1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 /* 33 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 34 * MSB and LSB are reversed in a byte by f2fs_set_bit. 35 */ 36 static inline unsigned long __reverse_ffs(unsigned long word) 37 { 38 int num = 0; 39 40 #if BITS_PER_LONG == 64 41 if ((word & 0xffffffff) == 0) { 42 num += 32; 43 word >>= 32; 44 } 45 #endif 46 if ((word & 0xffff) == 0) { 47 num += 16; 48 word >>= 16; 49 } 50 if ((word & 0xff) == 0) { 51 num += 8; 52 word >>= 8; 53 } 54 if ((word & 0xf0) == 0) 55 num += 4; 56 else 57 word >>= 4; 58 if ((word & 0xc) == 0) 59 num += 2; 60 else 61 word >>= 2; 62 if ((word & 0x2) == 0) 63 num += 1; 64 return num; 65 } 66 67 /* 68 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 69 * f2fs_set_bit makes MSB and LSB reversed in a byte. 70 * Example: 71 * LSB <--> MSB 72 * f2fs_set_bit(0, bitmap) => 0000 0001 73 * f2fs_set_bit(7, bitmap) => 1000 0000 74 */ 75 static unsigned long __find_rev_next_bit(const unsigned long *addr, 76 unsigned long size, unsigned long offset) 77 { 78 const unsigned long *p = addr + BIT_WORD(offset); 79 unsigned long result = offset & ~(BITS_PER_LONG - 1); 80 unsigned long tmp; 81 unsigned long mask, submask; 82 unsigned long quot, rest; 83 84 if (offset >= size) 85 return size; 86 87 size -= result; 88 offset %= BITS_PER_LONG; 89 if (!offset) 90 goto aligned; 91 92 tmp = *(p++); 93 quot = (offset >> 3) << 3; 94 rest = offset & 0x7; 95 mask = ~0UL << quot; 96 submask = (unsigned char)(0xff << rest) >> rest; 97 submask <<= quot; 98 mask &= submask; 99 tmp &= mask; 100 if (size < BITS_PER_LONG) 101 goto found_first; 102 if (tmp) 103 goto found_middle; 104 105 size -= BITS_PER_LONG; 106 result += BITS_PER_LONG; 107 aligned: 108 while (size & ~(BITS_PER_LONG-1)) { 109 tmp = *(p++); 110 if (tmp) 111 goto found_middle; 112 result += BITS_PER_LONG; 113 size -= BITS_PER_LONG; 114 } 115 if (!size) 116 return result; 117 tmp = *p; 118 found_first: 119 tmp &= (~0UL >> (BITS_PER_LONG - size)); 120 if (tmp == 0UL) /* Are any bits set? */ 121 return result + size; /* Nope. */ 122 found_middle: 123 return result + __reverse_ffs(tmp); 124 } 125 126 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 127 unsigned long size, unsigned long offset) 128 { 129 const unsigned long *p = addr + BIT_WORD(offset); 130 unsigned long result = offset & ~(BITS_PER_LONG - 1); 131 unsigned long tmp; 132 unsigned long mask, submask; 133 unsigned long quot, rest; 134 135 if (offset >= size) 136 return size; 137 138 size -= result; 139 offset %= BITS_PER_LONG; 140 if (!offset) 141 goto aligned; 142 143 tmp = *(p++); 144 quot = (offset >> 3) << 3; 145 rest = offset & 0x7; 146 mask = ~(~0UL << quot); 147 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 148 submask <<= quot; 149 mask += submask; 150 tmp |= mask; 151 if (size < BITS_PER_LONG) 152 goto found_first; 153 if (~tmp) 154 goto found_middle; 155 156 size -= BITS_PER_LONG; 157 result += BITS_PER_LONG; 158 aligned: 159 while (size & ~(BITS_PER_LONG - 1)) { 160 tmp = *(p++); 161 if (~tmp) 162 goto found_middle; 163 result += BITS_PER_LONG; 164 size -= BITS_PER_LONG; 165 } 166 if (!size) 167 return result; 168 tmp = *p; 169 170 found_first: 171 tmp |= ~0UL << size; 172 if (tmp == ~0UL) /* Are any bits zero? */ 173 return result + size; /* Nope. */ 174 found_middle: 175 return result + __reverse_ffz(tmp); 176 } 177 178 void register_inmem_page(struct inode *inode, struct page *page) 179 { 180 struct f2fs_inode_info *fi = F2FS_I(inode); 181 struct inmem_pages *new; 182 int err; 183 184 SetPagePrivate(page); 185 f2fs_trace_pid(page); 186 187 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 188 189 /* add atomic page indices to the list */ 190 new->page = page; 191 INIT_LIST_HEAD(&new->list); 192 retry: 193 /* increase reference count with clean state */ 194 mutex_lock(&fi->inmem_lock); 195 err = radix_tree_insert(&fi->inmem_root, page->index, new); 196 if (err == -EEXIST) { 197 mutex_unlock(&fi->inmem_lock); 198 kmem_cache_free(inmem_entry_slab, new); 199 return; 200 } else if (err) { 201 mutex_unlock(&fi->inmem_lock); 202 goto retry; 203 } 204 get_page(page); 205 list_add_tail(&new->list, &fi->inmem_pages); 206 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 207 mutex_unlock(&fi->inmem_lock); 208 209 trace_f2fs_register_inmem_page(page, INMEM); 210 } 211 212 void commit_inmem_pages(struct inode *inode, bool abort) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct f2fs_inode_info *fi = F2FS_I(inode); 216 struct inmem_pages *cur, *tmp; 217 bool submit_bio = false; 218 struct f2fs_io_info fio = { 219 .sbi = sbi, 220 .type = DATA, 221 .rw = WRITE_SYNC | REQ_PRIO, 222 .encrypted_page = NULL, 223 }; 224 225 /* 226 * The abort is true only when f2fs_evict_inode is called. 227 * Basically, the f2fs_evict_inode doesn't produce any data writes, so 228 * that we don't need to call f2fs_balance_fs. 229 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this 230 * inode becomes free by iget_locked in f2fs_iget. 231 */ 232 if (!abort) { 233 f2fs_balance_fs(sbi); 234 f2fs_lock_op(sbi); 235 } 236 237 mutex_lock(&fi->inmem_lock); 238 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 239 if (!abort) { 240 lock_page(cur->page); 241 if (cur->page->mapping == inode->i_mapping) { 242 f2fs_wait_on_page_writeback(cur->page, DATA); 243 if (clear_page_dirty_for_io(cur->page)) 244 inode_dec_dirty_pages(inode); 245 trace_f2fs_commit_inmem_page(cur->page, INMEM); 246 fio.page = cur->page; 247 do_write_data_page(&fio); 248 submit_bio = true; 249 } 250 f2fs_put_page(cur->page, 1); 251 } else { 252 trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP); 253 put_page(cur->page); 254 } 255 radix_tree_delete(&fi->inmem_root, cur->page->index); 256 list_del(&cur->list); 257 kmem_cache_free(inmem_entry_slab, cur); 258 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 259 } 260 mutex_unlock(&fi->inmem_lock); 261 262 if (!abort) { 263 f2fs_unlock_op(sbi); 264 if (submit_bio) 265 f2fs_submit_merged_bio(sbi, DATA, WRITE); 266 } 267 } 268 269 /* 270 * This function balances dirty node and dentry pages. 271 * In addition, it controls garbage collection. 272 */ 273 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 274 { 275 /* 276 * We should do GC or end up with checkpoint, if there are so many dirty 277 * dir/node pages without enough free segments. 278 */ 279 if (has_not_enough_free_secs(sbi, 0)) { 280 mutex_lock(&sbi->gc_mutex); 281 f2fs_gc(sbi); 282 } 283 } 284 285 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 286 { 287 /* try to shrink extent cache when there is no enough memory */ 288 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 289 290 /* check the # of cached NAT entries and prefree segments */ 291 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || 292 excess_prefree_segs(sbi) || 293 !available_free_memory(sbi, INO_ENTRIES)) 294 f2fs_sync_fs(sbi->sb, true); 295 } 296 297 static int issue_flush_thread(void *data) 298 { 299 struct f2fs_sb_info *sbi = data; 300 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 301 wait_queue_head_t *q = &fcc->flush_wait_queue; 302 repeat: 303 if (kthread_should_stop()) 304 return 0; 305 306 if (!llist_empty(&fcc->issue_list)) { 307 struct bio *bio = bio_alloc(GFP_NOIO, 0); 308 struct flush_cmd *cmd, *next; 309 int ret; 310 311 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 312 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 313 314 bio->bi_bdev = sbi->sb->s_bdev; 315 ret = submit_bio_wait(WRITE_FLUSH, bio); 316 317 llist_for_each_entry_safe(cmd, next, 318 fcc->dispatch_list, llnode) { 319 cmd->ret = ret; 320 complete(&cmd->wait); 321 } 322 bio_put(bio); 323 fcc->dispatch_list = NULL; 324 } 325 326 wait_event_interruptible(*q, 327 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 328 goto repeat; 329 } 330 331 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 332 { 333 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 334 struct flush_cmd cmd; 335 336 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 337 test_opt(sbi, FLUSH_MERGE)); 338 339 if (test_opt(sbi, NOBARRIER)) 340 return 0; 341 342 if (!test_opt(sbi, FLUSH_MERGE)) 343 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL); 344 345 init_completion(&cmd.wait); 346 347 llist_add(&cmd.llnode, &fcc->issue_list); 348 349 if (!fcc->dispatch_list) 350 wake_up(&fcc->flush_wait_queue); 