1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 static unsigned long __reverse_ulong(unsigned char *str) 33 { 34 unsigned long tmp = 0; 35 int shift = 24, idx = 0; 36 37 #if BITS_PER_LONG == 64 38 shift = 56; 39 #endif 40 while (shift >= 0) { 41 tmp |= (unsigned long)str[idx++] << shift; 42 shift -= BITS_PER_BYTE; 43 } 44 return tmp; 45 } 46 47 /* 48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 49 * MSB and LSB are reversed in a byte by f2fs_set_bit. 50 */ 51 static inline unsigned long __reverse_ffs(unsigned long word) 52 { 53 int num = 0; 54 55 #if BITS_PER_LONG == 64 56 if ((word & 0xffffffff00000000UL) == 0) 57 num += 32; 58 else 59 word >>= 32; 60 #endif 61 if ((word & 0xffff0000) == 0) 62 num += 16; 63 else 64 word >>= 16; 65 66 if ((word & 0xff00) == 0) 67 num += 8; 68 else 69 word >>= 8; 70 71 if ((word & 0xf0) == 0) 72 num += 4; 73 else 74 word >>= 4; 75 76 if ((word & 0xc) == 0) 77 num += 2; 78 else 79 word >>= 2; 80 81 if ((word & 0x2) == 0) 82 num += 1; 83 return num; 84 } 85 86 /* 87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 88 * f2fs_set_bit makes MSB and LSB reversed in a byte. 89 * @size must be integral times of unsigned long. 90 * Example: 91 * MSB <--> LSB 92 * f2fs_set_bit(0, bitmap) => 1000 0000 93 * f2fs_set_bit(7, bitmap) => 0000 0001 94 */ 95 static unsigned long __find_rev_next_bit(const unsigned long *addr, 96 unsigned long size, unsigned long offset) 97 { 98 const unsigned long *p = addr + BIT_WORD(offset); 99 unsigned long result = size; 100 unsigned long tmp; 101 102 if (offset >= size) 103 return size; 104 105 size -= (offset & ~(BITS_PER_LONG - 1)); 106 offset %= BITS_PER_LONG; 107 108 while (1) { 109 if (*p == 0) 110 goto pass; 111 112 tmp = __reverse_ulong((unsigned char *)p); 113 114 tmp &= ~0UL >> offset; 115 if (size < BITS_PER_LONG) 116 tmp &= (~0UL << (BITS_PER_LONG - size)); 117 if (tmp) 118 goto found; 119 pass: 120 if (size <= BITS_PER_LONG) 121 break; 122 size -= BITS_PER_LONG; 123 offset = 0; 124 p++; 125 } 126 return result; 127 found: 128 return result - size + __reverse_ffs(tmp); 129 } 130 131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 132 unsigned long size, unsigned long offset) 133 { 134 const unsigned long *p = addr + BIT_WORD(offset); 135 unsigned long result = size; 136 unsigned long tmp; 137 138 if (offset >= size) 139 return size; 140 141 size -= (offset & ~(BITS_PER_LONG - 1)); 142 offset %= BITS_PER_LONG; 143 144 while (1) { 145 if (*p == ~0UL) 146 goto pass; 147 148 tmp = __reverse_ulong((unsigned char *)p); 149 150 if (offset) 151 tmp |= ~0UL << (BITS_PER_LONG - offset); 152 if (size < BITS_PER_LONG) 153 tmp |= ~0UL >> size; 154 if (tmp != ~0UL) 155 goto found; 156 pass: 157 if (size <= BITS_PER_LONG) 158 break; 159 size -= BITS_PER_LONG; 160 offset = 0; 161 p++; 162 } 163 return result; 164 found: 165 return result - size + __reverse_ffz(tmp); 166 } 167 168 void register_inmem_page(struct inode *inode, struct page *page) 169 { 170 struct f2fs_inode_info *fi = F2FS_I(inode); 171 struct inmem_pages *new; 172 173 f2fs_trace_pid(page); 174 175 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 176 SetPagePrivate(page); 177 178 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 179 180 /* add atomic page indices to the list */ 181 new->page = page; 182 INIT_LIST_HEAD(&new->list); 183 184 /* increase reference count with clean state */ 185 mutex_lock(&fi->inmem_lock); 186 get_page(page); 187 list_add_tail(&new->list, &fi->inmem_pages); 188 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 189 mutex_unlock(&fi->inmem_lock); 190 191 trace_f2fs_register_inmem_page(page, INMEM); 192 } 193 194 static int __revoke_inmem_pages(struct inode *inode, 195 struct list_head *head, bool drop, bool recover) 196 { 197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 198 struct inmem_pages *cur, *tmp; 199 int err = 0; 200 201 list_for_each_entry_safe(cur, tmp, head, list) { 202 struct page *page = cur->page; 203 204 if (drop) 205 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 206 207 lock_page(page); 208 209 if (recover) { 210 struct dnode_of_data dn; 211 struct node_info ni; 212 213 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 214 215 set_new_dnode(&dn, inode, NULL, NULL, 0); 216 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 217 err = -EAGAIN; 218 goto next; 219 } 220 get_node_info(sbi, dn.nid, &ni); 221 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 222 cur->old_addr, ni.version, true, true); 223 f2fs_put_dnode(&dn); 224 } 225 next: 226 ClearPageUptodate(page); 227 set_page_private(page, 0); 228 ClearPageUptodate(page); 229 f2fs_put_page(page, 1); 230 231 list_del(&cur->list); 232 kmem_cache_free(inmem_entry_slab, cur); 233 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 234 } 235 return err; 236 } 237 238 void drop_inmem_pages(struct inode *inode) 239 { 240 struct f2fs_inode_info *fi = F2FS_I(inode); 241 242 mutex_lock(&fi->inmem_lock); 243 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 244 mutex_unlock(&fi->inmem_lock); 245 } 246 247 static int __commit_inmem_pages(struct inode *inode, 248 struct list_head *revoke_list) 249 { 250 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 251 struct f2fs_inode_info *fi = F2FS_I(inode); 252 struct inmem_pages *cur, *tmp; 253 struct f2fs_io_info fio = { 254 .sbi = sbi, 255 .type = DATA, 256 .rw = WRITE_SYNC | REQ_PRIO, 257 .encrypted_page = NULL, 258 }; 259 bool submit_bio = false; 260 int err = 0; 261 262 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 263 struct page *page = cur->page; 264 265 lock_page(page); 266 if (page->mapping == inode->i_mapping) { 267 trace_f2fs_commit_inmem_page(page, INMEM); 268 269 set_page_dirty(page); 270 f2fs_wait_on_page_writeback(page, DATA, true); 271 if (clear_page_dirty_for_io(page)) 272 inode_dec_dirty_pages(inode); 273 274 fio.page = page; 275 err = do_write_data_page(&fio); 276 if (err) { 277 unlock_page(page); 278 break; 279 } 280 281 /* record old blkaddr for revoking */ 282 cur->old_addr = fio.old_blkaddr; 283 284 clear_cold_data(page); 285 submit_bio = true; 286 } 287 unlock_page(page); 288 list_move_tail(&cur->list, revoke_list); 289 } 290 291 if (submit_bio) 292 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 293 294 if (!err) 295 __revoke_inmem_pages(inode, revoke_list, false, false); 296 297 return err; 298 } 299 300 int commit_inmem_pages(struct inode *inode) 301 { 302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 303 struct f2fs_inode_info *fi = F2FS_I(inode); 304 struct list_head revoke_list; 305 int err; 306 307 INIT_LIST_HEAD(&revoke_list); 308 f2fs_balance_fs(sbi, true); 309 f2fs_lock_op(sbi); 310 311 mutex_lock(&fi->inmem_lock); 312 err = __commit_inmem_pages(inode, &revoke_list); 313 if (err) { 314 int ret; 315 /* 316 * try to revoke all committed pages, but still we could fail 317 * due to no memory or other reason, if that happened, EAGAIN 318 * will be returned, which means in such case, transaction is 319 * already not integrity, caller should use journal to do the 320 * recovery or rewrite & commit last transaction. For other 321 * error number, revoking was done by filesystem itself. 322 */ 323 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 324 if (ret) 325 err = ret; 326 327 /* drop all uncommitted pages */ 328 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 329 } 330 mutex_unlock(&fi->inmem_lock); 331 332 f2fs_unlock_op(sbi); 333 return err; 334 } 335 336 /* 337 * This function balances dirty node and dentry pages. 338 * In addition, it controls garbage collection. 339 */ 340 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 341 { 342 if (!need) 343 return; 344 /* 345 * We should do GC or end up with checkpoint, if there are so many dirty 346 * dir/node pages without enough free segments. 