xref: /openbmc/linux/fs/f2fs/segment.c (revision 3cb88bc15937990177df1f7eac6f22ebbed19312)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	release_atomic_write_cnt(inode);
196 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
197 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
198 	clear_inode_flag(inode, FI_ATOMIC_FILE);
199 	stat_dec_atomic_inode(inode);
200 
201 	F2FS_I(inode)->atomic_write_task = NULL;
202 
203 	if (clean) {
204 		truncate_inode_pages_final(inode->i_mapping);
205 		f2fs_i_size_write(inode, fi->original_i_size);
206 		fi->original_i_size = 0;
207 	}
208 	/* avoid stale dirty inode during eviction */
209 	sync_inode_metadata(inode, 0);
210 }
211 
212 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
213 			block_t new_addr, block_t *old_addr, bool recover)
214 {
215 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216 	struct dnode_of_data dn;
217 	struct node_info ni;
218 	int err;
219 
220 retry:
221 	set_new_dnode(&dn, inode, NULL, NULL, 0);
222 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
223 	if (err) {
224 		if (err == -ENOMEM) {
225 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
226 			goto retry;
227 		}
228 		return err;
229 	}
230 
231 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
232 	if (err) {
233 		f2fs_put_dnode(&dn);
234 		return err;
235 	}
236 
237 	if (recover) {
238 		/* dn.data_blkaddr is always valid */
239 		if (!__is_valid_data_blkaddr(new_addr)) {
240 			if (new_addr == NULL_ADDR)
241 				dec_valid_block_count(sbi, inode, 1);
242 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
243 			f2fs_update_data_blkaddr(&dn, new_addr);
244 		} else {
245 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
246 				new_addr, ni.version, true, true);
247 		}
248 	} else {
249 		blkcnt_t count = 1;
250 
251 		err = inc_valid_block_count(sbi, inode, &count);
252 		if (err) {
253 			f2fs_put_dnode(&dn);
254 			return err;
255 		}
256 
257 		*old_addr = dn.data_blkaddr;
258 		f2fs_truncate_data_blocks_range(&dn, 1);
259 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
260 
261 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
262 					ni.version, true, false);
263 	}
264 
265 	f2fs_put_dnode(&dn);
266 
267 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
268 			index, old_addr ? *old_addr : 0, new_addr, recover);
269 	return 0;
270 }
271 
272 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
273 					bool revoke)
274 {
275 	struct revoke_entry *cur, *tmp;
276 	pgoff_t start_index = 0;
277 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
278 
279 	list_for_each_entry_safe(cur, tmp, head, list) {
280 		if (revoke) {
281 			__replace_atomic_write_block(inode, cur->index,
282 						cur->old_addr, NULL, true);
283 		} else if (truncate) {
284 			f2fs_truncate_hole(inode, start_index, cur->index);
285 			start_index = cur->index + 1;
286 		}
287 
288 		list_del(&cur->list);
289 		kmem_cache_free(revoke_entry_slab, cur);
290 	}
291 
292 	if (!revoke && truncate)
293 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
294 }
295 
296 static int __f2fs_commit_atomic_write(struct inode *inode)
297 {
298 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
299 	struct f2fs_inode_info *fi = F2FS_I(inode);
300 	struct inode *cow_inode = fi->cow_inode;
301 	struct revoke_entry *new;
302 	struct list_head revoke_list;
303 	block_t blkaddr;
304 	struct dnode_of_data dn;
305 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
306 	pgoff_t off = 0, blen, index;
307 	int ret = 0, i;
308 
309 	INIT_LIST_HEAD(&revoke_list);
310 
311 	while (len) {
312 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
313 
314 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
315 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
316 		if (ret && ret != -ENOENT) {
317 			goto out;
318 		} else if (ret == -ENOENT) {
319 			ret = 0;
320 			if (dn.max_level == 0)
321 				goto out;
322 			goto next;
323 		}
324 
325 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
326 				len);
327 		index = off;
328 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
329 			blkaddr = f2fs_data_blkaddr(&dn);
330 
331 			if (!__is_valid_data_blkaddr(blkaddr)) {
332 				continue;
333 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
334 					DATA_GENERIC_ENHANCE)) {
335 				f2fs_put_dnode(&dn);
336 				ret = -EFSCORRUPTED;
337 				f2fs_handle_error(sbi,
338 						ERROR_INVALID_BLKADDR);
339 				goto out;
340 			}
341 
342 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343 							true, NULL);
344 
345 			ret = __replace_atomic_write_block(inode, index, blkaddr,
346 							&new->old_addr, false);
347 			if (ret) {
348 				f2fs_put_dnode(&dn);
349 				kmem_cache_free(revoke_entry_slab, new);
350 				goto out;
351 			}
352 
353 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354 			new->index = index;
355 			list_add_tail(&new->list, &revoke_list);
356 		}
357 		f2fs_put_dnode(&dn);
358 next:
359 		off += blen;
360 		len -= blen;
361 	}
362 
363 out:
364 	if (ret) {
365 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
366 	} else {
367 		sbi->committed_atomic_block += fi->atomic_write_cnt;
368 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
369 	}
370 
371 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
372 
373 	return ret;
374 }
375 
376 int f2fs_commit_atomic_write(struct inode *inode)
377 {
378 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379 	struct f2fs_inode_info *fi = F2FS_I(inode);
380 	int err;
381 
382 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383 	if (err)
384 		return err;
385 
386 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387 	f2fs_lock_op(sbi);
388 
389 	err = __f2fs_commit_atomic_write(inode);
390 
391 	f2fs_unlock_op(sbi);
392 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
393 
394 	return err;
395 }
396 
397 /*
398  * This function balances dirty node and dentry pages.
399  * In addition, it controls garbage collection.
400  */
401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
402 {
403 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
404 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
405 
406 	/* balance_fs_bg is able to be pending */
407 	if (need && excess_cached_nats(sbi))
408 		f2fs_balance_fs_bg(sbi, false);
409 
410 	if (!f2fs_is_checkpoint_ready(sbi))
411 		return;
412 
413 	/*
414 	 * We should do GC or end up with checkpoint, if there are so many dirty
415 	 * dir/node pages without enough free segments.
416 	 */
417 	if (has_enough_free_secs(sbi, 0, 0))
418 		return;
419 
420 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
421 				sbi->gc_thread->f2fs_gc_task) {
422 		DEFINE_WAIT(wait);
423 
424 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
425 					TASK_UNINTERRUPTIBLE);
426 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
427 		io_schedule();
428 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
429 	} else {
430 		struct f2fs_gc_control gc_control = {
431 			.victim_segno = NULL_SEGNO,
432 			.init_gc_type = BG_GC,
433 			.no_bg_gc = true,
434 			.should_migrate_blocks = false,
435 			.err_gc_skipped = false,
436 			.nr_free_secs = 1 };
437 		f2fs_down_write(&sbi->gc_lock);
438 		f2fs_gc(sbi, &gc_control);
439 	}
440 }
441 
442 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
443 {
444 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
445 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
446 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
447 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
448 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
449 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
450 	unsigned int threshold = sbi->blocks_per_seg * factor *
451 					DEFAULT_DIRTY_THRESHOLD;
452 	unsigned int global_threshold = threshold * 3 / 2;
453 
454 	if (dents >= threshold || qdata >= threshold ||
455 		nodes >= threshold || meta >= threshold ||
456 		imeta >= threshold)
457 		return true;
458 	return dents + qdata + nodes + meta + imeta >  global_threshold;
459 }
460 
461 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
462 {
463 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
464 		return;
465 
466 	/* try to shrink extent cache when there is no enough memory */
467 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
468 		f2fs_shrink_read_extent_tree(sbi,
469 				READ_EXTENT_CACHE_SHRINK_NUMBER);
470 
471 	/* try to shrink age extent cache when there is no enough memory */
472 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
473 		f2fs_shrink_age_extent_tree(sbi,
474 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
475 
476 	/* check the # of cached NAT entries */
477 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
478 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
479 
480 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
481 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
482 	else
483 		f2fs_build_free_nids(sbi, false, false);
484 
485 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
486 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
487 		goto do_sync;
488 
489 	/* there is background inflight IO or foreground operation recently */
490 	if (is_inflight_io(sbi, REQ_TIME) ||
491 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
492 		return;
493 
494 	/* exceed periodical checkpoint timeout threshold */
495 	if (f2fs_time_over(sbi, CP_TIME))
496 		goto do_sync;
497 
498 	/* checkpoint is the only way to shrink partial cached entries */
499 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
500 		f2fs_available_free_memory(sbi, INO_ENTRIES))
501 		return;
502 
503 do_sync:
504 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
505 		struct blk_plug plug;
506 
507 		mutex_lock(&sbi->flush_lock);
508 
509 		blk_start_plug(&plug);
510 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
511 		blk_finish_plug(&plug);
512 
513 		mutex_unlock(&sbi->flush_lock);
514 	}
515 	f2fs_sync_fs(sbi->sb, 1);
516 	stat_inc_bg_cp_count(sbi->stat_info);
517 }
518 
519 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
520 				struct block_device *bdev)
521 {
522 	int ret = blkdev_issue_flush(bdev);
523 
524 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
525 				test_opt(sbi, FLUSH_MERGE), ret);
526 	if (!ret)
527 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
528 	return ret;
529 }
530 
531 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
532 {
533 	int ret = 0;
534 	int i;
535 
536 	if (!f2fs_is_multi_device(sbi))
537 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
538 
539 	for (i = 0; i < sbi->s_ndevs; i++) {
540 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
541 			continue;
542 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
543 		if (ret)
544 			break;
545 	}
546 	return ret;
547 }
548 
549 static int issue_flush_thread(void *data)
550 {
551 	struct f2fs_sb_info *sbi = data;
552 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
553 	wait_queue_head_t *q = &fcc->flush_wait_queue;
554 repeat:
555 	if (kthread_should_stop())
556 		return 0;
557 
558 	if (!llist_empty(&fcc->issue_list)) {
559 		struct flush_cmd *cmd, *next;
560 		int ret;
561 
562 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
563 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
564 
565 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
566 
567 		ret = submit_flush_wait(sbi, cmd->ino);
568 		atomic_inc(&fcc->issued_flush);
569 
570 		llist_for_each_entry_safe(cmd, next,
571 					  fcc->dispatch_list, llnode) {
572 			cmd->ret = ret;
573 			complete(&cmd->wait);
574 		}
575 		fcc->dispatch_list = NULL;
576 	}
577 
578 	wait_event_interruptible(*q,
579 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
580 	goto repeat;
581 }
582 
583 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
584 {
585 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
586 	struct flush_cmd cmd;
587 	int ret;
588 
589 	if (test_opt(sbi, NOBARRIER))
590 		return 0;
591 
592 	if (!test_opt(sbi, FLUSH_MERGE)) {
593 		atomic_inc(&fcc->queued_flush);
594 		ret = submit_flush_wait(sbi, ino);
595 		atomic_dec(&fcc->queued_flush);
596 		atomic_inc(&fcc->issued_flush);
597 		return ret;
598 	}
599 
600 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
601 	    f2fs_is_multi_device(sbi)) {
602 		ret = submit_flush_wait(sbi, ino);
603 		atomic_dec(&fcc->queued_flush);
604 
605 		atomic_inc(&fcc->issued_flush);
606 		return ret;
607 	}
608 
609 	cmd.ino = ino;
610 	init_completion(&cmd.wait);
611 
612 	llist_add(&cmd.llnode, &fcc->issue_list);
613 
614 	/*
615 	 * update issue_list before we wake up issue_flush thread, this
616 	 * smp_mb() pairs with another barrier in ___wait_event(), see
617 	 * more details in comments of waitqueue_active().
618 	 */
619 	smp_mb();
620 
621 	if (waitqueue_active(&fcc->flush_wait_queue))
622 		wake_up(&fcc->flush_wait_queue);
623 
624 	if (fcc->f2fs_issue_flush) {
625 		wait_for_completion(&cmd.wait);
626 		atomic_dec(&fcc->queued_flush);
627 	} else {
628 		struct llist_node *list;
629 
630 		list = llist_del_all(&fcc->issue_list);
631 		if (!list) {
632 			wait_for_completion(&cmd.wait);
633 			atomic_dec(&fcc->queued_flush);
634 		} else {
635 			struct flush_cmd *tmp, *next;
636 
637 			ret = submit_flush_wait(sbi, ino);
638 
639 			llist_for_each_entry_safe(tmp, next, list, llnode) {
640 				if (tmp == &cmd) {
641 					cmd.ret = ret;
642 					atomic_dec(&fcc->queued_flush);
643 					continue;
644 				}
645 				tmp->ret = ret;
646 				complete(&tmp->wait);
647 			}
648 		}
649 	}
650 
651 	return cmd.ret;
652 }
653 
654 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
655 {
656 	dev_t dev = sbi->sb->s_bdev->bd_dev;
657 	struct flush_cmd_control *fcc;
658 
659 	if (SM_I(sbi)->fcc_info) {
660 		fcc = SM_I(sbi)->fcc_info;
661 		if (fcc->f2fs_issue_flush)
662 			return 0;
663 		goto init_thread;
664 	}
665 
666 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
667 	if (!fcc)
668 		return -ENOMEM;
669 	atomic_set(&fcc->issued_flush, 0);
670 	atomic_set(&fcc->queued_flush, 0);
671 	init_waitqueue_head(&fcc->flush_wait_queue);
672 	init_llist_head(&fcc->issue_list);
673 	SM_I(sbi)->fcc_info = fcc;
674 	if (!test_opt(sbi, FLUSH_MERGE))
675 		return 0;
676 
677 init_thread:
678 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
679 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
680 	if (IS_ERR(fcc->f2fs_issue_flush)) {
681 		int err = PTR_ERR(fcc->f2fs_issue_flush);
682 
683 		fcc->f2fs_issue_flush = NULL;
684 		return err;
685 	}
686 
687 	return 0;
688 }
689 
690 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
691 {
692 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
693 
694 	if (fcc && fcc->f2fs_issue_flush) {
695 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
696 
697 		fcc->f2fs_issue_flush = NULL;
698 		kthread_stop(flush_thread);
699 	}
700 	if (free) {
701 		kfree(fcc);
702 		SM_I(sbi)->fcc_info = NULL;
703 	}
704 }
705 
706 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
707 {
708 	int ret = 0, i;
709 
710 	if (!f2fs_is_multi_device(sbi))
711 		return 0;
712 
713 	if (test_opt(sbi, NOBARRIER))
714 		return 0;
715 
716 	for (i = 1; i < sbi->s_ndevs; i++) {
717 		int count = DEFAULT_RETRY_IO_COUNT;
718 
719 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
720 			continue;
721 
722 		do {
723 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
724 			if (ret)
725 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
726 		} while (ret && --count);
727 
728 		if (ret) {
729 			f2fs_stop_checkpoint(sbi, false,
730 					STOP_CP_REASON_FLUSH_FAIL);
731 			break;
732 		}
733 
734 		spin_lock(&sbi->dev_lock);
735 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
736 		spin_unlock(&sbi->dev_lock);
737 	}
738 
739 	return ret;
740 }
741 
742 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
743 		enum dirty_type dirty_type)
744 {
745 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
746 
747 	/* need not be added */
748 	if (IS_CURSEG(sbi, segno))
749 		return;
750 
751 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
752 		dirty_i->nr_dirty[dirty_type]++;
753 
754 	if (dirty_type == DIRTY) {
755 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
756 		enum dirty_type t = sentry->type;
757 
758 		if (unlikely(t >= DIRTY)) {
759 			f2fs_bug_on(sbi, 1);
760 			return;
761 		}
762 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
763 			dirty_i->nr_dirty[t]++;
764 
765 		if (__is_large_section(sbi)) {
766 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
767 			block_t valid_blocks =
768 				get_valid_blocks(sbi, segno, true);
769 
770 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
771 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
772 
773 			if (!IS_CURSEC(sbi, secno))
774 				set_bit(secno, dirty_i->dirty_secmap);
775 		}
776 	}
777 }
778 
779 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
780 		enum dirty_type dirty_type)
781 {
782 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
783 	block_t valid_blocks;
784 
785 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
786 		dirty_i->nr_dirty[dirty_type]--;
787 
788 	if (dirty_type == DIRTY) {
789 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
790 		enum dirty_type t = sentry->type;
791 
792 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
793 			dirty_i->nr_dirty[t]--;
794 
795 		valid_blocks = get_valid_blocks(sbi, segno, true);
796 		if (valid_blocks == 0) {
797 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
798 						dirty_i->victim_secmap);
799 #ifdef CONFIG_F2FS_CHECK_FS
800 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
801 #endif
802 		}
803 		if (__is_large_section(sbi)) {
804 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
805 
806 			if (!valid_blocks ||
807 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
808 				clear_bit(secno, dirty_i->dirty_secmap);
809 				return;
810 			}
811 
812 			if (!IS_CURSEC(sbi, secno))
813 				set_bit(secno, dirty_i->dirty_secmap);
814 		}
815 	}
816 }
817 
818 /*
819  * Should not occur error such as -ENOMEM.
820  * Adding dirty entry into seglist is not critical operation.
821  * If a given segment is one of current working segments, it won't be added.