351 352 wait_for_completion(&cmd.wait); 353 354 return cmd.ret; 355 } 356 357 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 358 { 359 dev_t dev = sbi->sb->s_bdev->bd_dev; 360 struct flush_cmd_control *fcc; 361 int err = 0; 362 363 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 364 if (!fcc) 365 return -ENOMEM; 366 init_waitqueue_head(&fcc->flush_wait_queue); 367 init_llist_head(&fcc->issue_list); 368 SM_I(sbi)->cmd_control_info = fcc; 369 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 370 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 371 if (IS_ERR(fcc->f2fs_issue_flush)) { 372 err = PTR_ERR(fcc->f2fs_issue_flush); 373 kfree(fcc); 374 SM_I(sbi)->cmd_control_info = NULL; 375 return err; 376 } 377 378 return err; 379 } 380 381 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 382 { 383 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 384 385 if (fcc && fcc->f2fs_issue_flush) 386 kthread_stop(fcc->f2fs_issue_flush); 387 kfree(fcc); 388 SM_I(sbi)->cmd_control_info = NULL; 389 } 390 391 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 392 enum dirty_type dirty_type) 393 { 394 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 395 396 /* need not be added */ 397 if (IS_CURSEG(sbi, segno)) 398 return; 399 400 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 401 dirty_i->nr_dirty[dirty_type]++; 402 403 if (dirty_type == DIRTY) { 404 struct seg_entry *sentry = get_seg_entry(sbi, segno); 405 enum dirty_type t = sentry->type; 406 407 if (unlikely(t >= DIRTY)) { 408 f2fs_bug_on(sbi, 1); 409 return; 410 } 411 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 412 dirty_i->nr_dirty[t]++; 413 } 414 } 415 416 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 417 enum dirty_type dirty_type) 418 { 419 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 420 421 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 422 dirty_i->nr_dirty[dirty_type]--; 423 424 if (dirty_type == DIRTY) { 425 struct seg_entry *sentry = get_seg_entry(sbi, segno); 426 enum dirty_type t = sentry->type; 427 428 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 429 dirty_i->nr_dirty[t]--; 430 431 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 432 clear_bit(GET_SECNO(sbi, segno), 433 dirty_i->victim_secmap); 434 } 435 } 436 437 /* 438 * Should not occur error such as -ENOMEM. 439 * Adding dirty entry into seglist is not critical operation. 440 * If a given segment is one of current working segments, it won't be added. 441 */ 442 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 443 { 444 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 445 unsigned short valid_blocks; 446 447 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 448 return; 449 450 mutex_lock(&dirty_i->seglist_lock); 451 452 valid_blocks = get_valid_blocks(sbi, segno, 0); 453 454 if (valid_blocks == 0) { 455 __locate_dirty_segment(sbi, segno, PRE); 456 __remove_dirty_segment(sbi, segno, DIRTY); 457 } else if (valid_blocks < sbi->blocks_per_seg) { 458 __locate_dirty_segment(sbi, segno, DIRTY); 459 } else { 460 /* Recovery routine with SSR needs this */ 461 __remove_dirty_segment(sbi, segno, DIRTY); 462 } 463 464 mutex_unlock(&dirty_i->seglist_lock); 465 } 466 467 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 468 block_t blkstart, block_t blklen) 469 { 470 sector_t start = SECTOR_FROM_BLOCK(blkstart); 471 sector_t len = SECTOR_FROM_BLOCK(blklen); 472 struct seg_entry *se; 473 unsigned int offset; 474 block_t i; 475 476 for (i = blkstart; i < blkstart + blklen; i++) { 477 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 478 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 479 480 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 481 sbi->discard_blks--; 482 } 483 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 484 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 485 } 486 487 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 488 { 489 if (f2fs_issue_discard(sbi, blkaddr, 1)) { 490 struct page *page = grab_meta_page(sbi, blkaddr); 491 /* zero-filled page */ 492 set_page_dirty(page); 493 f2fs_put_page(page, 1); 494 } 495 } 496 497 static void __add_discard_entry(struct f2fs_sb_info *sbi, 498 struct cp_control *cpc, struct seg_entry *se, 499 unsigned int start, unsigned int end) 500 { 501 struct list_head *head = &SM_I(sbi)->discard_list; 502 struct discard_entry *new, *last; 503 504 if (!list_empty(head)) { 505 last = list_last_entry(head, struct discard_entry, list); 506 if (START_BLOCK(sbi, cpc->trim_start) + start == 507 last->blkaddr + last->len) { 508 last->len += end - start; 509 goto done; 510 } 511 } 512 513 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 514 INIT_LIST_HEAD(&new->list); 515 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 516 new->len = end - start; 517 list_add_tail(&new->list, head); 518 done: 519 SM_I(sbi)->nr_discards += end - start; 520 cpc->trimmed += end - start; 521 } 522 523 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 524 { 525 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 526 int max_blocks = sbi->blocks_per_seg; 527 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 528 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 529 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 530 unsigned long *discard_map = (unsigned long *)se->discard_map; 531 unsigned long *dmap = SIT_I(sbi)->tmp_map; 532 unsigned int start = 0, end = -1; 533 bool force = (cpc->reason == CP_DISCARD); 534 int i; 535 536 if (se->valid_blocks == max_blocks) 537 return; 538 539 if (!force) { 540 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 541 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 542 return; 543 } 544 545 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 546 for (i = 0; i < entries; i++) 547 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 548 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 549 550 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 551 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 552 if (start >= max_blocks) 553 break; 554 555 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 556 __add_discard_entry(sbi, cpc, se, start, end); 557 } 558 } 559 560 void release_discard_addrs(struct f2fs_sb_info *sbi) 561 { 562 struct list_head *head = &(SM_I(sbi)->discard_list); 563 struct discard_entry *entry, *this; 564 565 /* drop caches */ 566 list_for_each_entry_safe(entry, this, head, list) { 567 list_del(&entry->list); 568 kmem_cache_free(discard_entry_slab, entry); 569 } 570 } 571 572 /* 573 * Should call clear_prefree_segments after checkpoint is done. 574 */ 575 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 576 { 577 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 578 unsigned int segno; 579 580 mutex_lock(&dirty_i->seglist_lock); 581 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 582 __set_test_and_free(sbi, segno); 583 mutex_unlock(&dirty_i->seglist_lock); 584 } 585 586 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 587 { 588 struct list_head *head = &(SM_I(sbi)->discard_list); 589 struct discard_entry *entry, *this; 590 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 591 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 592 unsigned int start = 0, end = -1; 593 594 mutex_lock(&dirty_i->seglist_lock); 595 596 while (1) { 597 int i; 598 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 599 if (start >= MAIN_SEGS(sbi)) 600 break; 601 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 602 start + 1); 603 604 for (i = start; i < end; i++) 605 clear_bit(i, prefree_map); 606 607 dirty_i->nr_dirty[PRE] -= end - start; 608 609 if (!test_opt(sbi, DISCARD)) 610 continue; 611 612 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 613 (end - start) << sbi->log_blocks_per_seg); 614 } 615 mutex_unlock(&dirty_i->seglist_lock); 616 617 /* send small discards */ 618 list_for_each_entry_safe(entry, this, head, list) { 619 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen) 620 goto skip; 621 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 622 skip: 623 list_del(&entry->list); 624 SM_I(sbi)->nr_discards -= entry->len; 625 kmem_cache_free(discard_entry_slab, entry); 626 } 627 } 628 629 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 630 { 631 struct sit_info *sit_i = SIT_I(sbi); 632 633 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 