1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *bio_entry_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 void register_inmem_page(struct inode *inode, struct page *page) 170 { 171 struct f2fs_inode_info *fi = F2FS_I(inode); 172 struct inmem_pages *new; 173 174 f2fs_trace_pid(page); 175 176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 177 SetPagePrivate(page); 178 179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 180 181 /* add atomic page indices to the list */ 182 new->page = page; 183 INIT_LIST_HEAD(&new->list); 184 185 /* increase reference count with clean state */ 186 mutex_lock(&fi->inmem_lock); 187 get_page(page); 188 list_add_tail(&new->list, &fi->inmem_pages); 189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 190 mutex_unlock(&fi->inmem_lock); 191 192 trace_f2fs_register_inmem_page(page, INMEM); 193 } 194 195 static int __revoke_inmem_pages(struct inode *inode, 196 struct list_head *head, bool drop, bool recover) 197 { 198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 199 struct inmem_pages *cur, *tmp; 200 int err = 0; 201 202 list_for_each_entry_safe(cur, tmp, head, list) { 203 struct page *page = cur->page; 204 205 if (drop) 206 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 207 208 lock_page(page); 209 210 if (recover) { 211 struct dnode_of_data dn; 212 struct node_info ni; 213 214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 215 216 set_new_dnode(&dn, inode, NULL, NULL, 0); 217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 218 err = -EAGAIN; 219 goto next; 220 } 221 get_node_info(sbi, dn.nid, &ni); 222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 223 cur->old_addr, ni.version, true, true); 224 f2fs_put_dnode(&dn); 225 } 226 next: 227 /* we don't need to invalidate this in the sccessful status */ 228 if (drop || recover) 229 ClearPageUptodate(page); 230 set_page_private(page, 0); 231 ClearPagePrivate(page); 232 f2fs_put_page(page, 1); 233 234 list_del(&cur->list); 235 kmem_cache_free(inmem_entry_slab, cur); 236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 237 } 238 return err; 239 } 240 241 void drop_inmem_pages(struct inode *inode) 242 { 243 struct f2fs_inode_info *fi = F2FS_I(inode); 244 245 clear_inode_flag(inode, FI_ATOMIC_FILE); 246 247 mutex_lock(&fi->inmem_lock); 248 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 249 mutex_unlock(&fi->inmem_lock); 250 } 251 252 static int __commit_inmem_pages(struct inode *inode, 253 struct list_head *revoke_list) 254 { 255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 256 struct f2fs_inode_info *fi = F2FS_I(inode); 257 struct inmem_pages *cur, *tmp; 258 struct f2fs_io_info fio = { 259 .sbi = sbi, 260 .type = DATA, 261 .op = REQ_OP_WRITE, 262 .op_flags = REQ_SYNC | REQ_PRIO, 263 .encrypted_page = NULL, 264 }; 265 bool submit_bio = false; 266 int err = 0; 267 268 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 269 struct page *page = cur->page; 270 271 lock_page(page); 272 if (page->mapping == inode->i_mapping) { 273 trace_f2fs_commit_inmem_page(page, INMEM); 274 275 set_page_dirty(page); 276 f2fs_wait_on_page_writeback(page, DATA, true); 277 if (clear_page_dirty_for_io(page)) { 278 inode_dec_dirty_pages(inode); 279 remove_dirty_inode(inode); 280 } 281 282 fio.page = page; 283 err = do_write_data_page(&fio); 284 if (err) { 285 unlock_page(page); 286 break; 287 } 288 289 /* record old blkaddr for revoking */ 290 cur->old_addr = fio.old_blkaddr; 291 292 submit_bio = true; 293 } 294 unlock_page(page); 295 list_move_tail(&cur->list, revoke_list); 296 } 297 298 if (submit_bio) 299 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 300 301 if (!err) 302 __revoke_inmem_pages(inode, revoke_list, false, false); 303 304 return err; 305 } 306 307 int commit_inmem_pages(struct inode *inode) 308 { 309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 310 struct f2fs_inode_info *fi = F2FS_I(inode); 311 struct list_head revoke_list; 312 int err; 313 314 INIT_LIST_HEAD(&revoke_list); 315 f2fs_balance_fs(sbi, true); 316 f2fs_lock_op(sbi); 317 318 mutex_lock(&fi->inmem_lock); 319 err = __commit_inmem_pages(inode, &revoke_list); 320 if (err) { 321 int ret; 322 /* 323 * try to revoke all committed pages, but still we could fail 324 * due to no memory or other reason, if that happened, EAGAIN 325 * will be returned, which means in such case, transaction is 326 * already not integrity, caller should use journal to do the 327 * recovery or rewrite & commit last transaction. For other 328 * error number, revoking was done by filesystem itself. 329 */ 330 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 331 if (ret) 332 err = ret; 333 334 /* drop all uncommitted pages */ 335 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 336 } 337 mutex_unlock(&fi->inmem_lock); 338 339 f2fs_unlock_op(sbi); 340 return err; 341 } 342 343 /* 344 * This function balances dirty node and dentry pages. 345 * In addition, it controls garbage collection. 346 */ 347 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 348 { 349 #ifdef CONFIG_F2FS_FAULT_INJECTION 350 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 351 f2fs_stop_checkpoint(sbi, false); 352 #endif 353 354 if (!need) 355 return; 356 357 /* balance_fs_bg is able to be pending */ 358 if (excess_cached_nats(sbi)) 359 f2fs_balance_fs_bg(sbi); 360 361 /* 362 * We should do GC or end up with checkpoint, if there are so many dirty 363 * dir/node pages without enough free segments. 364 */ 365 if (has_not_enough_free_secs(sbi, 0, 0)) { 366 mutex_lock(&sbi->gc_mutex); 367 f2fs_gc(sbi, false, false); 368 } 369 } 370 371 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 372 { 373 /* try to shrink extent cache when there is no enough memory */ 374 if (!available_free_memory(sbi, EXTENT_CACHE)) 375 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 376 377 /* check the # of cached NAT entries */ 378 if (!available_free_memory(sbi, NAT_ENTRIES)) 379 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 380 381 if (!available_free_memory(sbi, FREE_NIDS)) 382 try_to_free_nids(sbi, MAX_FREE_NIDS); 383 else 384 build_free_nids(sbi, false); 385 386 if (!is_idle(sbi)) 387 return; 388 389 /* checkpoint is the only way to shrink partial cached entries */ 390 if (!available_free_memory(sbi, NAT_ENTRIES) || 391 !available_free_memory(sbi, INO_ENTRIES) || 392 excess_prefree_segs(sbi) || 393 excess_dirty_nats(sbi) || 394 f2fs_time_over(sbi, CP_TIME)) { 395 if (test_opt(sbi, DATA_FLUSH)) { 396 struct blk_plug plug; 397 398 blk_start_plug(&plug); 399 sync_dirty_inodes(sbi, FILE_INODE); 400 blk_finish_plug(&plug); 401 } 402 f2fs_sync_fs(sbi->sb, true); 403 stat_inc_bg_cp_count(sbi->stat_info); 404 } 405 } 406 407 static int __submit_flush_wait(struct block_device *bdev) 408 { 409 struct bio *bio = f2fs_bio_alloc(0); 410 int ret; 411 412 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 413 bio->bi_bdev = bdev; 414 ret = submit_bio_wait(bio); 415 bio_put(bio); 416 return ret; 417 } 418 419 static int submit_flush_wait(struct f2fs_sb_info *sbi) 420 { 421 int ret = __submit_flush_wait(sbi->sb->s_bdev); 422 int i; 423 424 if (sbi->s_ndevs && !ret) { 425 for (i = 1; i < sbi->s_ndevs; i++) { 426 ret = __submit_flush_wait(FDEV(i).bdev); 427 if (ret) 428 break; 429 } 430 } 431 return ret; 432 } 433 434 static int issue_flush_thread(void *data) 435 { 436 struct f2fs_sb_info *sbi = data; 437 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 438 wait_queue_head_t *q = &fcc->flush_wait_queue; 439 repeat: 440 if (kthread_should_stop()) 441 return 0; 442 443 if (!llist_empty(&fcc->issue_list)) { 444 struct flush_cmd *cmd, *next; 445 int ret; 446 447 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 448 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 449 450 ret = submit_flush_wait(sbi); 451 llist_for_each_entry_safe(cmd, next, 452 fcc->dispatch_list, llnode) { 453 cmd->ret = ret; 454 complete(&cmd->wait); 455 } 456 fcc->dispatch_list = NULL; 457 } 458 459 wait_event_interruptible(*q, 460 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 461 goto repeat; 462 } 463 464 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 465 { 466 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 467 struct flush_cmd cmd; 468 469 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 470 test_opt(sbi, FLUSH_MERGE)); 471 472 if (test_opt(sbi, NOBARRIER)) 473 return 0; 474 475 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) { 476 int ret; 477 478 atomic_inc(&fcc->submit_flush); 479 ret = submit_flush_wait(sbi); 480 atomic_dec(&fcc->submit_flush); 481 return ret; 482 } 483 484 init_completion(&cmd.wait); 485 486 atomic_inc(&fcc->submit_flush); 487 llist_add(&cmd.llnode, &fcc->issue_list); 488 489 if (!fcc->dispatch_list) 490 wake_up(&fcc->flush_wait_queue); 491 492 if (fcc->f2fs_issue_flush) { 493 wait_for_completion(&cmd.wait); 494 atomic_dec(&fcc->submit_flush); 495 } else { 496 llist_del_all(&fcc->issue_list); 497 atomic_set(&fcc->submit_flush, 0); 498 } 499 500 return cmd.ret; 501 } 502 503 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 504 { 505 dev_t dev = sbi->sb->s_bdev->bd_dev; 506 struct flush_cmd_control *fcc; 507 int err = 0; 508 509 if (SM_I(sbi)->cmd_control_info) { 510 fcc = SM_I(sbi)->cmd_control_info; 511 goto init_thread; 512 } 513 514 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 515 if (!fcc) 516 return -ENOMEM; 517 atomic_set(&fcc->submit_flush, 0); 518 init_waitqueue_head(&fcc->flush_wait_queue); 519 init_llist_head(&fcc->issue_list); 520 SM_I(sbi)->cmd_control_info = fcc; 521 init_thread: 522 