822  */
823 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
824 {
825 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
826 	unsigned short valid_blocks, ckpt_valid_blocks;
827 	unsigned int usable_blocks;
828 
829 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
830 		return;
831 
832 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
833 	mutex_lock(&dirty_i->seglist_lock);
834 
835 	valid_blocks = get_valid_blocks(sbi, segno, false);
836 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
837 
838 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
839 		ckpt_valid_blocks == usable_blocks)) {
840 		__locate_dirty_segment(sbi, segno, PRE);
841 		__remove_dirty_segment(sbi, segno, DIRTY);
842 	} else if (valid_blocks < usable_blocks) {
843 		__locate_dirty_segment(sbi, segno, DIRTY);
844 	} else {
845 		/* Recovery routine with SSR needs this */
846 		__remove_dirty_segment(sbi, segno, DIRTY);
847 	}
848 
849 	mutex_unlock(&dirty_i->seglist_lock);
850 }
851 
852 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
853 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
854 {
855 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
856 	unsigned int segno;
857 
858 	mutex_lock(&dirty_i->seglist_lock);
859 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
860 		if (get_valid_blocks(sbi, segno, false))
861 			continue;
862 		if (IS_CURSEG(sbi, segno))
863 			continue;
864 		__locate_dirty_segment(sbi, segno, PRE);
865 		__remove_dirty_segment(sbi, segno, DIRTY);
866 	}
867 	mutex_unlock(&dirty_i->seglist_lock);
868 }
869 
870 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
871 {
872 	int ovp_hole_segs =
873 		(overprovision_segments(sbi) - reserved_segments(sbi));
874 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
875 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
876 	block_t holes[2] = {0, 0};	/* DATA and NODE */
877 	block_t unusable;
878 	struct seg_entry *se;
879 	unsigned int segno;
880 
881 	mutex_lock(&dirty_i->seglist_lock);
882 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
883 		se = get_seg_entry(sbi, segno);
884 		if (IS_NODESEG(se->type))
885 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
886 							se->valid_blocks;
887 		else
888 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
889 							se->valid_blocks;
890 	}
891 	mutex_unlock(&dirty_i->seglist_lock);
892 
893 	unusable = max(holes[DATA], holes[NODE]);
894 	if (unusable > ovp_holes)
895 		return unusable - ovp_holes;
896 	return 0;
897 }
898 
899 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
900 {
901 	int ovp_hole_segs =
902 		(overprovision_segments(sbi) - reserved_segments(sbi));
903 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
904 		return -EAGAIN;
905 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
906 		dirty_segments(sbi) > ovp_hole_segs)
907 		return -EAGAIN;
908 	return 0;
909 }
910 
911 /* This is only used by SBI_CP_DISABLED */
912 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
913 {
914 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
915 	unsigned int segno = 0;
916 
917 	mutex_lock(&dirty_i->seglist_lock);
918 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
919 		if (get_valid_blocks(sbi, segno, false))
920 			continue;
921 		if (get_ckpt_valid_blocks(sbi, segno, false))
922 			continue;
923 		mutex_unlock(&dirty_i->seglist_lock);
924 		return segno;
925 	}
926 	mutex_unlock(&dirty_i->seglist_lock);
927 	return NULL_SEGNO;
928 }
929 
930 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
931 		struct block_device *bdev, block_t lstart,
932 		block_t start, block_t len)
933 {
934 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
935 	struct list_head *pend_list;
936 	struct discard_cmd *dc;
937 
938 	f2fs_bug_on(sbi, !len);
939 
940 	pend_list = &dcc->pend_list[plist_idx(len)];
941 
942 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
943 	INIT_LIST_HEAD(&dc->list);
944 	dc->bdev = bdev;
945 	dc->di.lstart = lstart;
946 	dc->di.start = start;
947 	dc->di.len = len;
948 	dc->ref = 0;
949 	dc->state = D_PREP;
950 	dc->queued = 0;
951 	dc->error = 0;
952 	init_completion(&dc->wait);
953 	list_add_tail(&dc->list, pend_list);
954 	spin_lock_init(&dc->lock);
955 	dc->bio_ref = 0;
956 	atomic_inc(&dcc->discard_cmd_cnt);
957 	dcc->undiscard_blks += len;
958 
959 	return dc;
960 }
961 
962 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
963 {
964 #ifdef CONFIG_F2FS_CHECK_FS
965 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
966 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
967 	struct discard_cmd *cur_dc, *next_dc;
968 
969 	while (cur) {
970 		next = rb_next(cur);
971 		if (!next)
972 			return true;
973 
974 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
975 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
976 
977 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
978 			f2fs_info(sbi, "broken discard_rbtree, "
979 				"cur(%u, %u) next(%u, %u)",
980 				cur_dc->di.lstart, cur_dc->di.len,
981 				next_dc->di.lstart, next_dc->di.len);
982 			return false;
983 		}
984 		cur = next;
985 	}
986 #endif
987 	return true;
988 }
989 
990 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
991 						block_t blkaddr)
992 {
993 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
994 	struct rb_node *node = dcc->root.rb_root.rb_node;
995 	struct discard_cmd *dc;
996 
997 	while (node) {
998 		dc = rb_entry(node, struct discard_cmd, rb_node);
999 
1000 		if (blkaddr < dc->di.lstart)
1001 			node = node->rb_left;
1002 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1003 			node = node->rb_right;
1004 		else
1005 			return dc;
1006 	}
1007 	return NULL;
1008 }
1009 
1010 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1011 				block_t blkaddr,
1012 				struct discard_cmd **prev_entry,
1013 				struct discard_cmd **next_entry,
1014 				struct rb_node ***insert_p,
1015 				struct rb_node **insert_parent)
1016 {
1017 	struct rb_node **pnode = &root->rb_root.rb_node;
1018 	struct rb_node *parent = NULL, *tmp_node;
1019 	struct discard_cmd *dc;
1020 
1021 	*insert_p = NULL;
1022 	*insert_parent = NULL;
1023 	*prev_entry = NULL;
1024 	*next_entry = NULL;
1025 
1026 	if (RB_EMPTY_ROOT(&root->rb_root))
1027 		return NULL;
1028 
1029 	while (*pnode) {
1030 		parent = *pnode;
1031 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1032 
1033 		if (blkaddr < dc->di.lstart)
1034 			pnode = &(*pnode)->rb_left;
1035 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1036 			pnode = &(*pnode)->rb_right;
1037 		else
1038 			goto lookup_neighbors;
1039 	}
1040 
1041 	*insert_p = pnode;
1042 	*insert_parent = parent;
1043 
1044 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1045 	tmp_node = parent;
1046 	if (parent && blkaddr > dc->di.lstart)
1047 		tmp_node = rb_next(parent);
1048 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1049 
1050 	tmp_node = parent;
1051 	if (parent && blkaddr < dc->di.lstart)
1052 		tmp_node = rb_prev(parent);
1053 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1054 	return NULL;
1055 
1056 lookup_neighbors:
1057 	/* lookup prev node for merging backward later */
1058 	tmp_node = rb_prev(&dc->rb_node);
1059 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1060 
1061 	/* lookup next node for merging frontward later */
1062 	tmp_node = rb_next(&dc->rb_node);
1063 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1064 	return dc;
1065 }
1066 
1067 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1068 							struct discard_cmd *dc)
1069 {
1070 	if (dc->state == D_DONE)
1071 		atomic_sub(dc->queued, &dcc->queued_discard);
1072 
1073 	list_del(&dc->list);
1074 	rb_erase_cached(&dc->rb_node, &dcc->root);
1075 	dcc->undiscard_blks -= dc->di.len;
1076 
1077 	kmem_cache_free(discard_cmd_slab, dc);
1078 
1079 	atomic_dec(&dcc->discard_cmd_cnt);
1080 }
1081 
1082 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1083 							struct discard_cmd *dc)
1084 {
1085 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1086 	unsigned long flags;
1087 
1088 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1089 
1090 	spin_lock_irqsave(&dc->lock, flags);
1091 	if (dc->bio_ref) {
1092 		spin_unlock_irqrestore(&dc->lock, flags);
1093 		return;
1094 	}
1095 	spin_unlock_irqrestore(&dc->lock, flags);
1096 
1097 	f2fs_bug_on(sbi, dc->ref);
1098 
1099 	if (dc->error == -EOPNOTSUPP)
1100 		dc->error = 0;
1101 
1102 	if (dc->error)
1103 		printk_ratelimited(
1104 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1105 			KERN_INFO, sbi->sb->s_id,
1106 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1107 	__detach_discard_cmd(dcc, dc);
1108 }
1109 
1110 static void f2fs_submit_discard_endio(struct bio *bio)
1111 {
1112 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1113 	unsigned long flags;
1114 
1115 	spin_lock_irqsave(&dc->lock, flags);
1116 	if (!dc->error)
1117 		dc->error = blk_status_to_errno(bio->bi_status);
1118 	dc->bio_ref--;
1119 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1120 		dc->state = D_DONE;
1121 		complete_all(&dc->wait);
1122 	}
1123 	spin_unlock_irqrestore(&dc->lock, flags);
1124 	bio_put(bio);
1125 }
1126 
1127 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1128 				block_t start, block_t end)
1129 {
1130 #ifdef CONFIG_F2FS_CHECK_FS
1131 	struct seg_entry *sentry;
1132 	unsigned int segno;
1133 	block_t blk = start;
1134 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1135 	unsigned long *map;
1136 
1137 	while (blk < end) {
1138 		segno = GET_SEGNO(sbi, blk);
1139 		sentry = get_seg_entry(sbi, segno);
1140 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1141 
1142 		if (end < START_BLOCK(sbi, segno + 1))
1143 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1144 		else
1145 			size = max_blocks;
1146 		map = (unsigned long *)(sentry->cur_valid_map);
1147 		offset = __find_rev_next_bit(map, size, offset);
1148 		f2fs_bug_on(sbi, offset != size);
1149 		blk = START_BLOCK(sbi, segno + 1);
1150 	}
1151 #endif
1152 }
1153 
1154 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1155 				struct discard_policy *dpolicy,
1156 				int discard_type, unsigned int granularity)
1157 {
1158 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1159 
1160 	/* common policy */
1161 	dpolicy->type = discard_type;
1162 	dpolicy->sync = true;
1163 	dpolicy->ordered = false;
1164 	dpolicy->granularity = granularity;
1165 
1166 	dpolicy->max_requests = dcc->max_discard_request;
1167 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1168 	dpolicy->timeout = false;
1169 
1170 	if (discard_type == DPOLICY_BG) {
1171 		dpolicy->min_interval = dcc->min_discard_issue_time;
1172 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1173 		dpolicy->max_interval = dcc->max_discard_issue_time;
1174 		dpolicy->io_aware = true;
1175 		dpolicy->sync = false;
1176 		dpolicy->ordered = true;
1177 		if (utilization(sbi) > dcc->discard_urgent_util) {
1178 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1179 			if (atomic_read(&dcc->discard_cmd_cnt))
1180 				dpolicy->max_interval =
1181 					dcc->min_discard_issue_time;
1182 		}
1183 	} else if (discard_type == DPOLICY_FORCE) {
1184 		dpolicy->min_interval = dcc->min_discard_issue_time;
1185 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1186 		dpolicy->max_interval = dcc->max_discard_issue_time;
1187 		dpolicy->io_aware = false;
1188 	} else if (discard_type == DPOLICY_FSTRIM) {
1189 		dpolicy->io_aware = false;
1190 	} else if (discard_type == DPOLICY_UMOUNT) {
1191 		dpolicy->io_aware = false;
1192 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1193 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1194 		dpolicy->timeout = true;
1195 	}
1196 }
1197 
1198 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1199 				struct block_device *bdev, block_t lstart,
1200 				block_t start, block_t len);
1201 
1202 #ifdef CONFIG_BLK_DEV_ZONED
1203 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1204 				   struct discard_cmd *dc, blk_opf_t flag,
1205 				   struct list_head *wait_list,
1206 				   unsigned int *issued)
1207 {
1208 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1209 	struct block_device *bdev = dc->bdev;
1210 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1211 	unsigned long flags;
1212 
1213 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1214 
1215 	spin_lock_irqsave(&dc->lock, flags);
1216 	dc->state = D_SUBMIT;
1217 	dc->bio_ref++;
1218 	spin_unlock_irqrestore(&dc->lock, flags);
1219 
1220 	if (issued)
1221 		(*issued)++;
1222 
1223 	atomic_inc(&dcc->queued_discard);
1224 	dc->queued++;
1225 	list_move_tail(&dc->list, wait_list);
1226 
1227 	/* sanity check on discard range */
1228 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1229 
1230 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1231 	bio->bi_private = dc;
1232 	bio->bi_end_io = f2fs_submit_discard_endio;
1233 	submit_bio(bio);
1234 
1235 	atomic_inc(&dcc->issued_discard);
1236 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1237 }
1238 #endif
1239 
1240 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1241 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1242 				struct discard_policy *dpolicy,
1243 				struct discard_cmd *dc, int *issued)
1244 {
1245 	struct block_device *bdev = dc->bdev;
1246 	unsigned int max_discard_blocks =
1247 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1248 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1249 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1250 					&(dcc->fstrim_list) : &(dcc->wait_list);
1251 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1252 	block_t lstart, start, len, total_len;
1253 	int err = 0;
1254 
1255 	if (dc->state != D_PREP)
1256 		return 0;
1257 
1258 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1259 		return 0;
1260 
1261 #ifdef CONFIG_BLK_DEV_ZONED
1262 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1263 		int devi = f2fs_bdev_index(sbi, bdev);
1264 
1265 		if (devi < 0)
1266 			return -EINVAL;
1267 
1268 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1269 			__submit_zone_reset_cmd(sbi, dc, flag,
1270 						wait_list, issued);
1271 			return 0;
1272 		}
1273 	}
1274 #endif
1275 
1276 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1277 
1278 	lstart = dc->di.lstart;
1279 	start = dc->di.start;
1280 	len = dc->di.len;
1281 	total_len = len;
1282 
1283 	dc->di.len = 0;
1284 
1285 	while (total_len && *issued < dpolicy->max_requests && !err) {
1286 		struct bio *bio = NULL;
1287 		unsigned long flags;
1288 		bool last = true;
1289 
1290 		if (len > max_discard_blocks) {
1291 			len = max_discard_blocks;
1292 			last = false;
1293 		}
1294 
1295 		(*issued)++;
1296 		if (*issued == dpolicy->max_requests)
1297 			last = true;
1298 
1299 		dc->di.len += len;
1300 
1301 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1302 			err = -EIO;
1303 		} else {
1304 			err = __blkdev_issue_discard(bdev,
1305 					SECTOR_FROM_BLOCK(start),
1306 					SECTOR_FROM_BLOCK(len),
1307 					GFP_NOFS, &bio);
1308 		}
1309 		if (err) {
1310 			spin_lock_irqsave(&dc->lock, flags);
1311 			if (dc->state == D_PARTIAL)
1312 				dc->state = D_SUBMIT;
1313 			spin_unlock_irqrestore(&dc->lock, flags);
1314 
1315 			break;
1316 		}
1317 
1318 		f2fs_bug_on(sbi, !bio);
1319 
1320 		/*
1321 		 * should keep before submission to avoid D_DONE
1322 		 * right away
1323 		 */
1324 		spin_lock_irqsave(&dc->lock, flags);
1325 		if (last)
1326 			dc->state = D_SUBMIT;
1327 		else
1328 			dc->state = D_PARTIAL;
1329 		dc->bio_ref++;
1330 		spin_unlock_irqrestore(&dc->lock, flags);
1331 
1332 		atomic_inc(&dcc->queued_discard);
1333 		dc->queued++;
1334 		list_move_tail(&dc->list, wait_list);
1335 
1336 		/* sanity check on discard range */
1337 		__check_sit_bitmap(sbi, lstart, lstart + len);
1338 
1339 		bio->bi_private = dc;
1340 		bio->bi_end_io = f2fs_submit_discard_endio;
1341 		bio->bi_opf |= flag;
1342 		submit_bio(bio);
1343 
1344 		atomic_inc(&dcc->issued_discard);
1345 
1346 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1347 
1348 		lstart += len;
1349 		start += len;
1350 		total_len -= len;
1351 		len = total_len;
1352 	}
1353 
1354 	if (!err && len) {
1355 		dcc->undiscard_blks -= len;
1356 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1357 	}
1358 	return err;
1359 }
1360 
1361 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1362 				struct block_device *bdev, block_t lstart,
1363 				block_t start, block_t len)
1364 {
1365 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1366 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1367 	struct rb_node *parent = NULL;
1368 	struct discard_cmd *dc;
1369 	bool leftmost = true;
1370 
1371 	/* look up rb tree to find parent node */
1372 	while (*p) {
1373 		parent = *p;
1374 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1375 
1376 		if (lstart < dc->di.lstart) {
1377 			p = &(*p)->rb_left;
1378 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1379 			p = &(*p)->rb_right;
1380 			leftmost = false;
1381 		} else {
1382 			f2fs_bug_on(sbi, 1);
1383 		}
1384 	}
1385 
1386 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1387 
1388 	rb_link_node(&dc->rb_node, parent, p);
1389 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1390 }
1391 
1392 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1393 						struct discard_cmd *dc)
1394 {
1395 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1396 }
1397 
1398 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1399 				struct discard_cmd *dc, block_t blkaddr)
1400 {
1401 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1402 	struct discard_info di = dc->di;
1403 	bool modified = false;
1404 
1405 	if (dc->state == D_DONE || dc->di.len == 1) {
1406 		__remove_discard_cmd(sbi, dc);
1407 		return;
1408 	}
1409 
1410 	dcc->undiscard_blks -= di.len;
1411 
1412 	if (blkaddr > di.lstart) {
1413 		dc->di.len = blkaddr - dc->di.lstart;
1414 		dcc->undiscard_blks += dc->di.len;
1415 		__relocate_discard_cmd(dcc, dc);
1416 		modified = true;
1417 	}
1418 
1419 	if (blkaddr < di.lstart + di.len - 1) {
1420 		if (modified) {
1421 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1422 					di.start + blkaddr + 1 - di.lstart,
1423 					di.lstart + di.len - 1 - blkaddr);
1424 		} else {
1425 			dc->di.lstart++;
1426 			dc->di.len--;
1427 			dc->di.start++;
1428 			dcc->undiscard_blks += dc->di.len;
1429 			__relocate_discard_cmd(dcc, dc);
1430 		}
1431 	}
1432 }
1433 
1434 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1435 				struct block_device *bdev, block_t lstart,
1436 				block_t start, block_t len)
1437 {
1438 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1439 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1440 	struct discard_cmd *dc;
1441 	struct discard_info di = {0};
1442 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1443 	unsigned int max_discard_blocks =
1444 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1445 	block_t end = lstart + len;
1446 
1447 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1448 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1449 	if (dc)
1450 		prev_dc = dc;
1451 
1452 	if (!prev_dc) {
1453 		di.lstart = lstart;
1454 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1455 		di.len = min(di.len, len);
1456 		di.start = start;
1457 	}
1458 
1459 	while (1) {
1460 		struct rb_node *node;
1461 		bool merged = false;
1462 		struct discard_cmd *tdc = NULL;
1463 
1464 		if (prev_dc) {
1465 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1466 			if (di.lstart < lstart)
1467 				di.lstart = lstart;
1468 			if (di.lstart >= end)
1469 				break;
1470 
1471 			if (!next_dc || next_dc->di.lstart > end)
1472 				di.len = end - di.lstart;
1473 			else
1474 				di.len = next_dc->di.lstart - di.lstart;
1475 			di.start = start + di.lstart - lstart;
1476 		}
1477 
1478 		if (!di.len)
1479 			goto next;
1480 
1481 		if (prev_dc && prev_dc->state == D_PREP &&
1482 			prev_dc->bdev == bdev &&
1483 			__is_discard_back_mergeable(&di, &prev_dc->di,
1484 							max_discard_blocks)) {
1485 			prev_dc->di.len += di.len;
1486 			dcc->undiscard_blks += di.len;
1487 			__relocate_discard_cmd(dcc, prev_dc);
1488 			di = prev_dc->di;
1489 			tdc = prev_dc;
1490 			merged = true;
1491 		}
1492 
1493 		if (next_dc && next_dc->state == D_PREP &&
1494 			next_dc->bdev == bdev &&
1495 			__is_discard_front_mergeable(&di, &next_dc->di,
1496 							max_discard_blocks)) {
1497 			next_dc->di.lstart = di.lstart;
1498 			next_dc->di.len += di.len;
1499 			next_dc->di.start = di.start;
1500 			dcc->undiscard_blks += di.len;
1501 			__relocate_discard_cmd(dcc, next_dc);
1502 			if (tdc)
1503 				__remove_discard_cmd(sbi, tdc);
1504 			merged = true;
1505 		}
1506 
1507 		if (!merged)
1508 			__insert_discard_cmd(sbi, bdev,
1509 						di.lstart, di.start, di.len);
1510  next:
1511 		prev_dc = next_dc;
1512 		if (!prev_dc)
1513 			break;
1514 
1515 		node = rb_next(&prev_dc->rb_node);
1516 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1517 	}
1518 }
1519 
1520 #ifdef CONFIG_BLK_DEV_ZONED
1521 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1522 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1523 		block_t blklen)
1524 {
1525 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1526 
1527 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1528 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1529 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1530 }
1531 #endif
1532 
1533 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1534 		struct block_device *bdev, block_t blkstart, block_t blklen)
1535 {
1536 	block_t lblkstart = blkstart;
1537 
1538 	if (!f2fs_bdev_support_discard(bdev))
1539 		return;
1540 
1541 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1542 
1543 	if (f2fs_is_multi_device(sbi)) {
1544 		int devi = f2fs_target_device_index(sbi, blkstart);
1545 
1546 		blkstart -= FDEV(devi).start_blk;
1547 	}
1548 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1549 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1550 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1551 }
1552 
1553 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1554 		struct discard_policy *dpolicy, int *issued)
1555 {
1556 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1557 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1558 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1559 	struct discard_cmd *dc;
1560 	struct blk_plug plug;
1561 	bool io_interrupted = false;
1562 
1563 	mutex_lock(&dcc->cmd_lock);
1564 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1565 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1566 	if (!dc)
1567 		dc = next_dc;
1568 
1569 	blk_start_plug(&plug);