634 sit_i->dirty_sentries++; 635 return false; 636 } 637 638 return true; 639 } 640 641 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 642 unsigned int segno, int modified) 643 { 644 struct seg_entry *se = get_seg_entry(sbi, segno); 645 se->type = type; 646 if (modified) 647 __mark_sit_entry_dirty(sbi, segno); 648 } 649 650 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 651 { 652 struct seg_entry *se; 653 unsigned int segno, offset; 654 long int new_vblocks; 655 656 segno = GET_SEGNO(sbi, blkaddr); 657 658 se = get_seg_entry(sbi, segno); 659 new_vblocks = se->valid_blocks + del; 660 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 661 662 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 663 (new_vblocks > sbi->blocks_per_seg))); 664 665 se->valid_blocks = new_vblocks; 666 se->mtime = get_mtime(sbi); 667 SIT_I(sbi)->max_mtime = se->mtime; 668 669 /* Update valid block bitmap */ 670 if (del > 0) { 671 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 672 f2fs_bug_on(sbi, 1); 673 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 674 sbi->discard_blks--; 675 } else { 676 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 677 f2fs_bug_on(sbi, 1); 678 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 679 sbi->discard_blks++; 680 } 681 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 682 se->ckpt_valid_blocks += del; 683 684 __mark_sit_entry_dirty(sbi, segno); 685 686 /* update total number of valid blocks to be written in ckpt area */ 687 SIT_I(sbi)->written_valid_blocks += del; 688 689 if (sbi->segs_per_sec > 1) 690 get_sec_entry(sbi, segno)->valid_blocks += del; 691 } 692 693 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 694 { 695 update_sit_entry(sbi, new, 1); 696 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 697 update_sit_entry(sbi, old, -1); 698 699 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 700 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 701 } 702 703 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 704 { 705 unsigned int segno = GET_SEGNO(sbi, addr); 706 struct sit_info *sit_i = SIT_I(sbi); 707 708 f2fs_bug_on(sbi, addr == NULL_ADDR); 709 if (addr == NEW_ADDR) 710 return; 711 712 /* add it into sit main buffer */ 713 mutex_lock(&sit_i->sentry_lock); 714 715 update_sit_entry(sbi, addr, -1); 716 717 /* add it into dirty seglist */ 718 locate_dirty_segment(sbi, segno); 719 720 mutex_unlock(&sit_i->sentry_lock); 721 } 722 723 /* 724 * This function should be resided under the curseg_mutex lock 725 */ 726 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 727 struct f2fs_summary *sum) 728 { 729 struct curseg_info *curseg = CURSEG_I(sbi, type); 730 void *addr = curseg->sum_blk; 731 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 732 memcpy(addr, sum, sizeof(struct f2fs_summary)); 733 } 734 735 /* 736 * Calculate the number of current summary pages for writing 737 */ 738 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 739 { 740 int valid_sum_count = 0; 741 int i, sum_in_page; 742 743 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 744 if (sbi->ckpt->alloc_type[i] == SSR) 745 valid_sum_count += sbi->blocks_per_seg; 746 else { 747 if (for_ra) 748 valid_sum_count += le16_to_cpu( 749 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 750 else 751 valid_sum_count += curseg_blkoff(sbi, i); 752 } 753 } 754 755 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 756 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 757 if (valid_sum_count <= sum_in_page) 758 return 1; 759 else if ((valid_sum_count - sum_in_page) <= 760 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 761 return 2; 762 return 3; 763 } 764 765 /* 766 * Caller should put this summary page 767 */ 768 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 769 { 770 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 771 } 772 773 static void write_sum_page(struct f2fs_sb_info *sbi, 774 struct f2fs_summary_block *sum_blk, block_t blk_addr) 775 { 776 struct page *page = grab_meta_page(sbi, blk_addr); 777 void *kaddr = page_address(page); 778 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); 779 set_page_dirty(page); 780 f2fs_put_page(page, 1); 781 } 782 783 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 784 { 785 struct curseg_info *curseg = CURSEG_I(sbi, type); 786 unsigned int segno = curseg->segno + 1; 787 struct free_segmap_info *free_i = FREE_I(sbi); 788 789 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 790 return !test_bit(segno, free_i->free_segmap); 791 return 0; 792 } 793 794 /* 795 * Find a new segment from the free segments bitmap to right order 796 * This function should be returned with success, otherwise BUG 797 */ 798 static void get_new_segment(struct f2fs_sb_info *sbi, 799 unsigned int *newseg, bool new_sec, int dir) 800 { 801 struct free_segmap_info *free_i = FREE_I(sbi); 802 unsigned int segno, secno, zoneno; 803 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 804 unsigned int hint = *newseg / sbi->segs_per_sec; 805 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 806 unsigned int left_start = hint; 807 bool init = true; 808 int go_left = 0; 809 int i; 810 811 spin_lock(&free_i->segmap_lock); 812 813 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 814 segno = find_next_zero_bit(free_i->free_segmap, 815 MAIN_SEGS(sbi), *newseg + 1); 816 if (segno - *newseg < sbi->segs_per_sec - 817 (*newseg % sbi->segs_per_sec)) 818 goto got_it; 819 } 820 find_other_zone: 821 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 822 if (secno >= MAIN_SECS(sbi)) { 823 if (dir == ALLOC_RIGHT) { 824 secno = find_next_zero_bit(free_i->free_secmap, 825 MAIN_SECS(sbi), 0); 826 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 827 } else { 828 go_left = 1; 829 left_start = hint - 1; 830 } 831 } 832 if (go_left == 0) 833 goto skip_left; 834 835 while (test_bit(left_start, free_i->free_secmap)) { 836 if (left_start > 0) { 837 left_start--; 838 continue; 839 } 840 left_start = find_next_zero_bit(free_i->free_secmap, 841 MAIN_SECS(sbi), 0); 842 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 843 break; 844 } 845 secno = left_start; 846 skip_left: 847 hint = secno; 848 segno = secno * sbi->segs_per_sec; 849 zoneno = secno / sbi->secs_per_zone; 850 851 /* give up on finding another zone */ 852 if (!init) 853 goto got_it; 854 if (sbi->secs_per_zone == 1) 855 goto got_it; 856 if (zoneno == old_zoneno) 857 goto got_it; 858 if (dir == ALLOC_LEFT) { 859 if (!go_left && zoneno + 1 >= total_zones) 860 goto got_it; 861 if (go_left && zoneno == 0) 862 goto got_it; 863 } 864 for (i = 0; i < NR_CURSEG_TYPE; i++) 865 if (CURSEG_I(sbi, i)->zone == zoneno) 866 break; 867 868 if (i < NR_CURSEG_TYPE) { 869 /* zone is in user, try another */ 870 if (go_left) 871 hint = zoneno * sbi->secs_per_zone - 1; 872 else if (zoneno + 1 >= total_zones) 873 hint = 0; 874 else 875 hint = (zoneno + 1) * sbi->secs_per_zone; 876 init = false; 877 goto find_other_zone; 878 } 879 got_it: 880 /* set it as dirty segment in free segmap */ 881 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 882 __set_inuse(sbi, segno); 883 *newseg = segno; 884 spin_unlock(&free_i->segmap_lock); 885 } 886 887 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 888 { 889 struct curseg_info *curseg = CURSEG_I(sbi, type); 890 struct summary_footer *sum_footer; 891 892 curseg->segno = curseg->next_segno; 893 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 894 curseg->next_blkoff = 0; 895 curseg->next_segno = NULL_SEGNO; 896 897 sum_footer = &(curseg->sum_blk->footer); 898 memset(sum_footer, 0, sizeof(struct summary_footer)); 899 if (IS_DATASEG(type)) 900 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 901 if (IS_NODESEG(type)) 902 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 903 __set_sit_entry_type(sbi, type, curseg->segno, modified); 904 } 905 906 /* 907 * Allocate a current working segment. 908 * This function always allocates a free segment in LFS manner. 