xref: /openbmc/linux/fs/f2fs/node.c (revision cf9ce948f47640797bd19980e1d99c6d17d0bdc3)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 
23 static struct kmem_cache *nat_entry_slab;
24 static struct kmem_cache *free_nid_slab;
25 
26 static void clear_node_page_dirty(struct page *page)
27 {
28 	struct address_space *mapping = page->mapping;
29 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
30 	unsigned int long flags;
31 
32 	if (PageDirty(page)) {
33 		spin_lock_irqsave(&mapping->tree_lock, flags);
34 		radix_tree_tag_clear(&mapping->page_tree,
35 				page_index(page),
36 				PAGECACHE_TAG_DIRTY);
37 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
38 
39 		clear_page_dirty_for_io(page);
40 		dec_page_count(sbi, F2FS_DIRTY_NODES);
41 	}
42 	ClearPageUptodate(page);
43 }
44 
45 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
46 {
47 	pgoff_t index = current_nat_addr(sbi, nid);
48 	return get_meta_page(sbi, index);
49 }
50 
51 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
52 {
53 	struct page *src_page;
54 	struct page *dst_page;
55 	pgoff_t src_off;
56 	pgoff_t dst_off;
57 	void *src_addr;
58 	void *dst_addr;
59 	struct f2fs_nm_info *nm_i = NM_I(sbi);
60 
61 	src_off = current_nat_addr(sbi, nid);
62 	dst_off = next_nat_addr(sbi, src_off);
63 
64 	/* get current nat block page with lock */
65 	src_page = get_meta_page(sbi, src_off);
66 
67 	/* Dirty src_page means that it is already the new target NAT page. */
68 	if (PageDirty(src_page))
69 		return src_page;
70 
71 	dst_page = grab_meta_page(sbi, dst_off);
72 
73 	src_addr = page_address(src_page);
74 	dst_addr = page_address(dst_page);
75 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
76 	set_page_dirty(dst_page);
77 	f2fs_put_page(src_page, 1);
78 
79 	set_to_next_nat(nm_i, nid);
80 
81 	return dst_page;
82 }
83 
84 /*
85  * Readahead NAT pages
86  */
87 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
88 {
89 	struct address_space *mapping = sbi->meta_inode->i_mapping;
90 	struct f2fs_nm_info *nm_i = NM_I(sbi);
91 	struct page *page;
92 	pgoff_t index;
93 	int i;
94 
95 	for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
96 		if (nid >= nm_i->max_nid)
97 			nid = 0;
98 		index = current_nat_addr(sbi, nid);
99 
100 		page = grab_cache_page(mapping, index);
101 		if (!page)
102 			continue;
103 		if (f2fs_readpage(sbi, page, index, READ)) {
104 			f2fs_put_page(page, 1);
105 			continue;
106 		}
107 		page_cache_release(page);
108 	}
109 }
110 
111 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
112 {
113 	return radix_tree_lookup(&nm_i->nat_root, n);
114 }
115 
116 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
117 		nid_t start, unsigned int nr, struct nat_entry **ep)
118 {
119 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
120 }
121 
122 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
123 {
124 	list_del(&e->list);
125 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
126 	nm_i->nat_cnt--;
127 	kmem_cache_free(nat_entry_slab, e);
128 }
129 
130 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
131 {
132 	struct f2fs_nm_info *nm_i = NM_I(sbi);
133 	struct nat_entry *e;
134 	int is_cp = 1;
135 
136 	read_lock(&nm_i->nat_tree_lock);
137 	e = __lookup_nat_cache(nm_i, nid);
138 	if (e && !e->checkpointed)
139 		is_cp = 0;
140 	read_unlock(&nm_i->nat_tree_lock);
141 	return is_cp;
142 }
143 
144 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
145 {
146 	struct nat_entry *new;
147 
148 	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
149 	if (!new)
150 		return NULL;
151 	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
152 		kmem_cache_free(nat_entry_slab, new);
153 		return NULL;
154 	}
155 	memset(new, 0, sizeof(struct nat_entry));
156 	nat_set_nid(new, nid);
157 	list_add_tail(&new->list, &nm_i->nat_entries);
158 	nm_i->nat_cnt++;
159 	return new;
160 }
161 
162 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
163 						struct f2fs_nat_entry *ne)
164 {
165 	struct nat_entry *e;
166 retry:
167 	write_lock(&nm_i->nat_tree_lock);
168 	e = __lookup_nat_cache(nm_i, nid);
169 	if (!e) {
170 		e = grab_nat_entry(nm_i, nid);
171 		if (!e) {
172 			write_unlock(&nm_i->nat_tree_lock);
173 			goto retry;
174 		}
175 		nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
176 		nat_set_ino(e, le32_to_cpu(ne->ino));
177 		nat_set_version(e, ne->version);
178 		e->checkpointed = true;
179 	}
180 	write_unlock(&nm_i->nat_tree_lock);
181 }
182 
183 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
184 			block_t new_blkaddr)
185 {
186 	struct f2fs_nm_info *nm_i = NM_I(sbi);
187 	struct nat_entry *e;
188 retry:
189 	write_lock(&nm_i->nat_tree_lock);
190 	e = __lookup_nat_cache(nm_i, ni->nid);
191 	if (!e) {
192 		e = grab_nat_entry(nm_i, ni->nid);
193 		if (!e) {
194 			write_unlock(&nm_i->nat_tree_lock);
195 			goto retry;
196 		}
197 		e->ni = *ni;
198 		e->checkpointed = true;
199 		BUG_ON(ni->blk_addr == NEW_ADDR);
200 	} else if (new_blkaddr == NEW_ADDR) {
201 		/*
202 		 * when nid is reallocated,
203 		 * previous nat entry can be remained in nat cache.
