1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include <trace/events/f2fs.h> 23 24 static struct kmem_cache *nat_entry_slab; 25 static struct kmem_cache *free_nid_slab; 26 27 static void clear_node_page_dirty(struct page *page) 28 { 29 struct address_space *mapping = page->mapping; 30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 31 unsigned int long flags; 32 33 if (PageDirty(page)) { 34 spin_lock_irqsave(&mapping->tree_lock, flags); 35 radix_tree_tag_clear(&mapping->page_tree, 36 page_index(page), 37 PAGECACHE_TAG_DIRTY); 38 spin_unlock_irqrestore(&mapping->tree_lock, flags); 39 40 clear_page_dirty_for_io(page); 41 dec_page_count(sbi, F2FS_DIRTY_NODES); 42 } 43 ClearPageUptodate(page); 44 } 45 46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 47 { 48 pgoff_t index = current_nat_addr(sbi, nid); 49 return get_meta_page(sbi, index); 50 } 51 52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 53 { 54 struct page *src_page; 55 struct page *dst_page; 56 pgoff_t src_off; 57 pgoff_t dst_off; 58 void *src_addr; 59 void *dst_addr; 60 struct f2fs_nm_info *nm_i = NM_I(sbi); 61 62 src_off = current_nat_addr(sbi, nid); 63 dst_off = next_nat_addr(sbi, src_off); 64 65 /* get current nat block page with lock */ 66 src_page = get_meta_page(sbi, src_off); 67 68 /* Dirty src_page means that it is already the new target NAT page. */ 69 if (PageDirty(src_page)) 70 return src_page; 71 72 dst_page = grab_meta_page(sbi, dst_off); 73 74 src_addr = page_address(src_page); 75 dst_addr = page_address(dst_page); 76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 77 set_page_dirty(dst_page); 78 f2fs_put_page(src_page, 1); 79 80 set_to_next_nat(nm_i, nid); 81 82 return dst_page; 83 } 84 85 /* 86 * Readahead NAT pages 87 */ 88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) 89 { 90 struct address_space *mapping = sbi->meta_inode->i_mapping; 91 struct f2fs_nm_info *nm_i = NM_I(sbi); 92 struct blk_plug plug; 93 struct page *page; 94 pgoff_t index; 95 int i; 96 97 blk_start_plug(&plug); 98 99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { 100 if (nid >= nm_i->max_nid) 101 nid = 0; 102 index = current_nat_addr(sbi, nid); 103 104 page = grab_cache_page(mapping, index); 105 if (!page) 106 continue; 107 if (PageUptodate(page)) { 108 f2fs_put_page(page, 1); 109 continue; 110 } 111 if (f2fs_readpage(sbi, page, index, READ)) 112 continue; 113 114 f2fs_put_page(page, 0); 115 } 116 blk_finish_plug(&plug); 117 } 118 119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 120 { 121 return radix_tree_lookup(&nm_i->nat_root, n); 122 } 123 124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 125 nid_t start, unsigned int nr, struct nat_entry **ep) 126 { 127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 128 } 129 130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 131 { 132 list_del(&e->list); 133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 134 nm_i->nat_cnt--; 135 kmem_cache_free(nat_entry_slab, e); 136 } 137 138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct f2fs_nm_info *nm_i = NM_I(sbi); 141 struct nat_entry *e; 142 int is_cp = 1; 143 144 read_lock(&nm_i->nat_tree_lock); 145 e = __lookup_nat_cache(nm_i, nid); 146 if (e && !e->checkpointed) 147 is_cp = 0; 148 read_unlock(&nm_i->nat_tree_lock); 149 return is_cp; 150 } 151 152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 153 { 154 struct nat_entry *new; 155 156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 157 if (!new) 158 return NULL; 159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 160 kmem_cache_free(nat_entry_slab, new); 161 return NULL; 162 } 163 memset(new, 0, sizeof(struct nat_entry)); 164 nat_set_nid(new, nid); 165 list_add_tail(&new->list, &nm_i->nat_entries); 166 nm_i->nat_cnt++; 167 return new; 168 } 169 170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 171 struct f2fs_nat_entry *ne) 172 { 173 struct nat_entry *e; 174 retry: 175 write_lock(&nm_i->nat_tree_lock); 176 e = __lookup_nat_cache(nm_i, nid); 177 if (!e) { 178 e = grab_nat_entry(nm_i, nid); 179 if (!e) { 180 write_unlock(&nm_i->nat_tree_lock); 181 goto retry; 182 } 183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); 184 nat_set_ino(e, le32_to_cpu(ne->ino)); 185 nat_set_version(e, ne->version); 186 e->checkpointed = true; 187 } 188 write_unlock(&nm_i->nat_tree_lock); 189 } 190 191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 192 block_t new_blkaddr) 193 { 194 struct f2fs_nm_info *nm_i = NM_I(sbi); 195 struct nat_entry *e; 196 retry: 197 write_lock(&nm_i->nat_tree_lock); 198 e = __lookup_nat_cache(nm_i, ni->nid); 199 if (!e) { 200 e = grab_nat_entry(nm_i, ni->nid); 201 if (!e) { 202 write_unlock(&nm_i->nat_tree_lock); 203 goto retry; 204 } 205 e->ni = *ni; 206 e->checkpointed = true; 207 BUG_ON(ni->blk_addr == NEW_ADDR); 208 } else if (new_blkaddr == NEW_ADDR) { 209 /* 210 * when nid is reallocated, 211 * previous nat entry can be remained in nat cache. 212 * So, reinitialize it with new information. 213 */ 214 e->ni = *ni; 215 BUG_ON(ni->blk_addr != NULL_ADDR); 216 } 217 218 if (new_blkaddr == NEW_ADDR) 219 e->checkpointed = false; 220 221 /* sanity check */ 222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); 223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && 224 new_blkaddr == NULL_ADDR); 225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && 226 new_blkaddr == NEW_ADDR); 227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && 228 nat_get_blkaddr(e) != NULL_ADDR && 229 new_blkaddr == NEW_ADDR); 230 231 /* increament version no as node is removed */ 232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 233 unsigned char version = nat_get_version(e); 234 nat_set_version(e, inc_node_version(version)); 235 } 236 237 /* change address */ 238 nat_set_blkaddr(e, new_blkaddr); 239 __set_nat_cache_dirty(nm_i, e); 240 write_unlock(&nm_i->nat_tree_lock); 241 } 242 243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 244 { 245 struct