1570 
1571 	while (dc) {
1572 		struct rb_node *node;
1573 		int err = 0;
1574 
1575 		if (dc->state != D_PREP)
1576 			goto next;
1577 
1578 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1579 			io_interrupted = true;
1580 			break;
1581 		}
1582 
1583 		dcc->next_pos = dc->di.lstart + dc->di.len;
1584 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1585 
1586 		if (*issued >= dpolicy->max_requests)
1587 			break;
1588 next:
1589 		node = rb_next(&dc->rb_node);
1590 		if (err)
1591 			__remove_discard_cmd(sbi, dc);
1592 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1593 	}
1594 
1595 	blk_finish_plug(&plug);
1596 
1597 	if (!dc)
1598 		dcc->next_pos = 0;
1599 
1600 	mutex_unlock(&dcc->cmd_lock);
1601 
1602 	if (!(*issued) && io_interrupted)
1603 		*issued = -1;
1604 }
1605 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1606 					struct discard_policy *dpolicy);
1607 
1608 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1609 					struct discard_policy *dpolicy)
1610 {
1611 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1612 	struct list_head *pend_list;
1613 	struct discard_cmd *dc, *tmp;
1614 	struct blk_plug plug;
1615 	int i, issued;
1616 	bool io_interrupted = false;
1617 
1618 	if (dpolicy->timeout)
1619 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1620 
1621 retry:
1622 	issued = 0;
1623 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1624 		if (dpolicy->timeout &&
1625 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1626 			break;
1627 
1628 		if (i + 1 < dpolicy->granularity)
1629 			break;
1630 
1631 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1632 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1633 			return issued;
1634 		}
1635 
1636 		pend_list = &dcc->pend_list[i];
1637 
1638 		mutex_lock(&dcc->cmd_lock);
1639 		if (list_empty(pend_list))
1640 			goto next;
1641 		if (unlikely(dcc->rbtree_check))
1642 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1643 		blk_start_plug(&plug);
1644 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1645 			f2fs_bug_on(sbi, dc->state != D_PREP);
1646 
1647 			if (dpolicy->timeout &&
1648 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1649 				break;
1650 
1651 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1652 						!is_idle(sbi, DISCARD_TIME)) {
1653 				io_interrupted = true;
1654 				break;
1655 			}
1656 
1657 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1658 
1659 			if (issued >= dpolicy->max_requests)
1660 				break;
1661 		}
1662 		blk_finish_plug(&plug);
1663 next:
1664 		mutex_unlock(&dcc->cmd_lock);
1665 
1666 		if (issued >= dpolicy->max_requests || io_interrupted)
1667 			break;
1668 	}
1669 
1670 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1671 		__wait_all_discard_cmd(sbi, dpolicy);
1672 		goto retry;
1673 	}
1674 
1675 	if (!issued && io_interrupted)
1676 		issued = -1;
1677 
1678 	return issued;
1679 }
1680 
1681 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1682 {
1683 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1684 	struct list_head *pend_list;
1685 	struct discard_cmd *dc, *tmp;
1686 	int i;
1687 	bool dropped = false;
1688 
1689 	mutex_lock(&dcc->cmd_lock);
1690 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1691 		pend_list = &dcc->pend_list[i];
1692 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1693 			f2fs_bug_on(sbi, dc->state != D_PREP);
1694 			__remove_discard_cmd(sbi, dc);
1695 			dropped = true;
1696 		}
1697 	}
1698 	mutex_unlock(&dcc->cmd_lock);
1699 
1700 	return dropped;
1701 }
1702 
1703 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1704 {
1705 	__drop_discard_cmd(sbi);
1706 }
1707 
1708 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1709 							struct discard_cmd *dc)
1710 {
1711 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1712 	unsigned int len = 0;
1713 
1714 	wait_for_completion_io(&dc->wait);
1715 	mutex_lock(&dcc->cmd_lock);
1716 	f2fs_bug_on(sbi, dc->state != D_DONE);
1717 	dc->ref--;
1718 	if (!dc->ref) {
1719 		if (!dc->error)
1720 			len = dc->di.len;
1721 		__remove_discard_cmd(sbi, dc);
1722 	}
1723 	mutex_unlock(&dcc->cmd_lock);
1724 
1725 	return len;
1726 }
1727 
1728 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1729 						struct discard_policy *dpolicy,
1730 						block_t start, block_t end)
1731 {
1732 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1734 					&(dcc->fstrim_list) : &(dcc->wait_list);
1735 	struct discard_cmd *dc = NULL, *iter, *tmp;
1736 	unsigned int trimmed = 0;
1737 
1738 next:
1739 	dc = NULL;
1740 
1741 	mutex_lock(&dcc->cmd_lock);
1742 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1743 		if (iter->di.lstart + iter->di.len <= start ||
1744 					end <= iter->di.lstart)
1745 			continue;
1746 		if (iter->di.len < dpolicy->granularity)
1747 			continue;
1748 		if (iter->state == D_DONE && !iter->ref) {
1749 			wait_for_completion_io(&iter->wait);
1750 			if (!iter->error)
1751 				trimmed += iter->di.len;
1752 			__remove_discard_cmd(sbi, iter);
1753 		} else {
1754 			iter->ref++;
1755 			dc = iter;
1756 			break;
1757 		}
1758 	}
1759 	mutex_unlock(&dcc->cmd_lock);
1760 
1761 	if (dc) {
1762 		trimmed += __wait_one_discard_bio(sbi, dc);
1763 		goto next;
1764 	}
1765 
1766 	return trimmed;
1767 }
1768 
1769 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1770 						struct discard_policy *dpolicy)
1771 {
1772 	struct discard_policy dp;
1773 	unsigned int discard_blks;
1774 
1775 	if (dpolicy)
1776 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1777 
1778 	/* wait all */
1779 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1780 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1781 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1782 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1783 
1784 	return discard_blks;
1785 }
1786 
1787 /* This should be covered by global mutex, &sit_i->sentry_lock */
1788 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1789 {
1790 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1791 	struct discard_cmd *dc;
1792 	bool need_wait = false;
1793 
1794 	mutex_lock(&dcc->cmd_lock);
1795 	dc = __lookup_discard_cmd(sbi, blkaddr);
1796 #ifdef CONFIG_BLK_DEV_ZONED
1797 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1798 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1799 
1800 		if (devi < 0) {
1801 			mutex_unlock(&dcc->cmd_lock);
1802 			return;
1803 		}
1804 
1805 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1806 			/* force submit zone reset */
1807 			if (dc->state == D_PREP)
1808 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1809 							&dcc->wait_list, NULL);
1810 			dc->ref++;
1811 			mutex_unlock(&dcc->cmd_lock);
1812 			/* wait zone reset */
1813 			__wait_one_discard_bio(sbi, dc);
1814 			return;
1815 		}
1816 	}
1817 #endif
1818 	if (dc) {
1819 		if (dc->state == D_PREP) {
1820 			__punch_discard_cmd(sbi, dc, blkaddr);
1821 		} else {
1822 			dc->ref++;
1823 			need_wait = true;
1824 		}
1825 	}
1826 	mutex_unlock(&dcc->cmd_lock);
1827 
1828 	if (need_wait)
1829 		__wait_one_discard_bio(sbi, dc);
1830 }
1831 
1832 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1833 {
1834 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1835 
1836 	if (dcc && dcc->f2fs_issue_discard) {
1837 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1838 
1839 		dcc->f2fs_issue_discard = NULL;
1840 		kthread_stop(discard_thread);
1841 	}
1842 }
1843 
1844 /**
1845  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1846  * @sbi: the f2fs_sb_info data for discard cmd to issue
1847  *
1848  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1849  *
1850  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1851  */
1852 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1853 {
1854 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1855 	struct discard_policy dpolicy;
1856 	bool dropped;
1857 
1858 	if (!atomic_read(&dcc->discard_cmd_cnt))
1859 		return true;
1860 
1861 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1862 					dcc->discard_granularity);
1863 	__issue_discard_cmd(sbi, &dpolicy);
1864 	dropped = __drop_discard_cmd(sbi);
1865 
1866 	/* just to make sure there is no pending discard commands */
1867 	__wait_all_discard_cmd(sbi, NULL);
1868 
1869 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1870 	return !dropped;
1871 }
1872 
1873 static int issue_discard_thread(void *data)
1874 {
1875 	struct f2fs_sb_info *sbi = data;
1876 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1877 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1878 	struct discard_policy dpolicy;
1879 	unsigned int wait_ms = dcc->min_discard_issue_time;
1880 	int issued;
1881 
1882 	set_freezable();
1883 
1884 	do {
1885 		wait_event_interruptible_timeout(*q,
1886 				kthread_should_stop() || freezing(current) ||
1887 				dcc->discard_wake,
1888 				msecs_to_jiffies(wait_ms));
1889 
1890 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1891 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1892 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1893 						MIN_DISCARD_GRANULARITY);
1894 		else
1895 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1896 						dcc->discard_granularity);
1897 
1898 		if (dcc->discard_wake)
1899 			dcc->discard_wake = false;
1900 
1901 		/* clean up pending candidates before going to sleep */
1902 		if (atomic_read(&dcc->queued_discard))
1903 			__wait_all_discard_cmd(sbi, NULL);
1904 
1905 		if (try_to_freeze())
1906 			continue;
1907 		if (f2fs_readonly(sbi->sb))
1908 			continue;
1909 		if (kthread_should_stop())
1910 			return 0;
1911 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1912 			!atomic_read(&dcc->discard_cmd_cnt)) {
1913 			wait_ms = dpolicy.max_interval;
1914 			continue;
1915 		}
1916 
1917 		sb_start_intwrite(sbi->sb);
1918 
1919 		issued = __issue_discard_cmd(sbi, &dpolicy);
1920 		if (issued > 0) {
1921 			__wait_all_discard_cmd(sbi, &dpolicy);
1922 			wait_ms = dpolicy.min_interval;
1923 		} else if (issued == -1) {
1924 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1925 			if (!wait_ms)
1926 				wait_ms = dpolicy.mid_interval;
1927 		} else {
1928 			wait_ms = dpolicy.max_interval;
1929 		}
1930 		if (!atomic_read(&dcc->discard_cmd_cnt))
1931 			wait_ms = dpolicy.max_interval;
1932 
1933 		sb_end_intwrite(sbi->sb);
1934 
1935 	} while (!kthread_should_stop());
1936 	return 0;
1937 }
1938 
1939 #ifdef CONFIG_BLK_DEV_ZONED
1940 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1941 		struct block_device *bdev, block_t blkstart, block_t blklen)
1942 {
1943 	sector_t sector, nr_sects;
1944 	block_t lblkstart = blkstart;
1945 	int devi = 0;
1946 	u64 remainder = 0;
1947 
1948 	if (f2fs_is_multi_device(sbi)) {
1949 		devi = f2fs_target_device_index(sbi, blkstart);
1950 		if (blkstart < FDEV(devi).start_blk ||
1951 		    blkstart > FDEV(devi).end_blk) {
1952 			f2fs_err(sbi, "Invalid block %x", blkstart);
1953 			return -EIO;
1954 		}
1955 		blkstart -= FDEV(devi).start_blk;
1956 	}
1957 
1958 	/* For sequential zones, reset the zone write pointer */
1959 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1960 		sector = SECTOR_FROM_BLOCK(blkstart);
1961 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1962 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1963 
1964 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1965 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1966 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1967 				 blkstart, blklen);
1968 			return -EIO;
1969 		}
1970 
1971 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1972 			trace_f2fs_issue_reset_zone(bdev, blkstart);
1973 			return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1974 						sector, nr_sects, GFP_NOFS);
1975 		}
1976 
1977 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1978 		return 0;
1979 	}
1980 
1981 	/* For conventional zones, use regular discard if supported */
1982 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1983 	return 0;
1984 }
1985 #endif
1986 
1987 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1988 		struct block_device *bdev, block_t blkstart, block_t blklen)
1989 {
1990 #ifdef CONFIG_BLK_DEV_ZONED
1991 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1992 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1993 #endif
1994 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1995 	return 0;
1996 }
1997 
1998 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1999 				block_t blkstart, block_t blklen)
2000 {
2001 	sector_t start = blkstart, len = 0;
2002 	struct block_device *bdev;
2003 	struct seg_entry *se;
2004 	unsigned int offset;
2005 	block_t i;
2006 	int err = 0;
2007 
2008 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2009 
2010 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2011 		if (i != start) {
2012 			struct block_device *bdev2 =
2013 				f2fs_target_device(sbi, i, NULL);
2014 
2015 			if (bdev2 != bdev) {
2016 				err = __issue_discard_async(sbi, bdev,
2017 						start, len);
2018 				if (err)
2019 					return err;
2020 				bdev = bdev2;
2021 				start = i;
2022 				len = 0;
2023 			}
2024 		}
2025 
2026 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2027 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2028 
2029 		if (f2fs_block_unit_discard(sbi) &&
2030 				!f2fs_test_and_set_bit(offset, se->discard_map))
2031 			sbi->discard_blks--;
2032 	}
2033 
2034 	if (len)
2035 		err = __issue_discard_async(sbi, bdev, start, len);
2036 	return err;
2037 }
2038 
2039 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2040 							bool check_only)
2041 {
2042 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2043 	int max_blocks = sbi->blocks_per_seg;
2044 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2045 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2046 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2047 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2048 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2049 	unsigned int start = 0, end = -1;
2050 	bool force = (cpc->reason & CP_DISCARD);
2051 	struct discard_entry *de = NULL;
2052 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2053 	int i;
2054 
2055 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
2056 			!f2fs_block_unit_discard(sbi))
2057 		return false;
2058 
2059 	if (!force) {
2060 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2061 			SM_I(sbi)->dcc_info->nr_discards >=
2062 				SM_I(sbi)->dcc_info->max_discards)
2063 			return false;
2064 	}
2065 
2066 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2067 	for (i = 0; i < entries; i++)
2068 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2069 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2070 
2071 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2072 				SM_I(sbi)->dcc_info->max_discards) {
2073 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
2074 		if (start >= max_blocks)
2075 			break;
2076 
2077 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2078 		if (force && start && end != max_blocks
2079 					&& (end - start) < cpc->trim_minlen)
2080 			continue;
2081 
2082 		if (check_only)
2083 			return true;
2084 
2085 		if (!de) {
2086 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2087 						GFP_F2FS_ZERO, true, NULL);
2088 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2089 			list_add_tail(&de->list, head);
2090 		}
2091 
2092 		for (i = start; i < end; i++)
2093 			__set_bit_le(i, (void *)de->discard_map);
2094 
2095 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2096 	}
2097 	return false;
2098 }
2099 
2100 static void release_discard_addr(struct discard_entry *entry)
2101 {
2102 	list_del(&entry->list);
2103 	kmem_cache_free(discard_entry_slab, entry);
2104 }
2105 
2106 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2107 {
2108 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2109 	struct discard_entry *entry, *this;
2110 
2111 	/* drop caches */
2112 	list_for_each_entry_safe(entry, this, head, list)
2113 		release_discard_addr(entry);
2114 }
2115 
2116 /*
2117  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2118  */
2119 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2120 {
2121 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2122 	unsigned int segno;
2123 
2124 	mutex_lock(&dirty_i->seglist_lock);
2125 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2126 		__set_test_and_free(sbi, segno, false);
2127 	mutex_unlock(&dirty_i->seglist_lock);
2128 }
2129 
2130 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2131 						struct cp_control *cpc)
2132 {
2133 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2134 	struct list_head *head = &dcc->entry_list;
2135 	struct discard_entry *entry, *this;
2136 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2137 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2138 	unsigned int start = 0, end = -1;
2139 	unsigned int secno, start_segno;
2140 	bool force = (cpc->reason & CP_DISCARD);
2141 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2142 						DISCARD_UNIT_SECTION;
2143 
2144 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2145 		section_alignment = true;
2146 
2147 	mutex_lock(&dirty_i->seglist_lock);
2148 
2149 	while (1) {
2150 		int i;
2151 
2152 		if (section_alignment && end != -1)
2153 			end--;
2154 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2155 		if (start >= MAIN_SEGS(sbi))
2156 			break;
2157 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2158 								start + 1);
2159 
2160 		if (section_alignment) {
2161 			start = rounddown(start, sbi->segs_per_sec);
2162 			end = roundup(end, sbi->segs_per_sec);
2163 		}
2164 
2165 		for (i = start; i < end; i++) {
2166 			if (test_and_clear_bit(i, prefree_map))
2167 				dirty_i->nr_dirty[PRE]--;
2168 		}
2169 
2170 		if (!f2fs_realtime_discard_enable(sbi))
2171 			continue;
2172 
2173 		if (force && start >= cpc->trim_start &&
2174 					(end - 1) <= cpc->trim_end)
2175 			continue;
2176 
2177 		/* Should cover 2MB zoned device for zone-based reset */
2178 		if (!f2fs_sb_has_blkzoned(sbi) &&
2179 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2180 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2181 				(end - start) << sbi->log_blocks_per_seg);
2182 			continue;
2183 		}
2184 next:
2185 		secno = GET_SEC_FROM_SEG(sbi, start);
2186 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2187 		if (!IS_CURSEC(sbi, secno) &&
2188 			!get_valid_blocks(sbi, start, true))
2189 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2190 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2191 
2192 		start = start_segno + sbi->segs_per_sec;
2193 		if (start < end)
2194 			goto next;
2195 		else
2196 			end = start - 1;
2197 	}
2198 	mutex_unlock(&dirty_i->seglist_lock);
2199 
2200 	if (!f2fs_block_unit_discard(sbi))
2201 		goto wakeup;
2202 
2203 	/* send small discards */
2204 	list_for_each_entry_safe(entry, this, head, list) {
2205 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2206 		bool is_valid = test_bit_le(0, entry->discard_map);
2207 
2208 find_next:
2209 		if (is_valid) {
2210 			next_pos = find_next_zero_bit_le(entry->discard_map,
2211 					sbi->blocks_per_seg, cur_pos);
2212 			len = next_pos - cur_pos;
2213 
2214 			if (f2fs_sb_has_blkzoned(sbi) ||
2215 					!force || len < cpc->trim_minlen)
2216 				goto skip;
2217 
2218 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2219 									len);
2220 			total_len += len;
2221 		} else {
2222 			next_pos = find_next_bit_le(entry->discard_map,
2223 					sbi->blocks_per_seg, cur_pos);
2224 		}
2225 skip:
2226 		cur_pos = next_pos;
2227 		is_valid = !is_valid;
2228 
2229 		if (cur_pos < sbi->blocks_per_seg)
2230 			goto find_next;
2231 
2232 		release_discard_addr(entry);
2233 		dcc->nr_discards -= total_len;
2234 	}
2235 
2236 wakeup:
2237 	wake_up_discard_thread(sbi, false);
2238 }
2239 
2240 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2241 {
2242 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2243 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2244 	int err = 0;
2245 
2246 	if (!f2fs_realtime_discard_enable(sbi))
2247 		return 0;
2248 
2249 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2250 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2251 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2252 		err = PTR_ERR(dcc->f2fs_issue_discard);
2253 		dcc->f2fs_issue_discard = NULL;
2254 	}
2255 
2256 	return err;
2257 }
2258 
2259 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2260 {
2261 	struct discard_cmd_control *dcc;
2262 	int err = 0, i;
2263 
2264 	if (SM_I(sbi)->dcc_info) {
2265 		dcc = SM_I(sbi)->dcc_info;
2266 		goto init_thread;
2267 	}
2268 
2269 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2270 	if (!dcc)
2271 		return -ENOMEM;
2272 
2273 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2274 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2275 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2276 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2277 		dcc->discard_granularity = sbi->blocks_per_seg;
2278 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2279 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2280 
2281 	INIT_LIST_HEAD(&dcc->entry_list);
2282 	for (i = 0; i < MAX_PLIST_NUM; i++)
2283 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2284 	INIT_LIST_HEAD(&dcc->wait_list);
2285 	INIT_LIST_HEAD(&dcc->fstrim_list);
2286 	mutex_init(&dcc->cmd_lock);
2287 	atomic_set(&dcc->issued_discard, 0);
2288 	atomic_set(&dcc->queued_discard, 0);
2289 	atomic_set(&dcc->discard_cmd_cnt, 0);
2290 	dcc->nr_discards = 0;
2291 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2292 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2293 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2294 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2295 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2296 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2297 	dcc->undiscard_blks = 0;
2298 	dcc->next_pos = 0;
2299 	dcc->root = RB_ROOT_CACHED;
2300 	dcc->rbtree_check = false;
2301 
2302 	init_waitqueue_head(&dcc->discard_wait_queue);
2303 	SM_I(sbi)->dcc_info = dcc;
2304 init_thread:
2305 	err = f2fs_start_discard_thread(sbi);
2306 	if (err) {
2307 		kfree(dcc);
2308 		SM_I(sbi)->dcc_info = NULL;
2309 	}
2310 
2311 	return err;
2312 }
2313 
2314 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2315 {
2316 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2317 
2318 	if (!dcc)
2319 		return;
2320 
2321 	f2fs_stop_discard_thread(sbi);
2322 
2323 	/*
2324 	 * Recovery can cache discard commands, so in error path of
2325 	 * fill_super(), it needs to give a chance to handle them.
