1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include <trace/events/f2fs.h> 24 25 #define __reverse_ffz(x) __reverse_ffs(~(x)) 26 27 static struct kmem_cache *discard_entry_slab; 28 static struct kmem_cache *sit_entry_set_slab; 29 static struct kmem_cache *inmem_entry_slab; 30 31 /* 32 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 33 * MSB and LSB are reversed in a byte by f2fs_set_bit. 34 */ 35 static inline unsigned long __reverse_ffs(unsigned long word) 36 { 37 int num = 0; 38 39 #if BITS_PER_LONG == 64 40 if ((word & 0xffffffff) == 0) { 41 num += 32; 42 word >>= 32; 43 } 44 #endif 45 if ((word & 0xffff) == 0) { 46 num += 16; 47 word >>= 16; 48 } 49 if ((word & 0xff) == 0) { 50 num += 8; 51 word >>= 8; 52 } 53 if ((word & 0xf0) == 0) 54 num += 4; 55 else 56 word >>= 4; 57 if ((word & 0xc) == 0) 58 num += 2; 59 else 60 word >>= 2; 61 if ((word & 0x2) == 0) 62 num += 1; 63 return num; 64 } 65 66 /* 67 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 68 * f2fs_set_bit makes MSB and LSB reversed in a byte. 69 * Example: 70 * LSB <--> MSB 71 * f2fs_set_bit(0, bitmap) => 0000 0001 72 * f2fs_set_bit(7, bitmap) => 1000 0000 73 */ 74 static unsigned long __find_rev_next_bit(const unsigned long *addr, 75 unsigned long size, unsigned long offset) 76 { 77 const unsigned long *p = addr + BIT_WORD(offset); 78 unsigned long result = offset & ~(BITS_PER_LONG - 1); 79 unsigned long tmp; 80 unsigned long mask, submask; 81 unsigned long quot, rest; 82 83 if (offset >= size) 84 return size; 85 86 size -= result; 87 offset %= BITS_PER_LONG; 88 if (!offset) 89 goto aligned; 90 91 tmp = *(p++); 92 quot = (offset >> 3) << 3; 93 rest = offset & 0x7; 94 mask = ~0UL << quot; 95 submask = (unsigned char)(0xff << rest) >> rest; 96 submask <<= quot; 97 mask &= submask; 98 tmp &= mask; 99 if (size < BITS_PER_LONG) 100 goto found_first; 101 if (tmp) 102 goto found_middle; 103 104 size -= BITS_PER_LONG; 105 result += BITS_PER_LONG; 106 aligned: 107 while (size & ~(BITS_PER_LONG-1)) { 108 tmp = *(p++); 109 if (tmp) 110 goto found_middle; 111 result += BITS_PER_LONG; 112 size -= BITS_PER_LONG; 113 } 114 if (!size) 115 return result; 116 tmp = *p; 117 found_first: 118 tmp &= (~0UL >> (BITS_PER_LONG - size)); 119 if (tmp == 0UL) /* Are any bits set? */ 120 return result + size; /* Nope. */ 121 found_middle: 122 return result + __reverse_ffs(tmp); 123 } 124 125 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 126 unsigned long size, unsigned long offset) 127 { 128 const unsigned long *p = addr + BIT_WORD(offset); 129 unsigned long result = offset & ~(BITS_PER_LONG - 1); 130 unsigned long tmp; 131 unsigned long mask, submask; 132 unsigned long quot, rest; 133 134 if (offset >= size) 135 return size; 136 137 size -= result; 138 offset %= BITS_PER_LONG; 139 if (!offset) 140 goto aligned; 141 142 tmp = *(p++); 143 quot = (offset >> 3) << 3; 144 rest = offset & 0x7; 145 mask = ~(~0UL << quot); 146 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 147 submask <<= quot; 148 mask += submask; 149 tmp |= mask; 150 if (size < BITS_PER_LONG) 151 goto found_first; 152 if (~tmp) 153 goto found_middle; 154 155 size -= BITS_PER_LONG; 156 result += BITS_PER_LONG; 157 aligned: 158 while (size & ~(BITS_PER_LONG - 1)) { 159 tmp = *(p++); 160 if (~tmp) 161 goto found_middle; 162 result += BITS_PER_LONG; 163 size -= BITS_PER_LONG; 164 } 165 if (!size) 166 return result; 167 tmp = *p; 168 169 found_first: 170 tmp |= ~0UL << size; 171 if (tmp == ~0UL) /* Are any bits zero? */ 172 return result + size; /* Nope. */ 173 found_middle: 174 return result + __reverse_ffz(tmp); 175 } 176 177 void register_inmem_page(struct inode *inode, struct page *page) 178 { 179 struct f2fs_inode_info *fi = F2FS_I(inode); 180 struct inmem_pages *new; 181 int err; 182 retry: 183 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 184 185 /* add atomic page indices to the list */ 186 new->page = page; 187 INIT_LIST_HEAD(&new->list); 188 189 /* increase reference count with clean state */ 190 mutex_lock(&fi->inmem_lock); 191 err = radix_tree_insert(&fi->inmem_root, page->index, new); 192 if (err == -EEXIST) { 193 mutex_unlock(&fi->inmem_lock); 194 kmem_cache_free(inmem_entry_slab, new); 195 return; 196 } else if (err) { 197 mutex_unlock(&fi->inmem_lock); 198 kmem_cache_free(inmem_entry_slab, new); 199 goto retry; 200 } 201 get_page(page); 202 list_add_tail(&new->list, &fi->inmem_pages); 203 mutex_unlock(&fi->inmem_lock); 204 } 205 206 void invalidate_inmem_page(struct inode *inode, struct page *page) 207 { 208 struct f2fs_inode_info *fi = F2FS_I(inode); 209 struct inmem_pages *cur; 210 211 mutex_lock(&fi->inmem_lock); 212 cur = radix_tree_lookup(&fi->inmem_root, page->index); 213 if (cur) { 214 radix_tree_delete(&fi->inmem_root, cur->page->index); 215 f2fs_put_page(cur->page, 0); 216 list_del(&cur->list); 217 kmem_cache_free(inmem_entry_slab, cur); 218 } 219 mutex_unlock(&fi->inmem_lock); 220 } 221 222 void commit_inmem_pages(struct inode *inode, bool abort) 223 { 224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 225 struct f2fs_inode_info *fi = F2FS_I(inode); 226 struct inmem_pages *cur, *tmp; 227 bool submit_bio = false; 228 struct f2fs_io_info fio = { 229 .type = DATA, 230 .rw = WRITE_SYNC, 231 }; 232 233 /* 234 * The abort is true only when f2fs_evict_inode is called. 235 * Basically, the f2fs_evict_inode doesn't produce any data writes, so 236 * that we don't need to call f2fs_balance_fs. 237 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this 238 * inode becomes free by iget_locked in f2fs_iget. 239 */ 240 if (!abort) 241 f2fs_balance_fs(sbi); 242 243 f2fs_lock_op(sbi); 244 245 mutex_lock(&fi->inmem_lock); 246 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 247 lock_page(cur->page); 248 if (!abort && cur->page->mapping == inode->i_mapping) { 249 f2fs_wait_on_page_writeback(cur->page, DATA); 250 if (clear_page_dirty_for_io(cur->page)) 251 inode_dec_dirty_pages(inode); 252 do_write_data_page(cur->page, &fio); 253 submit_bio = true; 254 } 255 radix_tree_delete(&fi->inmem_root, cur->page->index); 256 f2fs_put_page(cur->page, 1); 257 list_del(&cur->list); 258 kmem_cache_free(inmem_entry_slab, cur); 259 } 260 if (submit_bio) 261 f2fs_submit_merged_bio(sbi, DATA, WRITE); 262 mutex_unlock(&fi->inmem_lock); 263 264 filemap_fdatawait_range(inode->i_mapping, 0, LLONG_MAX); 265 f2fs_unlock_op(sbi); 266 } 267 268 /* 269 * This function balances dirty node and dentry pages. 270 * In addition, it controls garbage collection. 271 */ 272 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 273 { 274 /* 275 * We should do GC or end up with checkpoint, if there are so many dirty 276 * dir/node pages without enough free segments. 277 */ 278 if (has_not_enough_free_secs(sbi, 0)) { 279 mutex_lock(&sbi->gc_mutex); 280 f2fs_gc(sbi); 281 } 282 } 283 284 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 285 { 286 /* check the # of cached NAT entries and prefree segments */ 287 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || 288 excess_prefree_segs(sbi) || 289 available_free_memory(sbi, INO_ENTRIES)) 290 f2fs_sync_fs(sbi->sb, true); 291 } 292 293 static int issue_flush_thread(void *data) 294 { 295 struct f2fs_sb_info *sbi = data; 296 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 297 wait_queue_head_t *q = &fcc->flush_wait_queue; 298 repeat: 299 if (kthread_should_stop()) 300 return 0; 301 302 if (!llist_empty(&fcc->issue_list)) { 303 struct bio *bio = bio_alloc(GFP_NOIO, 0); 304 struct flush_cmd *cmd, *next; 305 int ret; 306 307 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 308 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 309 310 bio->bi_bdev = sbi->sb->s_bdev; 311 ret = submit_bio_wait(WRITE_FLUSH, bio); 312 313 llist_for_each_entry_safe(cmd, next, 314 fcc->dispatch_list, llnode) { 315 cmd->ret = ret; 316 complete(&cmd->wait); 317 } 318 bio_put(bio); 319 fcc->dispatch_list = NULL; 320 } 321 322 wait_event_interruptible(*q, 323 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 324 goto repeat; 325 } 326 327 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 328 { 329 