xref: /openbmc/linux/fs/f2fs/recovery.c (revision 6bacf52fb58aeb3e89d9a62970b85a5570aa8ace)
1 /*
2  * fs/f2fs/recovery.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16 
17 static struct kmem_cache *fsync_entry_slab;
18 
19 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
20 {
21 	if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
22 			> sbi->user_block_count)
23 		return false;
24 	return true;
25 }
26 
27 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
28 								nid_t ino)
29 {
30 	struct list_head *this;
31 	struct fsync_inode_entry *entry;
32 
33 	list_for_each(this, head) {
34 		entry = list_entry(this, struct fsync_inode_entry, list);
35 		if (entry->inode->i_ino == ino)
36 			return entry;
37 	}
38 	return NULL;
39 }
40 
41 static int recover_dentry(struct page *ipage, struct inode *inode)
42 {
43 	struct f2fs_node *raw_node = F2FS_NODE(ipage);
44 	struct f2fs_inode *raw_inode = &(raw_node->i);
45 	nid_t pino = le32_to_cpu(raw_inode->i_pino);
46 	struct f2fs_dir_entry *de;
47 	struct qstr name;
48 	struct page *page;
49 	struct inode *dir, *einode;
50 	int err = 0;
51 
52 	dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino);
53 	if (!dir) {
54 		dir = f2fs_iget(inode->i_sb, pino);
55 		if (IS_ERR(dir)) {
56 			err = PTR_ERR(dir);
57 			goto out;
58 		}
59 		set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
60 		add_dirty_dir_inode(dir);
61 	}
62 
63 	name.len = le32_to_cpu(raw_inode->i_namelen);
64 	name.name = raw_inode->i_name;
65 retry:
66 	de = f2fs_find_entry(dir, &name, &page);
67 	if (de && inode->i_ino == le32_to_cpu(de->ino))
68 		goto out_unmap_put;
69 	if (de) {
70 		einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
71 		if (IS_ERR(einode)) {
72 			WARN_ON(1);
73 			if (PTR_ERR(einode) == -ENOENT)
74 				err = -EEXIST;
75 			goto out_unmap_put;
76 		}
77 		err = acquire_orphan_inode(F2FS_SB(inode->i_sb));
78 		if (err) {
79 			iput(einode);
80 			goto out_unmap_put;
81 		}
82 		f2fs_delete_entry(de, page, einode);
83 		iput(einode);
84 		goto retry;
85 	}
86 	err = __f2fs_add_link(dir, &name, inode);
87 	goto out;
88 
89 out_unmap_put:
90 	kunmap(page);
91 	f2fs_put_page(page, 0);
92 out:
93 	f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode and its dentry: "
94 			"ino = %x, name = %s, dir = %lx, err = %d",
95 			ino_of_node(ipage), raw_inode->i_name,
96 			IS_ERR(dir) ? 0 : dir->i_ino, err);
97 	return err;
98 }
99 
100 static int recover_inode(struct inode *inode, struct page *node_page)
101 {
102 	struct f2fs_node *raw_node = F2FS_NODE(node_page);
103 	struct f2fs_inode *raw_inode = &(raw_node->i);
104 
105 	if (!IS_INODE(node_page))
106 		return 0;
107 
108 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
109 	i_size_write(inode, le64_to_cpu(raw_inode->i_size));
110 	inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
111 	inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
112 	inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
113 	inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
114 	inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
115 	inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
116 
117 	if (is_dent_dnode(node_page))
118 		return recover_dentry(node_page, inode);
119 
120 	f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
121 			ino_of_node(node_page), raw_inode->i_name);
122 	return 0;
123 }
124 
125 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
126 {
127 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
128 	struct curseg_info *curseg;
129 	struct page *page;
130 	block_t blkaddr;
131 	int err = 0;
132 
133 	/* get node pages in the current segment */
134 	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
135 	blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
136 
137 	/* read node page */
138 	page = alloc_page(GFP_F2FS_ZERO);
139 	if (!page)
140 		return -ENOMEM;
141 	lock_page(page);
142 
143 	while (1) {
144 		struct fsync_inode_entry *entry;
145 
146 		err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
147 		if (err)
148 			return err;
149 
150 		lock_page(page);
151 
152 		if (cp_ver != cpver_of_node(page))
153 			break;
154 
155 		if (!is_fsync_dnode(page))
