xref: /openbmc/linux/fs/f2fs/segment.c (revision 5222595d093ebe80329d38d255d14316257afb3e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174 
175 	if (test_opt(sbi, LFS))
176 		return false;
177 	if (sbi->gc_mode == GC_URGENT)
178 		return true;
179 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 		return true;
181 
182 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185 
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 	struct f2fs_inode_info *fi = F2FS_I(inode);
190 	struct inmem_pages *new;
191 
192 	f2fs_trace_pid(page);
193 
194 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195 	SetPagePrivate(page);
196 
197 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
198 
199 	/* add atomic page indices to the list */
200 	new->page = page;
201 	INIT_LIST_HEAD(&new->list);
202 
203 	/* increase reference count with clean state */
204 	mutex_lock(&fi->inmem_lock);
205 	get_page(page);
206 	list_add_tail(&new->list, &fi->inmem_pages);
207 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
208 	if (list_empty(&fi->inmem_ilist))
209 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
210 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
211 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
212 	mutex_unlock(&fi->inmem_lock);
213 
214 	trace_f2fs_register_inmem_page(page, INMEM);
215 }
216 
217 static int __revoke_inmem_pages(struct inode *inode,
218 				struct list_head *head, bool drop, bool recover)
219 {
220 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 	struct inmem_pages *cur, *tmp;
222 	int err = 0;
223 
224 	list_for_each_entry_safe(cur, tmp, head, list) {
225 		struct page *page = cur->page;
226 
227 		if (drop)
228 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229 
230 		lock_page(page);
231 
232 		f2fs_wait_on_page_writeback(page, DATA, true);
233 
234 		if (recover) {
235 			struct dnode_of_data dn;
236 			struct node_info ni;
237 
238 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239 retry:
240 			set_new_dnode(&dn, inode, NULL, NULL, 0);
241 			err = f2fs_get_dnode_of_data(&dn, page->index,
242 								LOOKUP_NODE);
243 			if (err) {
244 				if (err == -ENOMEM) {
245 					congestion_wait(BLK_RW_ASYNC, HZ/50);
246 					cond_resched();
247 					goto retry;
248 				}
249 				err = -EAGAIN;
250 				goto next;
251 			}
252 
253 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
254 			if (err) {
255 				f2fs_put_dnode(&dn);
256 				return err;
257 			}
258 
259 			if (cur->old_addr == NEW_ADDR) {
260 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
261 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
262 			} else
263 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
264 					cur->old_addr, ni.version, true, true);
265 			f2fs_put_dnode(&dn);
266 		}
267 next:
268 		/* we don't need to invalidate this in the sccessful status */
269 		if (drop || recover) {
270 			ClearPageUptodate(page);
271 			clear_cold_data(page);
272 		}
273 		set_page_private(page, 0);
274 		ClearPagePrivate(page);
275 		f2fs_put_page(page, 1);
276 
277 		list_del(&cur->list);
278 		kmem_cache_free(inmem_entry_slab, cur);
279 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
280 	}
281 	return err;
282 }
283 
284 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
285 {
286 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
287 	struct inode *inode;
288 	struct f2fs_inode_info *fi;
289 next:
290 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
291 	if (list_empty(head)) {
292 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
293 		return;
294 	}
295 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
296 	inode = igrab(&fi->vfs_inode);
297 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 
299 	if (inode) {
300 		if (gc_failure) {
301 			if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
302 				goto drop;
303 			goto skip;
304 		}
305 drop:
306 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
307 		f2fs_drop_inmem_pages(inode);
308 		iput(inode);
309 	}
310 skip:
311 	congestion_wait(BLK_RW_ASYNC, HZ/50);
312 	cond_resched();
313 	goto next;
314 }
315 
316 void f2fs_drop_inmem_pages(struct inode *inode)
317 {
318 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
319 	struct f2fs_inode_info *fi = F2FS_I(inode);
320 
321 	mutex_lock(&fi->inmem_lock);
322 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
323 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
324 	if (!list_empty(&fi->inmem_ilist))
325 		list_del_init(&fi->inmem_ilist);
326 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
327 	mutex_unlock(&fi->inmem_lock);
328 
329 	clear_inode_flag(inode, FI_ATOMIC_FILE);
330 	fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
331 	stat_dec_atomic_write(inode);
332 }
333 
334 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
335 {
336 	struct f2fs_inode_info *fi = F2FS_I(inode);
337 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
338 	struct list_head *head = &fi->inmem_pages;
339 	struct inmem_pages *cur = NULL;
340 
341 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
342 
343 	mutex_lock(&fi->inmem_lock);
344 	list_for_each_entry(cur, head, list) {
345 		if (cur->page == page)
346 			break;
347 	}
348 
349 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
350 	list_del(&cur->list);
351 	mutex_unlock(&fi->inmem_lock);
352 
353 	dec_page_count(sbi, F2FS_INMEM_PAGES);
354 	kmem_cache_free(inmem_entry_slab, cur);
355 
356 	ClearPageUptodate(page);
357 	set_page_private(page, 0);
358 	ClearPagePrivate(page);
359 	f2fs_put_page(page, 0);
360 
361 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
362 }
363 
364 static int __f2fs_commit_inmem_pages(struct inode *inode)
365 {
366 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
367 	struct f2fs_inode_info *fi = F2FS_I(inode);
368 	struct inmem_pages *cur, *tmp;
369 	struct f2fs_io_info fio = {
370 		.sbi = sbi,
371 		.ino = inode->i_ino,
372 		.type = DATA,
373 		.op = REQ_OP_WRITE,
374 		.op_flags = REQ_SYNC | REQ_PRIO,
375 		.io_type = FS_DATA_IO,
376 	};
377 	struct list_head revoke_list;
378 	bool submit_bio = false;
379 	int err = 0;
380 
381 	INIT_LIST_HEAD(&revoke_list);
382 
383 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
384 		struct page *page = cur->page;
385 
386 		lock_page(page);
387 		if (page->mapping == inode->i_mapping) {
388 			trace_f2fs_commit_inmem_page(page, INMEM);
389 
390 			f2fs_wait_on_page_writeback(page, DATA, true);
391 
392 			set_page_dirty(page);
393 			if (clear_page_dirty_for_io(page)) {
394 				inode_dec_dirty_pages(inode);
395 				f2fs_remove_dirty_inode(inode);
396 			}
397 retry:
398 			fio.page = page;
399 			fio.old_blkaddr = NULL_ADDR;
400 			fio.encrypted_page = NULL;
401 			fio.need_lock = LOCK_DONE;
402 			err = f2fs_do_write_data_page(&fio);
403 			if (err) {
404 				if (err == -ENOMEM) {
405 					congestion_wait(BLK_RW_ASYNC, HZ/50);
406 					cond_resched();
407 					goto retry;
408 				}
409 				unlock_page(page);
410 				break;
411 			}
412 			/* record old blkaddr for revoking */
413 			cur->old_addr = fio.old_blkaddr;
414 			submit_bio = true;
415 		}
416 		unlock_page(page);
417 		list_move_tail(&cur->list, &revoke_list);
418 	}
419 
420 	if (submit_bio)
421 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
422 
423 	if (err) {
424 		/*
425 		 * try to revoke all committed pages, but still we could fail
426 		 * due to no memory or other reason, if that happened, EAGAIN
427 		 * will be returned, which means in such case, transaction is
428 		 * already not integrity, caller should use journal to do the
429 		 * recovery or rewrite & commit last transaction. For other
430 		 * error number, revoking was done by filesystem itself.
431 		 */
432 		err = __revoke_inmem_pages(inode, &revoke_list, false, true);
433 
434 		/* drop all uncommitted pages */
435 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
436 	} else {
437 		__revoke_inmem_pages(inode, &revoke_list, false, false);
438 	}
439 
440 	return err;
441 }
442 
443 int f2fs_commit_inmem_pages(struct inode *inode)
444 {
445 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
446 	struct f2fs_inode_info *fi = F2FS_I(inode);
447 	int err;
448 
449 	f2fs_balance_fs(sbi, true);
450 
451 	down_write(&fi->i_gc_rwsem[WRITE]);
452 
453 	f2fs_lock_op(sbi);
454 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
455 
456 	mutex_lock(&fi->inmem_lock);
457 	err = __f2fs_commit_inmem_pages(inode);
458 
459 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
460 	if (!list_empty(&fi->inmem_ilist))
461 		list_del_init(&fi->inmem_ilist);
462 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
463 	mutex_unlock(&fi->inmem_lock);
464 
465 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
466 
467 	f2fs_unlock_op(sbi);
468 	up_write(&fi->i_gc_rwsem[WRITE]);
469 
470 	return err;
471 }
472 
473 /*
474  * This function balances dirty node and dentry pages.
475  * In addition, it controls garbage collection.
476  */
477 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
478 {
479 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
480 		f2fs_show_injection_info(FAULT_CHECKPOINT);
481 		f2fs_stop_checkpoint(sbi, false);
482 	}
483 
484 	/* balance_fs_bg is able to be pending */
485 	if (need && excess_cached_nats(sbi))
486 		f2fs_balance_fs_bg(sbi);
487 
488 	if (f2fs_is_checkpoint_ready(sbi))
489 		return;
490 
491 	/*
492 	 * We should do GC or end up with checkpoint, if there are so many dirty
493 	 * dir/node pages without enough free segments.
494 	 */
495 	if (has_not_enough_free_secs(sbi, 0, 0)) {
496 		mutex_lock(&sbi->gc_mutex);
497 		f2fs_gc(sbi, false, false, NULL_SEGNO);
498 	}
499 }
500 
501 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
502 {
503 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
504 		return;
505 
506 	/* try to shrink extent cache when there is no enough memory */
507 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
508 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
509 
510 	/* check the # of cached NAT entries */
511 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
512 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
513 
514 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
515 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
516 	else
517 		f2fs_build_free_nids(sbi, false, false);
518 
519 	if (!is_idle(sbi, REQ_TIME) &&
520 		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
521 		return;
522 
523 	/* checkpoint is the only way to shrink partial cached entries */
524 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
525 			!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
526 			excess_prefree_segs(sbi) ||
527 			excess_dirty_nats(sbi) ||
528 			excess_dirty_nodes(sbi) ||
529 			f2fs_time_over(sbi, CP_TIME)) {
530 		if (test_opt(sbi, DATA_FLUSH)) {
531 			struct blk_plug plug;
532 
533 			blk_start_plug(&plug);
534 			f2fs_sync_dirty_inodes(sbi, FILE_INODE);
535 			blk_finish_plug(&plug);
536 		}
537 		f2fs_sync_fs(sbi->sb, true);
538 		stat_inc_bg_cp_count(sbi->stat_info);
539 	}
540 }
541 
542 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
543 				struct block_device *bdev)
544 {
545 	struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
546 	int ret;
547 
548 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
549 	bio_set_dev(bio, bdev);
550 	ret = submit_bio_wait(bio);
551 	bio_put(bio);
552 
553 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
554 				test_opt(sbi, FLUSH_MERGE), ret);
555 	return ret;
556 }
557 
558 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
559 {
560 	int ret = 0;
561 	int i;
562 
563 	if (!sbi->s_ndevs)
564 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
565 
566 	for (i = 0; i < sbi->s_ndevs; i++) {
567 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
568 			continue;
569 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
570 		if (ret)
571 			break;
572 	}
573 	return ret;
574 }
575 
576 static int issue_flush_thread(void *data)
577 {
578 	struct f2fs_sb_info *sbi = data;
579 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
580 	wait_queue_head_t *q = &fcc->flush_wait_queue;
581 repeat:
582 	if (kthread_should_stop())
583 		return 0;
584 
585 	sb_start_intwrite(sbi->sb);
586 
587 	if (!llist_empty(&fcc->issue_list)) {
588 		struct flush_cmd *cmd, *next;
589 		int ret;
590 
591 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
592 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
593 
594 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
595 
596 		ret = submit_flush_wait(sbi, cmd->ino);
597 		atomic_inc(&fcc->issued_flush);
598 
599 		llist_for_each_entry_safe(cmd, next,
600 					  fcc->dispatch_list, llnode) {
601 			cmd->ret = ret;
602 			complete(&cmd->wait);
603 		}
604 		fcc->dispatch_list = NULL;
605 	}
606 
607 	sb_end_intwrite(sbi->sb);
608 
609 	wait_event_interruptible(*q,
610 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
611 	goto repeat;
612 }
613 
614 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
615 {
616 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
617 	struct flush_cmd cmd;
618 	int ret;
619 
620 	if (test_opt(sbi, NOBARRIER))
621 		return 0;
622 
623 	if (!test_opt(sbi, FLUSH_MERGE)) {
624 		atomic_inc(&fcc->issing_flush);
625 		ret = submit_flush_wait(sbi, ino);
626 		atomic_dec(&fcc->issing_flush);
627 		atomic_inc(&fcc->issued_flush);
628 		return ret;
629 	}
630 
631 	if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
632 		ret = submit_flush_wait(sbi, ino);
633 		atomic_dec(&fcc->issing_flush);
634 
635 		atomic_inc(&fcc->issued_flush);
636 		return ret;
637 	}
638 
639 	cmd.ino = ino;
640 	init_completion(&cmd.wait);
641 
642 	llist_add(&cmd.llnode, &fcc->issue_list);
643 
644 	/* update issue_list before we wake up issue_flush thread */
645 	smp_mb();
646 
647 	if (waitqueue_active(&fcc->flush_wait_queue))
648 		wake_up(&fcc->flush_wait_queue);
649 
650 	if (fcc->f2fs_issue_flush) {
651 		wait_for_completion(&cmd.wait);
652 		atomic_dec(&fcc->issing_flush);
653 	} else {
654 		struct llist_node *list;
655 
656 		list = llist_del_all(&fcc->issue_list);
657 		if (!list) {
658 			wait_for_completion(&cmd.wait);
659 			atomic_dec(&fcc->issing_flush);
660 		} else {
661 			struct flush_cmd *tmp, *next;
662 
663 			ret = submit_flush_wait(sbi, ino);
664 
665 			llist_for_each_entry_safe(tmp, next, list, llnode) {
666 				if (tmp == &cmd) {
667 					cmd.ret = ret;
668 					atomic_dec(&fcc->issing_flush);
669 					continue;
670 				}
671 				tmp->ret = ret;
672 				complete(&tmp->wait);
673 			}
674 		}
675 	}
676 
677 	return cmd.ret;
678 }
679 
680 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
681 {
682 	dev_t dev = sbi->sb->s_bdev->bd_dev;
683 	struct flush_cmd_control *fcc;
684 	int err = 0;
685 
686 	if (SM_I(sbi)->fcc_info) {
687 		fcc = SM_I(sbi)->fcc_info;
688 		if (fcc->f2fs_issue_flush)
689 			return err;
690 		goto init_thread;
691 	}
692 
693 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
694 	if (!fcc)
695 		return -ENOMEM;
696 	atomic_set(&fcc->issued_flush, 0);
697 	atomic_set(&fcc->issing_flush, 0);
698 	init_waitqueue_head(&fcc->flush_wait_queue);
699 	init_llist_head(&fcc->issue_list);
700 	SM_I(sbi)->fcc_info = fcc;
701 	if (!test_opt(sbi, FLUSH_MERGE))
702 		return err;
703 
704 init_thread:
705 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
706 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
707 	if (IS_ERR(fcc->f2fs_issue_flush)) {
708 		err = PTR_ERR(fcc->f2fs_issue_flush);
709 		kvfree(fcc);
710 		SM_I(sbi)->fcc_info = NULL;
711 		return err;
712 	}
713 
714 	return err;
715 }
716 
717 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
718 {
719 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
720 
721 	if (fcc && fcc->f2fs_issue_flush) {
722 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
723 
724 		fcc->f2fs_issue_flush = NULL;
725 		kthread_stop(flush_thread);
726 	}
727 	if (free) {
728 		kvfree(fcc);
729 		SM_I(sbi)->fcc_info = NULL;
730 	}
731 }
732 
733 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
734 {
735 	int ret = 0, i;
736 
737 	if (!sbi->s_ndevs)
738 		return 0;
739 
740 	for (i = 1; i < sbi->s_ndevs; i++) {
741 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
742 			continue;
743 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
744 		if (ret)
745 			break;
746 
747 		spin_lock(&sbi->dev_lock);
748 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
749 		spin_unlock(&sbi->dev_lock);
750 	}
751 
752 	return ret;
753 }
754 
755 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
756 		enum dirty_type dirty_type)
757 {
758 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
759 
760 	/* need not be added */
761 	if (IS_CURSEG(sbi, segno))
762 		return;
763 
764 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
765 		dirty_i->nr_dirty[dirty_type]++;
766 
767 	if (dirty_type == DIRTY) {
768 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
769 		enum dirty_type t = sentry->type;
770 
771 		if (unlikely(t >= DIRTY)) {
772 			f2fs_bug_on(sbi, 1);
773 			return;
774 		}
775 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
776 			dirty_i->nr_dirty[t]++;
777 	}
778 }
779 
780 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781 		enum dirty_type dirty_type)
782 {
783 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784 
785 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
786 		dirty_i->nr_dirty[dirty_type]--;
787 
788 	if (dirty_type == DIRTY) {
789 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
790 		enum dirty_type t = sentry->type;
791 
792 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
793 			dirty_i->nr_dirty[t]--;
794 
795 		if (get_valid_blocks(sbi, segno, true) == 0)
796 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
797 						dirty_i->victim_secmap);
798 	}
799 }
800 
801 /*
802  * Should not occur error such as -ENOMEM.