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 330 struct flush_cmd cmd; 331 332 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 333 test_opt(sbi, FLUSH_MERGE)); 334 335 if (test_opt(sbi, NOBARRIER)) 336 return 0; 337 338 if (!test_opt(sbi, FLUSH_MERGE)) 339 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL); 340 341 init_completion(&cmd.wait); 342 343 llist_add(&cmd.llnode, &fcc->issue_list); 344 345 if (!fcc->dispatch_list) 346 wake_up(&fcc->flush_wait_queue); 347 348 wait_for_completion(&cmd.wait); 349 350 return cmd.ret; 351 } 352 353 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 354 { 355 dev_t dev = sbi->sb->s_bdev->bd_dev; 356 struct flush_cmd_control *fcc; 357 int err = 0; 358 359 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 360 if (!fcc) 361 return -ENOMEM; 362 init_waitqueue_head(&fcc->flush_wait_queue); 363 init_llist_head(&fcc->issue_list); 364 SM_I(sbi)->cmd_control_info = fcc; 365 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 366 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 367 if (IS_ERR(fcc->f2fs_issue_flush)) { 368 err = PTR_ERR(fcc->f2fs_issue_flush); 369 kfree(fcc); 370 SM_I(sbi)->cmd_control_info = NULL; 371 return err; 372 } 373 374 return err; 375 } 376 377 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 378 { 379 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 380 381 if (fcc && fcc->f2fs_issue_flush) 382 kthread_stop(fcc->f2fs_issue_flush); 383 kfree(fcc); 384 SM_I(sbi)->cmd_control_info = NULL; 385 } 386 387 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 388 enum dirty_type dirty_type) 389 { 390 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 391 392 /* need not be added */ 393 if (IS_CURSEG(sbi, segno)) 394 return; 395 396 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 397 dirty_i->nr_dirty[dirty_type]++; 398 399 if (dirty_type == DIRTY) { 400 struct seg_entry *sentry = get_seg_entry(sbi, segno); 401 enum dirty_type t = sentry->type; 402 403 if (unlikely(t >= DIRTY)) { 404 f2fs_bug_on(sbi, 1); 405 return; 406 } 407 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 408 dirty_i->nr_dirty[t]++; 409 } 410 } 411 412 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 413 enum dirty_type dirty_type) 414 { 415 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 416 417 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 418 dirty_i->nr_dirty[dirty_type]--; 419 420 if (dirty_type == DIRTY) { 421 struct seg_entry *sentry = get_seg_entry(sbi, segno); 422 enum dirty_type t = sentry->type; 423 424 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 425 dirty_i->nr_dirty[t]--; 426 427 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 428 clear_bit(GET_SECNO(sbi, segno), 429 dirty_i->victim_secmap); 430 } 431 } 432 433 /* 434 * Should not occur error such as -ENOMEM. 435 * Adding dirty entry into seglist is not critical operation. 436 * If a given segment is one of current working segments, it won't be added. 437 */ 438 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 439 { 440 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 441 unsigned short valid_blocks; 442 443 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 444 return; 445 446 mutex_lock(&dirty_i->seglist_lock); 447 448 valid_blocks = get_valid_blocks(sbi, segno, 0); 449 450 if (valid_blocks == 0) { 451 __locate_dirty_segment(sbi, segno, PRE); 452 __remove_dirty_segment(sbi, segno, DIRTY); 453 } else if (valid_blocks < sbi->blocks_per_seg) { 454 __locate_dirty_segment(sbi, segno, DIRTY); 455 } else { 456 /* Recovery routine with SSR needs this */ 457 __remove_dirty_segment(sbi, segno, DIRTY); 458 } 459 460 mutex_unlock(&dirty_i->seglist_lock); 461 } 462 463 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 464 block_t blkstart, block_t blklen) 465 { 466 sector_t start = SECTOR_FROM_BLOCK(blkstart); 467 sector_t len = SECTOR_FROM_BLOCK(blklen); 468 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 469 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 470 } 471 472 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 473 { 474 if (f2fs_issue_discard(sbi, blkaddr, 1)) { 475 struct page *page = grab_meta_page(sbi, blkaddr); 476 /* zero-filled page */ 477 set_page_dirty(page); 478 f2fs_put_page(page, 1); 479 } 480 } 481 482 static void __add_discard_entry(struct f2fs_sb_info *sbi, 483 struct cp_control *cpc, unsigned int start, unsigned int end) 484 { 485 struct list_head *head = &SM_I(sbi)->discard_list; 486 struct discard_entry *new, *last; 487 488 if (!list_empty(head)) { 489 last = list_last_entry(head, struct discard_entry, list); 490 if (START_BLOCK(sbi, cpc->trim_start) + start == 491 last->blkaddr + last->len) { 492 last->len += end - start; 493 goto done; 494 } 495 } 496 497 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 498 INIT_LIST_HEAD(&new->list); 499 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 500 new->len = end - start; 501 list_add_tail(&new->list, head); 502 done: 503 SM_I(sbi)->nr_discards += end - start; 504 cpc->trimmed += end - start; 505 } 506 507 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 508 { 509 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 510 int max_blocks = sbi->blocks_per_seg; 511 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 512 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 513 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 514 unsigned long dmap[entries]; 515 unsigned int start = 0, end = -1; 516 bool force = (cpc->reason == CP_DISCARD); 517 int i; 518 519 if (!force && !test_opt(sbi, DISCARD)) 520 return; 521 522 if (force && !se->valid_blocks) { 523 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 524 /* 525 * if this segment is registered in the prefree list, then 526 * we should skip adding a discard candidate, and let the 527 * checkpoint do that later. 528 */ 529 mutex_lock(&dirty_i->seglist_lock); 530 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) { 531 mutex_unlock(&dirty_i->seglist_lock); 532 cpc->trimmed += sbi->blocks_per_seg; 533 return; 534 } 535 mutex_unlock(&dirty_i->seglist_lock); 536 537 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg); 538 return; 539 } 540 541 /* zero block will be discarded through the prefree list */ 542 if (!se->valid_blocks || se->valid_blocks == max_blocks) 543 return; 544 545 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 546 for (i = 0; i < entries; i++) 547 dmap[i] = ~(cur_map[i] | ckpt_map[i]); 548 549 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 550 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 551 if (start >= max_blocks) 552 break; 553 554 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 555 556 if (end - start < cpc->trim_minlen) 557 continue; 558 559 __add_discard_entry(sbi, cpc, start, end); 560 } 561 } 562 563 void release_discard_addrs(struct f2fs_sb_info *sbi) 564 { 565 struct list_head *head = &(SM_I(sbi)->discard_list); 566 struct discard_entry *entry, *this; 567 568 /* drop caches */ 569 list_for_each_entry_safe(entry, this, head, list) { 570 list_del(&entry->list); 571 kmem_cache_free(discard_entry_slab, entry); 572 } 573 } 574 575 /* 576 * Should call clear_prefree_segments after checkpoint is done. 577 */ 578 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 579 { 580 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 581 unsigned int segno; 582 583 mutex_lock(&dirty_i->seglist_lock); 584 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 585 __set_test_and_free(sbi, segno); 586 mutex_unlock(&dirty_i->seglist_lock); 587 } 588 589 void clear_prefree_segments(struct f2fs_sb_info *sbi) 590 { 591 struct list_head *head = &(SM_I(sbi)->discard_list); 592 struct discard_entry *entry, *this; 593 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 594 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 595 unsigned int start = 0, end = -1; 596 597 mutex_lock(&dirty_i->seglist_lock); 598 599 while (1) { 600 int i; 601 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 602 if (start >= MAIN_SEGS(sbi)) 603 break; 604 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 605 start + 1); 606 607 for (i = start; i < end; i++) 608 clear_bit(i, prefree_map); 609 610 dirty_i->nr_dirty[PRE] -= end - start; 611 612 if (!test_opt(sbi, DISCARD)) 613 continue; 614 615 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 616 (end - start) << sbi->log_blocks_per_seg); 617 } 618 mutex_unlock(&dirty_i->seglist_lock); 619 620 /* send small discards */ 621 list_for_each_entry_safe(entry, this, head, list) { 622 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 623 list_del(&entry->list); 624 SM_I(sbi)->nr_discards -= entry->len; 625 kmem_cache_free(discard_entry_slab, entry); 626 } 627 } 628 629 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 630 { 631 struct sit_info *sit_i = SIT_I(sbi); 632 633 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 634 sit_i->dirty_sentries++; 635 return false; 636 } 637 638 return true; 639 } 640 641 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 642 unsigned int segno, int modified) 643 { 644 struct seg_entry *se = get_seg_entry(sbi, segno); 645 se->type = type; 646 if (modified) 647 __mark_sit_entry_dirty(sbi, segno); 648 } 649 650 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 651 { 652 struct seg_entry *se; 653 unsigned int segno, offset; 654 long int new_vblocks; 655 656 segno = GET_SEGNO(sbi, blkaddr); 657 658 se = get_seg_entry(sbi, segno); 659 new_vblocks = se->valid_blocks + del; 660 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 661 662 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 663 (new_vblocks > sbi->blocks_per_seg))); 664 665 se->valid_blocks = new_vblocks; 666 se->mtime = get_mtime(sbi); 667 SIT_I(sbi)->max_mtime = se->mtime; 668 669 /* Update valid block bitmap */ 670 if (del > 0) { 671 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 672 f2fs_bug_on(sbi, 1); 673 } else { 674 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 675 f2fs_bug_on(sbi, 1); 676 } 677 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 678 se->ckpt_valid_blocks += del; 679 680 __mark_sit_entry_dirty(sbi, segno); 681 682 /* update total number of valid blocks to be written in ckpt area */ 683 SIT_I(sbi)->written_valid_blocks += del; 684 685 if (sbi->segs_per_sec > 1) 686 get_sec_entry(sbi, segno)->valid_blocks += del; 687 } 688 689 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 690 { 691 update_sit_entry(sbi, new, 1); 692 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 693 update_sit_entry(sbi, old, -1); 694 695 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 696 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 697 } 698 699 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 700 { 701 unsigned int segno = GET_SEGNO(sbi, addr); 702 struct sit_info *sit_i = SIT_I(sbi); 703 704 f2fs_bug_on(sbi, addr == NULL_ADDR); 705 if (addr == NEW_ADDR) 706 return; 707 708 /* add it into sit main buffer */ 709 mutex_lock(&sit_i->sentry_lock); 710 711 update_sit_entry(sbi, addr, -1); 712 713 /* add it into dirty seglist */ 714 locate_dirty_segment(sbi, segno); 715 716 mutex_unlock(&sit_i->sentry_lock); 717 } 718 719 /* 720 * This function should be resided under the curseg_mutex lock 721 */ 722 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 723 struct f2fs_summary *sum) 724 { 725 struct curseg_info *curseg = CURSEG_I(sbi, type); 726 void *addr = curseg->sum_blk; 727 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 728 memcpy(addr, sum, sizeof(struct f2fs_summary)); 729 } 730 731 /* 732 * Calculate the number of current summary pages for writing 733 */ 734 int npages_for_summary_flush(struct f2fs_sb_info *sbi) 735 { 736 int valid_sum_count = 0; 737 int i, sum_in_page; 738 739 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 740 if (sbi->ckpt->alloc_type[i] == SSR) 741 valid_sum_count += sbi->blocks_per_seg; 742 else 743 valid_sum_count += curseg_blkoff(sbi, i); 744 } 745 746 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 747 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 748 if (valid_sum_count <= sum_in_page) 749 return 1; 750 else if ((valid_sum_count - sum_in_page) <= 751 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 752 return 2; 753 return 3; 754 } 755 756 /* 757 * Caller should put this summary page 758 */ 759 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 760 { 761 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 762 } 763 764 static void write_sum_page(struct f2fs_sb_info *sbi, 765 struct f2fs_summary_block *sum_blk, block_t blk_addr) 766 { 767 struct page *page = grab_meta_page(sbi, blk_addr); 768 void *kaddr = page_address(page); 769 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); 770 set_page_dirty(page); 771 f2fs_put_page(page, 1); 772 } 773 774 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 775 { 776 struct curseg_info *curseg = CURSEG_I(sbi, type); 777 unsigned int segno = curseg->segno + 1; 778 struct free_segmap_info *free_i = FREE_I(sbi); 779 780 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 781 return !test_bit(segno, free_i->free_segmap); 782 return 0; 783 } 784 785 /* 786 * Find a new segment from the free segments bitmap to right order 787 * This function should be returned with success, otherwise BUG 788 */ 789 static void get_new_segment(struct f2fs_sb_info *sbi, 790 unsigned int *newseg, bool new_sec, int dir) 791 { 792 struct free_segmap_info *free_i = FREE_I(sbi); 793 unsigned int segno, secno, zoneno; 794 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 795 unsigned int hint = *newseg / sbi->segs_per_sec; 796 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 797 unsigned int left_start = hint; 798 bool init = true; 799 int go_left = 0; 800 int i; 801 802 write_lock(&free_i->segmap_lock); 803 804 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 805 segno = find_next_zero_bit(free_i->free_segmap, 806 MAIN_SEGS(sbi), *newseg + 1); 807 if (segno - *newseg < sbi->segs_per_sec - 808 (*newseg % sbi->segs_per_sec)) 809 goto got_it; 810 } 811 find_other_zone: 812 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 813 if (secno >= MAIN_SECS(sbi)) { 814 if (dir == ALLOC_RIGHT) { 815 secno = find_next_zero_bit(free_i->free_secmap, 816 MAIN_SECS(sbi), 0); 817 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 818 } else { 819 go_left = 1; 820 left_start = hint - 1; 821 } 822 } 823 if (go_left == 0) 824 goto skip_left; 825 826 while (test_bit(left_start, free_i->free_secmap)) { 827 if (left_start > 0) { 828 left_start--; 829 continue; 830 } 831 left_start = find_next_zero_bit(free_i->free_secmap, 832 MAIN_SECS(sbi), 0); 833 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 834 break; 835 } 836 secno = left_start; 837 skip_left: 838 hint = secno; 839 segno = secno * sbi->segs_per_sec; 840 zoneno = secno / sbi->secs_per_zone; 841 842 /* give up on finding another zone */ 843 if (!init) 844 goto got_it; 845 if (sbi->secs_per_zone == 1) 846 goto got_it; 847 if (zoneno == old_zoneno) 848 goto got_it; 849 if (dir == ALLOC_LEFT) { 850 if (!go_left && zoneno + 1 >= total_zones) 851 goto got_it; 852 if (go_left && zoneno == 0) 853 goto got_it; 854 } 855 for (i = 0; i < NR_CURSEG_TYPE; i++) 856 if (CURSEG_I(sbi, i)->zone == zoneno) 857 break; 858 859 if (i < NR_CURSEG_TYPE) { 860 /* zone is in user, try another */ 861 if (go_left) 862 hint = zoneno * sbi->secs_per_zone - 1; 863 else if (zoneno + 1 >= total_zones) 864 hint = 0; 865 else 866 hint = (zoneno + 1) * sbi->secs_per_zone; 867 init = false; 868 goto find_other_zone; 869 } 870 got_it: 871 /* set it as dirty segment in free segmap */ 872 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 873 __set_inuse(sbi, segno); 874 *newseg = segno; 875 write_unlock(&free_i->segmap_lock); 876 } 877 878 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 879 { 880 struct curseg_info *curseg = CURSEG_I(sbi, type); 881 struct summary_footer *sum_footer; 882 883 curseg->segno = curseg->next_segno; 884 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 885 curseg->next_blkoff = 0; 886 curseg->next_segno = NULL_SEGNO; 887 888 sum_footer = &(curseg->sum_blk->footer); 889 memset(sum_footer, 0, sizeof(struct summary_footer)); 890 if (IS_DATASEG(type)) 891 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 892 if (IS_NODESEG(type)) 893 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 894 __set_sit_entry_type(sbi, type, curseg->segno, modified); 895 } 896 897 /* 898 * Allocate a current working segment. 