xref: /openbmc/linux/fs/f2fs/recovery.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  * fs/f2fs/recovery.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16 
17 static struct kmem_cache *fsync_entry_slab;
18 
19 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
20 {
21 	if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
22 			> sbi->user_block_count)
23 		return false;
24 	return true;
25 }
26 
27 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
28 								nid_t ino)
29 {
30 	struct fsync_inode_entry *entry;
31 
32 	list_for_each_entry(entry, head, list)
33 		if (entry->inode->i_ino == ino)
34 			return entry;
35 
36 	return NULL;
37 }
38 
39 static int recover_dentry(struct page *ipage, struct inode *inode)
40 {
41 	struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
42 	nid_t pino = le32_to_cpu(raw_inode->i_pino);
43 	struct f2fs_dir_entry *de;
44 	struct qstr name;
45 	struct page *page;
46 	struct inode *dir, *einode;
47 	int err = 0;
48 
49 	dir = f2fs_iget(inode->i_sb, pino);
50 	if (IS_ERR(dir)) {
51 		err = PTR_ERR(dir);
52 		goto out;
53 	}
54 
55 	name.len = le32_to_cpu(raw_inode->i_namelen);
56 	name.name = raw_inode->i_name;
57 
58 	if (unlikely(name.len > F2FS_NAME_LEN)) {
59 		WARN_ON(1);
60 		err = -ENAMETOOLONG;
61 		goto out_err;
62 	}
63 retry:
64 	de = f2fs_find_entry(dir, &name, &page);
65 	if (de && inode->i_ino == le32_to_cpu(de->ino)) {
66 		clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
67 		goto out_unmap_put;
68 	}
69 	if (de) {
70 		einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
71 		if (IS_ERR(einode)) {
72 			WARN_ON(1);
73 			err = PTR_ERR(einode);
74 			if (err == -ENOENT)
75 				err = -EEXIST;
76 			goto out_unmap_put;
77 		}
78 		err = acquire_orphan_inode(F2FS_SB(inode->i_sb));
79 		if (err) {
80 			iput(einode);
81 			goto out_unmap_put;
82 		}
83 		f2fs_delete_entry(de, page, einode);
84 		iput(einode);
85 		goto retry;
86 	}
87 	err = __f2fs_add_link(dir, &name, inode);
88 	if (err)
89 		goto out_err;
90 
91 	if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
92 		iput(dir);
93 	} else {
94 		add_dirty_dir_inode(dir);
95 		set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
96 	}
97 
98 	goto out;
99 
100 out_unmap_put:
101 	kunmap(page);
102 	f2fs_put_page(page, 0);
103 out_err:
104 	iput(dir);
105 out:
106 	f2fs_msg(inode->i_sb, KERN_NOTICE,
107 			"%s: ino = %x, name = %s, dir = %lx, err = %d",
108 			__func__, ino_of_node(ipage), raw_inode->i_name,
109 			IS_ERR(dir) ? 0 : dir->i_ino, err);
110 	return err;
111 }
112 
113 static int recover_inode(struct inode *inode, struct page *node_page)
114 {
115 	struct f2fs_inode *raw_inode = F2FS_INODE(node_page);
116 
117 	if (!IS_INODE(node_page))
118 		return 0;
119 
120 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
121 	i_size_write(inode, le64_to_cpu(raw_inode->i_size));
122 	inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
123 	inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
124 	inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
125 	inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
126 	inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
127 	inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
128 
129 	if (is_dent_dnode(node_page))
130 		return recover_dentry(node_page, inode);
131 
132 	f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
133 			ino_of_node(node_page), raw_inode->i_name);
134 	return 0;
135 }
136 
137 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
138 {
139 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
140 	struct curseg_info *curseg;
141 	struct page *page;
142 	block_t blkaddr;
143 	int err = 0;
144 
145 	/* get node pages in the current segment */
146 	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
147 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
148 
149 	/* read node page */
150 	page = alloc_page(GFP_F2FS_ZERO);
151 	if (!page)
152 		return -ENOMEM;
153 	lock_page(page);
154 
155 	while (1) {
156 		struct fsync_inode_entry *entry;
157 
158 		err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
159 		if (err)
160 			return err;
161 
162 		lock_page(page);
163 
164 		if (cp_ver != cpver_of_node(page))
165 			break;
166 
167 		if (!is_fsync_dnode(page))
168 			goto next;
169 
170 		entry = get_fsync_inode(head, ino_of_node(page));
171 		if (entry) {
172 			if (IS_INODE(page) && is_dent_dnode(page))
173 				set_inode_flag(F2FS_I(entry->inode),
174 							FI_INC_LINK);
175 		} else {