204 		 * So, reinitialize it with new information.
205 		 */
206 		e->ni = *ni;
207 		BUG_ON(ni->blk_addr != NULL_ADDR);
208 	}
209 
210 	if (new_blkaddr == NEW_ADDR)
211 		e->checkpointed = false;
212 
213 	/* sanity check */
214 	BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
215 	BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
216 			new_blkaddr == NULL_ADDR);
217 	BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
218 			new_blkaddr == NEW_ADDR);
219 	BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
220 			nat_get_blkaddr(e) != NULL_ADDR &&
221 			new_blkaddr == NEW_ADDR);
222 
223 	/* increament version no as node is removed */
224 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
225 		unsigned char version = nat_get_version(e);
226 		nat_set_version(e, inc_node_version(version));
227 	}
228 
229 	/* change address */
230 	nat_set_blkaddr(e, new_blkaddr);
231 	__set_nat_cache_dirty(nm_i, e);
232 	write_unlock(&nm_i->nat_tree_lock);
233 }
234 
235 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
236 {
237 	struct f2fs_nm_info *nm_i = NM_I(sbi);
238 
239 	if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
240 		return 0;
241 
242 	write_lock(&nm_i->nat_tree_lock);
243 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
244 		struct nat_entry *ne;
245 		ne = list_first_entry(&nm_i->nat_entries,
246 					struct nat_entry, list);
247 		__del_from_nat_cache(nm_i, ne);
248 		nr_shrink--;
249 	}
250 	write_unlock(&nm_i->nat_tree_lock);
251 	return nr_shrink;
252 }
253 
254 /*
255  * This function returns always success
256  */
257 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
258 {
259 	struct f2fs_nm_info *nm_i = NM_I(sbi);
260 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
261 	struct f2fs_summary_block *sum = curseg->sum_blk;
262 	nid_t start_nid = START_NID(nid);
263 	struct f2fs_nat_block *nat_blk;
264 	struct page *page = NULL;
265 	struct f2fs_nat_entry ne;
266 	struct nat_entry *e;
267 	int i;
268 
269 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
270 	ni->nid = nid;
271 
272 	/* Check nat cache */
273 	read_lock(&nm_i->nat_tree_lock);
274 	e = __lookup_nat_cache(nm_i, nid);
275 	if (e) {
276 		ni->ino = nat_get_ino(e);
277 		ni->blk_addr = nat_get_blkaddr(e);
278 		ni->version = nat_get_version(e);
279 	}
280 	read_unlock(&nm_i->nat_tree_lock);
281 	if (e)
282 		return;
283 
284 	/* Check current segment summary */
285 	mutex_lock(&curseg->curseg_mutex);
286 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
287 	if (i >= 0) {
288 		ne = nat_in_journal(sum, i);
289 		node_info_from_raw_nat(ni, &ne);
290 	}
291 	mutex_unlock(&curseg->curseg_mutex);
292 	if (i >= 0)
293 		goto cache;
294 
295 	/* Fill node_info from nat page */
296 	page = get_current_nat_page(sbi, start_nid);
297 	nat_blk = (struct f2fs_nat_block *)page_address(page);
298 	ne = nat_blk->entries[nid - start_nid];
299 	node_info_from_raw_nat(ni, &ne);
300 	f2fs_put_page(page, 1);
301 cache:
302 	/* cache nat entry */
303 	cache_nat_entry(NM_I(sbi), nid, &ne);
304 }
305 
306 /*
307  * The maximum depth is four.
308  * Offset[0] will have raw inode offset.