347 */ 348 if (has_not_enough_free_secs(sbi, 0)) { 349 mutex_lock(&sbi->gc_mutex); 350 f2fs_gc(sbi, false); 351 } 352 } 353 354 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 355 { 356 /* try to shrink extent cache when there is no enough memory */ 357 if (!available_free_memory(sbi, EXTENT_CACHE)) 358 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 359 360 /* check the # of cached NAT entries */ 361 if (!available_free_memory(sbi, NAT_ENTRIES)) 362 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 363 364 if (!available_free_memory(sbi, FREE_NIDS)) 365 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES); 366 367 /* checkpoint is the only way to shrink partial cached entries */ 368 if (!available_free_memory(sbi, NAT_ENTRIES) || 369 !available_free_memory(sbi, INO_ENTRIES) || 370 excess_prefree_segs(sbi) || 371 excess_dirty_nats(sbi) || 372 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) { 373 if (test_opt(sbi, DATA_FLUSH)) { 374 struct blk_plug plug; 375 376 blk_start_plug(&plug); 377 sync_dirty_inodes(sbi, FILE_INODE); 378 blk_finish_plug(&plug); 379 } 380 f2fs_sync_fs(sbi->sb, true); 381 stat_inc_bg_cp_count(sbi->stat_info); 382 } 383 } 384 385 static int issue_flush_thread(void *data) 386 { 387 struct f2fs_sb_info *sbi = data; 388 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 389 wait_queue_head_t *q = &fcc->flush_wait_queue; 390 repeat: 391 if (kthread_should_stop()) 392 return 0; 393 394 if (!llist_empty(&fcc->issue_list)) { 395 struct bio *bio; 396 struct flush_cmd *cmd, *next; 397 int ret; 398 399 bio = f2fs_bio_alloc(0); 400 401 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 402 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 403 404 bio->bi_bdev = sbi->sb->s_bdev; 405 ret = submit_bio_wait(WRITE_FLUSH, bio); 406 407 llist_for_each_entry_safe(cmd, next, 408 fcc->dispatch_list, llnode) { 409 cmd->ret = ret; 410 complete(&cmd->wait); 411 } 412 bio_put(bio); 413 fcc->dispatch_list = NULL; 414 } 415 416 wait_event_interruptible(*q, 417 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 418 goto repeat; 419 } 420 421 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 422 { 423 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 424 struct flush_cmd cmd; 425 426 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 427 test_opt(sbi, FLUSH_MERGE)); 428 429 if (test_opt(sbi, NOBARRIER)) 430 return 0; 431 432 if (!test_opt(sbi, FLUSH_MERGE)) { 433 struct bio *bio = f2fs_bio_alloc(0); 434 int ret; 435 436 bio->bi_bdev = sbi->sb->s_bdev; 437 ret = submit_bio_wait(WRITE_FLUSH, bio); 438 bio_put(bio); 439 return ret; 440 } 441 442 init_completion(&cmd.wait); 443 444 llist_add(&cmd.llnode, &fcc->issue_list); 445 446 if (!fcc->dispatch_list) 447 wake_up(&fcc->flush_wait_queue); 448 449 wait_for_completion(&cmd.wait); 450 451 return cmd.ret; 452 } 453 454 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 455 { 456 dev_t dev = sbi->sb->s_bdev->bd_dev; 457 struct flush_cmd_control *fcc; 458 int err = 0; 459 460 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 461 if (!fcc) 462 return -ENOMEM; 463 init_waitqueue_head(&fcc->flush_wait_queue); 464 init_llist_head(&fcc->issue_list); 465 SM_I(sbi)->cmd_control_info = fcc; 466 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 467 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 468 if (IS_ERR(fcc->f2fs_issue_flush)) { 469 err = PTR_ERR(fcc->f2fs_issue_flush); 470 kfree(fcc); 471 SM_I(sbi)->cmd_control_info = NULL; 472 return err; 473 } 474 475 return err; 476 } 477 478 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 479 { 480 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 481 482 if (fcc && fcc->f2fs_issue_flush) 483 kthread_stop(fcc->f2fs_issue_flush); 484 kfree(fcc); 485 SM_I(sbi)->cmd_control_info = NULL; 486 } 487 488 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 489 enum dirty_type dirty_type) 490 { 491 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 492 493 /* need not be added */ 494 if (IS_CURSEG(sbi, segno)) 495 return; 496 497 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 498 dirty_i->nr_dirty[dirty_type]++; 499 500 if (dirty_type == DIRTY) { 501 struct seg_entry *sentry = get_seg_entry(sbi, segno); 502 enum dirty_type t = sentry->type; 503 504 if (unlikely(t >= DIRTY)) { 505 f2fs_bug_on(sbi, 1); 506 return; 507 } 508 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 509 dirty_i->nr_dirty[t]++; 510 } 511 } 512 513 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 514 enum dirty_type dirty_type) 515 { 516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 517 518 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 519 dirty_i->nr_dirty[dirty_type]--; 520 521 if (dirty_type == DIRTY) { 522 struct seg_entry *sentry = get_seg_entry(sbi, segno); 523 enum dirty_type t = sentry->type; 524 525 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 526 dirty_i->nr_dirty[t]--; 527 528 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 529 clear_bit(GET_SECNO(sbi, segno), 530 dirty_i->victim_secmap); 531 } 532 } 533 534 /* 535 * Should not occur error such as -ENOMEM. 536 * Adding dirty entry into seglist is not critical operation. 537 * If a given segment is one of current working segments, it won't be added. 538 */ 539 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 540 { 541 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 542 unsigned short valid_blocks; 543 544 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 545 return; 546 547 mutex_lock(&dirty_i->seglist_lock); 548 549 valid_blocks = get_valid_blocks(sbi, segno, 0); 550 551 if (valid_blocks == 0) { 552 __locate_dirty_segment(sbi, segno, PRE); 553 __remove_dirty_segment(sbi, segno, DIRTY); 554 } else if (valid_blocks < sbi->blocks_per_seg) { 555 __locate_dirty_segment(sbi, segno, DIRTY); 556 } else { 557 /* Recovery routine with SSR needs this */ 558 __remove_dirty_segment(sbi, segno, DIRTY); 559 } 560 561 mutex_unlock(&dirty_i->seglist_lock); 562 } 563 564 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 565 block_t blkstart, block_t blklen) 566 { 567 sector_t start = SECTOR_FROM_BLOCK(blkstart); 568 sector_t len = SECTOR_FROM_BLOCK(blklen); 569 struct seg_entry *se; 570 unsigned int offset; 571 block_t i; 572 573 for (i = blkstart; i < blkstart + blklen; i++) { 574 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 575 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 576 577 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 578 sbi->discard_blks--; 579 } 580 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 581 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 582 } 583 584 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 585 { 586 int err = -EOPNOTSUPP; 587 588 if (test_opt(sbi, DISCARD)) { 589 struct seg_entry *se = get_seg_entry(sbi, 590 GET_SEGNO(sbi, blkaddr)); 591 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 592 593 if (f2fs_test_bit(offset, se->discard_map)) 594 return false; 595 596 err = f2fs_issue_discard(sbi, blkaddr, 1); 597 } 598 599 if (err) { 600 update_meta_page(sbi, NULL, blkaddr); 601 return true; 602 } 603 return false; 604 } 605 606 static void __add_discard_entry(struct f2fs_sb_info *sbi, 607 struct cp_control *cpc, struct seg_entry *se, 608 unsigned int start, unsigned int end) 609 { 610 struct list_head *head = &SM_I(sbi)->discard_list; 611 struct discard_entry *new, *last; 612 613 if (!list_empty(head)) { 614 last = list_last_entry(head, struct discard_entry, list); 615 if (START_BLOCK(sbi, cpc->trim_start) + start == 616 last->blkaddr + last->len) { 617 last->len += end - start; 618 goto done; 619 } 620 } 621 622 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 623 INIT_LIST_HEAD(&new->list); 624 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 625 new->len = end - start; 626 list_add_tail(&new->list, head); 627 done: 628 SM_I(sbi)->nr_discards += end - start; 629 } 630 631 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 632 { 633 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 634 int max_blocks = sbi->blocks_per_seg; 635 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 636 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 637 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 638 unsigned long *discard_map = (unsigned long *)se->discard_map; 639 unsigned long *dmap = SIT_I(sbi)->tmp_map; 640 unsigned int start = 0, end = -1; 641 bool force = (cpc->reason == CP_DISCARD); 642 int i; 643 644 if (se->valid_blocks == max_blocks) 645 return; 646 647 if (!force) { 648 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 649 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 650 return; 651 } 652 653 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 654 for (i = 0; i < entries; i++) 655 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 656 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 657 658 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 659 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 660 if (start >= max_blocks) 661 break; 662 663 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 664 __add_discard_entry(sbi, cpc, se, start, end); 665 } 666 } 667 668 void release_discard_addrs(struct f2fs_sb_info *sbi) 669 { 670 struct list_head *head = &(SM_I(sbi)->discard_list); 671 struct discard_entry *entry, *this; 672 673 /* drop caches */ 674 list_for_each_entry_safe(entry, this, head, list) { 675 list_del(&entry->list); 676 kmem_cache_free(discard_entry_slab, entry); 677 } 678 } 679 680 /* 681 * Should call clear_prefree_segments after checkpoint is done. 682 */ 683 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 684 { 685 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 686 unsigned int segno; 687 688 mutex_lock(&dirty_i->seglist_lock); 689 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 690 __set_test_and_free(sbi, segno); 691 mutex_unlock(&dirty_i->seglist_lock); 692 } 693 694 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 695 { 696 struct list_head *head = &(SM_I(sbi)->discard_list); 697 struct discard_entry *entry, *this; 698 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 699 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 700 unsigned