803  * Adding dirty entry into seglist is not critical operation.
804  * If a given segment is one of current working segments, it won't be added.
805  */
806 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
807 {
808 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809 	unsigned short valid_blocks, ckpt_valid_blocks;
810 
811 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
812 		return;
813 
814 	mutex_lock(&dirty_i->seglist_lock);
815 
816 	valid_blocks = get_valid_blocks(sbi, segno, false);
817 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
818 
819 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
820 				ckpt_valid_blocks == sbi->blocks_per_seg)) {
821 		__locate_dirty_segment(sbi, segno, PRE);
822 		__remove_dirty_segment(sbi, segno, DIRTY);
823 	} else if (valid_blocks < sbi->blocks_per_seg) {
824 		__locate_dirty_segment(sbi, segno, DIRTY);
825 	} else {
826 		/* Recovery routine with SSR needs this */
827 		__remove_dirty_segment(sbi, segno, DIRTY);
828 	}
829 
830 	mutex_unlock(&dirty_i->seglist_lock);
831 }
832 
833 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
834 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
835 {
836 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
837 	unsigned int segno;
838 
839 	mutex_lock(&dirty_i->seglist_lock);
840 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
841 		if (get_valid_blocks(sbi, segno, false))
842 			continue;
843 		if (IS_CURSEG(sbi, segno))
844 			continue;
845 		__locate_dirty_segment(sbi, segno, PRE);
846 		__remove_dirty_segment(sbi, segno, DIRTY);
847 	}
848 	mutex_unlock(&dirty_i->seglist_lock);
849 }
850 
851 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
852 {
853 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
854 	block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
855 	block_t holes[2] = {0, 0};	/* DATA and NODE */
856 	struct seg_entry *se;
857 	unsigned int segno;
858 
859 	mutex_lock(&dirty_i->seglist_lock);
860 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861 		se = get_seg_entry(sbi, segno);
862 		if (IS_NODESEG(se->type))
863 			holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
864 		else
865 			holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
866 	}
867 	mutex_unlock(&dirty_i->seglist_lock);
868 
869 	if (holes[DATA] > ovp || holes[NODE] > ovp)
870 		return -EAGAIN;
871 	return 0;
872 }
873 
874 /* This is only used by SBI_CP_DISABLED */
875 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
876 {
877 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
878 	unsigned int segno = 0;
879 
880 	mutex_lock(&dirty_i->seglist_lock);
881 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
882 		if (get_valid_blocks(sbi, segno, false))
883 			continue;
884 		if (get_ckpt_valid_blocks(sbi, segno))
885 			continue;
886 		mutex_unlock(&dirty_i->seglist_lock);
887 		return segno;
888 	}
889 	mutex_unlock(&dirty_i->seglist_lock);
890 	return NULL_SEGNO;
891 }
892 
893 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
894 		struct block_device *bdev, block_t lstart,
895 		block_t start, block_t len)
896 {
897 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
898 	struct list_head *pend_list;
899 	struct discard_cmd *dc;
900 
901 	f2fs_bug_on(sbi, !len);
902 
903 	pend_list = &dcc->pend_list[plist_idx(len)];
904 
905 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
906 	INIT_LIST_HEAD(&dc->list);
907 	dc->bdev = bdev;
908 	dc->lstart = lstart;
909 	dc->start = start;
910 	dc->len = len;
911 	dc->ref = 0;
912 	dc->state = D_PREP;
913 	dc->issuing = 0;
914 	dc->error = 0;
915 	init_completion(&dc->wait);
916 	list_add_tail(&dc->list, pend_list);
917 	spin_lock_init(&dc->lock);
918 	dc->bio_ref = 0;
919 	atomic_inc(&dcc->discard_cmd_cnt);
920 	dcc->undiscard_blks += len;
921 
922 	return dc;
923 }
924 
925 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
926 				struct block_device *bdev, block_t lstart,
927 				block_t start, block_t len,
928 				struct rb_node *parent, struct rb_node **p,
929 				bool leftmost)
930 {
931 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
932 	struct discard_cmd *dc;
933 
934 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
935 
936 	rb_link_node(&dc->rb_node, parent, p);
937 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
938 
939 	return dc;
940 }
941 
942 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
943 							struct discard_cmd *dc)
944 {
945 	if (dc->state == D_DONE)
946 		atomic_sub(dc->issuing, &dcc->issing_discard);
947 
948 	list_del(&dc->list);
949 	rb_erase_cached(&dc->rb_node, &dcc->root);
950 	dcc->undiscard_blks -= dc->len;
951 
952 	kmem_cache_free(discard_cmd_slab, dc);
953 
954 	atomic_dec(&dcc->discard_cmd_cnt);
955 }
956 
957 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
958 							struct discard_cmd *dc)
959 {
960 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
961 	unsigned long flags;
962 
963 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
964 
965 	spin_lock_irqsave(&dc->lock, flags);
966 	if (dc->bio_ref) {
967 		spin_unlock_irqrestore(&dc->lock, flags);
968 		return;
969 	}
970 	spin_unlock_irqrestore(&dc->lock, flags);
971 
972 	f2fs_bug_on(sbi, dc->ref);
973 
974 	if (dc->error == -EOPNOTSUPP)
975 		dc->error = 0;
976 
977 	if (dc->error)
978 		printk_ratelimited(
979 			"%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
980 			KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
981 	__detach_discard_cmd(dcc, dc);
982 }
983 
984 static void f2fs_submit_discard_endio(struct bio *bio)
985 {
986 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
987 	unsigned long flags;
988 
989 	dc->error = blk_status_to_errno(bio->bi_status);
990 
991 	spin_lock_irqsave(&dc->lock, flags);
992 	dc->bio_ref--;
993 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
994 		dc->state = D_DONE;
995 		complete_all(&dc->wait);
996 	}
997 	spin_unlock_irqrestore(&dc->lock, flags);
998 	bio_put(bio);
999 }
1000 
1001 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1002 				block_t start, block_t end)
1003 {
1004 #ifdef CONFIG_F2FS_CHECK_FS
1005 	struct seg_entry *sentry;
1006 	unsigned int segno;
1007 	block_t blk = start;
1008 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1009 	unsigned long *map;
1010 
1011 	while (blk < end) {
1012 		segno = GET_SEGNO(sbi, blk);
1013 		sentry = get_seg_entry(sbi, segno);
1014 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1015 
1016 		if (end < START_BLOCK(sbi, segno + 1))
1017 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1018 		else
1019 			size = max_blocks;
1020 		map = (unsigned long *)(sentry->cur_valid_map);
1021 		offset = __find_rev_next_bit(map, size, offset);
1022 		f2fs_bug_on(sbi, offset != size);
1023 		blk = START_BLOCK(sbi, segno + 1);
1024 	}
1025 #endif
1026 }
1027 
1028 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1029 				struct discard_policy *dpolicy,
1030 				int discard_type, unsigned int granularity)
1031 {
1032 	/* common policy */
1033 	dpolicy->type = discard_type;
1034 	dpolicy->sync = true;
1035 	dpolicy->ordered = false;
1036 	dpolicy->granularity = granularity;
1037 
1038 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1039 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1040 
1041 	if (discard_type == DPOLICY_BG) {
1042 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1043 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1044 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1045 		dpolicy->io_aware = true;
1046 		dpolicy->sync = false;
1047 		dpolicy->ordered = true;
1048 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1049 			dpolicy->granularity = 1;
1050 			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1051 		}
1052 	} else if (discard_type == DPOLICY_FORCE) {
1053 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1054 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1055 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1056 		dpolicy->io_aware = false;
1057 	} else if (discard_type == DPOLICY_FSTRIM) {
1058 		dpolicy->io_aware = false;
1059 	} else if (discard_type == DPOLICY_UMOUNT) {
1060 		dpolicy->max_requests = UINT_MAX;
1061 		dpolicy->io_aware = false;
1062 	}
1063 }
1064 
1065 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1066 				struct block_device *bdev, block_t lstart,
1067 				block_t start, block_t len);
1068 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1069 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1070 						struct discard_policy *dpolicy,
1071 						struct discard_cmd *dc,
1072 						unsigned int *issued)
1073 {
1074 	struct block_device *bdev = dc->bdev;
1075 	struct request_queue *q = bdev_get_queue(bdev);
1076 	unsigned int max_discard_blocks =
1077 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1078 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1079 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1080 					&(dcc->fstrim_list) : &(dcc->wait_list);
1081 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1082 	block_t lstart, start, len, total_len;
1083 	int err = 0;
1084 
1085 	if (dc->state != D_PREP)
1086 		return 0;
1087 
1088 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1089 		return 0;
1090 
1091 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1092 
1093 	lstart = dc->lstart;
1094 	start = dc->start;
1095 	len = dc->len;
1096 	total_len = len;
1097 
1098 	dc->len = 0;
1099 
1100 	while (total_len && *issued < dpolicy->max_requests && !err) {
1101 		struct bio *bio = NULL;
1102 		unsigned long flags;
1103 		bool last = true;
1104 
1105 		if (len > max_discard_blocks) {
1106 			len = max_discard_blocks;
1107 			last = false;
1108 		}
1109 
1110 		(*issued)++;
1111 		if (*issued == dpolicy->max_requests)
1112 			last = true;
1113 
1114 		dc->len += len;
1115 
1116 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1117 			f2fs_show_injection_info(FAULT_DISCARD);
1118 			err = -EIO;
1119 			goto submit;
1120 		}
1121 		err = __blkdev_issue_discard(bdev,
1122 					SECTOR_FROM_BLOCK(start),
1123 					SECTOR_FROM_BLOCK(len),
1124 					GFP_NOFS, 0, &bio);
1125 submit:
1126 		if (err) {
1127 			spin_lock_irqsave(&dc->lock, flags);
1128 			if (dc->state == D_PARTIAL)
1129 				dc->state = D_SUBMIT;
1130 			spin_unlock_irqrestore(&dc->lock, flags);
1131 
1132 			break;
1133 		}
1134 
1135 		f2fs_bug_on(sbi, !bio);
1136 
1137 		/*
1138 		 * should keep before submission to avoid D_DONE
1139 		 * right away
1140 		 */
1141 		spin_lock_irqsave(&dc->lock, flags);
1142 		if (last)
1143 			dc->state = D_SUBMIT;
1144 		else
1145 			dc->state = D_PARTIAL;
1146 		dc->bio_ref++;
1147 		spin_unlock_irqrestore(&dc->lock, flags);
1148 
1149 		atomic_inc(&dcc->issing_discard);
1150 		dc->issuing++;
1151 		list_move_tail(&dc->list, wait_list);
1152 
1153 		/* sanity check on discard range */
1154 		__check_sit_bitmap(sbi, start, start + len);
1155 
1156 		bio->bi_private = dc;
1157 		bio->bi_end_io = f2fs_submit_discard_endio;
1158 		bio->bi_opf |= flag;
1159 		submit_bio(bio);
1160 
1161 		atomic_inc(&dcc->issued_discard);
1162 
1163 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1164 
1165 		lstart += len;
1166 		start += len;
1167 		total_len -= len;
1168 		len = total_len;
1169 	}
1170 
1171 	if (!err && len)
1172 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1173 	return err;
1174 }
1175 
1176 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1177 				struct block_device *bdev, block_t lstart,
1178 				block_t start, block_t len,
1179 				struct rb_node **insert_p,
1180 				struct rb_node *insert_parent)
1181 {
1182 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1183 	struct rb_node **p;
1184 	struct rb_node *parent = NULL;
1185 	struct discard_cmd *dc = NULL;
1186 	bool leftmost = true;
1187 
1188 	if (insert_p && insert_parent) {
1189 		parent = insert_parent;
1190 		p = insert_p;
1191 		goto do_insert;
1192 	}
1193 
1194 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1195 							lstart, &leftmost);
1196 do_insert:
1197 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1198 								p, leftmost);
1199 	if (!dc)
1200 		return NULL;
1201 
1202 	return dc;
1203 }
1204 
1205 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1206 						struct discard_cmd *dc)
1207 {
1208 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1209 }
1210 
1211 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1212 				struct discard_cmd *dc, block_t blkaddr)
1213 {
1214 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1215 	struct discard_info di = dc->di;
1216 	bool modified = false;
1217 
1218 	if (dc->state == D_DONE || dc->len == 1) {
1219 		__remove_discard_cmd(sbi, dc);
1220 		return;
1221 	}
1222 
1223 	dcc->undiscard_blks -= di.len;
1224 
1225 	if (blkaddr > di.lstart) {
1226 		dc->len = blkaddr - dc->lstart;
1227 		dcc->undiscard_blks += dc->len;
1228 		__relocate_discard_cmd(dcc, dc);
1229 		modified = true;
1230 	}
1231 
1232 	if (blkaddr < di.lstart + di.len - 1) {
1233 		if (modified) {
1234 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1235 					di.start + blkaddr + 1 - di.lstart,
1236 					di.lstart + di.len - 1 - blkaddr,
1237 					NULL, NULL);
1238 		} else {
1239 			dc->lstart++;
1240 			dc->len--;
1241 			dc->start++;