f2fs_nm_info *nm_i = NM_I(sbi); 246 247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD) 248 return 0; 249 250 write_lock(&nm_i->nat_tree_lock); 251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 252 struct nat_entry *ne; 253 ne = list_first_entry(&nm_i->nat_entries, 254 struct nat_entry, list); 255 __del_from_nat_cache(nm_i, ne); 256 nr_shrink--; 257 } 258 write_unlock(&nm_i->nat_tree_lock); 259 return nr_shrink; 260 } 261 262 /* 263 * This function returns always success 264 */ 265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 266 { 267 struct f2fs_nm_info *nm_i = NM_I(sbi); 268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 269 struct f2fs_summary_block *sum = curseg->sum_blk; 270 nid_t start_nid = START_NID(nid); 271 struct f2fs_nat_block *nat_blk; 272 struct page *page = NULL; 273 struct f2fs_nat_entry ne; 274 struct nat_entry *e; 275 int i; 276 277 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 278 ni->nid = nid; 279 280 /* Check nat cache */ 281 read_lock(&nm_i->nat_tree_lock); 282 e = __lookup_nat_cache(nm_i, nid); 283 if (e) { 284 ni->ino = nat_get_ino(e); 285 ni->blk_addr = nat_get_blkaddr(e); 286 ni->version = nat_get_version(e); 287 } 288 read_unlock(&nm_i->nat_tree_lock); 289 if (e) 290 return; 291 292 /* Check current segment summary */ 293 mutex_lock(&curseg->curseg_mutex); 294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); 295 if (i >= 0) { 296 ne = nat_in_journal(sum, i); 297 node_info_from_raw_nat(ni, &ne); 298 } 299 mutex_unlock(&curseg->curseg_mutex); 300 if (i >= 0) 301 goto cache; 302 303 /* Fill node_info from nat page */ 304 page = get_current_nat_page(sbi, start_nid); 305 nat_blk = (struct f2fs_nat_block *)page_address(page); 306 ne = nat_blk->entries[nid - start_nid]; 307 node_info_from_raw_nat(ni, &ne); 308 f2fs_put_page(page, 1); 309 cache: 310 /* cache nat entry */ 311 cache_nat_entry(NM_I(sbi), nid, &ne); 312 } 313 314 /* 315 * The maximum depth is four. 316 * Offset[0] will have raw inode offset. 317 */ 318 static int get_node_path(struct f2fs_inode_info *fi, long block, 319 int offset[4], unsigned int noffset[4]) 320 { 321 const long direct_index = ADDRS_PER_INODE(fi); 322 const long direct_blks = ADDRS_PER_BLOCK; 323 const long dptrs_per_blk = NIDS_PER_BLOCK; 324 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 325 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 326 int n = 0; 327 int level = 0; 328 329 noffset[0] = 0; 330 331 if (block < direct_index) { 332 offset[n] = block; 333 goto got; 334 } 335 block -= direct_index; 336 if (block < direct_blks) { 337 offset[n++] = NODE_DIR1_BLOCK; 338 noffset[n] = 1; 339 offset[n] = block; 340 level = 1; 341 goto got; 342 } 343 block -= direct_blks; 344 if (block < direct_blks) { 345 offset[n++] = NODE_DIR2_BLOCK; 346 noffset[n] = 2; 347 offset[n] = block; 348 level = 1; 349 goto got; 350 } 351 block -= direct_blks; 352 if (block < indirect_blks) { 353 offset[n++] = NODE_IND1_BLOCK; 354 noffset[n] = 3; 355 offset[n++] = block / direct_blks; 356 noffset[n] = 4 + offset[n - 1]; 357 offset[n] = block % direct_blks; 358 level = 2; 359 goto got; 360 } 361 block -= indirect_blks; 362 if (block < indirect_blks) { 363 offset[n++] = NODE_IND2_BLOCK; 364 noffset[n] = 4 + dptrs_per_blk; 365 offset[n++] = block / direct_blks; 366 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 367 offset[n] = block % direct_blks; 368 level = 2; 369 goto got; 370 } 371 block -= indirect_blks; 372 if (block < dindirect_blks) { 373 offset[n++] = NODE_DIND_BLOCK; 374 noffset[n] = 5 + (dptrs_per_blk * 2); 375 offset[n++] = block / indirect_blks; 376 noffset[n] = 6 + (dptrs_per_blk * 2) + 377 offset[n - 1] * (dptrs_per_blk + 1); 378 offset[n++] = (block / direct_blks) % dptrs_per_blk; 379 noffset[n] = 7 + (dptrs_per_blk * 2) + 380 offset[n - 2] * (dptrs_per_blk + 1) + 381 offset[n - 1]; 382 offset[n] = block % direct_blks; 383 level = 3; 384 goto got; 385 } else { 386 BUG(); 387 } 388 got: 389 return level; 390 } 391 392 /* 393 * Caller should call f2fs_put_dnode(dn). 394 * Also, it should grab and release a mutex by calling mutex_lock_op() and 395 * mutex_unlock_op() only if ro is not set RDONLY_NODE. 396 * In the case of RDONLY_NODE, we don't need to care about mutex. 397 */ 398 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 399 { 400 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 401 struct page *npage[4]; 402 struct page *parent; 403 int offset[4]; 404 unsigned int noffset[4]; 405 nid_t nids[4]; 406 int level, i; 407 int err = 0; 408 409 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); 410 411 nids[0] = dn->inode->i_ino; 412 npage[0] = dn->inode_page; 413 414 if (!npage[0]) { 415 npage[0] = get_node_page(sbi, nids[0]); 416 if (IS_ERR(npage[0])) 417 return PTR_ERR(npage[0]); 418 } 419 parent = npage[0]; 420 if (level != 0) 421 nids[1] = get_nid(parent, offset[0], true); 422 dn->inode_page = npage[0]; 423 dn->inode_page_locked = true; 424 425 /* get indirect or direct nodes */ 426 for (i = 1; i <= level; i++) { 427 bool done = false; 428 429 if (!nids[i] && mode == ALLOC_NODE) { 430 /* alloc new node */ 431 if (!alloc_nid(sbi, &(nids[i]))) { 432 err = -ENOSPC; 433 goto release_pages; 434 } 435 436 dn->nid = nids[i]; 437 npage[i] = new_node_page(dn, noffset[i], NULL); 438 if (IS_ERR(npage[i])) { 439 alloc_nid_failed(sbi, nids[i]); 440 err = PTR_ERR(npage[i]); 441 goto release_pages; 442 } 443 444 set_nid(parent, offset[i - 1], nids[i], i == 1); 445 alloc_nid_done(sbi, nids[i]); 446 done = true; 447 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 448 npage[i] = get_node_page_ra(parent, offset[i - 1]); 449 if (IS_ERR(npage[i])) { 450 err = PTR_ERR(npage[i]); 451 goto release_pages; 452 } 453 done = true; 454 } 455 if (i == 1) { 456 dn->inode_page_locked = false; 457 unlock_page(parent); 458 } else { 459 f2fs_put_page(parent, 1); 460 } 461 462 if (!done) { 463 npage[i] = get_node_page(sbi, nids[i]); 464 if (IS_ERR(npage[i])) { 