156 			goto next;
157 
158 		entry = get_fsync_inode(head, ino_of_node(page));
159 		if (entry) {
160 			if (IS_INODE(page) && is_dent_dnode(page))
161 				set_inode_flag(F2FS_I(entry->inode),
162 							FI_INC_LINK);
163 		} else {
164 			if (IS_INODE(page) && is_dent_dnode(page)) {
165 				err = recover_inode_page(sbi, page);
166 				if (err)
167 					break;
168 			}
169 
170 			/* add this fsync inode to the list */
171 			entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
172 			if (!entry) {
173 				err = -ENOMEM;
174 				break;
175 			}
176 
177 			entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
178 			if (IS_ERR(entry->inode)) {
179 				err = PTR_ERR(entry->inode);
180 				kmem_cache_free(fsync_entry_slab, entry);
181 				break;
182 			}
183 			list_add_tail(&entry->list, head);
184 		}
185 		entry->blkaddr = blkaddr;
186 
187 		err = recover_inode(entry->inode, page);
188 		if (err && err != -ENOENT)
189 			break;
190 next:
191 		/* check next segment */
192 		blkaddr = next_blkaddr_of_node(page);
193 	}
194 
195 	unlock_page(page);
196 	__free_pages(page, 0);
197 
198 	return err;
199 }
200 
201 static void destroy_fsync_dnodes(struct list_head *head)
202 {
203 	struct fsync_inode_entry *entry, *tmp;
204 
205 	list_for_each_entry_safe(entry, tmp, head, list) {
206 		iput(entry->inode);
207 		list_del(&entry->list);
208 		kmem_cache_free(fsync_entry_slab, entry);
209 	}
210 }
211 
212 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
213 			block_t blkaddr, struct dnode_of_data *dn)
214 {
215 	struct seg_entry *sentry;
216 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
217 	unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
218 					(sbi->blocks_per_seg - 1);
219 	struct f2fs_summary sum;
220 	nid_t ino, nid;
221 	void *kaddr;
222 	struct inode *inode;
223 	struct page *node_page;
224 	unsigned int offset;
225 	block_t bidx;
226 	int i;
227 
228 	sentry = get_seg_entry(sbi, segno);
229 	if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
230 		return 0;
231 
232 	/* Get the previous summary */
233 	for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
234 		struct curseg_info *curseg = CURSEG_I(sbi, i);
235 		if (curseg->segno == segno) {
236 			sum = curseg->sum_blk->entries[blkoff];
237 			break;
238 		}
239 	}
240 	if (i > CURSEG_COLD_DATA) {
241 		struct page *sum_page = get_sum_page(sbi, segno);
242 		struct f2fs_summary_block *sum_node;
243 		kaddr = page_address(sum_page);
244 		sum_node = (struct f2fs_summary_block *)kaddr;
245 		sum = sum_node->entries[blkoff];
246 		f2fs_put_page(sum_page, 1);
247 	}
248 
249 	/* Use the locked dnode page and inode */
250 	nid = le32_to_cpu(sum.nid);
251 	if (dn->inode->i_ino == nid) {
252 		struct dnode_of_data tdn = *dn;
253 		tdn.nid = nid;
254 		tdn.node_page = dn->inode_page;
255 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
256 		truncate_data_blocks_range(&tdn, 1);
257 		return 0;
258 	} else if (dn->nid == nid) {
259 		struct dnode_of_data tdn = *dn;
260 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
261 		truncate_data_blocks_range(&tdn, 1);
262 		return 0;
263 	}
264 
265 	/* Get the node page */
266 	node_page = get_node_page(sbi, nid);
267 	if (IS_ERR(node_page))
268 		return PTR_ERR(node_page);
269 
270 	offset = ofs_of_node(node_page);
271 	ino = ino_of_node(node_page);
272 	f2fs_put_page(node_page, 1);
273 
274 	/* Deallocate previous index in the node page */
275 	inode = f2fs_iget(sbi->sb, ino);
276 	if (IS_ERR(inode))
277 		return PTR_ERR(inode);
278 
279 	bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
280 					le16_to_cpu(sum.ofs_in_node);
281 
282 	truncate_hole(inode, bidx, bidx + 1);
283 	iput(inode);
284 	return 0;
285 }
286 
287 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
288 					struct page *page, block_t blkaddr)
289 {
290 	struct f2fs_inode_info *fi = F2FS_I(inode);
291 	unsigned int start, end;
292 	struct dnode_of_data dn;
293 	struct f2fs_summary sum;
294 	struct node_info ni;
295 	int err = 0, recovered = 0;
296 
297 	start = start_bidx_of_node(ofs_of_node(page), fi);
298 	if (IS_INODE(page))
299 		end = start + ADDRS_PER_INODE(fi);
300 	else
