1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 #include <linux/timer.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "trace.h" 25 #include <trace/events/f2fs.h> 26 27 #define __reverse_ffz(x) __reverse_ffs(~(x)) 28 29 static struct kmem_cache *discard_entry_slab; 30 static struct kmem_cache *bio_entry_slab; 31 static struct kmem_cache *sit_entry_set_slab; 32 static struct kmem_cache *inmem_entry_slab; 33 34 static unsigned long __reverse_ulong(unsigned char *str) 35 { 36 unsigned long tmp = 0; 37 int shift = 24, idx = 0; 38 39 #if BITS_PER_LONG == 64 40 shift = 56; 41 #endif 42 while (shift >= 0) { 43 tmp |= (unsigned long)str[idx++] << shift; 44 shift -= BITS_PER_BYTE; 45 } 46 return tmp; 47 } 48 49 /* 50 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 51 * MSB and LSB are reversed in a byte by f2fs_set_bit. 52 */ 53 static inline unsigned long __reverse_ffs(unsigned long word) 54 { 55 int num = 0; 56 57 #if BITS_PER_LONG == 64 58 if ((word & 0xffffffff00000000UL) == 0) 59 num += 32; 60 else 61 word >>= 32; 62 #endif 63 if ((word & 0xffff0000) == 0) 64 num += 16; 65 else 66 word >>= 16; 67 68 if ((word & 0xff00) == 0) 69 num += 8; 70 else 71 word >>= 8; 72 73 if ((word & 0xf0) == 0) 74 num += 4; 75 else 76 word >>= 4; 77 78 if ((word & 0xc) == 0) 79 num += 2; 80 else 81 word >>= 2; 82 83 if ((word & 0x2) == 0) 84 num += 1; 85 return num; 86 } 87 88 /* 89 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 90 * f2fs_set_bit makes MSB and LSB reversed in a byte. 91 * @size must be integral times of unsigned long. 92 * Example: 93 * MSB <--> LSB 94 * f2fs_set_bit(0, bitmap) => 1000 0000 95 * f2fs_set_bit(7, bitmap) => 0000 0001 96 */ 97 static unsigned long __find_rev_next_bit(const unsigned long *addr, 98 unsigned long size, unsigned long offset) 99 { 100 const unsigned long *p = addr + BIT_WORD(offset); 101 unsigned long result = size; 102 unsigned long tmp; 103 104 if (offset >= size) 105 return size; 106 107 size -= (offset & ~(BITS_PER_LONG - 1)); 108 offset %= BITS_PER_LONG; 109 110 while (1) { 111 if (*p == 0) 112 goto pass; 113 114 tmp = __reverse_ulong((unsigned char *)p); 115 116 tmp &= ~0UL >> offset; 117 if (size < BITS_PER_LONG) 118 tmp &= (~0UL << (BITS_PER_LONG - size)); 119 if (tmp) 120 goto found; 121 pass: 122 if (size <= BITS_PER_LONG) 123 break; 124 size -= BITS_PER_LONG; 125 offset = 0; 126 p++; 127 } 128 return result; 129 found: 130 return result - size + __reverse_ffs(tmp); 131 } 132 133 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 134 unsigned long size, unsigned long offset) 135 { 136 const unsigned long *p = addr + BIT_WORD(offset); 137 unsigned long result = size; 138 unsigned long tmp; 139 140 if (offset >= size) 141 return size; 142 143 size -= (offset & ~(BITS_PER_LONG - 1)); 144 offset %= BITS_PER_LONG; 145 146 while (1) { 147 if (*p == ~0UL) 148 goto pass; 149 150 tmp = __reverse_ulong((unsigned char *)p); 151 152 if (offset) 153 tmp |= ~0UL << (BITS_PER_LONG - offset); 154 if (size < BITS_PER_LONG) 155 tmp |= ~0UL >> size; 156 if (tmp != ~0UL) 157 goto found; 158 pass: 159 if (size <= BITS_PER_LONG) 160 break; 161 size -= BITS_PER_LONG; 162 offset = 0; 163 p++; 164 } 165 return result; 166 found: 167 return result - size + __reverse_ffz(tmp); 168 } 169 170 void register_inmem_page(struct inode *inode, struct page *page) 171 { 172 struct f2fs_inode_info *fi = F2FS_I(inode); 173 struct inmem_pages *new; 174 175 f2fs_trace_pid(page); 176 177 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 178 SetPagePrivate(page); 179 180 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 181 182 /* add atomic page indices to the list */ 183 new->page = page; 184 INIT_LIST_HEAD(&new->list); 185 186 /* increase reference count with clean state */ 187 mutex_lock(&fi->inmem_lock); 188 get_page(page); 189 list_add_tail(&new->list, &fi->inmem_pages); 190 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 191 mutex_unlock(&fi->inmem_lock); 192 193 trace_f2fs_register_inmem_page(page, INMEM); 194 } 195 196 static int __revoke_inmem_pages(struct inode *inode, 197 struct list_head *head, bool drop, bool recover) 198 { 199 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 200 struct inmem_pages *cur, *tmp; 201 int err = 0; 202 203 list_for_each_entry_safe(cur, tmp, head, list) { 204 struct page *page = cur->page; 205 206 if (drop) 207 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 208 209 lock_page(page); 210 211 if (recover) { 212 struct dnode_of_data dn; 213 struct node_info ni; 214 215 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 216 217 set_new_dnode(&dn, inode, NULL, NULL, 0); 218 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 219 err = -EAGAIN; 220 goto next; 221 } 222 get_node_info(sbi, dn.nid, &ni); 223 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 224 cur->old_addr, ni.version, true, true); 225 f2fs_put_dnode(&dn); 226 } 227 next: 228 /* we don't need to invalidate this in the sccessful status */ 229 if (drop || recover) 230 ClearPageUptodate(page); 231 set_page_private(page, 0); 232 ClearPagePrivate(page); 233 f2fs_put_page(page, 1); 234 235 list_del(&cur->list); 236 kmem_cache_free(inmem_entry_slab, cur); 237 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 238 } 239 return err; 240 } 241 242 void drop_inmem_pages(struct inode *inode) 243 { 244 struct f2fs_inode_info *fi = F2FS_I(inode); 245 246 clear_inode_flag(inode, FI_ATOMIC_FILE); 247 248 mutex_lock(&fi->inmem_lock); 249 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 250 mutex_unlock(&fi->inmem_lock); 251 } 252 253 static int __commit_inmem_pages(struct inode *inode, 254 struct list_head *revoke_list) 255 { 256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 257 struct f2fs_inode_info *fi = F2FS_I(inode); 258 struct inmem_pages *cur, *tmp; 259 struct f2fs_io_info fio = { 260 .sbi = sbi, 261 .type = DATA, 262 .op = REQ_OP_WRITE, 263 .op_flags = WRITE_SYNC | REQ_PRIO, 264 .encrypted_page = NULL, 265 }; 266 bool submit_bio = false; 267 int err = 0; 268 269 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 270 struct page *page = cur->page; 271 272 lock_page(page); 273 if (page->mapping == inode->i_mapping) { 274 trace_f2fs_commit_inmem_page(page, INMEM); 275 276 set_page_dirty(page); 277 f2fs_wait_on_page_writeback(page, DATA, true); 278 if (clear_page_dirty_for_io(page)) { 279 inode_dec_dirty_pages(inode); 280 remove_dirty_inode(inode); 281 } 282 283 fio.page = page; 284 err = do_write_data_page(&fio); 285 if (err) { 286 unlock_page(page); 287 break; 288 } 289 290 /* record old blkaddr for revoking */ 291 cur->old_addr = fio.old_blkaddr; 292 293 clear_cold_data(page); 294 submit_bio = true; 295 } 296 unlock_page(page); 297 list_move_tail(&cur->list, revoke_list); 298 } 299 300 if (submit_bio) 301 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 302 303 if (!err) 304 __revoke_inmem_pages(inode, revoke_list, false, false); 305 306 return err; 307 } 308 309 int commit_inmem_pages(struct inode *inode) 310 { 311 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 312 struct f2fs_inode_info *fi = F2FS_I(inode); 313 struct list_head revoke_list; 314 int err; 315 316 INIT_LIST_HEAD(&revoke_list); 317 f2fs_balance_fs(sbi, true); 318 f2fs_lock_op(sbi); 319 320 mutex_lock(&fi->inmem_lock); 321 err = __commit_inmem_pages(inode, &revoke_list); 322 if (err) { 323 int ret; 324 /* 325 * try to revoke all committed pages, but still we could fail 326 * due to no memory or other reason, if that happened, EAGAIN 327 * will be returned, which means in such case, transaction is 328 * already not integrity, caller should use journal to do the 329 * recovery or rewrite & commit last transaction. For other 330 * error number, revoking was done by filesystem itself. 331 */ 332 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 333 if (ret) 334 err = ret; 335 336 /* drop all uncommitted pages */ 337 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 338 } 339 mutex_unlock(&fi->inmem_lock); 340 341 f2fs_unlock_op(sbi); 342 return err; 343 } 344 345 /* 346 * This function balances dirty node and dentry pages. 347 * In addition, it controls garbage collection. 348 */ 349 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 350 { 351 #ifdef CONFIG_F2FS_FAULT_INJECTION 352 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 353 f2fs_stop_checkpoint(sbi, false); 354 #endif 355 356 if (!need) 357 return; 358 359 /* balance_fs_bg is able to be pending */ 360 if (excess_cached_nats(sbi)) 361 f2fs_balance_fs_bg(sbi); 362 363 /* 364 * We should do GC or end up with checkpoint, if there are so many dirty 365 * dir/node pages without enough free segments. 