465 err = PTR_ERR(npage[i]); 466 f2fs_put_page(npage[0], 0); 467 goto release_out; 468 } 469 } 470 if (i < level) { 471 parent = npage[i]; 472 nids[i + 1] = get_nid(parent, offset[i], false); 473 } 474 } 475 dn->nid = nids[level]; 476 dn->ofs_in_node = offset[level]; 477 dn->node_page = npage[level]; 478 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 479 return 0; 480 481 release_pages: 482 f2fs_put_page(parent, 1); 483 if (i > 1) 484 f2fs_put_page(npage[0], 0); 485 release_out: 486 dn->inode_page = NULL; 487 dn->node_page = NULL; 488 return err; 489 } 490 491 static void truncate_node(struct dnode_of_data *dn) 492 { 493 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 494 struct node_info ni; 495 496 get_node_info(sbi, dn->nid, &ni); 497 if (dn->inode->i_blocks == 0) { 498 BUG_ON(ni.blk_addr != NULL_ADDR); 499 goto invalidate; 500 } 501 BUG_ON(ni.blk_addr == NULL_ADDR); 502 503 /* Deallocate node address */ 504 invalidate_blocks(sbi, ni.blk_addr); 505 dec_valid_node_count(sbi, dn->inode, 1); 506 set_node_addr(sbi, &ni, NULL_ADDR); 507 508 if (dn->nid == dn->inode->i_ino) { 509 remove_orphan_inode(sbi, dn->nid); 510 dec_valid_inode_count(sbi); 511 } else { 512 sync_inode_page(dn); 513 } 514 invalidate: 515 clear_node_page_dirty(dn->node_page); 516 F2FS_SET_SB_DIRT(sbi); 517 518 f2fs_put_page(dn->node_page, 1); 519 dn->node_page = NULL; 520 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 521 } 522 523 static int truncate_dnode(struct dnode_of_data *dn) 524 { 525 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 526 struct page *page; 527 528 if (dn->nid == 0) 529 return 1; 530 531 /* get direct node */ 532 page = get_node_page(sbi, dn->nid); 533 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 534 return 1; 535 else if (IS_ERR(page)) 536 return PTR_ERR(page); 537 538 /* Make dnode_of_data for parameter */ 539 dn->node_page = page; 540 dn->ofs_in_node = 0; 541 truncate_data_blocks(dn); 542 truncate_node(dn); 543 return 1; 544 } 545 546 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 547 int ofs, int depth) 548 { 549 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 550 struct dnode_of_data rdn = *dn; 551 struct page *page; 552 struct f2fs_node *rn; 553 nid_t child_nid; 554 unsigned int child_nofs; 555 int freed = 0; 556 int i, ret; 557 558 if (dn->nid == 0) 559 return NIDS_PER_BLOCK + 1; 560 561 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 562 563 page = get_node_page(sbi, dn->nid); 564 if (IS_ERR(page)) { 565 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 566 return PTR_ERR(page); 567 } 568 569 rn = F2FS_NODE(page); 570 if (depth < 3) { 571 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 572 child_nid = le32_to_cpu(rn->in.nid[i]); 573 if (child_nid == 0) 574 continue; 575 rdn.nid = child_nid; 576 ret = truncate_dnode(&rdn); 577 if (ret < 0) 578 goto out_err; 579 set_nid(page, i, 0, false); 580 } 581 } else { 582 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 583 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 584 child_nid = le32_to_cpu(rn->in.nid[i]); 585 if (child_nid == 0) { 586 child_nofs += NIDS_PER_BLOCK + 1; 587 continue; 588 } 589 rdn.nid = child_nid; 590 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 591 if (ret == (NIDS_PER_BLOCK + 1)) { 592 set_nid(page, i, 0, false); 593 child_nofs += ret; 594 } else if (ret < 0 && ret != -ENOENT) { 595 goto out_err; 596 } 597 } 598 freed = child_nofs; 599 } 600 601 if (!ofs) { 602 /* remove current indirect node */ 603 dn->node_page = page; 604 truncate_node(dn); 605 freed++; 606 } else { 607 f2fs_put_page(page, 1); 608 } 609 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 610 return freed; 611 612 out_err: 613 f2fs_put_page(page, 1); 614 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 615 return ret; 616 } 617 618 static int truncate_partial_nodes(struct dnode_of_data *dn, 619 struct f2fs_inode *ri, int *offset, int depth) 620 { 621 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 622 struct page *pages[2]; 623 nid_t nid[3]; 624 nid_t child_nid; 625 int err = 0; 626 int i; 627 int idx = depth - 2; 628 629 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 630 if (!nid[0]) 631 return 0; 632 633 /* get indirect nodes in the path */ 634 for (i = 0; i < depth - 1; i++) { 635 /* refernece count'll be increased */ 636 pages[i] = get_node_page(sbi, nid[i]); 637 if (IS_ERR(pages[i])) { 638 depth = i + 1; 639 err = PTR_ERR(pages[i]); 640 goto fail; 641 } 642 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 643 } 644 645 /* free direct nodes linked to a partial indirect node */ 646 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { 647 child_nid = get_nid(pages[idx], i, false); 648 if (!child_nid) 649 continue; 650 dn->nid = child_nid; 651 err = truncate_dnode(dn); 652 if (err < 0) 653 goto fail; 654 set_nid(pages[idx], i, 0, false); 655 } 656 657 if (offset[depth - 1] == 0) { 658 dn->node_page = pages[idx]; 659 dn->nid = nid[idx]; 660 truncate_node(dn); 661 } else { 662 f2fs_put_page(pages[idx], 1); 663 } 664 offset[idx]++; 665 offset[depth - 1] = 0; 666 fail: 667 for (i = depth - 3; i >= 0; i--) 668 f2fs_put_page(pages[i], 1); 669 670 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 671 672 return err; 673 } 674 675 /* 676 * All the block addresses of data and nodes should be nullified. 