int start = 0, end = -1; 701 702 mutex_lock(&dirty_i->seglist_lock); 703 704 while (1) { 705 int i; 706 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 707 if (start >= MAIN_SEGS(sbi)) 708 break; 709 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 710 start + 1); 711 712 for (i = start; i < end; i++) 713 clear_bit(i, prefree_map); 714 715 dirty_i->nr_dirty[PRE] -= end - start; 716 717 if (!test_opt(sbi, DISCARD)) 718 continue; 719 720 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 721 (end - start) << sbi->log_blocks_per_seg); 722 } 723 mutex_unlock(&dirty_i->seglist_lock); 724 725 /* send small discards */ 726 list_for_each_entry_safe(entry, this, head, list) { 727 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen) 728 goto skip; 729 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 730 cpc->trimmed += entry->len; 731 skip: 732 list_del(&entry->list); 733 SM_I(sbi)->nr_discards -= entry->len; 734 kmem_cache_free(discard_entry_slab, entry); 735 } 736 } 737 738 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 739 { 740 struct sit_info *sit_i = SIT_I(sbi); 741 742 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 743 sit_i->dirty_sentries++; 744 return false; 745 } 746 747 return true; 748 } 749 750 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 751 unsigned int segno, int modified) 752 { 753 struct seg_entry *se = get_seg_entry(sbi, segno); 754 se->type = type; 755 if (modified) 756 __mark_sit_entry_dirty(sbi, segno); 757 } 758 759 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 760 { 761 struct seg_entry *se; 762 unsigned int segno, offset; 763 long int new_vblocks; 764 765 segno = GET_SEGNO(sbi, blkaddr); 766 767 se = get_seg_entry(sbi, segno); 768 new_vblocks = se->valid_blocks + del; 769 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 770 771 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 772 (new_vblocks > sbi->blocks_per_seg))); 773 774 se->valid_blocks = new_vblocks; 775 se->mtime = get_mtime(sbi); 776 SIT_I(sbi)->max_mtime = se->mtime; 777 778 /* Update valid block bitmap */ 779 if (del > 0) { 780 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 781 f2fs_bug_on(sbi, 1); 782 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 783 sbi->discard_blks--; 784 } else { 785 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 786 f2fs_bug_on(sbi, 1); 787 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 788 sbi->discard_blks++; 789 } 790 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 791 se->ckpt_valid_blocks += del; 792 793 __mark_sit_entry_dirty(sbi, segno); 794 795 /* update total number of valid blocks to be written in ckpt area */ 796 SIT_I(sbi)->written_valid_blocks += del; 797 798 if (sbi->segs_per_sec > 1) 799 get_sec_entry(sbi, segno)->valid_blocks += del; 800 } 801 802 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 803 { 804 update_sit_entry(sbi, new, 1); 805 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 806 update_sit_entry(sbi, old, -1); 807 808 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 809 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 810 } 811 812 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 813 { 814 unsigned int segno = GET_SEGNO(sbi, addr); 815 struct sit_info *sit_i = SIT_I(sbi); 816 817 f2fs_bug_on(sbi, addr == NULL_ADDR); 818 if (addr == NEW_ADDR) 819 return; 820 821 /* add it into sit main buffer */ 822 mutex_lock(&sit_i->sentry_lock); 823 824 update_sit_entry(sbi, addr, -1); 825 826 /* add it into dirty seglist */ 827 locate_dirty_segment(sbi, segno); 828 829 mutex_unlock(&sit_i->sentry_lock); 830 } 831 832 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 833 { 834 struct sit_info *sit_i = SIT_I(sbi); 835 unsigned int segno, offset; 836 struct seg_entry *se; 837 bool is_cp = false; 838 839 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 840 return true; 841 842 mutex_lock(&sit_i->sentry_lock); 843 844 segno = GET_SEGNO(sbi, blkaddr); 845 se = get_seg_entry(sbi, segno); 846 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 847 848 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 849 is_cp = true; 850 851 mutex_unlock(&sit_i->sentry_lock); 852 853 return is_cp; 854 } 855 856 /* 857 * This function should be resided under the curseg_mutex lock 858 */ 859 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 860 struct f2fs_summary *sum) 861 { 862 struct curseg_info *curseg = CURSEG_I(sbi, type); 863 void *addr = curseg->sum_blk; 864 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 865 memcpy(addr, sum, sizeof(struct f2fs_summary)); 866 } 867 868 /* 869 * Calculate the number of current summary pages for writing 870 */ 871 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 872 { 873 int valid_sum_count = 0; 874 int i, sum_in_page; 875 876 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 877 if (sbi->ckpt->alloc_type[i] == SSR) 878 valid_sum_count += sbi->blocks_per_seg; 879 else { 880 if (for_ra) 881 valid_sum_count += le16_to_cpu( 882 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 883 else 884 valid_sum_count += curseg_blkoff(sbi, i); 885 } 886 } 887 888 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 889 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 890 if (valid_sum_count <= sum_in_page) 891 return 1; 892 else if ((valid_sum_count - sum_in_page) <= 893 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 894 return 2; 895 return 3; 896 } 897 898 /* 899 * Caller should put this summary page 900 */ 901 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 902 { 903 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 904 } 905 906 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 907 { 908 struct page *page = grab_meta_page(sbi, blk_addr); 909 void *dst = page_address(page); 910 911 if (src) 912 memcpy(dst, src, PAGE_CACHE_SIZE); 913 else 914 memset(dst, 0, PAGE_CACHE_SIZE); 915 set_page_dirty(page); 916 f2fs_put_page(page, 1); 917 } 918 919 static void write_sum_page(struct f2fs_sb_info *sbi, 920 struct f2fs_summary_block *sum_blk, block_t blk_addr) 921 { 922 update_meta_page(sbi, (void *)sum_blk, blk_addr); 923 } 924 925 static void write_current_sum_page(struct f2fs_sb_info *sbi, 926 int type, block_t blk_addr) 927 { 928 struct curseg_info *curseg = CURSEG_I(sbi, type); 929 struct page *page = grab_meta_page(sbi, blk_addr); 930 struct f2fs_summary_block *src = curseg->sum_blk; 931 struct f2fs_summary_block *dst; 932 933 dst = (struct f2fs_summary_block *)page_address(page); 934 935 mutex_lock(&curseg->curseg_mutex); 936 937 down_read(&curseg->journal_rwsem); 938 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 939 up_read(&curseg->journal_rwsem); 940 941 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 942 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 943 944 mutex_unlock(&curseg->curseg_mutex); 945 946 set_page_dirty(page); 947 f2fs_put_page(page, 1); 948 } 949 950 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 951 { 952 struct curseg_info *curseg = CURSEG_I(sbi, type); 953 unsigned int segno = curseg->segno + 1; 954 struct free_segmap_info *free_i = FREE_I(sbi); 955 956 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 957 return !test_bit(segno, free_i->free_segmap); 958 return 0; 959 } 960 961 /* 962 * Find a new segment from the free segments bitmap to right order 963 * This function should be returned with success, otherwise BUG 964 */ 965 static void get_new_segment(struct f2fs_sb_info *sbi, 966 unsigned int *newseg, bool new_sec, int dir) 967 { 968 struct free_segmap_info *free_i = FREE_I(sbi); 969 unsigned int segno, secno, zoneno; 970 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 971 unsigned int hint = *newseg / sbi->segs_per_sec; 972 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 973 unsigned int left_start = hint; 974 bool init = true; 975 int go_left = 0; 976 int i; 977 978 spin_lock(&free_i->segmap_lock); 979 980 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 981 segno = find_next_zero_bit(free_i->free_segmap, 982 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 983 if (segno < (hint + 1) * sbi->segs_per_sec) 984 goto got_it; 985 } 986 find_other_zone: 987 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 988 if (secno >= MAIN_SECS(sbi)) { 989 if (dir == ALLOC_RIGHT) { 990 secno = find_next_zero_bit(free_i->free_secmap, 991 MAIN_SECS(sbi), 0); 992 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 993 } else { 994 go_left = 1; 995 left_start = hint - 1; 996 } 997 } 998 if (go_left == 0) 999 goto skip_left; 1000 1001 while (test_bit(left_start, free_i->free_secmap)) { 1002 if (left_start > 0) { 1003 left_start--; 1004 continue; 1005 } 1006 left_start = find_next_zero_bit(free_i->free_secmap, 1007 MAIN_SECS(sbi), 0); 1008 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1009 break; 1010 } 1011 secno = left_start; 1012 skip_left: 1013 hint = secno; 1014 segno = secno * sbi->segs_per_sec; 1015 zoneno = secno / sbi->secs_per_zone; 1016 1017 /* give up on finding