2326 	 */
2327 	f2fs_issue_discard_timeout(sbi);
2328 
2329 	kfree(dcc);
2330 	SM_I(sbi)->dcc_info = NULL;
2331 }
2332 
2333 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2334 {
2335 	struct sit_info *sit_i = SIT_I(sbi);
2336 
2337 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2338 		sit_i->dirty_sentries++;
2339 		return false;
2340 	}
2341 
2342 	return true;
2343 }
2344 
2345 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2346 					unsigned int segno, int modified)
2347 {
2348 	struct seg_entry *se = get_seg_entry(sbi, segno);
2349 
2350 	se->type = type;
2351 	if (modified)
2352 		__mark_sit_entry_dirty(sbi, segno);
2353 }
2354 
2355 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2356 								block_t blkaddr)
2357 {
2358 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2359 
2360 	if (segno == NULL_SEGNO)
2361 		return 0;
2362 	return get_seg_entry(sbi, segno)->mtime;
2363 }
2364 
2365 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2366 						unsigned long long old_mtime)
2367 {
2368 	struct seg_entry *se;
2369 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2370 	unsigned long long ctime = get_mtime(sbi, false);
2371 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2372 
2373 	if (segno == NULL_SEGNO)
2374 		return;
2375 
2376 	se = get_seg_entry(sbi, segno);
2377 
2378 	if (!se->mtime)
2379 		se->mtime = mtime;
2380 	else
2381 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2382 						se->valid_blocks + 1);
2383 
2384 	if (ctime > SIT_I(sbi)->max_mtime)
2385 		SIT_I(sbi)->max_mtime = ctime;
2386 }
2387 
2388 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2389 {
2390 	struct seg_entry *se;
2391 	unsigned int segno, offset;
2392 	long int new_vblocks;
2393 	bool exist;
2394 #ifdef CONFIG_F2FS_CHECK_FS
2395 	bool mir_exist;
2396 #endif
2397 
2398 	segno = GET_SEGNO(sbi, blkaddr);
2399 
2400 	se = get_seg_entry(sbi, segno);
2401 	new_vblocks = se->valid_blocks + del;
2402 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2403 
2404 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2405 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2406 
2407 	se->valid_blocks = new_vblocks;
2408 
2409 	/* Update valid block bitmap */
2410 	if (del > 0) {
2411 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2412 #ifdef CONFIG_F2FS_CHECK_FS
2413 		mir_exist = f2fs_test_and_set_bit(offset,
2414 						se->cur_valid_map_mir);
2415 		if (unlikely(exist != mir_exist)) {
2416 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2417 				 blkaddr, exist);
2418 			f2fs_bug_on(sbi, 1);
2419 		}
2420 #endif
2421 		if (unlikely(exist)) {
2422 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2423 				 blkaddr);
2424 			f2fs_bug_on(sbi, 1);
2425 			se->valid_blocks--;
2426 			del = 0;
2427 		}
2428 
2429 		if (f2fs_block_unit_discard(sbi) &&
2430 				!f2fs_test_and_set_bit(offset, se->discard_map))
2431 			sbi->discard_blks--;
2432 
2433 		/*
2434 		 * SSR should never reuse block which is checkpointed
2435 		 * or newly invalidated.
2436 		 */
2437 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2438 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2439 				se->ckpt_valid_blocks++;
2440 		}
2441 	} else {
2442 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2443 #ifdef CONFIG_F2FS_CHECK_FS
2444 		mir_exist = f2fs_test_and_clear_bit(offset,
2445 						se->cur_valid_map_mir);
2446 		if (unlikely(exist != mir_exist)) {
2447 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2448 				 blkaddr, exist);
2449 			f2fs_bug_on(sbi, 1);
2450 		}
2451 #endif
2452 		if (unlikely(!exist)) {
2453 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2454 				 blkaddr);
2455 			f2fs_bug_on(sbi, 1);
2456 			se->valid_blocks++;
2457 			del = 0;
2458 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2459 			/*
2460 			 * If checkpoints are off, we must not reuse data that
2461 			 * was used in the previous checkpoint. If it was used
2462 			 * before, we must track that to know how much space we
2463 			 * really have.
2464 			 */
2465 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2466 				spin_lock(&sbi->stat_lock);
2467 				sbi->unusable_block_count++;
2468 				spin_unlock(&sbi->stat_lock);
2469 			}
2470 		}
2471 
2472 		if (f2fs_block_unit_discard(sbi) &&
2473 			f2fs_test_and_clear_bit(offset, se->discard_map))
2474 			sbi->discard_blks++;
2475 	}
2476 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2477 		se->ckpt_valid_blocks += del;
2478 
2479 	__mark_sit_entry_dirty(sbi, segno);
2480 
2481 	/* update total number of valid blocks to be written in ckpt area */
2482 	SIT_I(sbi)->written_valid_blocks += del;
2483 
2484 	if (__is_large_section(sbi))
2485 		get_sec_entry(sbi, segno)->valid_blocks += del;
2486 }
2487 
2488 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2489 {
2490 	unsigned int segno = GET_SEGNO(sbi, addr);
2491 	struct sit_info *sit_i = SIT_I(sbi);
2492 
2493 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2494 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2495 		return;
2496 
2497 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2498 	f2fs_invalidate_compress_page(sbi, addr);
2499 
2500 	/* add it into sit main buffer */
2501 	down_write(&sit_i->sentry_lock);
2502 
2503 	update_segment_mtime(sbi, addr, 0);
2504 	update_sit_entry(sbi, addr, -1);
2505 
2506 	/* add it into dirty seglist */
2507 	locate_dirty_segment(sbi, segno);
2508 
2509 	up_write(&sit_i->sentry_lock);
2510 }
2511 
2512 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2513 {
2514 	struct sit_info *sit_i = SIT_I(sbi);
2515 	unsigned int segno, offset;
2516 	struct seg_entry *se;
2517 	bool is_cp = false;
2518 
2519 	if (!__is_valid_data_blkaddr(blkaddr))
2520 		return true;
2521 
2522 	down_read(&sit_i->sentry_lock);
2523 
2524 	segno = GET_SEGNO(sbi, blkaddr);
2525 	se = get_seg_entry(sbi, segno);
2526 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2527 
2528 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2529 		is_cp = true;
2530 
2531 	up_read(&sit_i->sentry_lock);
2532 
2533 	return is_cp;
2534 }
2535 
2536 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2537 {
2538 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2539 
2540 	if (sbi->ckpt->alloc_type[type] == SSR)
2541 		return sbi->blocks_per_seg;
2542 	return curseg->next_blkoff;
2543 }
2544 
2545 /*
2546  * Calculate the number of current summary pages for writing
2547  */
2548 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2549 {
2550 	int valid_sum_count = 0;
2551 	int i, sum_in_page;
2552 
2553 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2554 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2555 			valid_sum_count +=
2556 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2557 		else
2558 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2559 	}
2560 
2561 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2562 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2563 	if (valid_sum_count <= sum_in_page)
2564 		return 1;
2565 	else if ((valid_sum_count - sum_in_page) <=
2566 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2567 		return 2;
2568 	return 3;
2569 }
2570 
2571 /*
2572  * Caller should put this summary page
2573  */
2574 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2575 {
2576 	if (unlikely(f2fs_cp_error(sbi)))
2577 		return ERR_PTR(-EIO);
2578 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2579 }
2580 
2581 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2582 					void *src, block_t blk_addr)
2583 {
2584 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2585 
2586 	memcpy(page_address(page), src, PAGE_SIZE);
2587 	set_page_dirty(page);
2588 	f2fs_put_page(page, 1);
2589 }
2590 
2591 static void write_sum_page(struct f2fs_sb_info *sbi,
2592 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2593 {
2594 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2595 }
2596 
2597 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2598 						int type, block_t blk_addr)
2599 {
2600 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2601 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2602 	struct f2fs_summary_block *src = curseg->sum_blk;
2603 	struct f2fs_summary_block *dst;
2604 
2605 	dst = (struct f2fs_summary_block *)page_address(page);
2606 	memset(dst, 0, PAGE_SIZE);
2607 
2608 	mutex_lock(&curseg->curseg_mutex);
2609 
2610 	down_read(&curseg->journal_rwsem);
2611 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2612 	up_read(&curseg->journal_rwsem);
2613 
2614 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2615 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2616 
2617 	mutex_unlock(&curseg->curseg_mutex);
2618 
2619 	set_page_dirty(page);
2620 	f2fs_put_page(page, 1);
2621 }
2622 
2623 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2624 				struct curseg_info *curseg, int type)
2625 {
2626 	unsigned int segno = curseg->segno + 1;
2627 	struct free_segmap_info *free_i = FREE_I(sbi);
2628 
2629 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2630 		return !test_bit(segno, free_i->free_segmap);
2631 	return 0;
2632 }
2633 
2634 /*
2635  * Find a new segment from the free segments bitmap to right order
2636  * This function should be returned with success, otherwise BUG
2637  */
2638 static void get_new_segment(struct f2fs_sb_info *sbi,
2639 			unsigned int *newseg, bool new_sec, int dir)
2640 {
2641 	struct free_segmap_info *free_i = FREE_I(sbi);
2642 	unsigned int segno, secno, zoneno;
2643 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2644 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2645 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2646 	unsigned int left_start = hint;
2647 	bool init = true;
2648 	int go_left = 0;
2649 	int i;
2650 
2651 	spin_lock(&free_i->segmap_lock);
2652 
2653 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2654 		segno = find_next_zero_bit(free_i->free_segmap,
2655 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2656 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2657 			goto got_it;
2658 	}
2659 find_other_zone:
2660 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2661 	if (secno >= MAIN_SECS(sbi)) {
2662 		if (dir == ALLOC_RIGHT) {
2663 			secno = find_first_zero_bit(free_i->free_secmap,
2664 							MAIN_SECS(sbi));
2665 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2666 		} else {
2667 			go_left = 1;
2668 			left_start = hint - 1;
2669 		}
2670 	}
2671 	if (go_left == 0)
2672 		goto skip_left;
2673 
2674 	while (test_bit(left_start, free_i->free_secmap)) {
2675 		if (left_start > 0) {
2676 			left_start--;
2677 			continue;
2678 		}
2679 		left_start = find_first_zero_bit(free_i->free_secmap,
2680 							MAIN_SECS(sbi));
2681 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2682 		break;
2683 	}
2684 	secno = left_start;
2685 skip_left:
2686 	segno = GET_SEG_FROM_SEC(sbi, secno);
2687 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2688 
2689 	/* give up on finding another zone */
2690 	if (!init)
2691 		goto got_it;
2692 	if (sbi->secs_per_zone == 1)
2693 		goto got_it;
2694 	if (zoneno == old_zoneno)
2695 		goto got_it;
2696 	if (dir == ALLOC_LEFT) {
2697 		if (!go_left && zoneno + 1 >= total_zones)
2698 			goto got_it;
2699 		if (go_left && zoneno == 0)
2700 			goto got_it;
2701 	}
2702 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2703 		if (CURSEG_I(sbi, i)->zone == zoneno)
2704 			break;
2705 
2706 	if (i < NR_CURSEG_TYPE) {
2707 		/* zone is in user, try another */
2708 		if (go_left)
2709 			hint = zoneno * sbi->secs_per_zone - 1;
2710 		else if (zoneno + 1 >= total_zones)
2711 			hint = 0;
2712 		else
2713 			hint = (zoneno + 1) * sbi->secs_per_zone;
2714 		init = false;
2715 		goto find_other_zone;
2716 	}
2717 got_it:
2718 	/* set it as dirty segment in free segmap */
2719 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2720 	__set_inuse(sbi, segno);
2721 	*newseg = segno;
2722 	spin_unlock(&free_i->segmap_lock);
2723 }
2724 
2725 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2726 {
2727 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2728 	struct summary_footer *sum_footer;
2729 	unsigned short seg_type = curseg->seg_type;
2730 
2731 	curseg->inited = true;
2732 	curseg->segno = curseg->next_segno;
2733 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2734 	curseg->next_blkoff = 0;
2735 	curseg->next_segno = NULL_SEGNO;
2736 
2737 	sum_footer = &(curseg->sum_blk->footer);
2738 	memset(sum_footer, 0, sizeof(struct summary_footer));
2739 
2740 	sanity_check_seg_type(sbi, seg_type);
2741 
2742 	if (IS_DATASEG(seg_type))
2743 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2744 	if (IS_NODESEG(seg_type))
2745 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2746 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2747 }
2748 
2749 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2750 {
2751 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2752 	unsigned short seg_type = curseg->seg_type;
2753 
2754 	sanity_check_seg_type(sbi, seg_type);
2755 	if (f2fs_need_rand_seg(sbi))
2756 		return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2757 
2758 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2759 	if (__is_large_section(sbi))
2760 		return curseg->segno;
2761 
2762 	/* inmem log may not locate on any segment after mount */
2763 	if (!curseg->inited)
2764 		return 0;
2765 
2766 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2767 		return 0;
2768 
2769 	if (test_opt(sbi, NOHEAP) &&
2770 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2771 		return 0;
2772 
2773 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2774 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2775 
2776 	/* find segments from 0 to reuse freed segments */
2777 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2778 		return 0;
2779 
2780 	return curseg->segno;
2781 }
2782 
2783 /*
2784  * Allocate a current working segment.
2785  * This function always allocates a free segment in LFS manner.