1242 			dcc->undiscard_blks += dc->len;
1243 			__relocate_discard_cmd(dcc, dc);
1244 		}
1245 	}
1246 }
1247 
1248 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1249 				struct block_device *bdev, block_t lstart,
1250 				block_t start, block_t len)
1251 {
1252 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1254 	struct discard_cmd *dc;
1255 	struct discard_info di = {0};
1256 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1257 	struct request_queue *q = bdev_get_queue(bdev);
1258 	unsigned int max_discard_blocks =
1259 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1260 	block_t end = lstart + len;
1261 
1262 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1263 					NULL, lstart,
1264 					(struct rb_entry **)&prev_dc,
1265 					(struct rb_entry **)&next_dc,
1266 					&insert_p, &insert_parent, true, NULL);
1267 	if (dc)
1268 		prev_dc = dc;
1269 
1270 	if (!prev_dc) {
1271 		di.lstart = lstart;
1272 		di.len = next_dc ? next_dc->lstart - lstart : len;
1273 		di.len = min(di.len, len);
1274 		di.start = start;
1275 	}
1276 
1277 	while (1) {
1278 		struct rb_node *node;
1279 		bool merged = false;
1280 		struct discard_cmd *tdc = NULL;
1281 
1282 		if (prev_dc) {
1283 			di.lstart = prev_dc->lstart + prev_dc->len;
1284 			if (di.lstart < lstart)
1285 				di.lstart = lstart;
1286 			if (di.lstart >= end)
1287 				break;
1288 
1289 			if (!next_dc || next_dc->lstart > end)
1290 				di.len = end - di.lstart;
1291 			else
1292 				di.len = next_dc->lstart - di.lstart;
1293 			di.start = start + di.lstart - lstart;
1294 		}
1295 
1296 		if (!di.len)
1297 			goto next;
1298 
1299 		if (prev_dc && prev_dc->state == D_PREP &&
1300 			prev_dc->bdev == bdev &&
1301 			__is_discard_back_mergeable(&di, &prev_dc->di,
1302 							max_discard_blocks)) {
1303 			prev_dc->di.len += di.len;
1304 			dcc->undiscard_blks += di.len;
1305 			__relocate_discard_cmd(dcc, prev_dc);
1306 			di = prev_dc->di;
1307 			tdc = prev_dc;
1308 			merged = true;
1309 		}
1310 
1311 		if (next_dc && next_dc->state == D_PREP &&
1312 			next_dc->bdev == bdev &&
1313 			__is_discard_front_mergeable(&di, &next_dc->di,
1314 							max_discard_blocks)) {
1315 			next_dc->di.lstart = di.lstart;
1316 			next_dc->di.len += di.len;
1317 			next_dc->di.start = di.start;
1318 			dcc->undiscard_blks += di.len;
1319 			__relocate_discard_cmd(dcc, next_dc);
1320 			if (tdc)
1321 				__remove_discard_cmd(sbi, tdc);
1322 			merged = true;
1323 		}
1324 
1325 		if (!merged) {
1326 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1327 							di.len, NULL, NULL);
1328 		}
1329  next:
1330 		prev_dc = next_dc;
1331 		if (!prev_dc)
1332 			break;
1333 
1334 		node = rb_next(&prev_dc->rb_node);
1335 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1336 	}
1337 }
1338 
1339 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1340 		struct block_device *bdev, block_t blkstart, block_t blklen)
1341 {
1342 	block_t lblkstart = blkstart;
1343 
1344 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1345 
1346 	if (sbi->s_ndevs) {
1347 		int devi = f2fs_target_device_index(sbi, blkstart);
1348 
1349 		blkstart -= FDEV(devi).start_blk;
1350 	}
1351 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1352 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1353 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1354 	return 0;
1355 }
1356 
1357 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1358 					struct discard_policy *dpolicy)
1359 {
1360 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1361 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1362 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1363 	struct discard_cmd *dc;
1364 	struct blk_plug plug;
1365 	unsigned int pos = dcc->next_pos;
1366 	unsigned int issued = 0;
1367 	bool io_interrupted = false;
1368 
1369 	mutex_lock(&dcc->cmd_lock);
1370 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1371 					NULL, pos,
1372 					(struct rb_entry **)&prev_dc,
1373 					(struct rb_entry **)&next_dc,
1374 					&insert_p, &insert_parent, true, NULL);
1375 	if (!dc)
1376 		dc = next_dc;
1377 
1378 	blk_start_plug(&plug);
1379 
1380 	while (dc) {
1381 		struct rb_node *node;
1382 		int err = 0;
1383 
1384 		if (dc->state != D_PREP)
1385 			goto next;
1386 
1387 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1388 			io_interrupted = true;
1389 			break;
1390 		}
1391 
1392 		dcc->next_pos = dc->lstart + dc->len;
1393 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1394 
1395 		if (issued >= dpolicy->max_requests)
1396 			break;
1397 next:
1398 		node = rb_next(&dc->rb_node);
1399 		if (err)
1400 			__remove_discard_cmd(sbi, dc);
1401 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1402 	}
1403 
1404 	blk_finish_plug(&plug);
1405 
1406 	if (!dc)
1407 		dcc->next_pos = 0;
1408 
1409 	mutex_unlock(&dcc->cmd_lock);
1410 
1411 	if (!issued && io_interrupted)
1412 		issued = -1;
1413 
1414 	return issued;
1415 }
1416 
1417 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1418 					struct discard_policy *dpolicy)
1419 {
1420 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1421 	struct list_head *pend_list;
1422 	struct discard_cmd *dc, *tmp;
1423 	struct blk_plug plug;
1424 	int i, issued = 0;
1425 	bool io_interrupted = false;
1426 
1427 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1428 		if (i + 1 < dpolicy->granularity)
1429 			break;
1430 
1431 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1432 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1433 
1434 		pend_list = &dcc->pend_list[i];
1435 
1436 		mutex_lock(&dcc->cmd_lock);
1437 		if (list_empty(pend_list))
1438 			goto next;
1439 		if (unlikely(dcc->rbtree_check))
1440 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1441 								&dcc->root));
1442 		blk_start_plug(&plug);
1443 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1444 			f2fs_bug_on(sbi, dc->state != D_PREP);
1445 
1446 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1447 						!is_idle(sbi, DISCARD_TIME)) {
1448 				io_interrupted = true;
1449 				break;
1450 			}
1451 
1452 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1453 
1454 			if (issued >= dpolicy->max_requests)
1455 				break;
1456 		}
1457 		blk_finish_plug(&plug);
1458 next:
1459 		mutex_unlock(&dcc->cmd_lock);
1460 
1461 		if (issued >= dpolicy->max_requests || io_interrupted)
1462 			break;
1463 	}
1464 
1465 	if (!issued && io_interrupted)
1466 		issued = -1;
1467 
1468 	return issued;
1469 }
1470 
1471 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1472 {
1473 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1474 	struct list_head *pend_list;
1475 	struct discard_cmd *dc, *tmp;
1476 	int i;
1477 	bool dropped = false;
1478 
1479 	mutex_lock(&dcc->cmd_lock);
1480 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1481 		pend_list = &dcc->pend_list[i];
1482 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1483 			f2fs_bug_on(sbi, dc->state != D_PREP);
1484 			__remove_discard_cmd(sbi, dc);
1485 			dropped = true;
1486 		}
1487 	}
1488 	mutex_unlock(&dcc->cmd_lock);
1489 
1490 	return dropped;
1491 }
1492 
1493 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1494 {
1495 	__drop_discard_cmd(sbi);
1496 }
1497 
1498 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1499 							struct discard_cmd *dc)
1500 {
1501 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1502 	unsigned int len = 0;
1503 
1504 	wait_for_completion_io(&dc->wait);
1505 	mutex_lock(&dcc->cmd_lock);
1506 	f2fs_bug_on(sbi, dc->state != D_DONE);
1507 	dc->ref--;
1508 	if (!dc->ref) {
1509 		if (!dc->error)
1510 			len = dc->len;
1511 		__remove_discard_cmd(sbi, dc);
1512 	}
1513 	mutex_unlock(&dcc->cmd_lock);
1514 
1515 	return len;
1516 }
1517 
1518 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1519 						struct discard_policy *dpolicy,
1520 						block_t start, block_t end)
1521 {
1522 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1523 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1524 					&(dcc->fstrim_list) : &(dcc->wait_list);
1525 	struct discard_cmd *dc, *tmp;
1526 	bool need_wait;
1527 	unsigned int trimmed = 0;
1528 
1529 next:
1530 	need_wait = false;
1531 
1532 	mutex_lock(&dcc->cmd_lock);
1533 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1534 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1535 			continue;
1536 		if (dc->len < dpolicy->granularity)
1537 			continue;
1538 		if (dc->state == D_DONE && !dc->ref) {
1539 			wait_for_completion_io(&dc->wait);
1540 			if (!dc->error)
1541 				trimmed += dc->len;
1542 			__remove_discard_cmd(sbi, dc);
1543 		} else {
1544 			dc->ref++;
1545 			need_wait = true;
1546 			break;
1547 		}
1548 	}
1549 	mutex_unlock(&dcc->cmd_lock);
1550 
1551 	if (need_wait) {
1552 		trimmed += __wait_one_discard_bio(sbi, dc);
1553 		goto next;
1554 	}
1555 
1556 	return trimmed;
1557 }
1558 
1559 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1560 						struct discard_policy *dpolicy)
1561 {
1562 	struct discard_policy dp;
1563 	unsigned int discard_blks;
1564 
1565 	if (dpolicy)
1566 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1567 
1568 	/* wait all */
1569 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1570 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1571 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1572 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1573 
1574 	return discard_blks;
1575 }
1576 
1577 /* This should be covered by global mutex, &sit_i->sentry_lock */
1578 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1579 {
1580 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1581 	struct discard_cmd *dc;
1582 	bool need_wait = false;
1583 
1584 	mutex_lock(&dcc->cmd_lock);
1585 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1586 							NULL, blkaddr);
1587 	if (dc) {
1588 		if (dc->state == D_PREP) {
1589 			__punch_discard_cmd(sbi, dc, blkaddr);
1590 		} else {
1591 			dc->ref++;
1592 			need_wait = true;
1593 		}
1594 	}
1595 	mutex_unlock(&dcc->cmd_lock);
1596 
1597 	if (need_wait)
1598 		__wait_one_discard_bio(sbi, dc);
1599 }
1600 
1601 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1602 {
1603 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1604 
1605 	if (dcc && dcc->f2fs_issue_discard) {
1606 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1607 
1608 		dcc->f2fs_issue_discard = NULL;
1609 		kthread_stop(discard_thread);
1610 	}
1611 }
1612 
1613 /* This comes from f2fs_put_super */
1614 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1615 {
1616 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617 	struct discard_policy dpolicy;
1618 	bool dropped;
1619 
1620 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1621 					dcc->discard_granularity);
1622 	__issue_discard_cmd(sbi, &dpolicy);
1623 	dropped = __drop_discard_cmd(sbi);
1624 
1625 	/* just to make sure there is no pending discard commands */
1626 	__wait_all_discard_cmd(sbi, NULL);
1627 
1628 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1629 	return dropped;
1630 }
1631 
1632 static int issue_discard_thread(void *data)
1633 {
1634 	struct f2fs_sb_info *sbi = data;
1635 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1636 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1637 	struct discard_policy dpolicy;
1638 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1639 	int issued;
1640 
1641 	set_freezable();
1642 
1643 	do {
1644 		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1645 					dcc->discard_granularity);
1646 
1647 		wait_event_interruptible_timeout(*q,
1648 				kthread_should_stop() || freezing(current) ||
1649 				dcc->discard_wake,
1650 				msecs_to_jiffies(wait_ms));
1651 
1652 		if (dcc->discard_wake)
1653 			dcc->discard_wake = 0;
1654 
1655 		if (try_to_freeze())
1656 			continue;
1657 		if (f2fs_readonly(sbi->sb))
1658 			continue;
1659 		if (kthread_should_stop())
1660 			return 0;
1661 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1662 			wait_ms = dpolicy.max_interval;
1663 			continue;
1664 		}
1665 
1666 		if (sbi->gc_mode == GC_URGENT)
1667 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1668 
1669 		sb_start_intwrite(sbi->sb);
1670 
1671 		issued = __issue_discard_cmd(sbi, &dpolicy);
1672 		if (issued > 0) {
1673 			__wait_all_discard_cmd(sbi, &dpolicy);
1674 			wait_ms = dpolicy.min_interval;
1675 		} else if (issued == -1){
1676 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1677 			if (!wait_ms)
1678 				wait_ms = dpolicy.mid_interval;
1679 		} else {
1680 			wait_ms = dpolicy.max_interval;
1681 		}
1682 
1683 		sb_end_intwrite(sbi->sb);
1684 
1685 	} while (!kthread_should_stop());
1686 	return 0;
1687 }
1688 
1689 #ifdef CONFIG_BLK_DEV_ZONED
1690 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1691 		struct block_device *bdev, block_t blkstart, block_t blklen)
1692 {
1693 	sector_t sector, nr_sects;
1694 	block_t lblkstart = blkstart;
1695 	int devi = 0;
1696 
1697 	if (sbi->s_ndevs) {
1698 		devi = f2fs_target_device_index(sbi, blkstart);
1699 		blkstart -= FDEV(devi).start_blk;
1700 	}
1701 
1702 	/*
1703 	 * We need to know the type of the zone: for conventional zones,
1704 	 * use regular discard if the drive supports it. For sequential
1705 	 * zones, reset the zone write pointer.