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 523 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 524 if (IS_ERR(fcc->f2fs_issue_flush)) { 525 err = PTR_ERR(fcc->f2fs_issue_flush); 526 kfree(fcc); 527 SM_I(sbi)->cmd_control_info = NULL; 528 return err; 529 } 530 531 return err; 532 } 533 534 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 535 { 536 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 537 538 if (fcc && fcc->f2fs_issue_flush) { 539 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 540 541 fcc->f2fs_issue_flush = NULL; 542 kthread_stop(flush_thread); 543 } 544 if (free) { 545 kfree(fcc); 546 SM_I(sbi)->cmd_control_info = NULL; 547 } 548 } 549 550 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 551 enum dirty_type dirty_type) 552 { 553 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 554 555 /* need not be added */ 556 if (IS_CURSEG(sbi, segno)) 557 return; 558 559 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 560 dirty_i->nr_dirty[dirty_type]++; 561 562 if (dirty_type == DIRTY) { 563 struct seg_entry *sentry = get_seg_entry(sbi, segno); 564 enum dirty_type t = sentry->type; 565 566 if (unlikely(t >= DIRTY)) { 567 f2fs_bug_on(sbi, 1); 568 return; 569 } 570 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 571 dirty_i->nr_dirty[t]++; 572 } 573 } 574 575 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 576 enum dirty_type dirty_type) 577 { 578 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 579 580 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 581 dirty_i->nr_dirty[dirty_type]--; 582 583 if (dirty_type == DIRTY) { 584 struct seg_entry *sentry = get_seg_entry(sbi, segno); 585 enum dirty_type t = sentry->type; 586 587 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 588 dirty_i->nr_dirty[t]--; 589 590 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 591 clear_bit(GET_SECNO(sbi, segno), 592 dirty_i->victim_secmap); 593 } 594 } 595 596 /* 597 * Should not occur error such as -ENOMEM. 598 * Adding dirty entry into seglist is not critical operation. 599 * If a given segment is one of current working segments, it won't be added. 600 */ 601 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 602 { 603 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 604 unsigned short valid_blocks; 605 606 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 607 return; 608 609 mutex_lock(&dirty_i->seglist_lock); 610 611 valid_blocks = get_valid_blocks(sbi, segno, 0); 612 613 if (valid_blocks == 0) { 614 __locate_dirty_segment(sbi, segno, PRE); 615 __remove_dirty_segment(sbi, segno, DIRTY); 616 } else if (valid_blocks < sbi->blocks_per_seg) { 617 __locate_dirty_segment(sbi, segno, DIRTY); 618 } else { 619 /* Recovery routine with SSR needs this */ 620 __remove_dirty_segment(sbi, segno, DIRTY); 621 } 622 623 mutex_unlock(&dirty_i->seglist_lock); 624 } 625 626 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi, 627 struct bio *bio) 628 { 629 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 630 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 631 632 INIT_LIST_HEAD(&be->list); 633 be->bio = bio; 634 init_completion(&be->event); 635 list_add_tail(&be->list, wait_list); 636 637 return be; 638 } 639 640 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi) 641 { 642 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 643 struct bio_entry *be, *tmp; 644 645 list_for_each_entry_safe(be, tmp, wait_list, list) { 646 struct bio *bio = be->bio; 647 int err; 648 649 wait_for_completion_io(&be->event); 650 err = be->error; 651 if (err == -EOPNOTSUPP) 652 err = 0; 653 654 if (err) 655 f2fs_msg(sbi->sb, KERN_INFO, 656 "Issue discard failed, ret: %d", err); 657 658 bio_put(bio); 659 list_del(&be->list); 660 kmem_cache_free(bio_entry_slab, be); 661 } 662 } 663 664 static void f2fs_submit_bio_wait_endio(struct bio *bio) 665 { 666 struct bio_entry *be = (struct bio_entry *)bio->bi_private; 667 668 be->error = bio->bi_error; 669 complete(&be->event); 670 } 671 672 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 673 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, 674 struct block_device *bdev, block_t blkstart, block_t blklen) 675 { 676 struct bio *bio = NULL; 677 int err; 678 679 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 680 681 if (sbi->s_ndevs) { 682 int devi = f2fs_target_device_index(sbi, blkstart); 683 684 blkstart -= FDEV(devi).start_blk; 685 } 686 err = __blkdev_issue_discard(bdev, 687 SECTOR_FROM_BLOCK(blkstart), 688 SECTOR_FROM_BLOCK(blklen), 689 GFP_NOFS, 0, &bio); 690 if (!err && bio) { 691 struct bio_entry *be = __add_bio_entry(sbi, bio); 692 693 bio->bi_private = be; 694 bio->bi_end_io = f2fs_submit_bio_wait_endio; 695 bio->bi_opf |= REQ_SYNC; 696 submit_bio(bio); 697 } 698 699 return err; 700 } 701 702 #ifdef CONFIG_BLK_DEV_ZONED 703 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 704 struct block_device *bdev, block_t blkstart, block_t blklen) 705 { 706 sector_t nr_sects = SECTOR_FROM_BLOCK(blklen); 707 sector_t sector; 708 int devi = 0; 709 710 if (sbi->s_ndevs) { 711 devi = f2fs_target_device_index(sbi, blkstart); 712 blkstart -= FDEV(devi).start_blk; 713 } 714 sector = SECTOR_FROM_BLOCK(blkstart); 715 716 if (sector & (bdev_zone_sectors(bdev) - 1) || 717 nr_sects != bdev_zone_sectors(bdev)) { 718 f2fs_msg(sbi->sb, KERN_INFO, 719 "(%d) %s: Unaligned discard attempted (block %x + %x)", 720 devi, sbi->s_ndevs ? FDEV(devi).path: "", 721 blkstart, blklen); 722 return -EIO; 723 } 724 725 /* 726 * We need to know the type of the zone: for conventional zones, 727 * use regular discard if the drive supports it. For sequential 728 * zones, reset the zone write pointer. 729 */ 730 switch (get_blkz_type(sbi, bdev, blkstart)) { 731 732 case BLK_ZONE_TYPE_CONVENTIONAL: 733 if (!blk_queue_discard(bdev_get_queue(bdev))) 734 return 0; 735 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 736 case BLK_ZONE_TYPE_SEQWRITE_REQ: 737 case BLK_ZONE_TYPE_SEQWRITE_PREF: 738 trace_f2fs_issue_reset_zone(sbi->sb, blkstart); 739 return blkdev_reset_zones(bdev, sector, 740 nr_sects, GFP_NOFS); 741 default: 742 /* Unknown zone type: broken device ? */ 743 return -EIO; 744 } 745 } 746 #endif 747 748 static int __issue_discard_async(struct f2fs_sb_info *sbi, 749 struct block_device *bdev, block_t blkstart, block_t blklen) 750 { 751 #ifdef CONFIG_BLK_DEV_ZONED 752 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 753 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 754 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 755 #endif 756 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 757 } 758 759 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 760 block_t blkstart, block_t blklen) 761 { 762 sector_t start = blkstart, len = 0; 763 struct block_device *bdev; 764 struct seg_entry *se; 765 unsigned int offset; 766 block_t i; 767 int err = 0; 768 769 bdev = f2fs_target_device(sbi, blkstart, NULL); 770 771 for (i = blkstart; i < blkstart + blklen; i++, len++) { 772 if (i != start) { 773 struct block_device *bdev2 = 774 f2fs_target_device(sbi, i, NULL); 775 776 if (bdev2 != bdev) { 777 err = __issue_discard_async(sbi, bdev, 778 start, len); 779 if (err) 780 return err; 781 bdev = bdev2; 782 start = i; 783 len = 0; 784 } 785 } 786 787 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 788 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 789 790 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 791 sbi->discard_blks--; 792 } 793 794 if (len) 795 err = __issue_discard_async(sbi, bdev, start, len); 796 return err; 797 } 798 799 static void __add_discard_entry(struct f2fs_sb_info *sbi, 800 struct cp_control *cpc, struct seg_entry *se, 801 unsigned int start, unsigned int end) 802 { 803 struct list_head *head = &SM_I(sbi)->discard_list; 804 struct discard_entry *new, *last; 805 806 if (!list_empty(head)) { 807 last = list_last_entry(head, struct discard_entry, list); 808 if (START_BLOCK(sbi, cpc->trim_start) + start == 809 last->blkaddr + last->len) { 810 last->len += end - start; 811 goto done; 812 } 813 } 814 815 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 816 INIT_LIST_HEAD(&new->list); 817 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 818 new->len = end - start; 819 list_add_tail(&new->list, head); 820 done: 821 SM_I(sbi)->nr_discards += end - start; 822 } 823 824 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 825 { 826 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 827 int max_blocks = sbi->blocks_per_seg; 828 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 829 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 830 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 831 unsigned long *discard_map = (unsigned long *)se->discard_map; 832 unsigned long *dmap = SIT_I(sbi)->tmp_map; 833 unsigned int start = 0, end = -1; 834 bool force = (cpc->reason == CP_DISCARD); 835 int i; 836 837 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 838 return; 839 840 if (!force) { 841 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 842 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 843 return; 844 } 845 846 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 847 for (i = 0; i < entries; i++) 848 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 849 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 850 851 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 852 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 853 if (start >= max_blocks) 854 break; 855 856 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 857 if (force && start && end != max_blocks 858 && (end - start) < cpc->trim_minlen) 859 continue; 860 861 __add_discard_entry(sbi, cpc, se, start, end); 862 } 863 } 864 865 void release_discard_addrs(struct f2fs_sb_info *sbi) 866 { 867 struct list_head *head = &(SM_I(sbi)->discard_list); 868 struct discard_entry *entry, *this; 869 870 /* drop caches */ 871 list_for_each_entry_safe(entry, this, head, list) { 872 list_del(&entry->list); 873 kmem_cache_free(discard_entry_slab, entry); 874 } 875 } 876 877 /* 878 * Should call clear_prefree_segments after checkpoint is done. 879 */ 880 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 881 { 882 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 883 unsigned int segno; 884 885 mutex_lock(&dirty_i->seglist_lock); 886 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 887 __set_test_and_free(sbi, segno); 888 mutex_unlock(&dirty_i->seglist_lock); 889 } 890 891 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 892 { 893 struct list_head *head = &(SM_I(sbi)->discard_list); 894 struct discard_entry *entry, *this; 895 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 896 struct blk_plug plug; 897 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 898 unsigned int start = 0, end = -1; 899 unsigned int secno, start_segno; 900 bool force = (cpc->reason == CP_DISCARD); 901 902 blk_start_plug(&plug); 903 904 mutex_lock(&dirty_i->seglist_lock); 905 906 while (1) { 907 int i; 908 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 909 if (start >= MAIN_SEGS(sbi)) 910 break; 911 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 912 start + 1); 913 914 for (i = start; i < end; i++) 915 clear_bit(i, prefree_map); 916 917 dirty_i->nr_dirty[PRE] -= end - start; 918 919 if (!test_opt(sbi, DISCARD)) 920 continue; 921 922 if (force && start >= cpc->trim_start && 923 (end - 1) <= cpc->trim_end) 924 continue; 925 926 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 927 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 928 (end - start) << sbi->log_blocks_per_seg); 929 continue; 930 } 931 next: 932 secno = GET_SECNO(sbi, start); 933 start_segno = secno * sbi->segs_per_sec; 934 if (!IS_CURSEC(sbi, secno) && 935 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 936 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 937 sbi->segs_per_sec << sbi->log_blocks_per_seg); 938 939 start = start_segno + sbi->segs_per_sec; 940 if (start < end) 941 goto next; 942 } 943 mutex_unlock(&dirty_i->seglist_lock); 944 945 /* send small discards */ 946 list_for_each_entry_safe(entry, this, head, list) { 947 if (force && entry->len < cpc->trim_minlen) 948 goto skip; 949 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 950 cpc->trimmed += entry->len; 951 skip: 952 list_del(&entry->list); 953 SM_I(sbi)->nr_discards -= entry->len; 954 kmem_cache_free(discard_entry_slab, entry); 955 } 956 957 blk_finish_plug(&plug); 958 } 959 960 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 961 { 962 struct sit_info *sit_i = SIT_I(sbi); 963 964 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 965 sit_i->dirty_sentries++; 966 return false; 967 } 968 969 return true; 970 } 971 972 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 973 unsigned int segno, int modified) 974 { 975 struct seg_entry *se = get_seg_entry(sbi, segno); 976 se->type = type; 977 if (modified) 978 __mark_sit_entry_dirty(sbi, segno); 979 } 980 981 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 982 { 983 struct seg_entry *se; 984 unsigned int segno, offset; 985 long int new_vblocks; 986 987 segno = GET_SEGNO(sbi, blkaddr); 988 989 se = get_seg_entry(sbi, segno); 990 new_vblocks = se->valid_blocks + del; 991 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 992 993 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 994 (new_vblocks > sbi->blocks_per_seg))); 995 996 se->valid_blocks = new_vblocks; 997 se->mtime = get_mtime(sbi); 998 SIT_I(sbi)->max_mtime = se->mtime; 999 1000 /* Update valid block bitmap */ 1001 if (del > 0) { 1002 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 1003 f2fs_bug_on(sbi, 1); 1004 if (f2fs_discard_en(sbi) && 1005 !f2fs_test_and_set_bit(offset, se->discard_map)) 1006 sbi->discard_blks--; 1007 } else { 1008 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 1009 f2fs_bug_on(sbi, 1); 1010 if (f2fs_discard_en(sbi) && 1011 f2fs_test_and_clear_bit(offset, se->discard_map)) 1012 sbi->discard_blks++; 1013 } 1014 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1015 se->ckpt_valid_blocks += del; 1016 1017 __mark_sit_entry_dirty(sbi, segno); 1018 1019 /* update total number of valid blocks to be written in ckpt area */ 1020 SIT_I(sbi)->written_valid_blocks += del; 1021 1022 if (sbi->segs_per_sec > 1) 1023 get_sec_entry(sbi, segno)->valid_blocks += del; 1024 } 1025 1026 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 1027 { 1028 update_sit_entry(sbi, new, 1); 1029 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 1030 update_sit_entry(sbi, old, -1); 1031 1032 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 1033 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 1034 } 1035 1036 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1037 { 1038 unsigned int segno = GET_SEGNO(sbi, addr); 1039 struct sit_info *sit_i = SIT_I(sbi); 1040 1041 f2fs_bug_on(sbi, addr == NULL_ADDR); 1042 if (addr == NEW_ADDR) 1043 return; 1044 1045 /* add it into sit main buffer */ 1046 mutex_lock(&sit_i->sentry_lock); 1047 1048 update_sit_entry(sbi, addr, -1); 1049 1050 /* add it into dirty seglist */ 1051 locate_dirty_segment(sbi, segno); 1052 1053 mutex_unlock(&sit_i->sentry_lock); 1054 } 1055 1056 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1057 { 1058 struct sit_info *sit_i = SIT_I(sbi); 1059 unsigned int segno, offset; 1060 struct seg_entry *se; 1061 bool is_cp = false; 1062 1063 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1064 return true; 1065 1066 mutex_lock(&sit_i->sentry_lock); 1067 1068 segno = GET_SEGNO(sbi, blkaddr); 1069 se = get_seg_entry(sbi, segno); 1070 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1071 1072 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1073 is_cp = true; 1074 1075 mutex_unlock(&sit_i->sentry_lock); 1076 1077 return is_cp; 1078 } 1079 1080 /* 1081 * This function should be resided under the curseg_mutex lock 1082 */ 1083 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1084 struct f2fs_summary *sum) 1085 { 1086 struct curseg_info *curseg = CURSEG_I(sbi, type); 1087 void *addr = curseg->sum_blk; 1088 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1089 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1090 } 1091 1092 /* 1093 * Calculate the number of current summary pages for writing 1094 */ 1095 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1096 { 1097 int valid_sum_count = 0; 1098 int i, sum_in_page; 1099 1100 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1101 if (sbi->ckpt->alloc_type[i] == SSR) 1102 valid_sum_count += sbi->blocks_per_seg; 1103 else { 1104 if (for_ra) 1105 valid_sum_count += le16_to_cpu( 1106 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1107 else 1108 valid_sum_count += curseg_blkoff(sbi, i); 1109 } 1110 } 1111 1112 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1113 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1114 if (valid_sum_count <= sum_in_page) 1115 return 1; 1116 else if ((valid_sum_count - sum_in_page) <= 1117 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1118 return 2; 1119 return 3; 1120 } 1121 1122 /* 1123 * Caller should put this summary page 1124 */ 1125 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1126 { 1127 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1128 } 1129 1130 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1131 { 1132 struct page *page = grab_meta_page(sbi, blk_addr); 1133 void *dst = page_address(page); 1134 1135 if (src) 1136 memcpy(dst, src, PAGE_SIZE); 1137 else 1138 memset(dst, 0, PAGE_SIZE); 1139 set_page_dirty(page); 1140 f2fs_put_page(page, 1); 1141 } 1142 1143 static void write_sum_page(struct f2fs_sb_info *sbi, 1144 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1145 { 1146 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1147 } 1148 1149 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1150 int type, block_t blk_addr) 1151 { 1152 struct curseg_info *curseg = CURSEG_I(sbi, type); 1153 struct page *page = grab_meta_page(sbi, blk_addr); 1154 struct f2fs_summary_block *src = curseg->sum_blk; 1155 struct f2fs_summary_block *dst; 1156 1157 dst = (struct f2fs_summary_block *)page_address(page); 1158 1159 mutex_lock(&curseg->curseg_mutex); 1160 1161 down_read(&curseg->journal_rwsem); 1162 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1163 up_read(&curseg->journal_rwsem); 1164 1165 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1166 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1167 1168 mutex_unlock(&curseg->curseg_mutex); 1169 1170 set_page_dirty(page); 1171 f2fs_put_page(page, 1); 1172 } 1173 1174 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 1175 { 1176 struct curseg_info *curseg = CURSEG_I(sbi, type); 1177 unsigned int segno = curseg->segno + 1; 1178 struct free_segmap_info *free_i = FREE_I(sbi); 1179 1180 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 1181 return !test_bit(segno, free_i->free_segmap); 1182 return 0; 1183 } 1184 1185 /* 1186 * Find a new segment from the free segments bitmap to right order 1187 * This function should be returned with success, otherwise BUG 1188 */ 1189 static void get_new_segment(struct