1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include <trace/events/f2fs.h> 23 24 static struct kmem_cache *nat_entry_slab; 25 static struct kmem_cache *free_nid_slab; 26 27 static void clear_node_page_dirty(struct page *page) 28 { 29 struct address_space *mapping = page->mapping; 30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 31 unsigned int long flags; 32 33 if (PageDirty(page)) { 34 spin_lock_irqsave(&mapping->tree_lock, flags); 35 radix_tree_tag_clear(&mapping->page_tree, 36 page_index(page), 37 PAGECACHE_TAG_DIRTY); 38 spin_unlock_irqrestore(&mapping->tree_lock, flags); 39 40 clear_page_dirty_for_io(page); 41 dec_page_count(sbi, F2FS_DIRTY_NODES); 42 } 43 ClearPageUptodate(page); 44 } 45 46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 47 { 48 pgoff_t index = current_nat_addr(sbi, nid); 49 return get_meta_page(sbi, index); 50 } 51 52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 53 { 54 struct page *src_page; 55 struct page *dst_page; 56 pgoff_t src_off; 57 pgoff_t dst_off; 58 void *src_addr; 59 void *dst_addr; 60 struct f2fs_nm_info *nm_i = NM_I(sbi); 61 62 src_off = current_nat_addr(sbi, nid); 63 dst_off = next_nat_addr(sbi, src_off); 64 65 /* get current nat block page with lock */ 66 src_page = get_meta_page(sbi, src_off); 67 68 /* Dirty src_page means that it is already the new target NAT page. */ 69 if (PageDirty(src_page)) 70 return src_page; 71 72 dst_page = grab_meta_page(sbi, dst_off); 73 74 src_addr = page_address(src_page); 75 dst_addr = page_address(dst_page); 76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 77 set_page_dirty(dst_page); 78 f2fs_put_page(src_page, 1); 79 80 set_to_next_nat(nm_i, nid); 81 82 return dst_page; 83 } 84 85 /* 86 * Readahead NAT pages 87 */ 88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) 89 { 90 struct address_space *mapping = sbi->meta_inode->i_mapping; 91 struct f2fs_nm_info *nm_i = NM_I(sbi); 92 struct page *page; 93 pgoff_t index; 94 int i; 95 96 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { 97 if (unlikely(nid >= nm_i->max_nid)) 98 nid = 0; 99 index = current_nat_addr(sbi, nid); 100 101 page = grab_cache_page(mapping, index); 102 if (!page) 103 continue; 104 if (PageUptodate(page)) { 105 mark_page_accessed(page); 106 f2fs_put_page(page, 1); 107 continue; 108 } 109 f2fs_submit_page_mbio(sbi, page, index, META, READ); 110 mark_page_accessed(page); 111 f2fs_put_page(page, 0); 112 } 113 f2fs_submit_merged_bio(sbi, META, true, READ); 114 } 115 116 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 117 { 118 return radix_tree_lookup(&nm_i->nat_root, n); 119 } 120 121 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 122 nid_t start, unsigned int nr, struct nat_entry **ep) 123 { 124 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 125 } 126 127 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 128 { 129 list_del(&e->list); 130 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 131 nm_i->nat_cnt--; 132 kmem_cache_free(nat_entry_slab, e); 133 } 134 135 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 136 { 137 struct f2fs_nm_info *nm_i = NM_I(sbi); 138 struct nat_entry *e; 139 int is_cp = 1; 140 141 read_lock(&nm_i->nat_tree_lock); 142 e = __lookup_nat_cache(nm_i, nid); 143 if (e && !e->checkpointed) 144 is_cp = 0; 145 read_unlock(&nm_i->nat_tree_lock); 146 return is_cp; 147 } 148 149 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 150 { 151 struct nat_entry *new; 152 153 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 154 if (!new) 155 return NULL; 156 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 157 kmem_cache_free(nat_entry_slab, new); 158 return NULL; 159 } 160 memset(new, 0, sizeof(struct nat_entry)); 161 nat_set_nid(new, nid); 162 list_add_tail(&new->list, &nm_i->nat_entries); 163 nm_i->nat_cnt++; 164 return new; 165 } 166 167 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 168 struct f2fs_nat_entry *ne) 169 { 170 struct nat_entry *e; 171 retry: 172 write_lock(&nm_i->nat_tree_lock); 173 e = __lookup_nat_cache(nm_i, nid); 174 if (!e) { 175 e = grab_nat_entry(nm_i, nid); 176 if (!e) { 177 write_unlock(&nm_i->nat_tree_lock); 178 goto retry; 179 } 180 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); 181 nat_set_ino(e, le32_to_cpu(ne->ino)); 182 nat_set_version(e, ne->version); 183 e->checkpointed = true; 184 } 185 write_unlock(&nm_i->nat_tree_lock); 186 } 187 188 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 189 block_t new_blkaddr) 190 { 191 struct f2fs_nm_info *nm_i = NM_I(sbi); 192 struct nat_entry *e; 193 retry: 194 write_lock(&nm_i->nat_tree_lock); 195 e = __lookup_nat_cache(nm_i, ni->nid); 196 if (!e) { 197 e = grab_nat_entry(nm_i, ni->nid); 198 if (!e) { 199 write_unlock(&nm_i->nat_tree_lock); 200 goto retry; 201 } 202 e->ni = *ni; 203 e->checkpointed = true; 204 f2fs_bug_on(ni->blk_addr == NEW_ADDR); 205 } else if (new_blkaddr == NEW_ADDR) { 206 /* 207 * when nid is reallocated, 208 * previous nat entry can be remained in nat cache. 209 * So, reinitialize it with new information. 210 */ 211 e->ni = *ni; 212 f2fs_bug_on(ni->blk_addr != NULL_ADDR); 213 } 214 215 if (new_blkaddr == NEW_ADDR) 216 e->checkpointed = false; 217 218 /* sanity check */ 219 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr); 220 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR && 221 new_blkaddr == NULL_ADDR); 222 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR && 223 new_blkaddr == NEW_ADDR); 224 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR && 225 nat_get_blkaddr(e) != NULL_ADDR && 226 new_blkaddr == NEW_ADDR); 227 228 /* increament version no as node is removed */ 229 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 230 unsigned char version = nat_get_version(e); 231 nat_set_version(e, inc_node_version(version)); 232 } 233 234 /* change address */ 235 nat_set_blkaddr(e, new_blkaddr); 236 __set_nat_cache_dirty(nm_i, e); 237 write_unlock(&nm_i->nat_tree_lock); 238 } 239 240 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 241 { 242 struct f2fs_nm_info *nm_i = NM_I(sbi); 243 244 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD) 245 return 0; 246 247 write_lock(&nm_i->nat_tree_lock); 248 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 249 struct nat_entry *ne; 250 ne = list_first_entry(&nm_i->nat_entries, 