1706 	 */
1707 	switch (get_blkz_type(sbi, bdev, blkstart)) {
1708 
1709 	case BLK_ZONE_TYPE_CONVENTIONAL:
1710 		if (!blk_queue_discard(bdev_get_queue(bdev)))
1711 			return 0;
1712 		return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1713 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1714 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1715 		sector = SECTOR_FROM_BLOCK(blkstart);
1716 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1717 
1718 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1719 				nr_sects != bdev_zone_sectors(bdev)) {
1720 			f2fs_msg(sbi->sb, KERN_INFO,
1721 				"(%d) %s: Unaligned discard attempted (block %x + %x)",
1722 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
1723 				blkstart, blklen);
1724 			return -EIO;
1725 		}
1726 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1727 		return blkdev_reset_zones(bdev, sector,
1728 					  nr_sects, GFP_NOFS);
1729 	default:
1730 		/* Unknown zone type: broken device ? */
1731 		return -EIO;
1732 	}
1733 }
1734 #endif
1735 
1736 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1737 		struct block_device *bdev, block_t blkstart, block_t blklen)
1738 {
1739 #ifdef CONFIG_BLK_DEV_ZONED
1740 	if (f2fs_sb_has_blkzoned(sbi) &&
1741 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1742 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1743 #endif
1744 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1745 }
1746 
1747 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1748 				block_t blkstart, block_t blklen)
1749 {
1750 	sector_t start = blkstart, len = 0;
1751 	struct block_device *bdev;
1752 	struct seg_entry *se;
1753 	unsigned int offset;
1754 	block_t i;
1755 	int err = 0;
1756 
1757 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1758 
1759 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1760 		if (i != start) {
1761 			struct block_device *bdev2 =
1762 				f2fs_target_device(sbi, i, NULL);
1763 
1764 			if (bdev2 != bdev) {
1765 				err = __issue_discard_async(sbi, bdev,
1766 						start, len);
1767 				if (err)
1768 					return err;
1769 				bdev = bdev2;
1770 				start = i;
1771 				len = 0;
1772 			}
1773 		}
1774 
1775 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1776 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1777 
1778 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1779 			sbi->discard_blks--;
1780 	}
1781 
1782 	if (len)
1783 		err = __issue_discard_async(sbi, bdev, start, len);
1784 	return err;
1785 }
1786 
1787 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1788 							bool check_only)
1789 {
1790 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1791 	int max_blocks = sbi->blocks_per_seg;
1792 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1793 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1794 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1795 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1796 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1797 	unsigned int start = 0, end = -1;
1798 	bool force = (cpc->reason & CP_DISCARD);
1799 	struct discard_entry *de = NULL;
1800 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1801 	int i;
1802 
1803 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1804 		return false;
1805 
1806 	if (!force) {
1807 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1808 			SM_I(sbi)->dcc_info->nr_discards >=
1809 				SM_I(sbi)->dcc_info->max_discards)
1810 			return false;
1811 	}
1812 
1813 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1814 	for (i = 0; i < entries; i++)
1815 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1816 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1817 
1818 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1819 				SM_I(sbi)->dcc_info->max_discards) {
1820 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1821 		if (start >= max_blocks)
1822 			break;
1823 
1824 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1825 		if (force && start && end != max_blocks
1826 					&& (end - start) < cpc->trim_minlen)
1827 			continue;
1828 
1829 		if (check_only)
1830 			return true;
1831 
1832 		if (!de) {
1833 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1834 								GFP_F2FS_ZERO);
1835 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1836 			list_add_tail(&de->list, head);
1837 		}
1838 
1839 		for (i = start; i < end; i++)
1840 			__set_bit_le(i, (void *)de->discard_map);
1841 
1842 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1843 	}
1844 	return false;
1845 }
1846 
1847 static void release_discard_addr(struct discard_entry *entry)
1848 {
1849 	list_del(&entry->list);
1850 	kmem_cache_free(discard_entry_slab, entry);
1851 }
1852 
1853 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1854 {
1855 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1856 	struct discard_entry *entry, *this;
1857 
1858 	/* drop caches */
1859 	list_for_each_entry_safe(entry, this, head, list)
1860 		release_discard_addr(entry);
1861 }
1862 
1863 /*
1864  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1865  */
1866 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1867 {
1868 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1869 	unsigned int segno;
1870 
1871 	mutex_lock(&dirty_i->seglist_lock);
1872 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1873 		__set_test_and_free(sbi, segno);
1874 	mutex_unlock(&dirty_i->seglist_lock);
1875 }
1876 
1877 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1878 						struct cp_control *cpc)
1879 {
1880 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1881 	struct list_head *head = &dcc->entry_list;
1882 	struct discard_entry *entry, *this;
1883 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1884 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1885 	unsigned int start = 0, end = -1;
1886 	unsigned int secno, start_segno;
1887 	bool force = (cpc->reason & CP_DISCARD);
1888 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1889 
1890 	mutex_lock(&dirty_i->seglist_lock);
1891 
1892 	while (1) {
1893 		int i;
1894 
1895 		if (need_align && end != -1)
1896 			end--;
1897 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1898 		if (start >= MAIN_SEGS(sbi))
1899 			break;
1900 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1901 								start + 1);
1902 
1903 		if (need_align) {
1904 			start = rounddown(start, sbi->segs_per_sec);
1905 			end = roundup(end, sbi->segs_per_sec);
1906 		}
1907 
1908 		for (i = start; i < end; i++) {
1909 			if (test_and_clear_bit(i, prefree_map))
1910 				dirty_i->nr_dirty[PRE]--;
1911 		}
1912 
1913 		if (!f2fs_realtime_discard_enable(sbi))
1914 			continue;
1915 
1916 		if (force && start >= cpc->trim_start &&
1917 					(end - 1) <= cpc->trim_end)
1918 				continue;
1919 
1920 		if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1921 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1922 				(end - start) << sbi->log_blocks_per_seg);
1923 			continue;
1924 		}
1925 next:
1926 		secno = GET_SEC_FROM_SEG(sbi, start);
1927 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1928 		if (!IS_CURSEC(sbi, secno) &&
1929 			!get_valid_blocks(sbi, start, true))
1930 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1931 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1932 
1933 		start = start_segno + sbi->segs_per_sec;
1934 		if (start < end)
1935 			goto next;
1936 		else
1937 			end = start - 1;
1938 	}
1939 	mutex_unlock(&dirty_i->seglist_lock);
1940 
1941 	/* send small discards */
1942 	list_for_each_entry_safe(entry, this, head, list) {
1943 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1944 		bool is_valid = test_bit_le(0, entry->discard_map);
1945 
1946 find_next:
1947 		if (is_valid) {
1948 			next_pos = find_next_zero_bit_le(entry->discard_map,
1949 					sbi->blocks_per_seg, cur_pos);
1950 			len = next_pos - cur_pos;
1951 
1952 			if (f2fs_sb_has_blkzoned(sbi) ||
1953 			    (force && len < cpc->trim_minlen))
1954 				goto skip;
1955 
1956 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1957 									len);
1958 			total_len += len;
1959 		} else {
1960 			next_pos = find_next_bit_le(entry->discard_map,
1961 					sbi->blocks_per_seg, cur_pos);
1962 		}
1963 skip:
1964 		cur_pos = next_pos;
1965 		is_valid = !is_valid;
1966 
1967 		if (cur_pos < sbi->blocks_per_seg)
1968 			goto find_next;
1969 
1970 		release_discard_addr(entry);
1971 		dcc->nr_discards -= total_len;
1972 	}
1973 
1974 	wake_up_discard_thread(sbi, false);
1975 }
1976 
1977 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1978 {
1979 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1980 	struct discard_cmd_control *dcc;
1981 	int err = 0, i;
1982 
1983 	if (SM_I(sbi)->dcc_info) {
1984 		dcc = SM_I(sbi)->dcc_info;
1985 		goto init_thread;
1986 	}
1987 
1988 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1989 	if (!dcc)
1990 		return -ENOMEM;
1991 
1992 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1993 	INIT_LIST_HEAD(&dcc->entry_list);
1994 	for (i = 0; i < MAX_PLIST_NUM; i++)
1995 		INIT_LIST_HEAD(&dcc->pend_list[i]);
1996 	INIT_LIST_HEAD(&dcc->wait_list);
1997 	INIT_LIST_HEAD(&dcc->fstrim_list);
1998 	mutex_init(&dcc->cmd_lock);
1999 	atomic_set(&dcc->issued_discard, 0);
2000 	atomic_set(&dcc->issing_discard, 0);
2001 	atomic_set(&dcc->discard_cmd_cnt, 0);
2002 	dcc->nr_discards = 0;
2003 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2004 	dcc->undiscard_blks = 0;
2005 	dcc->next_pos = 0;
2006 	dcc->root = RB_ROOT_CACHED;
2007 	dcc->rbtree_check = false;
2008 
2009 	init_waitqueue_head(&dcc->discard_wait_queue);
2010 	SM_I(sbi)->dcc_info = dcc;
2011 init_thread:
2012 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2013 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2014 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2015 		err = PTR_ERR(dcc->f2fs_issue_discard);
2016 		kvfree(dcc);
2017 		SM_I(sbi)->dcc_info = NULL;
2018 		return err;
2019 	}
2020 
2021 	return err;
2022 }
2023 
2024 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2025 {
2026 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2027 
2028 	if (!dcc)
2029 		return;
2030 
2031 	f2fs_stop_discard_thread(sbi);
2032 
2033 	kvfree(dcc);
2034 	SM_I(sbi)->dcc_info = NULL;
2035 }
2036 
2037 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2038 {
2039 	struct sit_info *sit_i = SIT_I(sbi);
2040 
2041 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2042 		sit_i->dirty_sentries++;
2043 		return false;
2044 	}
2045 
2046 	return true;
2047 }
2048 
2049 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2050 					unsigned int segno, int modified)
2051 {
2052 	struct seg_entry *se = get_seg_entry(sbi, segno);
2053 	se->type = type;
2054 	if (modified)
2055 		__mark_sit_entry_dirty(sbi, segno);
2056 }
2057 
2058 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2059 {
2060 	struct seg_entry *se;
2061 	unsigned int segno, offset;
2062 	long int new_vblocks;
2063 	bool exist;
2064 #ifdef CONFIG_F2FS_CHECK_FS
2065 	bool mir_exist;
2066 #endif
2067 
2068 	segno = GET_SEGNO(sbi, blkaddr);
2069 
2070 	se = get_seg_entry(sbi, segno);
2071 	new_vblocks = se->valid_blocks + del;
2072 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2073 
2074 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2075 				(new_vblocks > sbi->blocks_per_seg)));
2076 
2077 	se->valid_blocks = new_vblocks;
2078 	se->mtime = get_mtime(sbi, false);
2079 	if (se->mtime > SIT_I(sbi)->max_mtime)
2080 		SIT_I(sbi)->max_mtime = se->mtime;
2081 
2082 	/* Update valid block bitmap */
2083 	if (del > 0) {
2084 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2085 #ifdef CONFIG_F2FS_CHECK_FS
2086 		mir_exist = f2fs_test_and_set_bit(offset,
2087 						se->cur_valid_map_mir);
2088 		if (unlikely(exist != mir_exist)) {
2089 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2090 				"when setting bitmap, blk:%u, old bit:%d",
2091 				blkaddr, exist);
2092 			f2fs_bug_on(sbi, 1);
2093 		}
2094 #endif
2095 		if (unlikely(exist)) {
2096 			f2fs_msg(sbi->sb, KERN_ERR,
2097 				"Bitmap was wrongly set, blk:%u", blkaddr);
2098 			f2fs_bug_on(sbi, 1);
2099 			se->valid_blocks--;
2100 			del = 0;
2101 		}
2102 
2103 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2104 			sbi->discard_blks--;
2105 
2106 		/* don't overwrite by SSR to keep node chain */
2107 		if (IS_NODESEG(se->type) &&
2108 				!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2109 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2110 				se->ckpt_valid_blocks++;
2111 		}
2112 	} else {
2113 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2114 #ifdef CONFIG_F2FS_CHECK_FS
2115 		mir_exist = f2fs_test_and_clear_bit(offset,
2116 						se->cur_valid_map_mir);
2117 		if (unlikely(exist != mir_exist)) {
2118 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2119 				"when clearing bitmap, blk:%u, old bit:%d",
2120 				blkaddr, exist);
2121 			f2fs_bug_on(sbi, 1);
2122 		}
2123 #endif
2124 		if (unlikely(!exist)) {
2125 			f2fs_msg(sbi->sb, KERN_ERR,
2126 				"Bitmap was wrongly cleared, blk:%u", blkaddr);
2127 			f2fs_bug_on(sbi, 1);
2128 			se->valid_blocks++;
2129 			del = 0;
2130 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2131 			/*
2132 			 * If checkpoints are off, we must not reuse data that
2133 			 * was used in the previous checkpoint. If it was used
2134 			 * before, we must track that to know how much space we
2135 			 * really have.
2136 			 */
2137 			if (f2fs_test_bit(offset, se->ckpt_valid_map))
2138 				sbi->unusable_block_count++;
2139 		}
2140 
2141 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2142 			sbi->discard_blks++;
2143 	}
2144 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2145 		se->ckpt_valid_blocks += del;
2146 
2147 	__mark_sit_entry_dirty(sbi, segno);
2148 
2149 	/* update total number of valid blocks to be written in ckpt area */
2150 	SIT_I(sbi)->written_valid_blocks += del;
2151 
2152 	if (__is_large_section(sbi))
2153 		get_sec_entry(sbi, segno)->valid_blocks += del;
2154 }
2155 
2156 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2157 {
2158 	unsigned int segno = GET_SEGNO(sbi, addr);
2159 	struct sit_info *sit_i = SIT_I(sbi);
2160 
2161 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2162 	if (addr == NEW_ADDR)
2163 		return;
2164 
2165 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2166 
2167 	/* add it into sit main buffer */
2168 	down_write(&sit_i->sentry_lock);
2169 
2170 	update_sit_entry(sbi, addr, -1);
2171 
2172 	/* add it into dirty seglist */
2173 	locate_dirty_segment(sbi, segno);
2174 
2175 	up_write(&sit_i->sentry_lock);
2176 }
2177 
2178 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2179 {
2180 	struct sit_info *sit_i = SIT_I(sbi);
2181 	unsigned int segno, offset;
2182 	struct seg_entry *se;
2183 	bool is_cp = false;
2184 
2185 	if (!is_valid_data_blkaddr(sbi, blkaddr))
2186 		return true;
2187 
2188 	down_read(&sit_i->sentry_lock);
2189 
2190 	segno = GET_SEGNO(sbi, blkaddr);
2191 	se = get_seg_entry(sbi, segno);
2192 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2193 
2194 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2195 		is_cp = true;
2196 
2197 	up_read(&sit_i->sentry_lock);
2198 
2199 	return is_cp;
2200 }
2201 
2202 /*
2203  * This function should be resided under the curseg_mutex lock
2204  */
2205 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2206 					struct f2fs_summary *sum)
2207 {
2208 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2209 	void *addr = curseg->sum_blk;
2210 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2211 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2212 }
2213 
2214 /*
2215  * Calculate the number of current summary pages for writing
2216  */
2217 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2218 {
2219 	int valid_sum_count = 0;
2220 	int i, sum_in_page;
2221 
2222 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2223 		if (sbi->ckpt->alloc_type[i] == SSR)
2224 			valid_sum_count += sbi->blocks_per_seg;
2225 		else {
2226 			if (for_ra)
2227 				valid_sum_count += le16_to_cpu(
2228 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2229 			else
2230 				valid_sum_count += curseg_blkoff(sbi, i);
2231 		}
2232 	}
2233 
2234 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2235 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2236 	if (valid_sum_count <= sum_in_page)
2237 		return 1;
2238 	else if ((valid_sum_count - sum_in_page) <=
2239 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2240 		return 2;
2241 	return 3;
2242 }
2243 
2244 /*
2245  * Caller should put this summary page
2246  */
2247 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2248 {
2249 	return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2250 }
2251 
2252 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2253 					void *src, block_t blk_addr)
2254 {
2255 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2256 
2257 	memcpy(page_address(page), src, PAGE_SIZE);
2258 	set_page_dirty(page);
2259 	f2fs_put_page(page, 1);
2260 }
2261 
2262 static void write_sum_page(struct f2fs_sb_info *sbi,
2263 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2264 {
2265 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2266 }
2267 
2268 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2269 						int type, block_t blk_addr)
2270 {
2271 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2272 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2273 	struct f2fs_summary_block *src = curseg->sum_blk;
2274 	struct f2fs_summary_block *dst;
2275 
2276 	dst = (struct f2fs_summary_block *)page_address(page);
2277 	memset(dst, 0, PAGE_SIZE);
2278 
2279 	mutex_lock(&curseg->curseg_mutex);
2280 
2281 	down_read(&curseg->journal_rwsem);
2282 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2283 	up_read(&curseg->journal_rwsem);
2284 
2285 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2286 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2287 
2288 	mutex_unlock(&curseg->curseg_mutex);
2289 
2290 	set_page_dirty(page);
2291 	f2fs_put_page(page, 1);
2292 }
2293 
2294 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2295 {
2296 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2297 	unsigned int segno = curseg->segno + 1;
2298 	struct free_segmap_info *free_i = FREE_I(sbi);
2299 
2300 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2301 		return !test_bit(segno, free_i->free_segmap);
2302 	return 0;
2303 }
2304 
2305 /*
2306  * Find a new segment from the free segments bitmap to right order
2307  * This function should be returned with success, otherwise BUG
2308  */
2309 static void get_new_segment(struct f2fs_sb_info *sbi,
2310 			unsigned int *newseg, bool new_sec, int dir)
2311 {
2312 	struct free_segmap_info *free_i = FREE_I(sbi);
2313 	unsigned int segno, secno, zoneno;
2314 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2315 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2316 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2317 	unsigned int left_start = hint;
2318 	bool init = true;
2319 	int go_left = 0;
2320 	int i;
2321 
2322 	spin_lock(&free_i->segmap_lock);
2323 
2324 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2325 		segno = find_next_zero_bit(free_i->free_segmap,
2326 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2327 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2328 			goto got_it;
2329 	}
2330 find_other_zone:
2331 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2332 	if (secno >= MAIN_SECS(sbi)) {
2333 		if (dir == ALLOC_RIGHT) {
2334 			secno = find_next_zero_bit(free_i->free_secmap,
2335 							MAIN_SECS(sbi), 0);
2336 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2337 		} else {
2338 			go_left = 1;
2339 			left_start = hint - 1;
2340 		}
2341 	}
2342 	if (go_left == 0)
2343 		goto skip_left;
2344 
2345 	while (test_bit(left_start, free_i->free_secmap)) {
2346 		if (left_start > 0) {
2347 			left_start--;
2348 			continue;
2349 		}
2350 		left_start = find_next_zero_bit(free_i->free_secmap,
2351 							MAIN_SECS(sbi), 0);
2352 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2353 		break;
2354 	}
2355 	secno = left_start;
2356 skip_left:
2357 	segno = GET_SEG_FROM_SEC(sbi, secno);
2358 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2359 
2360 	/* give up on finding another zone */
2361 	if (!init)
2362 		goto got_it;
2363 	if (sbi->secs_per_zone == 1)
2364 		goto got_it;
2365 	if (zoneno == old_zoneno)
2366 		goto got_it;
2367 	if (dir == ALLOC_LEFT) {
2368 		if (!go_left && zoneno + 1 >= total_zones)
2369 			goto got_it;
2370 		if (go_left && zoneno == 0)
2371 			goto got_it;
2372 	}
2373 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2374 		if (CURSEG_I(sbi, i)->zone == zoneno)
2375 			break;
2376 
2377 	if (i < NR_CURSEG_TYPE) {
2378 		/* zone is in user, try another */
2379 		if (go_left)
2380 			hint = zoneno * sbi->secs_per_zone - 1;
2381 		else if (zoneno + 1 >= total_zones)
2382 			hint = 0;
2383 		else
2384 			hint = (zoneno + 1) * sbi->secs_per_zone;
2385 		init = false;
2386 		goto find_other_zone;
2387 	}
2388 got_it:
2389 	/* set it as dirty segment in free segmap */
2390 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2391 	__set_inuse(sbi, segno);
2392 	*newseg = segno;
2393 	spin_unlock(&free_i->segmap_lock);
2394 }
2395 
2396 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2397 {
2398 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2399 	struct summary_footer *sum_footer;
2400 
2401 	curseg->segno = curseg->next_segno;
2402 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2403 	curseg->next_blkoff = 0;
2404 	curseg->next_segno = NULL_SEGNO;
2405 
2406 	sum_footer = &(curseg->sum_blk->footer);
2407 	memset(sum_footer, 0, sizeof(struct summary_footer));
2408 	if (IS_DATASEG(type))
2409 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2410 	if (IS_NODESEG(type))
2411 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2412 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2413 }
2414 
2415 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2416 {
2417 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2418 	if (__is_large_section(sbi))
2419 		return CURSEG_I(sbi, type)->segno;
2420 
2421 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2422 		return 0;
2423 
2424 	if (test_opt(sbi, NOHEAP) &&
2425 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2426 		return 0;
2427 
2428 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2429 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2430 
2431 	/* find segments from 0 to reuse freed segments */
2432 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2433 		return 0;
2434 
2435 	return CURSEG_I(sbi, type)->segno;
2436 }
2437 
2438 /*
2439  * Allocate a current working segment.