f2fs_sb_info *sbi, 1190 unsigned int *newseg, bool new_sec, int dir) 1191 { 1192 struct free_segmap_info *free_i = FREE_I(sbi); 1193 unsigned int segno, secno, zoneno; 1194 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1195 unsigned int hint = *newseg / sbi->segs_per_sec; 1196 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1197 unsigned int left_start = hint; 1198 bool init = true; 1199 int go_left = 0; 1200 int i; 1201 1202 spin_lock(&free_i->segmap_lock); 1203 1204 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1205 segno = find_next_zero_bit(free_i->free_segmap, 1206 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1207 if (segno < (hint + 1) * sbi->segs_per_sec) 1208 goto got_it; 1209 } 1210 find_other_zone: 1211 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1212 if (secno >= MAIN_SECS(sbi)) { 1213 if (dir == ALLOC_RIGHT) { 1214 secno = find_next_zero_bit(free_i->free_secmap, 1215 MAIN_SECS(sbi), 0); 1216 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1217 } else { 1218 go_left = 1; 1219 left_start = hint - 1; 1220 } 1221 } 1222 if (go_left == 0) 1223 goto skip_left; 1224 1225 while (test_bit(left_start, free_i->free_secmap)) { 1226 if (left_start > 0) { 1227 left_start--; 1228 continue; 1229 } 1230 left_start = find_next_zero_bit(free_i->free_secmap, 1231 MAIN_SECS(sbi), 0); 1232 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1233 break; 1234 } 1235 secno = left_start; 1236 skip_left: 1237 hint = secno; 1238 segno = secno * sbi->segs_per_sec; 1239 zoneno = secno / sbi->secs_per_zone; 1240 1241 /* give up on finding another zone */ 1242 if (!init) 1243 goto got_it; 1244 if (sbi->secs_per_zone == 1) 1245 goto got_it; 1246 if (zoneno == old_zoneno) 1247 goto got_it; 1248 if (dir == ALLOC_LEFT) { 1249 if (!go_left && zoneno + 1 >= total_zones) 1250 goto got_it; 1251 if (go_left && zoneno == 0) 1252 goto got_it; 1253 } 1254 for (i = 0; i < NR_CURSEG_TYPE; i++) 1255 if (CURSEG_I(sbi, i)->zone == zoneno) 1256 break; 1257 1258 if (i < NR_CURSEG_TYPE) { 1259 /* zone is in user, try another */ 1260 if (go_left) 1261 hint = zoneno * sbi->secs_per_zone - 1; 1262 else if (zoneno + 1 >= total_zones) 1263 hint = 0; 1264 else 1265 hint = (zoneno + 1) * sbi->secs_per_zone; 1266 init = false; 1267 goto find_other_zone; 1268 } 1269 got_it: 1270 /* set it as dirty segment in free segmap */ 1271 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1272 __set_inuse(sbi, segno); 1273 *newseg = segno; 1274 spin_unlock(&free_i->segmap_lock); 1275 } 1276 1277 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1278 { 1279 struct curseg_info *curseg = CURSEG_I(sbi, type); 1280 struct summary_footer *sum_footer; 1281 1282 curseg->segno = curseg->next_segno; 1283 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1284 curseg->next_blkoff = 0; 1285 curseg->next_segno = NULL_SEGNO; 1286 1287 sum_footer = &(curseg->sum_blk->footer); 1288 memset(sum_footer, 0, sizeof(struct summary_footer)); 1289 if (IS_DATASEG(type)) 1290 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1291 if (IS_NODESEG(type)) 1292 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1293 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1294 } 1295 1296 /* 1297 * Allocate a current working segment. 1298 * This function always allocates a free segment in LFS manner. 1299 */ 1300 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1301 { 1302 struct curseg_info *curseg = CURSEG_I(sbi, type); 1303 unsigned int segno = curseg->segno; 1304 int dir = ALLOC_LEFT; 1305 1306 write_sum_page(sbi, curseg->sum_blk, 1307 GET_SUM_BLOCK(sbi, segno)); 1308 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1309 dir = ALLOC_RIGHT; 1310 1311 if (test_opt(sbi, NOHEAP)) 1312 dir = ALLOC_RIGHT; 1313 1314 get_new_segment(sbi, &segno, new_sec, dir); 1315 curseg->next_segno = segno; 1316 reset_curseg(sbi, type, 1); 1317 curseg->alloc_type = LFS; 1318 } 1319 1320 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1321 struct curseg_info *seg, block_t start) 1322 { 1323 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1324 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1325 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1326 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1327 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1328 int i, pos; 1329 1330 for (i = 0; i < entries; i++) 1331 target_map[i] = ckpt_map[i] | cur_map[i]; 1332 1333 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1334 1335 seg->next_blkoff = pos; 1336 } 1337 1338 /* 1339 * If a segment is written by LFS manner, next block offset is just obtained 1340 * by increasing the current block offset. However, if a segment is written by 1341 * SSR manner, next block offset obtained by calling __next_free_blkoff 1342 */ 1343 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1344 struct curseg_info *seg) 1345 { 1346 if (seg->alloc_type == SSR) 1347 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1348 else 1349 seg->next_blkoff++; 1350 } 1351 1352 /* 1353 * This function always allocates a used segment(from dirty seglist) by SSR 1354 * manner, so it should recover the existing segment information of valid blocks 1355 */ 1356 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1357 { 1358 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1359 struct curseg_info *curseg = CURSEG_I(sbi, type); 1360 unsigned int new_segno = curseg->next_segno; 1361 struct f2fs_summary_block *sum_node; 1362 struct page *sum_page; 1363 1364 write_sum_page(sbi, curseg->sum_blk, 1365 GET_SUM_BLOCK(sbi, curseg->segno)); 1366 __set_test_and_inuse(sbi, new_segno); 1367 1368 mutex_lock(&dirty_i->seglist_lock); 1369 __remove_dirty_segment(sbi, new_segno, PRE); 1370 __remove_dirty_segment(sbi, new_segno, DIRTY); 1371 mutex_unlock(&dirty_i->seglist_lock); 1372 1373 reset_curseg(sbi, type, 1); 1374 curseg->alloc_type = SSR; 1375 __next_free_blkoff(sbi, curseg, 0); 1376 1377 if (reuse) { 1378 sum_page = get_sum_page(sbi, new_segno); 1379 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1380 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1381 f2fs_put_page(sum_page, 1); 1382 } 1383 } 1384 1385 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1386 { 1387 struct curseg_info *curseg = CURSEG_I(sbi, type); 1388 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1389 1390 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0)) 1391 return v_ops->get_victim(sbi, 1392 &(curseg)->next_segno, BG_GC, type, SSR); 1393 1394 /* For data segments, let's do SSR more intensively */ 1395 for (; type >= CURSEG_HOT_DATA; type--) 1396 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1397 BG_GC, type, SSR)) 1398 return 1; 1399 return 0; 1400 } 1401 1402 /* 1403 * flush out current segment and replace it with new segment 1404 * This function should be returned with success, otherwise BUG 1405 */ 1406 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1407 int type, bool force) 1408 { 1409 struct curseg_info *curseg = CURSEG_I(sbi, type); 1410 1411 if (force) 1412 new_curseg(sbi, type, true); 1413 else if (type == CURSEG_WARM_NODE) 1414 new_curseg(sbi, type, false); 1415 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1416 new_curseg(sbi, type, false); 1417 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1418 change_curseg(sbi, type, true); 1419 else 1420 new_curseg(sbi, type, false); 1421 1422 stat_inc_seg_type(sbi, curseg); 1423 } 1424 1425 void allocate_new_segments(struct f2fs_sb_info *sbi) 1426 { 1427 struct curseg_info *curseg; 1428 unsigned int old_segno; 1429 int i; 1430 1431 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1432 curseg = CURSEG_I(sbi, i); 1433 old_segno = curseg->segno; 1434 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1435 locate_dirty_segment(sbi, old_segno); 1436 } 1437 } 1438 1439 static const struct segment_allocation default_salloc_ops = { 1440 .allocate_segment = allocate_segment_by_default, 1441 }; 1442 1443 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1444 { 1445 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1446 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1447 unsigned int start_segno, end_segno; 1448 struct cp_control cpc; 1449 int err = 0; 1450 1451 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1452 return -EINVAL; 1453 1454 cpc.trimmed = 0; 1455 if (end <= MAIN_BLKADDR(sbi)) 1456 goto out; 1457 1458 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1459 f2fs_msg(sbi->sb, KERN_WARNING, 1460 "Found FS corruption, run fsck to fix."); 1461 goto out; 1462 } 1463 1464 /* start/end segment number in main_area */ 1465 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1466 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1467 GET_SEGNO(sbi, end); 1468 cpc.reason = CP_DISCARD; 1469 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1470 1471 /* do checkpoint to issue discard commands safely */ 1472 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1473 cpc.trim_start = start_segno; 1474 1475 if (sbi->discard_blks == 0) 1476 break; 1477 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1478 cpc.trim_end = end_segno; 1479 else 1480 cpc.trim_end = min_t(unsigned int, 1481 rounddown(start_segno + 1482 BATCHED_TRIM_SEGMENTS(sbi), 1483 sbi->segs_per_sec) - 1, end_segno); 1484 1485 mutex_lock(&sbi->gc_mutex); 1486 err = write_checkpoint(sbi, &cpc); 1487 mutex_unlock(&sbi->gc_mutex); 1488 if (err) 1489 break; 1490 1491 schedule(); 1492 } 1493 out: 1494 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1495 return err; 1496 } 1497 1498 