOT_NODE]); 1789 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1790 CURSEG_HOT_NODE]); 1791 if (__exist_node_summaries(sbi)) 1792 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1793 type - CURSEG_HOT_NODE); 1794 else 1795 blk_addr = GET_SUM_BLOCK(sbi, segno); 1796 } 1797 1798 new = get_meta_page(sbi, blk_addr); 1799 sum = (struct f2fs_summary_block *)page_address(new); 1800 1801 if (IS_NODESEG(type)) { 1802 if (__exist_node_summaries(sbi)) { 1803 struct f2fs_summary *ns = &sum->entries[0]; 1804 int i; 1805 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1806 ns->version = 0; 1807 ns->ofs_in_node = 0; 1808 } 1809 } else { 1810 int err; 1811 1812 err = restore_node_summary(sbi, segno, sum); 1813 if (err) { 1814 f2fs_put_page(new, 1); 1815 return err; 1816 } 1817 } 1818 } 1819 1820 /* set uncompleted segment to curseg */ 1821 curseg = CURSEG_I(sbi, type); 1822 mutex_lock(&curseg->curseg_mutex); 1823 1824 /* update journal info */ 1825 down_write(&curseg->journal_rwsem); 1826 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1827 up_write(&curseg->journal_rwsem); 1828 1829 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1830 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1831 curseg->next_segno = segno; 1832 reset_curseg(sbi, type, 0); 1833 curseg->alloc_type = ckpt->alloc_type[type]; 1834 curseg->next_blkoff = blk_off; 1835 mutex_unlock(&curseg->curseg_mutex); 1836 f2fs_put_page(new, 1); 1837 return 0; 1838 } 1839 1840 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1841 { 1842 int type = CURSEG_HOT_DATA; 1843 int err; 1844 1845 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 1846 int npages = npages_for_summary_flush(sbi, true); 1847 1848 if (npages >= 2) 1849 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1850 META_CP, true); 1851 1852 /* restore for compacted data summary */ 1853 if (read_compacted_summaries(sbi)) 1854 return -EINVAL; 1855 type = CURSEG_HOT_NODE; 1856 } 1857 1858 if (__exist_node_summaries(sbi)) 1859 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1860 NR_CURSEG_TYPE - type, META_CP, true); 1861 1862 for (; type <= CURSEG_COLD_NODE; type++) { 1863 err = read_normal_summaries(sbi, type); 1864 if (err) 1865 return err; 1866 } 1867 1868 return 0; 1869 } 1870 1871 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1872 { 1873 struct page *page; 1874 unsigned char *kaddr; 1875 struct f2fs_summary *summary; 1876 struct curseg_info *seg_i; 1877 int written_size = 0; 1878 int i, j; 1879 1880 page = grab_meta_page(sbi, blkaddr++); 1881 kaddr = (unsigned char *)page_address(page); 1882 1883 /* Step 1: write nat cache */ 1884 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1885 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1886 written_size += SUM_JOURNAL_SIZE; 1887 1888 /* Step 2: write sit cache */ 1889 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1890 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1891 written_size += SUM_JOURNAL_SIZE; 1892 1893 /* Step 3: write summary entries */ 1894 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1895 unsigned short blkoff; 1896 seg_i = CURSEG_I(sbi, i); 1897 if (sbi->ckpt->alloc_type[i] == SSR) 1898 blkoff = sbi->blocks_per_seg; 1899 else 1900 blkoff = curseg_blkoff(sbi, i); 1901 1902 for (j = 0; j < blkoff; j++) { 1903 if (!page) { 1904 page = grab_meta_page(sbi, blkaddr++); 1905 kaddr = (unsigned char *)page_address(page); 1906 written_size = 0; 1907 } 1908 summary = (struct f2fs_summary *)(kaddr + written_size); 1909 *summary = seg_i->sum_blk->entries[j]; 1910 written_size += SUMMARY_SIZE; 1911 1912 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 1913 SUM_FOOTER_SIZE) 1914 continue; 1915 1916 set_page_dirty(page); 1917 f2fs_put_page(page, 1); 1918 page = NULL; 1919 } 1920 } 1921 if (page) { 1922 set_page_dirty(page); 1923 f2fs_put_page(page, 1); 1924 } 1925 } 1926 1927 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1928 block_t