909 */ 910 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 911 { 912 struct curseg_info *curseg = CURSEG_I(sbi, type); 913 unsigned int segno = curseg->segno; 914 int dir = ALLOC_LEFT; 915 916 write_sum_page(sbi, curseg->sum_blk, 917 GET_SUM_BLOCK(sbi, segno)); 918 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 919 dir = ALLOC_RIGHT; 920 921 if (test_opt(sbi, NOHEAP)) 922 dir = ALLOC_RIGHT; 923 924 get_new_segment(sbi, &segno, new_sec, dir); 925 curseg->next_segno = segno; 926 reset_curseg(sbi, type, 1); 927 curseg->alloc_type = LFS; 928 } 929 930 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 931 struct curseg_info *seg, block_t start) 932 { 933 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 934 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 935 unsigned long *target_map = SIT_I(sbi)->tmp_map; 936 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 937 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 938 int i, pos; 939 940 for (i = 0; i < entries; i++) 941 target_map[i] = ckpt_map[i] | cur_map[i]; 942 943 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 944 945 seg->next_blkoff = pos; 946 } 947 948 /* 949 * If a segment is written by LFS manner, next block offset is just obtained 950 * by increasing the current block offset. However, if a segment is written by 951 * SSR manner, next block offset obtained by calling __next_free_blkoff 952 */ 953 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 954 struct curseg_info *seg) 955 { 956 if (seg->alloc_type == SSR) 957 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 958 else 959 seg->next_blkoff++; 960 } 961 962 /* 963 * This function always allocates a used segment(from dirty seglist) by SSR 964 * manner, so it should recover the existing segment information of valid blocks 965 */ 966 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 967 { 968 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 969 struct curseg_info *curseg = CURSEG_I(sbi, type); 970 unsigned int new_segno = curseg->next_segno; 971 struct f2fs_summary_block *sum_node; 972 struct page *sum_page; 973 974 write_sum_page(sbi, curseg->sum_blk, 975 GET_SUM_BLOCK(sbi, curseg->segno)); 976 __set_test_and_inuse(sbi, new_segno); 977 978 mutex_lock(&dirty_i->seglist_lock); 979 __remove_dirty_segment(sbi, new_segno, PRE); 980 __remove_dirty_segment(sbi, new_segno, DIRTY); 981 mutex_unlock(&dirty_i->seglist_lock); 982 983 reset_curseg(sbi, type, 1); 984 curseg->alloc_type = SSR; 985 __next_free_blkoff(sbi, curseg, 0); 986 987 if (reuse) { 988 sum_page = get_sum_page(sbi, new_segno); 989 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 990 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 991 f2fs_put_page(sum_page, 1); 992 } 993 } 994 995 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 996 { 997 struct curseg_info *curseg = CURSEG_I(sbi, type); 998 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 999 1000 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 1001 return v_ops->get_victim(sbi, 1002 &(curseg)->next_segno, BG_GC, type, SSR); 1003 1004 /* For data segments, let's do SSR more intensively */ 1005 for (; type >= CURSEG_HOT_DATA; type--) 1006 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1007 BG_GC, type, SSR)) 1008 return 1; 1009 return 0; 1010 } 1011 1012 /* 1013 * flush out current segment and replace it with new segment 1014 * This function should be returned with success, otherwise BUG 1015 */ 1016 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1017 int type, bool force) 1018 { 1019 struct curseg_info *curseg = CURSEG_I(sbi, type); 1020 1021 if (force) 1022 new_curseg(sbi, type, true); 1023 else if (type == CURSEG_WARM_NODE) 1024 new_curseg(sbi, type, false); 1025 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1026 new_curseg(sbi, type, false); 1027 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1028 change_curseg(sbi, type, true); 1029 else 1030 new_curseg(sbi, type, false); 1031 1032 stat_inc_seg_type(sbi, curseg); 1033 } 1034 1035 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1036 { 1037 struct curseg_info *curseg = CURSEG_I(sbi, type); 1038 unsigned int old_segno; 1039 1040 old_segno = curseg->segno; 1041 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1042 locate_dirty_segment(sbi, old_segno); 1043 } 1044 1045 void allocate_new_segments(struct f2fs_sb_info *sbi) 1046 { 1047 int i; 1048 1049 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1050 __allocate_new_segments(sbi, i); 1051 } 1052 1053 static const struct segment_allocation default_salloc_ops = { 1054 .allocate_segment = allocate_segment_by_default, 1055 }; 1056 1057 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1058 { 1059 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1060 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1061 unsigned int start_segno, end_segno; 1062 struct cp_control cpc; 1063 1064 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1065 return -EINVAL; 1066 1067 cpc.trimmed = 0; 1068 if (end <= MAIN_BLKADDR(sbi)) 1069 goto out; 1070 1071 /* start/end segment number in main_area */ 1072 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1073 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1074 GET_SEGNO(sbi, end); 1075 cpc.reason = CP_DISCARD; 1076 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1077 1078 /* do checkpoint to issue discard commands safely */ 1079 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1080 cpc.trim_start = start_segno; 1081 1082 if (sbi->discard_blks == 0) 1083 break; 1084 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1085 cpc.trim_end = end_segno; 1086 else 1087 cpc.trim_end = min_t(unsigned int, 1088 rounddown(start_segno + 1089 BATCHED_TRIM_SEGMENTS(sbi), 1090 sbi->segs_per_sec) - 1, end_segno); 1091 1092 mutex_lock(&sbi->gc_mutex); 1093 write_checkpoint(sbi, &cpc); 1094 mutex_unlock(&sbi->gc_mutex); 1095 } 1096 out: 1097 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1098 return 0; 1099 } 1100 1101 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1102 { 1103 struct curseg_info *curseg = CURSEG_I(sbi, type); 1104 if (curseg->next_blkoff < sbi->blocks_per_seg) 1105 return true; 1106 return false; 1107 } 1108 1109 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1110 { 1111 if (p_type == DATA) 1112 return CURSEG_HOT_DATA; 1113 else 1114 return CURSEG_HOT_NODE; 1115 } 1116 1117 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1118 { 1119 if (p_type == DATA) { 1120 struct inode *inode = page->mapping->host; 1121 1122 if (S_ISDIR(inode->i_mode)) 1123 return CURSEG_HOT_DATA; 1124 else 1125 return CURSEG_COLD_DATA; 1126 } else { 1127 if (IS_DNODE(page) && is_cold_node(page)) 1128 return CURSEG_WARM_NODE; 1129 else 1130 return CURSEG_COLD_NODE; 1131 } 1132 } 1133 1134 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1135 { 1136 if (p_type == DATA) { 1137 struct inode *inode = page->mapping->host; 1138 1139 if (S_ISDIR(inode->i_mode)) 1140 return CURSEG_HOT_DATA; 1141 else if (is_cold_data(page) || file_is_cold(inode)) 1142 return CURSEG_COLD_DATA; 1143 else 1144 return CURSEG_WARM_DATA; 1145 } else { 1146 if (IS_DNODE(page)) 1147 return is_cold_node(page) ? CURSEG_WARM_NODE : 1148 CURSEG_HOT_NODE; 1149 else 1150 return CURSEG_COLD_NODE; 1151 } 1152 } 1153 1154 static int __get_segment_type(struct page *page, enum page_type p_type) 1155 { 1156 switch (F2FS_P_SB(page)->active_logs) { 1157 case 2: 1158 return __get_segment_type_2(page, p_type); 1159 case 4: 1160 return __get_segment_type_4(page, p_type); 1161 } 1162 /* NR_CURSEG_TYPE(6) logs by default */ 1163 f2fs_bug_on(F2FS_P_SB(page), 1164 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1165 return __get_segment_type_6(page, p_type); 1166 } 1167 1168 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1169 block_t old_blkaddr, block_t *new_blkaddr, 1170 struct f2fs_summary *sum, int type) 1171 { 1172 struct sit_info *sit_i = SIT_I(sbi); 1173 struct curseg_info *curseg; 1174 bool direct_io = (type == CURSEG_DIRECT_IO); 1175 1176 type = direct_io ? CURSEG_WARM_DATA : type; 1177 1178 curseg = CURSEG_I(sbi, type); 1179 1180 mutex_lock(&curseg->curseg_mutex); 1181 mutex_lock(&sit_i->sentry_lock); 1182 1183 /* direct_io'ed data is aligned to the segment for better performance */ 1184 if (direct_io && curseg->next_blkoff) 1185 __allocate_new_segments(sbi, type); 1186 1187 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1188 1189 /* 1190 * __add_sum_entry should be resided under the curseg_mutex 1191 * because, this function updates a summary entry in the 1192 * current summary block. 1193 */ 1194 __add_sum_entry(sbi, type, sum); 1195 1196 __refresh_next_blkoff(sbi, curseg); 1197 1198 stat_inc_block_count(sbi, curseg); 1199 1200 if (!