366 */ 367 if (has_not_enough_free_secs(sbi, 0, 0)) { 368 mutex_lock(&sbi->gc_mutex); 369 f2fs_gc(sbi, false); 370 } 371 } 372 373 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 374 { 375 /* try to shrink extent cache when there is no enough memory */ 376 if (!available_free_memory(sbi, EXTENT_CACHE)) 377 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 378 379 /* check the # of cached NAT entries */ 380 if (!available_free_memory(sbi, NAT_ENTRIES)) 381 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 382 383 if (!available_free_memory(sbi, FREE_NIDS)) 384 try_to_free_nids(sbi, MAX_FREE_NIDS); 385 else 386 build_free_nids(sbi, false); 387 388 /* checkpoint is the only way to shrink partial cached entries */ 389 if (!available_free_memory(sbi, NAT_ENTRIES) || 390 !available_free_memory(sbi, INO_ENTRIES) || 391 excess_prefree_segs(sbi) || 392 excess_dirty_nats(sbi) || 393 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) { 394 if (test_opt(sbi, DATA_FLUSH)) { 395 struct blk_plug plug; 396 397 blk_start_plug(&plug); 398 sync_dirty_inodes(sbi, FILE_INODE); 399 blk_finish_plug(&plug); 400 } 401 f2fs_sync_fs(sbi->sb, true); 402 stat_inc_bg_cp_count(sbi->stat_info); 403 } 404 } 405 406 static int __submit_flush_wait(struct block_device *bdev) 407 { 408 struct bio *bio = f2fs_bio_alloc(0); 409 int ret; 410 411 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 412 bio->bi_bdev = bdev; 413 ret = submit_bio_wait(bio); 414 bio_put(bio); 415 return ret; 416 } 417 418 static int submit_flush_wait(struct f2fs_sb_info *sbi) 419 { 420 int ret = __submit_flush_wait(sbi->sb->s_bdev); 421 int i; 422 423 if (sbi->s_ndevs && !ret) { 424 for (i = 1; i < sbi->s_ndevs; i++) { 425 ret = __submit_flush_wait(FDEV(i).bdev); 426 if (ret) 427 break; 428 } 429 } 430 return ret; 431 } 432 433 static int issue_flush_thread(void *data) 434 { 435 struct f2fs_sb_info *sbi = data; 436 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 437 wait_queue_head_t *q = &fcc->flush_wait_queue; 438 repeat: 439 if (kthread_should_stop()) 440 return 0; 441 442 if (!llist_empty(&fcc->issue_list)) { 443 struct flush_cmd *cmd, *next; 444 int ret; 445 446 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 447 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 448 449 ret = submit_flush_wait(sbi); 450 llist_for_each_entry_safe(cmd, next, 451 fcc->dispatch_list, llnode) { 452 cmd->ret = ret; 453 complete(&cmd->wait); 454 } 455 fcc->dispatch_list = NULL; 456 } 457 458 wait_event_interruptible(*q, 459 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 460 goto repeat; 461 } 462 463 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 464 { 465 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 466 struct flush_cmd cmd; 467 468 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 469 test_opt(sbi, FLUSH_MERGE)); 470 471 if (test_opt(sbi, NOBARRIER)) 472 return 0; 473 474 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) { 475 int ret; 476 477 atomic_inc(&fcc->submit_flush); 478 ret = submit_flush_wait(sbi); 479 atomic_dec(&fcc->submit_flush); 480 return ret; 481 } 482 483 init_completion(&cmd.wait); 484 485 atomic_inc(&fcc->submit_flush); 486 llist_add(&cmd.llnode, &fcc->issue_list); 487 488 if (!fcc->dispatch_list) 489 wake_up(&fcc->flush_wait_queue); 490 491 wait_for_completion(&cmd.wait); 492 atomic_dec(&fcc->submit_flush); 493 494 return cmd.ret; 495 } 496 497 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 498 { 499 dev_t dev = sbi->sb->s_bdev->bd_dev; 500 struct flush_cmd_control *fcc; 501 int err = 0; 502 503 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 504 if (!fcc) 505 return -ENOMEM; 506 atomic_set(&fcc->submit_flush, 0); 507 init_waitqueue_head(&fcc->flush_wait_queue); 508 init_llist_head(&fcc->issue_list); 509 SM_I(sbi)->cmd_control_info = fcc; 510 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 511 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 512 if (IS_ERR(fcc->f2fs_issue_flush)) { 513 err = PTR_ERR(fcc->f2fs_issue_flush); 514 kfree(fcc); 515 SM_I(sbi)->cmd_control_info = NULL; 516 return err; 517 } 518 519 return err; 520 } 521 522 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 523 { 524 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 525 526 if (fcc && fcc->f2fs_issue_flush) 527 kthread_stop(fcc->f2fs_issue_flush); 528 kfree(fcc); 529 SM_I(sbi)->cmd_control_info = NULL; 530 } 531 532 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 533 enum dirty_type dirty_type) 534 { 535 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 536 537 /* need not be added */ 538 if (IS_CURSEG(sbi, segno)) 539 return; 540 541 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 542 dirty_i->nr_dirty[dirty_type]++; 543 544 if (dirty_type == DIRTY) { 545 struct seg_entry *sentry = get_seg_entry(sbi, segno); 546 enum dirty_type t = sentry->type; 547 548 if (unlikely(t >= DIRTY)) { 549 f2fs_bug_on(sbi, 1); 550 return; 551 } 552 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 553 dirty_i->nr_dirty[t]++; 554 } 555 } 556 557 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 558 enum dirty_type dirty_type) 559 { 560 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 561 562 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 563 dirty_i->nr_dirty[dirty_type]--; 564 565 if (dirty_type == DIRTY) { 566 struct seg_entry *sentry = get_seg_entry(sbi, segno); 567 enum dirty_type t = sentry->type; 568 569 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 570 dirty_i->nr_dirty[t]--; 571 572 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 573 clear_bit(GET_SECNO(sbi, segno), 574 dirty_i->victim_secmap); 575 } 576 } 577 578 /* 579 * Should not occur error such as -ENOMEM. 580 * Adding dirty entry into seglist is not critical operation. 581 * If a given segment is one of current working segments, it won't be added. 582 */ 583 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 584 { 585 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 586 unsigned short valid_blocks; 587 588 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 589 return; 590 591 mutex_lock(&dirty_i->seglist_lock); 592 593 valid_blocks = get_valid_blocks(sbi, segno, 0); 594 595 if (valid_blocks == 0) { 596 __locate_dirty_segment(sbi, segno, PRE); 597 __remove_dirty_segment(sbi, segno, DIRTY); 598 } else if (valid_blocks < sbi->blocks_per_seg) { 599 __locate_dirty_segment(sbi, segno, DIRTY); 600 } else { 601 /* Recovery routine with SSR needs this */ 602 __remove_dirty_segment(sbi, segno, DIRTY); 603 } 604 605 mutex_unlock(&dirty_i->seglist_lock); 606 } 607 608 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi, 609 struct bio *bio) 610 { 611 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 612 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 613 614 INIT_LIST_HEAD(&be->list); 615 be->bio = bio; 616 init_completion(&be->event); 617 list_add_tail(&be->list, wait_list); 618 619 return be; 620 } 621 622 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi) 623 { 624 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 625 struct bio_entry *be, *tmp; 626 627 list_for_each_entry_safe(be, tmp, wait_list, list) { 628 struct bio *bio = be->bio; 629 int err; 630 631 wait_for_completion_io(&be->event); 632 err = be->error; 633 if (err == -EOPNOTSUPP) 634 err = 0; 635 636 if (err) 637 f2fs_msg(sbi->sb, KERN_INFO, 638 "Issue discard failed, ret: %d", err); 639 640 bio_put(bio); 641 list_del(&be->list); 642 kmem_cache_free(bio_entry_slab, be); 643 } 644 } 645 646 static void f2fs_submit_bio_wait_endio(struct bio *bio) 647 { 648 struct bio_entry *be = (struct bio_entry *)bio->bi_private; 649 650 be->error = bio->bi_error; 651 complete(&be->event); 652 } 653 654 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 655 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, 656 struct block_device *bdev, block_t blkstart, block_t blklen) 657 { 658 struct bio *bio = NULL; 659 int err; 660 661 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 662 663 if (sbi->s_ndevs) { 664 int devi = f2fs_target_device_index(sbi, blkstart); 665 666 blkstart -= FDEV(devi).start_blk; 667 } 668 err = __blkdev_issue_discard(bdev, 669 SECTOR_FROM_BLOCK(blkstart), 670 SECTOR_FROM_BLOCK(blklen), 671 GFP_NOFS, 0, &bio); 672 if (!err && bio) { 673 struct bio_entry *be = __add_bio_entry(sbi, bio); 674 675 bio->bi_private = be; 676 bio->bi_end_io = f2fs_submit_bio_wait_endio; 677 bio->bi_opf |= REQ_SYNC; 678 submit_bio(bio); 679 } 680 681 return err; 682 } 683 684 #ifdef CONFIG_BLK_DEV_ZONED 685 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 686 struct block_device *bdev, block_t blkstart, block_t blklen) 687 { 688 sector_t nr_sects = SECTOR_FROM_BLOCK(blklen); 689 sector_t sector; 690 int devi = 0; 691 692 if (sbi->s_ndevs) { 693 devi = f2fs_target_device_index(sbi, blkstart); 694 blkstart -= FDEV(devi).start_blk; 695 } 696 sector = SECTOR_FROM_BLOCK(blkstart); 697 698 if (sector % bdev_zone_size(bdev) || nr_sects != bdev_zone_size(bdev)) { 699 f2fs_msg(sbi->sb, KERN_INFO, 700 "(%d) %s: Unaligned discard attempted (block %x + %x)", 701 devi, sbi->s_ndevs ? FDEV(devi).path: "", 702 blkstart, blklen); 703 return -EIO; 704 } 705 706 /* 707 * We need to know the type of the zone: for conventional zones, 708 * use regular discard if the drive supports it. For sequential 709 * zones, reset the zone write pointer. 710 */ 711 switch (get_blkz_type(sbi, bdev, blkstart)) { 712 713 case BLK_ZONE_TYPE_CONVENTIONAL: 714 if (!blk_queue_discard(bdev_get_queue(bdev))) 715 return 0; 716 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 717 case BLK_ZONE_TYPE_SEQWRITE_REQ: 718 case BLK_ZONE_TYPE_SEQWRITE_PREF: 719 trace_f2fs_issue_reset_zone(sbi->sb, blkstart); 720 return blkdev_reset_zones(bdev, sector, 721 nr_sects, GFP_NOFS); 722 default: 723 /* Unknown zone type: broken device ? */ 724 return -EIO; 725 } 726 } 727 #endif 728 729 static int __issue_discard_async(struct f2fs_sb_info *sbi, 730 struct block_device *bdev, block_t blkstart, block_t blklen) 731 { 732 #ifdef CONFIG_BLK_DEV_ZONED 733 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 734 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 735 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 736 #endif 737 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 738 } 739 740 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 741 block_t blkstart, block_t blklen) 742 { 743 sector_t start = blkstart, len = 0; 744 struct block_device *bdev; 745 struct seg_entry *se; 746 unsigned int offset; 747 block_t i; 748 int err = 0; 749 750 bdev = f2fs_target_device(sbi, blkstart, NULL); 751 752 for (i = blkstart; i < blkstart + blklen; i++, len++) { 753 if (i != start) { 754 struct block_device *bdev2 = 755 f2fs_target_device(sbi, i, NULL); 756 757 if (bdev2 != bdev) { 758 err = __issue_discard_async(sbi, bdev, 759 start, len); 760 if (err) 761 return err; 762 bdev = bdev2; 763 start = i; 764 len = 0; 765 } 766 } 767 768 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 769 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 770 771 