176 			if (IS_INODE(page) && is_dent_dnode(page)) {
177 				err = recover_inode_page(sbi, page);
178 				if (err)
179 					break;
180 			}
181 
182 			/* add this fsync inode to the list */
183 			entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
184 			if (!entry) {
185 				err = -ENOMEM;
186 				break;
187 			}
188 
189 			entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
190 			if (IS_ERR(entry->inode)) {
191 				err = PTR_ERR(entry->inode);
192 				kmem_cache_free(fsync_entry_slab, entry);
193 				break;
194 			}
195 			list_add_tail(&entry->list, head);
196 		}
197 		entry->blkaddr = blkaddr;
198 
199 		err = recover_inode(entry->inode, page);
200 		if (err && err != -ENOENT)
201 			break;
202 next:
203 		/* check next segment */
204 		blkaddr = next_blkaddr_of_node(page);
205 	}
206 
207 	unlock_page(page);
208 	__free_pages(page, 0);
209 
210 	return err;
211 }
212 
213 static void destroy_fsync_dnodes(struct list_head *head)
214 {
215 	struct fsync_inode_entry *entry, *tmp;
216 
217 	list_for_each_entry_safe(entry, tmp, head, list) {
218 		iput(entry->inode);
219 		list_del(&entry->list);
220 		kmem_cache_free(fsync_entry_slab, entry);
221 	}
222 }
223 
224 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
225 			block_t blkaddr, struct dnode_of_data *dn)
226 {
227 	struct seg_entry *sentry;
228 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
229 	unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
230 	struct f2fs_summary_block *sum_node;
231 	struct f2fs_summary sum;
232 	struct page *sum_page, *node_page;
233 	nid_t ino, nid;
234 	struct inode *inode;
235 	unsigned int offset;
236 	block_t bidx;
237 	int i;
238 
239 	sentry = get_seg_entry(sbi, segno);
240 	if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
241 		return 0;
242 
243 	/* Get the previous summary */
244 	for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
245 		struct curseg_info *curseg = CURSEG_I(sbi, i);
246 		if (curseg->segno == segno) {
247 			sum = curseg->sum_blk->entries[blkoff];
248 			goto got_it;
249 		}
250 	}
251 
252 	sum_page = get_sum_page(sbi, segno);
253 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
254 	sum = sum_node->entries[blkoff];
255 	f2fs_put_page(sum_page, 1);
256 got_it:
257 	/* Use the locked dnode page and inode */
258 	nid = le32_to_cpu(sum.nid);
259 	if (dn->inode->i_ino == nid) {
260 		struct dnode_of_data tdn = *dn;
261 		tdn.nid = nid;
262 		tdn.node_page = dn->inode_page;
263 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
264 		truncate_data_blocks_range(&tdn, 1);
265 		return 0;
266 	} else if (dn->nid == nid) {
267 		struct dnode_of_data tdn = *dn;
268 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
269 		truncate_data_blocks_range(&tdn, 1);
270 		return 0;
271 	}
272 
273 	/* Get the node page */
274 	node_page = get_node_page(sbi, nid);
275 	if (IS_ERR(node_page))
276 		return PTR_ERR(node_page);
277 
278 	offset = ofs_of_node(node_page);
279 	ino = ino_of_node(node_page);
280 	f2fs_put_page(node_page, 1);
281 
282 	/* Deallocate previous index in the node page */
283 	inode = f2fs_iget(sbi->sb, ino);
284 	if (IS_ERR(inode))
285 		return PTR_ERR(inode);
286 
287 	bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
288 					le16_to_cpu(sum.ofs_in_node);
289 
290 	truncate_hole(inode, bidx, bidx + 1);
291 	iput(inode);
292 	return 0;
293 }
294 
295 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
296 					struct page *page, block_t blkaddr)
297 {
298 	struct f2fs_inode_info *fi = F2FS_I(inode);
299 	unsigned int start, end;
300 	struct dnode_of_data dn;
301 	struct f2fs_summary sum;
302 	struct node_info ni;
303 	int err = 0, recovered = 0;
304 
305 	/* step 1: recover xattr */
306 	if (IS_INODE(page)) {
307 		recover_inline_xattr(inode, page);
308 	} else if (f2fs_has_xattr_block(ofs_of_node(page))) {
309 		recover_xattr_data(inode, page, blkaddr);
310 		goto out;
311 	}
312 
313 	/* step 2: recover inline data */
314 	if (recover_inline_data(inode, page))
315 		goto out;
316 
317 	/* step 3: recover data indices */
318 	start = start_bidx_of_node(ofs_of_node(page), fi);
319 	end = start + ADDRS_PER_PAGE(page, fi);
320 
321 	f2fs_lock_op(sbi);
322 
323 	set_new_dnode(&dn, inode, NULL, NULL, 0);
324 
325 	err = get_dnode_of_data(&dn, start, ALLOC_NODE);
326 	if (err) {
327 		f2fs_unlock_op(sbi);
328 		goto out;
329 	}
330 
331 	f2fs_wait_on_page_writeback(dn.node_page, NODE);
332 
333 	get_node_info(sbi, dn.nid, &ni);
334 	f2fs_bug_on(ni.ino != ino_of_node(page));