309  */
310 static int get_node_path(long block, int offset[4], unsigned int noffset[4])
311 {
312 	const long direct_index = ADDRS_PER_INODE;
313 	const long direct_blks = ADDRS_PER_BLOCK;
314 	const long dptrs_per_blk = NIDS_PER_BLOCK;
315 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
316 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
317 	int n = 0;
318 	int level = 0;
319 
320 	noffset[0] = 0;
321 
322 	if (block < direct_index) {
323 		offset[n++] = block;
324 		level = 0;
325 		goto got;
326 	}
327 	block -= direct_index;
328 	if (block < direct_blks) {
329 		offset[n++] = NODE_DIR1_BLOCK;
330 		noffset[n] = 1;
331 		offset[n++] = block;
332 		level = 1;
333 		goto got;
334 	}
335 	block -= direct_blks;
336 	if (block < direct_blks) {
337 		offset[n++] = NODE_DIR2_BLOCK;
338 		noffset[n] = 2;
339 		offset[n++] = block;
340 		level = 1;
341 		goto got;
342 	}
343 	block -= direct_blks;
344 	if (block < indirect_blks) {
345 		offset[n++] = NODE_IND1_BLOCK;
346 		noffset[n] = 3;
347 		offset[n++] = block / direct_blks;
348 		noffset[n] = 4 + offset[n - 1];
349 		offset[n++] = block % direct_blks;
350 		level = 2;
351 		goto got;
352 	}
353 	block -= indirect_blks;
354 	if (block < indirect_blks) {
355 		offset[n++] = NODE_IND2_BLOCK;
356 		noffset[n] = 4 + dptrs_per_blk;
357 		offset[n++] = block / direct_blks;
358 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
359 		offset[n++] = block % direct_blks;
360 		level = 2;
361 		goto got;
362 	}
363 	block -= indirect_blks;
364 	if (block < dindirect_blks) {
365 		offset[n++] = NODE_DIND_BLOCK;
366 		noffset[n] = 5 + (dptrs_per_blk * 2);
367 		offset[n++] = block / indirect_blks;
368 		noffset[n] = 6 + (dptrs_per_blk * 2) +
369 			      offset[n - 1] * (dptrs_per_blk + 1);
370 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
371 		noffset[n] = 7 + (dptrs_per_blk * 2) +
372 			      offset[n - 2] * (dptrs_per_blk + 1) +
373 			      offset[n - 1];
374 		offset[n++] = block % direct_blks;
375 		level = 3;
376 		goto got;
377 	} else {
378 		BUG();
379 	}
380 got:
381 	return level;
382 }
383 
384 /*
385  * Caller should call f2fs_put_dnode(dn).
386  */
387 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro)
388 {
389 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
390 	struct page *npage[4];
391 	struct page *parent;
392 	int offset[4];
393 	unsigned int noffset[4];
394 	nid_t nids[4];
395 	int level, i;
396 	int err = 0;
397 
398 	level = get_node_path(index, offset, noffset);
399 
400 	nids[0] = dn->inode->i_ino;
401 	npage[0] = get_node_page(sbi, nids[0]);
402 	if (IS_ERR(npage[0]))
403 		return PTR_ERR(npage[0]);
404 
405 	parent = npage[0];
406 	nids[1] = get_nid(parent, offset[0], true);
407 	dn->inode_page = npage[0];
408 	dn->inode_page_locked = true;
409 
410 	/* get indirect or direct nodes */
411 	for (i = 1; i <= level; i++) {
412 		bool done = false;
413 
414 		if (!nids[i] && !ro) {
415 			mutex_lock_op(sbi, NODE_NEW);
416 
417 			/* alloc new node */
418 			if (!alloc_nid(sbi, &(nids[i]))) {
419 				mutex_unlock_op(sbi, NODE_NEW);
420 				err = -ENOSPC;
421 				goto release_pages;
422 			}
423 
424 			dn->nid = nids[i];
425 			npage[i] = new_node_page(dn, noffset[i]);
426 			if (IS_ERR(npage[i])) {
427 				alloc_nid_failed(sbi, nids[i]);
428 				mutex_unlock_op(sbi, NODE_NEW);
429 				err = PTR_ERR(npage[i]);
430 				goto release_pages;
431 			}
432 
433 			set_nid(parent, offset[i - 1], nids[i], i == 1);
434 			alloc_nid_done(sbi, nids[i]);
435 			mutex_unlock_op(sbi, NODE_NEW);
436 			done = true;
437 		} else if (ro && i == level && level > 1) {
438 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
439 			if (IS_ERR(npage[i])) {
440 				err = PTR_ERR(npage[i]);
441 				goto release_pages;
442 			}
443 			done = true;
444 		}
445 		if (i == 1) {
446 			dn->inode_page_locked = false;
447 			unlock_page(parent);
448 		} else {
449 			f2fs_put_page(parent, 1);
450 		}
451 
452 		if (!done) {
453 			npage[i] = get_node_page(sbi, nids[i]);
454 			if (IS_ERR(npage[i])) {
455 				err = PTR_ERR(npage[i]);
456 				f2fs_put_page(npage[0], 0);
457 				goto release_out;
458 			}
459 		}
460 		if (i < level) {
461 			parent = npage[i];
462 			nids[i + 1] = get_nid(parent, offset[i], false);
463 		}
464 	}
465 	dn->nid = nids[level];
466 	dn->ofs_in_node = offset[level];
467 	dn->node_page = npage[level];
468 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
469 	return 0;
470 
471 release_pages:
472 	f2fs_put_page(parent, 1);
473 	if (i > 1)
474 		f2fs_put_page(npage[0], 0);
475 release_out:
476 	dn->inode_page = NULL;
477 	dn->node_page = NULL;
