1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 void register_inmem_page(struct inode *inode, struct page *page) 170 { 171 struct f2fs_inode_info *fi = F2FS_I(inode); 172 struct inmem_pages *new; 173 174 f2fs_trace_pid(page); 175 176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 177 SetPagePrivate(page); 178 179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 180 181 /* add atomic page indices to the list */ 182 new->page = page; 183 INIT_LIST_HEAD(&new->list); 184 185 /* increase reference count with clean state */ 186 mutex_lock(&fi->inmem_lock); 187 get_page(page); 188 list_add_tail(&new->list, &fi->inmem_pages); 189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 190 mutex_unlock(&fi->inmem_lock); 191 192 trace_f2fs_register_inmem_page(page, INMEM); 193 } 194 195 static int __revoke_inmem_pages(struct inode *inode, 196 struct list_head *head, bool drop, bool recover) 197 { 198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 199 struct inmem_pages *cur, *tmp; 200 int err = 0; 201 202 list_for_each_entry_safe(cur, tmp, head, list) { 203 struct page *page = cur->page; 204 205 if (drop) 206 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 207 208 lock_page(page); 209 210 if (recover) { 211 struct dnode_of_data dn; 212 struct node_info ni; 213 214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 215 216 set_new_dnode(&dn, inode, NULL, NULL, 0); 217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 218 err = -EAGAIN; 219 goto next; 220 } 221 get_node_info(sbi, dn.nid, &ni); 222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 223 cur->old_addr, ni.version, true, true); 224 f2fs_put_dnode(&dn); 225 } 226 next: 227 /* we don't need to invalidate this in the sccessful status */ 228 if (drop || recover) 229 ClearPageUptodate(page); 230 set_page_private(page, 0); 231 ClearPagePrivate(page); 232 f2fs_put_page(page, 1); 233 234 list_del(&cur->list); 235 kmem_cache_free(inmem_entry_slab, cur); 236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 237 } 238 return err; 239 } 240 241 void drop_inmem_pages(struct inode *inode) 242 { 243 struct f2fs_inode_info *fi = F2FS_I(inode); 244 245 mutex_lock(&fi->inmem_lock); 246 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 247 mutex_unlock(&fi->inmem_lock); 248 249 clear_inode_flag(inode, FI_ATOMIC_FILE); 250 stat_dec_atomic_write(inode); 251 } 252 253 static int __commit_inmem_pages(struct inode *inode, 254 struct list_head *revoke_list) 255 { 256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 257 struct f2fs_inode_info *fi = F2FS_I(inode); 258 struct inmem_pages *cur, *tmp; 259 struct f2fs_io_info fio = { 260 .sbi = sbi, 261 .type = DATA, 262 .op = REQ_OP_WRITE, 263 .op_flags = REQ_SYNC | REQ_PRIO, 264 .encrypted_page = NULL, 265 }; 266 pgoff_t last_idx = ULONG_MAX; 267 int err = 0; 268 269 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 270 struct page *page = cur->page; 271 272 lock_page(page); 273 if (page->mapping == inode->i_mapping) { 274 trace_f2fs_commit_inmem_page(page, INMEM); 275 276 set_page_dirty(page); 277 f2fs_wait_on_page_writeback(page, DATA, true); 278 if (clear_page_dirty_for_io(page)) { 279 inode_dec_dirty_pages(inode); 280 remove_dirty_inode(inode); 281 } 282 283 fio.page = page; 284 err = do_write_data_page(&fio); 285 if (err) { 286 unlock_page(page); 287 break; 288 } 289 290 /* record old blkaddr for revoking */ 291 cur->old_addr = fio.old_blkaddr; 292 last_idx = page->index; 293 } 294 unlock_page(page); 295 list_move_tail(&cur->list, revoke_list); 296 } 297 298 if (last_idx != ULONG_MAX) 299 f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx, 300 DATA, WRITE); 301 302 if (!err) 303 __revoke_inmem_pages(inode, revoke_list, false, false); 304 305 return err; 306 } 307 308 int commit_inmem_pages(struct inode *inode) 309 { 310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 311 struct f2fs_inode_info *fi = F2FS_I(inode); 312 struct list_head revoke_list; 313 int err; 314 315 INIT_LIST_HEAD(&revoke_list); 316 f2fs_balance_fs(sbi, true); 317 f2fs_lock_op(sbi); 318 319 set_inode_flag(inode, FI_ATOMIC_COMMIT); 320 321 mutex_lock(&fi->inmem_lock); 322 err = __commit_inmem_pages(inode, &revoke_list); 323 if (err) { 324 int ret; 325 /* 326 * try to revoke all committed pages, but still we could fail 327 * due to no memory or other reason, if that happened, EAGAIN 328 * will be returned, which means in such case, transaction is 329 * already not integrity, caller should use journal to do the 330 * recovery or rewrite & commit last transaction. For other 331 * error number, revoking was done by filesystem itself. 332 */ 333 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 334 if (ret) 335 err = ret; 336 337 /* drop all uncommitted pages */ 338 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 339 } 340 mutex_unlock(&fi->inmem_lock); 341 342 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 343 344 f2fs_unlock_op(sbi); 345 return err; 346 } 347 348 /* 349 * This function balances dirty node and dentry pages. 350 * In addition, it controls garbage collection. 351 */ 352 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 353 { 354 #ifdef CONFIG_F2FS_FAULT_INJECTION 355 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 356 f2fs_show_injection_info(FAULT_CHECKPOINT); 357 f2fs_stop_checkpoint(sbi, false); 358 } 359 #endif 360 361 if (!need) 362 return; 363 364 /* balance_fs_bg is able to be pending */ 365 if (excess_cached_nats(sbi)) 366 f2fs_balance_fs_bg(sbi); 367 368 /* 369 * We should do GC or end up with checkpoint, if there are so many dirty 370 * dir/node pages without enough free segments. 371 */ 372 if (has_not_enough_free_secs(sbi, 0, 0)) { 373 mutex_lock(&sbi->gc_mutex); 374 f2fs_gc(sbi, false, false); 375 } 376 } 377 378 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 379 { 380 /* try to shrink extent cache when there is no enough memory */ 381 if (!available_free_memory(sbi, EXTENT_CACHE)) 382 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 383 384 /* check the # of cached NAT entries */ 385 if (!available_free_memory(sbi, NAT_ENTRIES)) 386 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 387 388 if (!available_free_memory(sbi, FREE_NIDS)) 389 try_to_free_nids(sbi, MAX_FREE_NIDS); 390 else 391 build_free_nids(sbi, false, false); 392 393 if (!is_idle(sbi)) 394 return; 395 396 /* checkpoint is the only way to shrink partial cached entries */ 397 if (!available_free_memory(sbi, NAT_ENTRIES) || 398 !available_free_memory(sbi, INO_ENTRIES) || 399 excess_prefree_segs(sbi) || 400 excess_dirty_nats(sbi) || 401 f2fs_time_over(sbi, CP_TIME)) { 402 if (test_opt(sbi, DATA_FLUSH)) { 403 struct blk_plug plug; 404 405 blk_start_plug(&plug); 406 sync_dirty_inodes(sbi, FILE_INODE); 407 blk_finish_plug(&plug); 408 } 409 f2fs_sync_fs(sbi->sb, true); 410 stat_inc_bg_cp_count(sbi->stat_info); 411 } 412 } 413 414 static int __submit_flush_wait(struct block_device *bdev) 415 { 416 struct bio *bio = f2fs_bio_alloc(0); 417 int ret; 418 419 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 420 bio->bi_bdev = bdev; 421 ret = submit_bio_wait(bio); 422 bio_put(bio); 423 return ret; 424 } 425 426 static int submit_flush_wait(struct f2fs_sb_info *sbi) 427 { 428 int ret = __submit_flush_wait(sbi->sb->s_bdev); 429 int i; 430 431 if (sbi->s_ndevs && !ret) { 432 for (i = 1; i < sbi->s_ndevs; i++) { 433 trace_f2fs_issue_flush(FDEV(i).bdev, 434 test_opt(sbi, NOBARRIER), 435 test_opt(sbi, FLUSH_MERGE)); 436 ret = __submit_flush_wait(FDEV(i).bdev); 437 if (ret) 438 break; 439 } 440 } 441 return ret; 442 } 443 444 static int issue_flush_thread(void *data) 445 { 446 struct f2fs_sb_info *sbi = data; 447 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 448 wait_queue_head_t *q = &fcc->flush_wait_queue; 449 repeat: 450 if (kthread_should_stop()) 451 return 0; 452 453 if (!llist_empty(&fcc->issue_list)) { 454 struct flush_cmd *cmd, *next; 455 int ret; 456 457 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 458 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 459 460 ret = submit_flush_wait(sbi); 461 llist_for_each_entry_safe(cmd, next, 462 fcc->dispatch_list, llnode) { 463 cmd->ret = ret; 464 complete(&cmd->wait); 465 } 466 fcc->dispatch_list = NULL; 467 } 468 469 wait_event_interruptible(*q, 470 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 471 goto repeat; 472 } 473 474 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 475 { 476 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 477 struct flush_cmd cmd; 478 479 if (test_opt(sbi, NOBARRIER)) 480 return 0; 481 482 if (!test_opt(sbi, FLUSH_MERGE)) 483 return submit_flush_wait(sbi); 484 485 if (!atomic_read(&fcc->submit_flush)) { 486 int ret; 487 488 atomic_inc(&fcc->submit_flush); 489 ret = submit_flush_wait(sbi); 490 atomic_dec(&fcc->submit_flush); 491 return ret; 492 } 493 494 init_completion(&cmd.wait); 495 496 atomic_inc(&fcc->submit_flush); 497 llist_add(&cmd.llnode, &fcc->issue_list); 498 499 if (!fcc->dispatch_list) 500 wake_up(&fcc->flush_wait_queue); 501 502 if (fcc->f2fs_issue_flush) { 503 wait_for_completion(&cmd.wait); 504 atomic_dec(&fcc->submit_flush); 505 } else { 506 llist_del_all(&fcc->issue_list); 507 atomic_set(&fcc->submit_flush, 0); 508 } 509 510 return cmd.ret; 511 } 512 513 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 514 { 515 dev_t dev = sbi->sb->s_bdev->bd_dev; 516 struct flush_cmd_control *fcc; 517 int err = 0; 518 519 if (SM_I(sbi)->fcc_info) { 520 fcc = SM_I(sbi)->fcc_info; 521 goto init_thread; 522 } 523 524 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 525 if (!fcc) 526 return -ENOMEM; 527 atomic_set(&fcc->submit_flush, 0); 528 init_waitqueue_head(&fcc->flush_wait_queue); 529 init_llist_head(&fcc->issue_list); 530 SM_I(sbi)->fcc_info = fcc; 531 init_thread: 532 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 533 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 534 if (IS_ERR(fcc->f2fs_issue_flush)) { 535 err = PTR_ERR(fcc->f2fs_issue_flush); 536 kfree(fcc); 537 SM_I(sbi)->fcc_info = NULL; 538 return err; 539 } 540 541 return err; 542 } 543 544 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 545 { 546 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 547 548 if (fcc && fcc->f2fs_issue_flush) { 549 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 550 551 fcc->f2fs_issue_flush = NULL; 552 kthread_stop(flush_thread); 553 } 554 if (free) { 555 kfree(fcc); 556 SM_I(sbi)->fcc_info = NULL; 557 } 558 } 559 560 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 561 enum dirty_type dirty_type) 562 { 563 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 564 565 /* need not be added */ 566 if (IS_CURSEG(sbi, segno)) 567 return; 568 569 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 570 dirty_i->nr_dirty[dirty_type]++; 571 572 if (dirty_type == DIRTY) { 573 struct seg_entry *sentry = get_seg_entry(sbi, segno); 574 enum dirty_type t = sentry->type; 575 576 if (unlikely(t >= DIRTY)) { 577 f2fs_bug_on(sbi, 1); 578 return; 579 } 580 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 581 dirty_i->nr_dirty[t]++; 582 } 583 } 584 585 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 586 enum dirty_type dirty_type) 587 { 588 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 589 590 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 591 dirty_i->nr_dirty[dirty_type]--; 592 593 if (dirty_type == DIRTY) { 594 struct seg_entry *sentry = get_seg_entry(sbi, segno); 595 enum dirty_type t = sentry->type; 596 597 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 598 dirty_i->nr_dirty[t]--; 599 600 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 601 clear_bit(GET_SECNO(sbi, segno), 602 dirty_i->victim_secmap); 603 } 604 } 605 606 /* 607 * Should not occur error such as -ENOMEM. 608 * Adding dirty entry into seglist is not critical operation. 609 * If a given segment is one of current working segments, it won't be added. 610 */ 611 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 612 { 613 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 614 unsigned short valid_blocks; 615 616 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 617 return; 618 619 mutex_lock(&dirty_i->seglist_lock); 620 621 valid_blocks = get_valid_blocks(sbi, segno, 0); 622 623 if (valid_blocks == 0) { 624 __locate_dirty_segment(sbi, segno, PRE); 625 __remove_dirty_segment(sbi, segno, DIRTY); 626 } else if (valid_blocks < sbi->blocks_per_seg) { 627 __locate_dirty_segment(sbi, segno, DIRTY); 628 } else { 629 /* Recovery routine with SSR needs this */ 630 __remove_dirty_segment(sbi, segno, DIRTY); 631 } 632 633 mutex_unlock(&dirty_i->seglist_lock); 634 } 635 636 static void __add_discard_cmd(struct f2fs_sb_info *sbi, 637 struct bio *bio, block_t lstart, block_t len) 638 { 639 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 640 struct list_head *cmd_list = &(dcc->discard_cmd_list); 641 struct discard_cmd *dc; 642 643 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 644 INIT_LIST_HEAD(&dc->list); 645 dc->bio = bio; 646 bio->bi_private = dc; 647 dc->lstart = lstart; 648 dc->len = len; 649 dc->state = D_PREP; 650 init_completion(&dc->wait); 651 652 mutex_lock(&dcc->cmd_lock); 653 list_add_tail(&dc->list, cmd_list); 654 mutex_unlock(&dcc->cmd_lock); 655 } 656 657 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc) 658 { 659 int err = dc->bio->bi_error; 660 661 if (dc->state == D_DONE) 662 atomic_dec(&(SM_I(sbi)->dcc_info->submit_discard)); 663 664 if (err == -EOPNOTSUPP) 665 err = 0; 666 667 if (err) 668 f2fs_msg(sbi->sb, KERN_INFO, 669 "Issue discard failed, ret: %d", err); 670 bio_put(dc->bio); 671 list_del(&dc->list); 672 kmem_cache_free(discard_cmd_slab, dc); 673 } 674 675 /* This should be covered by global mutex, &sit_i->sentry_lock */ 676 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 677 { 678 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 679 struct list_head *wait_list = &(dcc->discard_cmd_list); 680 struct discard_cmd *dc, *tmp; 681 struct blk_plug plug; 682 683 mutex_lock(&dcc->cmd_lock); 684 685 blk_start_plug(&plug); 686 687 list_for_each_entry_safe(dc, tmp, wait_list, list) { 688 689 if (blkaddr == NULL_ADDR) { 690 if (dc->state == D_PREP) { 691 dc->state = D_SUBMIT; 692 submit_bio(dc->bio); 693 atomic_inc(&dcc->submit_discard); 694 } 695 continue; 696 } 697 698 if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) { 699 if (dc->state == D_SUBMIT) 700 wait_for_completion_io(&dc->wait); 701 else 702 __remove_discard_cmd(sbi, dc); 703 } 704 } 705 blk_finish_plug(&plug); 706 707 /* this comes from f2fs_put_super */ 708 if (blkaddr == NULL_ADDR) { 709 list_for_each_entry_safe(dc, tmp, wait_list, list) { 710 wait_for_completion_io(&dc->wait); 711 __remove_discard_cmd(sbi, dc); 712 } 713 } 714 mutex_unlock(&dcc->cmd_lock); 715 } 716 717 static void f2fs_submit_discard_endio(struct bio *bio) 718 { 719 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 720 721 complete(&dc->wait); 722 dc->state = D_DONE; 723 } 724 725 static int issue_discard_thread(void *data) 726 { 727 struct f2fs_sb_info *sbi = data; 728 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 729 wait_queue_head_t *q = &dcc->discard_wait_queue; 730 struct list_head *cmd_list = &dcc->discard_cmd_list; 731 struct discard_cmd *dc, *tmp; 732 struct blk_plug plug; 733 int iter = 0; 734 repeat: 735 if (kthread_should_stop()) 736 return 0; 737 738 blk_start_plug(&plug); 739 740 mutex_lock(&dcc->cmd_lock); 741 list_for_each_entry_safe(dc, tmp, cmd_list, list) { 742 if (dc->state == D_PREP) { 743 dc->state = D_SUBMIT; 744 submit_bio(dc->bio); 745 atomic_inc(&dcc->submit_discard); 746 if (iter++ > DISCARD_ISSUE_RATE) 747 break; 748 } else if (dc->state == D_DONE) { 749 __remove_discard_cmd(sbi, dc); 750 } 751 } 752 mutex_unlock(&dcc->cmd_lock); 753 754 blk_finish_plug(&plug); 755 756 iter = 0; 757 congestion_wait(BLK_RW_SYNC, HZ/50); 758 759 wait_event_interruptible(*q, 760 kthread_should_stop() || !list_empty(&dcc->discard_cmd_list)); 761 goto repeat; 762 } 763 764 765 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 766 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, 767 struct block_device *bdev, block_t blkstart, block_t blklen) 768 { 769 struct bio *bio = NULL; 770 block_t lblkstart = blkstart; 771 int err; 772 773 trace_f2fs_issue_discard(bdev, blkstart, blklen); 774 775 if (sbi->s_ndevs) { 776 int devi = f2fs_target_device_index(sbi, blkstart); 777 778 blkstart -= FDEV(devi).start_blk; 779 } 780 err = __blkdev_issue_discard(bdev, 781 SECTOR_FROM_BLOCK(blkstart), 782 SECTOR_FROM_BLOCK(blklen), 783 GFP_NOFS, 0, &bio); 784 if (!err && bio) { 785 bio->bi_end_io = f2fs_submit_discard_endio; 786 bio->bi_opf |= REQ_SYNC; 787 788 __add_discard_cmd(sbi, bio, lblkstart, blklen); 789 wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue); 790 } 791 return err; 792 } 793 794 #ifdef CONFIG_BLK_DEV_ZONED 795 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 796 struct block_device *bdev, block_t blkstart, block_t blklen) 797 { 798 sector_t sector, nr_sects; 799 int devi = 0; 800 801 if (sbi->s_ndevs) { 802 devi = f2fs_target_device_index(sbi, blkstart); 803 blkstart -= FDEV(devi).start_blk; 804 } 805 806 /* 807 * We need to know the type of the zone: for conventional zones, 808 * use regular discard if the drive supports it. For sequential 809 * zones, reset the zone write pointer. 810 */ 811 switch (get_blkz_type(sbi, bdev, blkstart)) { 812 813 case BLK_ZONE_TYPE_CONVENTIONAL: 814 if (!blk_queue_discard(bdev_get_queue(bdev))) 815 return 0; 816 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 817 case BLK_ZONE_TYPE_SEQWRITE_REQ: 818 case BLK_ZONE_TYPE_SEQWRITE_PREF: 819 sector = SECTOR_FROM_BLOCK(blkstart); 820 nr_sects = SECTOR_FROM_BLOCK(blklen); 821 822 if (sector & (bdev_zone_sectors(bdev) - 1) || 823 nr_sects != bdev_zone_sectors(bdev)) { 824 f2fs_msg(sbi->sb, KERN_INFO, 825 "(%d) %s: Unaligned discard attempted (block %x + %x)", 826 devi, sbi->s_ndevs ? FDEV(devi).path: "", 827 blkstart, blklen); 828 return -EIO; 829 } 830 trace_f2fs_issue_reset_zone(bdev, blkstart); 831 return blkdev_reset_zones(bdev, sector, 832 nr_sects, GFP_NOFS); 833 default: 834 /* Unknown zone type: broken device ? */ 835 return -EIO; 836 } 837 } 838 #endif 839 840 static int __issue_discard_async(struct f2fs_sb_info *sbi, 841 struct block_device *bdev, block_t blkstart, block_t blklen) 842 { 843 #ifdef CONFIG_BLK_DEV_ZONED 844 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 845 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 846 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 847 #endif 848 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 849 } 850 851 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 852 block_t blkstart, block_t blklen) 853 { 854 sector_t start = blkstart, len = 0; 855 struct block_device *bdev; 856 struct seg_entry *se; 857 unsigned int offset; 858 block_t i; 859 int err = 0; 860 861 bdev = f2fs_target_device(sbi, blkstart, NULL); 862 863 for (i = blkstart; i < blkstart + blklen; i++, len++) { 864 if (i != start) { 865 struct block_device *bdev2 = 866 f2fs_target_device(sbi, i, NULL); 867 868 if (bdev2 != bdev) { 869 err = __issue_discard_async(sbi, bdev, 870 start, len); 871 if (err) 872 return err; 873 bdev = bdev2; 874 start = i; 875 len = 0; 876 } 877 } 878 879 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 880 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 881 882 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 883 sbi->discard_blks--; 884 } 885 886 if (len) 887 err = __issue_discard_async(sbi, bdev, start, len); 888 return err; 889 } 890 891 static void __add_discard_entry(struct f2fs_sb_info *sbi, 892 struct cp_control *cpc, struct seg_entry *se, 893 unsigned int start, unsigned int end) 894 { 895 struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list; 896 struct discard_entry *new, *last; 897 898 if (!list_empty(head)) { 899 last = list_last_entry(head, struct discard_entry, list); 900 if (START_BLOCK(sbi, cpc->trim_start) + start == 901 last->blkaddr + last->len && 902 last->len < MAX_DISCARD_BLOCKS(sbi)) { 903 last->len += end - start; 904 goto done; 905 } 906 } 907 908 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 909 INIT_LIST_HEAD(&new->list); 910 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 911 new->len = end - start; 912 list_add_tail(&new->list, head); 913 done: 914 SM_I(sbi)->dcc_info->nr_discards += end - start; 915 } 916 917 