another zone */ 1018 if (!init) 1019 goto got_it; 1020 if (sbi->secs_per_zone == 1) 1021 goto got_it; 1022 if (zoneno == old_zoneno) 1023 goto got_it; 1024 if (dir == ALLOC_LEFT) { 1025 if (!go_left && zoneno + 1 >= total_zones) 1026 goto got_it; 1027 if (go_left && zoneno == 0) 1028 goto got_it; 1029 } 1030 for (i = 0; i < NR_CURSEG_TYPE; i++) 1031 if (CURSEG_I(sbi, i)->zone == zoneno) 1032 break; 1033 1034 if (i < NR_CURSEG_TYPE) { 1035 /* zone is in user, try another */ 1036 if (go_left) 1037 hint = zoneno * sbi->secs_per_zone - 1; 1038 else if (zoneno + 1 >= total_zones) 1039 hint = 0; 1040 else 1041 hint = (zoneno + 1) * sbi->secs_per_zone; 1042 init = false; 1043 goto find_other_zone; 1044 } 1045 got_it: 1046 /* set it as dirty segment in free segmap */ 1047 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1048 __set_inuse(sbi, segno); 1049 *newseg = segno; 1050 spin_unlock(&free_i->segmap_lock); 1051 } 1052 1053 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1054 { 1055 struct curseg_info *curseg = CURSEG_I(sbi, type); 1056 struct summary_footer *sum_footer; 1057 1058 curseg->segno = curseg->next_segno; 1059 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1060 curseg->next_blkoff = 0; 1061 curseg->next_segno = NULL_SEGNO; 1062 1063 sum_footer = &(curseg->sum_blk->footer); 1064 memset(sum_footer, 0, sizeof(struct summary_footer)); 1065 if (IS_DATASEG(type)) 1066 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1067 if (IS_NODESEG(type)) 1068 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1069 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1070 } 1071 1072 /* 1073 * Allocate a current working segment. 1074 * This function always allocates a free segment in LFS manner. 1075 */ 1076 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1077 { 1078 struct curseg_info *curseg = CURSEG_I(sbi, type); 1079 unsigned int segno = curseg->segno; 1080 int dir = ALLOC_LEFT; 1081 1082 write_sum_page(sbi, curseg->sum_blk, 1083 GET_SUM_BLOCK(sbi, segno)); 1084 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1085 dir = ALLOC_RIGHT; 1086 1087 if (test_opt(sbi, NOHEAP)) 1088 dir = ALLOC_RIGHT; 1089 1090 get_new_segment(sbi, &segno, new_sec, dir); 1091 curseg->next_segno = segno; 1092 reset_curseg(sbi, type, 1); 1093 curseg->alloc_type = LFS; 1094 } 1095 1096 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1097 struct curseg_info *seg, block_t start) 1098 { 1099 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1100 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1101 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1102 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1103 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1104 int i, pos; 1105 1106 for (i = 0; i < entries; i++) 1107 target_map[i] = ckpt_map[i] | cur_map[i]; 1108 1109 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1110 1111 seg->next_blkoff = pos; 1112 } 1113 1114 /* 1115 * If a segment is written by LFS manner, next block offset is just obtained 1116 * by increasing the current block offset. However, if a segment is written by 1117 * SSR manner, next block offset obtained by calling __next_free_blkoff 1118 */ 1119 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1120 struct curseg_info *seg) 1121 { 1122 if (seg->alloc_type == SSR) 1123 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1124 else 1125 seg->next_blkoff++; 1126 } 1127 1128 /* 1129 * This function always allocates a used segment(from dirty seglist) by SSR 1130 * manner, so it should recover the existing segment information of valid blocks 1131 */ 1132 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1133 { 1134 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1135 struct curseg_info *curseg = CURSEG_I(sbi, type); 1136 unsigned int new_segno = curseg->next_segno; 1137 struct f2fs_summary_block *sum_node; 1138 struct page *sum_page; 1139 1140 write_sum_page(sbi, curseg->sum_blk, 1141 GET_SUM_BLOCK(sbi, curseg->segno)); 1142 __set_test_and_inuse(sbi, new_segno); 1143 1144 mutex_lock(&dirty_i->seglist_lock); 1145 __remove_dirty_segment(sbi, new_segno, PRE); 1146 __remove_dirty_segment(sbi, new_segno, DIRTY); 1147 mutex_unlock(&dirty_i->seglist_lock); 1148 1149 reset_curseg(sbi, type, 1); 1150 curseg->alloc_type = SSR; 1151 __next_free_blkoff(sbi, curseg, 0); 1152 1153 if (reuse) { 1154 sum_page = get_sum_page(sbi, new_segno); 1155 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1156 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1157 f2fs_put_page(sum_page, 1); 1158 } 1159 } 1160 1161 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1162 { 1163 struct curseg_info *curseg = CURSEG_I(sbi, type); 1164 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1165 1166 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 1167 return v_ops->get_victim(sbi, 1168 &(curseg)->next_segno, BG_GC, type, SSR); 1169 1170 /* For data segments, let's do SSR more intensively */ 1171 for (; type >= CURSEG_HOT_DATA; type--) 1172 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1173 BG_GC, type, SSR)) 1174 return 1; 1175 return 0; 1176 } 1177 1178 /* 1179 * flush out current segment and replace it with new segment 1180 * This function should be returned with success, otherwise BUG 1181 */ 1182 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1183 int type, bool force) 1184 { 1185 struct curseg_info *curseg = CURSEG_I(sbi, type); 1186 1187 if (force) 1188 new_curseg(sbi, type, true); 1189 else if (type == CURSEG_WARM_NODE) 1190 new_curseg(sbi, type, false); 1191 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1192 new_curseg(sbi, type, false); 1193 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1194 change_curseg(sbi, type, true); 1195 else 1196 new_curseg(sbi, type, false); 1197 1198 stat_inc_seg_type(sbi, curseg); 1199 } 1200 1201 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1202 { 1203 struct curseg_info *curseg = CURSEG_I(sbi, type); 1204 unsigned int old_segno; 1205 1206 old_segno = curseg->segno; 1207 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1208 locate_dirty_segment(sbi, old_segno); 1209 } 1210 1211 void allocate_new_segments(struct f2fs_sb_info *sbi) 1212 { 1213 int i; 1214 1215 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1216 __allocate_new_segments(sbi, i); 1217 } 1218 1219 static const struct segment_allocation default_salloc_ops = { 1220 .allocate_segment = allocate_segment_by_default, 1221 }; 1222 1223 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1224 { 1225 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1226 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1227 unsigned int start_segno, end_segno; 1228 struct cp_control cpc; 1229 int err = 0; 1230 1231 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1232 return -EINVAL; 1233 1234 cpc.trimmed = 0; 1235 if (end <= MAIN_BLKADDR(sbi)) 1236 goto out; 1237 1238 /* start/end segment number in main_area */ 1239 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1240 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1241 GET_SEGNO(sbi, end); 1242 cpc.reason = CP_DISCARD; 1243 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1244 1245 /* do checkpoint to issue discard commands safely */ 1246 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1247 cpc.trim_start = start_segno; 1248 1249 if (sbi->discard_blks == 0) 1250 break; 1251 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1252 cpc.trim_end = end_segno; 1253 else 1254 cpc.trim_end = min_t(unsigned int, 1255 rounddown(start_segno + 1256 BATCHED_TRIM_SEGMENTS(sbi), 1257 sbi->segs_per_sec) - 1, end_segno); 1258 1259 mutex_lock(&sbi->gc_mutex); 1260 err = write_checkpoint(sbi, &cpc); 1261 mutex_unlock(&sbi->gc_mutex); 1262 } 1263 out: 1264 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1265 return err; 1266 } 1267 1268 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1269 { 1270 struct curseg_info *curseg = CURSEG_I(sbi, type); 1271 if (curseg->next_blkoff < sbi->blocks_per_seg) 1272 return true; 1273 return false; 1274 } 1275 1276 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1277 { 1278 if (p_type == DATA) 1279 return CURSEG_HOT_DATA; 1280 else 1281 return CURSEG_HOT_NODE; 1282 } 1283 1284 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1285 { 1286 if (p_type == DATA) { 1287 struct inode *inode = page->mapping->host; 1288 1289 if (S_ISDIR(inode->i_mode)) 1290 return CURSEG_HOT_DATA; 1291 else 1292 return CURSEG_COLD_DATA; 1293 } else { 1294 if (IS_DNODE(page) && is_cold_node(page)) 1295 return CURSEG_WARM_NODE; 1296 else 1297 return CURSEG_COLD_NODE; 1298 } 1299 } 1300 1301 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1302 { 1303 if (p_type == DATA) { 1304 struct inode *inode = page->mapping->host; 1305 1306 if (S_ISDIR(inode->i_mode)) 1307 return CURSEG_HOT_DATA; 1308 else if (is_cold_data(page) || file_is_cold(inode)) 1309 return CURSEG_COLD_DATA; 1310 else 1311 return CURSEG_WARM_DATA; 1312 } else { 1313 if (IS_DNODE(page)) 1314 return