2440  * This function always allocates a free segment in LFS manner.
2441  */
2442 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2443 {
2444 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2445 	unsigned int segno = curseg->segno;
2446 	int dir = ALLOC_LEFT;
2447 
2448 	write_sum_page(sbi, curseg->sum_blk,
2449 				GET_SUM_BLOCK(sbi, segno));
2450 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2451 		dir = ALLOC_RIGHT;
2452 
2453 	if (test_opt(sbi, NOHEAP))
2454 		dir = ALLOC_RIGHT;
2455 
2456 	segno = __get_next_segno(sbi, type);
2457 	get_new_segment(sbi, &segno, new_sec, dir);
2458 	curseg->next_segno = segno;
2459 	reset_curseg(sbi, type, 1);
2460 	curseg->alloc_type = LFS;
2461 }
2462 
2463 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2464 			struct curseg_info *seg, block_t start)
2465 {
2466 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2467 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2468 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2469 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2470 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2471 	int i, pos;
2472 
2473 	for (i = 0; i < entries; i++)
2474 		target_map[i] = ckpt_map[i] | cur_map[i];
2475 
2476 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2477 
2478 	seg->next_blkoff = pos;
2479 }
2480 
2481 /*
2482  * If a segment is written by LFS manner, next block offset is just obtained
2483  * by increasing the current block offset. However, if a segment is written by
2484  * SSR manner, next block offset obtained by calling __next_free_blkoff
2485  */
2486 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2487 				struct curseg_info *seg)
2488 {
2489 	if (seg->alloc_type == SSR)
2490 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2491 	else
2492 		seg->next_blkoff++;
2493 }
2494 
2495 /*
2496  * This function always allocates a used segment(from dirty seglist) by SSR
2497  * manner, so it should recover the existing segment information of valid blocks
2498  */
2499 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2500 {
2501 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2502 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2503 	unsigned int new_segno = curseg->next_segno;
2504 	struct f2fs_summary_block *sum_node;
2505 	struct page *sum_page;
2506 
2507 	write_sum_page(sbi, curseg->sum_blk,
2508 				GET_SUM_BLOCK(sbi, curseg->segno));
2509 	__set_test_and_inuse(sbi, new_segno);
2510 
2511 	mutex_lock(&dirty_i->seglist_lock);
2512 	__remove_dirty_segment(sbi, new_segno, PRE);
2513 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2514 	mutex_unlock(&dirty_i->seglist_lock);
2515 
2516 	reset_curseg(sbi, type, 1);
2517 	curseg->alloc_type = SSR;
2518 	__next_free_blkoff(sbi, curseg, 0);
2519 
2520 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2521 	f2fs_bug_on(sbi, IS_ERR(sum_page));
2522 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2523 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2524 	f2fs_put_page(sum_page, 1);
2525 }
2526 
2527 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2528 {
2529 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2530 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2531 	unsigned segno = NULL_SEGNO;
2532 	int i, cnt;
2533 	bool reversed = false;
2534 
2535 	/* f2fs_need_SSR() already forces to do this */
2536 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2537 		curseg->next_segno = segno;
2538 		return 1;
2539 	}
2540 
2541 	/* For node segments, let's do SSR more intensively */
2542 	if (IS_NODESEG(type)) {
2543 		if (type >= CURSEG_WARM_NODE) {
2544 			reversed = true;
2545 			i = CURSEG_COLD_NODE;
2546 		} else {
2547 			i = CURSEG_HOT_NODE;
2548 		}
2549 		cnt = NR_CURSEG_NODE_TYPE;
2550 	} else {
2551 		if (type >= CURSEG_WARM_DATA) {
2552 			reversed = true;
2553 			i = CURSEG_COLD_DATA;
2554 		} else {
2555 			i = CURSEG_HOT_DATA;
2556 		}
2557 		cnt = NR_CURSEG_DATA_TYPE;
2558 	}
2559 
2560 	for (; cnt-- > 0; reversed ? i-- : i++) {
2561 		if (i == type)
2562 			continue;
2563 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2564 			curseg->next_segno = segno;
2565 			return 1;
2566 		}
2567 	}
2568 
2569 	/* find valid_blocks=0 in dirty list */
2570 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2571 		segno = get_free_segment(sbi);
2572 		if (segno != NULL_SEGNO) {
2573 			curseg->next_segno = segno;
2574 			return 1;
2575 		}
2576 	}
2577 	return 0;
2578 }
2579 
2580 /*
2581  * flush out current segment and replace it with new segment
2582  * This function should be returned with success, otherwise BUG
2583  */
2584 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2585 						int type, bool force)
2586 {
2587 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2588 
2589 	if (force)
2590 		new_curseg(sbi, type, true);
2591 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2592 					type == CURSEG_WARM_NODE)
2593 		new_curseg(sbi, type, false);
2594 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2595 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2596 		new_curseg(sbi, type, false);
2597 	else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2598 		change_curseg(sbi, type);
2599 	else
2600 		new_curseg(sbi, type, false);
2601 
2602 	stat_inc_seg_type(sbi, curseg);
2603 }
2604 
2605 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2606 {
2607 	struct curseg_info *curseg;
2608 	unsigned int old_segno;
2609 	int i;
2610 
2611 	down_write(&SIT_I(sbi)->sentry_lock);
2612 
2613 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2614 		curseg = CURSEG_I(sbi, i);
2615 		old_segno = curseg->segno;
2616 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2617 		locate_dirty_segment(sbi, old_segno);
2618 	}
2619 
2620 	up_write(&SIT_I(sbi)->sentry_lock);
2621 }
2622 
2623 static const struct segment_allocation default_salloc_ops = {
2624 	.allocate_segment = allocate_segment_by_default,
2625 };
2626 
2627 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2628 						struct cp_control *cpc)
2629 {
2630 	__u64 trim_start = cpc->trim_start;
2631 	bool has_candidate = false;
2632 
2633 	down_write(&SIT_I(sbi)->sentry_lock);
2634 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2635 		if (add_discard_addrs(sbi, cpc, true)) {
2636 			has_candidate = true;
2637 			break;
2638 		}
2639 	}
2640 	up_write(&SIT_I(sbi)->sentry_lock);
2641 
2642 	cpc->trim_start = trim_start;
2643 	return has_candidate;
2644 }
2645 
2646 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2647 					struct discard_policy *dpolicy,
2648 					unsigned int start, unsigned int end)
2649 {
2650 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2651 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2652 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2653 	struct discard_cmd *dc;
2654 	struct blk_plug plug;
2655 	int issued;
2656 	unsigned int trimmed = 0;
2657 
2658 next:
2659 	issued = 0;
2660 
2661 	mutex_lock(&dcc->cmd_lock);
2662 	if (unlikely(dcc->rbtree_check))
2663 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2664 								&dcc->root));
2665 
2666 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2667 					NULL, start,
2668 					(struct rb_entry **)&prev_dc,
2669 					(struct rb_entry **)&next_dc,
2670 					&insert_p, &insert_parent, true, NULL);
2671 	if (!dc)
2672 		dc = next_dc;
2673 
2674 	blk_start_plug(&plug);
2675 
2676 	while (dc && dc->lstart <= end) {
2677 		struct rb_node *node;
2678 		int err = 0;
2679 
2680 		if (dc->len < dpolicy->granularity)
2681 			goto skip;
2682 
2683 		if (dc->state != D_PREP) {
2684 			list_move_tail(&dc->list, &dcc->fstrim_list);
2685 			goto skip;
2686 		}
2687 
2688 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2689 
2690 		if (issued >= dpolicy->max_requests) {
2691 			start = dc->lstart + dc->len;
2692 
2693 			if (err)
2694 				__remove_discard_cmd(sbi, dc);
2695 
2696 			blk_finish_plug(&plug);
2697 			mutex_unlock(&dcc->cmd_lock);
2698 			trimmed += __wait_all_discard_cmd(sbi, NULL);
2699 			congestion_wait(BLK_RW_ASYNC, HZ/50);
2700 			goto next;
2701 		}
2702 skip:
2703 		node = rb_next(&dc->rb_node);
2704 		if (err)
2705 			__remove_discard_cmd(sbi, dc);
2706 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2707 
2708 		if (fatal_signal_pending(current))
2709 			break;
2710 	}
2711 
2712 	blk_finish_plug(&plug);
2713 	mutex_unlock(&dcc->cmd_lock);
2714 
2715 	return trimmed;
2716 }
2717 
2718 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2719 {
2720 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2721 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2722 	unsigned int start_segno, end_segno;
2723 	block_t start_block, end_block;
2724 	struct cp_control cpc;
2725 	struct discard_policy dpolicy;
2726 	unsigned long long trimmed = 0;
2727 	int err = 0;
2728 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2729 
2730 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2731 		return -EINVAL;
2732 
2733 	if (end < MAIN_BLKADDR(sbi))
2734 		goto out;
2735 
2736 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2737 		f2fs_msg(sbi->sb, KERN_WARNING,
2738 			"Found FS corruption, run fsck to fix.");
2739 		return -EIO;
2740 	}
2741 
2742 	/* start/end segment number in main_area */
2743 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2744 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2745 						GET_SEGNO(sbi, end);
2746 	if (need_align) {
2747 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
2748 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2749 	}
2750 
2751 	cpc.reason = CP_DISCARD;
2752 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2753 	cpc.trim_start = start_segno;
2754 	cpc.trim_end = end_segno;
2755 
2756 	if (sbi->discard_blks == 0)
2757 		goto out;
2758 
2759 	mutex_lock(&sbi->gc_mutex);
2760 	err = f2fs_write_checkpoint(sbi, &cpc);
2761 	mutex_unlock(&sbi->gc_mutex);
2762 	if (err)
2763 		goto out;
2764 
2765 	/*
2766 	 * We filed discard candidates, but actually we don't need to wait for
2767 	 * all of them, since they'll be issued in idle time along with runtime
2768 	 * discard option. User configuration looks like using runtime discard
2769 	 * or periodic fstrim instead of it.
2770 	 */
2771 	if (f2fs_realtime_discard_enable(sbi))
2772 		goto out;
2773 
2774 	start_block = START_BLOCK(sbi, start_segno);
2775 	end_block = START_BLOCK(sbi, end_segno + 1);
2776 
2777 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2778 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2779 					start_block, end_block);
2780 
2781 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2782 					start_block, end_block);
2783 out:
2784 	if (!err)
2785 		range->len = F2FS_BLK_TO_BYTES(trimmed);
2786 	return err;
2787 }
2788 
2789 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2790 {
2791 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2792 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2793 		return true;
2794 	return false;
2795 }
2796 
2797 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2798 {
2799 	switch (hint) {
2800 	case WRITE_LIFE_SHORT:
2801 		return CURSEG_HOT_DATA;
2802 	case WRITE_LIFE_EXTREME:
2803 		return CURSEG_COLD_DATA;
2804 	default:
2805 		return CURSEG_WARM_DATA;
2806 	}
2807 }
2808 
2809 /* This returns write hints for each segment type. This hints will be
2810  * passed down to block layer. There are mapping tables which depend on
2811  * the mount option 'whint_mode'.