677 */ 678 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 679 { 680 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 681 struct address_space *node_mapping = sbi->node_inode->i_mapping; 682 int err = 0, cont = 1; 683 int level, offset[4], noffset[4]; 684 unsigned int nofs = 0; 685 struct f2fs_node *rn; 686 struct dnode_of_data dn; 687 struct page *page; 688 689 trace_f2fs_truncate_inode_blocks_enter(inode, from); 690 691 level = get_node_path(F2FS_I(inode), from, offset, noffset); 692 restart: 693 page = get_node_page(sbi, inode->i_ino); 694 if (IS_ERR(page)) { 695 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 696 return PTR_ERR(page); 697 } 698 699 set_new_dnode(&dn, inode, page, NULL, 0); 700 unlock_page(page); 701 702 rn = F2FS_NODE(page); 703 switch (level) { 704 case 0: 705 case 1: 706 nofs = noffset[1]; 707 break; 708 case 2: 709 nofs = noffset[1]; 710 if (!offset[level - 1]) 711 goto skip_partial; 712 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 713 if (err < 0 && err != -ENOENT) 714 goto fail; 715 nofs += 1 + NIDS_PER_BLOCK; 716 break; 717 case 3: 718 nofs = 5 + 2 * NIDS_PER_BLOCK; 719 if (!offset[level - 1]) 720 goto skip_partial; 721 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 722 if (err < 0 && err != -ENOENT) 723 goto fail; 724 break; 725 default: 726 BUG(); 727 } 728 729 skip_partial: 730 while (cont) { 731 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); 732 switch (offset[0]) { 733 case NODE_DIR1_BLOCK: 734 case NODE_DIR2_BLOCK: 735 err = truncate_dnode(&dn); 736 break; 737 738 case NODE_IND1_BLOCK: 739 case NODE_IND2_BLOCK: 740 err = truncate_nodes(&dn, nofs, offset[1], 2); 741 break; 742 743 case NODE_DIND_BLOCK: 744 err = truncate_nodes(&dn, nofs, offset[1], 3); 745 cont = 0; 746 break; 747 748 default: 749 BUG(); 750 } 751 if (err < 0 && err != -ENOENT) 752 goto fail; 753 if (offset[1] == 0 && 754 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { 755 lock_page(page); 756 if (page->mapping != node_mapping) { 757 f2fs_put_page(page, 1); 758 goto restart; 759 } 760 wait_on_page_writeback(page); 761 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 762 set_page_dirty(page); 763 unlock_page(page); 764 } 765 offset[1] = 0; 766 offset[0]++; 767 nofs += err; 768 } 769 fail: 770 f2fs_put_page(page, 0); 771 trace_f2fs_truncate_inode_blocks_exit(inode, err); 772 return err > 0 ? 0 : err; 773 } 774 775 /* 776 * Caller should grab and release a mutex by calling mutex_lock_op() and 777 * mutex_unlock_op(). 778 */ 779 int remove_inode_page(struct inode *inode) 780 { 781 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 782 struct page *page; 783 nid_t ino = inode->i_ino; 784 struct dnode_of_data dn; 785 786 page = get_node_page(sbi, ino); 787 if (IS_ERR(page)) 788 return PTR_ERR(page); 789 790 if (F2FS_I(inode)->i_xattr_nid) { 791 nid_t nid = F2FS_I(inode)->i_xattr_nid; 792 struct page *npage = get_node_page(sbi, nid); 793 794 if (IS_ERR(npage)) 795 return PTR_ERR(npage); 796 797 F2FS_I(inode)->i_xattr_nid = 0; 798 set_new_dnode(&dn, inode, page, npage, nid); 799 dn.inode_page_locked = 1; 800 truncate_node(&dn); 801 } 802 803 /* 0 is possible, after f2fs_new_inode() is failed */ 804 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1); 805 set_new_dnode(&dn, inode, page, page, ino); 806 truncate_node(&dn); 807 return 0; 808 } 809 810 struct page *new_inode_page(struct inode *inode, const struct qstr *name) 811 { 812 struct dnode_of_data dn; 813 814 /* allocate inode page for new inode */ 815 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 816 817 /* caller should f2fs_put_page(page, 1); */ 818 return new_node_page(&dn, 0, NULL); 819 } 820 821 struct page *new_node_page(struct dnode_of_data *dn, 822 unsigned int ofs, struct page *ipage) 823 { 824 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 825 struct address_space *mapping = sbi->node_inode->i_mapping; 826 struct node_info old_ni, new_ni; 827 struct page *page; 828 int err; 829 830 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) 831 return ERR_PTR(-EPERM); 832 833 page = grab_cache_page(mapping, dn->nid); 834 if (!page) 835 return ERR_PTR(-ENOMEM); 836 837 if (!inc_valid_node_count(sbi, dn->inode, 1)) { 838 err = -ENOSPC; 839 goto fail; 840 } 841 842 get_node_info(sbi, dn->nid, &old_ni); 843 844 /* Reinitialize old_ni with new node page */ 845 BUG_ON(old_ni.blk_addr != NULL_ADDR); 846 new_ni = old_ni; 847 new_ni.ino = dn->inode->i_ino; 848 set_node_addr(sbi, &new_ni, NEW_ADDR); 849 850 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 851 set_cold_node(dn->inode, page); 852 SetPageUptodate(page); 853 set_page_dirty(page); 854 855 if (ofs == XATTR_NODE_OFFSET) 856 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 857 858 dn->node_page = page; 859 if (ipage) 860 update_inode(dn->inode, ipage); 861 else 862 sync_inode_page(dn); 863 if (ofs == 0) 864 inc_valid_inode_count(sbi); 865 866 return page; 867 868 fail: 869 clear_node_page_dirty(page); 870 f2fs_put_page(page, 1); 871 return ERR_PTR(err); 872 } 873 874 /* 875 * Caller should do after getting the following values. 876 * 0: f2fs_put_page(page, 0) 877 * LOCKED_PAGE: f2fs_put_page(page, 1) 878 * error: nothing 879 */ 880 static int read_node_page(struct page *page, int type) 881 { 882 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 883 struct node_info ni; 884 885 get_node_info(sbi, page->index, &ni); 886 887 if (ni.blk_addr == NULL_ADDR) { 888 f2fs_put_page(page, 1); 889 return -ENOENT; 890 } 891 892 if (PageUptodate(page)) 893 return LOCKED_PAGE; 894 895 return f2fs_readpage(sbi, page, ni.blk_addr, type); 896 } 897 898 /* 899 * Readahead a node page 900 */ 901 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 902 { 903 struct address_space *mapping = sbi->node_inode->i_mapping; 904 struct page *apage; 905 int err; 906 907 apage = find_get_page(mapping, nid); 908 if (apage && PageUptodate(apage)) { 909 f2fs_put_page(apage, 0); 910 return; 911 } 912 f2fs_put_page(apage, 0); 913 914 apage = grab_cache_page(mapping, nid); 915 if (!apage) 916 return; 917 918 err = read_node_page(apage, READA); 919 if (err == 0) 920 f2fs_put_page(apage, 0); 921 else if (err == LOCKED_PAGE) 922 f2fs_put_page(apage, 1); 923 } 924 925 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 926 { 927 struct address_space *mapping = sbi->node_inode->i_mapping; 928 struct page *page; 929 int err; 930 repeat: 931 page = grab_cache_page(mapping, nid); 932 if (!page) 933 return ERR_PTR(-ENOMEM); 934 935 err = read_node_page(page, READ_SYNC); 936 if (err < 0) 937 return ERR_PTR(err); 938 else if (err == LOCKED_PAGE) 939 goto got_it; 940 941 lock_page(page); 942 if (!PageUptodate(page)) { 943 f2fs_put_page(page, 1); 944 return ERR_PTR(-EIO); 945 } 946 if (page->mapping != mapping) { 947 f2fs_put_page(page, 1); 948 goto repeat; 949 } 950 got_it: 951 BUG_ON(nid != nid_of_node(page)); 952 mark_page_accessed(page); 953 return page; 954 } 955 956 /* 957 * Return a locked page for the desired node page. 958 * And, readahead MAX_RA_NODE number of node pages. 