is_cold_node(page) ? CURSEG_WARM_NODE : 1315 CURSEG_HOT_NODE; 1316 else 1317 return CURSEG_COLD_NODE; 1318 } 1319 } 1320 1321 static int __get_segment_type(struct page *page, enum page_type p_type) 1322 { 1323 switch (F2FS_P_SB(page)->active_logs) { 1324 case 2: 1325 return __get_segment_type_2(page, p_type); 1326 case 4: 1327 return __get_segment_type_4(page, p_type); 1328 } 1329 /* NR_CURSEG_TYPE(6) logs by default */ 1330 f2fs_bug_on(F2FS_P_SB(page), 1331 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1332 return __get_segment_type_6(page, p_type); 1333 } 1334 1335 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1336 block_t old_blkaddr, block_t *new_blkaddr, 1337 struct f2fs_summary *sum, int type) 1338 { 1339 struct sit_info *sit_i = SIT_I(sbi); 1340 struct curseg_info *curseg; 1341 bool direct_io = (type == CURSEG_DIRECT_IO); 1342 1343 type = direct_io ? CURSEG_WARM_DATA : type; 1344 1345 curseg = CURSEG_I(sbi, type); 1346 1347 mutex_lock(&curseg->curseg_mutex); 1348 mutex_lock(&sit_i->sentry_lock); 1349 1350 /* direct_io'ed data is aligned to the segment for better performance */ 1351 if (direct_io && curseg->next_blkoff && 1352 !has_not_enough_free_secs(sbi, 0)) 1353 __allocate_new_segments(sbi, type); 1354 1355 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1356 1357 /* 1358 * __add_sum_entry should be resided under the curseg_mutex 1359 * because, this function updates a summary entry in the 1360 * current summary block. 1361 */ 1362 __add_sum_entry(sbi, type, sum); 1363 1364 __refresh_next_blkoff(sbi, curseg); 1365 1366 stat_inc_block_count(sbi, curseg); 1367 1368 if (!__has_curseg_space(sbi, type)) 1369 sit_i->s_ops->allocate_segment(sbi, type, false); 1370 /* 1371 * SIT information should be updated before segment allocation, 1372 * since SSR needs latest valid block information. 1373 */ 1374 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1375 1376 mutex_unlock(&sit_i->sentry_lock); 1377 1378 if (page && IS_NODESEG(type)) 1379 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1380 1381 mutex_unlock(&curseg->curseg_mutex); 1382 } 1383 1384 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1385 { 1386 int type = __get_segment_type(fio->page, fio->type); 1387 1388 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1389 &fio->new_blkaddr, sum, type); 1390 1391 /* writeout dirty page into bdev */ 1392 f2fs_submit_page_mbio(fio); 1393 } 1394 1395 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1396 { 1397 struct f2fs_io_info fio = { 1398 .sbi = sbi, 1399 .type = META, 1400 .rw = WRITE_SYNC | REQ_META | REQ_PRIO, 1401 .old_blkaddr = page->index, 1402 .new_blkaddr = page->index, 1403 .page = page, 1404 .encrypted_page = NULL, 1405 }; 1406 1407 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1408 fio.rw &= ~REQ_META; 1409 1410 set_page_writeback(page); 1411 f2fs_submit_page_mbio(&fio); 1412 } 1413 1414 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1415 { 1416 struct f2fs_summary sum; 1417 1418 set_summary(&sum, nid, 0, 0); 1419 do_write_page(&sum, fio); 1420 } 1421 1422 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1423 { 1424 struct f2fs_sb_info *sbi = fio->sbi; 1425 struct f2fs_summary sum; 1426 struct node_info ni; 1427 1428 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1429 get_node_info(sbi, dn->nid, &ni); 1430 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1431 do_write_page(&sum, fio); 1432 dn->data_blkaddr = fio->new_blkaddr; 1433 } 1434 1435 void rewrite_data_page(struct f2fs_io_info *fio) 1436 { 1437 fio->new_blkaddr = fio->old_blkaddr; 1438 stat_inc_inplace_blocks(fio->sbi); 1439 f2fs_submit_page_mbio(fio); 1440 } 1441 1442 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1443 block_t old_blkaddr, block_t new_blkaddr, 1444 bool recover_curseg, bool recover_newaddr) 1445 { 1446 struct sit_info *sit_i = SIT_I(sbi); 1447 struct curseg_info *curseg; 1448 unsigned int segno, old_cursegno; 1449 struct seg_entry *se; 1450 int type; 1451 unsigned short old_blkoff; 1452 1453 segno = GET_SEGNO(sbi, new_blkaddr); 1454 se = get_seg_entry(sbi, segno); 1455 type = se->type; 1456 1457 if (!recover_curseg) { 1458 /* for recovery flow */ 1459 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1460 if (old_blkaddr == NULL_ADDR) 1461 type = CURSEG_COLD_DATA; 1462 else 1463 type = CURSEG_WARM_DATA; 1464 } 1465 } else { 1466 if (!IS_CURSEG(sbi, segno)) 1467 type = CURSEG_WARM_DATA; 1468 } 1469 1470 curseg = CURSEG_I(sbi, type); 1471 1472 mutex_lock(&curseg->curseg_mutex); 1473 mutex_lock(&sit_i->sentry_lock); 1474 1475 old_cursegno = curseg->segno; 1476 old_blkoff = curseg->next_blkoff; 1477 1478 /* change the current segment */ 1479 if (segno != curseg->segno) { 1480 curseg->next_segno = segno; 1481 change_curseg(sbi, type, true); 1482 } 1483 1484 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1485 __add_sum_entry(sbi, type, sum); 1486 1487 if (!recover_curseg || recover_newaddr) 1488 update_sit_entry(sbi, new_blkaddr, 1); 1489 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1490 update_sit_entry(sbi, old_blkaddr, -1); 1491 1492 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1493 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1494 1495 locate_dirty_segment(sbi, old_cursegno); 1496 1497 if (recover_curseg) { 1498 if (old_cursegno != curseg->segno) { 1499 curseg->next_segno = old_cursegno; 1500 change_curseg(sbi, type, true); 1501 } 1502 curseg->next_blkoff = old_blkoff; 1503 } 1504 1505 mutex_unlock(&sit_i->sentry_lock); 1506 mutex_unlock(&curseg->curseg_mutex); 1507 } 1508 1509 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1510 block_t old_addr, block_t new_addr, 1511 unsigned char version, bool recover_curseg, 1512 bool recover_newaddr) 1513 { 1514 struct f2fs_summary sum; 1515 1516 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1517 1518 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1519 recover_curseg, recover_newaddr); 1520 1521 dn->data_blkaddr = new_addr; 1522 set_data_blkaddr(dn); 1523 f2fs_update_extent_cache(dn); 1524 } 1525 1526 void f2fs_wait_on_page_writeback(struct page *page, 1527 enum page_type type, bool ordered) 1528 { 1529 if (PageWriteback(page)) { 1530 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1531 1532 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1533 if (ordered) 1534 wait_on_page_writeback(page); 1535 else 1536 wait_for_stable_page(page); 1537 } 1538 } 1539 1540 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1541 block_t blkaddr) 1542 { 1543 struct page *cpage; 1544 1545 if (blkaddr == NEW_ADDR) 1546 return; 1547 1548 f2fs_bug_on(sbi, blkaddr == NULL_ADDR); 1549 1550 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1551 if (cpage) { 1552 f2fs_wait_on_page_writeback(cpage, DATA, true); 1553 f2fs_put_page(cpage, 1); 1554 } 1555 } 1556 1557 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1558 { 1559 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1560 struct curseg_info *seg_i; 1561 unsigned char *kaddr; 1562 struct page *page; 1563 block_t start; 1564 int i, j, offset; 1565 1566 start = start_sum_block(sbi); 1567 1568 page = get_meta_page(sbi, start++); 1569 kaddr = (unsigned char *)page_address(page); 1570 1571 /* Step 1: restore nat cache */ 1572 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1573 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1574 1575 /* Step 2: restore sit cache */ 1576 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1577 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1578 offset = 2 * SUM_JOURNAL_SIZE; 1579 1580 /* Step 3: restore summary entries */ 1581 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1582 unsigned short blk_off; 1583 unsigned int segno; 1584 1585 seg_i = CURSEG_I(sbi, i); 1586 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1587 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1588 seg_i->next_segno = segno; 1589 reset_curseg(sbi, i, 0); 1590 seg_i->alloc_type = ckpt->alloc_type[i]; 1591 seg_i->next_blkoff = blk_off; 1592 1593 if (seg_i->alloc_type == SSR) 1594 blk_off = sbi->blocks_per_seg; 1595 1596 for (j = 0; j < blk_off; j++) { 1597 struct f2fs_summary *s; 1598 s = (struct f2fs_summary *)(kaddr + offset); 1599 seg_i->sum_blk->entries[j] = *s; 1600 offset += SUMMARY_SIZE; 1601 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1602 SUM_FOOTER_SIZE) 1603 continue; 1604 1605 f2fs_put_page(page, 1); 1606 page = NULL; 1607 1608 page = get_meta_page(sbi, start++); 1609 kaddr = (unsigned char *)page_address(page); 1610 offset = 0; 1611 } 1612 } 1613 f2fs_put_page(page, 1); 1614 return 0; 1615 } 1616 1617 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1618 { 1619 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1620 struct f2fs_summary_block *sum; 1621 struct curseg_info *curseg; 1622 struct page *new; 1623 unsigned short blk_off; 1624 unsigned int segno = 0; 1625 block_t blk_addr = 0; 1626 1627 /* get segment number and block addr */ 1628 if (IS_DATASEG(type)) { 1629 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1630 