899 * This function always allocates a free segment in LFS manner. 900 */ 901 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 902 { 903 struct curseg_info *curseg = CURSEG_I(sbi, type); 904 unsigned int segno = curseg->segno; 905 int dir = ALLOC_LEFT; 906 907 write_sum_page(sbi, curseg->sum_blk, 908 GET_SUM_BLOCK(sbi, segno)); 909 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 910 dir = ALLOC_RIGHT; 911 912 if (test_opt(sbi, NOHEAP)) 913 dir = ALLOC_RIGHT; 914 915 get_new_segment(sbi, &segno, new_sec, dir); 916 curseg->next_segno = segno; 917 reset_curseg(sbi, type, 1); 918 curseg->alloc_type = LFS; 919 } 920 921 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 922 struct curseg_info *seg, block_t start) 923 { 924 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 925 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 926 unsigned long target_map[entries]; 927 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 928 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 929 int i, pos; 930 931 for (i = 0; i < entries; i++) 932 target_map[i] = ckpt_map[i] | cur_map[i]; 933 934 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 935 936 seg->next_blkoff = pos; 937 } 938 939 /* 940 * If a segment is written by LFS manner, next block offset is just obtained 941 * by increasing the current block offset. However, if a segment is written by 942 * SSR manner, next block offset obtained by calling __next_free_blkoff 943 */ 944 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 945 struct curseg_info *seg) 946 { 947 if (seg->alloc_type == SSR) 948 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 949 else 950 seg->next_blkoff++; 951 } 952 953 /* 954 * This function always allocates a used segment(from dirty seglist) by SSR 955 * manner, so it should recover the existing segment information of valid blocks 956 */ 957 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 958 { 959 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 960 struct curseg_info *curseg = CURSEG_I(sbi, type); 961 unsigned int new_segno = curseg->next_segno; 962 struct f2fs_summary_block *sum_node; 963 struct page *sum_page; 964 965 write_sum_page(sbi, curseg->sum_blk, 966 GET_SUM_BLOCK(sbi, curseg->segno)); 967 __set_test_and_inuse(sbi, new_segno); 968 969 mutex_lock(&dirty_i->seglist_lock); 970 __remove_dirty_segment(sbi, new_segno, PRE); 971 __remove_dirty_segment(sbi, new_segno, DIRTY); 972 mutex_unlock(&dirty_i->seglist_lock); 973 974 reset_curseg(sbi, type, 1); 975 curseg->alloc_type = SSR; 976 __next_free_blkoff(sbi, curseg, 0); 977 978 if (reuse) { 979 sum_page = get_sum_page(sbi, new_segno); 980 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 981 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 982 f2fs_put_page(sum_page, 1); 983 } 984 } 985 986 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 987 { 988 struct curseg_info *curseg = CURSEG_I(sbi, type); 989 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 990 991 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 992 return v_ops->get_victim(sbi, 993 &(curseg)->next_segno, BG_GC, type, SSR); 994 995 /* For data segments, let's do SSR more intensively */ 996 for (; type >= CURSEG_HOT_DATA; type--) 997 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 998 BG_GC, type, SSR)) 999 return 1; 1000 return 0; 1001 } 1002 1003 /* 1004 * flush out current segment and replace it with new segment 1005 * This function should be returned with success, otherwise BUG 1006 */ 1007 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1008 int type, bool force) 1009 { 1010 struct curseg_info *curseg = CURSEG_I(sbi, type); 1011 1012 if (force) 1013 new_curseg(sbi, type, true); 1014 else if (type == CURSEG_WARM_NODE) 1015 new_curseg(sbi, type, false); 1016 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1017 new_curseg(sbi, type, false); 1018 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1019 change_curseg(sbi, type, true); 1020 else 1021 new_curseg(sbi, type, false); 1022 1023 stat_inc_seg_type(sbi, curseg); 1024 } 1025 1026 void allocate_new_segments(struct f2fs_sb_info *sbi) 1027 { 1028 struct curseg_info *curseg; 1029 unsigned int old_curseg; 1030 int i; 1031 1032 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1033 curseg = CURSEG_I(sbi, i); 1034 old_curseg = curseg->segno; 1035 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1036 locate_dirty_segment(sbi, old_curseg); 1037 } 1038 } 1039 1040 static const struct segment_allocation default_salloc_ops = { 1041 .allocate_segment = allocate_segment_by_default, 1042 }; 1043 1044 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1045 { 1046 __u64 start = range->start >> sbi->log_blocksize; 1047 __u64 end = start + (range->len >> sbi->log_blocksize) - 1; 1048 unsigned int start_segno, end_segno; 1049 struct cp_control cpc; 1050 1051 if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) || 1052 range->len < sbi->blocksize) 1053 return -EINVAL; 1054 1055 cpc.trimmed = 0; 1056 if (end <= MAIN_BLKADDR(sbi)) 1057 goto out; 1058 1059 /* start/end segment number in main_area */ 1060 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1061 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1062 GET_SEGNO(sbi, end); 1063 cpc.reason = CP_DISCARD; 1064 cpc.trim_start = start_segno; 1065 cpc.trim_end = end_segno; 1066 cpc.trim_minlen = range->minlen >> sbi->log_blocksize; 1067 1068 /* do checkpoint to issue discard commands safely */ 1069 mutex_lock(&sbi->gc_mutex); 1070 write_checkpoint(sbi, &cpc); 1071 mutex_unlock(&sbi->gc_mutex); 1072 out: 1073 range->len = cpc.trimmed << sbi->log_blocksize; 1074 return 0; 1075 } 1076 1077 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1078 { 1079 struct curseg_info *curseg = CURSEG_I(sbi, type); 1080 if (curseg->next_blkoff < sbi->blocks_per_seg) 1081 return true; 1082 return false; 1083 } 1084 1085 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1086 { 1087 if (p_type == DATA) 1088 return CURSEG_HOT_DATA; 1089 else 1090 return CURSEG_HOT_NODE; 1091 } 1092 1093 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1094 { 1095 if (p_type == DATA) { 1096 struct inode *inode = page->mapping->host; 1097 1098 if (S_ISDIR(inode->i_mode)) 1099 return CURSEG_HOT_DATA; 1100 else 1101 return CURSEG_COLD_DATA; 1102 } else { 1103 if (IS_DNODE(page) && is_cold_node(page)) 1104 return CURSEG_WARM_NODE; 1105 else 1106 return CURSEG_COLD_NODE; 1107 } 1108 } 1109 1110 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1111 { 1112 if (p_type == DATA) { 1113 struct inode *inode = page->mapping->host; 1114 1115 if (S_ISDIR(inode->i_mode)) 1116 return CURSEG_HOT_DATA; 1117 else if (is_cold_data(page) || file_is_cold(inode)) 1118 return CURSEG_COLD_DATA; 1119 else 1120 return CURSEG_WARM_DATA; 1121 } else { 1122 if (IS_DNODE(page)) 1123 return is_cold_node(page) ? CURSEG_WARM_NODE : 1124 CURSEG_HOT_NODE; 1125 else 1126 return CURSEG_COLD_NODE; 1127 } 1128 } 1129 1130 static int __get_segment_type(struct page *page, enum page_type p_type) 1131 { 1132 switch (F2FS_P_SB(page)->active_logs) { 1133 case 2: 1134 return __get_segment_type_2(page, p_type); 1135 case 4: 1136 return __get_segment_type_4(page, p_type); 1137 } 1138 /* NR_CURSEG_TYPE(6) logs by default */ 1139 f2fs_bug_on(F2FS_P_SB(page), 1140 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1141 return __get_segment_type_6(page, p_type); 1142 } 1143 1144 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1145 block_t old_blkaddr, block_t *new_blkaddr, 1146 struct f2fs_summary *sum, int type) 1147 { 1148 struct sit_info *sit_i = SIT_I(sbi); 1149 struct curseg_info *curseg; 1150 1151 curseg = CURSEG_I(sbi, type); 1152 1153 mutex_lock(&curseg->curseg_mutex); 1154 1155 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1156 1157 /* 1158 * __add_sum_entry should be resided under the curseg_mutex 1159 * because, this function updates a summary entry in the 1160 * current summary block. 