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 918 bool check_only) 919 { 920 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 921 int max_blocks = sbi->blocks_per_seg; 922 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 923 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 924 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 925 unsigned long *discard_map = (unsigned long *)se->discard_map; 926 unsigned long *dmap = SIT_I(sbi)->tmp_map; 927 unsigned int start = 0, end = -1; 928 bool force = (cpc->reason == CP_DISCARD); 929 int i; 930 931 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 932 return false; 933 934 if (!force) { 935 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 936 SM_I(sbi)->dcc_info->nr_discards >= 937 SM_I(sbi)->dcc_info->max_discards) 938 return false; 939 } 940 941 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 942 for (i = 0; i < entries; i++) 943 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 944 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 945 946 while (force || SM_I(sbi)->dcc_info->nr_discards <= 947 SM_I(sbi)->dcc_info->max_discards) { 948 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 949 if (start >= max_blocks) 950 break; 951 952 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 953 if (force && start && end != max_blocks 954 && (end - start) < cpc->trim_minlen) 955 continue; 956 957 if (check_only) 958 return true; 959 960 __add_discard_entry(sbi, cpc, se, start, end); 961 } 962 return false; 963 } 964 965 void release_discard_addrs(struct f2fs_sb_info *sbi) 966 { 967 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list); 968 struct discard_entry *entry, *this; 969 970 /* drop caches */ 971 list_for_each_entry_safe(entry, this, head, list) { 972 list_del(&entry->list); 973 kmem_cache_free(discard_entry_slab, entry); 974 } 975 } 976 977 /* 978 * Should call clear_prefree_segments after checkpoint is done. 979 */ 980 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 981 { 982 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 983 unsigned int segno; 984 985 mutex_lock(&dirty_i->seglist_lock); 986 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 987 __set_test_and_free(sbi, segno); 988 mutex_unlock(&dirty_i->seglist_lock); 989 } 990 991 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 992 { 993 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list); 994 struct discard_entry *entry, *this; 995 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 996 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 997 unsigned int start = 0, end = -1; 998 unsigned int secno, start_segno; 999 bool force = (cpc->reason == CP_DISCARD); 1000 1001 mutex_lock(&dirty_i->seglist_lock); 1002 1003 while (1) { 1004 int i; 1005 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1006 if (start >= MAIN_SEGS(sbi)) 1007 break; 1008 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1009 start + 1); 1010 1011 for (i = start; i < end; i++) 1012 clear_bit(i, prefree_map); 1013 1014 dirty_i->nr_dirty[PRE] -= end - start; 1015 1016 if (!test_opt(sbi, DISCARD)) 1017 continue; 1018 1019 if (force && start >= cpc->trim_start && 1020 (end - 1) <= cpc->trim_end) 1021 continue; 1022 1023 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1024 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1025 (end - start) << sbi->log_blocks_per_seg); 1026 continue; 1027 } 1028 next: 1029 secno = GET_SECNO(sbi, start); 1030 start_segno = secno * sbi->segs_per_sec; 1031 if (!IS_CURSEC(sbi, secno) && 1032 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 1033 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1034 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1035 1036 start = start_segno + sbi->segs_per_sec; 1037 if (start < end) 1038 goto next; 1039 } 1040 mutex_unlock(&dirty_i->seglist_lock); 1041 1042 /* send small discards */ 1043 list_for_each_entry_safe(entry, this, head, list) { 1044 if (force && entry->len < cpc->trim_minlen) 1045 goto skip; 1046 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 1047 cpc->trimmed += entry->len; 1048 skip: 1049 list_del(&entry->list); 1050 SM_I(sbi)->dcc_info->nr_discards -= entry->len; 1051 kmem_cache_free(discard_entry_slab, entry); 1052 } 1053 } 1054 1055 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1056 { 1057 dev_t dev = sbi->sb->s_bdev->bd_dev; 1058 struct discard_cmd_control *dcc; 1059 int err = 0; 1060 1061 if (SM_I(sbi)->dcc_info) { 1062 dcc = SM_I(sbi)->dcc_info; 1063 goto init_thread; 1064 } 1065 1066 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL); 1067 if (!dcc) 1068 return -ENOMEM; 1069 1070 INIT_LIST_HEAD(&dcc->discard_entry_list); 1071 INIT_LIST_HEAD(&dcc->discard_cmd_list); 1072 mutex_init(&dcc->cmd_lock); 1073 atomic_set(&dcc->submit_discard, 0); 1074 dcc->nr_discards = 0; 1075 dcc->max_discards = 0; 1076 1077 init_waitqueue_head(&dcc->discard_wait_queue); 1078 SM_I(sbi)->dcc_info = dcc; 1079 init_thread: 1080 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 1081 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 1082 if (IS_ERR(dcc->f2fs_issue_discard)) { 1083 err = PTR_ERR(dcc->f2fs_issue_discard); 1084 kfree(dcc); 1085 SM_I(sbi)->dcc_info = NULL; 1086 return err; 1087 } 1088 1089 return err; 1090 } 1091 1092 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free) 1093 { 1094 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1095 1096 if (dcc && dcc->f2fs_issue_discard) { 1097 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1098 1099 dcc->f2fs_issue_discard = NULL; 1100 kthread_stop(discard_thread); 1101 } 1102 if (free) { 1103 kfree(dcc); 1104 SM_I(sbi)->dcc_info = NULL; 1105 } 1106 } 1107 1108 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 1109 { 1110 struct sit_info *sit_i = SIT_I(sbi); 1111 1112 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 1113 sit_i->dirty_sentries++; 1114 return false; 1115 } 1116 1117 return true; 1118 } 1119 1120 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 1121 unsigned int segno, int modified) 1122 { 1123 struct seg_entry *se = get_seg_entry(sbi, segno); 1124 se->type = type; 1125 if (modified) 1126 __mark_sit_entry_dirty(sbi, segno); 1127 } 1128 1129 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 1130 { 1131 struct seg_entry *se; 1132 unsigned int segno, offset; 1133 long int new_vblocks; 1134 1135 segno = GET_SEGNO(sbi, blkaddr); 1136 1137 se = get_seg_entry(sbi, segno); 1138 new_vblocks = se->valid_blocks + del; 1139 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1140 1141 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 1142 (new_vblocks > sbi->blocks_per_seg))); 1143 1144 se->valid_blocks = new_vblocks; 1145 se->mtime = get_mtime(sbi); 1146 SIT_I(sbi)->max_mtime = se->mtime; 1147 1148 /* Update valid block bitmap */ 1149 if (del > 0) { 1150 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) { 1151 #ifdef CONFIG_F2FS_CHECK_FS 1152 if (f2fs_test_and_set_bit(offset, 1153 se->cur_valid_map_mir)) 1154 f2fs_bug_on(sbi, 1); 1155 else 1156 WARN_ON(1); 1157 #else 1158 f2fs_bug_on(sbi, 1); 1159 #endif 1160 } 1161 if (f2fs_discard_en(sbi) && 1162 !f2fs_test_and_set_bit(offset, se->discard_map)) 1163 sbi->discard_blks--; 1164 } else { 1165 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) { 1166 #ifdef CONFIG_F2FS_CHECK_FS 1167 if (!f2fs_test_and_clear_bit(offset, 1168 se->cur_valid_map_mir)) 1169 f2fs_bug_on(sbi, 1); 1170 else 1171 WARN_ON(1); 1172 #else 1173 f2fs_bug_on(sbi, 1); 1174 #endif 1175 } 1176 if (f2fs_discard_en(sbi) && 1177 f2fs_test_and_clear_bit(offset, se->discard_map)) 1178 sbi->discard_blks++; 1179 } 1180 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1181 se->ckpt_valid_blocks += del; 1182 1183 __mark_sit_entry_dirty(sbi, segno); 1184 1185 /* update total number of valid blocks to be written in ckpt area */ 1186 SIT_I(sbi)->written_valid_blocks += del; 1187 1188 if (sbi->segs_per_sec > 1) 1189 get_sec_entry(sbi, segno)->valid_blocks += del; 1190 } 1191 1192 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 1193 { 1194 update_sit_entry(sbi, new, 1); 1195 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 1196 update_sit_entry(sbi, old, -1); 1197 1198 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 1199 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 1200 } 1201 1202 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1203 { 1204 unsigned int segno = GET_SEGNO(sbi, addr); 1205 struct sit_info *sit_i = SIT_I(sbi); 1206 1207 f2fs_bug_on(sbi, addr == NULL_ADDR); 1208 if (addr == NEW_ADDR) 1209 return; 1210 1211 /* add it into sit main buffer */ 1212 mutex_lock(&sit_i->sentry_lock); 1213 1214 update_sit_entry(sbi, addr, -1); 1215 1216 /* add it into dirty seglist */ 1217 locate_dirty_segment(sbi, segno); 1218 1219 mutex_unlock(&sit_i->sentry_lock); 1220 } 1221 1222 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1223 { 1224 struct sit_info *sit_i = SIT_I(sbi); 1225 unsigned int segno, offset; 1226 struct seg_entry *se; 1227 bool is_cp = false; 1228 1229 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1230 return true; 1231 1232 mutex_lock(&sit_i->sentry_lock); 1233 1234 segno = GET_SEGNO(sbi, blkaddr); 1235 se = get_seg_entry(sbi, segno); 1236 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1237 1238 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1239 is_cp = true; 1240 1241 mutex_unlock(&sit_i->sentry_lock); 1242 1243 return is_cp; 1244 } 1245 1246 /* 1247 * This function should be resided under the curseg_mutex lock 1248 */ 1249 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1250 struct f2fs_summary *sum) 1251 { 1252 struct curseg_info *curseg = CURSEG_I(sbi, type); 1253 void *addr = curseg->sum_blk; 1254 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1255 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1256 } 1257 1258 /* 1259 * Calculate the number of current summary pages for writing 1260 */ 1261 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1262 { 1263 int valid_sum_count = 0; 1264 int i, sum_in_page; 1265 1266 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1267 if (sbi->ckpt->alloc_type[i] == SSR) 1268 valid_sum_count += sbi->blocks_per_seg; 1269 else { 1270 if (for_ra) 1271 valid_sum_count += le16_to_cpu( 1272 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1273 else 1274 valid_sum_count += curseg_blkoff(sbi, i); 1275 } 1276 } 1277 1278 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1279 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1280 if (valid_sum_count <= sum_in_page) 1281 return 1; 1282 else if ((valid_sum_count - sum_in_page) <= 1283 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1284 return 2; 1285 return 3; 1286 } 1287 1288 /* 1289 * Caller should put this summary page 1290 */ 1291 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1292 { 1293 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1294 } 1295 1296 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1297 { 1298 struct page *page = grab_meta_page(sbi, blk_addr); 1299 void *dst = page_address(page); 1300 1301 if (src) 1302 memcpy(dst, src, PAGE_SIZE); 1303 else 1304 memset(dst, 0, PAGE_SIZE); 1305 set_page_dirty(page); 1306 f2fs_put_page(page, 1); 1307 } 1308 1309 static void write_sum_page(struct f2fs_sb_info *sbi, 1310 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1311 { 1312 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1313 } 1314 1315 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1316 int type, block_t blk_addr) 1317 { 1318 struct curseg_info *curseg = CURSEG_I(sbi, type); 1319 struct page *page = grab_meta_page(sbi, blk_addr); 1320 struct f2fs_summary_block *src = curseg->sum_blk; 1321 struct f2fs_summary_block *dst; 1322 1323 dst = (struct f2fs_summary_block *)page_address(page); 1324 1325 mutex_lock(&curseg->curseg_mutex); 1326 1327 down_read(&curseg->journal_rwsem); 1328 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1329 up_read(&curseg->journal_rwsem); 1330 1331 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1332 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1333 1334 mutex_unlock(&curseg->curseg_mutex); 1335 1336 set_page_dirty(page); 1337 f2fs_put_page(page, 1); 1338 } 1339 1340 /* 1341 * Find a new segment from the free segments bitmap to right order 1342 * This function should be returned with success, otherwise BUG 1343 */ 1344 static void get_new_segment(struct f2fs_sb_info *sbi, 1345 unsigned int *newseg, bool new_sec, int dir) 1346 { 1347 struct free_segmap_info *free_i = FREE_I(sbi); 1348 unsigned int segno, secno, zoneno; 1349 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1350 unsigned int hint = *newseg / sbi->segs_per_sec; 1351 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1352 unsigned int left_start = hint; 1353 bool init = true; 1354 int go_left = 0; 1355 int i; 1356 1357 spin_lock(&free_i->segmap_lock); 1358 1359 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1360 segno = find_next_zero_bit(free_i->free_segmap, 1361 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1362 if (segno < (hint + 1) * sbi->segs_per_sec) 1363 goto got_it; 1364 } 1365 find_other_zone: 1366 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1367 if (secno >= MAIN_SECS(sbi)) { 1368 if (dir == ALLOC_RIGHT) { 1369 secno = find_next_zero_bit(free_i->free_secmap, 1370 MAIN_SECS(sbi), 0); 1371 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1372 } else { 1373 go_left = 1; 1374 left_start = hint - 1; 1375 } 1376 } 1377 if (go_left == 0) 1378 goto skip_left; 1379 1380 while (test_bit(left_start, free_i->free_secmap)) { 1381 if (left_start > 0) { 1382 left_start--; 1383 continue; 1384 } 1385 left_start = find_next_zero_bit(free_i->free_secmap, 1386 MAIN_SECS(sbi), 0); 1387 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1388 break; 1389 } 1390 secno = left_start; 1391 skip_left: 1392 hint = secno; 1393 segno = secno * sbi->segs_per_sec; 1394 zoneno = secno / sbi->secs_per_zone; 1395 1396 /* give up on finding another zone */ 1397 if (!init) 1398 goto got_it; 1399 if (sbi->secs_per_zone == 1) 1400 goto got_it; 1401 if (zoneno == old_zoneno) 1402 goto got_it; 1403 if (dir == ALLOC_LEFT) { 1404 if (!go_left && zoneno + 1 >= total_zones) 1405 goto got_it; 1406 if (go_left && zoneno == 0) 1407 goto got_it; 1408 } 1409 for (i = 0; i < NR_CURSEG_TYPE; i++) 1410 if (CURSEG_I(sbi, i)->zone == zoneno) 1411 break; 1412 1413 if (i < NR_CURSEG_TYPE) { 1414 /* zone is in user, try another */ 1415 if (go_left) 1416 hint = zoneno * sbi->secs_per_zone - 1; 1417 else if (zoneno + 1 >= total_zones) 1418 hint = 0; 1419 else 1420 hint = (zoneno + 1) * sbi->secs_per_zone; 1421 init = false; 1422 goto find_other_zone; 1423 } 1424 got_it: 1425 /* set it as dirty segment in free segmap */ 1426 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1427 __set_inuse(sbi, segno); 1428 *newseg = segno; 1429 spin_unlock(&free_i->segmap_lock); 1430 } 1431 1432 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1433 { 1434 struct curseg_info *curseg = CURSEG_I(sbi, type); 1435 struct summary_footer *sum_footer; 1436 1437 curseg->segno = curseg->next_segno; 1438 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1439 curseg->next_blkoff = 0; 1440 curseg->next_segno = NULL_SEGNO; 1441 1442 sum_footer = &(curseg->sum_blk->footer); 1443 memset(sum_footer, 0, sizeof(struct summary_footer)); 1444 if (IS_DATASEG(type)) 1445 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1446 if (IS_NODESEG(type)) 1447 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1448 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1449 } 1450 1451 /* 1452 * Allocate a current working segment. 1453 * This function always allocates a free segment in LFS manner. 1454 */ 1455 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1456 { 1457 struct curseg_info *curseg = CURSEG_I(sbi, type); 1458 unsigned int segno = curseg->segno; 1459 int dir = ALLOC_LEFT; 1460 1461 write_sum_page(sbi, curseg->sum_blk, 1462 GET_SUM_BLOCK(sbi, segno)); 1463 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1464 dir = ALLOC_RIGHT; 1465 1466 if (test_opt(sbi, NOHEAP)) 1467 dir = ALLOC_RIGHT; 1468 1469 get_new_segment(sbi, &segno, new_sec, dir); 1470 curseg->next_segno = segno; 1471 reset_curseg(sbi, type, 1); 1472 curseg->alloc_type = LFS; 1473 } 1474 1475 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1476 struct curseg_info *seg, block_t start) 1477 { 1478 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1479 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1480 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1481 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1482 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1483 int i, pos; 1484 1485 for (i = 0; i < entries; i++) 1486 target_map[i] = ckpt_map[i] | cur_map[i]; 1487 1488 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1489 1490 seg->next_blkoff = pos; 1491 } 1492 1493 /* 1494 * If a segment is written by LFS manner, next block offset is just obtained 1495 * by increasing the current block offset. However, if a segment is written by 1496 * SSR manner, next block offset obtained by calling __next_free_blkoff 1497 */ 1498 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1499 struct curseg_info *seg) 1500 { 1501 if (seg->alloc_type == SSR) 1502 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1503 else 1504 seg->next_blkoff++; 1505 } 1506 1507 /* 1508 * This function always allocates a used segment(from dirty seglist) by SSR 1509 * manner, so it should recover the existing segment information of valid blocks 1510 */ 1511 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1512 { 1513 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1514 struct curseg_info *curseg = CURSEG_I(sbi, type); 1515 unsigned int new_segno = curseg->next_segno; 1516 struct f2fs_summary_block *sum_node; 1517 struct page *sum_page; 1518 1519 write_sum_page(sbi, curseg->sum_blk, 1520 GET_SUM_BLOCK(sbi, curseg->segno)); 1521 __set_test_and_inuse(sbi, new_segno); 1522 1523 mutex_lock(&dirty_i->seglist_lock); 1524 __remove_dirty_segment(sbi, new_segno, PRE); 1525 __remove_dirty_segment(sbi, new_segno, DIRTY); 1526 mutex_unlock(&dirty_i->seglist_lock); 1527 1528 reset_curseg(sbi, type, 1); 1529 curseg->alloc_type = SSR; 1530 __next_free_blkoff(sbi, curseg, 0); 1531 1532 if (reuse) { 1533 sum_page = get_sum_page(sbi, new_segno); 1534 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1535 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1536 f2fs_put_page(sum_page, 1); 1537 } 1538 } 1539 1540 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1541 { 1542 struct curseg_info *curseg = CURSEG_I(sbi, type); 1543 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1544 int i, n; 1545 1546 /* need_SSR() already forces to do this */ 1547 if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR)) 1548 return 1; 1549 1550 /* For node segments, let's do SSR more intensively */ 1551 if (IS_NODESEG(type)) { 1552 i = CURSEG_HOT_NODE; 1553 n = CURSEG_COLD_NODE; 1554 } else { 1555 i = CURSEG_HOT_DATA; 1556 n = CURSEG_COLD_DATA; 1557 } 1558 1559 for (; i <= n; i++) { 1560 if (i == type) 1561 continue; 1562 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1563 BG_GC, i, SSR)) 1564 return 1; 1565 } 1566 return 0; 1567 } 1568 1569 /* 1570 * flush out current segment and replace it with new segment 1571 * This function should be returned with success, otherwise BUG 1572 */ 1573 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1574 int type, bool force) 1575 { 1576 if (force) 1577 new_curseg(sbi, type, true); 1578 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 1579 type == CURSEG_WARM_NODE) 1580 new_curseg(sbi, type, false); 1581 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1582 change_curseg(sbi, type, true); 1583 else 1584 new_curseg(sbi, type, false); 1585 1586 stat_inc_seg_type(sbi, CURSEG_I(sbi, type)); 1587 } 1588 1589 void allocate_new_segments(struct f2fs_sb_info *sbi) 1590 { 1591 struct curseg_info *curseg; 1592 unsigned int old_segno; 1593 int i; 1594 1595 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1596 curseg = CURSEG_I(sbi, i); 1597 old_segno = curseg->segno; 1598 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1599 locate_dirty_segment(sbi, old_segno); 1600 } 1601 } 1602 1603 static const struct segment_allocation default_salloc_ops = { 1604 .allocate_segment = allocate_segment_by_default, 1605 }; 1606 1607 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1608 { 1609 __u64 trim_start = cpc->trim_start; 1610 bool has_candidate = false; 1611 1612 mutex_lock(&SIT_I(sbi)->sentry_lock); 1613 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 1614 if (add_discard_addrs(sbi, cpc, true)) { 1615 has_candidate = true; 1616 break; 1617 } 1618 } 1619 mutex_unlock(&SIT_I(sbi)->sentry_lock); 1620 1621 cpc->trim_start = trim_start; 1622 return has_candidate; 1623 } 1624 1625 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1626 { 1627 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1628 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1629 unsigned int start_segno, end_segno; 1630 struct cp_control cpc; 1631 int err = 0; 1632 1633 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1634 return -EINVAL; 1635 1636 cpc.trimmed = 0; 1637 if (end <= MAIN_BLKADDR(sbi)) 1638 goto out; 1639 1640 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1641 f2fs_msg(sbi->sb, KERN_WARNING, 1642 "Found FS corruption, run fsck to fix."); 1643 goto out; 1644 } 1645 1646 /* start/end segment number in main_area */ 1647 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1648 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1649 GET_SEGNO(sbi, end); 1650 cpc.reason = CP_DISCARD; 1651 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1652 1653 /* do checkpoint to issue discard commands safely */ 1654 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1655 cpc.trim_start = start_segno; 1656 1657 if (sbi->discard_blks == 0) 1658 break; 1659 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1660 cpc.trim_end = end_segno; 1661 else 1662 cpc.trim_end = min_t(unsigned int, 1663 rounddown(start_segno + 1664 BATCHED_TRIM_SEGMENTS(sbi), 1665 sbi->segs_per_sec) - 1, end_segno); 1666 1667 mutex_lock(&sbi->gc_mutex); 1668 err = write_checkpoint(sbi, &cpc); 1669 mutex_unlock(&sbi->gc_mutex); 1670 if (err) 1671 break; 1672 1673 schedule(); 1674 } 1675 out: 1676 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1677 return err; 1678 } 1679 1680 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1681 { 1682 struct curseg_info *curseg = CURSEG_I(sbi, type); 1683 if (curseg->next_blkoff < sbi->blocks_per_seg) 1684 return true; 1685 return false; 1686 } 1687 1688 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1689 { 1690 if (p_type == DATA) 1691 return CURSEG_HOT_DATA; 1692 else 1693 return CURSEG_HOT_NODE; 1694 } 1695 1696 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1697 { 1698 if (p_type == DATA) { 1699 struct inode *inode = page->mapping->host; 1700 1701 if (S_ISDIR(inode->i_mode)) 1702 return CURSEG_HOT_DATA; 1703 else 1704 return CURSEG_COLD_DATA; 1705 } else { 1706 if (IS_DNODE(page) && is_cold_node(page)) 1707 return CURSEG_WARM_NODE; 1708 else 1709 return CURSEG_COLD_NODE; 1710 } 1711 } 1712 1713 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1714 { 1715 if (p_type == DATA) { 1716 struct inode *inode = page->mapping->host; 1717 1718 if (S_ISDIR(inode->i_mode)) 1719 return CURSEG_HOT_DATA; 1720 else if (is_cold_data(page) || file_is_cold(inode)) 1721 return CURSEG_COLD_DATA; 1722 else 1723 return CURSEG_WARM_DATA; 1724 } else { 1725 if (IS_DNODE(page)) 1726 return is_cold_node(page) ? CURSEG_WARM_NODE : 1727 CURSEG_HOT_NODE; 1728 else 1729 return CURSEG_COLD_NODE; 1730 } 1731 } 1732 1733 static int __get_segment_type(struct page *page, enum page_type p_type) 1734 { 1735 switch (F2FS_P_SB(page)->active_logs) { 1736 case 2: 1737 return __get_segment_type_2(page, p_type); 1738 case 4: 1739 return __get_segment_type_4(page, p_type); 1740 } 1741 /* NR_CURSEG_TYPE(6) logs by default */ 1742 f2fs_bug_on(F2FS_P_SB(page), 1743 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1744 return __get_segment_type_6(page, p_type); 1745 } 1746 1747 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1748 block_t old_blkaddr, block_t *new_blkaddr, 1749 struct f2fs_summary *sum, int type) 1750 { 1751 struct sit_info *sit_i = SIT_I(sbi); 1752 struct curseg_info *curseg = CURSEG_I(sbi, type); 1753 1754 mutex_lock(&curseg->curseg_mutex); 1755 mutex_lock(&sit_i->sentry_lock); 1756 1757 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1758 1759 f2fs_wait_discard_bio(sbi, *new_blkaddr); 1760 1761 /* 1762 * __add_sum_entry should be resided under the curseg_mutex 1763 * because, this function updates a summary entry in the 1764 * current summary block. 1765 */ 1766 __add_sum_entry(sbi, type, sum); 1767 1768 __refresh_next_blkoff(sbi, curseg); 1769 1770 stat_inc_block_count(sbi, curseg); 1771 1772 /* 1773 * SIT information should be updated before segment allocation, 1774 * since SSR needs latest valid block information. 1775 */ 1776 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1777 1778 if (!__has_curseg_space(sbi, type)) 1779 sit_i->s_ops->allocate_segment(sbi, type, false); 1780 1781 mutex_unlock(&sit_i->sentry_lock); 1782 1783 if (page && IS_NODESEG(type)) 1784 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1785 1786 mutex_unlock(&curseg->curseg_mutex); 1787 } 1788 1789 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1790 { 1791 int type = __get_segment_type(fio->page, fio->type); 1792 int err; 1793 1794 if (fio->type == NODE || fio->type == DATA) 1795 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1796 reallocate: 1797 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1798 &fio->new_blkaddr, sum, type); 1799 1800 /* writeout dirty page into bdev */ 1801 err = f2fs_submit_page_mbio(fio); 1802 if (err == -EAGAIN) { 1803 fio->old_blkaddr = fio->new_blkaddr; 1804 goto reallocate; 1805 } 1806 1807 if (fio->type == NODE || fio->type == DATA) 1808 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1809 } 1810 1811 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1812 { 1813 struct f2fs_io_info fio = { 1814 .sbi = sbi, 1815 .type = META, 1816 .op = REQ_OP_WRITE, 1817 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 1818 .old_blkaddr = page->index, 1819 .new_blkaddr = page->index, 1820 .page = page, 1821 .encrypted_page = NULL, 1822 }; 1823 1824 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1825 fio.op_flags &= ~REQ_META; 1826 1827 set_page_writeback(page); 1828 f2fs_submit_page_mbio(&fio); 1829 } 1830 1831 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1832 { 1833 struct f2fs_summary sum; 1834 1835 set_summary(&sum, nid, 0, 0); 1836 do_write_page(&sum, fio); 1837 } 1838 1839 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1840 { 1841 struct f2fs_sb_info *sbi = fio->sbi; 1842 struct f2fs_summary sum; 1843 struct node_info ni; 1844 1845 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1846 get_node_info(sbi, dn->nid, &ni); 1847 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1848 do_write_page(&sum, fio); 1849 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1850 } 1851 1852 void rewrite_data_page(struct f2fs_io_info *fio) 1853 { 1854 fio->new_blkaddr = fio->old_blkaddr; 1855 stat_inc_inplace_blocks(fio->sbi); 1856 f2fs_submit_page_mbio(fio); 1857 } 1858 1859 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1860 block_t old_blkaddr, block_t new_blkaddr, 1861 bool recover_curseg, bool recover_newaddr) 1862 { 1863 struct sit_info *sit_i = SIT_I(sbi); 1864 struct curseg_info *curseg; 1865 unsigned int segno, old_cursegno; 1866 struct seg_entry *se; 1867 int type; 1868 unsigned short old_blkoff; 1869 1870 segno = GET_SEGNO(sbi, new_blkaddr); 1871 se = get_seg_entry(sbi, segno); 1872 type = se->type; 1873 1874 if (!recover_curseg) { 1875 /* for recovery flow */ 1876 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1877 if (old_blkaddr == NULL_ADDR) 1878 type = CURSEG_COLD_DATA; 1879 else 1880 type = CURSEG_WARM_DATA; 1881 } 1882 } else { 1883 if (!IS_CURSEG(sbi, segno)) 1884 type = CURSEG_WARM_DATA; 1885 } 1886 1887 curseg = CURSEG_I(sbi, type); 1888 1889 mutex_lock(&curseg->curseg_mutex); 1890 mutex_lock(&sit_i->sentry_lock); 1891 1892 old_cursegno = curseg->segno; 1893 old_blkoff = curseg->next_blkoff; 1894 1895 /* change the current segment */ 1896 if (segno != curseg->segno) { 1897 curseg->next_segno = segno; 1898 change_curseg(sbi, type, true); 1899 } 1900 1901 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1902 __add_sum_entry(sbi, type, sum); 1903 1904 if (!recover_curseg || recover_newaddr) 1905 update_sit_entry(sbi, new_blkaddr, 1); 1906 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1907 update_sit_entry(sbi, old_blkaddr, -1); 1908 1909 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1910 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1911 1912 locate_dirty_segment(sbi, old_cursegno); 1913 1914 if (recover_curseg) { 1915 if (old_cursegno != curseg->segno) { 1916 curseg->next_segno = old_cursegno; 1917 change_curseg(sbi, type, true); 1918 } 1919 curseg->next_blkoff = old_blkoff; 1920 } 1921 1922 mutex_unlock(&sit_i->sentry_lock); 1923 mutex_unlock(&curseg->curseg_mutex); 1924 } 1925 1926 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1927 block_t old_addr, block_t new_addr, 1928 unsigned char version, bool recover_curseg, 1929 bool recover_newaddr) 1930 { 1931 struct f2fs_summary sum; 1932 1933 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1934 1935 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1936 recover_curseg, recover_newaddr); 1937 1938 f2fs_update_data_blkaddr(dn, new_addr); 1939 } 1940 1941 void f2fs_wait_on_page_writeback(struct page *page, 1942 enum page_type type, bool ordered) 1943 { 1944 if (PageWriteback(page)) { 1945 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1946 1947 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 1948 0, page->index, type, WRITE); 1949 if (ordered) 1950 wait_on_page_writeback(page); 1951 else 1952 wait_for_stable_page(page); 1953 } 1954 } 1955 1956 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1957 block_t blkaddr) 1958 { 1959 struct page *cpage; 1960 1961 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1962 return; 1963 1964 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1965 if (cpage) { 1966 f2fs_wait_on_page_writeback(cpage, DATA, true); 1967 f2fs_put_page(cpage, 1); 1968 } 1969 } 1970 1971 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1972 { 1973 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1974 