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 772 sbi->discard_blks--; 773 } 774 775 if (len) 776 err = __issue_discard_async(sbi, bdev, start, len); 777 return err; 778 } 779 780 static void __add_discard_entry(struct f2fs_sb_info *sbi, 781 struct cp_control *cpc, struct seg_entry *se, 782 unsigned int start, unsigned int end) 783 { 784 struct list_head *head = &SM_I(sbi)->discard_list; 785 struct discard_entry *new, *last; 786 787 if (!list_empty(head)) { 788 last = list_last_entry(head, struct discard_entry, list); 789 if (START_BLOCK(sbi, cpc->trim_start) + start == 790 last->blkaddr + last->len) { 791 last->len += end - start; 792 goto done; 793 } 794 } 795 796 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 797 INIT_LIST_HEAD(&new->list); 798 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 799 new->len = end - start; 800 list_add_tail(&new->list, head); 801 done: 802 SM_I(sbi)->nr_discards += end - start; 803 } 804 805 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 806 { 807 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 808 int max_blocks = sbi->blocks_per_seg; 809 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 810 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 811 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 812 unsigned long *discard_map = (unsigned long *)se->discard_map; 813 unsigned long *dmap = SIT_I(sbi)->tmp_map; 814 unsigned int start = 0, end = -1; 815 bool force = (cpc->reason == CP_DISCARD); 816 int i; 817 818 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 819 return; 820 821 if (!force) { 822 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 823 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 824 return; 825 } 826 827 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 828 for (i = 0; i < entries; i++) 829 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 830 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 831 832 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 833 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 834 if (start >= max_blocks) 835 break; 836 837 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 838 if (force && start && end != max_blocks 839 && (end - start) < cpc->trim_minlen) 840 continue; 841 842 __add_discard_entry(sbi, cpc, se, start, end); 843 } 844 } 845 846 void release_discard_addrs(struct f2fs_sb_info *sbi) 847 { 848 struct list_head *head = &(SM_I(sbi)->discard_list); 849 struct discard_entry *entry, *this; 850 851 /* drop caches */ 852 list_for_each_entry_safe(entry, this, head, list) { 853 list_del(&entry->list); 854 kmem_cache_free(discard_entry_slab, entry); 855 } 856 } 857 858 /* 859 * Should call clear_prefree_segments after checkpoint is done. 860 */ 861 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 862 { 863 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 864 unsigned int segno; 865 866 mutex_lock(&dirty_i->seglist_lock); 867 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 868 __set_test_and_free(sbi, segno); 869 mutex_unlock(&dirty_i->seglist_lock); 870 } 871 872 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 873 { 874 struct list_head *head = &(SM_I(sbi)->discard_list); 875 struct discard_entry *entry, *this; 876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 877 struct blk_plug plug; 878 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 879 unsigned int start = 0, end = -1; 880 unsigned int secno, start_segno; 881 bool force = (cpc->reason == CP_DISCARD); 882 883 blk_start_plug(&plug); 884 885 mutex_lock(&dirty_i->seglist_lock); 886 887 while (1) { 888 int i; 889 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 890 if (start >= MAIN_SEGS(sbi)) 891 break; 892 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 893 start + 1); 894 895 for (i = start; i < end; i++) 896 clear_bit(i, prefree_map); 897 898 dirty_i->nr_dirty[PRE] -= end - start; 899 900 if (force || !test_opt(sbi, DISCARD)) 901 continue; 902 903 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 904 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 905 (end - start) << sbi->log_blocks_per_seg); 906 continue; 907 } 908 next: 909 secno = GET_SECNO(sbi, start); 910 start_segno = secno * sbi->segs_per_sec; 911 if (!IS_CURSEC(sbi, secno) && 912 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 913 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 914 sbi->segs_per_sec << sbi->log_blocks_per_seg); 915 916 start = start_segno + sbi->segs_per_sec; 917 if (start < end) 918 goto next; 919 } 920 mutex_unlock(&dirty_i->seglist_lock); 921 922 /* send small discards */ 923 list_for_each_entry_safe(entry, this, head, list) { 924 if (force && entry->len < cpc->trim_minlen) 925 goto skip; 926 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 927 cpc->trimmed += entry->len; 928 skip: 929 list_del(&entry->list); 930 SM_I(sbi)->nr_discards -= entry->len; 931 kmem_cache_free(discard_entry_slab, entry); 932 } 933 934 blk_finish_plug(&plug); 935 } 936 937 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 938 { 939 struct sit_info *sit_i = SIT_I(sbi); 940 941 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 942 sit_i->dirty_sentries++; 943 return false; 944 } 945 946 return true; 947 } 948 949 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 950 unsigned int segno, int modified) 951 { 952 struct seg_entry *se = get_seg_entry(sbi, segno); 953 se->type = type; 954 if (modified) 955 __mark_sit_entry_dirty(sbi, segno); 956 } 957 958 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 959 { 960 struct seg_entry *se; 961 unsigned int segno, offset; 962 long int new_vblocks; 963 964 segno = GET_SEGNO(sbi, blkaddr); 965 966 se = get_seg_entry(sbi, segno); 967 new_vblocks = se->valid_blocks + del; 968 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 969 970 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 971 (new_vblocks > sbi->blocks_per_seg))); 972 973 se->valid_blocks = new_vblocks; 974 se->mtime = get_mtime(sbi); 975 SIT_I(sbi)->max_mtime = se->mtime; 976 977 /* Update valid block bitmap */ 978 if (del > 0) { 979 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 980 f2fs_bug_on(sbi, 1); 981 if (f2fs_discard_en(sbi) && 982 !f2fs_test_and_set_bit(offset, se->discard_map)) 983 sbi->discard_blks--; 984 } else { 985 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 986 f2fs_bug_on(sbi, 1); 987 if (f2fs_discard_en(sbi) && 988 f2fs_test_and_clear_bit(offset, se->discard_map)) 989 sbi->discard_blks++; 990 } 991 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 992 se->ckpt_valid_blocks += del; 993 994 __mark_sit_entry_dirty(sbi, segno); 995 996 /* update total number of valid blocks to be written in ckpt area */ 997 SIT_I(sbi)->written_valid_blocks += del; 998 999 if (sbi->segs_per_sec > 1) 1000 get_sec_entry(sbi, segno)->valid_blocks += del; 1001 } 1002 1003 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 1004 { 1005 update_sit_entry(sbi, new, 1); 1006 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 1007 update_sit_entry(sbi, old, -1); 1008 1009 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 1010 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 1011 } 1012 1013 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1014 { 1015 unsigned int segno = GET_SEGNO(sbi, addr); 1016 struct sit_info *sit_i = SIT_I(sbi); 1017 1018 f2fs_bug_on(sbi, addr == NULL_ADDR); 1019 if (addr == NEW_ADDR) 1020 return; 1021 1022 /* add it into sit main buffer */ 1023 mutex_lock(&sit_i->sentry_lock); 1024 1025 update_sit_entry(sbi, addr, -1); 1026 1027 /* add it into dirty seglist */ 1028 locate_dirty_segment(sbi, segno); 1029 1030 mutex_unlock(&sit_i->sentry_lock); 1031 } 1032 1033 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1034 { 1035 struct sit_info *sit_i = SIT_I(sbi); 1036 unsigned int segno, offset; 1037 struct seg_entry *se; 1038 bool is_cp = false; 1039 1040 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1041 return true; 1042 1043 mutex_lock(&sit_i->sentry_lock); 1044 1045 segno = GET_SEGNO(sbi, blkaddr); 1046 se = get_seg_entry(sbi, segno); 1047 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1048 1049 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1050 is_cp = true; 1051 1052 mutex_unlock(&sit_i->sentry_lock); 1053 1054 return is_cp; 1055 } 1056 1057 /* 1058 * This function should be resided under the curseg_mutex lock 1059 */ 1060 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1061 struct f2fs_summary *sum) 1062 { 1063 struct curseg_info *curseg = CURSEG_I(sbi, type); 1064 void *addr = curseg->sum_blk; 1065 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1066 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1067 } 1068 1069 /* 1070 * Calculate the number of current summary pages for writing 1071 */ 1072 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1073 { 1074 int valid_sum_count = 0; 1075 int i, sum_in_page; 1076 1077 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1078 if (sbi->ckpt->alloc_type[i] == SSR) 1079 valid_sum_count += sbi->blocks_per_seg; 1080 else { 1081 if (for_ra) 1082 valid_sum_count += le16_to_cpu( 1083 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1084 else 1085 valid_sum_count += curseg_blkoff(sbi, i); 1086 } 1087 } 1088 1089 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1090 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1091 if (valid_sum_count <= sum_in_page) 1092 return 1; 1093 else if ((valid_sum_count - sum_in_page) <= 1094 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1095 return 2; 1096 return 3; 1097 } 1098 1099 /* 1100 * Caller should put this summary page 1101 */ 1102 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1103 { 1104 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1105 } 1106 1107 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1108 { 1109 struct page *page = grab_meta_page(sbi, blk_addr); 