2786  */
2787 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2788 {
2789 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2790 	unsigned short seg_type = curseg->seg_type;
2791 	unsigned int segno = curseg->segno;
2792 	int dir = ALLOC_LEFT;
2793 
2794 	if (curseg->inited)
2795 		write_sum_page(sbi, curseg->sum_blk,
2796 				GET_SUM_BLOCK(sbi, segno));
2797 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2798 		dir = ALLOC_RIGHT;
2799 
2800 	if (test_opt(sbi, NOHEAP))
2801 		dir = ALLOC_RIGHT;
2802 
2803 	segno = __get_next_segno(sbi, type);
2804 	get_new_segment(sbi, &segno, new_sec, dir);
2805 	curseg->next_segno = segno;
2806 	reset_curseg(sbi, type, 1);
2807 	curseg->alloc_type = LFS;
2808 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2809 		curseg->fragment_remained_chunk =
2810 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2811 }
2812 
2813 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2814 					int segno, block_t start)
2815 {
2816 	struct seg_entry *se = get_seg_entry(sbi, segno);
2817 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2818 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2819 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2820 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2821 	int i;
2822 
2823 	for (i = 0; i < entries; i++)
2824 		target_map[i] = ckpt_map[i] | cur_map[i];
2825 
2826 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2827 }
2828 
2829 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2830 		struct curseg_info *seg)
2831 {
2832 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2833 }
2834 
2835 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2836 {
2837 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2838 }
2839 
2840 /*
2841  * This function always allocates a used segment(from dirty seglist) by SSR
2842  * manner, so it should recover the existing segment information of valid blocks
2843  */
2844 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2845 {
2846 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2847 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2848 	unsigned int new_segno = curseg->next_segno;
2849 	struct f2fs_summary_block *sum_node;
2850 	struct page *sum_page;
2851 
2852 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2853 
2854 	__set_test_and_inuse(sbi, new_segno);
2855 
2856 	mutex_lock(&dirty_i->seglist_lock);
2857 	__remove_dirty_segment(sbi, new_segno, PRE);
2858 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2859 	mutex_unlock(&dirty_i->seglist_lock);
2860 
2861 	reset_curseg(sbi, type, 1);
2862 	curseg->alloc_type = SSR;
2863 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2864 
2865 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2866 	if (IS_ERR(sum_page)) {
2867 		/* GC won't be able to use stale summary pages by cp_error */
2868 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2869 		return;
2870 	}
2871 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2872 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2873 	f2fs_put_page(sum_page, 1);
2874 }
2875 
2876 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2877 				int alloc_mode, unsigned long long age);
2878 
2879 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2880 					int target_type, int alloc_mode,
2881 					unsigned long long age)
2882 {
2883 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2884 
2885 	curseg->seg_type = target_type;
2886 
2887 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2888 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2889 
2890 		curseg->seg_type = se->type;
2891 		change_curseg(sbi, type);
2892 	} else {
2893 		/* allocate cold segment by default */
2894 		curseg->seg_type = CURSEG_COLD_DATA;
2895 		new_curseg(sbi, type, true);
2896 	}
2897 	stat_inc_seg_type(sbi, curseg);
2898 }
2899 
2900 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2901 {
2902 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2903 
2904 	if (!sbi->am.atgc_enabled)
2905 		return;
2906 
2907 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2908 
2909 	mutex_lock(&curseg->curseg_mutex);
2910 	down_write(&SIT_I(sbi)->sentry_lock);
2911 
2912 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2913 
2914 	up_write(&SIT_I(sbi)->sentry_lock);
2915 	mutex_unlock(&curseg->curseg_mutex);
2916 
2917 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2918 
2919 }
2920 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2921 {
2922 	__f2fs_init_atgc_curseg(sbi);
2923 }
2924 
2925 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2926 {
2927 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2928 
2929 	mutex_lock(&curseg->curseg_mutex);
2930 	if (!curseg->inited)
2931 		goto out;
2932 
2933 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2934 		write_sum_page(sbi, curseg->sum_blk,
2935 				GET_SUM_BLOCK(sbi, curseg->segno));
2936 	} else {
2937 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2938 		__set_test_and_free(sbi, curseg->segno, true);
2939 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2940 	}
2941 out:
2942 	mutex_unlock(&curseg->curseg_mutex);
2943 }
2944 
2945 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2946 {
2947 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2948 
2949 	if (sbi->am.atgc_enabled)
2950 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2951 }
2952 
2953 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2954 {
2955 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2956 
2957 	mutex_lock(&curseg->curseg_mutex);
2958 	if (!curseg->inited)
2959 		goto out;
2960 	if (get_valid_blocks(sbi, curseg->segno, false))
2961 		goto out;
2962 
2963 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2964 	__set_test_and_inuse(sbi, curseg->segno);
2965 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2966 out:
2967 	mutex_unlock(&curseg->curseg_mutex);
2968 }
2969 
2970 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2971 {
2972 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2973 
2974 	if (sbi->am.atgc_enabled)
2975 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2976 }
2977 
2978 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2979 				int alloc_mode, unsigned long long age)
2980 {
2981 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2982 	unsigned segno = NULL_SEGNO;
2983 	unsigned short seg_type = curseg->seg_type;
2984 	int i, cnt;
2985 	bool reversed = false;
2986 
2987 	sanity_check_seg_type(sbi, seg_type);
2988 
2989 	/* f2fs_need_SSR() already forces to do this */
2990 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2991 		curseg->next_segno = segno;
2992 		return 1;
2993 	}
2994 
2995 	/* For node segments, let's do SSR more intensively */
2996 	if (IS_NODESEG(seg_type)) {
2997 		if (seg_type >= CURSEG_WARM_NODE) {
2998 			reversed = true;
2999 			i = CURSEG_COLD_NODE;
3000 		} else {
3001 			i = CURSEG_HOT_NODE;
3002 		}
3003 		cnt = NR_CURSEG_NODE_TYPE;
3004 	} else {
3005 		if (seg_type >= CURSEG_WARM_DATA) {
3006 			reversed = true;
3007 			i = CURSEG_COLD_DATA;
3008 		} else {
3009 			i = CURSEG_HOT_DATA;
3010 		}
3011 		cnt = NR_CURSEG_DATA_TYPE;
3012 	}
3013 
3014 	for (; cnt-- > 0; reversed ? i-- : i++) {
3015 		if (i == seg_type)
3016 			continue;
3017 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3018 			curseg->next_segno = segno;
3019 			return 1;
3020 		}
3021 	}
3022 
3023 	/* find valid_blocks=0 in dirty list */
3024 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3025 		segno = get_free_segment(sbi);
3026 		if (segno != NULL_SEGNO) {
3027 			curseg->next_segno = segno;
3028 			return 1;
3029 		}
3030 	}
3031 	return 0;
3032 }
3033 
3034 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3035 {
3036 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3037 
3038 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3039 	    curseg->seg_type == CURSEG_WARM_NODE)
3040 		return true;
3041 	if (curseg->alloc_type == LFS &&
3042 	    is_next_segment_free(sbi, curseg, type) &&
3043 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3044 		return true;
3045 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3046 		return true;
3047 	return false;
3048 }
3049 
3050 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3051 					unsigned int start, unsigned int end)
3052 {
3053 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3054 	unsigned int segno;
3055 
3056 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3057 	mutex_lock(&curseg->curseg_mutex);
3058 	down_write(&SIT_I(sbi)->sentry_lock);
3059 
3060 	segno = CURSEG_I(sbi, type)->segno;
3061 	if (segno < start || segno > end)
3062 		goto unlock;
3063 
3064 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3065 		change_curseg(sbi, type);
3066 	else
3067 		new_curseg(sbi, type, true);
3068 
3069 	stat_inc_seg_type(sbi, curseg);
3070 
3071 	locate_dirty_segment(sbi, segno);
3072 unlock:
3073 	up_write(&SIT_I(sbi)->sentry_lock);
3074 
3075 	if (segno != curseg->segno)
3076 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3077 			    type, segno, curseg->segno);
3078 
3079 	mutex_unlock(&curseg->curseg_mutex);
3080 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3081 }
3082 
3083 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3084 						bool new_sec, bool force)
3085 {
3086 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3087 	unsigned int old_segno;
3088 
3089 	if (!force && curseg->inited &&
3090 	    !curseg->next_blkoff &&
3091 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3092 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3093 		return;
3094 
3095 	old_segno = curseg->segno;
3096 	new_curseg(sbi, type, true);
3097 	stat_inc_seg_type(sbi, curseg);
3098 	locate_dirty_segment(sbi, old_segno);
3099 }
3100 
3101 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3102 {
3103 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3104 	down_write(&SIT_I(sbi)->sentry_lock);
3105 	__allocate_new_segment(sbi, type, true, force);
3106 	up_write(&SIT_I(sbi)->sentry_lock);
3107 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3108 }
3109 
3110 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3111 {
3112 	int i;
3113 
3114 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3115 	down_write(&SIT_I(sbi)->sentry_lock);
3116 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3117 		__allocate_new_segment(sbi, i, false, false);
3118 	up_write(&SIT_I(sbi)->sentry_lock);
3119 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3120 }
3121 
3122 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3123 						struct cp_control *cpc)
3124 {
3125 	__u64 trim_start = cpc->trim_start;
3126 	bool has_candidate = false;
3127 
3128 	down_write(&SIT_I(sbi)->sentry_lock);
3129 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3130 		if (add_discard_addrs(sbi, cpc, true)) {
3131 			has_candidate = true;
3132 			break;
3133 		}
3134 	}
3135 	up_write(&SIT_I(sbi)->sentry_lock);
3136 
3137 	cpc->trim_start = trim_start;
3138 	return has_candidate;
3139 }
3140 
3141 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3142 					struct discard_policy *dpolicy,
3143 					unsigned int start, unsigned int end)
3144 {
3145 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3146 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3147 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3148 	struct discard_cmd *dc;
3149 	struct blk_plug plug;
3150 	int issued;
3151 	unsigned int trimmed = 0;
3152 
3153 next:
3154 	issued = 0;
3155 
3156 	mutex_lock(&dcc->cmd_lock);
3157 	if (unlikely(dcc->rbtree_check))
3158 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3159 
3160 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3161 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3162 	if (!dc)
3163 		dc = next_dc;
3164 
3165 	blk_start_plug(&plug);
3166 
3167 	while (dc && dc->di.lstart <= end) {
3168 		struct rb_node *node;
3169 		int err = 0;
3170 
3171 		if (dc->di.len < dpolicy->granularity)
3172 			goto skip;
3173 
3174 		if (dc->state != D_PREP) {
3175 			list_move_tail(&dc->list, &dcc->fstrim_list);
3176 			goto skip;
3177 		}
3178 
3179 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3180 
3181 		if (issued >= dpolicy->max_requests) {
3182 			start = dc->di.lstart + dc->di.len;
3183 
3184 			if (err)
3185 				__remove_discard_cmd(sbi, dc);
3186 
3187 			blk_finish_plug(&plug);
3188 			mutex_unlock(&dcc->cmd_lock);
3189 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3190 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3191 			goto next;
3192 		}
3193 skip:
3194 		node = rb_next(&dc->rb_node);
3195 		if (err)
3196 			__remove_discard_cmd(sbi, dc);
3197 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3198 
3199 		if (fatal_signal_pending(current))
3200 			break;
3201 	}
3202 
3203 	blk_finish_plug(&plug);
3204 	mutex_unlock(&dcc->cmd_lock);
3205 
3206 	return trimmed;
3207 }
3208 
3209 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3210 {
3211 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3212 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3213 	unsigned int start_segno, end_segno;
3214 	block_t start_block, end_block;
3215 	struct cp_control cpc;
3216 	struct discard_policy dpolicy;
3217 	unsigned long long trimmed = 0;
3218 	int err = 0;
3219 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3220 
3221 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3222 		return -EINVAL;
3223 
3224 	if (end < MAIN_BLKADDR(sbi))
3225 		goto out;
3226 
3227 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3228 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3229 		return -EFSCORRUPTED;
3230 	}
3231 
3232 	/* start/end segment number in main_area */
3233 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3234 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3235 						GET_SEGNO(sbi, end);
3236 	if (need_align) {
3237 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3238 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3239 	}
3240 
3241 	cpc.reason = CP_DISCARD;
3242 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3243 	cpc.trim_start = start_segno;
3244 	cpc.trim_end = end_segno;
3245 
3246 	if (sbi->discard_blks == 0)
3247 		goto out;
3248 
3249 	f2fs_down_write(&sbi->gc_lock);
3250 	err = f2fs_write_checkpoint(sbi, &cpc);
3251 	f2fs_up_write(&sbi->gc_lock);
3252 	if (err)
3253 		goto out;
3254 
3255 	/*
3256 	 * We filed discard candidates, but actually we don't need to wait for
3257 	 * all of them, since they'll be issued in idle time along with runtime
3258 	 * discard option. User configuration looks like using runtime discard
3259 	 * or periodic fstrim instead of it.
3260 	 */
3261 	if (f2fs_realtime_discard_enable(sbi))
3262 		goto out;
3263 
3264 	start_block = START_BLOCK(sbi, start_segno);
3265 	end_block = START_BLOCK(sbi, end_segno + 1);
3266 
3267 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3268 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3269 					start_block, end_block);
3270 
3271 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3272 					start_block, end_block);
3273 out:
3274 	if (!err)
3275 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3276 	return err;
3277 }
3278 
3279 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3280 {
3281 	switch (hint) {
3282 	case WRITE_LIFE_SHORT:
3283 		return CURSEG_HOT_DATA;
3284 	case WRITE_LIFE_EXTREME:
3285 		return CURSEG_COLD_DATA;
3286 	default:
3287 		return CURSEG_WARM_DATA;
3288 	}
3289 }
3290 
3291 static int __get_segment_type_2(struct f2fs_io_info *fio)
3292 {
3293 	if (fio->type == DATA)
3294 		return CURSEG_HOT_DATA;
3295 	else
3296 		return CURSEG_HOT_NODE;
3297 }
3298 
3299 static int __get_segment_type_4(struct f2fs_io_info *fio)
3300 {
3301 	if (fio->type == DATA) {
3302 		struct inode *inode = fio->page->mapping->host;
3303 
3304 		if (S_ISDIR(inode->i_mode))
3305 			return CURSEG_HOT_DATA;
3306 		else
3307 			return CURSEG_COLD_DATA;
3308 	} else {
3309 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3310 			return CURSEG_WARM_NODE;
3311 		else
3312 			return CURSEG_COLD_NODE;
3313 	}
3314 }
3315 
3316 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3317 {
3318 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3319 	struct extent_info ei = {};
3320 
3321 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3322 		if (!ei.age)
3323 			return NO_CHECK_TYPE;
3324 		if (ei.age <= sbi->hot_data_age_threshold)
3325 			return CURSEG_HOT_DATA;
3326 		if (ei.age <= sbi->warm_data_age_threshold)
3327 			return CURSEG_WARM_DATA;
3328 		return CURSEG_COLD_DATA;
3329 	}
3330 	return NO_CHECK_TYPE;
3331 }
3332 
3333 static int __get_segment_type_6(struct f2fs_io_info *fio)
3334 {
3335 	if (fio->type == DATA) {
3336 		struct inode *inode = fio->page->mapping->host;
3337 		int type;
3338 
3339 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3340 			return CURSEG_COLD_DATA_PINNED;
3341 
3342 		if (page_private_gcing(fio->page)) {
3343 			if (fio->sbi->am.atgc_enabled &&
3344 				(fio->io_type == FS_DATA_IO) &&
3345 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3346 				return CURSEG_ALL_DATA_ATGC;
3347 			else
3348 				return CURSEG_COLD_DATA;
3349 		}
3350 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3351 			return CURSEG_COLD_DATA;
3352 
3353 		type = __get_age_segment_type(inode, fio->page->index);
3354 		if (type != NO_CHECK_TYPE)
3355 			return type;
3356 
3357 		if (file_is_hot(inode) ||
3358 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3359 				f2fs_is_cow_file(inode))
3360 			return CURSEG_HOT_DATA;
3361 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3362 	} else {
3363 		if (IS_DNODE(fio->page))
3364 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3365 						CURSEG_HOT_NODE;
3366 		return CURSEG_COLD_NODE;
3367 	}
3368 }
3369 
3370 static int __get_segment_type(struct f2fs_io_info *fio)
3371 {
3372 	int type = 0;
3373 
3374 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3375 	case 2:
3376 		type = __get_segment_type_2(fio);
3377 		break;
3378 	case 4:
3379 		type = __get_segment_type_4(fio);
3380 		break;
3381 	case 6:
3382 		type = __get_segment_type_6(fio);
3383 		break;
3384 	default:
3385 		f2fs_bug_on(fio->sbi, true);
3386 	}
3387 
3388 	if (IS_HOT(type))
3389 		fio->temp = HOT;
3390 	else if (IS_WARM(type))
3391 		fio->temp = WARM;
3392 	else
3393 		fio->temp = COLD;
3394 	return type;
3395 }
3396 
3397 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3398 		struct curseg_info *seg)
3399 {
3400 	/* To allocate block chunks in different sizes, use random number */
3401 	if (--seg->fragment_remained_chunk > 0)
3402 		return;
3403 
3404 	seg->fragment_remained_chunk =
3405 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3406 	seg->next_blkoff +=
3407 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3408 }
3409 
3410 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3411 		block_t old_blkaddr, block_t *new_blkaddr,
3412 		struct f2fs_summary *sum, int type,
3413 		struct f2fs_io_info *fio)
3414 {
3415 	struct sit_info *sit_i = SIT_I(sbi);
3416 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3417 	unsigned long long old_mtime;
3418 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3419 	struct seg_entry *se = NULL;
3420 	bool segment_full = false;
3421 
3422 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3423 
3424 	mutex_lock(&curseg->curseg_mutex);
3425 	down_write(&sit_i->sentry_lock);
3426 
3427 	if (from_gc) {
3428 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3429 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3430 		sanity_check_seg_type(sbi, se->type);
3431 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3432 	}
3433 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3434 
3435 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3436 
3437 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3438 
3439 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3440 	if (curseg->alloc_type == SSR) {
3441 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3442 	} else {
3443 		curseg->next_blkoff++;
3444 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3445 			f2fs_randomize_chunk(sbi, curseg);
3446 	}
3447 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3448 		segment_full = true;
3449 	stat_inc_block_count(sbi, curseg);
3450 
3451 	if (from_gc) {
3452 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3453 	} else {
3454 		update_segment_mtime(sbi, old_blkaddr, 0);
3455 		old_mtime = 0;
3456 	}
3457 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3458 
3459 	/*
3460 	 * SIT information should be updated before segment allocation,
3461 	 * since SSR needs latest valid block information.
3462 	 */
3463 	update_sit_entry(sbi, *new_blkaddr, 1);
3464 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3465 		update_sit_entry(sbi, old_blkaddr, -1);
3466 
3467 	/*
3468 	 * If the current segment is full, flush it out and replace it with a
3469 	 * new segment.
3470 	 */
3471 	if (segment_full) {
3472 		if (from_gc) {
3473 			get_atssr_segment(sbi, type, se->type,
3474 						AT_SSR, se->mtime);
3475 		} else {
3476 			if (need_new_seg(sbi, type))
3477 				new_curseg(sbi, type, false);
3478 			else
3479 				change_curseg(sbi, type);
3480 			stat_inc_seg_type(sbi, curseg);
3481 		}
3482 	}
3483 	/*
3484 	 * segment dirty status should be updated after segment allocation,
3485 	 * so we just need to update status only one time after previous
3486 	 * segment being closed.