251 struct nat_entry, list); 252 __del_from_nat_cache(nm_i, ne); 253 nr_shrink--; 254 } 255 write_unlock(&nm_i->nat_tree_lock); 256 return nr_shrink; 257 } 258 259 /* 260 * This function returns always success 261 */ 262 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 263 { 264 struct f2fs_nm_info *nm_i = NM_I(sbi); 265 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 266 struct f2fs_summary_block *sum = curseg->sum_blk; 267 nid_t start_nid = START_NID(nid); 268 struct f2fs_nat_block *nat_blk; 269 struct page *page = NULL; 270 struct f2fs_nat_entry ne; 271 struct nat_entry *e; 272 int i; 273 274 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 275 ni->nid = nid; 276 277 /* Check nat cache */ 278 read_lock(&nm_i->nat_tree_lock); 279 e = __lookup_nat_cache(nm_i, nid); 280 if (e) { 281 ni->ino = nat_get_ino(e); 282 ni->blk_addr = nat_get_blkaddr(e); 283 ni->version = nat_get_version(e); 284 } 285 read_unlock(&nm_i->nat_tree_lock); 286 if (e) 287 return; 288 289 /* Check current segment summary */ 290 mutex_lock(&curseg->curseg_mutex); 291 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); 292 if (i >= 0) { 293 ne = nat_in_journal(sum, i); 294 node_info_from_raw_nat(ni, &ne); 295 } 296 mutex_unlock(&curseg->curseg_mutex); 297 if (i >= 0) 298 goto cache; 299 300 /* Fill node_info from nat page */ 301 page = get_current_nat_page(sbi, start_nid); 302 nat_blk = (struct f2fs_nat_block *)page_address(page); 303 ne = nat_blk->entries[nid - start_nid]; 304 node_info_from_raw_nat(ni, &ne); 305 f2fs_put_page(page, 1); 306 cache: 307 /* cache nat entry */ 308 cache_nat_entry(NM_I(sbi), nid, &ne); 309 } 310 311 /* 312 * The maximum depth is four. 313 * Offset[0] will have raw inode offset. 314 */ 315 static int get_node_path(struct f2fs_inode_info *fi, long block, 316 int offset[4], unsigned int noffset[4]) 317 { 318 const long direct_index = ADDRS_PER_INODE(fi); 319 const long direct_blks = ADDRS_PER_BLOCK; 320 const long dptrs_per_blk = NIDS_PER_BLOCK; 321 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 322 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 323 int n = 0; 324 int level = 0; 325 326 noffset[0] = 0; 327 328 if (block < direct_index) { 329 offset[n] = block; 330 goto got; 331 } 332 block -= direct_index; 333 if (block < direct_blks) { 334 offset[n++] = NODE_DIR1_BLOCK; 335 noffset[n] = 1; 336 offset[n] = block; 337 level = 1; 338 goto got; 339 } 340 block -= direct_blks; 341 if (block < direct_blks) { 342 offset[n++] = NODE_DIR2_BLOCK; 343 noffset[n] = 2; 344 offset[n] = block; 345 level = 1; 346 goto got; 347 } 348 block -= direct_blks; 349 if (block < indirect_blks) { 350 offset[n++] = NODE_IND1_BLOCK; 351 noffset[n] = 3; 352 offset[n++] = block / direct_blks; 353 noffset[n] = 4 + offset[n - 1]; 354 offset[n] = block % direct_blks; 355 level = 2; 356 goto got; 357 } 358 block -= indirect_blks; 359 if (block < indirect_blks) { 360 offset[n++] = NODE_IND2_BLOCK; 361 noffset[n] = 4 + dptrs_per_blk; 362 offset[n++] = block / direct_blks; 363 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 364 offset[n] = block % direct_blks; 365 level = 2; 366 goto got; 367 } 368 block -= indirect_blks; 369 if (block < dindirect_blks) { 370 offset[n++] = NODE_DIND_BLOCK; 371 noffset[n] = 5 + (dptrs_per_blk * 2); 372 offset[n++] = block / indirect_blks; 373 noffset[n] = 6 + (dptrs_per_blk * 2) + 374 offset[n - 1] * (dptrs_per_blk + 1); 375 offset[n++] = (block / direct_blks) % dptrs_per_blk; 376 noffset[n] = 7 + (dptrs_per_blk * 2) + 377 offset[n - 2] * (dptrs_per_blk + 1) + 378 offset[n - 1]; 379 offset[n] = block % direct_blks; 380 level = 3; 381 goto got; 382 } else { 383 BUG(); 384 } 385 got: 386 return level; 387 } 388 389 /* 390 * Caller should call f2fs_put_dnode(dn). 391 * Also, it should grab and release a mutex by calling mutex_lock_op() and 392 * mutex_unlock_op() only if ro is not set RDONLY_NODE. 393 * In the case of RDONLY_NODE, we don't need to care about mutex. 394 */ 395 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 396 { 397 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 398 struct page *npage[4]; 399 struct page *parent; 400 int offset[4]; 401 unsigned int noffset[4]; 402 nid_t nids[4]; 403 int level, i; 404 int err = 0; 405 406 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); 407 408 nids[0] = dn->inode->i_ino; 409 npage[0] = dn->inode_page; 410 411 if (!npage[0]) { 412 npage[0] = get_node_page(sbi, nids[0]); 413 if (IS_ERR(npage[0])) 414 return PTR_ERR(npage[0]); 415 } 416 parent = npage[0]; 417 if (level != 0) 418 nids[1] = get_nid(parent, offset[0], true); 419 dn->inode_page = npage[0]; 420 dn->inode_page_locked = true; 421 422 /* get indirect or direct nodes */ 423 for (i = 1; i <= level; i++) { 424 bool done = false; 425 426 if (!nids[i] && mode == ALLOC_NODE) { 427 /* alloc new node */ 428 if (!alloc_nid(sbi, &(nids[i]))) { 429 err = -ENOSPC; 430 goto release_pages; 431 } 432 433 dn->nid = nids[i]; 434 npage[i] = new_node_page(dn, noffset[i], NULL); 435 if (IS_ERR(npage[i])) { 436 alloc_nid_failed(sbi, nids[i]); 437 err = PTR_ERR(npage[i]); 438 goto release_pages; 439 } 440 441 set_nid(parent, offset[i - 1], nids[i], i == 1); 442 alloc_nid_done(sbi, nids[i]); 443 done = true; 444 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 445 npage[i] = get_node_page_ra(parent, offset[i - 1]); 446 if (IS_ERR(npage[i])) { 447 err = PTR_ERR(npage[i]); 448 goto release_pages; 449 } 450 done = true; 451 } 452 if (i == 1) { 453 dn->inode_page_locked = false; 454 unlock_page(parent); 455 } else { 456 f2fs_put_page(parent, 1); 457 } 458 459 if (!done) { 460 npage[i] = get_node_page(sbi, nids[i]); 461 if (IS_ERR(npage[i])) { 462 err = PTR_ERR(npage[i]); 463 f2fs_put_page(npage[0], 0); 464 goto release_out; 465 } 466 } 467 if (i < level) { 468 parent = npage[i]; 469 nids[i + 1] = get_nid(parent, offset[i], false); 470 } 471 } 472 dn->nid = nids[level]; 473 dn->ofs_in_node = offset[level]; 474 dn->node_page = npage[level]; 475 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 476 return 0; 477 478 release_pages: 479 f2fs_put_page(parent, 1); 480 if (i > 1) 481 f2fs_put_page(npage[0], 0); 482 release_out: 483 dn->inode_page = NULL; 484 dn->node_page = NULL; 485 return err; 486 } 487 488 static void truncate_node(struct dnode_of_data *dn) 489 { 490 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 491 struct node_info ni; 492 493 get_node_info(sbi, dn->nid, &ni); 494 if (dn->inode->i_blocks == 0) { 495 f2fs_bug_on(ni.blk_addr != NULL_ADDR); 496 goto invalidate; 497 } 498 f2fs_bug_on(ni.blk_addr == NULL_ADDR); 499 500 /* Deallocate node address */ 501 invalidate_blocks(sbi, ni.blk_addr); 502 dec_valid_node_count(sbi, dn->inode); 503 set_node_addr(sbi, &ni, NULL_ADDR); 504 505 if (dn->nid == dn->inode->i_ino) { 506 remove_orphan_inode(sbi, dn->nid); 507 dec_valid_inode_count(sbi); 508 } else { 509 sync_inode_page(dn); 510 } 511 invalidate: 512 clear_node_page_dirty(dn->node_page); 513 F2FS_SET_SB_DIRT(sbi); 514 515 f2fs_put_page(dn->node_page, 1); 516 dn->node_page = NULL; 517 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 518 } 519 520 static int truncate_dnode(struct dnode_of_data *dn) 521 { 522 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 523 struct page *page; 524 525 if (dn->nid == 0) 526 return 1; 527 528 /* get direct node */ 529 page = get_node_page(sbi, dn->nid); 530 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 531 return 1; 532 else if (IS_ERR(page)) 533 return PTR_ERR(page); 534 535 /* Make dnode_of_data for parameter */ 536 dn->node_page = page; 537 dn->ofs_in_node = 0; 538 truncate_data_blocks(dn); 539 truncate_node(dn); 540 return 1; 541 } 542 543 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 544 int ofs, int depth) 545 { 546 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 547 struct dnode_of_data rdn = *dn; 548 struct page *page; 549 struct f2fs_node *rn; 550 nid_t child_nid; 551 unsigned int child_nofs; 552 int freed = 0; 553 int i, ret; 554 555 if (dn->nid == 0) 556 return NIDS_PER_BLOCK + 1; 557 558 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 559 560 page = get_node_page(sbi, dn->nid); 561 if (IS_ERR(page)) { 562 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 563 return PTR_ERR(page); 564 } 565 566 rn = F2FS_NODE(page); 567 if (depth < 3) { 568 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 569 child_nid = le32_to_cpu(rn->in.nid[i]); 570 if (child_nid == 0) 571 continue; 572 rdn.nid = child_nid; 573 ret = truncate_dnode(&rdn); 574 if (ret < 0) 575 goto out_err; 576 set_nid(page, i, 0, false); 577 } 578 } else { 579 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 580 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 581 child_nid = le32_to_cpu(rn->in.nid[i]); 582 if (child_nid == 0) { 583 child_nofs += NIDS_PER_BLOCK + 1; 584 continue; 585 } 586 rdn.nid = child_nid; 587 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 588 if (ret == (NIDS_PER_BLOCK + 1)) { 589 set_nid(page, i, 0, false); 590 child_nofs += ret; 591 } else if (ret < 0 && ret != -ENOENT) { 592 goto out_err; 593 } 594 } 595 freed = child_nofs; 596 } 597 598 if (!ofs) { 599 /* remove current indirect node */ 600 dn->node_page = page; 601 truncate_node(dn); 602 freed++; 603 } else { 604 f2fs_put_page(page, 1); 605 } 606 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 607 return freed; 608 609 out_err: 610 f2fs_put_page(page, 1); 611 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 612 return ret; 613 } 614 615 static int truncate_partial_nodes(struct dnode_of_data *dn, 616 struct f2fs_inode *ri, int *offset, int depth) 617 { 618 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 619 struct page *pages[2]; 620 nid_t nid[3]; 621 nid_t child_nid; 622 int err = 0; 623 int i; 624 int idx = depth - 2; 625 626 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 627 if (!nid[0]) 628 return 0; 629 630 /* get indirect nodes in the path */ 631 for (i = 0; i < depth - 1; i++) { 632 /* refernece count'll be increased */ 633 pages[i] = get_node_page(sbi, nid[i]); 634 if (IS_ERR(pages[i])) { 635 depth = i + 1; 636 err = PTR_ERR(pages[i]); 637 goto fail; 638 } 639 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 640 } 641 642 /* free direct nodes linked to a partial indirect node */ 643 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { 644 child_nid = get_nid(pages[idx], i, false); 645 if (!child_nid) 646 continue; 647 dn->nid = child_nid; 648 err = truncate_dnode(dn); 649 if (err < 0) 650 goto fail; 651 set_nid(pages[idx], i, 0, false); 652 } 653 654 if (offset[depth - 1] == 0) { 655 dn->node_page = pages[idx]; 656 dn->nid = nid[idx]; 657 truncate_node(dn); 658 } else { 659 f2fs_put_page(pages[idx], 1); 660 } 661 offset[idx]++; 662 offset[depth - 1] = 0; 663 fail: 664 for (i = depth - 3; i >= 0; i--) 665 f2fs_put_page(pages[i], 1); 666 667 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 668 669 return err; 670 } 671 672 /* 673 * All the block addresses of data and nodes should be nullified. 674 */ 675 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 676 { 677 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 678 struct address_space *node_mapping = sbi->node_inode->i_mapping; 679 int err = 0, cont = 1; 680 int level, offset[4], noffset[4]; 681 unsigned int nofs = 0; 682 struct f2fs_node *rn; 683 struct dnode_of_data dn; 684 struct page *page; 685 686 trace_f2fs_truncate_inode_blocks_enter(inode, from); 687 688 level = get_node_path(F2FS_I(inode), from, offset, noffset); 689 restart: 690 page = get_node_page(sbi, inode->i_ino); 691 if (IS_ERR(page)) { 692 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 693 return PTR_ERR(page); 694 } 695 696 set_new_dnode(&dn, inode, page, NULL, 0); 697 unlock_page(page); 698 699 rn = F2FS_NODE(page); 700 switch (level) { 701 case 0: 702 case 1: 703 nofs = noffset[1]; 704 break; 705 case 2: 706 nofs = noffset[1]; 707 if (!offset[level - 1]) 708 goto skip_partial; 709 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 710 if (err < 0 && err != -ENOENT) 711 goto fail; 712 nofs += 1 + NIDS_PER_BLOCK; 713 break; 714 case 3: 715 nofs = 5 + 2 * NIDS_PER_BLOCK; 716 if (!offset[level - 1]) 717 goto skip_partial; 718 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 719 if (err < 0 && err != -ENOENT) 720 goto fail; 721 break; 722 default: 723 BUG(); 724 } 725 726 skip_partial: 727 while (cont) { 728 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); 729 switch (offset[0]) { 730 case NODE_DIR1_BLOCK: 731 case NODE_DIR2_BLOCK: 732 err = truncate_dnode(&dn); 733 break; 734 735 case NODE_IND1_BLOCK: 736 case NODE_IND2_BLOCK: 737 err = truncate_nodes(&dn, nofs, offset[1], 2); 738 break; 739 740 case NODE_DIND_BLOCK: 741 err = truncate_nodes(&dn, nofs, offset[1], 3); 742 cont = 0; 743 break; 744 745 default: 746 BUG(); 747 } 748 if (err < 0 && err != -ENOENT) 749 goto fail; 750 if (offset[1] == 0 && 751 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { 752 lock_page(page); 753 if (page->mapping != node_mapping) { 754 f2fs_put_page(page, 1); 755 goto restart; 756 } 757 wait_on_page_writeback(page); 758 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 759 set_page_dirty(page); 760 unlock_page(page); 761 } 762 offset[1] = 0; 763 offset[0]++; 764 nofs += err; 765 } 766 fail: 767 f2fs_put_page(page, 0); 768 trace_f2fs_truncate_inode_blocks_exit(inode, err); 769 return err > 0 ? 