1110 void *dst = page_address(page); 1111 1112 if (src) 1113 memcpy(dst, src, PAGE_SIZE); 1114 else 1115 memset(dst, 0, PAGE_SIZE); 1116 set_page_dirty(page); 1117 f2fs_put_page(page, 1); 1118 } 1119 1120 static void write_sum_page(struct f2fs_sb_info *sbi, 1121 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1122 { 1123 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1124 } 1125 1126 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1127 int type, block_t blk_addr) 1128 { 1129 struct curseg_info *curseg = CURSEG_I(sbi, type); 1130 struct page *page = grab_meta_page(sbi, blk_addr); 1131 struct f2fs_summary_block *src = curseg->sum_blk; 1132 struct f2fs_summary_block *dst; 1133 1134 dst = (struct f2fs_summary_block *)page_address(page); 1135 1136 mutex_lock(&curseg->curseg_mutex); 1137 1138 down_read(&curseg->journal_rwsem); 1139 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1140 up_read(&curseg->journal_rwsem); 1141 1142 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1143 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1144 1145 mutex_unlock(&curseg->curseg_mutex); 1146 1147 set_page_dirty(page); 1148 f2fs_put_page(page, 1); 1149 } 1150 1151 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 1152 { 1153 struct curseg_info *curseg = CURSEG_I(sbi, type); 1154 unsigned int segno = curseg->segno + 1; 1155 struct free_segmap_info *free_i = FREE_I(sbi); 1156 1157 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 1158 return !test_bit(segno, free_i->free_segmap); 1159 return 0; 1160 } 1161 1162 /* 1163 * Find a new segment from the free segments bitmap to right order 1164 * This function should be returned with success, otherwise BUG 1165 */ 1166 static void get_new_segment(struct f2fs_sb_info *sbi, 1167 unsigned int *newseg, bool new_sec, int dir) 1168 { 1169 struct free_segmap_info *free_i = FREE_I(sbi); 1170 unsigned int segno, secno, zoneno; 1171 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1172 unsigned int hint = *newseg / sbi->segs_per_sec; 1173 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1174 unsigned int left_start = hint; 1175 bool init = true; 1176 int go_left = 0; 1177 int i; 1178 1179 spin_lock(&free_i->segmap_lock); 1180 1181 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1182 segno = find_next_zero_bit(free_i->free_segmap, 1183 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1184 if (segno < (hint + 1) * sbi->segs_per_sec) 1185 goto got_it; 1186 } 1187 find_other_zone: 1188 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1189 if (secno >= MAIN_SECS(sbi)) { 1190 if (dir == ALLOC_RIGHT) { 1191 secno = find_next_zero_bit(free_i->free_secmap, 1192 MAIN_SECS(sbi), 0); 1193 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1194 } else { 1195 go_left = 1; 1196 left_start = hint - 1; 1197 } 1198 } 1199 if (go_left == 0) 1200 goto skip_left; 1201 1202 while (test_bit(left_start, free_i->free_secmap)) { 1203 if (left_start > 0) { 1204 left_start--; 1205 continue; 1206 } 1207 left_start = find_next_zero_bit(free_i->free_secmap, 1208 MAIN_SECS(sbi), 0); 1209 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1210 break; 1211 } 1212 secno = left_start; 1213 skip_left: 1214 hint = secno; 1215 segno = secno * sbi->segs_per_sec; 1216 zoneno = secno / sbi->secs_per_zone; 1217 1218 /* give up on finding another zone */ 1219 if (!init) 1220 goto got_it; 1221 if (sbi->secs_per_zone == 1) 1222 goto got_it; 1223 if (zoneno == old_zoneno) 1224 goto got_it; 1225 if (dir == ALLOC_LEFT) { 1226 if (!go_left && zoneno + 1 >= total_zones) 1227 goto got_it; 1228 if (go_left && zoneno == 0) 1229 goto got_it; 1230 } 1231 for (i = 0; i < NR_CURSEG_TYPE; i++) 1232 if (CURSEG_I(sbi, i)->zone == zoneno) 1233 break; 1234 1235 if (i < NR_CURSEG_TYPE) { 1236 /* zone is in user, try another */ 1237 if (go_left) 1238 hint = zoneno * sbi->secs_per_zone - 1; 1239 else if (zoneno + 1 >= total_zones) 1240 hint = 0; 1241 else 1242 hint = (zoneno + 1) * sbi->secs_per_zone; 1243 init = false; 1244 goto find_other_zone; 1245 } 1246 got_it: 1247 /* set it as dirty segment in free segmap */ 1248 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1249 __set_inuse(sbi, segno); 1250 *newseg = segno; 1251 spin_unlock(&free_i->segmap_lock); 1252 } 1253 1254 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1255 { 1256 struct curseg_info *curseg = CURSEG_I(sbi, type); 1257 struct summary_footer *sum_footer; 1258 1259 curseg->segno = curseg->next_segno; 1260 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1261 curseg->next_blkoff = 0; 1262 curseg->next_segno = NULL_SEGNO; 1263 1264 sum_footer = &(curseg->sum_blk->footer); 1265 memset(sum_footer, 0, sizeof(struct summary_footer)); 1266 if (IS_DATASEG(type)) 1267 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1268 if (IS_NODESEG(type)) 1269 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1270 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1271 } 1272 1273 /* 1274 * Allocate a current working segment. 1275 * This function always allocates a free segment in LFS manner. 1276 */ 1277 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1278 { 1279 struct curseg_info *curseg = CURSEG_I(sbi, type); 1280 unsigned int segno = curseg->segno; 1281 int dir = ALLOC_LEFT; 1282 1283 write_sum_page(sbi, curseg->sum_blk, 1284 GET_SUM_BLOCK(sbi, segno)); 1285 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1286 dir = ALLOC_RIGHT; 1287 1288 if (test_opt(sbi, NOHEAP)) 1289 dir = ALLOC_RIGHT; 1290 1291 get_new_segment(sbi, &segno, new_sec, dir); 1292 curseg->next_segno = segno; 1293 reset_curseg(sbi, type, 1); 1294 curseg->alloc_type = LFS; 1295 } 1296 1297 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1298 struct curseg_info *seg, block_t start) 1299 { 1300 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1301 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1302 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1303 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1304 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1305 int i, pos; 1306 1307 for (i = 0; i < entries; i++) 1308 target_map[i] = ckpt_map[i] | cur_map[i]; 1309 1310 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1311 1312 seg->next_blkoff = pos; 1313 } 1314 1315 /* 1316 * If a segment is written by LFS manner, next block offset is just obtained 1317 * by increasing the current block offset. However, if a segment is written by 1318 * SSR manner, next block offset obtained by calling __next_free_blkoff 1319 */ 1320 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1321 struct curseg_info *seg) 1322 { 1323 if (seg->alloc_type == SSR) 1324 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1325 else 1326 seg->next_blkoff++; 1327 } 1328 1329 /* 1330 * This function always allocates a used segment(from dirty seglist) by SSR 1331 * manner, so it should recover the existing segment information of valid blocks 1332 */ 1333 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1334 { 1335 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1336 struct curseg_info *curseg = CURSEG_I(sbi, type); 1337 unsigned int new_segno = curseg->next_segno; 1338 struct f2fs_summary_block *sum_node; 1339 struct page *sum_page; 1340 1341 write_sum_page(sbi, curseg->sum_blk, 1342 GET_SUM_BLOCK(sbi, curseg->segno)); 1343 __set_test_and_inuse(sbi, new_segno); 1344 1345 mutex_lock(&dirty_i->seglist_lock); 1346 __remove_dirty_segment(sbi, new_segno, PRE); 1347 __remove_dirty_segment(sbi, new_segno, DIRTY); 1348 mutex_unlock(&dirty_i->seglist_lock); 1349 1350 reset_curseg(sbi, type, 1); 1351 curseg->alloc_type = SSR; 1352 __next_free_blkoff(sbi, curseg, 0); 1353 1354 if (reuse) { 1355 sum_page = get_sum_page(sbi, new_segno); 1356 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1357 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1358 f2fs_put_page(sum_page, 1); 1359 } 1360 } 1361 1362 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1363 { 1364 struct curseg_info *curseg = CURSEG_I(sbi, type); 1365 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1366 1367 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0)) 1368 return v_ops->get_victim(sbi, 1369 &(curseg)->next_segno, BG_GC, type, SSR); 1370 1371 /* For data segments, let's do SSR more intensively */ 1372 for (; type >= CURSEG_HOT_DATA; type--) 1373 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1374 BG_GC, type, SSR)) 1375 return 1; 1376 return 0; 1377 } 1378 1379 /* 1380 * flush out current segment and replace it with new segment 1381 * This function should be returned with success, otherwise BUG 1382 */ 1383 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1384 int type, bool force) 1385 { 1386 struct curseg_info *curseg = CURSEG_I(sbi, type); 1387 1388 if (force) 1389 new_curseg(sbi, type, true); 1390 else if (type == CURSEG_WARM_NODE) 1391 new_curseg(sbi, type, false); 1392 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1393 new_curseg(sbi, type, false); 1394 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1395 change_curseg(sbi, type, true); 1396 else 1397 new_curseg(sbi, type, false); 1398 1399 stat_inc_seg_type(sbi, curseg); 1400 } 1401 1402 void allocate_new_segments(struct f2fs_sb_info *sbi) 1403 { 1404 struct curseg_info *curseg; 1405 unsigned int old_segno; 1406 int i; 1407 1408 if (test_opt(sbi, LFS)) 1409 return; 1410 1411 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1412 curseg = CURSEG_I(sbi, i); 1413 old_segno = curseg->segno; 1414 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1415 locate_dirty_segment(sbi, old_segno); 1416 } 1417 } 1418 1419 static const struct segment_allocation default_salloc_ops = { 1420 .allocate_segment = allocate_segment_by_default, 1421 }; 1422 1423 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1424 { 1425 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1426 