478 	return err;
479 }
480 
481 static void truncate_node(struct dnode_of_data *dn)
482 {
483 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
484 	struct node_info ni;
485 
486 	get_node_info(sbi, dn->nid, &ni);
487 	BUG_ON(ni.blk_addr == NULL_ADDR);
488 
489 	if (ni.blk_addr != NULL_ADDR)
490 		invalidate_blocks(sbi, ni.blk_addr);
491 
492 	/* Deallocate node address */
493 	dec_valid_node_count(sbi, dn->inode, 1);
494 	set_node_addr(sbi, &ni, NULL_ADDR);
495 
496 	if (dn->nid == dn->inode->i_ino) {
497 		remove_orphan_inode(sbi, dn->nid);
498 		dec_valid_inode_count(sbi);
499 	} else {
500 		sync_inode_page(dn);
501 	}
502 
503 	clear_node_page_dirty(dn->node_page);
504 	F2FS_SET_SB_DIRT(sbi);
505 
506 	f2fs_put_page(dn->node_page, 1);
507 	dn->node_page = NULL;
508 }
509 
510 static int truncate_dnode(struct dnode_of_data *dn)
511 {
512 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
513 	struct page *page;
514 
515 	if (dn->nid == 0)
516 		return 1;
517 
518 	/* get direct node */
519 	page = get_node_page(sbi, dn->nid);
520 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
521 		return 1;
522 	else if (IS_ERR(page))
523 		return PTR_ERR(page);
524 
525 	/* Make dnode_of_data for parameter */
526 	dn->node_page = page;
527 	dn->ofs_in_node = 0;
528 	truncate_data_blocks(dn);
529 	truncate_node(dn);
530 	return 1;
531 }
532 
533 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
534 						int ofs, int depth)
535 {
536 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
537 	struct dnode_of_data rdn = *dn;
538 	struct page *page;
539 	struct f2fs_node *rn;
540 	nid_t child_nid;
541 	unsigned int child_nofs;
542 	int freed = 0;
543 	int i, ret;
544 
545 	if (dn->nid == 0)
546 		return NIDS_PER_BLOCK + 1;
547 
548 	page = get_node_page(sbi, dn->nid);
549 	if (IS_ERR(page))
550 		return PTR_ERR(page);
551 
552 	rn = (struct f2fs_node *)page_address(page);
553 	if (depth < 3) {
554 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
555 			child_nid = le32_to_cpu(rn->in.nid[i]);
556 			if (child_nid == 0)
557 				continue;
558 			rdn.nid = child_nid;
559 			ret = truncate_dnode(&rdn);
560 			if (ret < 0)
561 				goto out_err;
562 			set_nid(page, i, 0, false);
563 		}
564 	} else {
565 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
566 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
567 			child_nid = le32_to_cpu(rn->in.nid[i]);
568 			if (child_nid == 0) {
569 				child_nofs += NIDS_PER_BLOCK + 1;
570 				continue;
571 			}
572 			rdn.nid = child_nid;
573 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
574 			if (ret == (NIDS_PER_BLOCK + 1)) {
575 				set_nid(page, i, 0, false);
576 				child_nofs += ret;
577 			} else if (ret < 0 && ret != -ENOENT) {
578 				goto out_err;
579 			}
580 		}
581 		freed = child_nofs;
582 	}
583 
584 	if (!ofs) {
585 		/* remove current indirect node */
586 		dn->node_page = page;
587 		truncate_node(dn);
588 		freed++;
589 	} else {
590 		f2fs_put_page(page, 1);
591 	}
592 	return freed;
593 
594 out_err:
595 	f2fs_put_page(page, 1);
596 	return ret;
597 }
598 
599 static int truncate_partial_nodes(struct dnode_of_data *dn,
600 			struct f2fs_inode *ri, int *offset, int depth)
601 {
602 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
603 	struct page *pages[2];
604 	nid_t nid[3];
605 	nid_t child_nid;
606 	int err = 0;
607 	int i;
608 	int idx = depth - 2;
609 
610 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
611 	if (!nid[0])
612 		return 0;
613 
614 	/* get indirect nodes in the path */
615 	for (i = 0; i < depth - 1; i++) {
616 		/* refernece count'll be increased */
617 		pages[i] = get_node_page(sbi, nid[i]);
618 		if (IS_ERR(pages[i])) {
619 			depth = i + 1;
620 			err = PTR_ERR(pages[i]);
621 			goto fail;
622 		}
623 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
624 	}
625 
626 	/* free direct nodes linked to a partial indirect node */
627 	for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
628 		child_nid = get_nid(pages[idx], i, false);
629 		if (!child_nid)
630 			continue;
631 		dn->nid = child_nid;
632 		err = truncate_dnode(dn);
633 		if (err < 0)
634 			goto fail;
635 		set_nid(pages[idx], i, 0, false);
636 	}
637 
638 	if (offset[depth - 1] == 0) {
639 		dn->node_page = pages[idx];
640 		dn->nid = nid[idx];
641 		truncate_node(dn);
642 	} else {
643 		f2fs_put_page(pages[idx], 1);
644 	}
645 	offset[idx]++;
646 	offset[depth - 1] = 0;
647 fail:
648 	for (i = depth - 3; i >= 0; i--)
649 		f2fs_put_page(pages[i], 1);
650 	return err;
651 }
652 
653 /*
654  * All the block addresses of data and nodes should be nullified.