0 : err; 770 } 771 772 int truncate_xattr_node(struct inode *inode, struct page *page) 773 { 774 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 775 nid_t nid = F2FS_I(inode)->i_xattr_nid; 776 struct dnode_of_data dn; 777 struct page *npage; 778 779 if (!nid) 780 return 0; 781 782 npage = get_node_page(sbi, nid); 783 if (IS_ERR(npage)) 784 return PTR_ERR(npage); 785 786 F2FS_I(inode)->i_xattr_nid = 0; 787 788 /* need to do checkpoint during fsync */ 789 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 790 791 set_new_dnode(&dn, inode, page, npage, nid); 792 793 if (page) 794 dn.inode_page_locked = true; 795 truncate_node(&dn); 796 return 0; 797 } 798 799 /* 800 * Caller should grab and release a mutex by calling mutex_lock_op() and 801 * mutex_unlock_op(). 802 */ 803 void remove_inode_page(struct inode *inode) 804 { 805 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 806 struct page *page; 807 nid_t ino = inode->i_ino; 808 struct dnode_of_data dn; 809 810 page = get_node_page(sbi, ino); 811 if (IS_ERR(page)) 812 return; 813 814 if (truncate_xattr_node(inode, page)) { 815 f2fs_put_page(page, 1); 816 return; 817 } 818 /* 0 is possible, after f2fs_new_inode() is failed */ 819 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1); 820 set_new_dnode(&dn, inode, page, page, ino); 821 truncate_node(&dn); 822 } 823 824 struct page *new_inode_page(struct inode *inode, const struct qstr *name) 825 { 826 struct dnode_of_data dn; 827 828 /* allocate inode page for new inode */ 829 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 830 831 /* caller should f2fs_put_page(page, 1); */ 832 return new_node_page(&dn, 0, NULL); 833 } 834 835 struct page *new_node_page(struct dnode_of_data *dn, 836 unsigned int ofs, struct page *ipage) 837 { 838 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 839 struct address_space *mapping = sbi->node_inode->i_mapping; 840 struct node_info old_ni, new_ni; 841 struct page *page; 842 int err; 843 844 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) 845 return ERR_PTR(-EPERM); 846 847 page = grab_cache_page(mapping, dn->nid); 848 if (!page) 849 return ERR_PTR(-ENOMEM); 850 851 if (!inc_valid_node_count(sbi, dn->inode)) { 852 err = -ENOSPC; 853 goto fail; 854 } 855 856 get_node_info(sbi, dn->nid, &old_ni); 857 858 /* Reinitialize old_ni with new node page */ 859 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR); 860 new_ni = old_ni; 861 new_ni.ino = dn->inode->i_ino; 862 set_node_addr(sbi, &new_ni, NEW_ADDR); 863 864 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 865 set_cold_node(dn->inode, page); 866 SetPageUptodate(page); 867 set_page_dirty(page); 868 869 if (ofs == XATTR_NODE_OFFSET) 870 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 871 872 dn->node_page = page; 873 if (ipage) 874 update_inode(dn->inode, ipage); 875 else 876 sync_inode_page(dn); 877 if (ofs == 0) 878 inc_valid_inode_count(sbi); 879 880 return page; 881 882 fail: 883 clear_node_page_dirty(page); 884 f2fs_put_page(page, 1); 885 return ERR_PTR(err); 886 } 887 888 /* 889 * Caller should do after getting the following values. 890 * 0: f2fs_put_page(page, 0) 891 * LOCKED_PAGE: f2fs_put_page(page, 1) 892 * error: nothing 893 */ 894 static int read_node_page(struct page *page, int rw) 895 { 896 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 897 struct node_info ni; 898 899 get_node_info(sbi, page->index, &ni); 900 901 if (ni.blk_addr == NULL_ADDR) { 902 f2fs_put_page(page, 1); 903 return -ENOENT; 904 } 905 906 if (PageUptodate(page)) 907 return LOCKED_PAGE; 908 909 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw); 910 } 911 912 /* 913 * Readahead a node page 914 */ 915 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 916 { 917 struct address_space *mapping = sbi->node_inode->i_mapping; 918 struct page *apage; 919 int err; 920 921 apage = find_get_page(mapping, nid); 922 if (apage && PageUptodate(apage)) { 923 f2fs_put_page(apage, 0); 924 return; 925 } 926 f2fs_put_page(apage, 0); 927 928 apage = grab_cache_page(mapping, nid); 929 if (!apage) 930 return; 931 932 err = read_node_page(apage, READA); 933 if (err == 0) 934 f2fs_put_page(apage, 0); 935 else if (err == LOCKED_PAGE) 936 f2fs_put_page(apage, 1); 937 } 938 939 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 940 { 941 struct address_space *mapping = sbi->node_inode->i_mapping; 942 struct page *page; 943 int err; 944 repeat: 945 page = grab_cache_page(mapping, nid); 946 if (!page) 947 return ERR_PTR(-ENOMEM); 948 949 err = read_node_page(page, READ_SYNC); 950 if (err < 0) 951 return ERR_PTR(err); 952 else if (err == LOCKED_PAGE) 953 goto got_it; 954 955 lock_page(page); 956 if (!PageUptodate(page)) { 957 f2fs_put_page(page, 1); 958 return ERR_PTR(-EIO); 959 } 960 if (page->mapping != mapping) { 961 f2fs_put_page(page, 1); 962 goto repeat; 963 } 964 got_it: 965 f2fs_bug_on(nid != nid_of_node(page)); 966 mark_page_accessed(page); 967 return page; 968 } 969 970 /* 971 * Return a locked page for the desired node page. 972 * And, readahead MAX_RA_NODE number of node pages. 