3487 	 */
3488 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3489 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3490 
3491 	if (IS_DATASEG(type))
3492 		atomic64_inc(&sbi->allocated_data_blocks);
3493 
3494 	up_write(&sit_i->sentry_lock);
3495 
3496 	if (page && IS_NODESEG(type)) {
3497 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3498 
3499 		f2fs_inode_chksum_set(sbi, page);
3500 	}
3501 
3502 	if (fio) {
3503 		struct f2fs_bio_info *io;
3504 
3505 		if (F2FS_IO_ALIGNED(sbi))
3506 			fio->retry = 0;
3507 
3508 		INIT_LIST_HEAD(&fio->list);
3509 		fio->in_list = 1;
3510 		io = sbi->write_io[fio->type] + fio->temp;
3511 		spin_lock(&io->io_lock);
3512 		list_add_tail(&fio->list, &io->io_list);
3513 		spin_unlock(&io->io_lock);
3514 	}
3515 
3516 	mutex_unlock(&curseg->curseg_mutex);
3517 
3518 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3519 }
3520 
3521 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3522 					block_t blkaddr, unsigned int blkcnt)
3523 {
3524 	if (!f2fs_is_multi_device(sbi))
3525 		return;
3526 
3527 	while (1) {
3528 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3529 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3530 
3531 		/* update device state for fsync */
3532 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3533 
3534 		/* update device state for checkpoint */
3535 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3536 			spin_lock(&sbi->dev_lock);
3537 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3538 			spin_unlock(&sbi->dev_lock);
3539 		}
3540 
3541 		if (blkcnt <= blks)
3542 			break;
3543 		blkcnt -= blks;
3544 		blkaddr += blks;
3545 	}
3546 }
3547 
3548 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3549 {
3550 	int type = __get_segment_type(fio);
3551 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3552 
3553 	if (keep_order)
3554 		f2fs_down_read(&fio->sbi->io_order_lock);
3555 reallocate:
3556 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3557 			&fio->new_blkaddr, sum, type, fio);
3558 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3559 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3560 					fio->old_blkaddr, fio->old_blkaddr);
3561 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3562 	}
3563 
3564 	/* writeout dirty page into bdev */
3565 	f2fs_submit_page_write(fio);
3566 	if (fio->retry) {
3567 		fio->old_blkaddr = fio->new_blkaddr;
3568 		goto reallocate;
3569 	}
3570 
3571 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3572 
3573 	if (keep_order)
3574 		f2fs_up_read(&fio->sbi->io_order_lock);
3575 }
3576 
3577 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3578 					enum iostat_type io_type)
3579 {
3580 	struct f2fs_io_info fio = {
3581 		.sbi = sbi,
3582 		.type = META,
3583 		.temp = HOT,
3584 		.op = REQ_OP_WRITE,
3585 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3586 		.old_blkaddr = page->index,
3587 		.new_blkaddr = page->index,
3588 		.page = page,
3589 		.encrypted_page = NULL,
3590 		.in_list = 0,
3591 	};
3592 
3593 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3594 		fio.op_flags &= ~REQ_META;
3595 
3596 	set_page_writeback(page);
3597 	f2fs_submit_page_write(&fio);
3598 
3599 	stat_inc_meta_count(sbi, page->index);
3600 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3601 }
3602 
3603 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3604 {
3605 	struct f2fs_summary sum;
3606 
3607 	set_summary(&sum, nid, 0, 0);
3608 	do_write_page(&sum, fio);
3609 
3610 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3611 }
3612 
3613 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3614 					struct f2fs_io_info *fio)
3615 {
3616 	struct f2fs_sb_info *sbi = fio->sbi;
3617 	struct f2fs_summary sum;
3618 
3619 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3620 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3621 		f2fs_update_age_extent_cache(dn);
3622 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3623 	do_write_page(&sum, fio);
3624 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3625 
3626 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3627 }
3628 
3629 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3630 {
3631 	int err;
3632 	struct f2fs_sb_info *sbi = fio->sbi;
3633 	unsigned int segno;
3634 
3635 	fio->new_blkaddr = fio->old_blkaddr;
3636 	/* i/o temperature is needed for passing down write hints */
3637 	__get_segment_type(fio);
3638 
3639 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3640 
3641 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3642 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3643 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3644 			  __func__, segno);
3645 		err = -EFSCORRUPTED;
3646 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3647 		goto drop_bio;
3648 	}
3649 
3650 	if (f2fs_cp_error(sbi)) {
3651 		err = -EIO;
3652 		goto drop_bio;
3653 	}
3654 
3655 	if (fio->post_read)
3656 		invalidate_mapping_pages(META_MAPPING(sbi),
3657 				fio->new_blkaddr, fio->new_blkaddr);
3658 
3659 	stat_inc_inplace_blocks(fio->sbi);
3660 
3661 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3662 		err = f2fs_merge_page_bio(fio);
3663 	else
3664 		err = f2fs_submit_page_bio(fio);
3665 	if (!err) {
3666 		f2fs_update_device_state(fio->sbi, fio->ino,
3667 						fio->new_blkaddr, 1);
3668 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3669 						fio->io_type, F2FS_BLKSIZE);
3670 	}
3671 
3672 	return err;
3673 drop_bio:
3674 	if (fio->bio && *(fio->bio)) {
3675 		struct bio *bio = *(fio->bio);
3676 
3677 		bio->bi_status = BLK_STS_IOERR;
3678 		bio_endio(bio);
3679 		*(fio->bio) = NULL;
3680 	}
3681 	return err;
3682 }
3683 
3684 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3685 						unsigned int segno)
3686 {
3687 	int i;
3688 
3689 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3690 		if (CURSEG_I(sbi, i)->segno == segno)
3691 			break;
3692 	}
3693 	return i;
3694 }
3695 
3696 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3697 				block_t old_blkaddr, block_t new_blkaddr,
3698 				bool recover_curseg, bool recover_newaddr,
3699 				bool from_gc)
3700 {
3701 	struct sit_info *sit_i = SIT_I(sbi);
3702 	struct curseg_info *curseg;
3703 	unsigned int segno, old_cursegno;
3704 	struct seg_entry *se;
3705 	int type;
3706 	unsigned short old_blkoff;
3707 	unsigned char old_alloc_type;
3708 
3709 	segno = GET_SEGNO(sbi, new_blkaddr);
3710 	se = get_seg_entry(sbi, segno);
3711 	type = se->type;
3712 
3713 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3714 
3715 	if (!recover_curseg) {
3716 		/* for recovery flow */
3717 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3718 			if (old_blkaddr == NULL_ADDR)
3719 				type = CURSEG_COLD_DATA;
3720 			else
3721 				type = CURSEG_WARM_DATA;
3722 		}
3723 	} else {
3724 		if (IS_CURSEG(sbi, segno)) {
3725 			/* se->type is volatile as SSR allocation */
3726 			type = __f2fs_get_curseg(sbi, segno);
3727 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3728 		} else {
3729 			type = CURSEG_WARM_DATA;
3730 		}
3731 	}
3732 
3733 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3734 	curseg = CURSEG_I(sbi, type);
3735 
3736 	mutex_lock(&curseg->curseg_mutex);
3737 	down_write(&sit_i->sentry_lock);
3738 
3739 	old_cursegno = curseg->segno;
3740 	old_blkoff = curseg->next_blkoff;
3741 	old_alloc_type = curseg->alloc_type;
3742 
3743 	/* change the current segment */
3744 	if (segno != curseg->segno) {
3745 		curseg->next_segno = segno;
3746 		change_curseg(sbi, type);
3747 	}
3748 
3749 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3750 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3751 
3752 	if (!recover_curseg || recover_newaddr) {
3753 		if (!from_gc)
3754 			update_segment_mtime(sbi, new_blkaddr, 0);
3755 		update_sit_entry(sbi, new_blkaddr, 1);
3756 	}
3757 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3758 		invalidate_mapping_pages(META_MAPPING(sbi),
3759 					old_blkaddr, old_blkaddr);
3760 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3761 		if (!from_gc)
3762 			update_segment_mtime(sbi, old_blkaddr, 0);
3763 		update_sit_entry(sbi, old_blkaddr, -1);
3764 	}
3765 
3766 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3767 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3768 
3769 	locate_dirty_segment(sbi, old_cursegno);
3770 
3771 	if (recover_curseg) {
3772 		if (old_cursegno != curseg->segno) {
3773 			curseg->next_segno = old_cursegno;
3774 			change_curseg(sbi, type);
3775 		}
3776 		curseg->next_blkoff = old_blkoff;
3777 		curseg->alloc_type = old_alloc_type;
3778 	}
3779 
3780 	up_write(&sit_i->sentry_lock);
3781 	mutex_unlock(&curseg->curseg_mutex);
3782 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3783 }
3784 
3785 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3786 				block_t old_addr, block_t new_addr,
3787 				unsigned char version, bool recover_curseg,
3788 				bool recover_newaddr)
3789 {
3790 	struct f2fs_summary sum;
3791 
3792 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3793 
3794 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3795 					recover_curseg, recover_newaddr, false);
3796 
3797 	f2fs_update_data_blkaddr(dn, new_addr);
3798 }
3799 
3800 void f2fs_wait_on_page_writeback(struct page *page,
3801 				enum page_type type, bool ordered, bool locked)
3802 {
3803 	if (PageWriteback(page)) {
3804 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3805 
3806 		/* submit cached LFS IO */
3807 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3808 		/* submit cached IPU IO */
3809 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3810 		if (ordered) {
3811 			wait_on_page_writeback(page);
3812 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3813 		} else {
3814 			wait_for_stable_page(page);
3815 		}
3816 	}
3817 }
3818 
3819 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3820 {
3821 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3822 	struct page *cpage;
3823 
3824 	if (!f2fs_post_read_required(inode))
3825 		return;
3826 
3827 	if (!__is_valid_data_blkaddr(blkaddr))
3828 		return;
3829 
3830 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3831 	if (cpage) {
3832 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3833 		f2fs_put_page(cpage, 1);
3834 	}
3835 }
3836 
3837 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3838 								block_t len)
3839 {
3840 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3841 	block_t i;
3842 
3843 	if (!f2fs_post_read_required(inode))
3844 		return;
3845 
3846 	for (i = 0; i < len; i++)
3847 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3848 
3849 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3850 }
3851 
3852 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3853 {
3854 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3855 	struct curseg_info *seg_i;
3856 	unsigned char *kaddr;
3857 	struct page *page;
3858 	block_t start;
3859 	int i, j, offset;
3860 
3861 	start = start_sum_block(sbi);
3862 
3863 	page = f2fs_get_meta_page(sbi, start++);
3864 	if (IS_ERR(page))
3865 		return PTR_ERR(page);
3866 	kaddr = (unsigned char *)page_address(page);
3867 
3868 	/* Step 1: restore nat cache */
3869 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3870 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3871 
3872 	/* Step 2: restore sit cache */
3873 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3874 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3875 	offset = 2 * SUM_JOURNAL_SIZE;
3876 
3877 	/* Step 3: restore summary entries */
3878 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3879 		unsigned short blk_off;
3880 		unsigned int segno;
3881 
3882 		seg_i = CURSEG_I(sbi, i);
3883 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3884 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3885 		seg_i->next_segno = segno;
3886 		reset_curseg(sbi, i, 0);
3887 		seg_i->alloc_type = ckpt->alloc_type[i];
3888 		seg_i->next_blkoff = blk_off;
3889 
3890 		if (seg_i->alloc_type == SSR)
3891 			blk_off = sbi->blocks_per_seg;
3892 
3893 		for (j = 0; j < blk_off; j++) {
3894 			struct f2fs_summary *s;
3895 
3896 			s = (struct f2fs_summary *)(kaddr + offset);
3897 			seg_i->sum_blk->entries[j] = *s;
3898 			offset += SUMMARY_SIZE;
3899 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3900 						SUM_FOOTER_SIZE)
3901 				continue;
3902 
3903 			f2fs_put_page(page, 1);
3904 			page = NULL;
3905 
3906 			page = f2fs_get_meta_page(sbi, start++);
3907 			if (IS_ERR(page))
3908 				return PTR_ERR(page);
3909 			kaddr = (unsigned char *)page_address(page);
3910 			offset = 0;
3911 		}
3912 	}
3913 	f2fs_put_page(page, 1);
3914 	return 0;
3915 }
3916 
3917 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3918 {
3919 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3920 	struct f2fs_summary_block *sum;
3921 	struct curseg_info *curseg;
3922 	struct page *new;
3923 	unsigned short blk_off;
3924 	unsigned int segno = 0;
3925 	block_t blk_addr = 0;
3926 	int err = 0;
3927 
3928 	/* get segment number and block addr */
3929 	if (IS_DATASEG(type)) {
3930 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3931 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3932 							CURSEG_HOT_DATA]);
3933 		if (__exist_node_summaries(sbi))
3934 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3935 		else
3936 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3937 	} else {
3938 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3939 							CURSEG_HOT_NODE]);
3940 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3941 							CURSEG_HOT_NODE]);
3942 		if (__exist_node_summaries(sbi))
3943 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3944 							type - CURSEG_HOT_NODE);
3945 		else
3946 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3947 	}
3948 
3949 	new = f2fs_get_meta_page(sbi, blk_addr);
3950 	if (IS_ERR(new))
3951 		return PTR_ERR(new);
3952 	sum = (struct f2fs_summary_block *)page_address(new);
3953 
3954 	if (IS_NODESEG(type)) {
3955 		if (__exist_node_summaries(sbi)) {
3956 			struct f2fs_summary *ns = &sum->entries[0];
3957 			int i;
3958 
3959 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3960 				ns->version = 0;
3961 				ns->ofs_in_node = 0;
3962 			}
3963 		} else {
3964 			err = f2fs_restore_node_summary(sbi, segno, sum);
3965 			if (err)
3966 				goto out;
3967 		}
3968 	}
3969 
3970 	/* set uncompleted segment to curseg */
3971 	curseg = CURSEG_I(sbi, type);
3972 	mutex_lock(&curseg->curseg_mutex);
3973 
3974 	/* update journal info */
3975 	down_write(&curseg->journal_rwsem);
3976 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3977 	up_write(&curseg->journal_rwsem);
3978 
3979 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3980 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3981 	curseg->next_segno = segno;
3982 	reset_curseg(sbi, type, 0);
3983 	curseg->alloc_type = ckpt->alloc_type[type];
3984 	curseg->next_blkoff = blk_off;
3985 	mutex_unlock(&curseg->curseg_mutex);
3986 out:
3987 	f2fs_put_page(new, 1);
3988 	return err;
3989 }
3990 
3991 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3992 {
3993 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3994 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3995 	int type = CURSEG_HOT_DATA;
3996 	int err;
3997 
3998 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3999 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4000 
4001 		if (npages >= 2)
4002 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4003 							META_CP, true);
4004 
4005 		/* restore for compacted data summary */
4006 		err = read_compacted_summaries(sbi);
4007 		if (err)
4008 			return err;
4009 		type = CURSEG_HOT_NODE;
4010 	}
4011 
4012 	if (__exist_node_summaries(sbi))
4013 		f2fs_ra_meta_pages(sbi,
4014 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4015 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4016 
4017 	for (; type <= CURSEG_COLD_NODE; type++) {
4018 		err = read_normal_summaries(sbi, type);
4019 		if (err)
4020 			return err;
4021 	}
4022 
4023 	/* sanity check for summary blocks */
4024 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4025 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4026 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4027 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4028 		return -EINVAL;
4029 	}
4030 
4031 	return 0;
4032 }
4033 
4034 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4035 {
4036 	struct page *page;
4037 	unsigned char *kaddr;
4038 	struct f2fs_summary *summary;
4039 	struct curseg_info *seg_i;
4040 	int written_size = 0;
4041 	int i, j;
4042 
4043 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4044 	kaddr = (unsigned char *)page_address(page);
4045 	memset(kaddr, 0, PAGE_SIZE);
4046 
4047 	/* Step 1: write nat cache */
4048 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4049 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4050 	written_size += SUM_JOURNAL_SIZE;
4051 
4052 	/* Step 2: write sit cache */
4053 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4054 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4055 	written_size += SUM_JOURNAL_SIZE;
4056 
4057 	/* Step 3: write summary entries */
4058 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4059 		seg_i = CURSEG_I(sbi, i);
4060 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4061 			if (!page) {
4062 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4063 				kaddr = (unsigned char *)page_address(page);
4064 				memset(kaddr, 0, PAGE_SIZE);
4065 				written_size = 0;
4066 			}
4067 			summary = (struct f2fs_summary *)(kaddr + written_size);
4068 			*summary = seg_i->sum_blk->entries[j];
4069 			written_size += SUMMARY_SIZE;
4070 
4071 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4072 							SUM_FOOTER_SIZE)
4073 				continue;
4074 
4075 			set_page_dirty(page);
4076 			f2fs_put_page(page, 1);
4077 			page = NULL;
4078 		}
4079 	}
4080 	if (page) {
4081 		set_page_dirty(page);
4082 		f2fs_put_page(page, 1);
4083 	}
4084 }
4085 
4086 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4087 					block_t blkaddr, int type)
4088 {
4089 	int i, end;
4090 
4091 	if (IS_DATASEG(type))
4092 		end = type + NR_CURSEG_DATA_TYPE;
4093 	else
4094 		end = type + NR_CURSEG_NODE_TYPE;
4095 
4096 	for (i = type; i < end; i++)
4097 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4098 }
4099 
4100 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4101 {
4102 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4103 		write_compacted_summaries(sbi, start_blk);
4104 	else
4105 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4106 }
4107 
4108 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4109 {
4110 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4111 }
4112 
4113 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4114 					unsigned int val, int alloc)
4115 {
4116 	int i;
4117 
4118 	if (type == NAT_JOURNAL) {
4119 		for (i = 0; i < nats_in_cursum(journal); i++) {
4120 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4121 				return i;
4122 		}
4123 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4124 			return update_nats_in_cursum(journal, 1);
4125 	} else if (type == SIT_JOURNAL) {
4126 		for (i = 0; i < sits_in_cursum(journal); i++)
4127 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4128 				return i;
4129 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4130 			return update_sits_in_cursum(journal, 1);
4131 	}
4132 	return -1;
4133 }
4134 
4135 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4136 					unsigned int segno)
4137 {
4138 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4139 }
4140 
4141 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4142 					unsigned int start)
4143 {
4144 	struct sit_info *sit_i = SIT_I(sbi);
4145 	struct page *page;
4146 	pgoff_t src_off, dst_off;
4147 
4148 	src_off = current_sit_addr(sbi, start);
4149 	dst_off = next_sit_addr(sbi, src_off);
4150 
4151 	page = f2fs_grab_meta_page(sbi, dst_off);
4152 	seg_info_to_sit_page(sbi, page, start);
4153 
4154 	set_page_dirty(page);
4155 	set_to_next_sit(sit_i, start);
4156 
4157 	return page;
4158 }
4159 
4160 static struct sit_entry_set *grab_sit_entry_set(void)
4161 {
4162 	struct sit_entry_set *ses =
4163 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4164 						GFP_NOFS, true, NULL);
4165 
4166 	ses->entry_cnt = 0;
4167 	INIT_LIST_HEAD(&ses->set_list);
4168 	return ses;
4169 }
4170 
4171 static void release_sit_entry_set(struct sit_entry_set *ses)
4172 {
4173 	list_del(&ses->set_list);
4174 	kmem_cache_free(sit_entry_set_slab, ses);
4175 }
4176 
4177 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4178 						struct list_head *head)
4179 {
4180 	struct sit_entry_set *next = ses;
4181 
4182 	if (list_is_last(&ses->set_list, head))
4183 		return;
4184 
4185 	list_for_each_entry_continue(next, head, set_list)
4186 		if (ses->entry_cnt <= next->entry_cnt) {
4187 			list_move_tail(&ses->set_list, &next->set_list);
4188 			return;
4189 		}
4190 
4191 	list_move_tail(&ses->set_list, head);
4192 }
4193 
4194 static void add_sit_entry(unsigned int segno, struct list_head *head)
4195 {
4196 	struct sit_entry_set *ses;
4197 	unsigned int start_segno = START_SEGNO(segno);
4198 
4199 	list_for_each_entry(ses, head, set_list) {
4200 		if (ses->start_segno == start_segno) {
4201 			ses->entry_cnt++;
4202 			adjust_sit_entry_set(ses, head);
4203 			return;
4204 		}
4205 	}
4206 
4207 	ses = grab_sit_entry_set();
4208 
4209 	ses->start_segno = start_segno;
4210 	ses->entry_cnt++;
4211 	list_add(&ses->set_list, head);
4212 }
4213 
4214 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4215 {
4216 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4217 	struct list_head *set_list = &sm_info->sit_entry_set;
4218 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4219 	unsigned int segno;
4220 
4221 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4222 		add_sit_entry(segno, set_list);
4223 }
4224 
4225 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4226 {
4227 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4228 	struct f2fs_journal *journal = curseg->journal;
4229 	int i;
4230 
4231 	down_write(&curseg->journal_rwsem);
4232 	for (i = 0; i < sits_in_cursum(journal); i++) {
4233 		unsigned int segno;
4234 		bool dirtied;
4235 
4236 		segno = le32_to_cpu(segno_in_journal(journal, i));
4237 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4238 
4239 		if (!dirtied)
4240 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4241 	}
4242 	update_sits_in_cursum(journal, -i);
4243 	up_write(&curseg->journal_rwsem);
4244 }
4245 
4246 /*
4247  * CP calls this function, which flushes SIT entries including sit_journal,
4248  * and moves prefree segs to free segs.