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1631 CURSEG_HOT_DATA]); 1632 if (__exist_node_summaries(sbi)) 1633 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1634 else 1635 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1636 } else { 1637 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1638 CURSEG_HOT_NODE]); 1639 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1640 CURSEG_HOT_NODE]); 1641 if (__exist_node_summaries(sbi)) 1642 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1643 type - CURSEG_HOT_NODE); 1644 else 1645 blk_addr = GET_SUM_BLOCK(sbi, segno); 1646 } 1647 1648 new = get_meta_page(sbi, blk_addr); 1649 sum = (struct f2fs_summary_block *)page_address(new); 1650 1651 if (IS_NODESEG(type)) { 1652 if (__exist_node_summaries(sbi)) { 1653 struct f2fs_summary *ns = &sum->entries[0]; 1654 int i; 1655 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1656 ns->version = 0; 1657 ns->ofs_in_node = 0; 1658 } 1659 } else { 1660 int err; 1661 1662 err = restore_node_summary(sbi, segno, sum); 1663 if (err) { 1664 f2fs_put_page(new, 1); 1665 return err; 1666 } 1667 } 1668 } 1669 1670 /* set uncompleted segment to curseg */ 1671 curseg = CURSEG_I(sbi, type); 1672 mutex_lock(&curseg->curseg_mutex); 1673 1674 /* update journal info */ 1675 down_write(&curseg->journal_rwsem); 1676 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1677 up_write(&curseg->journal_rwsem); 1678 1679 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1680 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1681 curseg->next_segno = segno; 1682 reset_curseg(sbi, type, 0); 1683 curseg->alloc_type = ckpt->alloc_type[type]; 1684 curseg->next_blkoff = blk_off; 1685 mutex_unlock(&curseg->curseg_mutex); 1686 f2fs_put_page(new, 1); 1687 return 0; 1688 } 1689 1690 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1691 { 1692 int type = CURSEG_HOT_DATA; 1693 int err; 1694 1695 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1696 int npages = npages_for_summary_flush(sbi, true); 1697 1698 if (npages >= 2) 1699 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1700 META_CP, true); 1701 1702 /* restore for compacted data summary */ 1703 if (read_compacted_summaries(sbi)) 1704 return -EINVAL; 1705 type = CURSEG_HOT_NODE; 1706 } 1707 1708 if (__exist_node_summaries(sbi)) 1709 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1710 NR_CURSEG_TYPE - type, META_CP, true); 1711 1712 for (; type <= CURSEG_COLD_NODE; type++) { 1713 err = read_normal_summaries(sbi, type); 1714 if (err) 1715 return err; 1716 } 1717 1718 return 0; 1719 } 1720 1721 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1722 { 1723 struct page *page; 1724 unsigned char *kaddr; 1725 struct f2fs_summary *summary; 1726 struct curseg_info *seg_i; 1727 int written_size = 0; 1728 int i, j; 1729 1730 page = grab_meta_page(sbi, blkaddr++); 1731 kaddr = (unsigned char *)page_address(page); 1732 1733 /* Step 1: write nat cache */ 1734 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1735 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1736 written_size += SUM_JOURNAL_SIZE; 1737 1738 /* Step 2: write sit cache */ 1739 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1740 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1741 written_size += SUM_JOURNAL_SIZE; 1742 1743 /* Step 3: write summary entries */ 1744 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1745 unsigned short blkoff; 1746 seg_i = CURSEG_I(sbi, i); 1747 if (sbi->ckpt->alloc_type[i] == SSR) 1748 blkoff = sbi->blocks_per_seg; 1749 else 1750 blkoff = curseg_blkoff(sbi, i); 1751 1752 for (j = 0; j < blkoff; j++) { 1753 if (!page) { 1754 page = grab_meta_page(sbi, blkaddr++); 1755 kaddr = (unsigned char *)page_address(page); 1756 written_size = 0; 1757 } 1758 summary = (struct f2fs_summary *)(kaddr + written_size); 1759 *summary = seg_i->sum_blk->entries[j]; 1760 written_size += SUMMARY_SIZE; 1761 1762 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1763 SUM_FOOTER_SIZE) 1764 continue; 1765 1766 set_page_dirty(page); 1767 f2fs_put_page(page, 1); 1768 page = NULL; 1769 } 1770 } 1771 if (page) { 1772 set_page_dirty(page); 1773 f2fs_put_page(page, 1); 1774 } 1775 } 1776 1777 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1778 block_t blkaddr, int type) 1779 { 1780 int i, end; 1781 if (IS_DATASEG(type)) 1782 end = type + NR_CURSEG_DATA_TYPE; 1783 else 1784 end = type + NR_CURSEG_NODE_TYPE; 1785 1786 for (i = type; i < end; i++) 1787 write_current_sum_page(sbi, i, blkaddr + (i - type)); 1788 } 1789 1790 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1791 { 1792 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1793 write_compacted_summaries(sbi, start_blk); 1794 else 1795 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1796 } 1797 1798 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1799 { 1800 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1801 } 1802 1803 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 1804 unsigned int val, int alloc) 1805 { 1806 int i; 1807 1808 if (type == NAT_JOURNAL) { 1809 for (i = 0; i < nats_in_cursum(journal); i++) { 1810 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 1811 return i; 1812 } 1813 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 1814 return update_nats_in_cursum(journal, 1); 1815 } else if (type == SIT_JOURNAL) { 1816 for (i = 0; i < sits_in_cursum(journal); i++) 1817 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 1818 return i; 1819 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 1820 return update_sits_in_cursum(journal, 1); 1821 } 1822 return -1; 1823 } 1824 1825 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1826 unsigned int segno) 1827 { 1828 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1829 } 1830 1831 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1832 unsigned int start) 1833 { 1834 struct sit_info *sit_i = SIT_I(sbi); 1835 struct page *src_page, *dst_page; 1836 pgoff_t src_off, dst_off; 1837 void *src_addr, *dst_addr; 1838 1839 src_off = current_sit_addr(sbi, start); 1840 dst_off = next_sit_addr(sbi, src_off); 1841 1842 /* get current sit block page without lock */ 1843 src_page = get_meta_page(sbi, src_off); 1844 dst_page = grab_meta_page(sbi, dst_off); 1845 f2fs_bug_on(sbi, PageDirty(src_page)); 1846 1847 src_addr = page_address(src_page); 1848 dst_addr = page_address(dst_page); 1849 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1850 1851 set_page_dirty(dst_page); 1852 f2fs_put_page(src_page, 1); 1853 1854 set_to_next_sit(sit_i, start); 1855 1856 return dst_page; 1857 } 1858 1859 static struct sit_entry_set *grab_sit_entry_set(void) 1860 { 1861 struct sit_entry_set *ses = 1862 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 1863 1864 ses->entry_cnt = 0; 1865 INIT_LIST_HEAD(&ses->set_list); 1866 return ses; 1867 } 1868 1869 static void release_sit_entry_set(struct sit_entry_set *ses) 1870 { 1871 list_del(&ses->set_list); 1872 kmem_cache_free(sit_entry_set_slab, ses); 1873 } 1874 1875 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1876 struct list_head *head) 1877 { 1878 struct sit_entry_set *next = ses; 1879 1880 if (list_is_last(&ses->set_list, head)) 1881 return; 1882 1883 list_for_each_entry_continue(next, head, set_list) 1884 if (ses->entry_cnt <= next->entry_cnt) 1885 break; 1886 1887 list_move_tail(&ses->set_list, &next->set_list); 1888 } 1889 1890 static void add_sit_entry(unsigned int segno, struct list_head *head) 1891 { 1892 struct sit_entry_set *ses; 1893 unsigned int start_segno = START_SEGNO(segno); 1894 1895 list_for_each_entry(ses, head, set_list) { 1896 if (ses->start_segno == start_segno) { 1897 ses->entry_cnt++; 1898 adjust_sit_entry_set(ses, head); 1899 return; 1900 } 1901 } 1902 1903 ses = grab_sit_entry_set(); 1904 1905 ses->start_segno = start_segno; 1906 ses->entry_cnt++; 1907 list_add(&ses->set_list, head); 1908 } 1909 1910 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1911 { 1912 struct f2fs_sm_info *sm_info = SM_I(sbi); 1913 struct list_head *set_list = &sm_info->sit_entry_set; 1914 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1915 unsigned int segno; 1916 1917 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1918 add_sit_entry(segno, set_list); 1919 } 1920 1921 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1922 { 1923 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1924 struct f2fs_journal *journal = curseg->journal; 1925 int i; 1926 1927 down_write(&curseg->journal_rwsem); 1928 for (i = 0; i < sits_in_cursum(journal); i++) { 1929 unsigned int segno; 1930 bool dirtied; 1931 1932 segno = le32_to_cpu(segno_in_journal(journal, i)); 1933 dirtied = __mark_sit_entry_dirty(sbi, segno); 1934 1935 if (!dirtied) 1936 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1937 } 1938 update_sits_in_cursum(journal, -i); 1939 up_write(&curseg->journal_rwsem); 1940 } 1941 1942 /* 1943 * CP calls this function, which flushes SIT entries including sit_journal, 1944 * and moves prefree segs to free segs. 1945 */ 1946 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1947 { 1948 struct sit_info *sit_i = SIT_I(sbi); 1949 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1950 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1951 struct f2fs_journal *journal = curseg->journal; 1952 struct sit_entry_set *ses, *tmp; 1953 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1954 bool to_journal = true; 1955 struct seg_entry *se; 1956 1957 mutex_lock(&sit_i->sentry_lock); 1958 1959 if (!sit_i->dirty_sentries) 1960 goto out; 1961 1962 /* 1963 * add and account sit entries of dirty bitmap in sit entry 1964 * set temporarily 1965 */ 1966 add_sits_in_set(sbi); 1967 1968 /* 1969 * if there are no enough space in journal to store dirty sit 1970 * entries, remove all entries from journal and add and account 1971 * them in sit entry set. 1972 */ 1973 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 1974 remove_sits_in_journal(sbi); 1975 1976 /* 1977 * there are two steps to flush sit entries: 1978 * #1, flush sit entries to journal in current cold data summary block. 