973 */ 974 struct page *get_node_page_ra(struct page *parent, int start) 975 { 976 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); 977 struct address_space *mapping = sbi->node_inode->i_mapping; 978 struct blk_plug plug; 979 struct page *page; 980 int err, i, end; 981 nid_t nid; 982 983 /* First, try getting the desired direct node. */ 984 nid = get_nid(parent, start, false); 985 if (!nid) 986 return ERR_PTR(-ENOENT); 987 repeat: 988 page = grab_cache_page(mapping, nid); 989 if (!page) 990 return ERR_PTR(-ENOMEM); 991 992 err = read_node_page(page, READ_SYNC); 993 if (err < 0) 994 return ERR_PTR(err); 995 else if (err == LOCKED_PAGE) 996 goto page_hit; 997 998 blk_start_plug(&plug); 999 1000 /* Then, try readahead for siblings of the desired node */ 1001 end = start + MAX_RA_NODE; 1002 end = min(end, NIDS_PER_BLOCK); 1003 for (i = start + 1; i < end; i++) { 1004 nid = get_nid(parent, i, false); 1005 if (!nid) 1006 continue; 1007 ra_node_page(sbi, nid); 1008 } 1009 1010 blk_finish_plug(&plug); 1011 1012 lock_page(page); 1013 if (page->mapping != mapping) { 1014 f2fs_put_page(page, 1); 1015 goto repeat; 1016 } 1017 page_hit: 1018 if (!PageUptodate(page)) { 1019 f2fs_put_page(page, 1); 1020 return ERR_PTR(-EIO); 1021 } 1022 mark_page_accessed(page); 1023 return page; 1024 } 1025 1026 void sync_inode_page(struct dnode_of_data *dn) 1027 { 1028 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1029 update_inode(dn->inode, dn->node_page); 1030 } else if (dn->inode_page) { 1031 if (!dn->inode_page_locked) 1032 lock_page(dn->inode_page); 1033 update_inode(dn->inode, dn->inode_page); 1034 if (!dn->inode_page_locked) 1035 unlock_page(dn->inode_page); 1036 } else { 1037 update_inode_page(dn->inode); 1038 } 1039 } 1040 1041 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1042 struct writeback_control *wbc) 1043 { 1044 struct address_space *mapping = sbi->node_inode->i_mapping; 1045 pgoff_t index, end; 1046 struct pagevec pvec; 1047 int step = ino ? 2 : 0; 1048 int nwritten = 0, wrote = 0; 1049 1050 pagevec_init(&pvec, 0); 1051 1052 next_step: 1053 index = 0; 1054 end = LONG_MAX; 1055 1056 while (index <= end) { 1057 int i, nr_pages; 1058 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1059 PAGECACHE_TAG_DIRTY, 1060 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1061 if (nr_pages == 0) 1062 break; 1063 1064 for (i = 0; i < nr_pages; i++) { 1065 struct page *page = pvec.pages[i]; 1066 1067 /* 1068 * flushing sequence with step: 1069 * 0. indirect nodes 1070 * 1. dentry dnodes 1071 * 2. file dnodes 1072 */ 1073 if (step == 0 && IS_DNODE(page)) 1074 continue; 1075 if (step == 1 && (!IS_DNODE(page) || 1076 is_cold_node(page))) 1077 continue; 1078 if (step == 2 && (!IS_DNODE(page) || 1079 !is_cold_node(page))) 1080 continue; 1081 1082 /* 1083 * If an fsync mode, 1084 * we should not skip writing node pages. 1085 */ 1086 if (ino && ino_of_node(page) == ino) 1087 lock_page(page); 1088 else if (!trylock_page(page)) 1089 continue; 1090 1091 if (unlikely(page->mapping != mapping)) { 1092 continue_unlock: 1093 unlock_page(page); 1094 continue; 1095 } 1096 if (ino && ino_of_node(page) != ino) 1097 goto continue_unlock; 1098 1099 if (!PageDirty(page)) { 1100 /* someone wrote it for us */ 1101 goto continue_unlock; 1102 } 1103 1104 if (!clear_page_dirty_for_io(page)) 1105 goto continue_unlock; 1106 1107 /* called by fsync() */ 1108 if (ino && IS_DNODE(page)) { 1109 int mark = !is_checkpointed_node(sbi, ino); 1110 set_fsync_mark(page, 1); 1111 if (IS_INODE(page)) 1112 set_dentry_mark(page, mark); 1113 nwritten++; 1114 } else { 1115 set_fsync_mark(page, 0); 1116 set_dentry_mark(page, 0); 1117 } 1118 mapping->a_ops->writepage(page, wbc); 1119 wrote++; 1120 1121 if (--wbc->nr_to_write == 0) 1122 break; 1123 } 1124 pagevec_release(&pvec); 1125 cond_resched(); 1126 1127 if (wbc->nr_to_write == 0) { 1128 step = 2; 1129 break; 1130 } 1131 } 1132 1133 if (step < 2) { 1134 step++; 1135 goto next_step; 1136 } 1137 1138 if (wrote) 1139 f2fs_submit_merged_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL, 1140 WRITE); 1141 return nwritten; 1142 } 1143 1144 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1145 { 1146 struct address_space *mapping = sbi->node_inode->i_mapping; 1147 pgoff_t index = 0, end = LONG_MAX; 1148 struct pagevec pvec; 1149 int nr_pages; 1150 int ret2 = 0, ret = 0; 1151 1152 pagevec_init(&pvec, 0); 1153 while ((index <= end) && 1154 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1155 PAGECACHE_TAG_WRITEBACK, 1156 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 1157 unsigned i; 1158 1159 for (i = 0; i < nr_pages; i++) { 1160 struct page *page = pvec.pages[i]; 1161 1162 /* until radix tree lookup accepts end_index */ 1163 if (unlikely(page->index > end)) 1164 continue; 1165 1166 if (ino && ino_of_node(page) == ino) { 1167 wait_on_page_writeback(page); 1168 if (TestClearPageError(page)) 1169 ret = -EIO; 1170 } 1171 } 1172 pagevec_release(&pvec); 1173 cond_resched(); 1174 } 1175 1176 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 1177 ret2 = -ENOSPC; 1178 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 1179 ret2 = -EIO; 1180 if (!ret) 1181 ret = ret2; 1182 return ret; 1183 } 1184 1185 static int f2fs_write_node_page(struct page *page, 1186 struct writeback_control *wbc) 1187 { 1188 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 1189 nid_t nid; 1190 block_t new_addr; 1191 struct node_info ni; 1192 1193 if (unlikely(sbi->por_doing)) 1194 goto redirty_out; 1195 1196 wait_on_page_writeback(page); 1197 1198 /* get old block addr of this node page */ 1199 nid = nid_of_node(page); 1200 f2fs_bug_on(page->index != nid); 1201 1202 get_node_info(sbi, nid, &ni); 1203 1204 /* This page is already truncated */ 1205 if (ni.blk_addr == NULL_ADDR) { 1206 dec_page_count(sbi, F2FS_DIRTY_NODES); 1207 unlock_page(page); 1208 return 0; 1209 } 1210 1211 if (wbc->for_reclaim) 1212 goto redirty_out; 1213 1214 mutex_lock(&sbi->node_write); 1215 set_page_writeback(page); 1216 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); 1217 set_node_addr(sbi, &ni, new_addr); 1218 dec_page_count(sbi, F2FS_DIRTY_NODES); 1219 mutex_unlock(&sbi->node_write); 1220 unlock_page(page); 1221 return 0; 1222 1223 redirty_out: 1224 dec_page_count(sbi, F2FS_DIRTY_NODES); 1225 wbc->pages_skipped++; 1226 set_page_dirty(page); 1227 return AOP_WRITEPAGE_ACTIVATE; 1228 } 1229 1230 /* 1231 * It is very important to gather dirty pages and write at once, so that we can 1232 * submit a big bio without interfering other data writes. 1233 * Be default, 512 pages (2MB) * 3 node types, is more reasonable. 