959 */ 960 struct page *get_node_page_ra(struct page *parent, int start) 961 { 962 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); 963 struct address_space *mapping = sbi->node_inode->i_mapping; 964 struct blk_plug plug; 965 struct page *page; 966 int err, i, end; 967 nid_t nid; 968 969 /* First, try getting the desired direct node. */ 970 nid = get_nid(parent, start, false); 971 if (!nid) 972 return ERR_PTR(-ENOENT); 973 repeat: 974 page = grab_cache_page(mapping, nid); 975 if (!page) 976 return ERR_PTR(-ENOMEM); 977 978 err = read_node_page(page, READ_SYNC); 979 if (err < 0) 980 return ERR_PTR(err); 981 else if (err == LOCKED_PAGE) 982 goto page_hit; 983 984 blk_start_plug(&plug); 985 986 /* Then, try readahead for siblings of the desired node */ 987 end = start + MAX_RA_NODE; 988 end = min(end, NIDS_PER_BLOCK); 989 for (i = start + 1; i < end; i++) { 990 nid = get_nid(parent, i, false); 991 if (!nid) 992 continue; 993 ra_node_page(sbi, nid); 994 } 995 996 blk_finish_plug(&plug); 997 998 lock_page(page); 999 if (page->mapping != mapping) { 1000 f2fs_put_page(page, 1); 1001 goto repeat; 1002 } 1003 page_hit: 1004 if (!PageUptodate(page)) { 1005 f2fs_put_page(page, 1); 1006 return ERR_PTR(-EIO); 1007 } 1008 mark_page_accessed(page); 1009 return page; 1010 } 1011 1012 void sync_inode_page(struct dnode_of_data *dn) 1013 { 1014 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1015 update_inode(dn->inode, dn->node_page); 1016 } else if (dn->inode_page) { 1017 if (!dn->inode_page_locked) 1018 lock_page(dn->inode_page); 1019 update_inode(dn->inode, dn->inode_page); 1020 if (!dn->inode_page_locked) 1021 unlock_page(dn->inode_page); 1022 } else { 1023 update_inode_page(dn->inode); 1024 } 1025 } 1026 1027 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1028 struct writeback_control *wbc) 1029 { 1030 struct address_space *mapping = sbi->node_inode->i_mapping; 1031 pgoff_t index, end; 1032 struct pagevec pvec; 1033 int step = ino ? 2 : 0; 1034 int nwritten = 0, wrote = 0; 1035 1036 pagevec_init(&pvec, 0); 1037 1038 next_step: 1039 index = 0; 1040 end = LONG_MAX; 1041 1042 while (index <= end) { 1043 int i, nr_pages; 1044 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1045 PAGECACHE_TAG_DIRTY, 1046 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1047 if (nr_pages == 0) 1048 break; 1049 1050 for (i = 0; i < nr_pages; i++) { 1051 struct page *page = pvec.pages[i]; 1052 1053 /* 1054 * flushing sequence with step: 1055 * 0. indirect nodes 1056 * 1. dentry dnodes 1057 * 2. file dnodes 1058 */ 1059 if (step == 0 && IS_DNODE(page)) 1060 continue; 1061 if (step == 1 && (!IS_DNODE(page) || 1062 is_cold_node(page))) 1063 continue; 1064 if (step == 2 && (!IS_DNODE(page) || 1065 !is_cold_node(page))) 1066 continue; 1067 1068 /* 1069 * If an fsync mode, 1070 * we should not skip writing node pages. 1071 */ 1072 if (ino && ino_of_node(page) == ino) 1073 lock_page(page); 1074 else if (!trylock_page(page)) 1075 continue; 1076 1077 if (unlikely(page->mapping != mapping)) { 1078 continue_unlock: 1079 unlock_page(page); 1080 continue; 1081 } 1082 if (ino && ino_of_node(page) != ino) 1083 goto continue_unlock; 1084 1085 if (!PageDirty(page)) { 1086 /* someone wrote it for us */ 1087 goto continue_unlock; 1088 } 1089 1090 if (!clear_page_dirty_for_io(page)) 1091 goto continue_unlock; 1092 1093 /* called by fsync() */ 1094 if (ino && IS_DNODE(page)) { 1095 int mark = !is_checkpointed_node(sbi, ino); 1096 set_fsync_mark(page, 1); 1097 if (IS_INODE(page)) 1098 set_dentry_mark(page, mark); 1099 nwritten++; 1100 } else { 1101 set_fsync_mark(page, 0); 1102 set_dentry_mark(page, 0); 1103 } 1104 mapping->a_ops->writepage(page, wbc); 1105 wrote++; 1106 1107 if (--wbc->nr_to_write == 0) 1108 break; 1109 } 1110 pagevec_release(&pvec); 1111 cond_resched(); 1112 1113 if (wbc->nr_to_write == 0) { 1114 step = 2; 1115 break; 1116 } 1117 } 1118 1119 if (step < 2) { 1120 step++; 1121 goto next_step; 1122 } 1123 1124 if (wrote) 1125 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); 1126 1127 return nwritten; 1128 } 1129 1130 static int f2fs_write_node_page(struct page *page, 1131 struct writeback_control *wbc) 1132 { 1133 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 1134 nid_t nid; 1135 block_t new_addr; 1136 struct node_info ni; 1137 1138 wait_on_page_writeback(page); 1139 1140 /* get old block addr of this node page */ 1141 nid = nid_of_node(page); 1142 BUG_ON(page->index != nid); 1143 1144 get_node_info(sbi, nid, &ni); 1145 1146 /* This page is already truncated */ 1147 if (ni.blk_addr == NULL_ADDR) { 1148 dec_page_count(sbi, F2FS_DIRTY_NODES); 1149 unlock_page(page); 1150 return 0; 1151 } 1152 1153 if (wbc->for_reclaim) { 1154 dec_page_count(sbi, F2FS_DIRTY_NODES); 1155 wbc->pages_skipped++; 1156 set_page_dirty(page); 1157 return AOP_WRITEPAGE_ACTIVATE; 1158 } 1159 1160 mutex_lock(&sbi->node_write); 1161 set_page_writeback(page); 1162 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); 1163 set_node_addr(sbi, &ni, new_addr); 1164 dec_page_count(sbi, F2FS_DIRTY_NODES); 1165 mutex_unlock(&sbi->node_write); 1166 unlock_page(page); 1167 return 0; 1168 } 1169 1170 /* 1171 * It is very important to gather dirty pages and write at once, so that we can 1172 * submit a big bio without interfering other data writes. 1173 * Be default, 512 pages (2MB), a segment size, is quite reasonable. 