__has_curseg_space(sbi, type)) 1201 sit_i->s_ops->allocate_segment(sbi, type, false); 1202 /* 1203 * SIT information should be updated before segment allocation, 1204 * since SSR needs latest valid block information. 1205 */ 1206 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1207 1208 mutex_unlock(&sit_i->sentry_lock); 1209 1210 if (page && IS_NODESEG(type)) 1211 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1212 1213 mutex_unlock(&curseg->curseg_mutex); 1214 } 1215 1216 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1217 { 1218 int type = __get_segment_type(fio->page, fio->type); 1219 1220 allocate_data_block(fio->sbi, fio->page, fio->blk_addr, 1221 &fio->blk_addr, sum, type); 1222 1223 /* writeout dirty page into bdev */ 1224 f2fs_submit_page_mbio(fio); 1225 } 1226 1227 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1228 { 1229 struct f2fs_io_info fio = { 1230 .sbi = sbi, 1231 .type = META, 1232 .rw = WRITE_SYNC | REQ_META | REQ_PRIO, 1233 .blk_addr = page->index, 1234 .page = page, 1235 .encrypted_page = NULL, 1236 }; 1237 1238 set_page_writeback(page); 1239 f2fs_submit_page_mbio(&fio); 1240 } 1241 1242 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1243 { 1244 struct f2fs_summary sum; 1245 1246 set_summary(&sum, nid, 0, 0); 1247 do_write_page(&sum, fio); 1248 } 1249 1250 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1251 { 1252 struct f2fs_sb_info *sbi = fio->sbi; 1253 struct f2fs_summary sum; 1254 struct node_info ni; 1255 1256 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1257 get_node_info(sbi, dn->nid, &ni); 1258 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1259 do_write_page(&sum, fio); 1260 dn->data_blkaddr = fio->blk_addr; 1261 } 1262 1263 void rewrite_data_page(struct f2fs_io_info *fio) 1264 { 1265 stat_inc_inplace_blocks(fio->sbi); 1266 f2fs_submit_page_mbio(fio); 1267 } 1268 1269 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1270 block_t old_blkaddr, block_t new_blkaddr, 1271 bool recover_curseg) 1272 { 1273 struct sit_info *sit_i = SIT_I(sbi); 1274 struct curseg_info *curseg; 1275 unsigned int segno, old_cursegno; 1276 struct seg_entry *se; 1277 int type; 1278 unsigned short old_blkoff; 1279 1280 segno = GET_SEGNO(sbi, new_blkaddr); 1281 se = get_seg_entry(sbi, segno); 1282 type = se->type; 1283 1284 if (!recover_curseg) { 1285 /* for recovery flow */ 1286 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1287 if (old_blkaddr == NULL_ADDR) 1288 type = CURSEG_COLD_DATA; 1289 else 1290 type = CURSEG_WARM_DATA; 1291 } 1292 } else { 1293 if (!IS_CURSEG(sbi, segno)) 1294 type = CURSEG_WARM_DATA; 1295 } 1296 1297 curseg = CURSEG_I(sbi, type); 1298 1299 mutex_lock(&curseg->curseg_mutex); 1300 mutex_lock(&sit_i->sentry_lock); 1301 1302 old_cursegno = curseg->segno; 1303 old_blkoff = curseg->next_blkoff; 1304 1305 /* change the current segment */ 1306 if (segno != curseg->segno) { 1307 curseg->next_segno = segno; 1308 change_curseg(sbi, type, true); 1309 } 1310 1311 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1312 __add_sum_entry(sbi, type, sum); 1313 1314 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1315 locate_dirty_segment(sbi, old_cursegno); 1316 1317 if (recover_curseg) { 1318 if (old_cursegno != curseg->segno) { 1319 curseg->next_segno = old_cursegno; 1320 change_curseg(sbi, type, true); 1321 } 1322 curseg->next_blkoff = old_blkoff; 1323 } 1324 1325 mutex_unlock(&sit_i->sentry_lock); 1326 mutex_unlock(&curseg->curseg_mutex); 1327 } 1328 1329 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1330 struct page *page, enum page_type type) 1331 { 1332 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1333 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1334 struct bio_vec *bvec; 1335 struct page *target; 1336 int i; 1337 1338 down_read(&io->io_rwsem); 1339 if (!io->bio) { 1340 up_read(&io->io_rwsem); 1341 return false; 1342 } 1343 1344 bio_for_each_segment_all(bvec, io->bio, i) { 1345 1346 if (bvec->bv_page->mapping) { 1347 target = bvec->bv_page; 1348 } else { 1349 struct f2fs_crypto_ctx *ctx; 1350 1351 /* encrypted page */ 1352 ctx = (struct f2fs_crypto_ctx *)page_private( 1353 bvec->bv_page); 1354 target = ctx->control_page; 1355 } 1356 1357 if (page == target) { 1358 up_read(&io->io_rwsem); 1359 return true; 1360 } 1361 } 1362 1363 up_read(&io->io_rwsem); 1364 return false; 1365 } 1366 1367 void f2fs_wait_on_page_writeback(struct page *page, 1368 enum page_type type) 1369 { 1370 if (PageWriteback(page)) { 1371 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1372 1373 if (is_merged_page(sbi, page, type)) 1374 f2fs_submit_merged_bio(sbi, type, WRITE); 1375 wait_on_page_writeback(page); 1376 } 1377 } 1378 1379 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1380 { 1381 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1382 struct curseg_info *seg_i; 1383 unsigned char *kaddr; 1384 struct page *page; 1385 block_t start; 1386 int i, j, offset; 1387 1388 start = start_sum_block(sbi); 1389 1390 page = get_meta_page(sbi, start++); 1391 kaddr = (unsigned char *)page_address(page); 1392 1393 /* Step 1: restore nat cache */ 1394 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1395 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1396 1397 /* Step 2: restore sit cache */ 1398 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1399 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1400 SUM_JOURNAL_SIZE); 1401 offset = 2 * SUM_JOURNAL_SIZE; 1402 1403 /* Step 3: restore summary entries */ 1404 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1405 unsigned short blk_off; 1406 unsigned int segno; 1407 1408 seg_i = CURSEG_I(sbi, i); 1409 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1410 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1411 seg_i->next_segno = segno; 1412 reset_curseg(sbi, i, 0); 1413 seg_i->alloc_type = ckpt->alloc_type[i]; 1414 seg_i->next_blkoff = blk_off; 1415 1416 if (seg_i->alloc_type == SSR) 1417 blk_off = sbi->blocks_per_seg; 1418 1419 for (j = 0; j < blk_off; j++) { 1420 struct f2fs_summary *s; 1421 s = (struct f2fs_summary *)(kaddr + offset); 1422 seg_i->sum_blk->entries[j] = *s; 1423 offset += SUMMARY_SIZE; 1424 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1425 SUM_FOOTER_SIZE) 1426 continue; 1427 1428 f2fs_put_page(page, 1); 1429 page = NULL; 1430 1431 page = get_meta_page(sbi, start++); 1432 kaddr = (unsigned char *)page_address(page); 1433 offset = 0; 1434 } 1435 } 1436 f2fs_put_page(page, 1); 1437 return 0; 1438 } 1439 1440 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1441 { 1442 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1443 struct f2fs_summary_block *sum; 1444 struct curseg_info *curseg; 1445 struct page *new; 1446 unsigned short blk_off; 1447 unsigned int segno = 0; 1448 block_t blk_addr = 0; 1449 1450 /* get segment number and block addr */ 1451 if (IS_DATASEG(type)) { 1452 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1453 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1454 CURSEG_HOT_DATA]); 1455 if (__exist_node_summaries(sbi)) 1456 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1457 else 1458 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1459 } else { 1460 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1461 CURSEG_HOT_NODE]); 1462 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1463 CURSEG_HOT_NODE]); 1464 if (__exist_node_summaries(sbi)) 1465 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1466 type - CURSEG_HOT_NODE); 1467 else 1468 blk_addr = GET_SUM_BLOCK(sbi, segno); 1469 } 1470 1471 new = get_meta_page(sbi, blk_addr); 1472 sum = (struct f2fs_summary_block *)page_address(new); 1473 1474 if (IS_NODESEG(type)) { 1475 if (__exist_node_summaries(sbi)) { 1476 struct f2fs_summary *ns = &sum->entries[0]; 1477 int i; 1478 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1479 ns->version = 0; 1480 ns->ofs_in_node = 0; 1481 } 1482 } else { 1483 int err; 1484 1485 err = restore_node_summary(sbi, segno, sum); 1486 if (err) { 1487 f2fs_put_page(new, 1); 1488 return err; 1489 } 1490 } 1491 } 1492 1493 /* set uncompleted segment to curseg */ 1494 curseg = CURSEG_I(sbi, type); 1495 mutex_lock(&curseg->curseg_mutex); 1496 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1497 curseg->next_segno = segno; 1498 reset_curseg(sbi, type, 0); 1499 curseg->alloc_type = ckpt->alloc_type[type]; 