struct curseg_info *seg_i; 1975 unsigned char *kaddr; 1976 struct page *page; 1977 block_t start; 1978 int i, j, offset; 1979 1980 start = start_sum_block(sbi); 1981 1982 page = get_meta_page(sbi, start++); 1983 kaddr = (unsigned char *)page_address(page); 1984 1985 /* Step 1: restore nat cache */ 1986 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1987 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1988 1989 /* Step 2: restore sit cache */ 1990 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1991 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1992 offset = 2 * SUM_JOURNAL_SIZE; 1993 1994 /* Step 3: restore summary entries */ 1995 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1996 unsigned short blk_off; 1997 unsigned int segno; 1998 1999 seg_i = CURSEG_I(sbi, i); 2000 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 2001 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 2002 seg_i->next_segno = segno; 2003 reset_curseg(sbi, i, 0); 2004 seg_i->alloc_type = ckpt->alloc_type[i]; 2005 seg_i->next_blkoff = blk_off; 2006 2007 if (seg_i->alloc_type == SSR) 2008 blk_off = sbi->blocks_per_seg; 2009 2010 for (j = 0; j < blk_off; j++) { 2011 struct f2fs_summary *s; 2012 s = (struct f2fs_summary *)(kaddr + offset); 2013 seg_i->sum_blk->entries[j] = *s; 2014 offset += SUMMARY_SIZE; 2015 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 2016 SUM_FOOTER_SIZE) 2017 continue; 2018 2019 f2fs_put_page(page, 1); 2020 page = NULL; 2021 2022 page = get_meta_page(sbi, start++); 2023 kaddr = (unsigned char *)page_address(page); 2024 offset = 0; 2025 } 2026 } 2027 f2fs_put_page(page, 1); 2028 return 0; 2029 } 2030 2031 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 2032 { 2033 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2034 struct f2fs_summary_block *sum; 2035 struct curseg_info *curseg; 2036 struct page *new; 2037 unsigned short blk_off; 2038 unsigned int segno = 0; 2039 block_t blk_addr = 0; 2040 2041 /* get segment number and block addr */ 2042 if (IS_DATASEG(type)) { 2043 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 2044 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 2045 CURSEG_HOT_DATA]); 2046 if (__exist_node_summaries(sbi)) 2047 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 2048 else 2049 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 2050 } else { 2051 segno = le32_to_cpu(ckpt->cur_node_segno[type - 2052 CURSEG_HOT_NODE]); 2053 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 2054 CURSEG_HOT_NODE]); 2055 if (__exist_node_summaries(sbi)) 2056 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 2057 type - CURSEG_HOT_NODE); 2058 else 2059 blk_addr = GET_SUM_BLOCK(sbi, segno); 2060 } 2061 2062 new = get_meta_page(sbi, blk_addr); 2063 sum = (struct f2fs_summary_block *)page_address(new); 2064 2065 if (IS_NODESEG(type)) { 2066 if (__exist_node_summaries(sbi)) { 2067 struct f2fs_summary *ns = &sum->entries[0]; 2068 int i; 2069 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 2070 ns->version = 0; 2071 ns->ofs_in_node = 0; 2072 } 2073 } else { 2074 int err; 2075 2076 err = restore_node_summary(sbi, segno, sum); 2077 if (err) { 2078 f2fs_put_page(new, 1); 2079 return err; 2080 } 2081 } 2082 } 2083 2084 /* set uncompleted segment to curseg */ 2085 curseg = CURSEG_I(sbi, type); 2086 mutex_lock(&curseg->curseg_mutex); 2087 2088 /* update journal info */ 2089 down_write(&curseg->journal_rwsem); 2090 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 2091 up_write(&curseg->journal_rwsem); 2092 2093 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 2094 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 2095 curseg->next_segno = segno; 2096 reset_curseg(sbi, type, 0); 2097 curseg->alloc_type = ckpt->alloc_type[type]; 2098 curseg->next_blkoff = blk_off; 2099 mutex_unlock(&curseg->curseg_mutex); 2100 f2fs_put_page(new, 1); 2101 return 0; 2102 } 2103 2104 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 2105 { 2106 int type = CURSEG_HOT_DATA; 2107 int err; 2108 2109 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 2110 int npages = npages_for_summary_flush(sbi, true); 2111 2112 if (npages >= 2) 2113 ra_meta_pages(sbi, start_sum_block(sbi), npages, 2114 META_CP, true); 2115 2116 /* restore for compacted data summary */ 2117 if (read_compacted_summaries(sbi)) 2118 return -EINVAL; 2119 type = CURSEG_HOT_NODE; 2120 } 2121 2122 if (__exist_node_summaries(sbi)) 2123 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 2124 NR_CURSEG_TYPE - type, META_CP, true); 2125 2126 for (; type <= CURSEG_COLD_NODE; type++) { 2127 err = read_normal_summaries(sbi, type); 2128 if (err) 2129 return err; 2130 } 2131 2132 return 0; 2133 } 2134 2135 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 2136 { 2137 struct page *page; 2138 unsigned char *kaddr; 2139 struct f2fs_summary *summary; 2140 struct curseg_info *seg_i; 2141 int written_size = 0; 2142 int i, j; 2143 2144 page = grab_meta_page(sbi, blkaddr++); 2145 kaddr = (unsigned char *)page_address(page); 2146 2147 /* Step 1: write nat cache */ 2148 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2149 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 2150 written_size += SUM_JOURNAL_SIZE; 2151 2152 /* Step 2: write sit cache */ 2153 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2154 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 2155 written_size += SUM_JOURNAL_SIZE; 2156 2157 /* Step 3: write summary entries */ 2158 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2159 unsigned short blkoff; 2160 seg_i = CURSEG_I(sbi, i); 2161 if (sbi->ckpt->alloc_type[i] == SSR) 2162 blkoff = sbi->blocks_per_seg; 2163 else 2164 blkoff = curseg_blkoff(sbi, i); 2165 2166 for (j = 0; j < blkoff; j++) { 2167 if (!page) { 2168 page = grab_meta_page(sbi, blkaddr++); 2169 kaddr = (unsigned char *)page_address(page); 2170 written_size = 0; 2171 } 2172 summary = (struct f2fs_summary *)(kaddr + written_size); 2173 *summary = seg_i->sum_blk->entries[j]; 2174 written_size += SUMMARY_SIZE; 2175 2176 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 2177 SUM_FOOTER_SIZE) 2178 continue; 2179 2180 set_page_dirty(page); 2181 f2fs_put_page(page, 1); 2182 page = NULL; 2183 } 2184 } 2185 if (page) { 2186 set_page_dirty(page); 2187 f2fs_put_page(page, 1); 2188 } 2189 } 2190 2191 static void write_normal_summaries(struct f2fs_sb_info *sbi, 2192 block_t blkaddr, int type) 2193 { 2194 int i, end; 2195 if (IS_DATASEG(type)) 2196 end = type + NR_CURSEG_DATA_TYPE; 2197 else 2198 end = type + NR_CURSEG_NODE_TYPE; 2199 2200 for (i = type; i < end; i++) 2201 write_current_sum_page(sbi, i, blkaddr + (i - type)); 2202 } 2203 2204 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2205 { 2206 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 2207 write_compacted_summaries(sbi, start_blk); 2208 else 2209 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 2210 } 2211 2212 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2213 { 2214 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 2215 } 2216 2217 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2218 unsigned int val, int alloc) 2219 { 2220 int i; 2221 2222 if (type == NAT_JOURNAL) { 2223 for (i = 0; i < nats_in_cursum(journal); i++) { 2224 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 2225 return i; 2226 } 2227 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 2228 return update_nats_in_cursum(journal, 1); 2229 } else if (type == SIT_JOURNAL) { 2230 for (i = 0; i < sits_in_cursum(journal); i++) 2231 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 2232 return i; 2233 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 2234 return update_sits_in_cursum(journal, 1); 2235 } 2236 return -1; 2237 } 2238 2239 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 2240 unsigned int segno) 2241 { 2242 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 2243 } 2244 2245 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 2246 unsigned int start) 2247 { 2248 struct sit_info *sit_i = SIT_I(sbi); 2249 struct page *src_page, *dst_page; 2250 pgoff_t src_off, dst_off; 2251 void *src_addr, *dst_addr; 2252 2253 src_off = current_sit_addr(sbi, start); 2254 dst_off = next_sit_addr(sbi, src_off); 2255 2256 /* get current sit block page without lock */ 2257 src_page = get_meta_page(sbi, src_off); 2258 dst_page = grab_meta_page(sbi, dst_off); 2259 f2fs_bug_on(sbi, PageDirty(src_page)); 2260 2261 src_addr = page_address(src_page); 2262 dst_addr = page_address(dst_page); 2263 memcpy(dst_addr, src_addr, PAGE_SIZE); 2264 2265 set_page_dirty(dst_page); 2266 f2fs_put_page(src_page, 1); 2267 2268 set_to_next_sit(sit_i, start); 2269 2270 return dst_page; 2271 } 2272 2273 static struct sit_entry_set *grab_sit_entry_set(void) 2274 { 2275 struct sit_entry_set *ses = 2276 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 2277 2278 ses->entry_cnt = 0; 2279 INIT_LIST_HEAD(&ses->set_list); 2280 return ses; 2281 } 2282 2283 static void release_sit_entry_set(struct sit_entry_set *ses) 2284 { 2285 list_del(&ses->set_list); 2286 kmem_cache_free(sit_entry_set_slab, ses); 2287 } 2288 2289 static void adjust_sit_entry_set(struct sit_entry_set *ses, 2290 struct list_head *head) 2291 { 2292 struct sit_entry_set *next = ses; 2293 2294 if (list_is_last(&ses->set_list, head)) 2295 return; 2296 2297 list_for_each_entry_continue(next, head, set_list) 2298 if (ses->entry_cnt <= next->entry_cnt) 2299 break; 2300 2301 list_move_tail(&ses->set_list, &next->set_list); 2302 } 2303 2304 static void add_sit_entry(unsigned int segno, struct list_head *head) 2305 { 2306 struct sit_entry_set *ses; 2307 unsigned int start_segno = START_SEGNO(segno); 2308 2309 list_for_each_entry(ses, head, set_list) { 2310 if (ses->start_segno == start_segno) { 2311 ses->entry_cnt++; 2312 adjust_sit_entry_set(ses, head); 2313 return; 2314 } 2315 } 2316 2317 ses = grab_sit_entry_set(); 2318 2319 ses->start_segno = start_segno; 2320 ses->entry_cnt++; 2321 list_add(&ses->set_list, head); 2322 } 2323 2324 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2325 { 2326 struct f2fs_sm_info *sm_info = SM_I(sbi); 2327 struct list_head *set_list = &sm_info->sit_entry_set; 2328 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2329 