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1499 { 1500 struct curseg_info *curseg = CURSEG_I(sbi, type); 1501 if (curseg->next_blkoff < sbi->blocks_per_seg) 1502 return true; 1503 return false; 1504 } 1505 1506 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1507 { 1508 if (p_type == DATA) 1509 return CURSEG_HOT_DATA; 1510 else 1511 return CURSEG_HOT_NODE; 1512 } 1513 1514 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1515 { 1516 if (p_type == DATA) { 1517 struct inode *inode = page->mapping->host; 1518 1519 if (S_ISDIR(inode->i_mode)) 1520 return CURSEG_HOT_DATA; 1521 else 1522 return CURSEG_COLD_DATA; 1523 } else { 1524 if (IS_DNODE(page) && is_cold_node(page)) 1525 return CURSEG_WARM_NODE; 1526 else 1527 return CURSEG_COLD_NODE; 1528 } 1529 } 1530 1531 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1532 { 1533 if (p_type == DATA) { 1534 struct inode *inode = page->mapping->host; 1535 1536 if (S_ISDIR(inode->i_mode)) 1537 return CURSEG_HOT_DATA; 1538 else if (is_cold_data(page) || file_is_cold(inode)) 1539 return CURSEG_COLD_DATA; 1540 else 1541 return CURSEG_WARM_DATA; 1542 } else { 1543 if (IS_DNODE(page)) 1544 return is_cold_node(page) ? CURSEG_WARM_NODE : 1545 CURSEG_HOT_NODE; 1546 else 1547 return CURSEG_COLD_NODE; 1548 } 1549 } 1550 1551 static int __get_segment_type(struct page *page, enum page_type p_type) 1552 { 1553 switch (F2FS_P_SB(page)->active_logs) { 1554 case 2: 1555 return __get_segment_type_2(page, p_type); 1556 case 4: 1557 return __get_segment_type_4(page, p_type); 1558 } 1559 /* NR_CURSEG_TYPE(6) logs by default */ 1560 f2fs_bug_on(F2FS_P_SB(page), 1561 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1562 return __get_segment_type_6(page, p_type); 1563 } 1564 1565 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1566 block_t old_blkaddr, block_t *new_blkaddr, 1567 struct f2fs_summary *sum, int type) 1568 { 1569 struct sit_info *sit_i = SIT_I(sbi); 1570 struct curseg_info *curseg = CURSEG_I(sbi, type); 1571 1572 mutex_lock(&curseg->curseg_mutex); 1573 mutex_lock(&sit_i->sentry_lock); 1574 1575 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1576 1577 /* 1578 * __add_sum_entry should be resided under the curseg_mutex 1579 * because, this function updates a summary entry in the 1580 * current summary block. 1581 */ 1582 __add_sum_entry(sbi, type, sum); 1583 1584 __refresh_next_blkoff(sbi, curseg); 1585 1586 stat_inc_block_count(sbi, curseg); 1587 1588 if (!__has_curseg_space(sbi, type)) 1589 sit_i->s_ops->allocate_segment(sbi, type, false); 1590 /* 1591 * SIT information should be updated before segment allocation, 1592 * since SSR needs latest valid block information. 1593 */ 1594 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1595 1596 mutex_unlock(&sit_i->sentry_lock); 1597 1598 if (page && IS_NODESEG(type)) 1599 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1600 1601 mutex_unlock(&curseg->curseg_mutex); 1602 } 1603 1604 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1605 { 1606 int type = __get_segment_type(fio->page, fio->type); 1607 int err; 1608 1609 if (fio->type == NODE || fio->type == DATA) 1610 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1611 reallocate: 1612 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1613 &fio->new_blkaddr, sum, type); 1614 1615 /* writeout dirty page into bdev */ 1616 err = f2fs_submit_page_mbio(fio); 1617 if (err == -EAGAIN) { 1618 fio->old_blkaddr = fio->new_blkaddr; 1619 goto reallocate; 1620 } 1621 1622 if (fio->type == NODE || fio->type == DATA) 1623 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1624 } 1625 1626 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1627 { 1628 struct f2fs_io_info fio = { 1629 .sbi = sbi, 1630 .type = META, 1631 .op = REQ_OP_WRITE, 1632 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 1633 .old_blkaddr = page->index, 1634 .new_blkaddr = page->index, 1635 .page = page, 1636 .encrypted_page = NULL, 1637 }; 1638 1639 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1640 fio.op_flags &= ~REQ_META; 1641 1642 set_page_writeback(page); 1643 f2fs_submit_page_mbio(&fio); 1644 } 1645 1646 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1647 { 1648 struct f2fs_summary sum; 1649 1650 set_summary(&sum, nid, 0, 0); 1651 do_write_page(&sum, fio); 1652 } 1653 1654 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1655 { 1656 struct f2fs_sb_info *sbi = fio->sbi; 1657 struct f2fs_summary sum; 1658 struct node_info ni; 1659 1660 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1661 get_node_info(sbi, dn->nid, &ni); 1662 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1663 do_write_page(&sum, fio); 1664 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1665 } 1666 1667 void rewrite_data_page(struct f2fs_io_info *fio) 1668 { 1669 fio->new_blkaddr = fio->old_blkaddr; 1670 stat_inc_inplace_blocks(fio->sbi); 1671 f2fs_submit_page_mbio(fio); 1672 } 1673 1674 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1675 block_t old_blkaddr, block_t new_blkaddr, 1676 bool recover_curseg, bool recover_newaddr) 1677 { 1678 struct sit_info *sit_i = SIT_I(sbi); 1679 struct curseg_info *curseg; 1680 unsigned int segno, old_cursegno; 1681 struct seg_entry *se; 1682 int type; 1683 unsigned short old_blkoff; 1684 1685 segno = GET_SEGNO(sbi, new_blkaddr); 1686 se = get_seg_entry(sbi, segno); 1687 type = se->type; 1688 1689 if (!recover_curseg) { 1690 /* for recovery flow */ 1691 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1692 if (old_blkaddr == NULL_ADDR) 1693 type = CURSEG_COLD_DATA; 1694 else 1695 type = CURSEG_WARM_DATA; 1696 } 1697 } else { 1698 if (!IS_CURSEG(sbi, segno)) 1699 type = CURSEG_WARM_DATA; 1700 } 1701 1702 curseg = CURSEG_I(sbi, type); 1703 1704 mutex_lock(&curseg->curseg_mutex); 1705 mutex_lock(&sit_i->sentry_lock); 1706 1707 old_cursegno = curseg->segno; 1708 old_blkoff = curseg->next_blkoff; 1709 1710 /* change the current segment */ 1711 if (segno != curseg->segno) { 1712 curseg->next_segno = segno; 1713 change_curseg(sbi, type, true); 1714 } 1715 1716 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1717 __add_sum_entry(sbi, type, sum); 1718 1719 if (!recover_curseg || recover_newaddr) 1720 update_sit_entry(sbi, new_blkaddr, 1); 1721 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1722 update_sit_entry(sbi, old_blkaddr, -1); 1723 1724 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1725 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1726 1727 locate_dirty_segment(sbi, old_cursegno); 1728 1729 if (recover_curseg) { 1730 if (old_cursegno != curseg->segno) { 1731 curseg->next_segno = old_cursegno; 1732 change_curseg(sbi, type, true); 1733 } 1734 curseg->next_blkoff = old_blkoff; 1735 } 1736 1737 mutex_unlock(&sit_i->sentry_lock); 1738 mutex_unlock(&curseg->curseg_mutex); 1739 } 1740 1741 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1742 block_t old_addr, block_t new_addr, 1743 unsigned char version, bool recover_curseg, 1744 bool recover_newaddr) 1745 { 1746 struct f2fs_summary sum; 1747 1748 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1749 1750 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1751 recover_curseg, recover_newaddr); 1752 1753 f2fs_update_data_blkaddr(dn, new_addr); 1754 } 1755 1756 void f2fs_wait_on_page_writeback(struct page *page, 1757 enum page_type type, bool ordered) 1758 { 1759 if (PageWriteback(page)) { 1760 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1761 1762 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1763 if (ordered) 1764 wait_on_page_writeback(page); 1765 else 1766 wait_for_stable_page(page); 1767 } 1768 } 1769 1770 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1771 block_t blkaddr) 1772 { 1773 struct page *cpage; 1774 1775 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1776 return; 1777 1778 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1779 if (cpage) { 1780 f2fs_wait_on_page_writeback(cpage, DATA, true); 1781 f2fs_put_page(cpage, 1); 1782 } 1783 } 1784 1785 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1786 { 1787 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1788 struct curseg_info *seg_i; 1789 unsigned char *kaddr; 1790 struct page *page; 1791 block_t start; 1792 int i, j, offset; 1793 1794 start = start_sum_block(sbi); 1795 1796 page = get_meta_page(sbi, start++); 1797 kaddr = (unsigned char *)page_address(page); 1798 1799 /* Step 1: restore nat cache */ 1800 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1801 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1802 1803 /* Step 2: restore sit cache */ 1804 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1805 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1806 offset = 2 * SUM_JOURNAL_SIZE; 1807 1808 /* Step 3: restore summary entries */ 1809 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1810 unsigned short blk_off; 1811 unsigned int segno; 1812 1813 seg_i = CURSEG_I(sbi, i); 1814 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1815 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1816 seg_i->next_segno = segno; 1817 reset_curseg(sbi, i, 0); 1818 seg_i->alloc_type = ckpt->alloc_type[i]; 1819 seg_i->next_blkoff = blk_off; 1820 1821 if (seg_i->alloc_type == SSR) 1822 blk_off = sbi->blocks_per_seg; 1823 1824 for (j = 0; j < blk_off; j++) { 1825 struct f2fs_summary *s; 1826 s = (struct f2fs_summary *)(kaddr + offset); 1827 seg_i->sum_blk->entries[j] = *s; 1828 offset += SUMMARY_SIZE; 1829 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 1830 SUM_FOOTER_SIZE) 1831 continue; 1832 1833 f2fs_put_page(page, 1); 1834 page = NULL; 