1174 */ 1175 #define COLLECT_DIRTY_NODES 512 1176 static int f2fs_write_node_pages(struct address_space *mapping, 1177 struct writeback_control *wbc) 1178 { 1179 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1180 long nr_to_write = wbc->nr_to_write; 1181 1182 /* First check balancing cached NAT entries */ 1183 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { 1184 f2fs_sync_fs(sbi->sb, true); 1185 return 0; 1186 } 1187 1188 /* collect a number of dirty node pages and write together */ 1189 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES) 1190 return 0; 1191 1192 /* if mounting is failed, skip writing node pages */ 1193 wbc->nr_to_write = max_hw_blocks(sbi); 1194 sync_node_pages(sbi, 0, wbc); 1195 wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write); 1196 return 0; 1197 } 1198 1199 static int f2fs_set_node_page_dirty(struct page *page) 1200 { 1201 struct address_space *mapping = page->mapping; 1202 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1203 1204 SetPageUptodate(page); 1205 if (!PageDirty(page)) { 1206 __set_page_dirty_nobuffers(page); 1207 inc_page_count(sbi, F2FS_DIRTY_NODES); 1208 SetPagePrivate(page); 1209 return 1; 1210 } 1211 return 0; 1212 } 1213 1214 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset, 1215 unsigned int length) 1216 { 1217 struct inode *inode = page->mapping->host; 1218 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 1219 if (PageDirty(page)) 1220 dec_page_count(sbi, F2FS_DIRTY_NODES); 1221 ClearPagePrivate(page); 1222 } 1223 1224 static int f2fs_release_node_page(struct page *page, gfp_t wait) 1225 { 1226 ClearPagePrivate(page); 1227 return 1; 1228 } 1229 1230 /* 1231 * Structure of the f2fs node operations 1232 */ 1233 const struct address_space_operations f2fs_node_aops = { 1234 .writepage = f2fs_write_node_page, 1235 .writepages = f2fs_write_node_pages, 1236 .set_page_dirty = f2fs_set_node_page_dirty, 1237 .invalidatepage = f2fs_invalidate_node_page, 1238 .releasepage = f2fs_release_node_page, 1239 }; 1240 1241 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) 1242 { 1243 struct list_head *this; 1244 struct free_nid *i; 1245 list_for_each(this, head) { 1246 i = list_entry(this, struct free_nid, list); 1247 if (i->nid == n) 1248 return i; 1249 } 1250 return NULL; 1251 } 1252 1253 static void __del_from_free_nid_list(struct free_nid *i) 1254 { 1255 list_del(&i->list); 1256 kmem_cache_free(free_nid_slab, i); 1257 } 1258 1259 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build) 1260 { 1261 struct free_nid *i; 1262 struct nat_entry *ne; 1263 bool allocated = false; 1264 1265 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) 1266 return -1; 1267 1268 /* 0 nid should not be used */ 1269 if (nid == 0) 1270 return 0; 1271 1272 if (!build) 1273 goto retry; 1274 1275 /* do not add allocated nids */ 1276 read_lock(&nm_i->nat_tree_lock); 1277 ne = __lookup_nat_cache(nm_i, nid); 1278 if (ne && nat_get_blkaddr(ne) != NULL_ADDR) 1279 allocated = true; 1280 read_unlock(&nm_i->nat_tree_lock); 1281 if (allocated) 1282 return 0; 1283 retry: 1284 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1285 if (!i) { 1286 cond_resched(); 1287 goto retry; 1288 } 1289 i->nid = nid; 1290 i->state = NID_NEW; 1291 1292 spin_lock(&nm_i->free_nid_list_lock); 1293 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { 1294 spin_unlock(&nm_i->free_nid_list_lock); 1295 kmem_cache_free(free_nid_slab, i); 1296 return 0; 1297 } 1298 list_add_tail(&i->list, &nm_i->free_nid_list); 1299 nm_i->fcnt++; 1300 spin_unlock(&nm_i->free_nid_list_lock); 1301 return 1; 1302 } 1303 1304 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1305 { 1306 struct free_nid *i; 1307 spin_lock(&nm_i->free_nid_list_lock); 1308 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1309 if (i && i->state == NID_NEW) { 1310 __del_from_free_nid_list(i); 1311 nm_i->fcnt--; 1312 } 1313 spin_unlock(&nm_i->free_nid_list_lock); 1314 } 1315 1316 static void scan_nat_page(struct f2fs_nm_info *nm_i, 1317 struct page *nat_page, nid_t start_nid) 1318 { 1319 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1320 block_t blk_addr; 1321 int i; 1322 1323 i = start_nid % NAT_ENTRY_PER_BLOCK; 1324 1325 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1326 1327 if (start_nid >= nm_i->max_nid) 1328 break; 1329 1330 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1331 BUG_ON(blk_addr == NEW_ADDR); 1332 if (blk_addr == NULL_ADDR) { 1333 if (add_free_nid(nm_i, start_nid, true) < 0) 1334 break; 1335 } 1336 } 1337 } 1338 1339 static void build_free_nids(struct f2fs_sb_info *sbi) 1340 { 1341 struct f2fs_nm_info *nm_i = NM_I(sbi); 1342 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1343 struct f2fs_summary_block *sum = curseg->sum_blk; 1344 int i = 0; 1345 nid_t nid = nm_i->next_scan_nid; 1346 1347 /* Enough entries */ 1348 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1349 return; 1350 1351 /* readahead nat pages to be scanned */ 1352 ra_nat_pages(sbi, nid); 1353 1354 while (1) { 1355 struct page *page = get_current_nat_page(sbi, nid); 1356 1357 scan_nat_page(nm_i, page, nid); 1358 f2fs_put_page(page, 1); 1359 1360 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1361 if (nid >= nm_i->max_nid) 1362 nid = 0; 1363 1364 if (i++ == FREE_NID_PAGES) 1365 break; 1366 } 1367 1368 /* go to the next free nat pages to find free nids abundantly */ 1369 nm_i->next_scan_nid = nid; 1370 1371 /* find free nids from current sum_pages */ 1372 mutex_lock(&curseg->curseg_mutex); 1373 for (i = 0; i < nats_in_cursum(sum); i++) { 1374 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); 1375 nid = le32_to_cpu(nid_in_journal(sum, i)); 1376 if (addr == NULL_ADDR) 1377 add_free_nid(nm_i, nid, true); 1378 else 1379 remove_free_nid(nm_i, nid); 1380 } 1381 mutex_unlock(&curseg->curseg_mutex); 1382 } 1383 1384 /* 1385 * If this function returns success, caller can obtain a new nid 1386 * from second parameter of this function. 1387 * The returned nid could be used ino as well as nid when inode is created. 