655  */
656 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
657 {
658 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
659 	int err = 0, cont = 1;
660 	int level, offset[4], noffset[4];
661 	unsigned int nofs;
662 	struct f2fs_node *rn;
663 	struct dnode_of_data dn;
664 	struct page *page;
665 
666 	level = get_node_path(from, offset, noffset);
667 
668 	page = get_node_page(sbi, inode->i_ino);
669 	if (IS_ERR(page))
670 		return PTR_ERR(page);
671 
672 	set_new_dnode(&dn, inode, page, NULL, 0);
673 	unlock_page(page);
674 
675 	rn = page_address(page);
676 	switch (level) {
677 	case 0:
678 	case 1:
679 		nofs = noffset[1];
680 		break;
681 	case 2:
682 		nofs = noffset[1];
683 		if (!offset[level - 1])
684 			goto skip_partial;
685 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
686 		if (err < 0 && err != -ENOENT)
687 			goto fail;
688 		nofs += 1 + NIDS_PER_BLOCK;
689 		break;
690 	case 3:
691 		nofs = 5 + 2 * NIDS_PER_BLOCK;
692 		if (!offset[level - 1])
693 			goto skip_partial;
694 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
695 		if (err < 0 && err != -ENOENT)
696 			goto fail;
697 		break;
698 	default:
699 		BUG();
700 	}
701 
702 skip_partial:
703 	while (cont) {
704 		dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
705 		switch (offset[0]) {
706 		case NODE_DIR1_BLOCK:
707 		case NODE_DIR2_BLOCK:
708 			err = truncate_dnode(&dn);
709 			break;
710 
711 		case NODE_IND1_BLOCK:
712 		case NODE_IND2_BLOCK:
713 			err = truncate_nodes(&dn, nofs, offset[1], 2);
714 			break;
715 
716 		case NODE_DIND_BLOCK:
717 			err = truncate_nodes(&dn, nofs, offset[1], 3);
718 			cont = 0;
719 			break;
720 
721 		default:
722 			BUG();
723 		}
724 		if (err < 0 && err != -ENOENT)
725 			goto fail;
726 		if (offset[1] == 0 &&
727 				rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
728 			lock_page(page);
729 			wait_on_page_writeback(page);
730 			rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
731 			set_page_dirty(page);
732 			unlock_page(page);
733 		}
734 		offset[1] = 0;
735 		offset[0]++;
736 		nofs += err;
737 	}
738 fail:
739 	f2fs_put_page(page, 0);
740 	return err > 0 ? 0 : err;
741 }
742 
743 int remove_inode_page(struct inode *inode)
744 {
745 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
746 	struct page *page;
747 	nid_t ino = inode->i_ino;
748 	struct dnode_of_data dn;
749 
750 	mutex_lock_op(sbi, NODE_TRUNC);
751 	page = get_node_page(sbi, ino);
752 	if (IS_ERR(page)) {
753 		mutex_unlock_op(sbi, NODE_TRUNC);
754 		return PTR_ERR(page);
755 	}
756 
757 	if (F2FS_I(inode)->i_xattr_nid) {
758 		nid_t nid = F2FS_I(inode)->i_xattr_nid;
759 		struct page *npage = get_node_page(sbi, nid);
760 
761 		if (IS_ERR(npage)) {
762 			mutex_unlock_op(sbi, NODE_TRUNC);
763 			return PTR_ERR(npage);
764 		}
765 
766 		F2FS_I(inode)->i_xattr_nid = 0;
767 		set_new_dnode(&dn, inode, page, npage, nid);
768 		dn.inode_page_locked = 1;
769 		truncate_node(&dn);
770 	}
771 	if (inode->i_blocks == 1) {
772 		/* inernally call f2fs_put_page() */
773 		set_new_dnode(&dn, inode, page, page, ino);
774 		truncate_node(&dn);
775 	} else if (inode->i_blocks == 0) {
776 		struct node_info ni;
777 		get_node_info(sbi, inode->i_ino, &ni);
778 
779 		/* called after f2fs_new_inode() is failed */
780 		BUG_ON(ni.blk_addr != NULL_ADDR);
781 		f2fs_put_page(page, 1);
782 	} else {
783 		BUG();
784 	}
785 	mutex_unlock_op(sbi, NODE_TRUNC);
786 	return 0;
787 }
788 
789 int new_inode_page(struct inode *inode, struct dentry *dentry)
790 {
791 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
792 	struct page *page;
793 	struct dnode_of_data dn;
794 
795 	/* allocate inode page for new inode */
796 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
797 	mutex_lock_op(sbi, NODE_NEW);
798 	page = new_node_page(&dn, 0);
799 	init_dent_inode(dentry, page);
800 	mutex_unlock_op(sbi, NODE_NEW);
801 	if (IS_ERR(page))
802 		return PTR_ERR(page);
803 	f2fs_put_page(page, 1);
804 	return 0;
805 }
806 
807 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
808 {
809 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
810 	struct address_space *mapping = sbi->node_inode->i_mapping;
811 	struct node_info old_ni, new_ni;
812 	struct page *page;
813 	int err;
814 
815 	if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
816 		return ERR_PTR(-EPERM);
817 
818 	page = grab_cache_page(mapping, dn->nid);
819 	if (!page)
820 		return ERR_PTR(-ENOMEM);
821 
822 	get_node_info(sbi, dn->nid, &old_ni);
823 
824 	SetPageUptodate(page);
825 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
826 
827 	/* Reinitialize old_ni with new node page */
828 	BUG_ON(old_ni.blk_addr != NULL_ADDR);
829 	new_ni = old_ni;
830 	new_ni.ino = dn->inode->i_ino;
831 
832 	if (!inc_valid_node_count(sbi, dn->inode, 1)) {
833 		err = -ENOSPC;
834 		goto fail;
835 	}
836 	set_node_addr(sbi, &new_ni, NEW_ADDR);
837 