1500 curseg->next_blkoff = blk_off; 1501 mutex_unlock(&curseg->curseg_mutex); 1502 f2fs_put_page(new, 1); 1503 return 0; 1504 } 1505 1506 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1507 { 1508 int type = CURSEG_HOT_DATA; 1509 int err; 1510 1511 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1512 int npages = npages_for_summary_flush(sbi, true); 1513 1514 if (npages >= 2) 1515 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1516 META_CP); 1517 1518 /* restore for compacted data summary */ 1519 if (read_compacted_summaries(sbi)) 1520 return -EINVAL; 1521 type = CURSEG_HOT_NODE; 1522 } 1523 1524 if (__exist_node_summaries(sbi)) 1525 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1526 NR_CURSEG_TYPE - type, META_CP); 1527 1528 for (; type <= CURSEG_COLD_NODE; type++) { 1529 err = read_normal_summaries(sbi, type); 1530 if (err) 1531 return err; 1532 } 1533 1534 return 0; 1535 } 1536 1537 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1538 { 1539 struct page *page; 1540 unsigned char *kaddr; 1541 struct f2fs_summary *summary; 1542 struct curseg_info *seg_i; 1543 int written_size = 0; 1544 int i, j; 1545 1546 page = grab_meta_page(sbi, blkaddr++); 1547 kaddr = (unsigned char *)page_address(page); 1548 1549 /* Step 1: write nat cache */ 1550 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1551 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1552 written_size += SUM_JOURNAL_SIZE; 1553 1554 /* Step 2: write sit cache */ 1555 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1556 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1557 SUM_JOURNAL_SIZE); 1558 written_size += SUM_JOURNAL_SIZE; 1559 1560 /* Step 3: write summary entries */ 1561 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1562 unsigned short blkoff; 1563 seg_i = CURSEG_I(sbi, i); 1564 if (sbi->ckpt->alloc_type[i] == SSR) 1565 blkoff = sbi->blocks_per_seg; 1566 else 1567 blkoff = curseg_blkoff(sbi, i); 1568 1569 for (j = 0; j < blkoff; j++) { 1570 if (!page) { 1571 page = grab_meta_page(sbi, blkaddr++); 1572 kaddr = (unsigned char *)page_address(page); 1573 written_size = 0; 1574 } 1575 summary = (struct f2fs_summary *)(kaddr + written_size); 1576 *summary = seg_i->sum_blk->entries[j]; 1577 written_size += SUMMARY_SIZE; 1578 1579 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1580 SUM_FOOTER_SIZE) 1581 continue; 1582 1583 set_page_dirty(page); 1584 f2fs_put_page(page, 1); 1585 page = NULL; 1586 } 1587 } 1588 if (page) { 1589 set_page_dirty(page); 1590 f2fs_put_page(page, 1); 1591 } 1592 } 1593 1594 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1595 block_t blkaddr, int type) 1596 { 1597 int i, end; 1598 if (IS_DATASEG(type)) 1599 end = type + NR_CURSEG_DATA_TYPE; 1600 else 1601 end = type + NR_CURSEG_NODE_TYPE; 1602 1603 for (i = type; i < end; i++) { 1604 struct curseg_info *sum = CURSEG_I(sbi, i); 1605 mutex_lock(&sum->curseg_mutex); 1606 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1607 mutex_unlock(&sum->curseg_mutex); 1608 } 1609 } 1610 1611 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1612 { 1613 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1614 write_compacted_summaries(sbi, start_blk); 1615 else 1616 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1617 } 1618 1619 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1620 { 1621 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1622 } 1623 1624 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1625 unsigned int val, int alloc) 1626 { 1627 int i; 1628 1629 if (type == NAT_JOURNAL) { 1630 for (i = 0; i < nats_in_cursum(sum); i++) { 1631 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1632 return i; 1633 } 1634 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1635 return update_nats_in_cursum(sum, 1); 1636 } else if (type == SIT_JOURNAL) { 1637 for (i = 0; i < sits_in_cursum(sum); i++) 1638 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1639 return i; 1640 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1641 return update_sits_in_cursum(sum, 1); 1642 } 1643 return -1; 1644 } 1645 1646 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1647 unsigned int segno) 1648 { 1649 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1650 } 1651 1652 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1653 unsigned int start) 1654 { 1655 struct sit_info *sit_i = SIT_I(sbi); 1656 struct page *src_page, *dst_page; 1657 pgoff_t src_off, dst_off; 1658 void *src_addr, *dst_addr; 1659 1660 src_off = current_sit_addr(sbi, start); 1661 dst_off = next_sit_addr(sbi, src_off); 1662 1663 /* get current sit block page without lock */ 1664 src_page = get_meta_page(sbi, src_off); 1665 dst_page = grab_meta_page(sbi, dst_off); 1666 f2fs_bug_on(sbi, PageDirty(src_page)); 1667 1668 src_addr = page_address(src_page); 1669 dst_addr = page_address(dst_page); 1670 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1671 1672 set_page_dirty(dst_page); 1673 f2fs_put_page(src_page, 1); 1674 1675 set_to_next_sit(sit_i, start); 1676 1677 return dst_page; 1678 } 1679 1680 static struct sit_entry_set *grab_sit_entry_set(void) 1681 { 1682 struct sit_entry_set *ses = 1683 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC); 1684 1685 ses->entry_cnt = 0; 1686 INIT_LIST_HEAD(&ses->set_list); 1687 return ses; 1688 } 1689 1690 static void release_sit_entry_set(struct sit_entry_set *ses) 1691 { 1692 list_del(&ses->set_list); 1693 kmem_cache_free(sit_entry_set_slab, ses); 1694 } 1695 1696 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1697 struct list_head *head) 1698 { 1699 struct sit_entry_set *next = ses; 1700 1701 if (list_is_last(&ses->set_list, head)) 1702 return; 1703 1704 list_for_each_entry_continue(next, head, set_list) 1705 if (ses->entry_cnt <= next->entry_cnt) 1706 break; 1707 1708 list_move_tail(&ses->set_list, &next->set_list); 1709 } 1710 1711 static void add_sit_entry(unsigned int segno, struct list_head *head) 1712 { 1713 struct sit_entry_set *ses; 1714 unsigned int start_segno = START_SEGNO(segno); 1715 1716 list_for_each_entry(ses, head, set_list) { 1717 if (ses->start_segno == start_segno) { 1718 ses->entry_cnt++; 1719 adjust_sit_entry_set(ses, head); 1720 return; 1721 } 1722 } 1723 1724 ses = grab_sit_entry_set(); 1725 1726 ses->start_segno = start_segno; 1727 ses->entry_cnt++; 1728 list_add(&ses->set_list, head); 1729 } 1730 1731 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1732 { 1733 struct f2fs_sm_info *sm_info = SM_I(sbi); 1734 struct list_head *set_list = &sm_info->sit_entry_set; 1735 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1736 unsigned int segno; 1737 1738 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1739 add_sit_entry(segno, set_list); 1740 } 1741 1742 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1743 { 1744 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1745 struct f2fs_summary_block *sum = curseg->sum_blk; 1746 int i; 1747 1748 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1749 unsigned int segno; 1750 bool dirtied; 1751 1752 segno = le32_to_cpu(segno_in_journal(sum, i)); 1753 dirtied = __mark_sit_entry_dirty(sbi, segno); 1754 1755 if (!dirtied) 1756 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1757 } 1758 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1759 } 1760 1761 /* 1762 * CP calls this function, which flushes SIT entries including sit_journal, 1763 * and moves prefree segs to free segs. 1764 */ 1765 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1766 { 1767 struct sit_info *sit_i = SIT_I(sbi); 1768 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1769 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1770 struct f2fs_summary_block *sum = curseg->sum_blk; 1771 struct sit_entry_set *ses, *tmp; 1772 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1773 bool to_journal = true; 1774 struct seg_entry *se; 1775 1776 mutex_lock(&curseg->curseg_mutex); 1777 mutex_lock(&sit_i->sentry_lock); 1778 1779 if (!sit_i->dirty_sentries) 1780 goto out; 1781 1782 /* 1783 * add and account sit entries of dirty bitmap in sit entry 1784 * set temporarily 1785 */ 1786 add_sits_in_set(sbi); 1787 1788 /* 1789 * if there are no enough space in journal to store dirty sit 1790 * entries, remove all entries from journal and add and account 1791 * them in sit entry set. 1792 */ 1793 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL)) 1794 remove_sits_in_journal(sbi); 1795 1796 /* 1797 * there are two steps to flush sit entries: 1798 * #1, flush sit entries to journal in current cold data summary block. 