2812  *
2813  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2814  *
2815  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2816  *
2817  * User                  F2FS                     Block
2818  * ----                  ----                     -----
2819  *                       META                     WRITE_LIFE_NOT_SET
2820  *                       HOT_NODE                 "
2821  *                       WARM_NODE                "
2822  *                       COLD_NODE                "
2823  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2824  * extension list        "                        "
2825  *
2826  * -- buffered io
2827  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2828  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2829  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2830  * WRITE_LIFE_NONE       "                        "
2831  * WRITE_LIFE_MEDIUM     "                        "
2832  * WRITE_LIFE_LONG       "                        "
2833  *
2834  * -- direct io
2835  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2836  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2837  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2838  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2839  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2840  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2841  *
2842  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2843  *
2844  * User                  F2FS                     Block
2845  * ----                  ----                     -----
2846  *                       META                     WRITE_LIFE_MEDIUM;
2847  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2848  *                       WARM_NODE                "
2849  *                       COLD_NODE                WRITE_LIFE_NONE
2850  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2851  * extension list        "                        "
2852  *
2853  * -- buffered io
2854  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2855  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2856  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2857  * WRITE_LIFE_NONE       "                        "
2858  * WRITE_LIFE_MEDIUM     "                        "
2859  * WRITE_LIFE_LONG       "                        "
2860  *
2861  * -- direct io
2862  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2863  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2864  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2865  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2866  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2867  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2868  */
2869 
2870 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2871 				enum page_type type, enum temp_type temp)
2872 {
2873 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2874 		if (type == DATA) {
2875 			if (temp == WARM)
2876 				return WRITE_LIFE_NOT_SET;
2877 			else if (temp == HOT)
2878 				return WRITE_LIFE_SHORT;
2879 			else if (temp == COLD)
2880 				return WRITE_LIFE_EXTREME;
2881 		} else {
2882 			return WRITE_LIFE_NOT_SET;
2883 		}
2884 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2885 		if (type == DATA) {
2886 			if (temp == WARM)
2887 				return WRITE_LIFE_LONG;
2888 			else if (temp == HOT)
2889 				return WRITE_LIFE_SHORT;
2890 			else if (temp == COLD)
2891 				return WRITE_LIFE_EXTREME;
2892 		} else if (type == NODE) {
2893 			if (temp == WARM || temp == HOT)
2894 				return WRITE_LIFE_NOT_SET;
2895 			else if (temp == COLD)
2896 				return WRITE_LIFE_NONE;
2897 		} else if (type == META) {
2898 			return WRITE_LIFE_MEDIUM;
2899 		}
2900 	}
2901 	return WRITE_LIFE_NOT_SET;
2902 }
2903 
2904 static int __get_segment_type_2(struct f2fs_io_info *fio)
2905 {
2906 	if (fio->type == DATA)
2907 		return CURSEG_HOT_DATA;
2908 	else
2909 		return CURSEG_HOT_NODE;
2910 }
2911 
2912 static int __get_segment_type_4(struct f2fs_io_info *fio)
2913 {
2914 	if (fio->type == DATA) {
2915 		struct inode *inode = fio->page->mapping->host;
2916 
2917 		if (S_ISDIR(inode->i_mode))
2918 			return CURSEG_HOT_DATA;
2919 		else
2920 			return CURSEG_COLD_DATA;
2921 	} else {
2922 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2923 			return CURSEG_WARM_NODE;
2924 		else
2925 			return CURSEG_COLD_NODE;
2926 	}
2927 }
2928 
2929 static int __get_segment_type_6(struct f2fs_io_info *fio)
2930 {
2931 	if (fio->type == DATA) {
2932 		struct inode *inode = fio->page->mapping->host;
2933 
2934 		if (is_cold_data(fio->page) || file_is_cold(inode))
2935 			return CURSEG_COLD_DATA;
2936 		if (file_is_hot(inode) ||
2937 				is_inode_flag_set(inode, FI_HOT_DATA) ||
2938 				f2fs_is_atomic_file(inode) ||
2939 				f2fs_is_volatile_file(inode))
2940 			return CURSEG_HOT_DATA;
2941 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2942 	} else {
2943 		if (IS_DNODE(fio->page))
2944 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2945 						CURSEG_HOT_NODE;
2946 		return CURSEG_COLD_NODE;
2947 	}
2948 }
2949 
2950 static int __get_segment_type(struct f2fs_io_info *fio)
2951 {
2952 	int type = 0;
2953 
2954 	switch (F2FS_OPTION(fio->sbi).active_logs) {
2955 	case 2:
2956 		type = __get_segment_type_2(fio);
2957 		break;
2958 	case 4:
2959 		type = __get_segment_type_4(fio);
2960 		break;
2961 	case 6:
2962 		type = __get_segment_type_6(fio);
2963 		break;
2964 	default:
2965 		f2fs_bug_on(fio->sbi, true);
2966 	}
2967 
2968 	if (IS_HOT(type))
2969 		fio->temp = HOT;
2970 	else if (IS_WARM(type))
2971 		fio->temp = WARM;
2972 	else
2973 		fio->temp = COLD;
2974 	return type;
2975 }
2976 
2977 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2978 		block_t old_blkaddr, block_t *new_blkaddr,
2979 		struct f2fs_summary *sum, int type,
2980 		struct f2fs_io_info *fio, bool add_list)
2981 {
2982 	struct sit_info *sit_i = SIT_I(sbi);
2983 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2984 
2985 	down_read(&SM_I(sbi)->curseg_lock);
2986 
2987 	mutex_lock(&curseg->curseg_mutex);
2988 	down_write(&sit_i->sentry_lock);
2989 
2990 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2991 
2992 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
2993 
2994 	/*
2995 	 * __add_sum_entry should be resided under the curseg_mutex
2996 	 * because, this function updates a summary entry in the
2997 	 * current summary block.
2998 	 */
2999 	__add_sum_entry(sbi, type, sum);
3000 
3001 	__refresh_next_blkoff(sbi, curseg);
3002 
3003 	stat_inc_block_count(sbi, curseg);
3004 
3005 	/*
3006 	 * SIT information should be updated before segment allocation,
3007 	 * since SSR needs latest valid block information.
3008 	 */
3009 	update_sit_entry(sbi, *new_blkaddr, 1);
3010 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3011 		update_sit_entry(sbi, old_blkaddr, -1);
3012 
3013 	if (!__has_curseg_space(sbi, type))
3014 		sit_i->s_ops->allocate_segment(sbi, type, false);
3015 
3016 	/*
3017 	 * segment dirty status should be updated after segment allocation,
3018 	 * so we just need to update status only one time after previous
3019 	 * segment being closed.
3020 	 */
3021 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3022 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3023 
3024 	up_write(&sit_i->sentry_lock);
3025 
3026 	if (page && IS_NODESEG(type)) {
3027 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3028 
3029 		f2fs_inode_chksum_set(sbi, page);
3030 	}
3031 
3032 	if (add_list) {
3033 		struct f2fs_bio_info *io;
3034 
3035 		INIT_LIST_HEAD(&fio->list);
3036 		fio->in_list = true;
3037 		fio->retry = false;
3038 		io = sbi->write_io[fio->type] + fio->temp;
3039 		spin_lock(&io->io_lock);
3040 		list_add_tail(&fio->list, &io->io_list);
3041 		spin_unlock(&io->io_lock);
3042 	}
3043 
3044 	mutex_unlock(&curseg->curseg_mutex);
3045 
3046 	up_read(&SM_I(sbi)->curseg_lock);
3047 }
3048 
3049 static void update_device_state(struct f2fs_io_info *fio)
3050 {
3051 	struct f2fs_sb_info *sbi = fio->sbi;
3052 	unsigned int devidx;
3053 
3054 	if (!sbi->s_ndevs)
3055 		return;
3056 
3057 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3058 
3059 	/* update device state for fsync */
3060 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3061 
3062 	/* update device state for checkpoint */
3063 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3064 		spin_lock(&sbi->dev_lock);
3065 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3066 		spin_unlock(&sbi->dev_lock);
3067 	}
3068 }
3069 
3070 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3071 {
3072 	int type = __get_segment_type(fio);
3073 	bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3074 
3075 	if (keep_order)
3076 		down_read(&fio->sbi->io_order_lock);
3077 reallocate:
3078 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3079 			&fio->new_blkaddr, sum, type, fio, true);
3080 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3081 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3082 					fio->old_blkaddr, fio->old_blkaddr);
3083 
3084 	/* writeout dirty page into bdev */
3085 	f2fs_submit_page_write(fio);
3086 	if (fio->retry) {
3087 		fio->old_blkaddr = fio->new_blkaddr;
3088 		goto reallocate;
3089 	}
3090 
3091 	update_device_state(fio);
3092 
3093 	if (keep_order)
3094 		up_read(&fio->sbi->io_order_lock);
3095 }
3096 
3097 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3098 					enum iostat_type io_type)
3099 {
3100 	struct f2fs_io_info fio = {
3101 		.sbi = sbi,
3102 		.type = META,
3103 		.temp = HOT,
3104 		.op = REQ_OP_WRITE,
3105 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3106 		.old_blkaddr = page->index,
3107 		.new_blkaddr = page->index,
3108 		.page = page,
3109 		.encrypted_page = NULL,
3110 		.in_list = false,
3111 	};
3112 
3113 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3114 		fio.op_flags &= ~REQ_META;
3115 
3116 	set_page_writeback(page);
3117 	ClearPageError(page);
3118 	f2fs_submit_page_write(&fio);
3119 
3120 	stat_inc_meta_count(sbi, page->index);
3121 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3122 }
3123 
3124 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3125 {
3126 	struct f2fs_summary sum;
3127 
3128 	set_summary(&sum, nid, 0, 0);
3129 	do_write_page(&sum, fio);
3130 
3131 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3132 }
3133 
3134 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3135 					struct f2fs_io_info *fio)
3136 {
3137 	struct f2fs_sb_info *sbi = fio->sbi;
3138 	struct f2fs_summary sum;
3139 
3140 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3141 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3142 	do_write_page(&sum, fio);
3143 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3144 
3145 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3146 }
3147 
3148 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3149 {
3150 	int err;
3151 	struct f2fs_sb_info *sbi = fio->sbi;
3152 
3153 	fio->new_blkaddr = fio->old_blkaddr;
3154 	/* i/o temperature is needed for passing down write hints */
3155 	__get_segment_type(fio);
3156 
3157 	f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3158 			GET_SEGNO(sbi, fio->new_blkaddr))->type));
3159 
3160 	stat_inc_inplace_blocks(fio->sbi);
3161 
3162 	err = f2fs_submit_page_bio(fio);
3163 	if (!err)
3164 		update_device_state(fio);
3165 
3166 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3167 
3168 	return err;
3169 }
3170 
3171 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3172 						unsigned int segno)
3173 {
3174 	int i;
3175 
3176 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3177 		if (CURSEG_I(sbi, i)->segno == segno)
3178 			break;
3179 	}
3180 	return i;
3181 }
3182 
3183 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3184 				block_t old_blkaddr, block_t new_blkaddr,
3185 				bool recover_curseg, bool recover_newaddr)
3186 {
3187 	struct sit_info *sit_i = SIT_I(sbi);
3188 	struct curseg_info *curseg;
3189 	unsigned int segno, old_cursegno;
3190 	struct seg_entry *se;
3191 	int type;
3192 	unsigned short old_blkoff;
3193 
3194 	segno = GET_SEGNO(sbi, new_blkaddr);
3195 	se = get_seg_entry(sbi, segno);
3196 	type = se->type;
3197 
3198 	down_write(&SM_I(sbi)->curseg_lock);
3199 
3200 	if (!recover_curseg) {
3201 		/* for recovery flow */
3202 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3203 			if (old_blkaddr == NULL_ADDR)
3204 				type = CURSEG_COLD_DATA;
3205 			else
3206 				type = CURSEG_WARM_DATA;
3207 		}
3208 	} else {
3209 		if (IS_CURSEG(sbi, segno)) {
3210 			/* se->type is volatile as SSR allocation */
3211 			type = __f2fs_get_curseg(sbi, segno);
3212 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3213 		} else {
3214 			type = CURSEG_WARM_DATA;
3215 		}
3216 	}
3217 
3218 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3219 	curseg = CURSEG_I(sbi, type);
3220 
3221 	mutex_lock(&curseg->curseg_mutex);
3222 	down_write(&sit_i->sentry_lock);
3223 
3224 	old_cursegno = curseg->segno;
3225 	old_blkoff = curseg->next_blkoff;
3226 
3227 	/* change the current segment */
3228 	if (segno != curseg->segno) {
3229 		curseg->next_segno = segno;
3230 		change_curseg(sbi, type);
3231 	}
3232 
3233 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3234 	__add_sum_entry(sbi, type, sum);
3235 
3236 	if (!recover_curseg || recover_newaddr)
3237 		update_sit_entry(sbi, new_blkaddr, 1);
3238 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3239 		invalidate_mapping_pages(META_MAPPING(sbi),
3240 					old_blkaddr, old_blkaddr);
3241 		update_sit_entry(sbi, old_blkaddr, -1);
3242 	}
3243 
3244 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3245 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3246 
3247 	locate_dirty_segment(sbi, old_cursegno);
3248 
3249 	if (recover_curseg) {
3250 		if (old_cursegno != curseg->segno) {
3251 			curseg->next_segno = old_cursegno;
3252 			change_curseg(sbi, type);
3253 		}
3254 		curseg->next_blkoff = old_blkoff;
3255 	}
3256 
3257 	up_write(&sit_i->sentry_lock);
3258 	mutex_unlock(&curseg->curseg_mutex);
3259 	up_write(&SM_I(sbi)->curseg_lock);
3260 }
3261 
3262 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3263 				block_t old_addr, block_t new_addr,
3264 				unsigned char version, bool recover_curseg,
3265 				bool recover_newaddr)
3266 {
3267 	struct f2fs_summary sum;
3268 
3269 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3270 
3271 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3272 					recover_curseg, recover_newaddr);
3273 
3274 	f2fs_update_data_blkaddr(dn, new_addr);
3275 }
3276 
3277 void f2fs_wait_on_page_writeback(struct page *page,
3278 				enum page_type type, bool ordered)
3279 {
3280 	if (PageWriteback(page)) {
3281 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3282 
3283 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3284 		if (ordered)
3285 			wait_on_page_writeback(page);
3286 		else
3287 			wait_for_stable_page(page);
3288 	}
3289 }
3290 
3291 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3292 {
3293 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3294 	struct page *cpage;
3295 
3296 	if (!f2fs_post_read_required(inode))
3297 		return;
3298 
3299 	if (!is_valid_data_blkaddr(sbi, blkaddr))
3300 		return;
3301 
3302 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3303 	if (cpage) {
3304 		f2fs_wait_on_page_writeback(cpage, DATA, true);
3305 		f2fs_put_page(cpage, 1);
3306 	}
3307 }
3308 
3309 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3310 								block_t len)
3311 {
3312 	block_t i;
3313 
3314 	for (i = 0; i < len; i++)
3315 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3316 }
3317 
3318 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3319 {
3320 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3321 	struct curseg_info *seg_i;
3322 	unsigned char *kaddr;
3323 	struct page *page;
3324 	block_t start;
3325 	int i, j, offset;
3326 
3327 	start = start_sum_block(sbi);
3328 
3329 	page = f2fs_get_meta_page(sbi, start++);
3330 	if (IS_ERR(page))
3331 		return PTR_ERR(page);
3332 	kaddr = (unsigned char *)page_address(page);
3333 
3334 	/* Step 1: restore nat cache */
3335 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3336 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3337 
3338 	/* Step 2: restore sit cache */
3339 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3340 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3341 	offset = 2 * SUM_JOURNAL_SIZE;
3342 
3343 	/* Step 3: restore summary entries */
3344 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3345 		unsigned short blk_off;
3346 		unsigned int segno;
3347 
3348 		seg_i = CURSEG_I(sbi, i);