unsigned int segno; 2330 2331 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2332 add_sit_entry(segno, set_list); 2333 } 2334 2335 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2336 { 2337 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2338 struct f2fs_journal *journal = curseg->journal; 2339 int i; 2340 2341 down_write(&curseg->journal_rwsem); 2342 for (i = 0; i < sits_in_cursum(journal); i++) { 2343 unsigned int segno; 2344 bool dirtied; 2345 2346 segno = le32_to_cpu(segno_in_journal(journal, i)); 2347 dirtied = __mark_sit_entry_dirty(sbi, segno); 2348 2349 if (!dirtied) 2350 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2351 } 2352 update_sits_in_cursum(journal, -i); 2353 up_write(&curseg->journal_rwsem); 2354 } 2355 2356 /* 2357 * CP calls this function, which flushes SIT entries including sit_journal, 2358 * and moves prefree segs to free segs. 2359 */ 2360 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2361 { 2362 struct sit_info *sit_i = SIT_I(sbi); 2363 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2364 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2365 struct f2fs_journal *journal = curseg->journal; 2366 struct sit_entry_set *ses, *tmp; 2367 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2368 bool to_journal = true; 2369 struct seg_entry *se; 2370 2371 mutex_lock(&sit_i->sentry_lock); 2372 2373 if (!sit_i->dirty_sentries) 2374 goto out; 2375 2376 /* 2377 * add and account sit entries of dirty bitmap in sit entry 2378 * set temporarily 2379 */ 2380 add_sits_in_set(sbi); 2381 2382 /* 2383 * if there are no enough space in journal to store dirty sit 2384 * entries, remove all entries from journal and add and account 2385 * them in sit entry set. 2386 */ 2387 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2388 remove_sits_in_journal(sbi); 2389 2390 /* 2391 * there are two steps to flush sit entries: 2392 * #1, flush sit entries to journal in current cold data summary block. 2393 * #2, flush sit entries to sit page. 2394 */ 2395 list_for_each_entry_safe(ses, tmp, head, set_list) { 2396 struct page *page = NULL; 2397 struct f2fs_sit_block *raw_sit = NULL; 2398 unsigned int start_segno = ses->start_segno; 2399 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2400 (unsigned long)MAIN_SEGS(sbi)); 2401 unsigned int segno = start_segno; 2402 2403 if (to_journal && 2404 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2405 to_journal = false; 2406 2407 if (to_journal) { 2408 down_write(&curseg->journal_rwsem); 2409 } else { 2410 page = get_next_sit_page(sbi, start_segno); 2411 raw_sit = page_address(page); 2412 } 2413 2414 /* flush dirty sit entries in region of current sit set */ 2415 for_each_set_bit_from(segno, bitmap, end) { 2416 int offset, sit_offset; 2417 2418 se = get_seg_entry(sbi, segno); 2419 2420 /* add discard candidates */ 2421 if (cpc->reason != CP_DISCARD) { 2422 cpc->trim_start = segno; 2423 add_discard_addrs(sbi, cpc, false); 2424 } 2425 2426 if (to_journal) { 2427 offset = lookup_journal_in_cursum(journal, 2428 SIT_JOURNAL, segno, 1); 2429 f2fs_bug_on(sbi, offset < 0); 2430 segno_in_journal(journal, offset) = 2431 cpu_to_le32(segno); 2432 seg_info_to_raw_sit(se, 2433 &sit_in_journal(journal, offset)); 2434 } else { 2435 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2436 seg_info_to_raw_sit(se, 2437 &raw_sit->entries[sit_offset]); 2438 } 2439 2440 __clear_bit(segno, bitmap); 2441 sit_i->dirty_sentries--; 2442 ses->entry_cnt--; 2443 } 2444 2445 if (to_journal) 2446 up_write(&curseg->journal_rwsem); 2447 else 2448 f2fs_put_page(page, 1); 2449 2450 f2fs_bug_on(sbi, ses->entry_cnt); 2451 release_sit_entry_set(ses); 2452 } 2453 2454 f2fs_bug_on(sbi, !list_empty(head)); 2455 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2456 out: 2457 if (cpc->reason == CP_DISCARD) { 2458 __u64 trim_start = cpc->trim_start; 2459 2460 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2461 add_discard_addrs(sbi, cpc, false); 2462 2463 cpc->trim_start = trim_start; 2464 } 2465 mutex_unlock(&sit_i->sentry_lock); 2466 2467 set_prefree_as_free_segments(sbi); 2468 } 2469 2470 static int build_sit_info(struct f2fs_sb_info *sbi) 2471 { 2472 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2473 struct sit_info *sit_i; 2474 unsigned int sit_segs, start; 2475 char *src_bitmap; 2476 unsigned int bitmap_size; 2477 2478 /* allocate memory for SIT information */ 2479 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2480 if (!sit_i) 2481 return -ENOMEM; 2482 2483 SM_I(sbi)->sit_info = sit_i; 2484 2485 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2486 sizeof(struct seg_entry), GFP_KERNEL); 2487 if (!sit_i->sentries) 2488 return -ENOMEM; 2489 2490 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2491 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2492 if (!sit_i->dirty_sentries_bitmap) 2493 return -ENOMEM; 2494 2495 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2496 sit_i->sentries[start].cur_valid_map 2497 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2498 sit_i->sentries[start].ckpt_valid_map 2499 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2500 if (!sit_i->sentries[start].cur_valid_map || 2501 !sit_i->sentries[start].ckpt_valid_map) 2502 return -ENOMEM; 2503 2504 #ifdef CONFIG_F2FS_CHECK_FS 2505 sit_i->sentries[start].cur_valid_map_mir 2506 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2507 if (!sit_i->sentries[start].cur_valid_map_mir) 2508 return -ENOMEM; 2509 #endif 2510 2511 if (f2fs_discard_en(sbi)) { 2512 sit_i->sentries[start].discard_map 2513 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2514 if (!sit_i->sentries[start].discard_map) 2515 return -ENOMEM; 2516 } 2517 } 2518 2519 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2520 if (!sit_i->tmp_map) 2521 return -ENOMEM; 2522 2523 if (sbi->segs_per_sec > 1) { 2524 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2525 sizeof(struct sec_entry), GFP_KERNEL); 2526 if (!sit_i->sec_entries) 2527 return -ENOMEM; 2528 } 2529 2530 /* get information related with SIT */ 2531 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2532 2533 /* setup SIT bitmap from ckeckpoint pack */ 2534 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2535 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2536 2537 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2538 if (!sit_i->sit_bitmap) 2539 return -ENOMEM; 2540 2541 #ifdef CONFIG_F2FS_CHECK_FS 2542 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2543 if (!sit_i->sit_bitmap_mir) 2544 return -ENOMEM; 2545 #endif 2546 2547 /* init SIT information */ 2548 sit_i->s_ops = &default_salloc_ops; 2549 2550 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2551 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2552 sit_i->written_valid_blocks = 0; 2553 sit_i->bitmap_size = bitmap_size; 2554 sit_i->dirty_sentries = 0; 2555 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2556 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2557 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2558 mutex_init(&sit_i->sentry_lock); 2559 return 0; 2560 } 2561 2562 static int build_free_segmap(struct f2fs_sb_info *sbi) 2563 { 2564 struct free_segmap_info *free_i; 2565 unsigned int bitmap_size, sec_bitmap_size; 2566 2567 /* allocate memory for free segmap information */ 2568 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2569 if (!free_i) 2570 return -ENOMEM; 2571 2572 SM_I(sbi)->free_info = free_i; 2573 2574 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2575 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2576 if (!free_i->free_segmap) 2577 return -ENOMEM; 2578 2579 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2580 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2581 if (!free_i->free_secmap) 2582 return -ENOMEM; 2583 2584 /* set all segments as dirty temporarily */ 2585 memset(free_i->free_segmap, 0xff, bitmap_size); 2586 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2587 2588 /* init free segmap information */ 2589 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2590 free_i->free_segments = 0; 2591 free_i->free_sections = 0; 2592 spin_lock_init(&free_i->segmap_lock); 2593 return 0; 2594 } 2595 2596 static int build_curseg(struct f2fs_sb_info *sbi) 2597 { 2598 struct curseg_info *array; 2599 int i; 2600 2601 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2602 if (!array) 2603 return -ENOMEM; 2604 2605 SM_I(sbi)->curseg_array = array; 2606 2607 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2608 mutex_init(&array[i].curseg_mutex); 2609 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2610 if (!array[i].sum_blk) 2611 return -ENOMEM; 2612 init_rwsem(&array[i].journal_rwsem); 2613 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2614 GFP_KERNEL); 2615 if (!array[i].journal) 2616 return -ENOMEM; 2617 array[i].segno = NULL_SEGNO; 2618 array[i].next_blkoff = 0; 2619 } 2620 return restore_curseg_summaries(sbi); 2621 } 2622 2623 static void build_sit_entries(struct f2fs_sb_info *sbi) 2624 { 2625 struct sit_info *sit_i = SIT_I(sbi); 2626 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2627 struct f2fs_journal *journal = curseg->journal; 2628 struct seg_entry *se; 2629 struct f2fs_sit_entry sit; 2630 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2631 unsigned int i, start, end; 2632 unsigned int readed, start_blk = 0; 2633 2634 do { 2635 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 2636 META_SIT, true); 2637 2638 start = start_blk * sit_i->sents_per_block; 2639 end = (start_blk + readed) * sit_i->sents_per_block; 2640 2641 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2642 struct f2fs_sit_block *sit_blk; 2643 struct page *page; 2644 2645 se = &sit_i->sentries[start]; 2646 page = get_current_sit_page(sbi, start); 2647 sit_blk = (struct f2fs_sit_block *)page_address(page); 2648 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2649 f2fs_put_page(page, 1); 2650 2651 check_block_count(sbi, start, &sit); 2652 seg_info_from_raw_sit(se, &sit); 2653 2654 /* build discard map only one time */ 2655 if (f2fs_discard_en(sbi)) { 2656 memcpy(se->discard_map, se->cur_valid_map, 2657 SIT_VBLOCK_MAP_SIZE); 2658 sbi->discard_blks += sbi->blocks_per_seg - 2659 