1234 */ 1235 #define COLLECT_DIRTY_NODES 1536 1236 static int f2fs_write_node_pages(struct address_space *mapping, 1237 struct writeback_control *wbc) 1238 { 1239 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1240 long nr_to_write = wbc->nr_to_write; 1241 1242 /* balancing f2fs's metadata in background */ 1243 f2fs_balance_fs_bg(sbi); 1244 1245 /* collect a number of dirty node pages and write together */ 1246 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES) 1247 return 0; 1248 1249 /* if mounting is failed, skip writing node pages */ 1250 wbc->nr_to_write = 3 * max_hw_blocks(sbi); 1251 sync_node_pages(sbi, 0, wbc); 1252 wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) - 1253 wbc->nr_to_write); 1254 return 0; 1255 } 1256 1257 static int f2fs_set_node_page_dirty(struct page *page) 1258 { 1259 struct address_space *mapping = page->mapping; 1260 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1261 1262 trace_f2fs_set_page_dirty(page, NODE); 1263 1264 SetPageUptodate(page); 1265 if (!PageDirty(page)) { 1266 __set_page_dirty_nobuffers(page); 1267 inc_page_count(sbi, F2FS_DIRTY_NODES); 1268 SetPagePrivate(page); 1269 return 1; 1270 } 1271 return 0; 1272 } 1273 1274 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset, 1275 unsigned int length) 1276 { 1277 struct inode *inode = page->mapping->host; 1278 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 1279 if (PageDirty(page)) 1280 dec_page_count(sbi, F2FS_DIRTY_NODES); 1281 ClearPagePrivate(page); 1282 } 1283 1284 static int f2fs_release_node_page(struct page *page, gfp_t wait) 1285 { 1286 ClearPagePrivate(page); 1287 return 1; 1288 } 1289 1290 /* 1291 * Structure of the f2fs node operations 1292 */ 1293 const struct address_space_operations f2fs_node_aops = { 1294 .writepage = f2fs_write_node_page, 1295 .writepages = f2fs_write_node_pages, 1296 .set_page_dirty = f2fs_set_node_page_dirty, 1297 .invalidatepage = f2fs_invalidate_node_page, 1298 .releasepage = f2fs_release_node_page, 1299 }; 1300 1301 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) 1302 { 1303 struct list_head *this; 1304 struct free_nid *i; 1305 list_for_each(this, head) { 1306 i = list_entry(this, struct free_nid, list); 1307 if (i->nid == n) 1308 return i; 1309 } 1310 return NULL; 1311 } 1312 1313 static void __del_from_free_nid_list(struct free_nid *i) 1314 { 1315 list_del(&i->list); 1316 kmem_cache_free(free_nid_slab, i); 1317 } 1318 1319 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build) 1320 { 1321 struct free_nid *i; 1322 struct nat_entry *ne; 1323 bool allocated = false; 1324 1325 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) 1326 return -1; 1327 1328 /* 0 nid should not be used */ 1329 if (unlikely(nid == 0)) 1330 return 0; 1331 1332 if (build) { 1333 /* do not add allocated nids */ 1334 read_lock(&nm_i->nat_tree_lock); 1335 ne = __lookup_nat_cache(nm_i, nid); 1336 if (ne && nat_get_blkaddr(ne) != NULL_ADDR) 1337 allocated = true; 1338 read_unlock(&nm_i->nat_tree_lock); 1339 if (allocated) 1340 return 0; 1341 } 1342 1343 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1344 i->nid = nid; 1345 i->state = NID_NEW; 1346 1347 spin_lock(&nm_i->free_nid_list_lock); 1348 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { 1349 spin_unlock(&nm_i->free_nid_list_lock); 1350 kmem_cache_free(free_nid_slab, i); 1351 return 0; 1352 } 1353 list_add_tail(&i->list, &nm_i->free_nid_list); 1354 nm_i->fcnt++; 1355 spin_unlock(&nm_i->free_nid_list_lock); 1356 return 1; 1357 } 1358 1359 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1360 { 1361 struct free_nid *i; 1362 spin_lock(&nm_i->free_nid_list_lock); 1363 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1364 if (i && i->state == NID_NEW) { 1365 __del_from_free_nid_list(i); 1366 nm_i->fcnt--; 1367 } 1368 spin_unlock(&nm_i->free_nid_list_lock); 1369 } 1370 1371 static void scan_nat_page(struct f2fs_nm_info *nm_i, 1372 struct page *nat_page, nid_t start_nid) 1373 { 1374 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1375 block_t blk_addr; 1376 int i; 1377 1378 i = start_nid % NAT_ENTRY_PER_BLOCK; 1379 1380 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1381 1382 if (unlikely(start_nid >= nm_i->max_nid)) 1383 break; 1384 1385 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1386 f2fs_bug_on(blk_addr == NEW_ADDR); 1387 if (blk_addr == NULL_ADDR) { 1388 if (add_free_nid(nm_i, start_nid, true) < 0) 1389 break; 1390 } 1391 } 1392 } 1393 1394 static void build_free_nids(struct f2fs_sb_info *sbi) 1395 { 1396 struct f2fs_nm_info *nm_i = NM_I(sbi); 1397 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1398 struct f2fs_summary_block *sum = curseg->sum_blk; 1399 int i = 0; 1400 nid_t nid = nm_i->next_scan_nid; 1401 1402 /* Enough entries */ 1403 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1404 return; 1405 1406 /* readahead nat pages to be scanned */ 1407 ra_nat_pages(sbi, nid); 1408 1409 while (1) { 1410 struct page *page = get_current_nat_page(sbi, nid); 1411 1412 scan_nat_page(nm_i, page, nid); 1413 f2fs_put_page(page, 1); 1414 1415 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1416 if (unlikely(nid >= nm_i->max_nid)) 1417 nid = 0; 1418 1419 if (i++ == FREE_NID_PAGES) 1420 break; 1421 } 1422 1423 /* go to the next free nat pages to find free nids abundantly */ 1424 nm_i->next_scan_nid = nid; 1425 1426 /* find free nids from current sum_pages */ 1427 mutex_lock(&curseg->curseg_mutex); 1428 for (i = 0; i < nats_in_cursum(sum); i++) { 1429 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); 1430 nid = le32_to_cpu(nid_in_journal(sum, i)); 1431 if (addr == NULL_ADDR) 1432 add_free_nid(nm_i, nid, true); 1433 else 1434 remove_free_nid(nm_i, nid); 1435 } 1436 mutex_unlock(&curseg->curseg_mutex); 1437 } 1438 1439 /* 1440 * If this function returns success, caller can obtain a new nid 1441 * from second parameter of this function. 1442 * The returned nid could be used ino as well as nid when inode is created. 