3349 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3350 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3351 		seg_i->next_segno = segno;
3352 		reset_curseg(sbi, i, 0);
3353 		seg_i->alloc_type = ckpt->alloc_type[i];
3354 		seg_i->next_blkoff = blk_off;
3355 
3356 		if (seg_i->alloc_type == SSR)
3357 			blk_off = sbi->blocks_per_seg;
3358 
3359 		for (j = 0; j < blk_off; j++) {
3360 			struct f2fs_summary *s;
3361 			s = (struct f2fs_summary *)(kaddr + offset);
3362 			seg_i->sum_blk->entries[j] = *s;
3363 			offset += SUMMARY_SIZE;
3364 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3365 						SUM_FOOTER_SIZE)
3366 				continue;
3367 
3368 			f2fs_put_page(page, 1);
3369 			page = NULL;
3370 
3371 			page = f2fs_get_meta_page(sbi, start++);
3372 			if (IS_ERR(page))
3373 				return PTR_ERR(page);
3374 			kaddr = (unsigned char *)page_address(page);
3375 			offset = 0;
3376 		}
3377 	}
3378 	f2fs_put_page(page, 1);
3379 	return 0;
3380 }
3381 
3382 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3383 {
3384 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3385 	struct f2fs_summary_block *sum;
3386 	struct curseg_info *curseg;
3387 	struct page *new;
3388 	unsigned short blk_off;
3389 	unsigned int segno = 0;
3390 	block_t blk_addr = 0;
3391 	int err = 0;
3392 
3393 	/* get segment number and block addr */
3394 	if (IS_DATASEG(type)) {
3395 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3396 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3397 							CURSEG_HOT_DATA]);
3398 		if (__exist_node_summaries(sbi))
3399 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3400 		else
3401 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3402 	} else {
3403 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3404 							CURSEG_HOT_NODE]);
3405 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3406 							CURSEG_HOT_NODE]);
3407 		if (__exist_node_summaries(sbi))
3408 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3409 							type - CURSEG_HOT_NODE);
3410 		else
3411 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3412 	}
3413 
3414 	new = f2fs_get_meta_page(sbi, blk_addr);
3415 	if (IS_ERR(new))
3416 		return PTR_ERR(new);
3417 	sum = (struct f2fs_summary_block *)page_address(new);
3418 
3419 	if (IS_NODESEG(type)) {
3420 		if (__exist_node_summaries(sbi)) {
3421 			struct f2fs_summary *ns = &sum->entries[0];
3422 			int i;
3423 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3424 				ns->version = 0;
3425 				ns->ofs_in_node = 0;
3426 			}
3427 		} else {
3428 			err = f2fs_restore_node_summary(sbi, segno, sum);
3429 			if (err)
3430 				goto out;
3431 		}
3432 	}
3433 
3434 	/* set uncompleted segment to curseg */
3435 	curseg = CURSEG_I(sbi, type);
3436 	mutex_lock(&curseg->curseg_mutex);
3437 
3438 	/* update journal info */
3439 	down_write(&curseg->journal_rwsem);
3440 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3441 	up_write(&curseg->journal_rwsem);
3442 
3443 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3444 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3445 	curseg->next_segno = segno;
3446 	reset_curseg(sbi, type, 0);
3447 	curseg->alloc_type = ckpt->alloc_type[type];
3448 	curseg->next_blkoff = blk_off;
3449 	mutex_unlock(&curseg->curseg_mutex);
3450 out:
3451 	f2fs_put_page(new, 1);
3452 	return err;
3453 }
3454 
3455 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3456 {
3457 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3458 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3459 	int type = CURSEG_HOT_DATA;
3460 	int err;
3461 
3462 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3463 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3464 
3465 		if (npages >= 2)
3466 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3467 							META_CP, true);
3468 
3469 		/* restore for compacted data summary */
3470 		err = read_compacted_summaries(sbi);
3471 		if (err)
3472 			return err;
3473 		type = CURSEG_HOT_NODE;
3474 	}
3475 
3476 	if (__exist_node_summaries(sbi))
3477 		f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3478 					NR_CURSEG_TYPE - type, META_CP, true);
3479 
3480 	for (; type <= CURSEG_COLD_NODE; type++) {
3481 		err = read_normal_summaries(sbi, type);
3482 		if (err)
3483 			return err;
3484 	}
3485 
3486 	/* sanity check for summary blocks */
3487 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3488 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3489 		return -EINVAL;
3490 
3491 	return 0;
3492 }
3493 
3494 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3495 {
3496 	struct page *page;
3497 	unsigned char *kaddr;
3498 	struct f2fs_summary *summary;
3499 	struct curseg_info *seg_i;
3500 	int written_size = 0;
3501 	int i, j;
3502 
3503 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3504 	kaddr = (unsigned char *)page_address(page);
3505 	memset(kaddr, 0, PAGE_SIZE);
3506 
3507 	/* Step 1: write nat cache */
3508 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3509 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3510 	written_size += SUM_JOURNAL_SIZE;
3511 
3512 	/* Step 2: write sit cache */
3513 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3514 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3515 	written_size += SUM_JOURNAL_SIZE;
3516 
3517 	/* Step 3: write summary entries */
3518 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3519 		unsigned short blkoff;
3520 		seg_i = CURSEG_I(sbi, i);
3521 		if (sbi->ckpt->alloc_type[i] == SSR)
3522 			blkoff = sbi->blocks_per_seg;
3523 		else
3524 			blkoff = curseg_blkoff(sbi, i);
3525 
3526 		for (j = 0; j < blkoff; j++) {
3527 			if (!page) {
3528 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3529 				kaddr = (unsigned char *)page_address(page);
3530 				memset(kaddr, 0, PAGE_SIZE);
3531 				written_size = 0;
3532 			}
3533 			summary = (struct f2fs_summary *)(kaddr + written_size);
3534 			*summary = seg_i->sum_blk->entries[j];
3535 			written_size += SUMMARY_SIZE;
3536 
3537 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3538 							SUM_FOOTER_SIZE)
3539 				continue;
3540 
3541 			set_page_dirty(page);
3542 			f2fs_put_page(page, 1);
3543 			page = NULL;
3544 		}
3545 	}
3546 	if (page) {
3547 		set_page_dirty(page);
3548 		f2fs_put_page(page, 1);
3549 	}
3550 }
3551 
3552 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3553 					block_t blkaddr, int type)
3554 {
3555 	int i, end;
3556 	if (IS_DATASEG(type))
3557 		end = type + NR_CURSEG_DATA_TYPE;
3558 	else
3559 		end = type + NR_CURSEG_NODE_TYPE;
3560 
3561 	for (i = type; i < end; i++)
3562 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3563 }
3564 
3565 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3566 {
3567 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3568 		write_compacted_summaries(sbi, start_blk);
3569 	else
3570 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3571 }
3572 
3573 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3574 {
3575 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3576 }
3577 
3578 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3579 					unsigned int val, int alloc)
3580 {
3581 	int i;
3582 
3583 	if (type == NAT_JOURNAL) {
3584 		for (i = 0; i < nats_in_cursum(journal); i++) {
3585 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3586 				return i;
3587 		}
3588 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3589 			return update_nats_in_cursum(journal, 1);
3590 	} else if (type == SIT_JOURNAL) {
3591 		for (i = 0; i < sits_in_cursum(journal); i++)
3592 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3593 				return i;
3594 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3595 			return update_sits_in_cursum(journal, 1);
3596 	}
3597 	return -1;
3598 }
3599 
3600 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3601 					unsigned int segno)
3602 {
3603 	return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3604 }
3605 
3606 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3607 					unsigned int start)
3608 {
3609 	struct sit_info *sit_i = SIT_I(sbi);
3610 	struct page *page;
3611 	pgoff_t src_off, dst_off;
3612 
3613 	src_off = current_sit_addr(sbi, start);
3614 	dst_off = next_sit_addr(sbi, src_off);
3615 
3616 	page = f2fs_grab_meta_page(sbi, dst_off);
3617 	seg_info_to_sit_page(sbi, page, start);
3618 
3619 	set_page_dirty(page);
3620 	set_to_next_sit(sit_i, start);
3621 
3622 	return page;
3623 }
3624 
3625 static struct sit_entry_set *grab_sit_entry_set(void)
3626 {
3627 	struct sit_entry_set *ses =
3628 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3629 
3630 	ses->entry_cnt = 0;
3631 	INIT_LIST_HEAD(&ses->set_list);
3632 	return ses;
3633 }
3634 
3635 static void release_sit_entry_set(struct sit_entry_set *ses)
3636 {
3637 	list_del(&ses->set_list);
3638 	kmem_cache_free(sit_entry_set_slab, ses);
3639 }
3640 
3641 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3642 						struct list_head *head)
3643 {
3644 	struct sit_entry_set *next = ses;
3645 
3646 	if (list_is_last(&ses->set_list, head))
3647 		return;
3648 
3649 	list_for_each_entry_continue(next, head, set_list)
3650 		if (ses->entry_cnt <= next->entry_cnt)
3651 			break;
3652 
3653 	list_move_tail(&ses->set_list, &next->set_list);
3654 }
3655 
3656 static void add_sit_entry(unsigned int segno, struct list_head *head)
3657 {
3658 	struct sit_entry_set *ses;
3659 	unsigned int start_segno = START_SEGNO(segno);
3660 
3661 	list_for_each_entry(ses, head, set_list) {
3662 		if (ses->start_segno == start_segno) {
3663 			ses->entry_cnt++;
3664 			adjust_sit_entry_set(ses, head);
3665 			return;
3666 		}
3667 	}
3668 
3669 	ses = grab_sit_entry_set();
3670 
3671 	ses->start_segno = start_segno;
3672 	ses->entry_cnt++;
3673 	list_add(&ses->set_list, head);
3674 }
3675 
3676 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3677 {
3678 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3679 	struct list_head *set_list = &sm_info->sit_entry_set;
3680 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3681 	unsigned int segno;
3682 
3683 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3684 		add_sit_entry(segno, set_list);
3685 }
3686 
3687 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3688 {
3689 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3690 	struct f2fs_journal *journal = curseg->journal;
3691 	int i;
3692 
3693 	down_write(&curseg->journal_rwsem);
3694 	for (i = 0; i < sits_in_cursum(journal); i++) {
3695 		unsigned int segno;
3696 		bool dirtied;
3697 
3698 		segno = le32_to_cpu(segno_in_journal(journal, i));
3699 		dirtied = __mark_sit_entry_dirty(sbi, segno);
3700 
3701 		if (!dirtied)
3702 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3703 	}
3704 	update_sits_in_cursum(journal, -i);
3705 	up_write(&curseg->journal_rwsem);
3706 }
3707 
3708 /*
3709  * CP calls this function, which flushes SIT entries including sit_journal,
3710  * and moves prefree segs to free segs.
3711  */
3712 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3713 {
3714 	struct sit_info *sit_i = SIT_I(sbi);
3715 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3716 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3717 	struct f2fs_journal *journal = curseg->journal;
3718 	struct sit_entry_set *ses, *tmp;
3719 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3720 	bool to_journal = true;
3721 	struct seg_entry *se;
3722 
3723 	down_write(&sit_i->sentry_lock);
3724 
3725 	if (!sit_i->dirty_sentries)
3726 		goto out;
3727 
3728 	/*
3729 	 * add and account sit entries of dirty bitmap in sit entry
3730 	 * set temporarily
3731 	 */
3732 	add_sits_in_set(sbi);
3733 
3734 	/*
3735 	 * if there are no enough space in journal to store dirty sit
3736 	 * entries, remove all entries from journal and add and account
3737 	 * them in sit entry set.
3738 	 */
3739 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3740 		remove_sits_in_journal(sbi);
3741 
3742 	/*
3743 	 * there are two steps to flush sit entries:
3744 	 * #1, flush sit entries to journal in current cold data summary block.
3745 	 * #2, flush sit entries to sit page.
3746 	 */
3747 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3748 		struct page *page = NULL;
3749 		struct f2fs_sit_block *raw_sit = NULL;
3750 		unsigned int start_segno = ses->start_segno;
3751 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3752 						(unsigned long)MAIN_SEGS(sbi));
3753 		unsigned int segno = start_segno;
3754 
3755 		if (to_journal &&
3756 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3757 			to_journal = false;
3758 
3759 		if (to_journal) {
3760 			down_write(&curseg->journal_rwsem);
3761 		} else {
3762 			page = get_next_sit_page(sbi, start_segno);
3763 			raw_sit = page_address(page);
3764 		}
3765 
3766 		/* flush dirty sit entries in region of current sit set */
3767 		for_each_set_bit_from(segno, bitmap, end) {
3768 			int offset, sit_offset;
3769 
3770 			se = get_seg_entry(sbi, segno);
3771 #ifdef CONFIG_F2FS_CHECK_FS
3772 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3773 						SIT_VBLOCK_MAP_SIZE))
3774 				f2fs_bug_on(sbi, 1);
3775 #endif
3776 
3777 			/* add discard candidates */
3778 			if (!(cpc->reason & CP_DISCARD)) {
3779 				cpc->trim_start = segno;
3780 				add_discard_addrs(sbi, cpc, false);
3781 			}
3782 
3783 			if (to_journal) {
3784 				offset = f2fs_lookup_journal_in_cursum(journal,
3785 							SIT_JOURNAL, segno, 1);
3786 				f2fs_bug_on(sbi, offset < 0);
3787 				segno_in_journal(journal, offset) =
3788 							cpu_to_le32(segno);
3789 				seg_info_to_raw_sit(se,
3790 					&sit_in_journal(journal, offset));
3791 				check_block_count(sbi, segno,
3792 					&sit_in_journal(journal, offset));
3793 			} else {
3794 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3795 				seg_info_to_raw_sit(se,
3796 						&raw_sit->entries[sit_offset]);
3797 				check_block_count(sbi, segno,
3798 						&raw_sit->entries[sit_offset]);
3799 			}
3800 
3801 			__clear_bit(segno, bitmap);
3802 			sit_i->dirty_sentries--;
3803 			ses->entry_cnt--;
3804 		}
3805 
3806 		if (to_journal)
3807 			up_write(&curseg->journal_rwsem);
3808 		else
3809 			f2fs_put_page(page, 1);
3810 
3811 		f2fs_bug_on(sbi, ses->entry_cnt);
3812 		release_sit_entry_set(ses);
3813 	}
3814 
3815 	f2fs_bug_on(sbi, !list_empty(head));
3816 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3817 out:
3818 	if (cpc->reason & CP_DISCARD) {
3819 		__u64 trim_start = cpc->trim_start;
3820 
3821 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3822 			add_discard_addrs(sbi, cpc, false);
3823 
3824 		cpc->trim_start = trim_start;
3825 	}
3826 	up_write(&sit_i->sentry_lock);
3827 
3828 	set_prefree_as_free_segments(sbi);
3829 }
3830 
3831 static int build_sit_info(struct f2fs_sb_info *sbi)
3832 {
3833 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3834 	struct sit_info *sit_i;
3835 	unsigned int sit_segs, start;
3836 	char *src_bitmap;
3837 	unsigned int bitmap_size;
3838 
3839 	/* allocate memory for SIT information */
3840 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3841 	if (!sit_i)
3842 		return -ENOMEM;
3843 
3844 	SM_I(sbi)->sit_info = sit_i;
3845 
3846 	sit_i->sentries =
3847 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3848 					      MAIN_SEGS(sbi)),
3849 			      GFP_KERNEL);
3850 	if (!sit_i->sentries)
3851 		return -ENOMEM;
3852 
3853 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3854 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3855 								GFP_KERNEL);
3856 	if (!sit_i->dirty_sentries_bitmap)
3857 		return -ENOMEM;
3858 
3859 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3860 		sit_i->sentries[start].cur_valid_map
3861 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3862 		sit_i->sentries[start].ckpt_valid_map
3863 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3864 		if (!sit_i->sentries[start].cur_valid_map ||
3865 				!sit_i->sentries[start].ckpt_valid_map)
3866 			return -ENOMEM;
3867 
3868 #ifdef CONFIG_F2FS_CHECK_FS
3869 		sit_i->sentries[start].cur_valid_map_mir
3870 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3871 		if (!sit_i->sentries[start].cur_valid_map_mir)
3872 			return -ENOMEM;
3873 #endif
3874 
3875 		sit_i->sentries[start].discard_map
3876 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3877 							GFP_KERNEL);
3878 		if (!sit_i->sentries[start].discard_map)
3879 			return -ENOMEM;
3880 	}
3881 
3882 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3883 	if (!sit_i->tmp_map)
3884 		return -ENOMEM;
3885 
3886 	if (__is_large_section(sbi)) {
3887 		sit_i->sec_entries =
3888 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3889 						      MAIN_SECS(sbi)),