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1427 unsigned int start_segno, end_segno; 1428 struct cp_control cpc; 1429 int err = 0; 1430 1431 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1432 return -EINVAL; 1433 1434 cpc.trimmed = 0; 1435 if (end <= MAIN_BLKADDR(sbi)) 1436 goto out; 1437 1438 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1439 f2fs_msg(sbi->sb, KERN_WARNING, 1440 "Found FS corruption, run fsck to fix."); 1441 goto out; 1442 } 1443 1444 /* start/end segment number in main_area */ 1445 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1446 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1447 GET_SEGNO(sbi, end); 1448 cpc.reason = CP_DISCARD; 1449 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1450 1451 /* do checkpoint to issue discard commands safely */ 1452 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1453 cpc.trim_start = start_segno; 1454 1455 if (sbi->discard_blks == 0) 1456 break; 1457 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1458 cpc.trim_end = end_segno; 1459 else 1460 cpc.trim_end = min_t(unsigned int, 1461 rounddown(start_segno + 1462 BATCHED_TRIM_SEGMENTS(sbi), 1463 sbi->segs_per_sec) - 1, end_segno); 1464 1465 mutex_lock(&sbi->gc_mutex); 1466 err = write_checkpoint(sbi, &cpc); 1467 mutex_unlock(&sbi->gc_mutex); 1468 if (err) 1469 break; 1470 1471 schedule(); 1472 } 1473 out: 1474 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1475 return err; 1476 } 1477 1478 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1479 { 1480 struct curseg_info *curseg = CURSEG_I(sbi, type); 1481 if (curseg->next_blkoff < sbi->blocks_per_seg) 1482 return true; 1483 return false; 1484 } 1485 1486 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1487 { 1488 if (p_type == DATA) 1489 return CURSEG_HOT_DATA; 1490 else 1491 return CURSEG_HOT_NODE; 1492 } 1493 1494 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1495 { 1496 if (p_type == DATA) { 1497 struct inode *inode = page->mapping->host; 1498 1499 if (S_ISDIR(inode->i_mode)) 1500 return CURSEG_HOT_DATA; 1501 else 1502 return CURSEG_COLD_DATA; 1503 } else { 1504 if (IS_DNODE(page) && is_cold_node(page)) 1505 return CURSEG_WARM_NODE; 1506 else 1507 return CURSEG_COLD_NODE; 1508 } 1509 } 1510 1511 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1512 { 1513 if (p_type == DATA) { 1514 struct inode *inode = page->mapping->host; 1515 1516 if (S_ISDIR(inode->i_mode)) 1517 return CURSEG_HOT_DATA; 1518 else if (is_cold_data(page) || file_is_cold(inode)) 1519 return CURSEG_COLD_DATA; 1520 else 1521 return CURSEG_WARM_DATA; 1522 } else { 1523 if (IS_DNODE(page)) 1524 return is_cold_node(page) ? CURSEG_WARM_NODE : 1525 CURSEG_HOT_NODE; 1526 else 1527 return CURSEG_COLD_NODE; 1528 } 1529 } 1530 1531 static int __get_segment_type(struct page *page, enum page_type p_type) 1532 { 1533 switch (F2FS_P_SB(page)->active_logs) { 1534 case 2: 1535 return __get_segment_type_2(page, p_type); 1536 case 4: 1537 return __get_segment_type_4(page, p_type); 1538 } 1539 /* NR_CURSEG_TYPE(6) logs by default */ 1540 f2fs_bug_on(F2FS_P_SB(page), 1541 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1542 return __get_segment_type_6(page, p_type); 1543 } 1544 1545 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1546 block_t old_blkaddr, block_t *new_blkaddr, 1547 struct f2fs_summary *sum, int type) 1548 { 1549 struct sit_info *sit_i = SIT_I(sbi); 1550 struct curseg_info *curseg = CURSEG_I(sbi, type); 1551 1552 mutex_lock(&curseg->curseg_mutex); 1553 mutex_lock(&sit_i->sentry_lock); 1554 1555 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1556 1557 /* 1558 * __add_sum_entry should be resided under the curseg_mutex 1559 * because, this function updates a summary entry in the 1560 * current summary block. 1561 */ 1562 __add_sum_entry(sbi, type, sum); 1563 1564 __refresh_next_blkoff(sbi, curseg); 1565 1566 stat_inc_block_count(sbi, curseg); 1567 1568 if (!__has_curseg_space(sbi, type)) 1569 sit_i->s_ops->allocate_segment(sbi, type, false); 1570 /* 1571 * SIT information should be updated before segment allocation, 1572 * since SSR needs latest valid block information. 1573 */ 1574 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1575 1576 mutex_unlock(&sit_i->sentry_lock); 1577 1578 if (page && IS_NODESEG(type)) 1579 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1580 1581 mutex_unlock(&curseg->curseg_mutex); 1582 } 1583 1584 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1585 { 1586 int type = __get_segment_type(fio->page, fio->type); 1587 1588 if (fio->type == NODE || fio->type == DATA) 1589 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1590 1591 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1592 &fio->new_blkaddr, sum, type); 1593 1594 /* writeout dirty page into bdev */ 1595 f2fs_submit_page_mbio(fio); 1596 1597 if (fio->type == NODE || fio->type == DATA) 1598 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1599 } 1600 1601 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1602 { 1603 struct f2fs_io_info fio = { 1604 .sbi = sbi, 1605 .type = META, 1606 .op = REQ_OP_WRITE, 1607 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO, 1608 .old_blkaddr = page->index, 1609 .new_blkaddr = page->index, 1610 .page = page, 1611 .encrypted_page = NULL, 1612 }; 1613 1614 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1615 fio.op_flags &= ~REQ_META; 1616 1617 set_page_writeback(page); 1618 f2fs_submit_page_mbio(&fio); 1619 } 1620 1621 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1622 { 1623 struct f2fs_summary sum; 1624 1625 set_summary(&sum, nid, 0, 0); 1626 do_write_page(&sum, fio); 1627 } 1628 1629 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1630 { 1631 struct f2fs_sb_info *sbi = fio->sbi; 1632 struct f2fs_summary sum; 1633 struct node_info ni; 1634 1635 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1636 get_node_info(sbi, dn->nid, &ni); 1637 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1638 do_write_page(&sum, fio); 1639 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1640 } 1641 1642 void rewrite_data_page(struct f2fs_io_info *fio) 1643 { 1644 fio->new_blkaddr = fio->old_blkaddr; 1645 stat_inc_inplace_blocks(fio->sbi); 1646 f2fs_submit_page_mbio(fio); 1647 } 1648 1649 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1650 block_t old_blkaddr, block_t new_blkaddr, 1651 bool recover_curseg, bool recover_newaddr) 1652 { 1653 struct sit_info *sit_i = SIT_I(sbi); 1654 struct curseg_info *curseg; 1655 unsigned int segno, old_cursegno; 1656 struct seg_entry *se; 1657 int type; 1658 unsigned short old_blkoff; 1659 1660 segno = GET_SEGNO(sbi, new_blkaddr); 1661 se = get_seg_entry(sbi, segno); 1662 type = se->type; 1663 1664 if (!recover_curseg) { 1665 /* for recovery flow */ 1666 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1667 if (old_blkaddr == NULL_ADDR) 1668 type = CURSEG_COLD_DATA; 1669 else 1670 type = CURSEG_WARM_DATA; 1671 } 1672 } else { 1673 if (!IS_CURSEG(sbi, segno)) 1674 type = CURSEG_WARM_DATA; 1675 } 1676 1677 curseg = CURSEG_I(sbi, type); 1678 1679 mutex_lock(&curseg->curseg_mutex); 1680 mutex_lock(&sit_i->sentry_lock); 1681 1682 old_cursegno = curseg->segno; 1683 old_blkoff = curseg->next_blkoff; 1684 1685 /* change the current segment */ 1686 if (segno != curseg->segno) { 1687 curseg->next_segno = segno; 1688 change_curseg(sbi, type, true); 1689 } 1690 1691 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1692 __add_sum_entry(sbi, type, sum); 1693 1694 if (!recover_curseg || recover_newaddr) 1695 update_sit_entry(sbi, new_blkaddr, 1); 1696 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1697 update_sit_entry(sbi, old_blkaddr, -1); 1698 1699 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1700 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1701 1702 locate_dirty_segment(sbi, old_cursegno); 1703 1704 if (recover_curseg) { 1705 if (old_cursegno != curseg->segno) { 1706 curseg->next_segno = old_cursegno; 1707 change_curseg(sbi, type, true); 1708 } 1709 curseg->next_blkoff = old_blkoff; 1710 } 1711 1712 mutex_unlock(&sit_i->sentry_lock); 1713 mutex_unlock(&curseg->curseg_mutex); 1714 } 1715 1716 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1717 block_t old_addr, block_t new_addr, 1718 unsigned char version, bool recover_curseg, 1719 bool recover_newaddr) 1720 { 1721 struct f2fs_summary sum; 1722 1723 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1724 1725 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1726 recover_curseg, recover_newaddr); 1727 1728 f2fs_update_data_blkaddr(dn, new_addr); 1729 } 1730 1731 void f2fs_wait_on_page_writeback(struct page *page, 1732 enum page_type type, bool ordered) 1733 { 1734 if (PageWriteback(page)) { 1735 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1736 1737 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1738 if (ordered) 1739 wait_on_page_writeback(page); 1740 else 1741 wait_for_stable_page(page); 1742 } 1743 } 1744 1745 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1746 block_t blkaddr) 1747 { 1748 struct page *cpage; 1749 1750 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1751 return; 1752 1753 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1754 if (cpage) { 1755 f2fs_wait_on_page_writeback(cpage, DATA, true); 1756 f2fs_put_page(cpage, 1); 1757 } 1758 } 1759 1760 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1761 { 1762 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1763 struct curseg_info *seg_i; 1764 unsigned char *kaddr; 1765 struct page *page; 1766 block_t start; 1767 int i, j, offset; 1768 1769 start = start_sum_block(sbi); 1770 1771 page = get_meta_page(sbi, start++); 1772 kaddr = (unsigned char *)page_address(page); 1773 1774 /* Step 1: restore nat cache */ 1775 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1776 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1777 1778 /* Step 2: restore sit cache */ 1779 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1780 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1781 offset = 2 * SUM_JOURNAL_SIZE; 1782 1783 /* Step 3: restore summary entries */ 1784 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1785 unsigned short blk_off; 1786 unsigned int segno; 1787 1788 seg_i = CURSEG_I(sbi, i); 1789 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1790 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1791 seg_i->next_segno = segno; 1792 reset_curseg(sbi, i, 0); 1793 seg_i->alloc_type = ckpt->alloc_type[i]; 1794 seg_i->next_blkoff = blk_off; 1795 1796 if (seg_i->alloc_type == SSR) 1797 blk_off = sbi->blocks_per_seg; 1798 1799 for (j = 0; j < blk_off; j++) { 1800 struct f2fs_summary *s; 1801 s = (struct f2fs_summary *)(kaddr + offset); 1802 seg_i->sum_blk->entries[j] = *s; 1803 offset += SUMMARY_SIZE; 1804 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 1805 SUM_FOOTER_SIZE) 1806 continue; 1807 1808 f2fs_put_page(page, 1); 1809 page = NULL; 1810 1811 page = get_meta_page(sbi, start++); 1812 kaddr = (unsigned char *)page_address(page); 1813 offset = 0; 1814 } 1815 } 1816 f2fs_put_page(page, 1); 1817 return 0; 1818 } 1819 1820 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1821 { 1822 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1823 struct f2fs_summary_block *sum; 1824 struct curseg_info *curseg; 1825 struct page *new; 1826 unsigned short blk_off; 1827 unsigned int segno = 0; 1828 block_t blk_addr = 0; 1829 1830 /* get segment number and block addr */ 1831 if (IS_DATASEG(type)) { 1832 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1833 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1834 CURSEG_HOT_DATA]); 1835 if (__exist_node_summaries(sbi)) 1836 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1837 else 1838 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1839 } else { 1840 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1841 CURSEG_HOT_NODE]); 1842 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1843 CURSEG_HOT_NODE]); 1844 if (__exist_node_summaries(sbi)) 1845 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1846 type - CURSEG_HOT_NODE); 1847 else 1848 blk_addr = GET_SUM_BLOCK(sbi, segno); 1849 } 1850 1851 new = get_meta_page(sbi, blk_addr); 1852 sum = (struct f2fs_summary_block *)page_address(new); 1853 1854 if (IS_NODESEG(type)) { 1855 if (__exist_node_summaries(sbi)) { 1856 struct f2fs_summary *ns = &sum->entries[0]; 1857 int i; 1858 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1859 ns->version = 0; 1860 ns->ofs_in_node = 0; 1861 } 1862 } else { 1863 int err; 1864 1865 err = restore_node_summary(sbi, segno, sum); 1866 if (err) { 1867 f2fs_put_page(new, 1); 1868 return err; 1869 } 1870 } 1871 } 1872 1873 /* set uncompleted segment to curseg */ 1874 curseg = CURSEG_I(sbi, type); 1875 mutex_lock(&curseg->curseg_mutex); 1876 1877 /* update journal info */ 1878 down_write(&curseg->journal_rwsem); 1879 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1880 up_write(&curseg->journal_rwsem); 1881 1882 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1883 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1884 curseg->next_segno = segno; 1885 reset_curseg(sbi, type, 0); 1886 curseg->alloc_type = ckpt->alloc_type[type]; 1887 curseg->next_blkoff = blk_off; 1888 mutex_unlock(&curseg->curseg_mutex); 1889 f2fs_put_page(new, 1); 1890 return 0; 1891 } 1892 1893 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1894 { 1895 int type = CURSEG_HOT_DATA; 1896 int err; 1897 1898 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 1899 int npages = npages_for_summary_flush(sbi, true); 1900 1901 if (npages >= 2) 1902 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1903 META_CP, true); 1904 1905 /* restore for compacted data summary */ 1906 if (read_compacted_summaries(sbi)) 1907 return -EINVAL; 1908 type = CURSEG_HOT_NODE; 1909 } 1910 1911 if (__exist_node_summaries(sbi)) 1912 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1913 NR_CURSEG_TYPE - type, META_CP, true); 1914 1915 for (; type <= CURSEG_COLD_NODE; type++) { 1916 err = read_normal_summaries(sbi, type); 1917 if (err) 1918 return err; 1919 } 1920 1921 return 0; 1922 } 1923 1924 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1925 { 1926 struct page *page; 1927 unsigned char *kaddr; 1928 struct f2fs_summary *summary; 1929 struct curseg_info *seg_i; 1930 int written_size = 0; 1931 int i, j; 1932 1933 page = grab_meta_page(sbi, blkaddr++); 1934 kaddr = (unsigned char *)page_address(page); 1935 1936 /* Step 1: write nat cache */ 1937 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1938 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1939 written_size += SUM_JOURNAL_SIZE; 1940 1941 /* Step 2: write sit cache */ 1942 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1943 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1944 written_size += SUM_JOURNAL_SIZE; 1945 1946 /* Step 3: write summary entries */ 1947 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1948 unsigned short blkoff; 1949 seg_i = CURSEG_I(sbi, i); 1950 if (sbi->ckpt->alloc_type[i] == SSR) 1951 blkoff = sbi->blocks_per_seg; 1952 else 1953 blkoff = curseg_blkoff(sbi, i); 1954 1955 for (j = 0; j < blkoff; j++) { 1956 if (!page) { 1957 page = grab_meta_page(sbi, blkaddr++); 1958 kaddr = (unsigned char *)page_address(page); 1959 written_size = 0; 1960 } 1961 summary = (struct f2fs_summary *)(kaddr + written_size); 1962 *summary = seg_i->sum_blk->entries[j]; 1963 written_size += SUMMARY_SIZE; 1964 1965 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 1966 SUM_FOOTER_SIZE) 1967 continue; 1968 1969 set_page_dirty(page); 1970 f2fs_put_page(page, 1); 1971 page = NULL; 1972 } 1973 } 1974 if (page) { 1975 set_page_dirty(page); 1976 f2fs_put_page(page, 1); 1977 } 1978 } 1979 1980 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1981 block_t blkaddr, int type) 1982 { 1983 int i, end; 1984 if (IS_DATASEG(type)) 1985 end = type + NR_CURSEG_DATA_TYPE; 1986 else 1987 end = type + NR_CURSEG_NODE_TYPE; 1988 1989 for (i = type; i < end; i++) 1990 write_current_sum_page(sbi, i, blkaddr + (i - type)); 1991 } 1992 1993 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1994 { 1995 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 1996 write_compacted_summaries(sbi, start_blk); 1997 else 1998 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1999 } 2000 2001 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2002 { 2003 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 2004 } 2005 2006 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2007 unsigned int val, int alloc) 2008 { 2009 int i; 2010 2011 if (type == NAT_JOURNAL) { 2012 for (i = 0; i < nats_in_cursum(journal); i++) { 2013 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 2014 return i; 2015 } 2016 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 2017 return update_nats_in_cursum(journal, 1); 2018 } else if (type == SIT_JOURNAL) { 2019 for (i = 0; i < sits_in_cursum(journal); i++) 2020 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 2021 return i; 2022 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 2023 return update_sits_in_cursum(journal, 1); 2024 } 2025 return -1; 2026 } 2027 2028 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 2029 unsigned int segno) 2030 { 2031 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 2032 } 2033 2034 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 2035 unsigned int start) 2036 { 2037 struct sit_info *sit_i = SIT_I(sbi); 2038 struct page *src_page, *dst_page; 2039 pgoff_t src_off, dst_off; 2040 void *src_addr, *dst_addr; 2041 2042 src_off = current_sit_addr(sbi, start); 2043 dst_off = next_sit_addr(sbi, src_off); 2044 2045 /* get current sit block page without lock */ 2046 src_page = get_meta_page(sbi, src_off); 2047 dst_page = grab_meta_page(sbi, dst_off); 2048 f2fs_bug_on(sbi, PageDirty(src_page)); 2049 2050 src_addr = page_address(src_page); 2051 dst_addr = page_address(dst_page); 2052 memcpy(dst_addr, src_addr, PAGE_SIZE); 2053 2054 set_page_dirty(dst_page); 2055 f2fs_put_page(src_page, 1); 2056 2057 set_to_next_sit(sit_i, start); 2058 2059 return dst_page; 2060 } 2061 2062 static struct sit_entry_set *grab_sit_entry_set(void) 2063 { 2064 struct sit_entry_set *ses = 2065 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 2066 2067 ses->entry_cnt = 0; 2068 INIT_LIST_HEAD(&ses->set_list); 2069 return ses; 2070 } 2071 2072 static void release_sit_entry_set(struct sit_entry_set *ses) 2073 { 2074 list_del(&ses->set_list); 2075 kmem_cache_free(sit_entry_set_slab, ses); 2076 } 2077 2078 static void adjust_sit_entry_set(struct sit_entry_set *ses, 2079 struct list_head *head) 2080 { 2081 struct sit_entry_set *next = ses; 2082 2083 if (list_is_last(&ses->set_list, head)) 2084 return; 2085 2086 list_for_each_entry_continue(next, head, set_list) 2087 if (ses->entry_cnt <= next->entry_cnt) 2088 break; 2089 2090 list_move_tail(&ses->set_list, &next->set_list); 2091 } 2092 2093 static void add_sit_entry(unsigned int segno, struct list_head *head) 2094 { 2095 struct sit_entry_set *ses; 2096 unsigned int start_segno = START_SEGNO(segno); 2097 2098 list_for_each_entry(ses, head, set_list) { 2099 if (ses->start_segno == start_segno) { 2100 ses->entry_cnt++; 2101 adjust_sit_entry_set(ses, head); 2102 return; 2103 } 2104 } 2105 2106 ses = grab_sit_entry_set(); 2107 2108 ses->start_segno = start_segno; 2109 ses->entry_cnt++; 2110 list_add(&ses->set_list, head); 2111 } 2112 2113 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2114 { 2115 struct f2fs_sm_info *sm_info = SM_I(sbi); 2116 struct list_head *set_list = &sm_info->sit_entry_set; 2117 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2118 unsigned int segno; 2119 2120 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2121 