335 	f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page));
336 
337 	for (; start < end; start++) {
338 		block_t src, dest;
339 
340 		src = datablock_addr(dn.node_page, dn.ofs_in_node);
341 		dest = datablock_addr(page, dn.ofs_in_node);
342 
343 		if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
344 			if (src == NULL_ADDR) {
345 				err = reserve_new_block(&dn);
346 				/* We should not get -ENOSPC */
347 				f2fs_bug_on(err);
348 			}
349 
350 			/* Check the previous node page having this index */
351 			err = check_index_in_prev_nodes(sbi, dest, &dn);
352 			if (err)
353 				goto err;
354 
355 			set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
356 
357 			/* write dummy data page */
358 			recover_data_page(sbi, NULL, &sum, src, dest);
359 			update_extent_cache(dest, &dn);
360 			recovered++;
361 		}
362 		dn.ofs_in_node++;
363 	}
364 
365 	/* write node page in place */
366 	set_summary(&sum, dn.nid, 0, 0);
367 	if (IS_INODE(dn.node_page))
368 		sync_inode_page(&dn);
369 
370 	copy_node_footer(dn.node_page, page);
371 	fill_node_footer(dn.node_page, dn.nid, ni.ino,
372 					ofs_of_node(page), false);
373 	set_page_dirty(dn.node_page);
374 err:
375 	f2fs_put_dnode(&dn);
376 	f2fs_unlock_op(sbi);
377 out:
378 	f2fs_msg(sbi->sb, KERN_NOTICE,
379 		"recover_data: ino = %lx, recovered = %d blocks, err = %d",
380 		inode->i_ino, recovered, err);
381 	return err;
382 }
383 
384 static int recover_data(struct f2fs_sb_info *sbi,
385 				struct list_head *head, int type)
386 {
387 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
388 	struct curseg_info *curseg;
389 	struct page *page;
390 	int err = 0;
391 	block_t blkaddr;
392 
393 	/* get node pages in the current segment */
394 	curseg = CURSEG_I(sbi, type);
395 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
396 
397 	/* read node page */
398 	page = alloc_page(GFP_F2FS_ZERO);
399 	if (!page)
400 		return -ENOMEM;
401 
402 	lock_page(page);
403 
404 	while (1) {
405 		struct fsync_inode_entry *entry;
406 
407 		err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
408 		if (err)
409 			return err;
410 
411 		lock_page(page);
412 
413 		if (cp_ver != cpver_of_node(page))
414 			break;
415 
416 		entry = get_fsync_inode(head, ino_of_node(page));
417 		if (!entry)
418 			goto next;
419 
420 		err = do_recover_data(sbi, entry->inode, page, blkaddr);
421 		if (err)
422 			break;
423 
424 		if (entry->blkaddr == blkaddr) {
425 			iput(entry->inode);
426 			list_del(&entry->list);
427 			kmem_cache_free(fsync_entry_slab, entry);
428 		}
429 next:
430 		/* check next segment */
431 		blkaddr = next_blkaddr_of_node(page);
432 	}
433 
434 	unlock_page(page);
435 	__free_pages(page, 0);
436 
437 	if (!err)
438 		allocate_new_segments(sbi);
439 	return err;
440 }
441 
442 int recover_fsync_data(struct f2fs_sb_info *sbi)
443 {
444 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
445 	struct list_head inode_list;
446 	block_t blkaddr;
447 	int err;
448 	bool need_writecp = false;
449 
450 	fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
451 			sizeof(struct fsync_inode_entry));
452 	if (!fsync_entry_slab)
453 		return -ENOMEM;
454 
455 	INIT_LIST_HEAD(&inode_list);
456 
457 	/* step #1: find fsynced inode numbers */
458 	sbi->por_doing = true;
459 
460 	/* prevent checkpoint */
461 	mutex_lock(&sbi->cp_mutex);
462 
463 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
464 
465 	err = find_fsync_dnodes(sbi, &inode_list);
466 	if (err)
467 		goto out;
468 
469 	if (list_empty(&inode_list))
470 		goto out;
471 
472 	need_writecp = true;
473 
474 	/* step #2: recover data */
475 	err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
476 	if (!err)
477 		f2fs_bug_on(!list_empty(&inode_list));
478 out:
479 	destroy_fsync_dnodes(&inode_list);
480 	kmem_cache_destroy(fsync_entry_slab);
481 
482 	if (err) {
483 		truncate_inode_pages_final(NODE_MAPPING(sbi));
484 		truncate_inode_pages_final(META_MAPPING(sbi));
485 	}
486 
487 	sbi->por_doing = false;
488 	if (err) {
489 		discard_next_dnode(sbi, blkaddr);
490 
491 		/* Flush all the NAT/SIT pages */
492 		while (get_pages(sbi, F2FS_DIRTY_META))
493 			sync_meta_pages(sbi, META, LONG_MAX);
494 		set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
495 		mutex_unlock(&sbi->cp_mutex);
496 	} else if (need_writecp) {
497 		mutex_unlock(&sbi->cp_mutex);
498 		write_checkpoint(sbi, false);
499 	} else {
500 		mutex_unlock(&sbi->cp_mutex);
501 	}
502 	return err;
503 }
504