1835 1836 page = get_meta_page(sbi, start++); 1837 kaddr = (unsigned char *)page_address(page); 1838 offset = 0; 1839 } 1840 } 1841 f2fs_put_page(page, 1); 1842 return 0; 1843 } 1844 1845 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1846 { 1847 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1848 struct f2fs_summary_block *sum; 1849 struct curseg_info *curseg; 1850 struct page *new; 1851 unsigned short blk_off; 1852 unsigned int segno = 0; 1853 block_t blk_addr = 0; 1854 1855 /* get segment number and block addr */ 1856 if (IS_DATASEG(type)) { 1857 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1858 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1859 CURSEG_HOT_DATA]); 1860 if (__exist_node_summaries(sbi)) 1861 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1862 else 1863 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1864 } else { 1865 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1866 CURSEG_HOT_NODE]); 1867 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1868 CURSEG_HOT_NODE]); 1869 if (__exist_node_summaries(sbi)) 1870 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1871 type - CURSEG_HOT_NODE); 1872 else 1873 blk_addr = GET_SUM_BLOCK(sbi, segno); 1874 } 1875 1876 new = get_meta_page(sbi, blk_addr); 1877 sum = (struct f2fs_summary_block *)page_address(new); 1878 1879 if (IS_NODESEG(type)) { 1880 if (__exist_node_summaries(sbi)) { 1881 struct f2fs_summary *ns = &sum->entries[0]; 1882 int i; 1883 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1884 ns->version = 0; 1885 ns->ofs_in_node = 0; 1886 } 1887 } else { 1888 int err; 1889 1890 err = restore_node_summary(sbi, segno, sum); 1891 if (err) { 1892 f2fs_put_page(new, 1); 1893 return err; 1894 } 1895 } 1896 } 1897 1898 /* set uncompleted segment to curseg */ 1899 curseg = CURSEG_I(sbi, type); 1900 mutex_lock(&curseg->curseg_mutex); 1901 1902 /* update journal info */ 1903 down_write(&curseg->journal_rwsem); 1904 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1905 up_write(&curseg->journal_rwsem); 1906 1907 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1908 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1909 curseg->next_segno = segno; 1910 reset_curseg(sbi, type, 0); 1911 curseg->alloc_type = ckpt->alloc_type[type]; 1912 curseg->next_blkoff = blk_off; 1913 mutex_unlock(&curseg->curseg_mutex); 1914 f2fs_put_page(new, 1); 1915 return 0; 1916 } 1917 1918 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1919 { 1920 int type = CURSEG_HOT_DATA; 1921 int err; 1922 1923 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 1924 int npages = npages_for_summary_flush(sbi, true); 1925 1926 if (npages >= 2) 1927 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1928 META_CP, true); 1929 1930 /* restore for compacted data summary */ 1931 if (read_compacted_summaries(sbi)) 1932 return -EINVAL; 1933 type = CURSEG_HOT_NODE; 1934 } 1935 1936 if (__exist_node_summaries(sbi)) 1937 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1938 NR_CURSEG_TYPE - type, META_CP, true); 1939 1940 for (; type <= CURSEG_COLD_NODE; type++) { 1941 err = read_normal_summaries(sbi, type); 1942 if (err) 1943 return err; 1944 } 1945 1946 return 0; 1947 } 1948 1949 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1950 { 1951 struct page *page; 1952 unsigned char *kaddr; 1953 struct f2fs_summary *summary; 1954 struct curseg_info *seg_i; 1955 int written_size = 0; 1956 int i, j; 1957 1958 page = grab_meta_page(sbi, blkaddr++); 1959 kaddr = (unsigned char *)page_address(page); 1960 1961 /* Step 1: write nat cache */ 1962 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1963 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1964 written_size += SUM_JOURNAL_SIZE; 1965 1966 /* Step 2: write sit cache */ 1967 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1968 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1969 written_size += SUM_JOURNAL_SIZE; 1970 1971 /* Step 3: write summary entries */ 1972 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1973 unsigned short blkoff; 1974 seg_i = CURSEG_I(sbi, i); 1975 if (sbi->ckpt->alloc_type[i] == SSR) 1976 blkoff = sbi->blocks_per_seg; 1977 else 1978 blkoff = curseg_blkoff(sbi, i); 1979 1980 for (j = 0; j < blkoff; j++) { 1981 if (!page) { 1982 page = grab_meta_page(sbi, blkaddr++); 1983 kaddr = (unsigned char *)page_address(page); 1984 written_size = 0; 1985 } 1986 summary = (struct f2fs_summary *)(kaddr + written_size); 1987 *summary = seg_i->sum_blk->entries[j]; 1988 written_size += SUMMARY_SIZE; 1989 1990 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 1991 SUM_FOOTER_SIZE) 1992 continue; 1993 1994 set_page_dirty(page); 1995 f2fs_put_page(page, 1); 1996 page = NULL; 1997 } 1998 } 1999 if (page) { 2000 set_page_dirty(page); 2001 f2fs_put_page(page, 1); 2002 } 2003 } 2004 2005 static void write_normal_summaries(struct f2fs_sb_info *sbi, 2006 block_t blkaddr, int type) 2007 { 2008 int i, end; 2009 if (IS_DATASEG(type)) 2010 end = type + NR_CURSEG_DATA_TYPE; 2011 else 2012 end = type + NR_CURSEG_NODE_TYPE; 2013 2014 for (i = type; i < end; i++) 2015 write_current_sum_page(sbi, i, blkaddr + (i - type)); 2016 } 2017 2018 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2019 { 2020 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 2021 write_compacted_summaries(sbi, start_blk); 2022 else 2023 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 2024 } 2025 2026 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2027 { 2028 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 2029 } 2030 2031 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2032 unsigned int val, int alloc) 2033 { 2034 int i; 2035 2036 if (type == NAT_JOURNAL) { 2037 for (i = 0; i < nats_in_cursum(journal); i++) { 2038 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 2039 return i; 2040 } 2041 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 2042 return update_nats_in_cursum(journal, 1); 2043 } else if (type == SIT_JOURNAL) { 2044 for (i = 0; i < sits_in_cursum(journal); i++) 2045 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 2046 return i; 2047 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 2048 return update_sits_in_cursum(journal, 1); 2049 } 2050 return -1; 2051 } 2052 2053 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 2054 unsigned int segno) 2055 { 2056 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 2057 } 2058 2059 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 2060 unsigned int start) 2061 { 2062 struct sit_info *sit_i = SIT_I(sbi); 2063 struct page *src_page, *dst_page; 2064 pgoff_t src_off, dst_off; 2065 void *src_addr, *dst_addr; 2066 2067 src_off = current_sit_addr(sbi, start); 2068 dst_off = next_sit_addr(sbi, src_off); 2069 2070 /* get current sit block page without lock */ 2071 src_page = get_meta_page(sbi, src_off); 2072 dst_page = grab_meta_page(sbi, dst_off); 2073 f2fs_bug_on(sbi, PageDirty(src_page)); 2074 2075 src_addr = page_address(src_page); 2076 dst_addr = page_address(dst_page); 2077 memcpy(dst_addr, src_addr, PAGE_SIZE); 2078 2079 set_page_dirty(dst_page); 2080 f2fs_put_page(src_page, 1); 2081 2082 set_to_next_sit(sit_i, start); 2083 2084 return dst_page; 2085 } 2086 2087 static struct sit_entry_set *grab_sit_entry_set(void) 2088 { 2089 struct sit_entry_set *ses = 2090 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 2091 2092 ses->entry_cnt = 0; 2093 INIT_LIST_HEAD(&ses->set_list); 2094 return ses; 2095 } 2096 2097 static void release_sit_entry_set(struct sit_entry_set *ses) 2098 { 2099 list_del(&ses->set_list); 2100 kmem_cache_free(sit_entry_set_slab, ses); 2101 } 2102 2103 static void adjust_sit_entry_set(struct sit_entry_set *ses, 2104 struct list_head *head) 2105 { 2106 struct sit_entry_set *next = ses; 2107 2108 if (list_is_last(&ses->set_list, head)) 2109 return; 2110 2111 list_for_each_entry_continue(next, head, set_list) 2112 if (ses->entry_cnt <= next->entry_cnt) 2113 break; 2114 2115 list_move_tail(&ses->set_list, &next->set_list); 2116 } 2117 2118 static void add_sit_entry(unsigned int segno, struct list_head *head) 2119 { 2120 struct sit_entry_set *ses; 2121 unsigned int start_segno = START_SEGNO(segno); 2122 2123 list_for_each_entry(ses, head, set_list) { 2124 if (ses->start_segno == start_segno) { 2125 ses->entry_cnt++; 2126 adjust_sit_entry_set(ses, head); 2127 return; 2128 } 2129 } 2130 2131 ses = grab_sit_entry_set(); 2132 2133 ses->start_segno = start_segno; 2134 ses->entry_cnt++; 2135 list_add(&ses->set_list, head); 2136 } 2137 2138 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2139 { 2140 struct f2fs_sm_info *sm_info = SM_I(sbi); 2141 struct list_head *set_list = &sm_info->sit_entry_set; 2142 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2143 unsigned int segno; 2144 2145 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2146 add_sit_entry(segno, set_list); 2147 } 2148 2149 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2150 { 2151 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2152 struct f2fs_journal *journal = curseg->journal; 2153 int i; 2154 2155 down_write(&curseg->journal_rwsem); 2156 for (i = 0; i < sits_in_cursum(journal); i++) { 2157 unsigned int segno; 2158 bool dirtied; 2159 2160 segno = le32_to_cpu(segno_in_journal(journal, i)); 2161 dirtied = __mark_sit_entry_dirty(sbi, segno); 2162 2163 if (!dirtied) 2164 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2165 } 2166 update_sits_in_cursum(journal, -i); 2167 up_write(&curseg->journal_rwsem); 2168 } 2169 2170 /* 2171 * CP calls this function, which flushes SIT entries including sit_journal, 2172 * and moves prefree segs to free segs. 2173 */ 2174 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2175 { 2176 struct sit_info *sit_i = SIT_I(sbi); 2177 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2178 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2179 struct f2fs_journal *journal = curseg->journal; 2180 struct sit_entry_set *ses, *tmp; 2181 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2182 bool to_journal = true; 2183 struct seg_entry *se; 2184 2185 mutex_lock(&sit_i->sentry_lock); 2186 2187 if (!sit_i->dirty_sentries) 2188 goto out; 2189 2190 /* 2191 * add and account sit entries of dirty bitmap in sit entry 2192 * set temporarily 2193 */ 2194 add_sits_in_set(sbi); 2195 2196 /* 2197 * if there are no enough space in journal to store dirty sit 2198 * entries, remove all entries from journal and add and account 2199 * them in sit entry set. 2200 */ 2201 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2202 remove_sits_in_journal(sbi); 2203 2204 /* 2205 * there are two steps to flush sit entries: 2206 * #1, flush sit entries to journal in current cold data summary block. 