add_sit_entry(segno, set_list); 2122 } 2123 2124 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2125 { 2126 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2127 struct f2fs_journal *journal = curseg->journal; 2128 int i; 2129 2130 down_write(&curseg->journal_rwsem); 2131 for (i = 0; i < sits_in_cursum(journal); i++) { 2132 unsigned int segno; 2133 bool dirtied; 2134 2135 segno = le32_to_cpu(segno_in_journal(journal, i)); 2136 dirtied = __mark_sit_entry_dirty(sbi, segno); 2137 2138 if (!dirtied) 2139 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2140 } 2141 update_sits_in_cursum(journal, -i); 2142 up_write(&curseg->journal_rwsem); 2143 } 2144 2145 /* 2146 * CP calls this function, which flushes SIT entries including sit_journal, 2147 * and moves prefree segs to free segs. 2148 */ 2149 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2150 { 2151 struct sit_info *sit_i = SIT_I(sbi); 2152 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2153 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2154 struct f2fs_journal *journal = curseg->journal; 2155 struct sit_entry_set *ses, *tmp; 2156 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2157 bool to_journal = true; 2158 struct seg_entry *se; 2159 2160 mutex_lock(&sit_i->sentry_lock); 2161 2162 if (!sit_i->dirty_sentries) 2163 goto out; 2164 2165 /* 2166 * add and account sit entries of dirty bitmap in sit entry 2167 * set temporarily 2168 */ 2169 add_sits_in_set(sbi); 2170 2171 /* 2172 * if there are no enough space in journal to store dirty sit 2173 * entries, remove all entries from journal and add and account 2174 * them in sit entry set. 2175 */ 2176 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2177 remove_sits_in_journal(sbi); 2178 2179 /* 2180 * there are two steps to flush sit entries: 2181 * #1, flush sit entries to journal in current cold data summary block. 2182 * #2, flush sit entries to sit page. 2183 */ 2184 list_for_each_entry_safe(ses, tmp, head, set_list) { 2185 struct page *page = NULL; 2186 struct f2fs_sit_block *raw_sit = NULL; 2187 unsigned int start_segno = ses->start_segno; 2188 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2189 (unsigned long)MAIN_SEGS(sbi)); 2190 unsigned int segno = start_segno; 2191 2192 if (to_journal && 2193 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2194 to_journal = false; 2195 2196 if (to_journal) { 2197 down_write(&curseg->journal_rwsem); 2198 } else { 2199 page = get_next_sit_page(sbi, start_segno); 2200 raw_sit = page_address(page); 2201 } 2202 2203 /* flush dirty sit entries in region of current sit set */ 2204 for_each_set_bit_from(segno, bitmap, end) { 2205 int offset, sit_offset; 2206 2207 se = get_seg_entry(sbi, segno); 2208 2209 /* add discard candidates */ 2210 if (cpc->reason != CP_DISCARD) { 2211 cpc->trim_start = segno; 2212 add_discard_addrs(sbi, cpc); 2213 } 2214 2215 if (to_journal) { 2216 offset = lookup_journal_in_cursum(journal, 2217 SIT_JOURNAL, segno, 1); 2218 f2fs_bug_on(sbi, offset < 0); 2219 segno_in_journal(journal, offset) = 2220 cpu_to_le32(segno); 2221 seg_info_to_raw_sit(se, 2222 &sit_in_journal(journal, offset)); 2223 } else { 2224 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2225 seg_info_to_raw_sit(se, 2226 &raw_sit->entries[sit_offset]); 2227 } 2228 2229 __clear_bit(segno, bitmap); 2230 sit_i->dirty_sentries--; 2231 ses->entry_cnt--; 2232 } 2233 2234 if (to_journal) 2235 up_write(&curseg->journal_rwsem); 2236 else 2237 f2fs_put_page(page, 1); 2238 2239 f2fs_bug_on(sbi, ses->entry_cnt); 2240 release_sit_entry_set(ses); 2241 } 2242 2243 f2fs_bug_on(sbi, !list_empty(head)); 2244 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2245 out: 2246 if (cpc->reason == CP_DISCARD) { 2247 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2248 add_discard_addrs(sbi, cpc); 2249 } 2250 mutex_unlock(&sit_i->sentry_lock); 2251 2252 set_prefree_as_free_segments(sbi); 2253 } 2254 2255 static int build_sit_info(struct f2fs_sb_info *sbi) 2256 { 2257 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2258 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2259 struct sit_info *sit_i; 2260 unsigned int sit_segs, start; 2261 char *src_bitmap, *dst_bitmap; 2262 unsigned int bitmap_size; 2263 2264 /* allocate memory for SIT information */ 2265 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2266 if (!sit_i) 2267 return -ENOMEM; 2268 2269 SM_I(sbi)->sit_info = sit_i; 2270 2271 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2272 sizeof(struct seg_entry), GFP_KERNEL); 2273 if (!sit_i->sentries) 2274 return -ENOMEM; 2275 2276 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2277 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2278 if (!sit_i->dirty_sentries_bitmap) 2279 return -ENOMEM; 2280 2281 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2282 sit_i->sentries[start].cur_valid_map 2283 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2284 sit_i->sentries[start].ckpt_valid_map 2285 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2286 if (!sit_i->sentries[start].cur_valid_map || 2287 !sit_i->sentries[start].ckpt_valid_map) 2288 return -ENOMEM; 2289 2290 if (f2fs_discard_en(sbi)) { 2291 sit_i->sentries[start].discard_map 2292 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2293 if (!sit_i->sentries[start].discard_map) 2294 return -ENOMEM; 2295 } 2296 } 2297 2298 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2299 if (!sit_i->tmp_map) 2300 return -ENOMEM; 2301 2302 if (sbi->segs_per_sec > 1) { 2303 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2304 sizeof(struct sec_entry), GFP_KERNEL); 2305 if (!sit_i->sec_entries) 2306 return -ENOMEM; 2307 } 2308 2309 /* get information related with SIT */ 2310 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2311 2312 /* setup SIT bitmap from ckeckpoint pack */ 2313 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2314 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2315 2316 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2317 if (!dst_bitmap) 2318 return -ENOMEM; 2319 2320 /* init SIT information */ 2321 sit_i->s_ops = &default_salloc_ops; 2322 2323 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2324 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2325 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 2326 sit_i->sit_bitmap = dst_bitmap; 2327 sit_i->bitmap_size = bitmap_size; 2328 sit_i->dirty_sentries = 0; 2329 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2330 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2331 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2332 mutex_init(&sit_i->sentry_lock); 2333 return 0; 2334 } 2335 2336 static int build_free_segmap(struct f2fs_sb_info *sbi) 2337 { 2338 struct free_segmap_info *free_i; 2339 unsigned int bitmap_size, sec_bitmap_size; 2340 2341 /* allocate memory for free segmap information */ 2342 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2343 if (!free_i) 2344 return -ENOMEM; 2345 2346 SM_I(sbi)->free_info = free_i; 2347 2348 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2349 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2350 if (!free_i->free_segmap) 2351 return -ENOMEM; 2352 2353 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2354 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2355 if (!free_i->free_secmap) 2356 return -ENOMEM; 2357 2358 /* set all segments as dirty temporarily */ 2359 memset(free_i->free_segmap, 0xff, bitmap_size); 2360 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2361 2362 /* init free segmap information */ 2363 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2364 free_i->free_segments = 0; 2365 free_i->free_sections = 0; 2366 spin_lock_init(&free_i->segmap_lock); 2367 return 0; 2368 } 2369 2370 static int build_curseg(struct f2fs_sb_info *sbi) 2371 { 2372 struct curseg_info *array; 2373 int i; 2374 2375 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2376 if (!array) 2377 return -ENOMEM; 2378 2379 SM_I(sbi)->curseg_array = array; 2380 2381 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2382 mutex_init(&array[i].curseg_mutex); 2383 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2384 if (!array[i].sum_blk) 2385 return -ENOMEM; 2386 init_rwsem(&array[i].journal_rwsem); 2387 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2388 GFP_KERNEL); 2389 if (!array[i].journal) 2390 return -ENOMEM; 2391 array[i].segno = NULL_SEGNO; 2392 array[i].next_blkoff = 0; 2393 } 2394 return restore_curseg_summaries(sbi); 2395 } 2396 2397 static void build_sit_entries(struct f2fs_sb_info *sbi) 2398 { 2399 struct sit_info *sit_i = SIT_I(sbi); 2400 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2401 struct f2fs_journal *journal = curseg->journal; 2402 struct seg_entry *se; 2403 struct f2fs_sit_entry sit; 2404 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2405 unsigned int i, start, end; 2406 unsigned int readed, start_blk = 0; 2407 2408 do { 2409 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 2410 META_SIT, true); 2411 2412 start = start_blk * sit_i->sents_per_block; 2413 end = (start_blk + readed) * sit_i->sents_per_block; 2414 2415 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2416 struct f2fs_sit_block *sit_blk; 2417 struct page *page; 2418 2419 se = &sit_i->sentries[start]; 2420 page = get_current_sit_page(sbi, start); 2421 sit_blk = (struct f2fs_sit_block *)page_address(page); 2422 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2423 f2fs_put_page(page, 1); 2424 2425 check_block_count(sbi, start, &sit); 2426 seg_info_from_raw_sit(se, &sit); 2427 2428 /* build discard map only one time */ 2429 if (f2fs_discard_en(sbi)) { 2430 memcpy(se->discard_map, se->cur_valid_map, 2431 SIT_VBLOCK_MAP_SIZE); 2432 sbi->discard_blks += sbi->blocks_per_seg - 2433 se->valid_blocks; 2434 } 2435 2436 if (sbi->segs_per_sec > 1) 2437 get_sec_entry(sbi, start)->valid_blocks += 