blkaddr, int type) 1929 { 1930 int i, end; 1931 if (IS_DATASEG(type)) 1932 end = type + NR_CURSEG_DATA_TYPE; 1933 else 1934 end = type + NR_CURSEG_NODE_TYPE; 1935 1936 for (i = type; i < end; i++) 1937 write_current_sum_page(sbi, i, blkaddr + (i - type)); 1938 } 1939 1940 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1941 { 1942 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 1943 write_compacted_summaries(sbi, start_blk); 1944 else 1945 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1946 } 1947 1948 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1949 { 1950 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1951 } 1952 1953 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 1954 unsigned int val, int alloc) 1955 { 1956 int i; 1957 1958 if (type == NAT_JOURNAL) { 1959 for (i = 0; i < nats_in_cursum(journal); i++) { 1960 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 1961 return i; 1962 } 1963 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 1964 return update_nats_in_cursum(journal, 1); 1965 } else if (type == SIT_JOURNAL) { 1966 for (i = 0; i < sits_in_cursum(journal); i++) 1967 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 1968 return i; 1969 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 1970 return update_sits_in_cursum(journal, 1); 1971 } 1972 return -1; 1973 } 1974 1975 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1976 unsigned int segno) 1977 { 1978 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1979 } 1980 1981 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1982 unsigned int start) 1983 { 1984 struct sit_info *sit_i = SIT_I(sbi); 1985 struct page *src_page, *dst_page; 1986 pgoff_t src_off, dst_off; 1987 void *src_addr, *dst_addr; 1988 1989 src_off = current_sit_addr(sbi, start); 1990 dst_off = next_sit_addr(sbi, src_off); 1991 1992 /* get current sit block page without lock */ 1993 src_page = get_meta_page(sbi, src_off); 1994 dst_page = grab_meta_page(sbi, dst_off); 1995 f2fs_bug_on(sbi, PageDirty(src_page)); 1996 1997 src_addr = page_address(src_page); 1998 dst_addr = page_address(dst_page); 1999 memcpy(dst_addr, src_addr, PAGE_SIZE); 2000 2001 set_page_dirty(dst_page); 2002 f2fs_put_page(src_page, 1); 2003 2004 set_to_next_sit(sit_i, start); 2005 2006 return dst_page; 2007 } 2008 2009 static struct sit_entry_set *grab_sit_entry_set(void) 2010 { 2011 struct sit_entry_set *ses = 2012 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 2013 2014 ses->entry_cnt = 0; 2015 INIT_LIST_HEAD(&ses->set_list); 2016 return ses; 2017 } 2018 2019 static void release_sit_entry_set(struct sit_entry_set *ses) 2020 { 2021 list_del(&ses->set_list); 2022 kmem_cache_free(sit_entry_set_slab, ses); 2023 } 2024 2025 static void adjust_sit_entry_set(struct sit_entry_set *ses, 2026 struct list_head *head) 2027 { 2028 struct sit_entry_set *next = ses; 2029 2030 if (list_is_last(&ses->set_list, head)) 2031 return; 2032 2033 list_for_each_entry_continue(next, head, set_list) 2034 if (ses->entry_cnt <= next->entry_cnt) 2035 break; 2036 2037 list_move_tail(&ses->set_list, &next->set_list); 2038 } 2039 2040 static void add_sit_entry(unsigned int segno, struct list_head *head) 2041 { 2042 struct sit_entry_set *ses; 2043 unsigned int start_segno = START_SEGNO(segno); 2044 2045 list_for_each_entry(ses, head, set_list) { 2046 if (ses->start_segno == start_segno) { 2047 ses->entry_cnt++; 2048 adjust_sit_entry_set(ses, head); 2049 return; 2050 } 2051 } 2052 2053 ses = grab_sit_entry_set(); 2054 2055 ses->start_segno = start_segno; 2056 ses->entry_cnt++; 2057 list_add(&ses->set_list, head); 2058 } 2059 2060 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2061 { 2062 struct f2fs_sm_info *sm_info = SM_I(sbi); 2063 struct list_head *set_list = &sm_info->sit_entry_set; 2064 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2065 unsigned int segno; 2066 2067 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2068 add_sit_entry(segno, set_list); 