1979 * #2, flush sit entries to sit page. 1980 */ 1981 list_for_each_entry_safe(ses, tmp, head, set_list) { 1982 struct page *page = NULL; 1983 struct f2fs_sit_block *raw_sit = NULL; 1984 unsigned int start_segno = ses->start_segno; 1985 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1986 (unsigned long)MAIN_SEGS(sbi)); 1987 unsigned int segno = start_segno; 1988 1989 if (to_journal && 1990 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 1991 to_journal = false; 1992 1993 if (to_journal) { 1994 down_write(&curseg->journal_rwsem); 1995 } else { 1996 page = get_next_sit_page(sbi, start_segno); 1997 raw_sit = page_address(page); 1998 } 1999 2000 /* flush dirty sit entries in region of current sit set */ 2001 for_each_set_bit_from(segno, bitmap, end) { 2002 int offset, sit_offset; 2003 2004 se = get_seg_entry(sbi, segno); 2005 2006 /* add discard candidates */ 2007 if (cpc->reason != CP_DISCARD) { 2008 cpc->trim_start = segno; 2009 add_discard_addrs(sbi, cpc); 2010 } 2011 2012 if (to_journal) { 2013 offset = lookup_journal_in_cursum(journal, 2014 SIT_JOURNAL, segno, 1); 2015 f2fs_bug_on(sbi, offset < 0); 2016 segno_in_journal(journal, offset) = 2017 cpu_to_le32(segno); 2018 seg_info_to_raw_sit(se, 2019 &sit_in_journal(journal, offset)); 2020 } else { 2021 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2022 seg_info_to_raw_sit(se, 2023 &raw_sit->entries[sit_offset]); 2024 } 2025 2026 __clear_bit(segno, bitmap); 2027 sit_i->dirty_sentries--; 2028 ses->entry_cnt--; 2029 } 2030 2031 if (to_journal) 2032 up_write(&curseg->journal_rwsem); 2033 else 2034 f2fs_put_page(page, 1); 2035 2036 f2fs_bug_on(sbi, ses->entry_cnt); 2037 release_sit_entry_set(ses); 2038 } 2039 2040 f2fs_bug_on(sbi, !list_empty(head)); 2041 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2042 out: 2043 if (cpc->reason == CP_DISCARD) { 2044 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2045 add_discard_addrs(sbi, cpc); 2046 } 2047 mutex_unlock(&sit_i->sentry_lock); 2048 2049 set_prefree_as_free_segments(sbi); 2050 } 2051 2052 static int build_sit_info(struct f2fs_sb_info *sbi) 2053 { 2054 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2055 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2056 struct sit_info *sit_i; 2057 unsigned int sit_segs, start; 2058 char *src_bitmap, *dst_bitmap; 2059 unsigned int bitmap_size; 2060 2061 /* allocate memory for SIT information */ 2062 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2063 if (!sit_i) 2064 return -ENOMEM; 2065 2066 SM_I(sbi)->sit_info = sit_i; 2067 2068 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2069 sizeof(struct seg_entry), GFP_KERNEL); 2070 if (!sit_i->sentries) 2071 return -ENOMEM; 2072 2073 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2074 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2075 if (!sit_i->dirty_sentries_bitmap) 2076 return -ENOMEM; 2077 2078 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2079 sit_i->sentries[start].cur_valid_map 2080 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2081 sit_i->sentries[start].ckpt_valid_map 2082 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2083 sit_i->sentries[start].discard_map 2084 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2085 if (!sit_i->sentries[start].cur_valid_map || 2086 !sit_i->sentries[start].ckpt_valid_map || 2087 !sit_i->sentries[start].discard_map) 2088 return -ENOMEM; 2089 } 2090 2091 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2092 if (!sit_i->tmp_map) 2093 return -ENOMEM; 2094 2095 if (sbi->segs_per_sec > 1) { 2096 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2097 sizeof(struct sec_entry), GFP_KERNEL); 2098 if (!sit_i->sec_entries) 2099 return -ENOMEM; 2100 } 2101 2102 /* get information related with SIT */ 2103 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2104 2105 /* setup SIT bitmap from ckeckpoint pack */ 2106 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2107 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2108 2109 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2110 if (!dst_bitmap) 2111 return -ENOMEM; 2112 2113 /* init SIT information */ 2114 sit_i->s_ops = &default_salloc_ops; 2115 2116 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2117 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2118 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 2119 sit_i->sit_bitmap = dst_bitmap; 2120 sit_i->bitmap_size = bitmap_size; 2121 sit_i->dirty_sentries = 0; 2122 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2123 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2124 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2125 mutex_init(&sit_i->sentry_lock); 2126 return 0; 2127 } 2128 2129 static int build_free_segmap(struct f2fs_sb_info *sbi) 2130 { 2131 struct free_segmap_info *free_i; 2132 unsigned int bitmap_size, sec_bitmap_size; 2133 2134 /* allocate memory for free segmap information */ 2135 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2136 if (!free_i) 2137 return -ENOMEM; 2138 2139 SM_I(sbi)->free_info = free_i; 2140 2141 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2142 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2143 if (!free_i->free_segmap) 2144 return -ENOMEM; 2145 2146 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2147 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2148 if (!free_i->free_secmap) 2149 return -ENOMEM; 2150 2151 /* set all segments as dirty temporarily */ 2152 memset(free_i->free_segmap, 0xff, bitmap_size); 2153 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2154 2155 /* init free segmap information */ 2156 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2157 free_i->free_segments = 0; 2158 free_i->free_sections = 0; 2159 spin_lock_init(&free_i->segmap_lock); 2160 return 0; 2161 } 2162 2163 static int build_curseg(struct f2fs_sb_info *sbi) 2164 { 2165 struct curseg_info *array; 2166 int i; 2167 2168 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2169 if (!array) 2170 return -ENOMEM; 2171 2172 SM_I(sbi)->curseg_array = array; 2173 2174 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2175 mutex_init(&array[i].curseg_mutex); 2176 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 2177 if (!array[i].sum_blk) 2178 return -ENOMEM; 2179 init_rwsem(&array[i].journal_rwsem); 2180 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2181 GFP_KERNEL); 2182 if (!array[i].journal) 2183 return -ENOMEM; 2184 array[i].segno = NULL_SEGNO; 2185 array[i].next_blkoff = 0; 2186 } 2187 return restore_curseg_summaries(sbi); 2188 } 2189 2190 static void build_sit_entries(struct f2fs_sb_info *sbi) 2191 { 2192 struct sit_info *sit_i = SIT_I(sbi); 2193 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2194 struct f2fs_journal *journal = curseg->journal; 2195 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2196 unsigned int i, start, end; 2197 unsigned int readed, start_blk = 0; 2198 int nrpages = MAX_BIO_BLOCKS(sbi) * 8; 2199 2200 do { 2201 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true); 2202 2203 start = start_blk * sit_i->sents_per_block; 2204 end = (start_blk + readed) * sit_i->sents_per_block; 2205 2206 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2207 struct seg_entry *se = &sit_i->sentries[start]; 2208 struct f2fs_sit_block *sit_blk; 2209 struct f2fs_sit_entry sit; 2210 struct page *page; 2211 2212 down_read(&curseg->journal_rwsem); 2213 for (i = 0; i < sits_in_cursum(journal); i++) { 2214 if (le32_to_cpu(segno_in_journal(journal, i)) 2215 == start) { 2216 sit = sit_in_journal(journal, i); 2217 up_read(&curseg->journal_rwsem); 2218 goto got_it; 2219 } 2220 } 2221 up_read(&curseg->journal_rwsem); 2222 2223 page = get_current_sit_page(sbi, start); 2224 sit_blk = (struct f2fs_sit_block *)page_address(page); 2225 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2226 f2fs_put_page(page, 1); 2227 got_it: 2228 check_block_count(sbi, start, &sit); 