2438 se->valid_blocks; 2439 } 2440 start_blk += readed; 2441 } while (start_blk < sit_blk_cnt); 2442 2443 down_read(&curseg->journal_rwsem); 2444 for (i = 0; i < sits_in_cursum(journal); i++) { 2445 unsigned int old_valid_blocks; 2446 2447 start = le32_to_cpu(segno_in_journal(journal, i)); 2448 se = &sit_i->sentries[start]; 2449 sit = sit_in_journal(journal, i); 2450 2451 old_valid_blocks = se->valid_blocks; 2452 2453 check_block_count(sbi, start, &sit); 2454 seg_info_from_raw_sit(se, &sit); 2455 2456 if (f2fs_discard_en(sbi)) { 2457 memcpy(se->discard_map, se->cur_valid_map, 2458 SIT_VBLOCK_MAP_SIZE); 2459 sbi->discard_blks += old_valid_blocks - 2460 se->valid_blocks; 2461 } 2462 2463 if (sbi->segs_per_sec > 1) 2464 get_sec_entry(sbi, start)->valid_blocks += 2465 se->valid_blocks - old_valid_blocks; 2466 } 2467 up_read(&curseg->journal_rwsem); 2468 } 2469 2470 static void init_free_segmap(struct f2fs_sb_info *sbi) 2471 { 2472 unsigned int start; 2473 int type; 2474 2475 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2476 struct seg_entry *sentry = get_seg_entry(sbi, start); 2477 if (!sentry->valid_blocks) 2478 __set_free(sbi, start); 2479 } 2480 2481 /* set use the current segments */ 2482 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2483 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2484 __set_test_and_inuse(sbi, curseg_t->segno); 2485 } 2486 } 2487 2488 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2489 { 2490 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2491 struct free_segmap_info *free_i = FREE_I(sbi); 2492 unsigned int segno = 0, offset = 0; 2493 unsigned short valid_blocks; 2494 2495 while (1) { 2496 /* find dirty segment based on free segmap */ 2497 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2498 if (segno >= MAIN_SEGS(sbi)) 2499 break; 2500 offset = segno + 1; 2501 valid_blocks = get_valid_blocks(sbi, segno, 0); 2502 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2503 continue; 2504 if (valid_blocks > sbi->blocks_per_seg) { 2505 f2fs_bug_on(sbi, 1); 2506 continue; 2507 } 2508 mutex_lock(&dirty_i->seglist_lock); 2509 __locate_dirty_segment(sbi, segno, DIRTY); 2510 mutex_unlock(&dirty_i->seglist_lock); 2511 } 2512 } 2513 2514 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2515 { 2516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2517 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2518 2519 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2520 if (!dirty_i->victim_secmap) 2521 return -ENOMEM; 2522 return 0; 2523 } 2524 2525 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2526 { 2527 struct dirty_seglist_info *dirty_i; 2528 unsigned int bitmap_size, i; 2529 2530 /* allocate memory for dirty segments list information */ 2531 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2532 if (!dirty_i) 2533 return -ENOMEM; 2534 2535 SM_I(sbi)->dirty_info = dirty_i; 2536 mutex_init(&dirty_i->seglist_lock); 2537 2538 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2539 2540 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2541 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2542 if (!dirty_i->dirty_segmap[i]) 2543 return -ENOMEM; 2544 } 2545 2546 init_dirty_segmap(sbi); 2547 return init_victim_secmap(sbi); 2548 } 2549 2550 /* 2551 * Update min, max modified time for cost-benefit GC algorithm 2552 */ 2553 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2554 { 2555 struct sit_info *sit_i = SIT_I(sbi); 2556 unsigned int segno; 2557 2558 mutex_lock(&sit_i->sentry_lock); 2559 2560 sit_i->min_mtime = LLONG_MAX; 2561 2562 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2563 unsigned int i; 2564 unsigned long long mtime = 0; 2565 2566 for (i = 0; i < sbi->segs_per_sec; i++) 2567 mtime += get_seg_entry(sbi, segno + i)->mtime; 2568 2569 mtime = div_u64(mtime, sbi->segs_per_sec); 2570 2571 if (sit_i->min_mtime > mtime) 2572 sit_i->min_mtime = mtime; 2573 } 2574 sit_i->max_mtime = get_mtime(sbi); 2575 mutex_unlock(&sit_i->sentry_lock); 2576 } 2577 2578 int build_segment_manager(struct f2fs_sb_info *sbi) 2579 { 2580 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2581 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2582 struct f2fs_sm_info *sm_info; 2583 int err; 2584 2585 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2586 if (!sm_info) 2587 return -ENOMEM; 2588 2589 /* init sm info */ 2590 sbi->sm_info = sm_info; 2591 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2592 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2593 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2594 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2595 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2596 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2597 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2598 sm_info->rec_prefree_segments = sm_info->main_segments * 2599 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2600 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2601 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2602 2603 if (!test_opt(sbi, LFS)) 2604 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2605 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2606 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2607 2608 INIT_LIST_HEAD(&sm_info->discard_list); 2609 INIT_LIST_HEAD(&sm_info->wait_list); 2610 sm_info->nr_discards = 0; 2611 sm_info->max_discards = 0; 2612 2613 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2614 2615 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2616 2617 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2618 err = create_flush_cmd_control(sbi); 2619 if (err) 2620 return err; 2621 } 2622 2623 err = build_sit_info(sbi); 2624 if (err) 2625 return err; 2626 err = build_free_segmap(sbi); 2627 if (err) 2628 return err; 2629 err = build_curseg(sbi); 2630 if (err) 2631 return err; 2632 2633 /* reinit free segmap based on SIT */ 2634 build_sit_entries(sbi); 2635 2636 init_free_segmap(sbi); 2637 err = build_dirty_segmap(sbi); 2638 if (err) 2639 return err; 2640 2641 init_min_max_mtime(sbi); 2642 return 0; 2643 } 2644 2645 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2646 enum dirty_type dirty_type) 2647 { 2648 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2649 2650 mutex_lock(&dirty_i->seglist_lock); 2651 kvfree(dirty_i->dirty_segmap[dirty_type]); 2652 dirty_i->nr_dirty[dirty_type] = 0; 2653 mutex_unlock(&dirty_i->seglist_lock); 2654 } 2655 2656 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2657 { 2658 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2659 kvfree(dirty_i->victim_secmap); 2660 } 2661 2662 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2663 { 2664 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2665 int i; 2666 2667 if (!dirty_i) 2668 return; 2669 2670 /* discard pre-free/dirty segments list */ 2671 for (i = 0; i < NR_DIRTY_TYPE; i++) 2672 discard_dirty_segmap(sbi, i); 2673 2674 destroy_victim_secmap(sbi); 2675 SM_I(sbi)->dirty_info = NULL; 2676 kfree(dirty_i); 2677 } 2678 2679 static void destroy_curseg(struct f2fs_sb_info *sbi) 2680 { 2681 struct curseg_info *array = SM_I(sbi)->curseg_array; 2682 int i; 2683 2684 if (!array) 2685 return; 2686 SM_I(sbi)->curseg_array = NULL; 2687 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2688 kfree(array[i].sum_blk); 2689 kfree(array[i].journal); 2690 } 2691 kfree(array); 2692 } 2693 2694 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2695 { 2696 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2697 if (!free_i) 2698 return; 2699 SM_I(sbi)->free_info = NULL; 2700 kvfree(free_i->free_segmap); 2701 kvfree(free_i->free_secmap); 2702 kfree(free_i); 2703 } 2704 2705 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2706 { 2707 struct sit_info *sit_i = SIT_I(sbi); 2708 unsigned int start; 2709 2710 if (!sit_i) 2711 return; 2712 2713 if (sit_i->sentries) { 2714 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2715 kfree(sit_i->sentries[start].cur_valid_map); 2716 kfree(sit_i->sentries[start].ckpt_valid_map); 2717 kfree(sit_i->sentries[start].discard_map); 2718 } 2719 } 2720 kfree(sit_i->tmp_map); 2721 2722 kvfree(sit_i->sentries); 2723 kvfree(sit_i->sec_entries); 2724 kvfree(sit_i->dirty_sentries_bitmap); 2725 2726 SM_I(sbi)->sit_info = NULL; 2727 kfree(sit_i->sit_bitmap); 2728 kfree(sit_i); 2729 } 2730 2731 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2732 { 2733 struct f2fs_sm_info *sm_info = SM_I(sbi); 2734 2735 if (!sm_info) 2736 return; 2737 destroy_flush_cmd_control(sbi); 2738 destroy_dirty_segmap(sbi); 2739 destroy_curseg(sbi); 2740 destroy_free_segmap(sbi); 2741 destroy_sit_info(sbi); 2742 sbi->sm_info = NULL; 2743 kfree(sm_info); 2744 } 2745 2746 int __init create_segment_manager_caches(void) 2747 { 2748 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2749 sizeof(struct discard_entry)); 2750 if (!discard_entry_slab) 2751 goto fail; 2752 2753 bio_entry_slab = f2fs_kmem_cache_create("bio_entry", 2754 sizeof(struct bio_entry)); 2755 if (!bio_entry_slab) 2756 goto destroy_discard_entry; 2757 2758 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2759 sizeof(struct sit_entry_set)); 2760 if (!sit_entry_set_slab) 2761 goto destroy_bio_entry; 2762 2763 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2764 sizeof(struct inmem_pages)); 2765 if (!inmem_entry_slab) 2766 goto destroy_sit_entry_set; 2767 return 0; 2768 2769 destroy_sit_entry_set: 2770 kmem_cache_destroy(sit_entry_set_slab); 2771 destroy_bio_entry: 2772 kmem_cache_destroy(bio_entry_slab); 2773 destroy_discard_entry: 2774 kmem_cache_destroy(discard_entry_slab); 2775 fail: 2776 return -ENOMEM; 2777 } 2778 2779 void destroy_segment_manager_caches(void) 2780 { 2781 kmem_cache_destroy(sit_entry_set_slab); 2782 kmem_cache_destroy(bio_entry_slab); 2783 kmem_cache_destroy(discard_entry_slab); 2784 kmem_cache_destroy(inmem_entry_slab); 2785 } 2786