838 	dn->node_page = page;
839 	sync_inode_page(dn);
840 	set_page_dirty(page);
841 	set_cold_node(dn->inode, page);
842 	if (ofs == 0)
843 		inc_valid_inode_count(sbi);
844 
845 	return page;
846 
847 fail:
848 	f2fs_put_page(page, 1);
849 	return ERR_PTR(err);
850 }
851 
852 static int read_node_page(struct page *page, int type)
853 {
854 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
855 	struct node_info ni;
856 
857 	get_node_info(sbi, page->index, &ni);
858 
859 	if (ni.blk_addr == NULL_ADDR)
860 		return -ENOENT;
861 	return f2fs_readpage(sbi, page, ni.blk_addr, type);
862 }
863 
864 /*
865  * Readahead a node page
866  */
867 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
868 {
869 	struct address_space *mapping = sbi->node_inode->i_mapping;
870 	struct page *apage;
871 
872 	apage = find_get_page(mapping, nid);
873 	if (apage && PageUptodate(apage))
874 		goto release_out;
875 	f2fs_put_page(apage, 0);
876 
877 	apage = grab_cache_page(mapping, nid);
878 	if (!apage)
879 		return;
880 
881 	if (read_node_page(apage, READA))
882 		goto unlock_out;
883 
884 	page_cache_release(apage);
885 	return;
886 
887 unlock_out:
888 	unlock_page(apage);
889 release_out:
890 	page_cache_release(apage);
891 }
892 
893 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
894 {
895 	int err;
896 	struct page *page;
897 	struct address_space *mapping = sbi->node_inode->i_mapping;
898 
899 	page = grab_cache_page(mapping, nid);
900 	if (!page)
901 		return ERR_PTR(-ENOMEM);
902 
903 	err = read_node_page(page, READ_SYNC);
904 	if (err) {
905 		f2fs_put_page(page, 1);
906 		return ERR_PTR(err);
907 	}
908 
909 	BUG_ON(nid != nid_of_node(page));
910 	mark_page_accessed(page);
911 	return page;
912 }
913 
914 /*
915  * Return a locked page for the desired node page.
916  * And, readahead MAX_RA_NODE number of node pages.
917  */
918 struct page *get_node_page_ra(struct page *parent, int start)
919 {
920 	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
921 	struct address_space *mapping = sbi->node_inode->i_mapping;
922 	int i, end;
923 	int err = 0;
924 	nid_t nid;
925 	struct page *page;
926 
927 	/* First, try getting the desired direct node. */
928 	nid = get_nid(parent, start, false);
929 	if (!nid)
930 		return ERR_PTR(-ENOENT);
931 
932 	page = find_get_page(mapping, nid);
933 	if (page && PageUptodate(page))
934 		goto page_hit;
935 	f2fs_put_page(page, 0);
936 
937 repeat:
938 	page = grab_cache_page(mapping, nid);
939 	if (!page)
940 		return ERR_PTR(-ENOMEM);
941 
942 	err = read_node_page(page, READA);
943 	if (err) {
944 		f2fs_put_page(page, 1);
945 		return ERR_PTR(err);
946 	}
947 
948 	/* Then, try readahead for siblings of the desired node */
949 	end = start + MAX_RA_NODE;
950 	end = min(end, NIDS_PER_BLOCK);
951 	for (i = start + 1; i < end; i++) {
952 		nid = get_nid(parent, i, false);
953 		if (!nid)
954 			continue;
955 		ra_node_page(sbi, nid);
956 	}
957 
958 page_hit:
959 	lock_page(page);
960 	if (PageError(page)) {
961 		f2fs_put_page(page, 1);
962 		return ERR_PTR(-EIO);
963 	}
964 
965 	/* Has the page been truncated? */
966 	if (page->mapping != mapping) {
967 		f2fs_put_page(page, 1);
968 		goto repeat;
969 	}
970 	return page;
971 }
972 
973 void sync_inode_page(struct dnode_of_data *dn)
974 {
975 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
976 		update_inode(dn->inode, dn->node_page);
977 	} else if (dn->inode_page) {
978 		if (!dn->inode_page_locked)
979 			lock_page(dn->inode_page);
980 		update_inode(dn->inode, dn->inode_page);
981 		if (!dn->inode_page_locked)
982 			unlock_page(dn->inode_page);
983 	} else {
984 		f2fs_write_inode(dn->inode, NULL);
985 	}
986 }
987 
988 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
989 					struct writeback_control *wbc)
990 {
991 	struct address_space *mapping = sbi->node_inode->i_mapping;
992 	pgoff_t index, end;
993 	struct pagevec pvec;
994 	int step = ino ? 2 : 0;
995 	int nwritten = 0, wrote = 0;
996 
997 	pagevec_init(&pvec, 0);
998 
999 next_step:
1000 	index = 0;
1001 	end = LONG_MAX;
1002 
1003 	while (index <= end) {
1004 		int i, nr_pages;
1005 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1006 				PAGECACHE_TAG_DIRTY,
1007 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1008 		if (nr_pages == 0)
1009 			break;
1010 
1011 		for (i = 0; i < nr_pages; i++) {
1012 			struct page *page = pvec.pages[i];
1013 
1014 			/*
1015 			 * flushing sequence with step:
1016 			 * 0. indirect nodes
1017 			 * 1. dentry dnodes
1018 			 * 2. file dnodes
1019 			 */
1020 			if (step == 0 && IS_DNODE(page))
1021 				continue;
1022 			if (step == 1 && (!IS_DNODE(page) ||
1023 						is_cold_node(page)))
1024 				continue;
1025 			if (step == 2 && (!IS_DNODE(page) ||
1026 						!is_cold_node(page)))
1027 				continue;
1028 
1029 			/*
1030 			 * If an fsync mode,
1031 			 * we should not skip writing node pages.