se->valid_blocks; 2660 } 2661 2662 if (sbi->segs_per_sec > 1) 2663 get_sec_entry(sbi, start)->valid_blocks += 2664 se->valid_blocks; 2665 } 2666 start_blk += readed; 2667 } while (start_blk < sit_blk_cnt); 2668 2669 down_read(&curseg->journal_rwsem); 2670 for (i = 0; i < sits_in_cursum(journal); i++) { 2671 unsigned int old_valid_blocks; 2672 2673 start = le32_to_cpu(segno_in_journal(journal, i)); 2674 se = &sit_i->sentries[start]; 2675 sit = sit_in_journal(journal, i); 2676 2677 old_valid_blocks = se->valid_blocks; 2678 2679 check_block_count(sbi, start, &sit); 2680 seg_info_from_raw_sit(se, &sit); 2681 2682 if (f2fs_discard_en(sbi)) { 2683 memcpy(se->discard_map, se->cur_valid_map, 2684 SIT_VBLOCK_MAP_SIZE); 2685 sbi->discard_blks += old_valid_blocks - 2686 se->valid_blocks; 2687 } 2688 2689 if (sbi->segs_per_sec > 1) 2690 get_sec_entry(sbi, start)->valid_blocks += 2691 se->valid_blocks - old_valid_blocks; 2692 } 2693 up_read(&curseg->journal_rwsem); 2694 } 2695 2696 static void init_free_segmap(struct f2fs_sb_info *sbi) 2697 { 2698 unsigned int start; 2699 int type; 2700 2701 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2702 struct seg_entry *sentry = get_seg_entry(sbi, start); 2703 if (!sentry->valid_blocks) 2704 __set_free(sbi, start); 2705 else 2706 SIT_I(sbi)->written_valid_blocks += 2707 sentry->valid_blocks; 2708 } 2709 2710 /* set use the current segments */ 2711 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2712 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2713 __set_test_and_inuse(sbi, curseg_t->segno); 2714 } 2715 } 2716 2717 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2718 { 2719 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2720 struct free_segmap_info *free_i = FREE_I(sbi); 2721 unsigned int segno = 0, offset = 0; 2722 unsigned short valid_blocks; 2723 2724 while (1) { 2725 /* find dirty segment based on free segmap */ 2726 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2727 if (segno >= MAIN_SEGS(sbi)) 2728 break; 2729 offset = segno + 1; 2730 valid_blocks = get_valid_blocks(sbi, segno, 0); 2731 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2732 continue; 2733 if (valid_blocks > sbi->blocks_per_seg) { 2734 f2fs_bug_on(sbi, 1); 2735 continue; 2736 } 2737 mutex_lock(&dirty_i->seglist_lock); 2738 __locate_dirty_segment(sbi, segno, DIRTY); 2739 mutex_unlock(&dirty_i->seglist_lock); 2740 } 2741 } 2742 2743 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2744 { 2745 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2746 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2747 2748 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2749 if (!dirty_i->victim_secmap) 2750 return -ENOMEM; 2751 return 0; 2752 } 2753 2754 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2755 { 2756 struct dirty_seglist_info *dirty_i; 2757 unsigned int bitmap_size, i; 2758 2759 /* allocate memory for dirty segments list information */ 2760 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2761 if (!dirty_i) 2762 return -ENOMEM; 2763 2764 SM_I(sbi)->dirty_info = dirty_i; 2765 mutex_init(&dirty_i->seglist_lock); 2766 2767 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2768 2769 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2770 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2771 if (!dirty_i->dirty_segmap[i]) 2772 return -ENOMEM; 2773 } 2774 2775 init_dirty_segmap(sbi); 2776 return init_victim_secmap(sbi); 2777 } 2778 2779 /* 2780 * Update min, max modified time for cost-benefit GC algorithm 2781 */ 2782 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2783 { 2784 struct sit_info *sit_i = SIT_I(sbi); 2785 unsigned int segno; 2786 2787 mutex_lock(&sit_i->sentry_lock); 2788 2789 sit_i->min_mtime = LLONG_MAX; 2790 2791 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2792 unsigned int i; 2793 unsigned long long mtime = 0; 2794 2795 for (i = 0; i < sbi->segs_per_sec; i++) 2796 mtime += get_seg_entry(sbi, segno + i)->mtime; 2797 2798 mtime = div_u64(mtime, sbi->segs_per_sec); 2799 2800 if (sit_i->min_mtime > mtime) 2801 sit_i->min_mtime = mtime; 2802 } 2803 sit_i->max_mtime = get_mtime(sbi); 2804 mutex_unlock(&sit_i->sentry_lock); 2805 } 2806 2807 int build_segment_manager(struct f2fs_sb_info *sbi) 2808 { 2809 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2810 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2811 struct f2fs_sm_info *sm_info; 2812 int err; 2813 2814 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2815 if (!sm_info) 2816 return -ENOMEM; 2817 2818 /* init sm info */ 2819 sbi->sm_info = sm_info; 2820 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2821 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2822 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2823 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2824 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2825 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2826 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2827 sm_info->rec_prefree_segments = sm_info->main_segments * 2828 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2829 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2830 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2831 2832 if (!test_opt(sbi, LFS)) 2833 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2834 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2835 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2836 2837 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2838 2839 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2840 2841 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2842 err = create_flush_cmd_control(sbi); 2843 if (err) 2844 return err; 2845 } 2846 2847 err = create_discard_cmd_control(sbi); 2848 if (err) 2849 return err; 2850 2851 err = build_sit_info(sbi); 2852 if (err) 2853 return err; 2854 err = build_free_segmap(sbi); 2855 if (err) 2856 return err; 2857 err = build_curseg(sbi); 2858 if (err) 2859 return err; 2860 2861 /* reinit free segmap based on SIT */ 2862 build_sit_entries(sbi); 2863 2864 init_free_segmap(sbi); 2865 err = build_dirty_segmap(sbi); 2866 if (err) 2867 return err; 2868 2869 init_min_max_mtime(sbi); 2870 return 0; 2871 } 2872 2873 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2874 enum dirty_type dirty_type) 2875 { 2876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2877 2878 mutex_lock(&dirty_i->seglist_lock); 2879 kvfree(dirty_i->dirty_segmap[dirty_type]); 2880 dirty_i->nr_dirty[dirty_type] = 0; 2881 mutex_unlock(&dirty_i->seglist_lock); 2882 } 2883 2884 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2885 { 2886 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2887 kvfree(dirty_i->victim_secmap); 2888 } 2889 2890 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2891 { 2892 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2893 int i; 2894 2895 if (!dirty_i) 2896 return; 2897 2898 /* discard pre-free/dirty segments list */ 2899 for (i = 0; i < NR_DIRTY_TYPE; i++) 2900 discard_dirty_segmap(sbi, i); 2901 2902 destroy_victim_secmap(sbi); 2903 SM_I(sbi)->dirty_info = NULL; 2904 kfree(dirty_i); 2905 } 2906 2907 static void destroy_curseg(struct f2fs_sb_info *sbi) 2908 { 2909 struct curseg_info *array = SM_I(sbi)->curseg_array; 2910 int i; 2911 2912 if (!array) 2913 return; 2914 SM_I(sbi)->curseg_array = NULL; 2915 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2916 kfree(array[i].sum_blk); 2917 kfree(array[i].journal); 2918 } 2919 kfree(array); 2920 } 2921 2922 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2923 { 2924 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2925 if (!free_i) 2926 return; 2927 SM_I(sbi)->free_info = NULL; 2928 kvfree(free_i->free_segmap); 2929 kvfree(free_i->free_secmap); 2930 kfree(free_i); 2931 } 2932 2933 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2934 { 2935 struct sit_info *sit_i = SIT_I(sbi); 2936 unsigned int start; 2937 2938 if (!sit_i) 2939 return; 2940 2941 if (sit_i->sentries) { 2942 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2943 kfree(sit_i->sentries[start].cur_valid_map); 2944 #ifdef CONFIG_F2FS_CHECK_FS 2945 kfree(sit_i->sentries[start].cur_valid_map_mir); 2946 #endif 2947 kfree(sit_i->sentries[start].ckpt_valid_map); 2948 kfree(sit_i->sentries[start].discard_map); 2949 } 2950 } 2951 kfree(sit_i->tmp_map); 2952 2953 kvfree(sit_i->sentries); 2954 kvfree(sit_i->sec_entries); 2955 kvfree(sit_i->dirty_sentries_bitmap); 2956 2957 SM_I(sbi)->sit_info = NULL; 2958 kfree(sit_i->sit_bitmap); 2959 #ifdef CONFIG_F2FS_CHECK_FS 2960 kfree(sit_i->sit_bitmap_mir); 2961 #endif 2962 kfree(sit_i); 2963 } 2964 2965 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2966 { 2967 struct f2fs_sm_info *sm_info = SM_I(sbi); 2968 2969 if (!sm_info) 2970 return; 2971 destroy_flush_cmd_control(sbi, true); 2972 destroy_discard_cmd_control(sbi, true); 2973 destroy_dirty_segmap(sbi); 2974 destroy_curseg(sbi); 2975 destroy_free_segmap(sbi); 2976 destroy_sit_info(sbi); 2977 sbi->sm_info = NULL; 2978 kfree(sm_info); 2979 } 2980 2981 int __init create_segment_manager_caches(void) 2982 { 2983 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2984 sizeof(struct discard_entry)); 2985 if (!discard_entry_slab) 2986 goto fail; 2987 2988 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 2989 sizeof(struct discard_cmd)); 2990 if (!discard_cmd_slab) 2991 goto destroy_discard_entry; 2992 2993 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2994 sizeof(struct sit_entry_set)); 2995 if (!sit_entry_set_slab) 2996 goto destroy_discard_cmd; 2997 2998 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2999 sizeof(struct inmem_pages)); 3000 if (!inmem_entry_slab) 3001 goto destroy_sit_entry_set; 3002 return 0; 3003 3004 destroy_sit_entry_set: 3005 kmem_cache_destroy(sit_entry_set_slab); 3006 destroy_discard_cmd: 3007 kmem_cache_destroy(discard_cmd_slab); 3008 destroy_discard_entry: 3009 kmem_cache_destroy(discard_entry_slab); 3010 fail: 3011 return -ENOMEM; 3012 } 3013 3014 void destroy_segment_manager_caches(void) 3015 { 3016 kmem_cache_destroy(sit_entry_set_slab); 3017 kmem_cache_destroy(discard_cmd_slab); 3018 kmem_cache_destroy(discard_entry_slab); 3019 kmem_cache_destroy(inmem_entry_slab); 3020 } 3021