4249  */
4250 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4251 {
4252 	struct sit_info *sit_i = SIT_I(sbi);
4253 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4254 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4255 	struct f2fs_journal *journal = curseg->journal;
4256 	struct sit_entry_set *ses, *tmp;
4257 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4258 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4259 	struct seg_entry *se;
4260 
4261 	down_write(&sit_i->sentry_lock);
4262 
4263 	if (!sit_i->dirty_sentries)
4264 		goto out;
4265 
4266 	/*
4267 	 * add and account sit entries of dirty bitmap in sit entry
4268 	 * set temporarily
4269 	 */
4270 	add_sits_in_set(sbi);
4271 
4272 	/*
4273 	 * if there are no enough space in journal to store dirty sit
4274 	 * entries, remove all entries from journal and add and account
4275 	 * them in sit entry set.
4276 	 */
4277 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4278 								!to_journal)
4279 		remove_sits_in_journal(sbi);
4280 
4281 	/*
4282 	 * there are two steps to flush sit entries:
4283 	 * #1, flush sit entries to journal in current cold data summary block.
4284 	 * #2, flush sit entries to sit page.
4285 	 */
4286 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4287 		struct page *page = NULL;
4288 		struct f2fs_sit_block *raw_sit = NULL;
4289 		unsigned int start_segno = ses->start_segno;
4290 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4291 						(unsigned long)MAIN_SEGS(sbi));
4292 		unsigned int segno = start_segno;
4293 
4294 		if (to_journal &&
4295 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4296 			to_journal = false;
4297 
4298 		if (to_journal) {
4299 			down_write(&curseg->journal_rwsem);
4300 		} else {
4301 			page = get_next_sit_page(sbi, start_segno);
4302 			raw_sit = page_address(page);
4303 		}
4304 
4305 		/* flush dirty sit entries in region of current sit set */
4306 		for_each_set_bit_from(segno, bitmap, end) {
4307 			int offset, sit_offset;
4308 
4309 			se = get_seg_entry(sbi, segno);
4310 #ifdef CONFIG_F2FS_CHECK_FS
4311 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4312 						SIT_VBLOCK_MAP_SIZE))
4313 				f2fs_bug_on(sbi, 1);
4314 #endif
4315 
4316 			/* add discard candidates */
4317 			if (!(cpc->reason & CP_DISCARD)) {
4318 				cpc->trim_start = segno;
4319 				add_discard_addrs(sbi, cpc, false);
4320 			}
4321 
4322 			if (to_journal) {
4323 				offset = f2fs_lookup_journal_in_cursum(journal,
4324 							SIT_JOURNAL, segno, 1);
4325 				f2fs_bug_on(sbi, offset < 0);
4326 				segno_in_journal(journal, offset) =
4327 							cpu_to_le32(segno);
4328 				seg_info_to_raw_sit(se,
4329 					&sit_in_journal(journal, offset));
4330 				check_block_count(sbi, segno,
4331 					&sit_in_journal(journal, offset));
4332 			} else {
4333 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4334 				seg_info_to_raw_sit(se,
4335 						&raw_sit->entries[sit_offset]);
4336 				check_block_count(sbi, segno,
4337 						&raw_sit->entries[sit_offset]);
4338 			}
4339 
4340 			__clear_bit(segno, bitmap);
4341 			sit_i->dirty_sentries--;
4342 			ses->entry_cnt--;
4343 		}
4344 
4345 		if (to_journal)
4346 			up_write(&curseg->journal_rwsem);
4347 		else
4348 			f2fs_put_page(page, 1);
4349 
4350 		f2fs_bug_on(sbi, ses->entry_cnt);
4351 		release_sit_entry_set(ses);
4352 	}
4353 
4354 	f2fs_bug_on(sbi, !list_empty(head));
4355 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4356 out:
4357 	if (cpc->reason & CP_DISCARD) {
4358 		__u64 trim_start = cpc->trim_start;
4359 
4360 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4361 			add_discard_addrs(sbi, cpc, false);
4362 
4363 		cpc->trim_start = trim_start;
4364 	}
4365 	up_write(&sit_i->sentry_lock);
4366 
4367 	set_prefree_as_free_segments(sbi);
4368 }
4369 
4370 static int build_sit_info(struct f2fs_sb_info *sbi)
4371 {
4372 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4373 	struct sit_info *sit_i;
4374 	unsigned int sit_segs, start;
4375 	char *src_bitmap, *bitmap;
4376 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4377 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4378 
4379 	/* allocate memory for SIT information */
4380 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4381 	if (!sit_i)
4382 		return -ENOMEM;
4383 
4384 	SM_I(sbi)->sit_info = sit_i;
4385 
4386 	sit_i->sentries =
4387 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4388 					      MAIN_SEGS(sbi)),
4389 			      GFP_KERNEL);
4390 	if (!sit_i->sentries)
4391 		return -ENOMEM;
4392 
4393 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4394 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4395 								GFP_KERNEL);
4396 	if (!sit_i->dirty_sentries_bitmap)
4397 		return -ENOMEM;
4398 
4399 #ifdef CONFIG_F2FS_CHECK_FS
4400 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4401 #else
4402 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4403 #endif
4404 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4405 	if (!sit_i->bitmap)
4406 		return -ENOMEM;
4407 
4408 	bitmap = sit_i->bitmap;
4409 
4410 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4411 		sit_i->sentries[start].cur_valid_map = bitmap;
4412 		bitmap += SIT_VBLOCK_MAP_SIZE;
4413 
4414 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4415 		bitmap += SIT_VBLOCK_MAP_SIZE;
4416 
4417 #ifdef CONFIG_F2FS_CHECK_FS
4418 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4419 		bitmap += SIT_VBLOCK_MAP_SIZE;
4420 #endif
4421 
4422 		if (discard_map) {
4423 			sit_i->sentries[start].discard_map = bitmap;
4424 			bitmap += SIT_VBLOCK_MAP_SIZE;
4425 		}
4426 	}
4427 
4428 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4429 	if (!sit_i->tmp_map)
4430 		return -ENOMEM;
4431 
4432 	if (__is_large_section(sbi)) {
4433 		sit_i->sec_entries =
4434 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4435 						      MAIN_SECS(sbi)),
4436 				      GFP_KERNEL);
4437 		if (!sit_i->sec_entries)
4438 			return -ENOMEM;
4439 	}
4440 
4441 	/* get information related with SIT */
4442 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4443 
4444 	/* setup SIT bitmap from ckeckpoint pack */
4445 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4446 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4447 
4448 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4449 	if (!sit_i->sit_bitmap)
4450 		return -ENOMEM;
4451 
4452 #ifdef CONFIG_F2FS_CHECK_FS
4453 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4454 					sit_bitmap_size, GFP_KERNEL);
4455 	if (!sit_i->sit_bitmap_mir)
4456 		return -ENOMEM;
4457 
4458 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4459 					main_bitmap_size, GFP_KERNEL);
4460 	if (!sit_i->invalid_segmap)
4461 		return -ENOMEM;
4462 #endif
4463 
4464 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4465 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4466 	sit_i->written_valid_blocks = 0;
4467 	sit_i->bitmap_size = sit_bitmap_size;
4468 	sit_i->dirty_sentries = 0;
4469 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4470 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4471 	sit_i->mounted_time = ktime_get_boottime_seconds();
4472 	init_rwsem(&sit_i->sentry_lock);
4473 	return 0;
4474 }
4475 
4476 static int build_free_segmap(struct f2fs_sb_info *sbi)
4477 {
4478 	struct free_segmap_info *free_i;
4479 	unsigned int bitmap_size, sec_bitmap_size;
4480 
4481 	/* allocate memory for free segmap information */
4482 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4483 	if (!free_i)
4484 		return -ENOMEM;
4485 
4486 	SM_I(sbi)->free_info = free_i;
4487 
4488 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4489 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4490 	if (!free_i->free_segmap)
4491 		return -ENOMEM;
4492 
4493 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4494 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4495 	if (!free_i->free_secmap)
4496 		return -ENOMEM;
4497 
4498 	/* set all segments as dirty temporarily */
4499 	memset(free_i->free_segmap, 0xff, bitmap_size);
4500 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4501 
4502 	/* init free segmap information */
4503 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4504 	free_i->free_segments = 0;
4505 	free_i->free_sections = 0;
4506 	spin_lock_init(&free_i->segmap_lock);
4507 	return 0;
4508 }
4509 
4510 static int build_curseg(struct f2fs_sb_info *sbi)
4511 {
4512 	struct curseg_info *array;
4513 	int i;
4514 
4515 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4516 					sizeof(*array)), GFP_KERNEL);
4517 	if (!array)
4518 		return -ENOMEM;
4519 
4520 	SM_I(sbi)->curseg_array = array;
4521 
4522 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4523 		mutex_init(&array[i].curseg_mutex);
4524 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4525 		if (!array[i].sum_blk)
4526 			return -ENOMEM;
4527 		init_rwsem(&array[i].journal_rwsem);
4528 		array[i].journal = f2fs_kzalloc(sbi,
4529 				sizeof(struct f2fs_journal), GFP_KERNEL);
4530 		if (!array[i].journal)
4531 			return -ENOMEM;
4532 		if (i < NR_PERSISTENT_LOG)
4533 			array[i].seg_type = CURSEG_HOT_DATA + i;
4534 		else if (i == CURSEG_COLD_DATA_PINNED)
4535 			array[i].seg_type = CURSEG_COLD_DATA;
4536 		else if (i == CURSEG_ALL_DATA_ATGC)
4537 			array[i].seg_type = CURSEG_COLD_DATA;
4538 		array[i].segno = NULL_SEGNO;
4539 		array[i].next_blkoff = 0;
4540 		array[i].inited = false;
4541 	}
4542 	return restore_curseg_summaries(sbi);
4543 }
4544 
4545 static int build_sit_entries(struct f2fs_sb_info *sbi)
4546 {
4547 	struct sit_info *sit_i = SIT_I(sbi);
4548 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4549 	struct f2fs_journal *journal = curseg->journal;
4550 	struct seg_entry *se;
4551 	struct f2fs_sit_entry sit;
4552 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4553 	unsigned int i, start, end;
4554 	unsigned int readed, start_blk = 0;
4555 	int err = 0;
4556 	block_t sit_valid_blocks[2] = {0, 0};
4557 
4558 	do {
4559 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4560 							META_SIT, true);
4561 
4562 		start = start_blk * sit_i->sents_per_block;
4563 		end = (start_blk + readed) * sit_i->sents_per_block;
4564 
4565 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4566 			struct f2fs_sit_block *sit_blk;
4567 			struct page *page;
4568 
4569 			se = &sit_i->sentries[start];
4570 			page = get_current_sit_page(sbi, start);
4571 			if (IS_ERR(page))
4572 				return PTR_ERR(page);
4573 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4574 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4575 			f2fs_put_page(page, 1);
4576 
4577 			err = check_block_count(sbi, start, &sit);
4578 			if (err)
4579 				return err;
4580 			seg_info_from_raw_sit(se, &sit);
4581 
4582 			if (se->type >= NR_PERSISTENT_LOG) {
4583 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4584 							se->type, start);
4585 				f2fs_handle_error(sbi,
4586 						ERROR_INCONSISTENT_SUM_TYPE);
4587 				return -EFSCORRUPTED;
4588 			}
4589 
4590 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4591 
4592 			if (f2fs_block_unit_discard(sbi)) {
4593 				/* build discard map only one time */
4594 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4595 					memset(se->discard_map, 0xff,
4596 						SIT_VBLOCK_MAP_SIZE);
4597 				} else {
4598 					memcpy(se->discard_map,
4599 						se->cur_valid_map,
4600 						SIT_VBLOCK_MAP_SIZE);
4601 					sbi->discard_blks +=
4602 						sbi->blocks_per_seg -
4603 						se->valid_blocks;
4604 				}
4605 			}
4606 
4607 			if (__is_large_section(sbi))
4608 				get_sec_entry(sbi, start)->valid_blocks +=
4609 							se->valid_blocks;
4610 		}
4611 		start_blk += readed;
4612 	} while (start_blk < sit_blk_cnt);
4613 
4614 	down_read(&curseg->journal_rwsem);
4615 	for (i = 0; i < sits_in_cursum(journal); i++) {
4616 		unsigned int old_valid_blocks;
4617 
4618 		start = le32_to_cpu(segno_in_journal(journal, i));
4619 		if (start >= MAIN_SEGS(sbi)) {
4620 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4621 				 start);
4622 			err = -EFSCORRUPTED;
4623 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4624 			break;
4625 		}
4626 
4627 		se = &sit_i->sentries[start];
4628 		sit = sit_in_journal(journal, i);
4629 
4630 		old_valid_blocks = se->valid_blocks;
4631 
4632 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4633 
4634 		err = check_block_count(sbi, start, &sit);
4635 		if (err)
4636 			break;
4637 		seg_info_from_raw_sit(se, &sit);
4638 
4639 		if (se->type >= NR_PERSISTENT_LOG) {
4640 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4641 							se->type, start);
4642 			err = -EFSCORRUPTED;
4643 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4644 			break;
4645 		}
4646 
4647 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4648 
4649 		if (f2fs_block_unit_discard(sbi)) {
4650 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4651 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4652 			} else {
4653 				memcpy(se->discard_map, se->cur_valid_map,
4654 							SIT_VBLOCK_MAP_SIZE);
4655 				sbi->discard_blks += old_valid_blocks;
4656 				sbi->discard_blks -= se->valid_blocks;
4657 			}
4658 		}
4659 
4660 		if (__is_large_section(sbi)) {
4661 			get_sec_entry(sbi, start)->valid_blocks +=
4662 							se->valid_blocks;
4663 			get_sec_entry(sbi, start)->valid_blocks -=
4664 							old_valid_blocks;
4665 		}
4666 	}
4667 	up_read(&curseg->journal_rwsem);
4668 
4669 	if (err)
4670 		return err;
4671 
4672 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4673 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4674 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4675 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4676 		return -EFSCORRUPTED;
4677 	}
4678 
4679 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4680 				valid_user_blocks(sbi)) {
4681 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4682 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4683 			 valid_user_blocks(sbi));
4684 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4685 		return -EFSCORRUPTED;
4686 	}
4687 
4688 	return 0;
4689 }
4690 
4691 static void init_free_segmap(struct f2fs_sb_info *sbi)
4692 {
4693 	unsigned int start;
4694 	int type;
4695 	struct seg_entry *sentry;
4696 
4697 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4698 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4699 			continue;
4700 		sentry = get_seg_entry(sbi, start);
4701 		if (!sentry->valid_blocks)
4702 			__set_free(sbi, start);
4703 		else
4704 			SIT_I(sbi)->written_valid_blocks +=
4705 						sentry->valid_blocks;
4706 	}
4707 
4708 	/* set use the current segments */
4709 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4710 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4711 
4712 		__set_test_and_inuse(sbi, curseg_t->segno);
4713 	}
4714 }
4715 
4716 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4717 {
4718 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4719 	struct free_segmap_info *free_i = FREE_I(sbi);
4720 	unsigned int segno = 0, offset = 0, secno;
4721 	block_t valid_blocks, usable_blks_in_seg;
4722 
4723 	while (1) {
4724 		/* find dirty segment based on free segmap */
4725 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4726 		if (segno >= MAIN_SEGS(sbi))
4727 			break;
4728 		offset = segno + 1;
4729 		valid_blocks = get_valid_blocks(sbi, segno, false);
4730 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4731 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4732 			continue;
4733 		if (valid_blocks > usable_blks_in_seg) {
4734 			f2fs_bug_on(sbi, 1);
4735 			continue;
4736 		}
4737 		mutex_lock(&dirty_i->seglist_lock);
4738 		__locate_dirty_segment(sbi, segno, DIRTY);
4739 		mutex_unlock(&dirty_i->seglist_lock);
4740 	}
4741 
4742 	if (!__is_large_section(sbi))
4743 		return;
4744 
4745 	mutex_lock(&dirty_i->seglist_lock);
4746 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4747 		valid_blocks = get_valid_blocks(sbi, segno, true);
4748 		secno = GET_SEC_FROM_SEG(sbi, segno);
4749 
4750 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4751 			continue;
4752 		if (IS_CURSEC(sbi, secno))
4753 			continue;
4754 		set_bit(secno, dirty_i->dirty_secmap);
4755 	}
4756 	mutex_unlock(&dirty_i->seglist_lock);
4757 }
4758 
4759 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4760 {
4761 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4762 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4763 
4764 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4765 	if (!dirty_i->victim_secmap)
4766 		return -ENOMEM;
4767 
4768 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4769 	if (!dirty_i->pinned_secmap)
4770 		return -ENOMEM;
4771 
4772 	dirty_i->pinned_secmap_cnt = 0;
4773 	dirty_i->enable_pin_section = true;
4774 	return 0;
4775 }
4776 
4777 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4778 {
4779 	struct dirty_seglist_info *dirty_i;
4780 	unsigned int bitmap_size, i;
4781 
4782 	/* allocate memory for dirty segments list information */
4783 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4784 								GFP_KERNEL);
4785 	if (!dirty_i)
4786 		return -ENOMEM;
4787 
4788 	SM_I(sbi)->dirty_info = dirty_i;
4789 	mutex_init(&dirty_i->seglist_lock);
4790 
4791 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4792 
4793 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4794 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4795 								GFP_KERNEL);
4796 		if (!dirty_i->dirty_segmap[i])
4797 			return -ENOMEM;
4798 	}
4799 
4800 	if (__is_large_section(sbi)) {
4801 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4802 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4803 						bitmap_size, GFP_KERNEL);
4804 		if (!dirty_i->dirty_secmap)
4805 			return -ENOMEM;
4806 	}
4807 
4808 	init_dirty_segmap(sbi);
4809 	return init_victim_secmap(sbi);
4810 }
4811 
4812 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4813 {
4814 	int i;
4815 
4816 	/*
4817 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4818 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4819 	 */
4820 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4821 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4822 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4823 		unsigned int blkofs = curseg->next_blkoff;
4824 
4825 		if (f2fs_sb_has_readonly(sbi) &&
4826 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4827 			continue;
4828 
4829 		sanity_check_seg_type(sbi, curseg->seg_type);
4830 
4831 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4832 			f2fs_err(sbi,
4833 				 "Current segment has invalid alloc_type:%d",
4834 				 curseg->alloc_type);
4835 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4836 			return -EFSCORRUPTED;
4837 		}
4838 
4839 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4840 			goto out;
4841 
4842 		if (curseg->alloc_type == SSR)
4843 			continue;
4844 
4845 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4846 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4847 				continue;
4848 out:
4849 			f2fs_err(sbi,
4850 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4851 				 i, curseg->segno, curseg->alloc_type,
4852 				 curseg->next_blkoff, blkofs);
4853 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4854 			return -EFSCORRUPTED;
4855 		}
4856 	}
4857 	return 0;
4858 }
4859 
4860 #ifdef CONFIG_BLK_DEV_ZONED
4861 
4862 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4863 				    struct f2fs_dev_info *fdev,
4864 				    struct blk_zone *zone)
4865 {
4866 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4867 	block_t zone_block, wp_block, last_valid_block;
4868 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4869 	int i, s, b, ret;
4870 	struct seg_entry *se;
4871 
4872 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4873 		return 0;
4874 
4875 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4876 	wp_segno = GET_SEGNO(sbi, wp_block);
4877 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4878 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4879 	zone_segno = GET_SEGNO(sbi, zone_block);
4880 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4881 
4882 	if (zone_segno >= MAIN_SEGS(sbi))
4883 		return 0;
4884 
4885 	/*
4886 	 * Skip check of zones cursegs point to, since
4887 	 * fix_curseg_write_pointer() checks them.