3890 				      GFP_KERNEL);
3891 		if (!sit_i->sec_entries)
3892 			return -ENOMEM;
3893 	}
3894 
3895 	/* get information related with SIT */
3896 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3897 
3898 	/* setup SIT bitmap from ckeckpoint pack */
3899 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3900 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3901 
3902 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3903 	if (!sit_i->sit_bitmap)
3904 		return -ENOMEM;
3905 
3906 #ifdef CONFIG_F2FS_CHECK_FS
3907 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3908 	if (!sit_i->sit_bitmap_mir)
3909 		return -ENOMEM;
3910 #endif
3911 
3912 	/* init SIT information */
3913 	sit_i->s_ops = &default_salloc_ops;
3914 
3915 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3916 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3917 	sit_i->written_valid_blocks = 0;
3918 	sit_i->bitmap_size = bitmap_size;
3919 	sit_i->dirty_sentries = 0;
3920 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3921 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3922 	sit_i->mounted_time = ktime_get_real_seconds();
3923 	init_rwsem(&sit_i->sentry_lock);
3924 	return 0;
3925 }
3926 
3927 static int build_free_segmap(struct f2fs_sb_info *sbi)
3928 {
3929 	struct free_segmap_info *free_i;
3930 	unsigned int bitmap_size, sec_bitmap_size;
3931 
3932 	/* allocate memory for free segmap information */
3933 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3934 	if (!free_i)
3935 		return -ENOMEM;
3936 
3937 	SM_I(sbi)->free_info = free_i;
3938 
3939 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3940 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3941 	if (!free_i->free_segmap)
3942 		return -ENOMEM;
3943 
3944 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3945 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3946 	if (!free_i->free_secmap)
3947 		return -ENOMEM;
3948 
3949 	/* set all segments as dirty temporarily */
3950 	memset(free_i->free_segmap, 0xff, bitmap_size);
3951 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3952 
3953 	/* init free segmap information */
3954 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3955 	free_i->free_segments = 0;
3956 	free_i->free_sections = 0;
3957 	spin_lock_init(&free_i->segmap_lock);
3958 	return 0;
3959 }
3960 
3961 static int build_curseg(struct f2fs_sb_info *sbi)
3962 {
3963 	struct curseg_info *array;
3964 	int i;
3965 
3966 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3967 			     GFP_KERNEL);
3968 	if (!array)
3969 		return -ENOMEM;
3970 
3971 	SM_I(sbi)->curseg_array = array;
3972 
3973 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3974 		mutex_init(&array[i].curseg_mutex);
3975 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3976 		if (!array[i].sum_blk)
3977 			return -ENOMEM;
3978 		init_rwsem(&array[i].journal_rwsem);
3979 		array[i].journal = f2fs_kzalloc(sbi,
3980 				sizeof(struct f2fs_journal), GFP_KERNEL);
3981 		if (!array[i].journal)
3982 			return -ENOMEM;
3983 		array[i].segno = NULL_SEGNO;
3984 		array[i].next_blkoff = 0;
3985 	}
3986 	return restore_curseg_summaries(sbi);
3987 }
3988 
3989 static int build_sit_entries(struct f2fs_sb_info *sbi)
3990 {
3991 	struct sit_info *sit_i = SIT_I(sbi);
3992 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3993 	struct f2fs_journal *journal = curseg->journal;
3994 	struct seg_entry *se;
3995 	struct f2fs_sit_entry sit;
3996 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
3997 	unsigned int i, start, end;
3998 	unsigned int readed, start_blk = 0;
3999 	int err = 0;
4000 	block_t total_node_blocks = 0;
4001 
4002 	do {
4003 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4004 							META_SIT, true);
4005 
4006 		start = start_blk * sit_i->sents_per_block;
4007 		end = (start_blk + readed) * sit_i->sents_per_block;
4008 
4009 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4010 			struct f2fs_sit_block *sit_blk;
4011 			struct page *page;
4012 
4013 			se = &sit_i->sentries[start];
4014 			page = get_current_sit_page(sbi, start);
4015 			if (IS_ERR(page))
4016 				return PTR_ERR(page);
4017 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4018 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4019 			f2fs_put_page(page, 1);
4020 
4021 			err = check_block_count(sbi, start, &sit);
4022 			if (err)
4023 				return err;
4024 			seg_info_from_raw_sit(se, &sit);
4025 			if (IS_NODESEG(se->type))
4026 				total_node_blocks += se->valid_blocks;
4027 
4028 			/* build discard map only one time */
4029 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4030 				memset(se->discard_map, 0xff,
4031 					SIT_VBLOCK_MAP_SIZE);
4032 			} else {
4033 				memcpy(se->discard_map,
4034 					se->cur_valid_map,
4035 					SIT_VBLOCK_MAP_SIZE);
4036 				sbi->discard_blks +=
4037 					sbi->blocks_per_seg -
4038 					se->valid_blocks;
4039 			}
4040 
4041 			if (__is_large_section(sbi))
4042 				get_sec_entry(sbi, start)->valid_blocks +=
4043 							se->valid_blocks;
4044 		}
4045 		start_blk += readed;
4046 	} while (start_blk < sit_blk_cnt);
4047 
4048 	down_read(&curseg->journal_rwsem);
4049 	for (i = 0; i < sits_in_cursum(journal); i++) {
4050 		unsigned int old_valid_blocks;
4051 
4052 		start = le32_to_cpu(segno_in_journal(journal, i));
4053 		if (start >= MAIN_SEGS(sbi)) {
4054 			f2fs_msg(sbi->sb, KERN_ERR,
4055 					"Wrong journal entry on segno %u",
4056 					start);
4057 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4058 			err = -EINVAL;
4059 			break;
4060 		}
4061 
4062 		se = &sit_i->sentries[start];
4063 		sit = sit_in_journal(journal, i);
4064 
4065 		old_valid_blocks = se->valid_blocks;
4066 		if (IS_NODESEG(se->type))
4067 			total_node_blocks -= old_valid_blocks;
4068 
4069 		err = check_block_count(sbi, start, &sit);
4070 		if (err)
4071 			break;
4072 		seg_info_from_raw_sit(se, &sit);
4073 		if (IS_NODESEG(se->type))
4074 			total_node_blocks += se->valid_blocks;
4075 
4076 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4077 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4078 		} else {
4079 			memcpy(se->discard_map, se->cur_valid_map,
4080 						SIT_VBLOCK_MAP_SIZE);
4081 			sbi->discard_blks += old_valid_blocks;
4082 			sbi->discard_blks -= se->valid_blocks;
4083 		}
4084 
4085 		if (__is_large_section(sbi)) {
4086 			get_sec_entry(sbi, start)->valid_blocks +=
4087 							se->valid_blocks;
4088 			get_sec_entry(sbi, start)->valid_blocks -=
4089 							old_valid_blocks;
4090 		}
4091 	}
4092 	up_read(&curseg->journal_rwsem);
4093 
4094 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4095 		f2fs_msg(sbi->sb, KERN_ERR,
4096 			"SIT is corrupted node# %u vs %u",
4097 			total_node_blocks, valid_node_count(sbi));
4098 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4099 		err = -EINVAL;
4100 	}
4101 
4102 	return err;
4103 }
4104 
4105 static void init_free_segmap(struct f2fs_sb_info *sbi)
4106 {
4107 	unsigned int start;
4108 	int type;
4109 
4110 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4111 		struct seg_entry *sentry = get_seg_entry(sbi, start);
4112 		if (!sentry->valid_blocks)
4113 			__set_free(sbi, start);
4114 		else
4115 			SIT_I(sbi)->written_valid_blocks +=
4116 						sentry->valid_blocks;
4117 	}
4118 
4119 	/* set use the current segments */
4120 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4121 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4122 		__set_test_and_inuse(sbi, curseg_t->segno);
4123 	}
4124 }
4125 
4126 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4127 {
4128 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4129 	struct free_segmap_info *free_i = FREE_I(sbi);
4130 	unsigned int segno = 0, offset = 0;
4131 	unsigned short valid_blocks;
4132 
4133 	while (1) {
4134 		/* find dirty segment based on free segmap */
4135 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4136 		if (segno >= MAIN_SEGS(sbi))
4137 			break;
4138 		offset = segno + 1;
4139 		valid_blocks = get_valid_blocks(sbi, segno, false);
4140 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4141 			continue;
4142 		if (valid_blocks > sbi->blocks_per_seg) {
4143 			f2fs_bug_on(sbi, 1);
4144 			continue;
4145 		}
4146 		mutex_lock(&dirty_i->seglist_lock);
4147 		__locate_dirty_segment(sbi, segno, DIRTY);
4148 		mutex_unlock(&dirty_i->seglist_lock);
4149 	}
4150 }
4151 
4152 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4153 {
4154 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4155 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4156 
4157 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4158 	if (!dirty_i->victim_secmap)
4159 		return -ENOMEM;
4160 	return 0;
4161 }
4162 
4163 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4164 {
4165 	struct dirty_seglist_info *dirty_i;
4166 	unsigned int bitmap_size, i;
4167 
4168 	/* allocate memory for dirty segments list information */
4169 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4170 								GFP_KERNEL);
4171 	if (!dirty_i)
4172 		return -ENOMEM;
4173 
4174 	SM_I(sbi)->dirty_info = dirty_i;
4175 	mutex_init(&dirty_i->seglist_lock);
4176 
4177 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4178 
4179 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4180 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4181 								GFP_KERNEL);
4182 		if (!dirty_i->dirty_segmap[i])
4183 			return -ENOMEM;
4184 	}
4185 
4186 	init_dirty_segmap(sbi);
4187 	return init_victim_secmap(sbi);
4188 }
4189 
4190 /*
4191  * Update min, max modified time for cost-benefit GC algorithm
4192  */
4193 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4194 {
4195 	struct sit_info *sit_i = SIT_I(sbi);
4196 	unsigned int segno;
4197 
4198 	down_write(&sit_i->sentry_lock);
4199 
4200 	sit_i->min_mtime = ULLONG_MAX;
4201 
4202 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4203 		unsigned int i;
4204 		unsigned long long mtime = 0;
4205 
4206 		for (i = 0; i < sbi->segs_per_sec; i++)
4207 			mtime += get_seg_entry(sbi, segno + i)->mtime;
4208 
4209 		mtime = div_u64(mtime, sbi->segs_per_sec);
4210 
4211 		if (sit_i->min_mtime > mtime)
4212 			sit_i->min_mtime = mtime;
4213 	}
4214 	sit_i->max_mtime = get_mtime(sbi, false);
4215 	up_write(&sit_i->sentry_lock);
4216 }
4217 
4218 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4219 {
4220 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4221 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4222 	struct f2fs_sm_info *sm_info;
4223 	int err;
4224 
4225 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4226 	if (!sm_info)
4227 		return -ENOMEM;
4228 
4229 	/* init sm info */
4230 	sbi->sm_info = sm_info;
4231 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4232 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4233 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4234 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4235 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4236 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4237 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4238 	sm_info->rec_prefree_segments = sm_info->main_segments *
4239 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4240 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4241 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4242 
4243 	if (!test_opt(sbi, LFS))
4244 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4245 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4246 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4247 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4248 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4249 	sm_info->min_ssr_sections = reserved_sections(sbi);
4250 
4251 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
4252 
4253 	init_rwsem(&sm_info->curseg_lock);
4254 
4255 	if (!f2fs_readonly(sbi->sb)) {
4256 		err = f2fs_create_flush_cmd_control(sbi);
4257 		if (err)
4258 			return err;
4259 	}
4260 
4261 	err = create_discard_cmd_control(sbi);
4262 	if (err)
4263 		return err;
4264 
4265 	err = build_sit_info(sbi);
4266 	if (err)
4267 		return err;
4268 	err = build_free_segmap(sbi);
4269 	if (err)
4270 		return err;
4271 	err = build_curseg(sbi);
4272 	if (err)
4273 		return err;
4274 
4275 	/* reinit free segmap based on SIT */
4276 	err = build_sit_entries(sbi);
4277 	if (err)
4278 		return err;
4279 
4280 	init_free_segmap(sbi);
4281 	err = build_dirty_segmap(sbi);
4282 	if (err)
4283 		return err;
4284 
4285 	init_min_max_mtime(sbi);
4286 	return 0;
4287 }
4288 
4289 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4290 		enum dirty_type dirty_type)
4291 {
4292 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4293 
4294 	mutex_lock(&dirty_i->seglist_lock);
4295 	kvfree(dirty_i->dirty_segmap[dirty_type]);
4296 	dirty_i->nr_dirty[dirty_type] = 0;
4297 	mutex_unlock(&dirty_i->seglist_lock);
4298 }
4299 
4300 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4301 {
4302 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4303 	kvfree(dirty_i->victim_secmap);
4304 }
4305 
4306 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4307 {
4308 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4309 	int i;
4310 
4311 	if (!dirty_i)
4312 		return;
4313 
4314 	/* discard pre-free/dirty segments list */
4315 	for (i = 0; i < NR_DIRTY_TYPE; i++)
4316 		discard_dirty_segmap(sbi, i);
4317 
4318 	destroy_victim_secmap(sbi);
4319 	SM_I(sbi)->dirty_info = NULL;
4320 	kvfree(dirty_i);
4321 }
4322 
4323 static void destroy_curseg(struct f2fs_sb_info *sbi)
4324 {
4325 	struct curseg_info *array = SM_I(sbi)->curseg_array;
4326 	int i;
4327 
4328 	if (!array)
4329 		return;
4330 	SM_I(sbi)->curseg_array = NULL;
4331 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4332 		kvfree(array[i].sum_blk);
4333 		kvfree(array[i].journal);
4334 	}
4335 	kvfree(array);
4336 }
4337 
4338 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4339 {
4340 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4341 	if (!free_i)
4342 		return;
4343 	SM_I(sbi)->free_info = NULL;
4344 	kvfree(free_i->free_segmap);
4345 	kvfree(free_i->free_secmap);
4346 	kvfree(free_i);
4347 }
4348 
4349 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4350 {
4351 	struct sit_info *sit_i = SIT_I(sbi);
4352 	unsigned int start;
4353 
4354 	if (!sit_i)
4355 		return;
4356 
4357 	if (sit_i->sentries) {
4358 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
4359 			kvfree(sit_i->sentries[start].cur_valid_map);
4360 #ifdef CONFIG_F2FS_CHECK_FS
4361 			kvfree(sit_i->sentries[start].cur_valid_map_mir);
4362 #endif
4363 			kvfree(sit_i->sentries[start].ckpt_valid_map);
4364 			kvfree(sit_i->sentries[start].discard_map);
4365 		}
4366 	}
4367 	kvfree(sit_i->tmp_map);
4368 
4369 	kvfree(sit_i->sentries);
4370 	kvfree(sit_i->sec_entries);
4371 	kvfree(sit_i->dirty_sentries_bitmap);
4372 
4373 	SM_I(sbi)->sit_info = NULL;
4374 	kvfree(sit_i->sit_bitmap);
4375 #ifdef CONFIG_F2FS_CHECK_FS
4376 	kvfree(sit_i->sit_bitmap_mir);
4377 #endif
4378 	kvfree(sit_i);
4379 }
4380 
4381 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4382 {
4383 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4384 
4385 	if (!sm_info)
4386 		return;
4387 	f2fs_destroy_flush_cmd_control(sbi, true);
4388 	destroy_discard_cmd_control(sbi);
4389 	destroy_dirty_segmap(sbi);
4390 	destroy_curseg(sbi);
4391 	destroy_free_segmap(sbi);
4392 	destroy_sit_info(sbi);
4393 	sbi->sm_info = NULL;
4394 	kvfree(sm_info);
4395 }
4396 
4397 int __init f2fs_create_segment_manager_caches(void)
4398 {
4399 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4400 			sizeof(struct discard_entry));
4401 	if (!discard_entry_slab)
4402 		goto fail;
4403 
4404 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4405 			sizeof(struct discard_cmd));
4406 	if (!discard_cmd_slab)
4407 		goto destroy_discard_entry;
4408 
4409 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4410 			sizeof(struct sit_entry_set));
4411 	if (!sit_entry_set_slab)
4412 		goto destroy_discard_cmd;
4413 
4414 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4415 			sizeof(struct inmem_pages));
4416 	if (!inmem_entry_slab)
4417 		goto destroy_sit_entry_set;
4418 	return 0;
4419 
4420 destroy_sit_entry_set:
4421 	kmem_cache_destroy(sit_entry_set_slab);
4422 destroy_discard_cmd:
4423 	kmem_cache_destroy(discard_cmd_slab);
4424 destroy_discard_entry:
4425 	kmem_cache_destroy(discard_entry_slab);
4426 fail:
4427 	return -ENOMEM;
4428 }
4429 
4430 void f2fs_destroy_segment_manager_caches(void)
4431 {
4432 	kmem_cache_destroy(sit_entry_set_slab);
4433 	kmem_cache_destroy(discard_cmd_slab);
4434 	kmem_cache_destroy(discard_entry_slab);
4435 	kmem_cache_destroy(inmem_entry_slab);
4436 }
4437