2069 } 2070 2071 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2072 { 2073 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2074 struct f2fs_journal *journal = curseg->journal; 2075 int i; 2076 2077 down_write(&curseg->journal_rwsem); 2078 for (i = 0; i < sits_in_cursum(journal); i++) { 2079 unsigned int segno; 2080 bool dirtied; 2081 2082 segno = le32_to_cpu(segno_in_journal(journal, i)); 2083 dirtied = __mark_sit_entry_dirty(sbi, segno); 2084 2085 if (!dirtied) 2086 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2087 } 2088 update_sits_in_cursum(journal, -i); 2089 up_write(&curseg->journal_rwsem); 2090 } 2091 2092 /* 2093 * CP calls this function, which flushes SIT entries including sit_journal, 2094 * and moves prefree segs to free segs. 2095 */ 2096 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2097 { 2098 struct sit_info *sit_i = SIT_I(sbi); 2099 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2100 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2101 struct f2fs_journal *journal = curseg->journal; 2102 struct sit_entry_set *ses, *tmp; 2103 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2104 bool to_journal = true; 2105 struct seg_entry *se; 2106 2107 mutex_lock(&sit_i->sentry_lock); 2108 2109 if (!sit_i->dirty_sentries) 2110 goto out; 2111 2112 /* 2113 * add and account sit entries of dirty bitmap in sit entry 2114 * set temporarily 2115 */ 2116 add_sits_in_set(sbi); 2117 2118 /* 2119 * if there are no enough space in journal to store dirty sit 2120 * entries, remove all entries from journal and add and account 2121 * them in sit entry set. 2122 */ 2123 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2124 remove_sits_in_journal(sbi); 2125 2126 /* 2127 * there are two steps to flush sit entries: 2128 * #1, flush sit entries to journal in current cold data summary block. 2129 * #2, flush sit entries to sit page. 2130 */ 2131 list_for_each_entry_safe(ses, tmp, head, set_list) { 2132 struct page *page = NULL; 2133 struct f2fs_sit_block *raw_sit = NULL; 2134 unsigned int start_segno = ses->start_segno; 2135 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2136 (unsigned long)MAIN_SEGS(sbi)); 2137 unsigned int segno = start_segno; 2138 2139 if (to_journal && 2140 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2141 to_journal = false; 2142 2143 if (to_journal) { 2144 down_write(&curseg->journal_rwsem); 2145 } else { 2146 page = get_next_sit_page(sbi, start_segno); 2147 raw_sit = page_address(page); 2148 } 2149 2150 /* flush dirty sit entries in region of current sit set */ 2151 for_each_set_bit_from(segno, bitmap, end) { 2152 int offset, sit_offset; 2153 2154 se = get_seg_entry(sbi, segno); 2155 2156 /* add discard candidates */ 2157 if (cpc->reason != CP_DISCARD) { 2158 cpc->trim_start = segno; 2159 add_discard_addrs(sbi, cpc); 2160 } 2161 2162 if (to_journal) { 2163 offset = lookup_journal_in_cursum(journal, 2164 SIT_JOURNAL, segno, 1); 2165 f2fs_bug_on(sbi, offset < 0); 2166 segno_in_journal(journal, offset) = 2167 cpu_to_le32(segno); 2168 seg_info_to_raw_sit(se, 2169 &sit_in_journal(journal, offset)); 2170 } else { 2171 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2172 seg_info_to_raw_sit(se, 2173 &raw_sit->entries[sit_offset]); 2174 } 2175 2176 __clear_bit(segno, bitmap); 2177 sit_i->dirty_sentries--; 2178 ses->entry_cnt--; 2179 } 2180 2181 if (to_journal) 2182 up_write(&curseg->journal_rwsem); 2183 else 2184 f2fs_put_page(page, 1); 2185 2186 f2fs_bug_on(sbi, ses->entry_cnt); 2187 release_sit_entry_set(ses); 2188 } 2189 2190 f2fs_bug_on(sbi, !list_empty(head)); 2191 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2192 out: 2193 if (cpc->reason == CP_DISCARD) { 2194 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2195 add_discard_addrs(sbi, cpc); 2196 } 2197 mutex_unlock(&sit_i->sentry_lock); 2198 2199 set_prefree_as_free_segments(sbi); 2200 } 2201 2202 static int build_sit_info(struct