1032 			 */
1033 			if (ino && ino_of_node(page) == ino)
1034 				lock_page(page);
1035 			else if (!trylock_page(page))
1036 				continue;
1037 
1038 			if (unlikely(page->mapping != mapping)) {
1039 continue_unlock:
1040 				unlock_page(page);
1041 				continue;
1042 			}
1043 			if (ino && ino_of_node(page) != ino)
1044 				goto continue_unlock;
1045 
1046 			if (!PageDirty(page)) {
1047 				/* someone wrote it for us */
1048 				goto continue_unlock;
1049 			}
1050 
1051 			if (!clear_page_dirty_for_io(page))
1052 				goto continue_unlock;
1053 
1054 			/* called by fsync() */
1055 			if (ino && IS_DNODE(page)) {
1056 				int mark = !is_checkpointed_node(sbi, ino);
1057 				set_fsync_mark(page, 1);
1058 				if (IS_INODE(page))
1059 					set_dentry_mark(page, mark);
1060 				nwritten++;
1061 			} else {
1062 				set_fsync_mark(page, 0);
1063 				set_dentry_mark(page, 0);
1064 			}
1065 			mapping->a_ops->writepage(page, wbc);
1066 			wrote++;
1067 
1068 			if (--wbc->nr_to_write == 0)
1069 				break;
1070 		}
1071 		pagevec_release(&pvec);
1072 		cond_resched();
1073 
1074 		if (wbc->nr_to_write == 0) {
1075 			step = 2;
1076 			break;
1077 		}
1078 	}
1079 
1080 	if (step < 2) {
1081 		step++;
1082 		goto next_step;
1083 	}
1084 
1085 	if (wrote)
1086 		f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1087 
1088 	return nwritten;
1089 }
1090 
1091 static int f2fs_write_node_page(struct page *page,
1092 				struct writeback_control *wbc)
1093 {
1094 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1095 	nid_t nid;
1096 	unsigned int nofs;
1097 	block_t new_addr;
1098 	struct node_info ni;
1099 
1100 	if (wbc->for_reclaim) {
1101 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1102 		wbc->pages_skipped++;
1103 		set_page_dirty(page);
1104 		return AOP_WRITEPAGE_ACTIVATE;
1105 	}
1106 
1107 	wait_on_page_writeback(page);
1108 
1109 	mutex_lock_op(sbi, NODE_WRITE);
1110 
1111 	/* get old block addr of this node page */
1112 	nid = nid_of_node(page);
1113 	nofs = ofs_of_node(page);
1114 	BUG_ON(page->index != nid);
1115 
1116 	get_node_info(sbi, nid, &ni);
1117 
1118 	/* This page is already truncated */
1119 	if (ni.blk_addr == NULL_ADDR)
1120 		return 0;
1121 
1122 	set_page_writeback(page);
1123 
1124 	/* insert node offset */
1125 	write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1126 	set_node_addr(sbi, &ni, new_addr);
1127 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1128 
1129 	mutex_unlock_op(sbi, NODE_WRITE);
1130 	unlock_page(page);
1131 	return 0;
1132 }
1133 
1134 static int f2fs_write_node_pages(struct address_space *mapping,
1135 			    struct writeback_control *wbc)
1136 {
1137 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1138 	struct block_device *bdev = sbi->sb->s_bdev;
1139 	long nr_to_write = wbc->nr_to_write;
1140 
1141 	if (wbc->for_kupdate)
1142 		return 0;
1143 
1144 	if (get_pages(sbi, F2FS_DIRTY_NODES) == 0)
1145 		return 0;
1146 
1147 	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1148 		write_checkpoint(sbi, false, false);
1149 		return 0;
1150 	}
1151 
1152 	/* if mounting is failed, skip writing node pages */
1153 	wbc->nr_to_write = bio_get_nr_vecs(bdev);
1154 	sync_node_pages(sbi, 0, wbc);
1155 	wbc->nr_to_write = nr_to_write -
1156 		(bio_get_nr_vecs(bdev) - wbc->nr_to_write);
1157 	return 0;
1158 }
1159 
1160 static int f2fs_set_node_page_dirty(struct page *page)
1161 {
1162 	struct address_space *mapping = page->mapping;
1163 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1164 
1165 	SetPageUptodate(page);
1166 	if (!PageDirty(page)) {
1167 		__set_page_dirty_nobuffers(page);
1168 		inc_page_count(sbi, F2FS_DIRTY_NODES);
1169 		SetPagePrivate(page);
1170 		return 1;
1171 	}
1172 	return 0;
1173 }
1174 
1175 static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1176 {