2229 seg_info_from_raw_sit(se, &sit); 2230 2231 /* build discard map only one time */ 2232 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 2233 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; 2234 2235 if (sbi->segs_per_sec > 1) { 2236 struct sec_entry *e = get_sec_entry(sbi, start); 2237 e->valid_blocks += se->valid_blocks; 2238 } 2239 } 2240 start_blk += readed; 2241 } while (start_blk < sit_blk_cnt); 2242 } 2243 2244 static void init_free_segmap(struct f2fs_sb_info *sbi) 2245 { 2246 unsigned int start; 2247 int type; 2248 2249 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2250 struct seg_entry *sentry = get_seg_entry(sbi, start); 2251 if (!sentry->valid_blocks) 2252 __set_free(sbi, start); 2253 } 2254 2255 /* set use the current segments */ 2256 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2257 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2258 __set_test_and_inuse(sbi, curseg_t->segno); 2259 } 2260 } 2261 2262 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2263 { 2264 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2265 struct free_segmap_info *free_i = FREE_I(sbi); 2266 unsigned int segno = 0, offset = 0; 2267 unsigned short valid_blocks; 2268 2269 while (1) { 2270 /* find dirty segment based on free segmap */ 2271 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2272 if (segno >= MAIN_SEGS(sbi)) 2273 break; 2274 offset = segno + 1; 2275 valid_blocks = get_valid_blocks(sbi, segno, 0); 2276 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2277 continue; 2278 if (valid_blocks > sbi->blocks_per_seg) { 2279 f2fs_bug_on(sbi, 1); 2280 continue; 2281 } 2282 mutex_lock(&dirty_i->seglist_lock); 2283 __locate_dirty_segment(sbi, segno, DIRTY); 2284 mutex_unlock(&dirty_i->seglist_lock); 2285 } 2286 } 2287 2288 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2289 { 2290 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2291 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2292 2293 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2294 if (!dirty_i->victim_secmap) 2295 return -ENOMEM; 2296 return 0; 2297 } 2298 2299 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2300 { 2301 struct dirty_seglist_info *dirty_i; 2302 unsigned int bitmap_size, i; 2303 2304 /* allocate memory for dirty segments list information */ 2305 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2306 if (!dirty_i) 2307 return -ENOMEM; 2308 2309 SM_I(sbi)->dirty_info = dirty_i; 2310 mutex_init(&dirty_i->seglist_lock); 2311 2312 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2313 2314 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2315 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2316 if (!dirty_i->dirty_segmap[i]) 2317 return -ENOMEM; 2318 } 2319 2320 init_dirty_segmap(sbi); 2321 return init_victim_secmap(sbi); 2322 } 2323 2324 /* 2325 * Update min, max modified time for cost-benefit GC algorithm 2326 */ 2327 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2328 { 2329 struct sit_info *sit_i = SIT_I(sbi); 2330 unsigned int segno; 2331 2332 mutex_lock(&sit_i->sentry_lock); 2333 2334 sit_i->min_mtime = LLONG_MAX; 2335 2336 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2337 unsigned int i; 2338 unsigned long long mtime = 0; 2339 2340 for (i = 0; i < sbi->segs_per_sec; i++) 2341 mtime += get_seg_entry(sbi, segno + i)->mtime; 2342 2343 mtime = div_u64(mtime, sbi->segs_per_sec); 2344 2345 if (sit_i->min_mtime > mtime) 2346 sit_i->min_mtime = mtime; 2347 } 2348 sit_i->max_mtime = get_mtime(sbi); 2349 mutex_unlock(&sit_i->sentry_lock); 2350 } 2351 2352 int build_segment_manager(struct f2fs_sb_info *sbi) 2353 { 2354 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2355 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2356 struct f2fs_sm_info *sm_info; 2357 int err; 2358 2359 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2360 if (!sm_info) 2361 return -ENOMEM; 2362 2363 /* init sm info */ 2364 sbi->sm_info = sm_info; 2365 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2366 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2367 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2368 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2369 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2370 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2371 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2372 sm_info->rec_prefree_segments = sm_info->main_segments * 2373 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2374 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2375 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2376 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2377 2378 INIT_LIST_HEAD(&sm_info->discard_list); 2379 sm_info->nr_discards = 0; 2380 sm_info->max_discards = 0; 2381 2382 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2383 2384 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2385 2386 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2387 err = create_flush_cmd_control(sbi); 2388 if (err) 2389 return err; 2390 } 2391 2392 err = build_sit_info(sbi); 2393 if (err) 2394 return err; 2395 err = build_free_segmap(sbi); 2396 if (err) 2397 return err; 2398 err = build_curseg(sbi); 2399 if (err) 2400 return err; 2401 2402 /* reinit free segmap based on SIT */ 2403 build_sit_entries(sbi); 2404 2405 init_free_segmap(sbi); 2406 err = build_dirty_segmap(sbi); 2407 if (err) 2408 return err; 2409 2410 init_min_max_mtime(sbi); 2411 return 0; 2412 } 2413 2414 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2415 enum dirty_type dirty_type) 2416 { 2417 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2418 2419 mutex_lock(&dirty_i->seglist_lock); 2420 kvfree(dirty_i->dirty_segmap[dirty_type]); 2421 dirty_i->nr_dirty[dirty_type] = 0; 2422 mutex_unlock(&dirty_i->seglist_lock); 2423 } 2424 2425 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2426 { 2427 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2428 kvfree(dirty_i->victim_secmap); 2429 } 2430 2431 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2432 { 2433 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2434 int i; 2435 2436 if (!dirty_i) 2437 return; 2438 2439 /* discard pre-free/dirty segments list */ 2440 for (i = 0; i < NR_DIRTY_TYPE; i++) 2441 discard_dirty_segmap(sbi, i); 2442 2443 destroy_victim_secmap(sbi); 2444 SM_I(sbi)->dirty_info = NULL; 2445 kfree(dirty_i); 2446 } 2447 2448 static void destroy_curseg(struct f2fs_sb_info *sbi) 2449 { 2450 struct curseg_info *array = SM_I(sbi)->curseg_array; 2451 int i; 2452 2453 if (!array) 2454 return; 2455 SM_I(sbi)->curseg_array = NULL; 2456 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2457 kfree(array[i].sum_blk); 2458 kfree(array[i].journal); 2459 } 2460 kfree(array); 2461 } 2462 2463 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2464 { 2465 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2466 if (!free_i) 2467 return; 2468 SM_I(sbi)->free_info = NULL; 2469 kvfree(free_i->free_segmap); 2470 kvfree(free_i->free_secmap); 2471 kfree(free_i); 2472 } 2473 2474 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2475 { 2476 struct sit_info *sit_i = SIT_I(sbi); 2477 unsigned int start; 2478 2479 if (!sit_i) 2480 return; 2481 2482 if (sit_i->sentries) { 2483 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2484 kfree(sit_i->sentries[start].cur_valid_map); 2485 kfree(sit_i->sentries[start].ckpt_valid_map); 2486 kfree(sit_i->sentries[start].discard_map); 2487 } 2488 } 2489 kfree(sit_i->tmp_map); 2490 2491 kvfree(sit_i->sentries); 2492 kvfree(sit_i->sec_entries); 2493 kvfree(sit_i->dirty_sentries_bitmap); 2494 2495 SM_I(sbi)->sit_info = NULL; 2496 kfree(sit_i->sit_bitmap); 2497 kfree(sit_i); 2498 } 2499 2500 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2501 { 2502 struct f2fs_sm_info *sm_info = SM_I(sbi); 2503 2504 if (!sm_info) 2505 return; 2506 destroy_flush_cmd_control(sbi); 2507 destroy_dirty_segmap(sbi); 2508 destroy_curseg(sbi); 2509 destroy_free_segmap(sbi); 2510 destroy_sit_info(sbi); 2511 sbi->sm_info = NULL; 2512 kfree(sm_info); 2513 } 2514 2515 int __init create_segment_manager_caches(void) 2516 { 2517 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2518 sizeof(struct discard_entry)); 2519 if (!discard_entry_slab) 2520 goto fail; 2521 2522 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2523 sizeof(struct sit_entry_set)); 2524 if (!sit_entry_set_slab) 2525 goto destory_discard_entry; 2526 2527 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2528 sizeof(struct inmem_pages)); 2529 if (!inmem_entry_slab) 2530 goto destroy_sit_entry_set; 2531 return 0; 2532 2533 destroy_sit_entry_set: 2534 kmem_cache_destroy(sit_entry_set_slab); 2535 destory_discard_entry: 2536 kmem_cache_destroy(discard_entry_slab); 2537 fail: 2538 return -ENOMEM; 2539 } 2540 2541 void destroy_segment_manager_caches(void) 2542 { 2543 kmem_cache_destroy(sit_entry_set_slab); 2544 kmem_cache_destroy(discard_entry_slab); 2545 kmem_cache_destroy(inmem_entry_slab); 2546 } 2547