1443 */ 1444 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1445 { 1446 struct f2fs_nm_info *nm_i = NM_I(sbi); 1447 struct free_nid *i = NULL; 1448 struct list_head *this; 1449 retry: 1450 if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid)) 1451 return false; 1452 1453 spin_lock(&nm_i->free_nid_list_lock); 1454 1455 /* We should not use stale free nids created by build_free_nids */ 1456 if (nm_i->fcnt && !sbi->on_build_free_nids) { 1457 f2fs_bug_on(list_empty(&nm_i->free_nid_list)); 1458 list_for_each(this, &nm_i->free_nid_list) { 1459 i = list_entry(this, struct free_nid, list); 1460 if (i->state == NID_NEW) 1461 break; 1462 } 1463 1464 f2fs_bug_on(i->state != NID_NEW); 1465 *nid = i->nid; 1466 i->state = NID_ALLOC; 1467 nm_i->fcnt--; 1468 spin_unlock(&nm_i->free_nid_list_lock); 1469 return true; 1470 } 1471 spin_unlock(&nm_i->free_nid_list_lock); 1472 1473 /* Let's scan nat pages and its caches to get free nids */ 1474 mutex_lock(&nm_i->build_lock); 1475 sbi->on_build_free_nids = true; 1476 build_free_nids(sbi); 1477 sbi->on_build_free_nids = false; 1478 mutex_unlock(&nm_i->build_lock); 1479 goto retry; 1480 } 1481 1482 /* 1483 * alloc_nid() should be called prior to this function. 1484 */ 1485 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1486 { 1487 struct f2fs_nm_info *nm_i = NM_I(sbi); 1488 struct free_nid *i; 1489 1490 spin_lock(&nm_i->free_nid_list_lock); 1491 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1492 f2fs_bug_on(!i || i->state != NID_ALLOC); 1493 __del_from_free_nid_list(i); 1494 spin_unlock(&nm_i->free_nid_list_lock); 1495 } 1496 1497 /* 1498 * alloc_nid() should be called prior to this function. 1499 */ 1500 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1501 { 1502 struct f2fs_nm_info *nm_i = NM_I(sbi); 1503 struct free_nid *i; 1504 1505 if (!nid) 1506 return; 1507 1508 spin_lock(&nm_i->free_nid_list_lock); 1509 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1510 f2fs_bug_on(!i || i->state != NID_ALLOC); 1511 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) { 1512 __del_from_free_nid_list(i); 1513 } else { 1514 i->state = NID_NEW; 1515 nm_i->fcnt++; 1516 } 1517 spin_unlock(&nm_i->free_nid_list_lock); 1518 } 1519 1520 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, 1521 struct f2fs_summary *sum, struct node_info *ni, 1522 block_t new_blkaddr) 1523 { 1524 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); 1525 set_node_addr(sbi, ni, new_blkaddr); 1526 clear_node_page_dirty(page); 1527 } 1528 1529 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1530 { 1531 struct address_space *mapping = sbi->node_inode->i_mapping; 1532 struct f2fs_node *src, *dst; 1533 nid_t ino = ino_of_node(page); 1534 struct node_info old_ni, new_ni; 1535 struct page *ipage; 1536 1537 ipage = grab_cache_page(mapping, ino); 1538 if (!ipage) 1539 return -ENOMEM; 1540 1541 /* Should not use this inode from free nid list */ 1542 remove_free_nid(NM_I(sbi), ino); 1543 1544 get_node_info(sbi, ino, &old_ni); 1545 SetPageUptodate(ipage); 1546 fill_node_footer(ipage, ino, ino, 0, true); 1547 1548 src = F2FS_NODE(page); 1549 dst = F2FS_NODE(ipage); 1550 1551 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); 1552 dst->i.i_size = 0; 1553 dst->i.i_blocks = cpu_to_le64(1); 1554 dst->i.i_links = cpu_to_le32(1); 1555 dst->i.i_xattr_nid = 0; 1556 1557 new_ni = old_ni; 1558 new_ni.ino = ino; 1559 1560 if (unlikely(!inc_valid_node_count(sbi, NULL))) 1561 WARN_ON(1); 1562 set_node_addr(sbi, &new_ni, NEW_ADDR); 1563 inc_valid_inode_count(sbi); 1564 f2fs_put_page(ipage, 1); 1565 return 0; 1566 } 1567 1568 /* 1569 * ra_sum_pages() merge contiguous pages into one bio and submit. 1570 * these pre-readed pages are linked in pages list. 1571 */ 1572 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages, 1573 int start, int nrpages) 1574 { 1575 struct page *page; 1576 int page_idx = start; 1577 1578 for (; page_idx < start + nrpages; page_idx++) { 1579 /* alloc temporal page for read node summary info*/ 1580 page = alloc_page(GFP_F2FS_ZERO); 1581 if (!page) { 1582 struct page *tmp; 1583 list_for_each_entry_safe(page, tmp, pages, lru) { 1584 list_del(&page->lru); 1585 unlock_page(page); 1586 __free_pages(page, 0); 1587 } 1588 return -ENOMEM; 1589 } 1590 1591 lock_page(page); 1592 page->index = page_idx; 1593 list_add_tail(&page->lru, pages); 1594 } 1595 1596 list_for_each_entry(page, pages, lru) 1597 f2fs_submit_page_mbio(sbi, page, page->index, META, READ); 1598 1599 f2fs_submit_merged_bio(sbi, META, true, READ); 1600 return 0; 1601 } 1602 1603 int restore_node_summary(struct f2fs_sb_info *sbi, 1604 unsigned int segno, struct f2fs_summary_block *sum) 1605 { 1606 struct f2fs_node *rn; 1607 struct f2fs_summary *sum_entry; 1608 struct page *page, *tmp; 1609 block_t addr; 1610 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); 1611 int i, last_offset, nrpages, err = 0; 1612 LIST_HEAD(page_list); 1613 1614 /* scan the node segment */ 1615 last_offset = sbi->blocks_per_seg; 1616 addr = START_BLOCK(sbi, segno); 1617 sum_entry = &sum->entries[0]; 1618 1619 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 1620 nrpages = min(last_offset - i, bio_blocks); 1621 1622 /* read ahead node pages */ 1623 err = ra_sum_pages(sbi, &page_list, addr, nrpages); 1624 if (err) 1625 return err; 1626 1627 list_for_each_entry_safe(page, tmp, &page_list, lru) { 1628 1629 lock_page(page); 1630 if(PageUptodate(page)) { 1631 rn = F2FS_NODE(page); 1632 sum_entry->nid = rn->footer.nid; 1633 sum_entry->version = 0; 1634 sum_entry->ofs_in_node = 0; 1635 sum_entry++; 1636 } else { 1637 err = -EIO; 1638 } 1639 1640 list_del(&page->lru); 1641 unlock_page(page); 1642 __free_pages(page, 0); 1643 } 1644 } 1645 return err; 1646 } 1647 1648 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) 1649 { 1650 struct f2fs_nm_info *nm_i = NM_I(sbi); 1651 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1652 struct f2fs_summary_block *sum = curseg->sum_blk; 1653 int i; 1654 1655 mutex_lock(&curseg->curseg_mutex); 1656 1657 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { 1658 mutex_unlock(&curseg->curseg_mutex); 1659 return false; 1660 } 1661 1662 for (i = 0; i < nats_in_cursum(sum); i++) { 1663 struct nat_entry *ne; 1664 struct f2fs_nat_entry raw_ne; 1665 nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); 1666 1667 raw_ne = nat_in_journal(sum, i); 1668 retry: 1669 write_lock(&nm_i->nat_tree_lock); 1670 ne = __lookup_nat_cache(nm_i, nid); 1671 if (ne) { 1672 __set_nat_cache_dirty(nm_i, ne); 1673 write_unlock(&nm_i->nat_tree_lock); 1674 continue; 1675 } 1676 ne = grab_nat_entry(nm_i, nid); 1677 if (!ne) { 1678 write_unlock(&nm_i->nat_tree_lock); 1679 goto retry; 1680 } 1681 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); 1682 nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); 1683 nat_set_version(ne, raw_ne.version); 1684 __set_nat_cache_dirty(nm_i, ne); 1685 write_unlock(&nm_i->nat_tree_lock); 1686 } 1687 update_nats_in_cursum(sum, -i); 1688 mutex_unlock(&curseg->curseg_mutex); 1689 return true; 1690 } 1691 1692 /* 1693 * This function is called during the checkpointing process. 