f2fs_sb_info *sbi) 2203 { 2204 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2205 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2206 struct sit_info *sit_i; 2207 unsigned int sit_segs, start; 2208 char *src_bitmap, *dst_bitmap; 2209 unsigned int bitmap_size; 2210 2211 /* allocate memory for SIT information */ 2212 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2213 if (!sit_i) 2214 return -ENOMEM; 2215 2216 SM_I(sbi)->sit_info = sit_i; 2217 2218 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2219 sizeof(struct seg_entry), GFP_KERNEL); 2220 if (!sit_i->sentries) 2221 return -ENOMEM; 2222 2223 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2224 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2225 if (!sit_i->dirty_sentries_bitmap) 2226 return -ENOMEM; 2227 2228 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2229 sit_i->sentries[start].cur_valid_map 2230 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2231 sit_i->sentries[start].ckpt_valid_map 2232 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2233 if (!sit_i->sentries[start].cur_valid_map || 2234 !sit_i->sentries[start].ckpt_valid_map) 2235 return -ENOMEM; 2236 2237 if (f2fs_discard_en(sbi)) { 2238 sit_i->sentries[start].discard_map 2239 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2240 if (!sit_i->sentries[start].discard_map) 2241 return -ENOMEM; 2242 } 2243 } 2244 2245 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2246 if (!sit_i->tmp_map) 2247 return -ENOMEM; 2248 2249 if (sbi->segs_per_sec > 1) { 2250 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2251 sizeof(struct sec_entry), GFP_KERNEL); 2252 if (!sit_i->sec_entries) 2253 return -ENOMEM; 2254 } 2255 2256 /* get information related with SIT */ 2257 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2258 2259 /* setup SIT bitmap from ckeckpoint pack */ 2260 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2261 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2262 2263 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2264 if (!dst_bitmap) 2265 return -ENOMEM; 2266 2267 /* init SIT information */ 2268 sit_i->s_ops = &default_salloc_ops; 2269 2270 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2271 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2272 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 2273 sit_i->sit_bitmap = dst_bitmap; 2274 sit_i->bitmap_size = bitmap_size; 2275 sit_i->dirty_sentries = 0; 2276 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2277 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2278 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2279 mutex_init(&sit_i->sentry_lock); 2280 return 0; 2281 } 2282 2283 static int build_free_segmap(struct f2fs_sb_info *sbi) 2284 { 2285 struct free_segmap_info *free_i; 2286 unsigned int bitmap_size, sec_bitmap_size; 2287 2288 /* allocate memory for free segmap information */ 2289 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2290 if (!free_i) 2291 return -ENOMEM; 2292 2293 SM_I(sbi)->free_info = free_i; 2294 2295 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2296 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2297 if (!free_i->free_segmap) 2298 return -ENOMEM; 2299 2300 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2301 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2302 if (!free_i->free_secmap) 2303 return -ENOMEM; 2304 2305 /* set all segments as dirty temporarily */ 2306 memset(free_i->free_segmap, 0xff, bitmap_size); 2307 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2308 2309 /* init free segmap information */ 2310 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2311 free_i->free_segments = 0; 2312 free_i->free_sections = 0; 2313 spin_lock_init(&free_i->segmap_lock); 2314 return 0; 2315 } 2316 2317 static int build_curseg(struct f2fs_sb_info *sbi) 2318 { 2319 struct curseg_info *array; 2320 int i; 2321 2322 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2323 