1161 */ 1162 __add_sum_entry(sbi, type, sum); 1163 1164 mutex_lock(&sit_i->sentry_lock); 1165 __refresh_next_blkoff(sbi, curseg); 1166 1167 stat_inc_block_count(sbi, curseg); 1168 1169 if (!__has_curseg_space(sbi, type)) 1170 sit_i->s_ops->allocate_segment(sbi, type, false); 1171 /* 1172 * SIT information should be updated before segment allocation, 1173 * since SSR needs latest valid block information. 1174 */ 1175 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1176 1177 mutex_unlock(&sit_i->sentry_lock); 1178 1179 if (page && IS_NODESEG(type)) 1180 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1181 1182 mutex_unlock(&curseg->curseg_mutex); 1183 } 1184 1185 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, 1186 block_t old_blkaddr, block_t *new_blkaddr, 1187 struct f2fs_summary *sum, struct f2fs_io_info *fio) 1188 { 1189 int type = __get_segment_type(page, fio->type); 1190 1191 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type); 1192 1193 /* writeout dirty page into bdev */ 1194 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio); 1195 } 1196 1197 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1198 { 1199 struct f2fs_io_info fio = { 1200 .type = META, 1201 .rw = WRITE_SYNC | REQ_META | REQ_PRIO 1202 }; 1203 1204 set_page_writeback(page); 1205 f2fs_submit_page_mbio(sbi, page, page->index, &fio); 1206 } 1207 1208 void write_node_page(struct f2fs_sb_info *sbi, struct page *page, 1209 struct f2fs_io_info *fio, 1210 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) 1211 { 1212 struct f2fs_summary sum; 1213 set_summary(&sum, nid, 0, 0); 1214 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio); 1215 } 1216 1217 void write_data_page(struct page *page, struct dnode_of_data *dn, 1218 block_t *new_blkaddr, struct f2fs_io_info *fio) 1219 { 1220 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1221 struct f2fs_summary sum; 1222 struct node_info ni; 1223 1224 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1225 get_node_info(sbi, dn->nid, &ni); 1226 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1227 1228 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio); 1229 } 1230 1231 void rewrite_data_page(struct page *page, block_t old_blkaddr, 1232 struct f2fs_io_info *fio) 1233 { 1234 f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio); 1235 } 1236 1237 void recover_data_page(struct f2fs_sb_info *sbi, 1238 struct page *page, struct f2fs_summary *sum, 1239 block_t old_blkaddr, block_t new_blkaddr) 1240 { 1241 struct sit_info *sit_i = SIT_I(sbi); 1242 struct curseg_info *curseg; 1243 unsigned int segno, old_cursegno; 1244 struct seg_entry *se; 1245 int type; 1246 1247 segno = GET_SEGNO(sbi, new_blkaddr); 1248 se = get_seg_entry(sbi, segno); 1249 type = se->type; 1250 1251 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1252 if (old_blkaddr == NULL_ADDR) 1253 type = CURSEG_COLD_DATA; 1254 else 1255 type = CURSEG_WARM_DATA; 1256 } 1257 curseg = CURSEG_I(sbi, type); 1258 1259 mutex_lock(&curseg->curseg_mutex); 1260 mutex_lock(&sit_i->sentry_lock); 1261 1262 old_cursegno = curseg->segno; 1263 1264 /* change the current segment */ 1265 if (segno != curseg->segno) { 1266 curseg->next_segno = segno; 1267 change_curseg(sbi, type, true); 1268 } 1269 1270 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1271 __add_sum_entry(sbi, type, sum); 1272 1273 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1274 locate_dirty_segment(sbi, old_cursegno); 1275 1276 mutex_unlock(&sit_i->sentry_lock); 1277 mutex_unlock(&curseg->curseg_mutex); 1278 } 1279 1280 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1281 struct page *page, enum page_type type) 1282 { 1283 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1284 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1285 struct bio_vec *bvec; 1286 int i; 1287 1288 down_read(&io->io_rwsem); 1289 if (!io->bio) 1290 goto out; 1291 1292 bio_for_each_segment_all(bvec, io->bio, i) { 1293 if (page == bvec->bv_page) { 1294 up_read(&io->io_rwsem); 1295 return true; 1296 } 1297 } 1298 1299 out: 1300 up_read(&io->io_rwsem); 1301 return false; 1302 } 1303 1304 void f2fs_wait_on_page_writeback(struct page *page, 1305 enum page_type type) 1306 { 1307 if (PageWriteback(page)) { 1308 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1309 1310 if (is_merged_page(sbi, page, type)) 1311 f2fs_submit_merged_bio(sbi, type, WRITE); 1312 wait_on_page_writeback(page); 1313 } 1314 } 1315 1316 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1317 { 1318 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1319 struct curseg_info *seg_i; 1320 unsigned char *kaddr; 1321 struct page *page; 1322 block_t start; 1323 int i, j, offset; 1324 1325 start = start_sum_block(sbi); 1326 1327 page = get_meta_page(sbi, start++); 1328 kaddr = (unsigned char *)page_address(page); 1329 1330 /* Step 1: restore nat cache */ 1331 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1332 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1333 1334 /* Step 2: restore sit cache */ 1335 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1336 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1337 SUM_JOURNAL_SIZE); 1338 offset = 2 * SUM_JOURNAL_SIZE; 1339 1340 /* Step 3: restore summary entries */ 1341 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1342 unsigned short blk_off; 1343 unsigned int segno; 1344 1345 seg_i = CURSEG_I(sbi, i); 1346 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1347 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1348 seg_i->next_segno = segno; 1349 reset_curseg(sbi, i, 0); 1350 seg_i->alloc_type = ckpt->alloc_type[i]; 1351 seg_i->next_blkoff = blk_off; 1352 1353 if (seg_i->alloc_type == SSR) 1354 blk_off = sbi->blocks_per_seg; 1355 1356 for (j = 0; j < blk_off; j++) { 1357 struct f2fs_summary *s; 1358 s = (struct f2fs_summary *)(kaddr + offset); 1359 seg_i->sum_blk->entries[j] = *s; 1360 offset += SUMMARY_SIZE; 1361 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1362 SUM_FOOTER_SIZE) 1363 continue; 1364 1365 f2fs_put_page(page, 1); 1366 page = NULL; 1367 1368 page = get_meta_page(sbi, start++); 1369 kaddr = (unsigned char *)page_address(page); 1370 offset = 0; 1371 } 1372 } 1373 f2fs_put_page(page, 1); 1374 return 0; 1375 } 1376 1377 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1378 { 1379 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1380 struct f2fs_summary_block *sum; 1381 struct curseg_info *curseg; 1382 struct page *new; 1383 unsigned short blk_off; 1384 unsigned int segno = 0; 1385 block_t blk_addr = 0; 1386 1387 /* get segment number and block addr */ 1388 if (IS_DATASEG(type)) { 1389 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1390 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1391 CURSEG_HOT_DATA]); 1392 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1393 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1394 else 1395 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1396 } else { 1397 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1398 CURSEG_HOT_NODE]); 1399 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1400 CURSEG_HOT_NODE]); 1401 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1402 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1403 type - CURSEG_HOT_NODE); 1404 else 1405 blk_addr = GET_SUM_BLOCK(sbi, segno); 1406 } 1407 1408 new = get_meta_page(sbi, blk_addr); 1409 sum = (struct f2fs_summary_block *)page_address(new); 1410 1411 if (IS_NODESEG(type)) { 1412 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { 1413 struct f2fs_summary *ns = &sum->entries[0]; 1414 int i; 1415 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1416 ns->version = 0; 1417 ns->ofs_in_node = 0; 1418 } 1419 } else { 1420 int err; 1421 1422 err = restore_node_summary(sbi, segno, sum); 1423 if (err) { 1424 f2fs_put_page(new, 1); 1425 return err; 1426 } 1427 } 1428 } 1429 1430 /* set uncompleted segment to curseg */ 1431 curseg = CURSEG_I(sbi, type); 1432 mutex_lock(&curseg->curseg_mutex); 1433 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1434 curseg->next_segno = segno; 1435 reset_curseg(sbi, type, 0); 1436 curseg->alloc_type = ckpt->alloc_type[type]; 1437 curseg->next_blkoff = blk_off; 1438 mutex_unlock(&curseg->curseg_mutex); 1439 f2fs_put_page(new, 1); 1440 return 0; 1441 } 1442 1443 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1444 { 1445 int type = CURSEG_HOT_DATA; 1446 int err; 1447 1448 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1449 /* restore for compacted data summary */ 1450 if (read_compacted_summaries(sbi)) 1451 return -EINVAL; 1452 type = CURSEG_HOT_NODE; 1453 } 1454 1455 for (; type <= CURSEG_COLD_NODE; type++) { 1456 err = read_normal_summaries(sbi, type); 1457 if (err) 1458 return err; 1459 } 1460 1461 return 0; 1462 } 1463 1464 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1465 { 1466 struct page *page; 1467 unsigned char *kaddr; 1468 struct f2fs_summary *summary; 1469 struct curseg_info *seg_i; 1470 int written_size = 0; 1471 int i, j; 1472 1473 page = grab_meta_page(sbi, blkaddr++); 1474 kaddr = (unsigned char *)page_address(page); 1475 1476 /* Step 1: write nat cache */ 1477 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1478 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1479 written_size += SUM_JOURNAL_SIZE; 1480 1481 /* Step 2: write sit cache */ 1482 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1483 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1484 SUM_JOURNAL_SIZE); 1485 written_size += SUM_JOURNAL_SIZE; 1486 1487 /* Step 3: write summary entries */ 1488 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1489 unsigned short blkoff; 1490 seg_i = CURSEG_I(sbi, i); 1491 if (sbi->ckpt->alloc_type[i] == SSR) 1492 blkoff = sbi->blocks_per_seg; 1493 else 1494 blkoff = curseg_blkoff(sbi, i); 1495 1496 for (j = 0; j < blkoff; j++) { 1497 if (!page) { 1498 page = grab_meta_page(sbi, blkaddr++); 1499 kaddr = (unsigned char *)page_address(page); 1500 written_size = 0; 1501 } 1502 summary = (struct f2fs_summary *)(kaddr + written_size); 1503 *summary = seg_i->sum_blk->entries[j]; 1504 written_size += SUMMARY_SIZE; 1505 1506 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1507 SUM_FOOTER_SIZE) 1508 continue; 1509 1510 set_page_dirty(page); 1511 f2fs_put_page(page, 1); 1512 page = NULL; 1513 } 1514 } 1515 if (page) { 1516 set_page_dirty(page); 1517 f2fs_put_page(page, 1); 1518 } 1519 } 1520 1521 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1522 block_t blkaddr, int type) 1523 { 1524 int i, end; 1525 if (IS_DATASEG(type)) 1526 end = type + NR_CURSEG_DATA_TYPE; 1527 else 1528 end = type + NR_CURSEG_NODE_TYPE; 1529 1530 for (i = type; i < end; i++) { 1531 struct curseg_info *sum = CURSEG_I(sbi, i); 1532 mutex_lock(&sum->curseg_mutex); 1533 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1534 mutex_unlock(&sum->curseg_mutex); 1535 } 1536 } 1537 1538 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1539 { 1540 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1541 write_compacted_summaries(sbi, start_blk); 1542 else 1543 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1544 } 1545 1546 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1547 { 1548 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) 1549 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1550 } 1551 1552 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1553 unsigned int val, int alloc) 1554 { 1555 int i; 1556 1557 if (type == NAT_JOURNAL) { 1558 for (i = 0; i < nats_in_cursum(sum); i++) { 1559 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1560 return i; 1561 } 1562 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1563 return update_nats_in_cursum(sum, 1); 1564 } else if (type == SIT_JOURNAL) { 1565 for (i = 0; i < sits_in_cursum(sum); i++) 1566 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1567 return i; 1568 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1569 return update_sits_in_cursum(sum, 1); 1570 } 1571 return -1; 1572 } 1573 1574 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1575 unsigned int segno) 1576 { 1577 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1578 } 1579 1580 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1581 unsigned int start) 1582 { 1583 struct sit_info *sit_i = SIT_I(sbi); 1584 struct page *src_page, *dst_page; 1585 pgoff_t src_off, dst_off; 1586 void *src_addr, *dst_addr; 1587 1588 src_off = current_sit_addr(sbi, start); 1589 dst_off = next_sit_addr(sbi, src_off); 1590 1591 /* get current sit block page without lock */ 1592 src_page = get_meta_page(sbi, src_off); 1593 dst_page = grab_meta_page(sbi, dst_off); 1594 f2fs_bug_on(sbi, PageDirty(src_page)); 1595 1596 src_addr = page_address(src_page); 1597 dst_addr = page_address(dst_page); 1598 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1599 1600 set_page_dirty(dst_page); 1601 f2fs_put_page(src_page, 1); 1602 1603 set_to_next_sit(sit_i, start); 1604 1605 return dst_page; 1606 } 1607 1608 static struct sit_entry_set *grab_sit_entry_set(void) 1609 { 1610 struct sit_entry_set *ses = 1611 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC); 1612 1613 ses->entry_cnt = 0; 1614 INIT_LIST_HEAD(&ses->set_list); 1615 return ses; 1616 } 1617 1618 static void release_sit_entry_set(struct sit_entry_set *ses) 1619 { 1620 list_del(&ses->set_list); 1621 kmem_cache_free(sit_entry_set_slab, ses); 1622 } 1623 1624 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1625 struct list_head *head) 1626 { 1627 struct sit_entry_set *next = ses; 1628 1629 if (list_is_last(&ses->set_list, head)) 1630 return; 1631 1632 list_for_each_entry_continue(next, head, set_list) 1633 if (ses->entry_cnt <= next->entry_cnt) 1634 break; 1635 1636 list_move_tail(&ses->set_list, &next->set_list); 1637 } 1638 1639 static void add_sit_entry(unsigned int segno, struct list_head *head) 1640 { 1641 struct sit_entry_set *ses; 1642 unsigned int start_segno = START_SEGNO(segno); 1643 1644 list_for_each_entry(ses, head, set_list) { 1645 if (ses->start_segno == start_segno) { 1646 ses->entry_cnt++; 1647 adjust_sit_entry_set(ses, head); 1648 return; 1649 } 1650 } 1651 1652 ses = grab_sit_entry_set(); 1653 1654 ses->start_segno = start_segno; 1655 ses->entry_cnt++; 1656 list_add(&ses->set_list, head); 1657 } 1658 1659 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1660 { 1661 struct f2fs_sm_info *sm_info = SM_I(sbi); 1662 struct list_head *set_list = &sm_info->sit_entry_set; 1663 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1664 unsigned int segno; 1665 1666 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1667 add_sit_entry(segno, set_list); 1668 } 1669 1670 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1671 { 1672 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1673 struct f2fs_summary_block *sum = curseg->sum_blk; 1674 int i; 1675 1676 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1677 unsigned int segno; 1678 bool dirtied; 1679 1680 segno = le32_to_cpu(segno_in_journal(sum, i)); 1681 dirtied = __mark_sit_entry_dirty(sbi, segno); 1682 1683 if (!dirtied) 1684 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1685 } 1686 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1687 } 1688 1689 /* 1690 * CP calls this function, which flushes SIT entries including sit_journal, 1691 * and moves prefree segs to free segs. 1692 */ 1693 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1694 { 1695 struct sit_info *sit_i = SIT_I(sbi); 1696 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1697 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1698 struct f2fs_summary_block *sum = curseg->sum_blk; 1699 struct sit_entry_set *ses, *tmp; 1700 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1701 bool to_journal = true; 1702 struct seg_entry *se; 1703 1704 mutex_lock(&curseg->curseg_mutex); 1705 mutex_lock(&sit_i->sentry_lock); 1706 1707 /* 1708 * add and account sit entries of dirty bitmap in sit entry 1709 * set temporarily 1710 */ 1711 add_sits_in_set(sbi); 1712 1713 /* 1714 * if there are no enough space in journal to store dirty sit 1715 * entries, remove all entries from journal and add and account 1716 * them in sit entry set. 1717 */ 1718 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL)) 1719 remove_sits_in_journal(sbi); 1720 1721 if (!sit_i->dirty_sentries) 1722 goto out; 1723 1724 /* 1725 * there are two steps to flush sit entries: 1726 * #1, flush sit entries to journal in current cold data summary block. 