1388 */ 1389 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1390 { 1391 struct f2fs_nm_info *nm_i = NM_I(sbi); 1392 struct free_nid *i = NULL; 1393 struct list_head *this; 1394 retry: 1395 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid) 1396 return false; 1397 1398 spin_lock(&nm_i->free_nid_list_lock); 1399 1400 /* We should not use stale free nids created by build_free_nids */ 1401 if (nm_i->fcnt && !sbi->on_build_free_nids) { 1402 BUG_ON(list_empty(&nm_i->free_nid_list)); 1403 list_for_each(this, &nm_i->free_nid_list) { 1404 i = list_entry(this, struct free_nid, list); 1405 if (i->state == NID_NEW) 1406 break; 1407 } 1408 1409 BUG_ON(i->state != NID_NEW); 1410 *nid = i->nid; 1411 i->state = NID_ALLOC; 1412 nm_i->fcnt--; 1413 spin_unlock(&nm_i->free_nid_list_lock); 1414 return true; 1415 } 1416 spin_unlock(&nm_i->free_nid_list_lock); 1417 1418 /* Let's scan nat pages and its caches to get free nids */ 1419 mutex_lock(&nm_i->build_lock); 1420 sbi->on_build_free_nids = 1; 1421 build_free_nids(sbi); 1422 sbi->on_build_free_nids = 0; 1423 mutex_unlock(&nm_i->build_lock); 1424 goto retry; 1425 } 1426 1427 /* 1428 * alloc_nid() should be called prior to this function. 1429 */ 1430 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1431 { 1432 struct f2fs_nm_info *nm_i = NM_I(sbi); 1433 struct free_nid *i; 1434 1435 spin_lock(&nm_i->free_nid_list_lock); 1436 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1437 BUG_ON(!i || i->state != NID_ALLOC); 1438 __del_from_free_nid_list(i); 1439 spin_unlock(&nm_i->free_nid_list_lock); 1440 } 1441 1442 /* 1443 * alloc_nid() should be called prior to this function. 1444 */ 1445 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1446 { 1447 struct f2fs_nm_info *nm_i = NM_I(sbi); 1448 struct free_nid *i; 1449 1450 spin_lock(&nm_i->free_nid_list_lock); 1451 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1452 BUG_ON(!i || i->state != NID_ALLOC); 1453 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) { 1454 __del_from_free_nid_list(i); 1455 } else { 1456 i->state = NID_NEW; 1457 nm_i->fcnt++; 1458 } 1459 spin_unlock(&nm_i->free_nid_list_lock); 1460 } 1461 1462 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, 1463 struct f2fs_summary *sum, struct node_info *ni, 1464 block_t new_blkaddr) 1465 { 1466 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); 1467 set_node_addr(sbi, ni, new_blkaddr); 1468 clear_node_page_dirty(page); 1469 } 1470 1471 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1472 { 1473 struct address_space *mapping = sbi->node_inode->i_mapping; 1474 struct f2fs_node *src, *dst; 1475 nid_t ino = ino_of_node(page); 1476 struct node_info old_ni, new_ni; 1477 struct page *ipage; 1478 1479 ipage = grab_cache_page(mapping, ino); 1480 if (!ipage) 1481 return -ENOMEM; 1482 1483 /* Should not use this inode from free nid list */ 1484 remove_free_nid(NM_I(sbi), ino); 1485 1486 get_node_info(sbi, ino, &old_ni); 1487 SetPageUptodate(ipage); 1488 fill_node_footer(ipage, ino, ino, 0, true); 1489 1490 src = F2FS_NODE(page); 1491 dst = F2FS_NODE(ipage); 1492 1493 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); 1494 dst->i.i_size = 0; 1495 dst->i.i_blocks = cpu_to_le64(1); 1496 dst->i.i_links = cpu_to_le32(1); 1497 dst->i.i_xattr_nid = 0; 1498 1499 new_ni = old_ni; 1500 new_ni.ino = ino; 1501 1502 if (!inc_valid_node_count(sbi, NULL, 1)) 1503 WARN_ON(1); 1504 set_node_addr(sbi, &new_ni, NEW_ADDR); 1505 inc_valid_inode_count(sbi); 1506 f2fs_put_page(ipage, 1); 1507 return 0; 1508 } 1509 1510 int restore_node_summary(struct f2fs_sb_info *sbi, 1511 unsigned int segno, struct f2fs_summary_block *sum) 1512 { 1513 struct f2fs_node *rn; 1514 struct f2fs_summary *sum_entry; 1515 struct page *page; 1516 block_t addr; 1517 int i, last_offset; 1518 1519 /* alloc temporal page for read node */ 1520 page = alloc_page(GFP_NOFS | __GFP_ZERO); 1521 if (!page) 1522 return -ENOMEM; 1523 lock_page(page); 1524 1525 /* scan the node segment */ 1526 last_offset = sbi->blocks_per_seg; 1527 addr = START_BLOCK(sbi, segno); 1528 sum_entry = &sum->entries[0]; 1529 1530 for (i = 0; i < last_offset; i++, sum_entry++) { 1531 /* 1532 * In order to read next node page, 1533 * we must clear PageUptodate flag. 1534 */ 1535 ClearPageUptodate(page); 1536 1537 if (f2fs_readpage(sbi, page, addr, READ_SYNC)) 1538 goto out; 1539 1540 lock_page(page); 1541 rn = F2FS_NODE(page); 1542 sum_entry->nid = rn->footer.nid; 1543 sum_entry->version = 0; 1544 sum_entry->ofs_in_node = 0; 1545 addr++; 1546 } 1547 unlock_page(page); 1548 out: 1549 __free_pages(page, 0); 1550 return 0; 1551 } 1552 1553 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) 1554 { 1555 struct f2fs_nm_info *nm_i = NM_I(sbi); 1556 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1557 struct f2fs_summary_block *sum = curseg->sum_blk; 1558 int i; 1559 1560 mutex_lock(&curseg->curseg_mutex); 1561 1562 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { 1563 mutex_unlock(&curseg->curseg_mutex); 1564 return false; 1565 } 1566 1567 for (i = 0; i < nats_in_cursum(sum); i++) { 1568 struct nat_entry *ne; 1569 struct f2fs_nat_entry raw_ne; 1570 nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); 1571 1572 raw_ne = nat_in_journal(sum, i); 1573 retry: 1574 write_lock(&nm_i->nat_tree_lock); 1575 ne = __lookup_nat_cache(nm_i, nid); 1576 if (ne) { 1577 __set_nat_cache_dirty(nm_i, ne); 1578 write_unlock(&nm_i->nat_tree_lock); 1579 continue; 1580 } 1581 ne = grab_nat_entry(nm_i, nid); 1582 if (!ne) { 1583 write_unlock(&nm_i->nat_tree_lock); 1584 goto retry; 1585 } 1586 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); 1587 nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); 1588 nat_set_version(ne, raw_ne.version); 1589 __set_nat_cache_dirty(nm_i, ne); 1590 write_unlock(&nm_i->nat_tree_lock); 1591 } 1592 update_nats_in_cursum(sum, -i); 1593 mutex_unlock(&curseg->curseg_mutex); 1594 return true; 1595 } 1596 1597 /* 1598 * This function is called during the checkpointing process. 