2207 * #2, flush sit entries to sit page. 2208 */ 2209 list_for_each_entry_safe(ses, tmp, head, set_list) { 2210 struct page *page = NULL; 2211 struct f2fs_sit_block *raw_sit = NULL; 2212 unsigned int start_segno = ses->start_segno; 2213 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2214 (unsigned long)MAIN_SEGS(sbi)); 2215 unsigned int segno = start_segno; 2216 2217 if (to_journal && 2218 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2219 to_journal = false; 2220 2221 if (to_journal) { 2222 down_write(&curseg->journal_rwsem); 2223 } else { 2224 page = get_next_sit_page(sbi, start_segno); 2225 raw_sit = page_address(page); 2226 } 2227 2228 /* flush dirty sit entries in region of current sit set */ 2229 for_each_set_bit_from(segno, bitmap, end) { 2230 int offset, sit_offset; 2231 2232 se = get_seg_entry(sbi, segno); 2233 2234 /* add discard candidates */ 2235 if (cpc->reason != CP_DISCARD) { 2236 cpc->trim_start = segno; 2237 add_discard_addrs(sbi, cpc); 2238 } 2239 2240 if (to_journal) { 2241 offset = lookup_journal_in_cursum(journal, 2242 SIT_JOURNAL, segno, 1); 2243 f2fs_bug_on(sbi, offset < 0); 2244 segno_in_journal(journal, offset) = 2245 cpu_to_le32(segno); 2246 seg_info_to_raw_sit(se, 2247 &sit_in_journal(journal, offset)); 2248 } else { 2249 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2250 seg_info_to_raw_sit(se, 2251 &raw_sit->entries[sit_offset]); 2252 } 2253 2254 __clear_bit(segno, bitmap); 2255 sit_i->dirty_sentries--; 2256 ses->entry_cnt--; 2257 } 2258 2259 if (to_journal) 2260 up_write(&curseg->journal_rwsem); 2261 else 2262 f2fs_put_page(page, 1); 2263 2264 f2fs_bug_on(sbi, ses->entry_cnt); 2265 release_sit_entry_set(ses); 2266 } 2267 2268 f2fs_bug_on(sbi, !list_empty(head)); 2269 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2270 out: 2271 if (cpc->reason == CP_DISCARD) { 2272 __u64 trim_start = cpc->trim_start; 2273 2274 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2275 add_discard_addrs(sbi, cpc); 2276 2277 cpc->trim_start = trim_start; 2278 } 2279 mutex_unlock(&sit_i->sentry_lock); 2280 2281 set_prefree_as_free_segments(sbi); 2282 } 2283 2284 static int build_sit_info(struct f2fs_sb_info *sbi) 2285 { 2286 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2287 struct sit_info *sit_i; 2288 unsigned int sit_segs, start; 2289 char *src_bitmap, *dst_bitmap; 2290 unsigned int bitmap_size; 2291 2292 /* allocate memory for SIT information */ 2293 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2294 if (!sit_i) 2295 return -ENOMEM; 2296 2297 SM_I(sbi)->sit_info = sit_i; 2298 2299 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2300 sizeof(struct seg_entry), GFP_KERNEL); 2301 if (!sit_i->sentries) 2302 return -ENOMEM; 2303 2304 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2305 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2306 if (!sit_i->dirty_sentries_bitmap) 2307 return -ENOMEM; 2308 2309 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2310 sit_i->sentries[start].cur_valid_map 2311 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2312 sit_i->sentries[start].ckpt_valid_map 2313 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2314 if (!sit_i->sentries[start].cur_valid_map || 2315 !sit_i->sentries[start].ckpt_valid_map) 2316 return -ENOMEM; 2317 2318 if (f2fs_discard_en(sbi)) { 2319 sit_i->sentries[start].discard_map 2320 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2321 if (!sit_i->sentries[start].discard_map) 2322 return -ENOMEM; 2323 } 2324 } 2325 2326 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2327 if (!sit_i->tmp_map) 2328 return -ENOMEM; 2329 2330 if (sbi->segs_per_sec > 1) { 2331 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2332 sizeof(struct sec_entry), GFP_KERNEL); 2333 if (!sit_i->sec_entries) 2334 return -ENOMEM; 2335 } 2336 2337 /* get information related with SIT */ 2338 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2339 2340 /* setup SIT bitmap from ckeckpoint pack */ 2341 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2342 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2343 2344 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2345 if (!dst_bitmap) 2346 return -ENOMEM; 2347 2348 /* init SIT information */ 2349 sit_i->s_ops = &default_salloc_ops; 2350 2351 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2352 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2353 sit_i->written_valid_blocks = 0; 2354 sit_i->sit_bitmap = dst_bitmap; 2355 sit_i->bitmap_size = bitmap_size; 2356 sit_i->dirty_sentries = 0; 2357 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2358 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2359 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2360 mutex_init(&sit_i->sentry_lock); 2361 return 0; 2362 } 2363 2364 static int build_free_segmap(struct f2fs_sb_info *sbi) 2365 { 2366 struct free_segmap_info *free_i; 2367 unsigned int bitmap_size, sec_bitmap_size; 2368 2369 /* allocate memory for free segmap information */ 2370 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2371 if (!free_i) 2372 return -ENOMEM; 2373 2374 SM_I(sbi)->free_info = free_i; 2375 2376 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2377 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2378 if (!free_i->free_segmap) 2379 return -ENOMEM; 2380 2381 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2382 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2383 if (!free_i->free_secmap) 2384 return -ENOMEM; 2385 2386 /* set all segments as dirty temporarily */ 2387 memset(free_i->free_segmap, 0xff, bitmap_size); 2388 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2389 2390 /* init free segmap information */ 2391 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2392 free_i->free_segments = 0; 2393 free_i->free_sections = 0; 2394 spin_lock_init(&free_i->segmap_lock); 2395 return 0; 2396 } 2397 2398 static int build_curseg(struct f2fs_sb_info *sbi) 2399 { 2400 struct curseg_info *array; 2401 int i; 2402 2403 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2404 if (!array) 2405 return -ENOMEM; 2406 2407 SM_I(sbi)->curseg_array = array; 2408 2409 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2410 mutex_init(&array[i].curseg_mutex); 2411 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2412 if (!array[i].sum_blk) 2413 return -ENOMEM; 2414 init_rwsem(&array[i].journal_rwsem); 2415 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2416 GFP_KERNEL); 2417 if (!array[i].journal) 2418 return -ENOMEM; 2419 array[i].segno = NULL_SEGNO; 2420 array[i].next_blkoff = 0; 2421 } 2422 return restore_curseg_summaries(sbi); 2423 } 2424 2425 static void build_sit_entries(struct f2fs_sb_info *sbi) 2426 { 2427 struct sit_info *sit_i = SIT_I(sbi); 2428 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2429 struct f2fs_journal *journal = curseg->journal; 2430 struct seg_entry *se; 2431 struct f2fs_sit_entry sit; 2432 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2433 unsigned int i, start, end; 2434 unsigned int readed, start_blk = 0; 2435 2436 do { 2437 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 2438 META_SIT, true); 2439 2440 start = start_blk * sit_i->sents_per_block; 2441 end = (start_blk + readed) * sit_i->sents_per_block; 2442 2443 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2444 struct f2fs_sit_block *sit_blk; 2445 struct page *page; 2446 2447 se = &sit_i->sentries[start]; 2448 page = get_current_sit_page(sbi, start); 2449 sit_blk = (struct f2fs_sit_block *)page_address(page); 2450 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2451 f2fs_put_page(page, 1); 2452 2453 check_block_count(sbi, start, &sit); 2454 seg_info_from_raw_sit(se, &sit); 2455 2456 /* build discard map only one time */ 2457 if (f2fs_discard_en(sbi)) { 2458 memcpy(se->discard_map, se->cur_valid_map, 2459 SIT_VBLOCK_MAP_SIZE); 2460 sbi->discard_blks += sbi->blocks_per_seg - 2461 se->valid_blocks; 2462 } 2463 2464 if (sbi->segs_per_sec > 1) 2465 get_sec_entry(sbi, start)->valid_blocks += 2466 se->valid_blocks; 2467 } 2468 start_blk += readed; 2469 } while (start_blk < sit_blk_cnt); 2470 2471 down_read(&curseg->journal_rwsem); 2472 for (i = 0; i < sits_in_cursum(journal); i++) { 2473 unsigned int old_valid_blocks; 2474 2475 start = le32_to_cpu(segno_in_journal(journal, i)); 2476 se = &sit_i->sentries[start]; 2477 sit = sit_in_journal(journal, i); 2478 2479 old_valid_blocks = se->valid_blocks; 2480 2481 check_block_count(sbi, start, &sit); 2482 seg_info_from_raw_sit(se, &sit); 2483 2484 if (f2fs_discard_en(sbi)) { 2485 memcpy(se->discard_map, se->cur_valid_map, 2486 SIT_VBLOCK_MAP_SIZE); 2487 sbi->discard_blks += old_valid_blocks - 2488 se->valid_blocks; 2489 } 2490 2491 if (sbi->segs_per_sec > 1) 2492 get_sec_entry(sbi, start)->valid_blocks += 2493 se->valid_blocks - old_valid_blocks; 2494 } 2495 up_read(&curseg->journal_rwsem); 2496 } 2497 2498 static void init_free_segmap(struct f2fs_sb_info *sbi) 2499 { 2500 unsigned int start; 2501 int type; 2502 2503 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2504 struct seg_entry *sentry = get_seg_entry(sbi, start); 2505 if (!sentry->valid_blocks) 2506 __set_free(sbi, start); 2507 else 2508 SIT_I(sbi)->written_valid_blocks += 2509 sentry->valid_blocks; 2510 } 2511 2512 /* set use the current segments */ 2513 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2514 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2515 __set_test_and_inuse(sbi, curseg_t->segno); 2516 } 2517 } 2518 2519 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2520 { 2521 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2522 struct free_segmap_info *free_i = FREE_I(sbi); 2523 unsigned int segno = 0, offset = 0; 2524 unsigned short valid_blocks; 2525 2526 while (1) { 2527 /* find dirty segment based on free segmap */ 2528 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2529 if (segno >= MAIN_SEGS(sbi)) 2530 break; 2531 offset = segno + 1; 2532 valid_blocks = get_valid_blocks(sbi, segno, 0); 2533 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2534 continue; 2535 if (valid_blocks > sbi->blocks_per_seg) { 2536 f2fs_bug_on(sbi, 1); 2537 continue; 2538 } 2539 mutex_lock(&dirty_i->seglist_lock); 2540 __locate_dirty_segment(sbi, segno, DIRTY); 2541 mutex_unlock(&dirty_i->seglist_lock); 2542 } 2543 } 2544 2545 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2546 { 2547 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2548 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2549 2550 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2551 if (!dirty_i->victim_secmap) 2552 return -ENOMEM; 2553 return 0; 2554 } 2555 2556 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2557 { 2558 struct dirty_seglist_info *dirty_i; 2559 unsigned int bitmap_size, i; 2560 2561 /* allocate memory for dirty segments list information */ 2562 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2563 if (!dirty_i) 2564 return -ENOMEM; 2565 2566 SM_I(sbi)->dirty_info = dirty_i; 2567 mutex_init(&dirty_i->seglist_lock); 2568 2569 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2570 2571 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2572 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2573 if (!dirty_i->dirty_segmap[i]) 2574 return -ENOMEM; 2575 } 2576 2577 init_dirty_segmap(sbi); 2578 return init_victim_secmap(sbi); 2579 } 2580 2581 /* 2582 * Update min, max modified time for cost-benefit GC algorithm 2583 */ 2584 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2585 { 2586 struct sit_info *sit_i = SIT_I(sbi); 2587 unsigned int segno; 2588 2589 mutex_lock(&sit_i->sentry_lock); 2590 2591 sit_i->min_mtime = LLONG_MAX; 2592 2593 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2594 unsigned int i; 2595 unsigned long long mtime = 0; 2596 2597 for (i = 0; i < sbi->segs_per_sec; i++) 2598 mtime += get_seg_entry(sbi, segno + i)->mtime; 2599 2600 mtime = div_u64(mtime, sbi->segs_per_sec); 2601 2602 if (sit_i->min_mtime > mtime) 2603 sit_i->min_mtime = mtime; 2604 } 2605 sit_i->max_mtime = get_mtime(sbi); 2606 mutex_unlock(&sit_i->sentry_lock); 2607 } 2608 2609 int build_segment_manager(struct f2fs_sb_info *sbi) 2610 { 2611 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2612 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2613 struct f2fs_sm_info *sm_info; 2614 int err; 2615 2616 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2617 if (!sm_info) 2618 return -ENOMEM; 2619 2620 /* init sm info */ 2621 sbi->sm_info = sm_info; 2622 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2623 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2624 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2625 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2626 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2627 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2628 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2629 sm_info->rec_prefree_segments = sm_info->main_segments * 2630 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2631 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2632 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2633 2634 if (!test_opt(sbi, LFS)) 2635 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2636 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2637 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2638 2639 INIT_LIST_HEAD(&sm_info->discard_list); 2640 INIT_LIST_HEAD(&sm_info->wait_list); 2641 sm_info->nr_discards = 0; 2642 sm_info->max_discards = 0; 2643 2644 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2645 2646 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2647 2648 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2649 err = create_flush_cmd_control(sbi); 2650 if (err) 2651 return err; 2652 } 2653 2654 err = build_sit_info(sbi); 2655 if (err) 2656 return err; 2657 err = build_free_segmap(sbi); 2658 if (err) 2659 return err; 2660 err = build_curseg(sbi); 2661 if (err) 2662 return err; 2663 2664 /* reinit free segmap based on SIT */ 2665 build_sit_entries(sbi); 2666 2667 init_free_segmap(sbi); 2668 err = build_dirty_segmap(sbi); 2669 if (err) 2670 return err; 2671 2672 init_min_max_mtime(sbi); 2673 return 0; 2674 } 2675 2676 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2677 enum dirty_type dirty_type) 2678 { 2679 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2680 2681 mutex_lock(&dirty_i->seglist_lock); 2682 kvfree(dirty_i->dirty_segmap[dirty_type]); 2683 dirty_i->nr_dirty[dirty_type] = 0; 2684 mutex_unlock(&dirty_i->seglist_lock); 2685 } 2686 2687 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2688 { 2689 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2690 kvfree(dirty_i->victim_secmap); 2691 } 2692 2693 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2694 { 2695 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2696 int i; 2697 2698 if (!dirty_i) 2699 return; 2700 2701 /* discard pre-free/dirty segments list */ 2702 for (i = 0; i < NR_DIRTY_TYPE; i++) 2703 discard_dirty_segmap(sbi, i); 2704 2705 destroy_victim_secmap(sbi); 2706 SM_I(sbi)->dirty_info = NULL; 2707 kfree(dirty_i); 2708 } 2709 2710 static void destroy_curseg(struct f2fs_sb_info *sbi) 2711 { 2712 struct curseg_info *array = SM_I(sbi)->curseg_array; 2713 int i; 2714 2715 if (!array) 2716 return; 2717 SM_I(sbi)->curseg_array = NULL; 2718 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2719 kfree(array[i].sum_blk); 2720 kfree(array[i].journal); 2721 } 2722 kfree(array); 2723 } 2724 2725 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2726 { 2727 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2728 if (!free_i) 2729 return; 2730 SM_I(sbi)->free_info = NULL; 2731 kvfree(free_i->free_segmap); 2732 kvfree(free_i->free_secmap); 2733 kfree(free_i); 2734 } 2735 2736 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2737 { 2738 struct sit_info *sit_i = SIT_I(sbi); 2739 unsigned int start; 2740 2741 if (!sit_i) 2742 return; 2743 2744 if (sit_i->sentries) { 2745 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2746 kfree(sit_i->sentries[start].cur_valid_map); 2747 kfree(sit_i->sentries[start].ckpt_valid_map); 2748 kfree(sit_i->sentries[start].discard_map); 2749 } 2750 } 2751 kfree(sit_i->tmp_map); 2752 2753 kvfree(sit_i->sentries); 2754 kvfree(sit_i->sec_entries); 2755 kvfree(sit_i->dirty_sentries_bitmap); 2756 2757 SM_I(sbi)->sit_info = NULL; 2758 kfree(sit_i->sit_bitmap); 2759 kfree(sit_i); 2760 } 2761 2762 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2763 { 2764 struct f2fs_sm_info *sm_info = SM_I(sbi); 2765 2766 if (!sm_info) 2767 return; 2768 destroy_flush_cmd_control(sbi, true); 2769 destroy_dirty_segmap(sbi); 2770 destroy_curseg(sbi); 2771 destroy_free_segmap(sbi); 2772 destroy_sit_info(sbi); 2773 sbi->sm_info = NULL; 2774 kfree(sm_info); 2775 } 2776 2777 int __init create_segment_manager_caches(void) 2778 { 2779 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2780 sizeof(struct discard_entry)); 2781 if (!discard_entry_slab) 2782 goto fail; 2783 2784 bio_entry_slab = f2fs_kmem_cache_create("bio_entry", 2785 sizeof(struct bio_entry)); 2786 if (!bio_entry_slab) 2787 goto destroy_discard_entry; 2788 2789 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2790 sizeof(struct sit_entry_set)); 2791 if (!sit_entry_set_slab) 2792 goto destroy_bio_entry; 2793 2794 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2795 sizeof(struct inmem_pages)); 2796 if (!inmem_entry_slab) 2797 goto destroy_sit_entry_set; 2798 return 0; 2799 2800 destroy_sit_entry_set: 2801 kmem_cache_destroy(sit_entry_set_slab); 2802 destroy_bio_entry: 2803 kmem_cache_destroy(bio_entry_slab); 2804 destroy_discard_entry: 2805 kmem_cache_destroy(discard_entry_slab); 2806 fail: 2807 return -ENOMEM; 2808 } 2809 2810 void destroy_segment_manager_caches(void) 2811 { 2812 kmem_cache_destroy(sit_entry_set_slab); 2813 kmem_cache_destroy(bio_entry_slab); 2814 kmem_cache_destroy(discard_entry_slab); 2815 kmem_cache_destroy(inmem_entry_slab); 2816 } 2817