1727 * #2, flush sit entries to sit page. 1728 */ 1729 list_for_each_entry_safe(ses, tmp, head, set_list) { 1730 struct page *page = NULL; 1731 struct f2fs_sit_block *raw_sit = NULL; 1732 unsigned int start_segno = ses->start_segno; 1733 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1734 (unsigned long)MAIN_SEGS(sbi)); 1735 unsigned int segno = start_segno; 1736 1737 if (to_journal && 1738 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL)) 1739 to_journal = false; 1740 1741 if (!to_journal) { 1742 page = get_next_sit_page(sbi, start_segno); 1743 raw_sit = page_address(page); 1744 } 1745 1746 /* flush dirty sit entries in region of current sit set */ 1747 for_each_set_bit_from(segno, bitmap, end) { 1748 int offset, sit_offset; 1749 1750 se = get_seg_entry(sbi, segno); 1751 1752 /* add discard candidates */ 1753 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards) { 1754 cpc->trim_start = segno; 1755 add_discard_addrs(sbi, cpc); 1756 } 1757 1758 if (to_journal) { 1759 offset = lookup_journal_in_cursum(sum, 1760 SIT_JOURNAL, segno, 1); 1761 f2fs_bug_on(sbi, offset < 0); 1762 segno_in_journal(sum, offset) = 1763 cpu_to_le32(segno); 1764 seg_info_to_raw_sit(se, 1765 &sit_in_journal(sum, offset)); 1766 } else { 1767 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1768 seg_info_to_raw_sit(se, 1769 &raw_sit->entries[sit_offset]); 1770 } 1771 1772 __clear_bit(segno, bitmap); 1773 sit_i->dirty_sentries--; 1774 ses->entry_cnt--; 1775 } 1776 1777 if (!to_journal) 1778 f2fs_put_page(page, 1); 1779 1780 f2fs_bug_on(sbi, ses->entry_cnt); 1781 release_sit_entry_set(ses); 1782 } 1783 1784 f2fs_bug_on(sbi, !list_empty(head)); 1785 f2fs_bug_on(sbi, sit_i->dirty_sentries); 1786 out: 1787 if (cpc->reason == CP_DISCARD) { 1788 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 1789 add_discard_addrs(sbi, cpc); 1790 } 1791 mutex_unlock(&sit_i->sentry_lock); 1792 mutex_unlock(&curseg->curseg_mutex); 1793 1794 set_prefree_as_free_segments(sbi); 1795 } 1796 1797 static int build_sit_info(struct f2fs_sb_info *sbi) 1798 { 1799 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1800 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1801 struct sit_info *sit_i; 1802 unsigned int sit_segs, start; 1803 char *src_bitmap, *dst_bitmap; 1804 unsigned int bitmap_size; 1805 1806 /* allocate memory for SIT information */ 1807 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1808 if (!sit_i) 1809 return -ENOMEM; 1810 1811 SM_I(sbi)->sit_info = sit_i; 1812 1813 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry)); 1814 if (!sit_i->sentries) 1815 return -ENOMEM; 1816 1817 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1818 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1819 if (!sit_i->dirty_sentries_bitmap) 1820 return -ENOMEM; 1821 1822 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1823 sit_i->sentries[start].cur_valid_map 1824 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1825 sit_i->sentries[start].ckpt_valid_map 1826 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1827 if (!sit_i->sentries[start].cur_valid_map 1828 || !sit_i->sentries[start].ckpt_valid_map) 1829 return -ENOMEM; 1830 } 1831 1832 if (sbi->segs_per_sec > 1) { 1833 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) * 1834 sizeof(struct sec_entry)); 1835 if (!sit_i->sec_entries) 1836 return -ENOMEM; 1837 } 1838 1839 /* get information related with SIT */ 1840 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1841 1842 /* setup SIT bitmap from ckeckpoint pack */ 1843 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1844 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1845 1846 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1847 if (!dst_bitmap) 1848 return -ENOMEM; 1849 1850 /* init SIT information */ 1851 sit_i->s_ops = &default_salloc_ops; 1852 1853 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1854 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1855 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1856 sit_i->sit_bitmap = dst_bitmap; 1857 sit_i->bitmap_size = bitmap_size; 1858 sit_i->dirty_sentries = 0; 1859 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1860 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1861 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1862 mutex_init(&sit_i->sentry_lock); 1863 return 0; 1864 } 1865 1866 static int build_free_segmap(struct f2fs_sb_info *sbi) 1867 { 1868 struct free_segmap_info *free_i; 1869 unsigned int bitmap_size, sec_bitmap_size; 1870 1871 /* allocate memory for free segmap information */ 1872 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 1873 if (!free_i) 1874 return -ENOMEM; 1875 1876 SM_I(sbi)->free_info = free_i; 1877 1878 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1879 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 1880 if (!free_i->free_segmap) 1881 return -ENOMEM; 1882 1883 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 1884 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 1885 if (!free_i->free_secmap) 1886 return -ENOMEM; 1887 1888 /* set all segments as dirty temporarily */ 1889 memset(free_i->free_segmap, 0xff, bitmap_size); 1890 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 1891 1892 /* init free segmap information */ 1893 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 1894 free_i->free_segments = 0; 1895 free_i->free_sections = 0; 1896 rwlock_init(&free_i->segmap_lock); 1897 return 0; 1898 } 1899 1900 static int build_curseg(struct f2fs_sb_info *sbi) 1901 { 1902 struct curseg_info *array; 1903 int i; 1904 1905 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 1906 if (!array) 1907 return -ENOMEM; 1908 1909 SM_I(sbi)->curseg_array = array; 1910 1911 for (i = 0; i < NR_CURSEG_TYPE; i++) { 1912 mutex_init(&array[i].curseg_mutex); 1913 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 1914 if (!array[i].sum_blk) 1915 return -ENOMEM; 1916 array[i].segno = NULL_SEGNO; 1917 array[i].next_blkoff = 0; 1918 } 1919 return restore_curseg_summaries(sbi); 1920 } 1921 1922 static void build_sit_entries(struct f2fs_sb_info *sbi) 1923 { 1924 struct sit_info *sit_i = SIT_I(sbi); 1925 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1926 struct f2fs_summary_block *sum = curseg->sum_blk; 1927 int sit_blk_cnt = SIT_BLK_CNT(sbi); 1928 unsigned int i, start, end; 1929 unsigned int readed, start_blk = 0; 1930 int nrpages = MAX_BIO_BLOCKS(sbi); 1931 1932 do { 1933 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 1934 1935 start = start_blk * sit_i->sents_per_block; 1936 end = (start_blk + readed) * sit_i->sents_per_block; 1937 1938 for (; start < end && start < MAIN_SEGS(sbi); start++) { 1939 struct seg_entry *se = &sit_i->sentries[start]; 1940 struct f2fs_sit_block *sit_blk; 1941 struct f2fs_sit_entry sit; 1942 struct page *page; 1943 1944 mutex_lock(&curseg->curseg_mutex); 1945 for (i = 0; i < sits_in_cursum(sum); i++) { 1946 if (le32_to_cpu(segno_in_journal(sum, i)) 1947 == start) { 1948 sit = sit_in_journal(sum, i); 1949 mutex_unlock(&curseg->curseg_mutex); 1950 goto got_it; 1951 } 1952 } 1953 mutex_unlock(&curseg->curseg_mutex); 1954 1955 page = get_current_sit_page(sbi, start); 1956 sit_blk = (struct f2fs_sit_block *)page_address(page); 1957 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 1958 f2fs_put_page(page, 1); 1959 got_it: 1960 check_block_count(sbi, start, &sit); 1961 seg_info_from_raw_sit(se, &sit); 1962 if (sbi->segs_per_sec > 1) { 1963 struct sec_entry *e = get_sec_entry(sbi, start); 1964 e->valid_blocks += se->valid_blocks; 1965 } 1966 } 1967 start_blk += readed; 1968 } while (start_blk < sit_blk_cnt); 1969 } 1970 1971 static void init_free_segmap(struct f2fs_sb_info *sbi) 1972 { 1973 unsigned int start; 1974 int type; 1975 1976 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1977 struct seg_entry *sentry = get_seg_entry(sbi, start); 1978 