301 		end = start + ADDRS_PER_BLOCK;
302 
303 	f2fs_lock_op(sbi);
304 	set_new_dnode(&dn, inode, NULL, NULL, 0);
305 
306 	err = get_dnode_of_data(&dn, start, ALLOC_NODE);
307 	if (err) {
308 		f2fs_unlock_op(sbi);
309 		return err;
310 	}
311 
312 	wait_on_page_writeback(dn.node_page);
313 
314 	get_node_info(sbi, dn.nid, &ni);
315 	f2fs_bug_on(ni.ino != ino_of_node(page));
316 	f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page));
317 
318 	for (; start < end; start++) {
319 		block_t src, dest;
320 
321 		src = datablock_addr(dn.node_page, dn.ofs_in_node);
322 		dest = datablock_addr(page, dn.ofs_in_node);
323 
324 		if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
325 			if (src == NULL_ADDR) {
326 				err = reserve_new_block(&dn);
327 				/* We should not get -ENOSPC */
328 				f2fs_bug_on(err);
329 			}
330 
331 			/* Check the previous node page having this index */
332 			err = check_index_in_prev_nodes(sbi, dest, &dn);
333 			if (err)
334 				goto err;
335 
336 			set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
337 
338 			/* write dummy data page */
339 			recover_data_page(sbi, NULL, &sum, src, dest);
340 			update_extent_cache(dest, &dn);
341 			recovered++;
342 		}
343 		dn.ofs_in_node++;
344 	}
345 
346 	/* write node page in place */
347 	set_summary(&sum, dn.nid, 0, 0);
348 	if (IS_INODE(dn.node_page))
349 		sync_inode_page(&dn);
350 
351 	copy_node_footer(dn.node_page, page);
352 	fill_node_footer(dn.node_page, dn.nid, ni.ino,
353 					ofs_of_node(page), false);
354 	set_page_dirty(dn.node_page);
355 
356 	recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
357 err:
358 	f2fs_put_dnode(&dn);
359 	f2fs_unlock_op(sbi);
360 
361 	f2fs_msg(sbi->sb, KERN_NOTICE, "recover_data: ino = %lx, "
362 			"recovered_data = %d blocks, err = %d",
363 			inode->i_ino, recovered, err);
364 	return err;
365 }
366 
367 static int recover_data(struct f2fs_sb_info *sbi,
368 				struct list_head *head, int type)
369 {
370 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
371 	struct curseg_info *curseg;
372 	struct page *page;
373 	int err = 0;
374 	block_t blkaddr;
375 
376 	/* get node pages in the current segment */
377 	curseg = CURSEG_I(sbi, type);
378 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
379 
380 	/* read node page */
381 	page = alloc_page(GFP_F2FS_ZERO);
382 	if (!page)
383 		return -ENOMEM;
384 
385 	lock_page(page);
386 
387 	while (1) {
388 		struct fsync_inode_entry *entry;
389 
390 		err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
391 		if (err)
392 			return err;
393 
394 		lock_page(page);
395 
396 		if (cp_ver != cpver_of_node(page))
397 			break;
398 
399 		entry = get_fsync_inode(head, ino_of_node(page));
400 		if (!entry)
401 			goto next;
402 
403 		err = do_recover_data(sbi, entry->inode, page, blkaddr);
404 		if (err)
405 			break;
406 
407 		if (entry->blkaddr == blkaddr) {
408 			iput(entry->inode);
409 			list_del(&entry->list);
410 			kmem_cache_free(fsync_entry_slab, entry);
411 		}
412 next:
413 		/* check next segment */
414 		blkaddr = next_blkaddr_of_node(page);
415 	}
416 
417 	unlock_page(page);
418 	__free_pages(page, 0);
419 
420 	if (!err)
421 		allocate_new_segments(sbi);
422 	return err;
423 }
424 
425 int recover_fsync_data(struct f2fs_sb_info *sbi)
426 {
427 	struct list_head inode_list;
428 	int err;
429 	bool need_writecp = false;
430 
431 	fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
432 			sizeof(struct fsync_inode_entry), NULL);
433 	if (!fsync_entry_slab)
434 		return -ENOMEM;
435 
436 	INIT_LIST_HEAD(&inode_list);
437 
438 	/* step #1: find fsynced inode numbers */
439 	sbi->por_doing = true;
440 	err = find_fsync_dnodes(sbi, &inode_list);
441 	if (err)
442 		goto out;
443 
444 	if (list_empty(&inode_list))
445 		goto out;
446 
447 	need_writecp = true;
448 
449 	/* step #2: recover data */
450 	err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
451 	f2fs_bug_on(!list_empty(&inode_list));
452 out:
453 	destroy_fsync_dnodes(&inode_list);
454 	kmem_cache_destroy(fsync_entry_slab);
455 	sbi->por_doing = false;
456 	if (!err && need_writecp)
457 		write_checkpoint(sbi, false);
458 	return err;
459 }
460