4888 	 */
4889 	for (i = 0; i < NO_CHECK_TYPE; i++)
4890 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4891 						   CURSEG_I(sbi, i)->segno))
4892 			return 0;
4893 
4894 	/*
4895 	 * Get last valid block of the zone.
4896 	 */
4897 	last_valid_block = zone_block - 1;
4898 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4899 		segno = zone_segno + s;
4900 		se = get_seg_entry(sbi, segno);
4901 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4902 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4903 				last_valid_block = START_BLOCK(sbi, segno) + b;
4904 				break;
4905 			}
4906 		if (last_valid_block >= zone_block)
4907 			break;
4908 	}
4909 
4910 	/*
4911 	 * The write pointer matches with the valid blocks or
4912 	 * already points to the end of the zone.
4913 	 */
4914 	if ((last_valid_block + 1 == wp_block) ||
4915 			(zone->wp == zone->start + zone->len))
4916 		return 0;
4917 
4918 	if (last_valid_block + 1 == zone_block) {
4919 		/*
4920 		 * If there is no valid block in the zone and if write pointer
4921 		 * is not at zone start, reset the write pointer.
4922 		 */
4923 		f2fs_notice(sbi,
4924 			    "Zone without valid block has non-zero write "
4925 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4926 			    wp_segno, wp_blkoff);
4927 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4928 					zone->len >> log_sectors_per_block);
4929 		if (ret)
4930 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4931 				 fdev->path, ret);
4932 
4933 		return ret;
4934 	}
4935 
4936 	/*
4937 	 * If there are valid blocks and the write pointer doesn't
4938 	 * match with them, we need to report the inconsistency and
4939 	 * fill the zone till the end to close the zone. This inconsistency
4940 	 * does not cause write error because the zone will not be selected
4941 	 * for write operation until it get discarded.
4942 	 */
4943 	f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: "
4944 		    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4945 		    GET_SEGNO(sbi, last_valid_block),
4946 		    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4947 		    wp_segno, wp_blkoff);
4948 
4949 	ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4950 				zone->len - (zone->wp - zone->start),
4951 				GFP_NOFS, 0);
4952 	if (ret)
4953 		f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4954 			 fdev->path, ret);
4955 
4956 	return ret;
4957 }
4958 
4959 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4960 						  block_t zone_blkaddr)
4961 {
4962 	int i;
4963 
4964 	for (i = 0; i < sbi->s_ndevs; i++) {
4965 		if (!bdev_is_zoned(FDEV(i).bdev))
4966 			continue;
4967 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4968 				zone_blkaddr <= FDEV(i).end_blk))
4969 			return &FDEV(i);
4970 	}
4971 
4972 	return NULL;
4973 }
4974 
4975 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4976 			      void *data)
4977 {
4978 	memcpy(data, zone, sizeof(struct blk_zone));
4979 	return 0;
4980 }
4981 
4982 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4983 {
4984 	struct curseg_info *cs = CURSEG_I(sbi, type);
4985 	struct f2fs_dev_info *zbd;
4986 	struct blk_zone zone;
4987 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4988 	block_t cs_zone_block, wp_block;
4989 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4990 	sector_t zone_sector;
4991 	int err;
4992 
4993 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4994 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4995 
4996 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4997 	if (!zbd)
4998 		return 0;
4999 
5000 	/* report zone for the sector the curseg points to */
5001 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5002 		<< log_sectors_per_block;
5003 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5004 				  report_one_zone_cb, &zone);
5005 	if (err != 1) {
5006 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5007 			 zbd->path, err);
5008 		return err;
5009 	}
5010 
5011 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5012 		return 0;
5013 
5014 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5015 	wp_segno = GET_SEGNO(sbi, wp_block);
5016 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5017 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5018 
5019 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5020 		wp_sector_off == 0)
5021 		return 0;
5022 
5023 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5024 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5025 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5026 
5027 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5028 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5029 
5030 	f2fs_allocate_new_section(sbi, type, true);
5031 
5032 	/* check consistency of the zone curseg pointed to */
5033 	if (check_zone_write_pointer(sbi, zbd, &zone))
5034 		return -EIO;
5035 
5036 	/* check newly assigned zone */
5037 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5038 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5039 
5040 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5041 	if (!zbd)
5042 		return 0;
5043 
5044 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5045 		<< log_sectors_per_block;
5046 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5047 				  report_one_zone_cb, &zone);
5048 	if (err != 1) {
5049 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5050 			 zbd->path, err);
5051 		return err;
5052 	}
5053 
5054 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5055 		return 0;
5056 
5057 	if (zone.wp != zone.start) {
5058 		f2fs_notice(sbi,
5059 			    "New zone for curseg[%d] is not yet discarded. "
5060 			    "Reset the zone: curseg[0x%x,0x%x]",
5061 			    type, cs->segno, cs->next_blkoff);
5062 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5063 					zone.len >> log_sectors_per_block);
5064 		if (err) {
5065 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5066 				 zbd->path, err);
5067 			return err;
5068 		}
5069 	}
5070 
5071 	return 0;
5072 }
5073 
5074 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5075 {
5076 	int i, ret;
5077 
5078 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5079 		ret = fix_curseg_write_pointer(sbi, i);
5080 		if (ret)
5081 			return ret;
5082 	}
5083 
5084 	return 0;
5085 }
5086 
5087 struct check_zone_write_pointer_args {
5088 	struct f2fs_sb_info *sbi;
5089 	struct f2fs_dev_info *fdev;
5090 };
5091 
5092 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5093 				      void *data)
5094 {
5095 	struct check_zone_write_pointer_args *args;
5096 
5097 	args = (struct check_zone_write_pointer_args *)data;
5098 
5099 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5100 }
5101 
5102 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5103 {
5104 	int i, ret;
5105 	struct check_zone_write_pointer_args args;
5106 
5107 	for (i = 0; i < sbi->s_ndevs; i++) {
5108 		if (!bdev_is_zoned(FDEV(i).bdev))
5109 			continue;
5110 
5111 		args.sbi = sbi;
5112 		args.fdev = &FDEV(i);
5113 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5114 					  check_zone_write_pointer_cb, &args);
5115 		if (ret < 0)
5116 			return ret;
5117 	}
5118 
5119 	return 0;
5120 }
5121 
5122 /*
5123  * Return the number of usable blocks in a segment. The number of blocks
5124  * returned is always equal to the number of blocks in a segment for
5125  * segments fully contained within a sequential zone capacity or a
5126  * conventional zone. For segments partially contained in a sequential
5127  * zone capacity, the number of usable blocks up to the zone capacity
5128  * is returned. 0 is returned in all other cases.
5129  */
5130 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5131 			struct f2fs_sb_info *sbi, unsigned int segno)
5132 {
5133 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5134 	unsigned int secno;
5135 
5136 	if (!sbi->unusable_blocks_per_sec)
5137 		return sbi->blocks_per_seg;
5138 
5139 	secno = GET_SEC_FROM_SEG(sbi, segno);
5140 	seg_start = START_BLOCK(sbi, segno);
5141 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5142 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5143 
5144 	/*
5145 	 * If segment starts before zone capacity and spans beyond
5146 	 * zone capacity, then usable blocks are from seg start to
5147 	 * zone capacity. If the segment starts after the zone capacity,
5148 	 * then there are no usable blocks.
5149 	 */
5150 	if (seg_start >= sec_cap_blkaddr)
5151 		return 0;
5152 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5153 		return sec_cap_blkaddr - seg_start;
5154 
5155 	return sbi->blocks_per_seg;
5156 }
5157 #else
5158 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5159 {
5160 	return 0;
5161 }
5162 
5163 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5164 {
5165 	return 0;
5166 }
5167 
5168 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5169 							unsigned int segno)
5170 {
5171 	return 0;
5172 }
5173 
5174 #endif
5175 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5176 					unsigned int segno)
5177 {
5178 	if (f2fs_sb_has_blkzoned(sbi))
5179 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5180 
5181 	return sbi->blocks_per_seg;
5182 }
5183 
5184 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5185 					unsigned int segno)
5186 {
5187 	if (f2fs_sb_has_blkzoned(sbi))
5188 		return CAP_SEGS_PER_SEC(sbi);
5189 
5190 	return sbi->segs_per_sec;
5191 }
5192 
5193 /*
5194  * Update min, max modified time for cost-benefit GC algorithm
5195  */
5196 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5197 {
5198 	struct sit_info *sit_i = SIT_I(sbi);
5199 	unsigned int segno;
5200 
5201 	down_write(&sit_i->sentry_lock);
5202 
5203 	sit_i->min_mtime = ULLONG_MAX;
5204 
5205 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5206 		unsigned int i;
5207 		unsigned long long mtime = 0;
5208 
5209 		for (i = 0; i < sbi->segs_per_sec; i++)
5210 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5211 
5212 		mtime = div_u64(mtime, sbi->segs_per_sec);
5213 
5214 		if (sit_i->min_mtime > mtime)
5215 			sit_i->min_mtime = mtime;
5216 	}
5217 	sit_i->max_mtime = get_mtime(sbi, false);
5218 	sit_i->dirty_max_mtime = 0;
5219 	up_write(&sit_i->sentry_lock);
5220 }
5221 
5222 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5223 {
5224 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5225 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5226 	struct f2fs_sm_info *sm_info;
5227 	int err;
5228 
5229 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5230 	if (!sm_info)
5231 		return -ENOMEM;
5232 
5233 	/* init sm info */
5234 	sbi->sm_info = sm_info;
5235 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5236 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5237 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5238 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5239 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5240 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5241 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5242 	sm_info->rec_prefree_segments = sm_info->main_segments *
5243 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5244 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5245 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5246 
5247 	if (!f2fs_lfs_mode(sbi))
5248 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5249 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5250 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5251 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5252 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5253 	sm_info->min_ssr_sections = reserved_sections(sbi);
5254 
5255 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5256 
5257 	init_f2fs_rwsem(&sm_info->curseg_lock);
5258 
5259 	err = f2fs_create_flush_cmd_control(sbi);
5260 	if (err)
5261 		return err;
5262 
5263 	err = create_discard_cmd_control(sbi);
5264 	if (err)
5265 		return err;
5266 
5267 	err = build_sit_info(sbi);
5268 	if (err)
5269 		return err;
5270 	err = build_free_segmap(sbi);
5271 	if (err)
5272 		return err;
5273 	err = build_curseg(sbi);
5274 	if (err)
5275 		return err;
5276 
5277 	/* reinit free segmap based on SIT */
5278 	err = build_sit_entries(sbi);
5279 	if (err)
5280 		return err;
5281 
5282 	init_free_segmap(sbi);
5283 	err = build_dirty_segmap(sbi);
5284 	if (err)
5285 		return err;
5286 
5287 	err = sanity_check_curseg(sbi);
5288 	if (err)
5289 		return err;
5290 
5291 	init_min_max_mtime(sbi);
5292 	return 0;
5293 }
5294 
5295 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5296 		enum dirty_type dirty_type)
5297 {
5298 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5299 
5300 	mutex_lock(&dirty_i->seglist_lock);
5301 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5302 	dirty_i->nr_dirty[dirty_type] = 0;
5303 	mutex_unlock(&dirty_i->seglist_lock);
5304 }
5305 
5306 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5307 {
5308 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5309 
5310 	kvfree(dirty_i->pinned_secmap);
5311 	kvfree(dirty_i->victim_secmap);
5312 }
5313 
5314 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5315 {
5316 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5317 	int i;
5318 
5319 	if (!dirty_i)
5320 		return;
5321 
5322 	/* discard pre-free/dirty segments list */
5323 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5324 		discard_dirty_segmap(sbi, i);
5325 
5326 	if (__is_large_section(sbi)) {
5327 		mutex_lock(&dirty_i->seglist_lock);
5328 		kvfree(dirty_i->dirty_secmap);
5329 		mutex_unlock(&dirty_i->seglist_lock);
5330 	}
5331 
5332 	destroy_victim_secmap(sbi);
5333 	SM_I(sbi)->dirty_info = NULL;
5334 	kfree(dirty_i);
5335 }
5336 
5337 static void destroy_curseg(struct f2fs_sb_info *sbi)
5338 {
5339 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5340 	int i;
5341 
5342 	if (!array)
5343 		return;
5344 	SM_I(sbi)->curseg_array = NULL;
5345 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5346 		kfree(array[i].sum_blk);
5347 		kfree(array[i].journal);
5348 	}
5349 	kfree(array);
5350 }
5351 
5352 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5353 {
5354 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5355 
5356 	if (!free_i)
5357 		return;
5358 	SM_I(sbi)->free_info = NULL;
5359 	kvfree(free_i->free_segmap);
5360 	kvfree(free_i->free_secmap);
5361 	kfree(free_i);
5362 }
5363 
5364 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5365 {
5366 	struct sit_info *sit_i = SIT_I(sbi);
5367 
5368 	if (!sit_i)
5369 		return;
5370 
5371 	if (sit_i->sentries)
5372 		kvfree(sit_i->bitmap);
5373 	kfree(sit_i->tmp_map);
5374 
5375 	kvfree(sit_i->sentries);
5376 	kvfree(sit_i->sec_entries);
5377 	kvfree(sit_i->dirty_sentries_bitmap);
5378 
5379 	SM_I(sbi)->sit_info = NULL;
5380 	kvfree(sit_i->sit_bitmap);
5381 #ifdef CONFIG_F2FS_CHECK_FS
5382 	kvfree(sit_i->sit_bitmap_mir);
5383 	kvfree(sit_i->invalid_segmap);
5384 #endif
5385 	kfree(sit_i);
5386 }
5387 
5388 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5389 {
5390 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5391 
5392 	if (!sm_info)
5393 		return;
5394 	f2fs_destroy_flush_cmd_control(sbi, true);
5395 	destroy_discard_cmd_control(sbi);
5396 	destroy_dirty_segmap(sbi);
5397 	destroy_curseg(sbi);
5398 	destroy_free_segmap(sbi);
5399 	destroy_sit_info(sbi);
5400 	sbi->sm_info = NULL;
5401 	kfree(sm_info);
5402 }
5403 
5404 int __init f2fs_create_segment_manager_caches(void)
5405 {
5406 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5407 			sizeof(struct discard_entry));
5408 	if (!discard_entry_slab)
5409 		goto fail;
5410 
5411 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5412 			sizeof(struct discard_cmd));
5413 	if (!discard_cmd_slab)
5414 		goto destroy_discard_entry;
5415 
5416 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5417 			sizeof(struct sit_entry_set));
5418 	if (!sit_entry_set_slab)
5419 		goto destroy_discard_cmd;
5420 
5421 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5422 			sizeof(struct revoke_entry));
5423 	if (!revoke_entry_slab)
5424 		goto destroy_sit_entry_set;
5425 	return 0;
5426 
5427 destroy_sit_entry_set:
5428 	kmem_cache_destroy(sit_entry_set_slab);
5429 destroy_discard_cmd:
5430 	kmem_cache_destroy(discard_cmd_slab);
5431 destroy_discard_entry:
5432 	kmem_cache_destroy(discard_entry_slab);
5433 fail:
5434 	return -ENOMEM;
5435 }
5436 
5437 void f2fs_destroy_segment_manager_caches(void)
5438 {
5439 	kmem_cache_destroy(sit_entry_set_slab);
5440 	kmem_cache_destroy(discard_cmd_slab);
5441 	kmem_cache_destroy(discard_entry_slab);
5442 	kmem_cache_destroy(revoke_entry_slab);
5443 }
5444