if (!sentry->valid_blocks) 1979 __set_free(sbi, start); 1980 } 1981 1982 /* set use the current segments */ 1983 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 1984 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 1985 __set_test_and_inuse(sbi, curseg_t->segno); 1986 } 1987 } 1988 1989 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 1990 { 1991 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1992 struct free_segmap_info *free_i = FREE_I(sbi); 1993 unsigned int segno = 0, offset = 0; 1994 unsigned short valid_blocks; 1995 1996 while (1) { 1997 /* find dirty segment based on free segmap */ 1998 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 1999 if (segno >= MAIN_SEGS(sbi)) 2000 break; 2001 offset = segno + 1; 2002 valid_blocks = get_valid_blocks(sbi, segno, 0); 2003 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2004 continue; 2005 if (valid_blocks > sbi->blocks_per_seg) { 2006 f2fs_bug_on(sbi, 1); 2007 continue; 2008 } 2009 mutex_lock(&dirty_i->seglist_lock); 2010 __locate_dirty_segment(sbi, segno, DIRTY); 2011 mutex_unlock(&dirty_i->seglist_lock); 2012 } 2013 } 2014 2015 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2016 { 2017 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2018 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2019 2020 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 2021 if (!dirty_i->victim_secmap) 2022 return -ENOMEM; 2023 return 0; 2024 } 2025 2026 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2027 { 2028 struct dirty_seglist_info *dirty_i; 2029 unsigned int bitmap_size, i; 2030 2031 /* allocate memory for dirty segments list information */ 2032 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2033 if (!dirty_i) 2034 return -ENOMEM; 2035 2036 SM_I(sbi)->dirty_info = dirty_i; 2037 mutex_init(&dirty_i->seglist_lock); 2038 2039 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2040 2041 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2042 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 2043 if (!dirty_i->dirty_segmap[i]) 2044 return -ENOMEM; 2045 } 2046 2047 init_dirty_segmap(sbi); 2048 return init_victim_secmap(sbi); 2049 } 2050 2051 /* 2052 * Update min, max modified time for cost-benefit GC algorithm 2053 */ 2054 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2055 { 2056 struct sit_info *sit_i = SIT_I(sbi); 2057 unsigned int segno; 2058 2059 mutex_lock(&sit_i->sentry_lock); 2060 2061 sit_i->min_mtime = LLONG_MAX; 2062 2063 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2064 unsigned int i; 2065 unsigned long long mtime = 0; 2066 2067 for (i = 0; i < sbi->segs_per_sec; i++) 2068 mtime += get_seg_entry(sbi, segno + i)->mtime; 2069 2070 mtime = div_u64(mtime, sbi->segs_per_sec); 2071 2072 if (sit_i->min_mtime > mtime) 2073 sit_i->min_mtime = mtime; 2074 } 2075 sit_i->max_mtime = get_mtime(sbi); 2076 mutex_unlock(&sit_i->sentry_lock); 2077 } 2078 2079 int build_segment_manager(struct f2fs_sb_info *sbi) 2080 { 2081 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2082 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2083 struct f2fs_sm_info *sm_info; 2084 int err; 2085 2086 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2087 if (!sm_info) 2088 return -ENOMEM; 2089 2090 /* init sm info */ 2091 sbi->sm_info = sm_info; 2092 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2093 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2094 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2095 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2096 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2097 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2098 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2099 sm_info->rec_prefree_segments = sm_info->main_segments * 2100 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2101 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2102 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2103 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2104 2105 INIT_LIST_HEAD(&sm_info->discard_list); 2106 sm_info->nr_discards = 0; 2107 sm_info->max_discards = 0; 2108 2109 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2110 2111 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2112 err = create_flush_cmd_control(sbi); 2113 if (err) 2114 return err; 2115 } 2116 2117 err = build_sit_info(sbi); 2118 if (err) 2119 return err; 2120 err = build_free_segmap(sbi); 2121 if (err) 2122 return err; 2123 err = build_curseg(sbi); 2124 if (err) 2125 return err; 2126 2127 /* reinit free segmap based on SIT */ 2128 build_sit_entries(sbi); 2129 2130 init_free_segmap(sbi); 2131 err = build_dirty_segmap(sbi); 2132 if (err) 2133 return err; 2134 2135 init_min_max_mtime(sbi); 2136 return 0; 2137 } 2138 2139 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2140 enum dirty_type dirty_type) 2141 { 2142 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2143 2144 mutex_lock(&dirty_i->seglist_lock); 2145 kfree(dirty_i->dirty_segmap[dirty_type]); 2146 dirty_i->nr_dirty[dirty_type] = 0; 2147 mutex_unlock(&dirty_i->seglist_lock); 2148 } 2149 2150 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2151 { 2152 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2153 kfree(dirty_i->victim_secmap); 2154 } 2155 2156 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2157 { 2158 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2159 int i; 2160 2161 if (!dirty_i) 2162 return; 2163 2164 /* discard pre-free/dirty segments list */ 2165 for (i = 0; i < NR_DIRTY_TYPE; i++) 2166 discard_dirty_segmap(sbi, i); 2167 2168 destroy_victim_secmap(sbi); 2169 SM_I(sbi)->dirty_info = NULL; 2170 kfree(dirty_i); 2171 } 2172 2173 static void destroy_curseg(struct f2fs_sb_info *sbi) 2174 { 2175 struct curseg_info *array = SM_I(sbi)->curseg_array; 2176 int i; 2177 2178 if (!array) 2179 return; 2180 SM_I(sbi)->curseg_array = NULL; 2181 for (i = 0; i < NR_CURSEG_TYPE; i++) 2182 kfree(array[i].sum_blk); 2183 kfree(array); 2184 } 2185 2186 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2187 { 2188 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2189 if (!free_i) 2190 return; 2191 SM_I(sbi)->free_info = NULL; 2192 kfree(free_i->free_segmap); 2193 kfree(free_i->free_secmap); 2194 kfree(free_i); 2195 } 2196 2197 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2198 { 2199 struct sit_info *sit_i = SIT_I(sbi); 2200 unsigned int start; 2201 2202 if (!sit_i) 2203 return; 2204 2205 if (sit_i->sentries) { 2206 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2207 kfree(sit_i->sentries[start].cur_valid_map); 2208 kfree(sit_i->sentries[start].ckpt_valid_map); 2209 } 2210 } 2211 vfree(sit_i->sentries); 2212 vfree(sit_i->sec_entries); 2213 kfree(sit_i->dirty_sentries_bitmap); 2214 2215 SM_I(sbi)->sit_info = NULL; 2216 kfree(sit_i->sit_bitmap); 2217 kfree(sit_i); 2218 } 2219 2220 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2221 { 2222 struct f2fs_sm_info *sm_info = SM_I(sbi); 2223 2224 if (!sm_info) 2225 return; 2226 destroy_flush_cmd_control(sbi); 2227 destroy_dirty_segmap(sbi); 2228 destroy_curseg(sbi); 2229 destroy_free_segmap(sbi); 2230 destroy_sit_info(sbi); 2231 sbi->sm_info = NULL; 2232 kfree(sm_info); 2233 } 2234 2235 int __init create_segment_manager_caches(void) 2236 { 2237 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2238 sizeof(struct discard_entry)); 2239 if (!discard_entry_slab) 2240 goto fail; 2241 2242 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2243 sizeof(struct sit_entry_set)); 2244 if (!sit_entry_set_slab) 2245 goto destory_discard_entry; 2246 2247 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2248 sizeof(struct inmem_pages)); 2249 if (!inmem_entry_slab) 2250 goto destroy_sit_entry_set; 2251 return 0; 2252 2253 destroy_sit_entry_set: 2254 kmem_cache_destroy(sit_entry_set_slab); 2255 destory_discard_entry: 2256 kmem_cache_destroy(discard_entry_slab); 2257 fail: 2258 return -ENOMEM; 2259 } 2260 2261 void destroy_segment_manager_caches(void) 2262 { 2263 kmem_cache_destroy(sit_entry_set_slab); 2264 kmem_cache_destroy(discard_entry_slab); 2265 kmem_cache_destroy(inmem_entry_slab); 2266 } 2267