1799 * #2, flush sit entries to sit page. 1800 */ 1801 list_for_each_entry_safe(ses, tmp, head, set_list) { 1802 struct page *page = NULL; 1803 struct f2fs_sit_block *raw_sit = NULL; 1804 unsigned int start_segno = ses->start_segno; 1805 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1806 (unsigned long)MAIN_SEGS(sbi)); 1807 unsigned int segno = start_segno; 1808 1809 if (to_journal && 1810 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL)) 1811 to_journal = false; 1812 1813 if (!to_journal) { 1814 page = get_next_sit_page(sbi, start_segno); 1815 raw_sit = page_address(page); 1816 } 1817 1818 /* flush dirty sit entries in region of current sit set */ 1819 for_each_set_bit_from(segno, bitmap, end) { 1820 int offset, sit_offset; 1821 1822 se = get_seg_entry(sbi, segno); 1823 1824 /* add discard candidates */ 1825 if (cpc->reason != CP_DISCARD) { 1826 cpc->trim_start = segno; 1827 add_discard_addrs(sbi, cpc); 1828 } 1829 1830 if (to_journal) { 1831 offset = lookup_journal_in_cursum(sum, 1832 SIT_JOURNAL, segno, 1); 1833 f2fs_bug_on(sbi, offset < 0); 1834 segno_in_journal(sum, offset) = 1835 cpu_to_le32(segno); 1836 seg_info_to_raw_sit(se, 1837 &sit_in_journal(sum, offset)); 1838 } else { 1839 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1840 seg_info_to_raw_sit(se, 1841 &raw_sit->entries[sit_offset]); 1842 } 1843 1844 __clear_bit(segno, bitmap); 1845 sit_i->dirty_sentries--; 1846 ses->entry_cnt--; 1847 } 1848 1849 if (!to_journal) 1850 f2fs_put_page(page, 1); 1851 1852 f2fs_bug_on(sbi, ses->entry_cnt); 1853 release_sit_entry_set(ses); 1854 } 1855 1856 f2fs_bug_on(sbi, !list_empty(head)); 1857 f2fs_bug_on(sbi, sit_i->dirty_sentries); 1858 out: 1859 if (cpc->reason == CP_DISCARD) { 1860 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 1861 add_discard_addrs(sbi, cpc); 1862 } 1863 mutex_unlock(&sit_i->sentry_lock); 1864 mutex_unlock(&curseg->curseg_mutex); 1865 1866 set_prefree_as_free_segments(sbi); 1867 } 1868 1869 static int build_sit_info(struct f2fs_sb_info *sbi) 1870 { 1871 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1872 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1873 struct sit_info *sit_i; 1874 unsigned int sit_segs, start; 1875 char *src_bitmap, *dst_bitmap; 1876 unsigned int bitmap_size; 1877 1878 /* allocate memory for SIT information */ 1879 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1880 if (!sit_i) 1881 return -ENOMEM; 1882 1883 SM_I(sbi)->sit_info = sit_i; 1884 1885 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry)); 1886 if (!sit_i->sentries) 1887 return -ENOMEM; 1888 1889 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1890 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1891 if (!sit_i->dirty_sentries_bitmap) 1892 return -ENOMEM; 1893 1894 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1895 sit_i->sentries[start].cur_valid_map 1896 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1897 sit_i->sentries[start].ckpt_valid_map 1898 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1899 sit_i->sentries[start].discard_map 1900 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1901 if (!sit_i->sentries[start].cur_valid_map || 1902 !sit_i->sentries[start].ckpt_valid_map || 1903 !sit_i->sentries[start].discard_map) 1904 return -ENOMEM; 1905 } 1906 1907 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1908 if (!sit_i->tmp_map) 1909 return -ENOMEM; 1910 1911 if (sbi->segs_per_sec > 1) { 1912 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) * 1913 sizeof(struct sec_entry)); 1914 if (!sit_i->sec_entries) 1915 return -ENOMEM; 1916 } 1917 1918 /* get information related with SIT */ 1919 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1920 1921 /* setup SIT bitmap from ckeckpoint pack */ 1922 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1923 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1924 1925 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1926 if (!dst_bitmap) 1927 return -ENOMEM; 1928 1929 /* init SIT information */ 1930 sit_i->s_ops = &default_salloc_ops; 1931 1932 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1933 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1934 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1935 sit_i->sit_bitmap = dst_bitmap; 1936 sit_i->bitmap_size = bitmap_size; 1937 sit_i->dirty_sentries = 0; 1938 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1939 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1940 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1941 mutex_init(&sit_i->sentry_lock); 1942 return 0; 1943 } 1944 1945 static int build_free_segmap(struct f2fs_sb_info *sbi) 1946 { 1947 struct free_segmap_info *free_i; 1948 unsigned int bitmap_size, sec_bitmap_size; 1949 1950 /* allocate memory for free segmap information */ 1951 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 1952 if (!free_i) 1953 return -ENOMEM; 1954 1955 SM_I(sbi)->free_info = free_i; 1956 1957 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1958 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 1959 if (!free_i->free_segmap) 1960 return -ENOMEM; 1961 1962 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 1963 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 1964 if (!free_i->free_secmap) 1965 return -ENOMEM; 1966 1967 /* set all segments as dirty temporarily */ 1968 memset(free_i->free_segmap, 0xff, bitmap_size); 1969 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 1970 1971 /* init free segmap information */ 1972 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 1973 free_i->free_segments = 0; 1974 free_i->free_sections = 0; 1975 spin_lock_init(&free_i->segmap_lock); 1976 return 0; 1977 } 1978 1979 static int build_curseg(struct f2fs_sb_info *sbi) 1980 { 1981 struct curseg_info *array; 1982 int i; 1983 1984 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 1985 if (!array) 1986 return -ENOMEM; 1987 1988 SM_I(sbi)->curseg_array = array; 1989 1990 for (i = 0; i < NR_CURSEG_TYPE; i++) { 1991 mutex_init(&array[i].curseg_mutex); 1992 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 1993 if (!array[i].sum_blk) 1994 return -ENOMEM; 1995 array[i].segno = NULL_SEGNO; 1996 array[i].next_blkoff = 0; 1997 } 1998 return restore_curseg_summaries(sbi); 1999 } 2000 2001 static void build_sit_entries(struct f2fs_sb_info *sbi) 2002 { 2003 struct sit_info *sit_i = SIT_I(sbi); 2004 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2005 struct f2fs_summary_block *sum = curseg->sum_blk; 2006 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2007 unsigned int i, start, end; 2008 unsigned int readed, start_blk = 0; 2009 int nrpages = MAX_BIO_BLOCKS(sbi); 2010 2011 do { 2012 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 2013 2014 start = start_blk * sit_i->sents_per_block; 2015 end = (start_blk + readed) * sit_i->sents_per_block; 2016 2017 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2018 struct seg_entry *se = &sit_i->sentries[start]; 2019 struct f2fs_sit_block *sit_blk; 2020 struct f2fs_sit_entry sit; 2021 struct page *page; 2022 2023 mutex_lock(&curseg->curseg_mutex); 2024 for (i = 0; i < sits_in_cursum(sum); i++) { 2025 if (le32_to_cpu(segno_in_journal(sum, i)) 2026 == start) { 2027 sit = sit_in_journal(sum, i); 2028 mutex_unlock(&curseg->curseg_mutex); 2029 goto got_it; 2030 } 2031 } 2032 mutex_unlock(&curseg->curseg_mutex); 2033 2034 page = get_current_sit_page(sbi, start); 2035 sit_blk = (struct f2fs_sit_block *)page_address(page); 2036 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2037 f2fs_put_page(page, 1); 2038 got_it: 2039 check_block_count(sbi, start, &sit); 2040 seg_info_from_raw_sit(se, &sit); 2041 2042 /* build discard map only one time */ 2043 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 2044 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; 2045 2046 if (sbi->segs_per_sec > 1) { 2047 struct sec_entry *e = get_sec_entry(sbi, start); 2048 e->valid_blocks += se->valid_blocks; 2049 } 2050 } 2051 start_blk += readed; 2052 } while (start_blk < sit_blk_cnt); 2053 } 2054 2055 static void init_free_segmap(struct f2fs_sb_info *sbi) 2056 { 2057 unsigned int start; 2058 int type; 2059 2060 