1694 */ 1695 void flush_nat_entries(struct f2fs_sb_info *sbi) 1696 { 1697 struct f2fs_nm_info *nm_i = NM_I(sbi); 1698 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1699 struct f2fs_summary_block *sum = curseg->sum_blk; 1700 struct list_head *cur, *n; 1701 struct page *page = NULL; 1702 struct f2fs_nat_block *nat_blk = NULL; 1703 nid_t start_nid = 0, end_nid = 0; 1704 bool flushed; 1705 1706 flushed = flush_nats_in_journal(sbi); 1707 1708 if (!flushed) 1709 mutex_lock(&curseg->curseg_mutex); 1710 1711 /* 1) flush dirty nat caches */ 1712 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { 1713 struct nat_entry *ne; 1714 nid_t nid; 1715 struct f2fs_nat_entry raw_ne; 1716 int offset = -1; 1717 block_t new_blkaddr; 1718 1719 ne = list_entry(cur, struct nat_entry, list); 1720 nid = nat_get_nid(ne); 1721 1722 if (nat_get_blkaddr(ne) == NEW_ADDR) 1723 continue; 1724 if (flushed) 1725 goto to_nat_page; 1726 1727 /* if there is room for nat enries in curseg->sumpage */ 1728 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); 1729 if (offset >= 0) { 1730 raw_ne = nat_in_journal(sum, offset); 1731 goto flush_now; 1732 } 1733 to_nat_page: 1734 if (!page || (start_nid > nid || nid > end_nid)) { 1735 if (page) { 1736 f2fs_put_page(page, 1); 1737 page = NULL; 1738 } 1739 start_nid = START_NID(nid); 1740 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; 1741 1742 /* 1743 * get nat block with dirty flag, increased reference 1744 * count, mapped and lock 1745 */ 1746 page = get_next_nat_page(sbi, start_nid); 1747 nat_blk = page_address(page); 1748 } 1749 1750 f2fs_bug_on(!nat_blk); 1751 raw_ne = nat_blk->entries[nid - start_nid]; 1752 flush_now: 1753 new_blkaddr = nat_get_blkaddr(ne); 1754 1755 raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); 1756 raw_ne.block_addr = cpu_to_le32(new_blkaddr); 1757 raw_ne.version = nat_get_version(ne); 1758 1759 if (offset < 0) { 1760 nat_blk->entries[nid - start_nid] = raw_ne; 1761 } else { 1762 nat_in_journal(sum, offset) = raw_ne; 1763 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1764 } 1765 1766 if (nat_get_blkaddr(ne) == NULL_ADDR && 1767 add_free_nid(NM_I(sbi), nid, false) <= 0) { 1768 write_lock(&nm_i->nat_tree_lock); 1769 __del_from_nat_cache(nm_i, ne); 1770 write_unlock(&nm_i->nat_tree_lock); 1771 } else { 1772 write_lock(&nm_i->nat_tree_lock); 1773 __clear_nat_cache_dirty(nm_i, ne); 1774 ne->checkpointed = true; 1775 write_unlock(&nm_i->nat_tree_lock); 1776 } 1777 } 1778 if (!flushed) 1779 mutex_unlock(&curseg->curseg_mutex); 1780 f2fs_put_page(page, 1); 1781 1782 /* 2) shrink nat caches if necessary */ 1783 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); 1784 } 1785 1786 static int init_node_manager(struct f2fs_sb_info *sbi) 1787 { 1788 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1789 struct f2fs_nm_info *nm_i = NM_I(sbi); 1790 unsigned char *version_bitmap; 1791 unsigned int nat_segs, nat_blocks; 1792 1793 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 1794 1795 /* segment_count_nat includes pair segment so divide to 2. */ 1796 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 1797 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 1798 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 1799 nm_i->fcnt = 0; 1800 nm_i->nat_cnt = 0; 1801 1802 INIT_LIST_HEAD(&nm_i->free_nid_list); 1803 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); 1804 INIT_LIST_HEAD(&nm_i->nat_entries); 1805 INIT_LIST_HEAD(&nm_i->dirty_nat_entries); 1806 1807 mutex_init(&nm_i->build_lock); 1808 spin_lock_init(&nm_i->free_nid_list_lock); 1809 rwlock_init(&nm_i->nat_tree_lock); 1810 1811 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1812 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 1813 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 1814 if (!version_bitmap) 1815 return -EFAULT; 1816 1817 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 1818 GFP_KERNEL); 1819 if (!nm_i->nat_bitmap) 1820 return -ENOMEM; 1821 return 0; 1822 } 1823 1824 int build_node_manager(struct f2fs_sb_info *sbi) 1825 { 1826 int err; 1827 1828 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 1829 if (!sbi->nm_info) 1830 return -ENOMEM; 1831 1832 err = init_node_manager(sbi); 1833 if (err) 1834 return err; 1835 1836 build_free_nids(sbi); 1837 return 0; 1838 } 1839 1840 void destroy_node_manager(struct f2fs_sb_info *sbi) 1841 { 1842 struct f2fs_nm_info *nm_i = NM_I(sbi); 1843 struct free_nid *i, *next_i; 1844 struct nat_entry *natvec[NATVEC_SIZE]; 1845 nid_t nid = 0; 1846 unsigned int found; 1847 1848 if (!nm_i) 1849 return; 1850 1851 /* destroy free nid list */ 1852 spin_lock(&nm_i->free_nid_list_lock); 1853 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 1854 f2fs_bug_on(i->state == NID_ALLOC); 1855 __del_from_free_nid_list(i); 1856 nm_i->fcnt--; 1857 } 1858 f2fs_bug_on(nm_i->fcnt); 1859 spin_unlock(&nm_i->free_nid_list_lock); 1860 1861 /* destroy nat cache */ 1862 write_lock(&nm_i->nat_tree_lock); 1863 while ((found = __gang_lookup_nat_cache(nm_i, 1864 nid, NATVEC_SIZE, natvec))) { 1865 unsigned idx; 1866 for (idx = 0; idx < found; idx++) { 1867 struct nat_entry *e = natvec[idx]; 1868 nid = nat_get_nid(e) + 1; 1869 __del_from_nat_cache(nm_i, e); 1870 } 1871 } 1872 f2fs_bug_on(nm_i->nat_cnt); 1873 write_unlock(&nm_i->nat_tree_lock); 1874 1875 kfree(nm_i->nat_bitmap); 1876 sbi->nm_info = NULL; 1877 kfree(nm_i); 1878 } 1879 1880 int __init create_node_manager_caches(void) 1881 { 1882 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 1883 sizeof(struct nat_entry), NULL); 1884 if (!nat_entry_slab) 1885 return -ENOMEM; 1886 1887 free_nid_slab = f2fs_kmem_cache_create("free_nid", 1888 sizeof(struct free_nid), NULL); 1889 if (!free_nid_slab) { 1890 kmem_cache_destroy(nat_entry_slab); 1891 return -ENOMEM; 1892 } 1893 return 0; 1894 } 1895 1896 void destroy_node_manager_caches(void) 1897 { 1898 kmem_cache_destroy(free_nid_slab); 1899 kmem_cache_destroy(nat_entry_slab); 1900 } 1901