if (!array) 2324 return -ENOMEM; 2325 2326 SM_I(sbi)->curseg_array = array; 2327 2328 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2329 mutex_init(&array[i].curseg_mutex); 2330 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2331 if (!array[i].sum_blk) 2332 return -ENOMEM; 2333 init_rwsem(&array[i].journal_rwsem); 2334 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2335 GFP_KERNEL); 2336 if (!array[i].journal) 2337 return -ENOMEM; 2338 array[i].segno = NULL_SEGNO; 2339 array[i].next_blkoff = 0; 2340 } 2341 return restore_curseg_summaries(sbi); 2342 } 2343 2344 static void build_sit_entries(struct f2fs_sb_info *sbi) 2345 { 2346 struct sit_info *sit_i = SIT_I(sbi); 2347 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2348 struct f2fs_journal *journal = curseg->journal; 2349 struct seg_entry *se; 2350 struct f2fs_sit_entry sit; 2351 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2352 unsigned int i, start, end; 2353 unsigned int readed, start_blk = 0; 2354 2355 do { 2356 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 2357 META_SIT, true); 2358 2359 start = start_blk * sit_i->sents_per_block; 2360 end = (start_blk + readed) * sit_i->sents_per_block; 2361 2362 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2363 struct f2fs_sit_block *sit_blk; 2364 struct page *page; 2365 2366 se = &sit_i->sentries[start]; 2367 page = get_current_sit_page(sbi, start); 2368 sit_blk = (struct f2fs_sit_block *)page_address(page); 2369 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2370 f2fs_put_page(page, 1); 2371 2372 check_block_count(sbi, start, &sit); 2373 seg_info_from_raw_sit(se, &sit); 2374 2375 /* build discard map only one time */ 2376 if (f2fs_discard_en(sbi)) { 2377 memcpy(se->discard_map, se->cur_valid_map, 2378 SIT_VBLOCK_MAP_SIZE); 2379 sbi->discard_blks += sbi->blocks_per_seg - 2380 se->valid_blocks; 2381 } 2382 2383 if (sbi->segs_per_sec > 1) 2384 get_sec_entry(sbi, start)->valid_blocks += 2385 se->valid_blocks; 2386 } 2387 start_blk += readed; 2388 } while (start_blk < sit_blk_cnt); 2389 2390 down_read(&curseg->journal_rwsem); 2391 for (i = 0; i < sits_in_cursum(journal); i++) { 2392 unsigned int old_valid_blocks; 2393 2394 start = le32_to_cpu(segno_in_journal(journal, i)); 2395 se = &sit_i->sentries[start]; 2396 sit = sit_in_journal(journal, i); 2397 2398 old_valid_blocks = se->valid_blocks; 2399 2400 check_block_count(sbi, start, &sit); 2401 seg_info_from_raw_sit(se, &sit); 2402 2403 if (f2fs_discard_en(sbi)) { 2404 memcpy(se->discard_map, se->cur_valid_map, 2405 SIT_VBLOCK_MAP_SIZE); 2406 sbi->discard_blks += old_valid_blocks - 2407 se->valid_blocks; 2408 } 2409 2410 if (sbi->segs_per_sec > 1) 2411 get_sec_entry(sbi, start)->valid_blocks += 2412 se->valid_blocks - old_valid_blocks; 2413 } 2414 up_read(&curseg->journal_rwsem); 2415 } 2416 2417 static void init_free_segmap(struct f2fs_sb_info *sbi) 2418 { 2419 unsigned int start; 2420 int type; 2421 2422 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2423 struct seg_entry *sentry = get_seg_entry(sbi, start); 2424 if (!sentry->valid_blocks) 2425 __set_free(sbi, start); 2426 } 2427 2428 /* set use the current segments */ 2429 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2430 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2431 __set_test_and_inuse(sbi, curseg_t->segno); 2432 } 2433 } 2434 2435 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2436 { 2437 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2438 struct free_segmap_info *free_i = FREE_I(sbi); 2439 unsigned int segno = 0, offset = 0; 2440 unsigned short valid_blocks; 2441 2442 while (1) { 2443 /* find dirty segment based on free segmap */ 2444 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2445 if (segno >= MAIN_SEGS(sbi)) 2446 break; 2447 offset = segno + 1; 2448 valid_blocks = get_valid_blocks(sbi, segno, 0); 2449 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2450 continue; 2451 if (valid_blocks > sbi->blocks_per_seg) { 2452 f2fs_bug_on(sbi, 1); 2453 continue; 2454 } 2455 mutex_lock(&dirty_i->seglist_lock); 2456 __locate_dirty_segment(sbi, segno, DIRTY); 2457 mutex_unlock(&dirty_i->seglist_lock); 2458 } 2459 } 2460 2461 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2462 { 2463 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2464 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2465 2466 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2467 if (!dirty_i->victim_secmap) 2468 return -ENOMEM; 2469 return 0; 2470 } 2471 2472 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2473 { 2474 struct dirty_seglist_info *dirty_i; 2475 unsigned int bitmap_size, i; 2476 2477 /* allocate memory for dirty segments list information */ 2478 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2479 if (!dirty_i) 2480 return -ENOMEM; 2481 2482 SM_I(sbi)->dirty_info = dirty_i; 2483 mutex_init(&dirty_i->seglist_lock); 2484 2485 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2486 2487 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2488 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2489 if (!dirty_i->dirty_segmap[i]) 2490 return -ENOMEM; 2491 } 2492 2493 init_dirty_segmap(sbi); 2494 return init_victim_secmap(sbi); 2495 } 2496 2497 /* 2498 * Update min, max modified time for cost-benefit GC algorithm 2499 */ 2500 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2501 { 2502 struct sit_info *sit_i = SIT_I(sbi); 2503 unsigned int segno; 2504 2505 mutex_lock(&sit_i->sentry_lock); 2506 2507 sit_i->min_mtime = LLONG_MAX; 2508 2509 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2510 unsigned int i; 2511 unsigned long long mtime = 0; 2512 2513 for (i = 0; i < sbi->segs_per_sec; i++) 2514 mtime += get_seg_entry(sbi, segno + i)->mtime; 2515 2516 mtime = div_u64(mtime, sbi->segs_per_sec); 2517 2518 if (sit_i->min_mtime > mtime) 2519 sit_i->min_mtime = mtime; 2520 } 2521 sit_i->max_mtime = get_mtime(sbi); 2522 mutex_unlock(&sit_i->sentry_lock); 2523 } 2524 2525 int build_segment_manager(struct f2fs_sb_info *sbi) 2526 { 2527 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2528 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2529 struct f2fs_sm_info *sm_info; 2530 int err; 2531 2532 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2533 if (!sm_info) 2534 return -ENOMEM; 2535 2536 /* init sm info */ 2537 sbi->sm_info = sm_info; 2538 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2539 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2540 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2541 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2542 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2543 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2544 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2545 sm_info->rec_prefree_segments = sm_info->main_segments * 2546 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2547 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2548 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2549 2550 if (!test_opt(sbi, LFS)) 2551 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2552 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2553 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2554 2555 INIT_LIST_HEAD(&sm_info->discard_list); 2556 INIT_LIST_HEAD(&sm_info->wait_list); 2557 sm_info->nr_discards = 0; 2558 sm_info->max_discards = 0; 2559 2560 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2561 2562 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2563 2564 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2565 err = create_flush_cmd_control(sbi); 2566 if (err) 2567 return err; 2568 } 2569 2570 err = build_sit_info(sbi); 2571 if (err) 2572 return err; 2573 err = build_free_segmap(sbi); 2574 if (err) 2575 return err; 2576 err = build_curseg(sbi); 2577 if (err) 2578 return err; 2579 2580 /* reinit free segmap based on SIT */ 2581 build_sit_entries(sbi); 