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2061 struct seg_entry *sentry = get_seg_entry(sbi, start); 2062 if (!sentry->valid_blocks) 2063 __set_free(sbi, start); 2064 } 2065 2066 /* set use the current segments */ 2067 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2068 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2069 __set_test_and_inuse(sbi, curseg_t->segno); 2070 } 2071 } 2072 2073 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2074 { 2075 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2076 struct free_segmap_info *free_i = FREE_I(sbi); 2077 unsigned int segno = 0, offset = 0; 2078 unsigned short valid_blocks; 2079 2080 while (1) { 2081 /* find dirty segment based on free segmap */ 2082 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2083 if (segno >= MAIN_SEGS(sbi)) 2084 break; 2085 offset = segno + 1; 2086 valid_blocks = get_valid_blocks(sbi, segno, 0); 2087 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2088 continue; 2089 if (valid_blocks > sbi->blocks_per_seg) { 2090 f2fs_bug_on(sbi, 1); 2091 continue; 2092 } 2093 mutex_lock(&dirty_i->seglist_lock); 2094 __locate_dirty_segment(sbi, segno, DIRTY); 2095 mutex_unlock(&dirty_i->seglist_lock); 2096 } 2097 } 2098 2099 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2100 { 2101 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2102 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2103 2104 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 2105 if (!dirty_i->victim_secmap) 2106 return -ENOMEM; 2107 return 0; 2108 } 2109 2110 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2111 { 2112 struct dirty_seglist_info *dirty_i; 2113 unsigned int bitmap_size, i; 2114 2115 /* allocate memory for dirty segments list information */ 2116 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2117 if (!dirty_i) 2118 return -ENOMEM; 2119 2120 SM_I(sbi)->dirty_info = dirty_i; 2121 mutex_init(&dirty_i->seglist_lock); 2122 2123 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2124 2125 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2126 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 2127 if (!dirty_i->dirty_segmap[i]) 2128 return -ENOMEM; 2129 } 2130 2131 init_dirty_segmap(sbi); 2132 return init_victim_secmap(sbi); 2133 } 2134 2135 /* 2136 * Update min, max modified time for cost-benefit GC algorithm 2137 */ 2138 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2139 { 2140 struct sit_info *sit_i = SIT_I(sbi); 2141 unsigned int segno; 2142 2143 mutex_lock(&sit_i->sentry_lock); 2144 2145 sit_i->min_mtime = LLONG_MAX; 2146 2147 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2148 unsigned int i; 2149 unsigned long long mtime = 0; 2150 2151 for (i = 0; i < sbi->segs_per_sec; i++) 2152 mtime += get_seg_entry(sbi, segno + i)->mtime; 2153 2154 mtime = div_u64(mtime, sbi->segs_per_sec); 2155 2156 if (sit_i->min_mtime > mtime) 2157 sit_i->min_mtime = mtime; 2158 } 2159 sit_i->max_mtime = get_mtime(sbi); 2160 mutex_unlock(&sit_i->sentry_lock); 2161 } 2162 2163 int build_segment_manager(struct f2fs_sb_info *sbi) 2164 { 2165 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2166 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2167 struct f2fs_sm_info *sm_info; 2168 int err; 2169 2170 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2171 if (!sm_info) 2172 return -ENOMEM; 2173 2174 /* init sm info */ 2175 sbi->sm_info = sm_info; 2176 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2177 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2178 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2179 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2180 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2181 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2182 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2183 sm_info->rec_prefree_segments = sm_info->main_segments * 2184 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2185 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2186 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2187 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2188 2189 INIT_LIST_HEAD(&sm_info->discard_list); 2190 sm_info->nr_discards = 0; 2191 sm_info->max_discards = 0; 2192 2193 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2194 2195 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2196 2197 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2198 err = create_flush_cmd_control(sbi); 2199 if (err) 2200 return err; 2201 } 2202 2203 err = build_sit_info(sbi); 2204 if (err) 2205 return err; 2206 err = build_free_segmap(sbi); 2207 if (err) 2208 return err; 2209 err = build_curseg(sbi); 2210 if (err) 2211 return err; 2212 2213 /* reinit free segmap based on SIT */ 2214 build_sit_entries(sbi); 2215 2216 init_free_segmap(sbi); 2217 err = build_dirty_segmap(sbi); 2218 if (err) 2219 return err; 2220 2221 init_min_max_mtime(sbi); 2222 return 0; 2223 } 2224 2225 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2226 enum dirty_type dirty_type) 2227 { 2228 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2229 2230 mutex_lock(&dirty_i->seglist_lock); 2231 kfree(dirty_i->dirty_segmap[dirty_type]); 2232 dirty_i->nr_dirty[dirty_type] = 0; 2233 mutex_unlock(&dirty_i->seglist_lock); 2234 } 2235 2236 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2237 { 2238 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2239 kfree(dirty_i->victim_secmap); 2240 } 2241 2242 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2243 { 2244 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2245 int i; 2246 2247 if (!dirty_i) 2248 return; 2249 2250 /* discard pre-free/dirty segments list */ 2251 for (i = 0; i < NR_DIRTY_TYPE; i++) 2252 discard_dirty_segmap(sbi, i); 2253 2254 destroy_victim_secmap(sbi); 2255 SM_I(sbi)->dirty_info = NULL; 2256 kfree(dirty_i); 2257 } 2258 2259 static void destroy_curseg(struct f2fs_sb_info *sbi) 2260 { 2261 struct curseg_info *array = SM_I(sbi)->curseg_array; 2262 int i; 2263 2264 if (!array) 2265 return; 2266 SM_I(sbi)->curseg_array = NULL; 2267 for (i = 0; i < NR_CURSEG_TYPE; i++) 2268 kfree(array[i].sum_blk); 2269 kfree(array); 2270 } 2271 2272 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2273 { 2274 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2275 if (!free_i) 2276 return; 2277 SM_I(sbi)->free_info = NULL; 2278 kfree(free_i->free_segmap); 2279 kfree(free_i->free_secmap); 2280 kfree(free_i); 2281 } 2282 2283 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2284 { 2285 struct sit_info *sit_i = SIT_I(sbi); 2286 unsigned int start; 2287 2288 if (!sit_i) 2289 return; 2290 2291 if (sit_i->sentries) { 2292 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2293 kfree(sit_i->sentries[start].cur_valid_map); 2294 kfree(sit_i->sentries[start].ckpt_valid_map); 2295 kfree(sit_i->sentries[start].discard_map); 2296 } 2297 } 2298 kfree(sit_i->tmp_map); 2299 2300 vfree(sit_i->sentries); 2301 vfree(sit_i->sec_entries); 2302 kfree(sit_i->dirty_sentries_bitmap); 2303 2304 SM_I(sbi)->sit_info = NULL; 2305 kfree(sit_i->sit_bitmap); 2306 kfree(sit_i); 2307 } 2308 2309 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2310 { 2311 struct f2fs_sm_info *sm_info = SM_I(sbi); 2312 2313 if (!sm_info) 2314 return; 2315 destroy_flush_cmd_control(sbi); 2316 destroy_dirty_segmap(sbi); 2317 destroy_curseg(sbi); 2318 destroy_free_segmap(sbi); 2319 destroy_sit_info(sbi); 2320 sbi->sm_info = NULL; 2321 kfree(sm_info); 2322 } 2323 2324 int __init create_segment_manager_caches(void) 2325 { 2326 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2327 sizeof(struct discard_entry)); 2328 if (!discard_entry_slab) 2329 goto fail; 2330 2331 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2332 sizeof(struct sit_entry_set)); 2333 if (!sit_entry_set_slab) 2334 goto destory_discard_entry; 2335 2336 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2337 sizeof(struct inmem_pages)); 2338 if (!inmem_entry_slab) 2339 goto destroy_sit_entry_set; 2340 return 0; 2341 2342 destroy_sit_entry_set: 2343 kmem_cache_destroy(sit_entry_set_slab); 2344 destory_discard_entry: 2345 kmem_cache_destroy(discard_entry_slab); 2346 fail: 2347 return -ENOMEM; 2348 } 2349 2350 void destroy_segment_manager_caches(void) 2351 { 2352 kmem_cache_destroy(sit_entry_set_slab); 2353 kmem_cache_destroy(discard_entry_slab); 2354 kmem_cache_destroy(inmem_entry_slab); 2355 } 2356