1599 */ 1600 void flush_nat_entries(struct f2fs_sb_info *sbi) 1601 { 1602 struct f2fs_nm_info *nm_i = NM_I(sbi); 1603 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1604 struct f2fs_summary_block *sum = curseg->sum_blk; 1605 struct list_head *cur, *n; 1606 struct page *page = NULL; 1607 struct f2fs_nat_block *nat_blk = NULL; 1608 nid_t start_nid = 0, end_nid = 0; 1609 bool flushed; 1610 1611 flushed = flush_nats_in_journal(sbi); 1612 1613 if (!flushed) 1614 mutex_lock(&curseg->curseg_mutex); 1615 1616 /* 1) flush dirty nat caches */ 1617 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { 1618 struct nat_entry *ne; 1619 nid_t nid; 1620 struct f2fs_nat_entry raw_ne; 1621 int offset = -1; 1622 block_t new_blkaddr; 1623 1624 ne = list_entry(cur, struct nat_entry, list); 1625 nid = nat_get_nid(ne); 1626 1627 if (nat_get_blkaddr(ne) == NEW_ADDR) 1628 continue; 1629 if (flushed) 1630 goto to_nat_page; 1631 1632 /* if there is room for nat enries in curseg->sumpage */ 1633 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); 1634 if (offset >= 0) { 1635 raw_ne = nat_in_journal(sum, offset); 1636 goto flush_now; 1637 } 1638 to_nat_page: 1639 if (!page || (start_nid > nid || nid > end_nid)) { 1640 if (page) { 1641 f2fs_put_page(page, 1); 1642 page = NULL; 1643 } 1644 start_nid = START_NID(nid); 1645 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; 1646 1647 /* 1648 * get nat block with dirty flag, increased reference 1649 * count, mapped and lock 1650 */ 1651 page = get_next_nat_page(sbi, start_nid); 1652 nat_blk = page_address(page); 1653 } 1654 1655 BUG_ON(!nat_blk); 1656 raw_ne = nat_blk->entries[nid - start_nid]; 1657 flush_now: 1658 new_blkaddr = nat_get_blkaddr(ne); 1659 1660 raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); 1661 raw_ne.block_addr = cpu_to_le32(new_blkaddr); 1662 raw_ne.version = nat_get_version(ne); 1663 1664 if (offset < 0) { 1665 nat_blk->entries[nid - start_nid] = raw_ne; 1666 } else { 1667 nat_in_journal(sum, offset) = raw_ne; 1668 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1669 } 1670 1671 if (nat_get_blkaddr(ne) == NULL_ADDR && 1672 add_free_nid(NM_I(sbi), nid, false) <= 0) { 1673 write_lock(&nm_i->nat_tree_lock); 1674 __del_from_nat_cache(nm_i, ne); 1675 write_unlock(&nm_i->nat_tree_lock); 1676 } else { 1677 write_lock(&nm_i->nat_tree_lock); 1678 __clear_nat_cache_dirty(nm_i, ne); 1679 ne->checkpointed = true; 1680 write_unlock(&nm_i->nat_tree_lock); 1681 } 1682 } 1683 if (!flushed) 1684 mutex_unlock(&curseg->curseg_mutex); 1685 f2fs_put_page(page, 1); 1686 1687 /* 2) shrink nat caches if necessary */ 1688 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); 1689 } 1690 1691 static int init_node_manager(struct f2fs_sb_info *sbi) 1692 { 1693 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1694 struct f2fs_nm_info *nm_i = NM_I(sbi); 1695 unsigned char *version_bitmap; 1696 unsigned int nat_segs, nat_blocks; 1697 1698 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 1699 1700 /* segment_count_nat includes pair segment so divide to 2. */ 1701 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 1702 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 1703 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 1704 nm_i->fcnt = 0; 1705 nm_i->nat_cnt = 0; 1706 1707 INIT_LIST_HEAD(&nm_i->free_nid_list); 1708 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); 1709 INIT_LIST_HEAD(&nm_i->nat_entries); 1710 INIT_LIST_HEAD(&nm_i->dirty_nat_entries); 1711 1712 mutex_init(&nm_i->build_lock); 1713 spin_lock_init(&nm_i->free_nid_list_lock); 1714 rwlock_init(&nm_i->nat_tree_lock); 1715 1716 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1717 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 1718 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 1719 if (!version_bitmap) 1720 return -EFAULT; 1721 1722 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 1723 GFP_KERNEL); 1724 if (!nm_i->nat_bitmap) 1725 return -ENOMEM; 1726 return 0; 1727 } 1728 1729 int build_node_manager(struct f2fs_sb_info *sbi) 1730 { 1731 int err; 1732 1733 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 1734 if (!sbi->nm_info) 1735 return -ENOMEM; 1736 1737 err = init_node_manager(sbi); 1738 if (err) 1739 return err; 1740 1741 build_free_nids(sbi); 1742 return 0; 1743 } 1744 1745 void destroy_node_manager(struct f2fs_sb_info *sbi) 1746 { 1747 struct f2fs_nm_info *nm_i = NM_I(sbi); 1748 struct free_nid *i, *next_i; 1749 struct nat_entry *natvec[NATVEC_SIZE]; 1750 nid_t nid = 0; 1751 unsigned int found; 1752 1753 if (!nm_i) 1754 return; 1755 1756 /* destroy free nid list */ 1757 spin_lock(&nm_i->free_nid_list_lock); 1758 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 1759 BUG_ON(i->state == NID_ALLOC); 1760 __del_from_free_nid_list(i); 1761 nm_i->fcnt--; 1762 } 1763 BUG_ON(nm_i->fcnt); 1764 spin_unlock(&nm_i->free_nid_list_lock); 1765 1766 /* destroy nat cache */ 1767 write_lock(&nm_i->nat_tree_lock); 1768 while ((found = __gang_lookup_nat_cache(nm_i, 1769 nid, NATVEC_SIZE, natvec))) { 1770 unsigned idx; 1771 for (idx = 0; idx < found; idx++) { 1772 struct nat_entry *e = natvec[idx]; 1773 nid = nat_get_nid(e) + 1; 1774 __del_from_nat_cache(nm_i, e); 1775 } 1776 } 1777 BUG_ON(nm_i->nat_cnt); 1778 write_unlock(&nm_i->nat_tree_lock); 1779 1780 kfree(nm_i->nat_bitmap); 1781 sbi->nm_info = NULL; 1782 kfree(nm_i); 1783 } 1784 1785 int __init create_node_manager_caches(void) 1786 { 1787 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 1788 sizeof(struct nat_entry), NULL); 1789 if (!nat_entry_slab) 1790 return -ENOMEM; 1791 1792 free_nid_slab = f2fs_kmem_cache_create("free_nid", 1793 sizeof(struct free_nid), NULL); 1794 if (!free_nid_slab) { 1795 kmem_cache_destroy(nat_entry_slab); 1796 return -ENOMEM; 1797 } 1798 return 0; 1799 } 1800 1801 void destroy_node_manager_caches(void) 1802 { 1803 kmem_cache_destroy(free_nid_slab); 1804 kmem_cache_destroy(nat_entry_slab); 1805 } 1806