2582 2583 init_free_segmap(sbi); 2584 err = build_dirty_segmap(sbi); 2585 if (err) 2586 return err; 2587 2588 init_min_max_mtime(sbi); 2589 return 0; 2590 } 2591 2592 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2593 enum dirty_type dirty_type) 2594 { 2595 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2596 2597 mutex_lock(&dirty_i->seglist_lock); 2598 kvfree(dirty_i->dirty_segmap[dirty_type]); 2599 dirty_i->nr_dirty[dirty_type] = 0; 2600 mutex_unlock(&dirty_i->seglist_lock); 2601 } 2602 2603 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2604 { 2605 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2606 kvfree(dirty_i->victim_secmap); 2607 } 2608 2609 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2610 { 2611 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2612 int i; 2613 2614 if (!dirty_i) 2615 return; 2616 2617 /* discard pre-free/dirty segments list */ 2618 for (i = 0; i < NR_DIRTY_TYPE; i++) 2619 discard_dirty_segmap(sbi, i); 2620 2621 destroy_victim_secmap(sbi); 2622 SM_I(sbi)->dirty_info = NULL; 2623 kfree(dirty_i); 2624 } 2625 2626 static void destroy_curseg(struct f2fs_sb_info *sbi) 2627 { 2628 struct curseg_info *array = SM_I(sbi)->curseg_array; 2629 int i; 2630 2631 if (!array) 2632 return; 2633 SM_I(sbi)->curseg_array = NULL; 2634 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2635 kfree(array[i].sum_blk); 2636 kfree(array[i].journal); 2637 } 2638 kfree(array); 2639 } 2640 2641 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2642 { 2643 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2644 if (!free_i) 2645 return; 2646 SM_I(sbi)->free_info = NULL; 2647 kvfree(free_i->free_segmap); 2648 kvfree(free_i->free_secmap); 2649 kfree(free_i); 2650 } 2651 2652 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2653 { 2654 struct sit_info *sit_i = SIT_I(sbi); 2655 unsigned int start; 2656 2657 if (!sit_i) 2658 return; 2659 2660 if (sit_i->sentries) { 2661 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2662 kfree(sit_i->sentries[start].cur_valid_map); 2663 kfree(sit_i->sentries[start].ckpt_valid_map); 2664 kfree(sit_i->sentries[start].discard_map); 2665 } 2666 } 2667 kfree(sit_i->tmp_map); 2668 2669 kvfree(sit_i->sentries); 2670 kvfree(sit_i->sec_entries); 2671 kvfree(sit_i->dirty_sentries_bitmap); 2672 2673 SM_I(sbi)->sit_info = NULL; 2674 kfree(sit_i->sit_bitmap); 2675 kfree(sit_i); 2676 } 2677 2678 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2679 { 2680 struct f2fs_sm_info *sm_info = SM_I(sbi); 2681 2682 if (!sm_info) 2683 return; 2684 destroy_flush_cmd_control(sbi); 2685 destroy_dirty_segmap(sbi); 2686 destroy_curseg(sbi); 2687 destroy_free_segmap(sbi); 2688 destroy_sit_info(sbi); 2689 sbi->sm_info = NULL; 2690 kfree(sm_info); 2691 } 2692 2693 int __init create_segment_manager_caches(void) 2694 { 2695 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2696 sizeof(struct discard_entry)); 2697 if (!discard_entry_slab) 2698 goto fail; 2699 2700 bio_entry_slab = f2fs_kmem_cache_create("bio_entry", 2701 sizeof(struct bio_entry)); 2702 if (!bio_entry_slab) 2703 goto destroy_discard_entry; 2704 2705 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2706 sizeof(struct sit_entry_set)); 2707 if (!sit_entry_set_slab) 2708 goto destroy_bio_entry; 2709 2710 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2711 sizeof(struct inmem_pages)); 2712 if (!inmem_entry_slab) 2713 goto destroy_sit_entry_set; 2714 return 0; 2715 2716 destroy_sit_entry_set: 2717 kmem_cache_destroy(sit_entry_set_slab); 2718 destroy_bio_entry: 2719 kmem_cache_destroy(bio_entry_slab); 2720 destroy_discard_entry: 2721 kmem_cache_destroy(discard_entry_slab); 2722 fail: 2723 return -ENOMEM; 2724 } 2725 2726 void destroy_segment_manager_caches(void) 2727 { 2728 kmem_cache_destroy(sit_entry_set_slab); 2729 kmem_cache_destroy(bio_entry_slab); 2730 kmem_cache_destroy(discard_entry_slab); 2731 kmem_cache_destroy(inmem_entry_slab); 2732 } 2733