1177 	struct inode *inode = page->mapping->host;
1178 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1179 	if (PageDirty(page))
1180 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1181 	ClearPagePrivate(page);
1182 }
1183 
1184 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1185 {
1186 	ClearPagePrivate(page);
1187 	return 0;
1188 }
1189 
1190 /*
1191  * Structure of the f2fs node operations
1192  */
1193 const struct address_space_operations f2fs_node_aops = {
1194 	.writepage	= f2fs_write_node_page,
1195 	.writepages	= f2fs_write_node_pages,
1196 	.set_page_dirty	= f2fs_set_node_page_dirty,
1197 	.invalidatepage	= f2fs_invalidate_node_page,
1198 	.releasepage	= f2fs_release_node_page,
1199 };
1200 
1201 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1202 {
1203 	struct list_head *this;
1204 	struct free_nid *i = NULL;
1205 	list_for_each(this, head) {
1206 		i = list_entry(this, struct free_nid, list);
1207 		if (i->nid == n)
1208 			break;
1209 		i = NULL;
1210 	}
1211 	return i;
1212 }
1213 
1214 static void __del_from_free_nid_list(struct free_nid *i)
1215 {
1216 	list_del(&i->list);
1217 	kmem_cache_free(free_nid_slab, i);
1218 }
1219 
1220 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1221 {
1222 	struct free_nid *i;
1223 
1224 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1225 		return 0;
1226 retry:
1227 	i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1228 	if (!i) {
1229 		cond_resched();
1230 		goto retry;
1231 	}
1232 	i->nid = nid;
1233 	i->state = NID_NEW;
1234 
1235 	spin_lock(&nm_i->free_nid_list_lock);
1236 	if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1237 		spin_unlock(&nm_i->free_nid_list_lock);
1238 		kmem_cache_free(free_nid_slab, i);
1239 		return 0;
1240 	}
1241 	list_add_tail(&i->list, &nm_i->free_nid_list);
1242 	nm_i->fcnt++;
1243 	spin_unlock(&nm_i->free_nid_list_lock);
1244 	return 1;
1245 }
1246 
1247 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1248 {
1249 	struct free_nid *i;
1250 	spin_lock(&nm_i->free_nid_list_lock);
1251 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1252 	if (i && i->state == NID_NEW) {
1253 		__del_from_free_nid_list(i);
1254 		nm_i->fcnt--;
1255 	}
1256 	spin_unlock(&nm_i->free_nid_list_lock);
1257 }
1258 
1259 static int scan_nat_page(struct f2fs_nm_info *nm_i,
1260 			struct page *nat_page, nid_t start_nid)
1261 {
1262 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1263 	block_t blk_addr;
1264 	int fcnt = 0;
1265 	int i;
1266 
1267 	/* 0 nid should not be used */
1268 	if (start_nid == 0)
1269 		++start_nid;
1270 
1271 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1272 
1273 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1274 		blk_addr  = le32_to_cpu(nat_blk->entries[i].block_addr);
1275 		BUG_ON(blk_addr == NEW_ADDR);
1276 		if (blk_addr == NULL_ADDR)
1277 			fcnt += add_free_nid(nm_i, start_nid);
1278 	}
1279 	return fcnt;
1280 }
1281 
1282 static void build_free_nids(struct f2fs_sb_info *sbi)
1283 {
1284 	struct free_nid *fnid, *next_fnid;
1285 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1286 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1287 	struct f2fs_summary_block *sum = curseg->sum_blk;
1288 	nid_t nid = 0;
1289 	bool is_cycled = false;
1290 	int fcnt = 0;
1291 	int i;
1292 
1293 	nid = nm_i->next_scan_nid;
1294 	nm_i->init_scan_nid = nid;
1295 
1296 	ra_nat_pages(sbi, nid);
1297 
1298 	while (1) {
1299 		struct page *page = get_current_nat_page(sbi, nid);
1300 
1301 		fcnt += scan_nat_page(nm_i, page, nid);
1302 		f2fs_put_page(page, 1);
1303 
1304 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1305 
1306 		if (nid >= nm_i->max_nid) {
1307 			nid = 0;
1308 			is_cycled = true;
1309 		}
1310 		if (fcnt > MAX_FREE_NIDS)
1311 			break;
1312 		if (is_cycled && nm_i->init_scan_nid <= nid)
1313 			break;
1314 	}
1315 
1316 	nm_i->next_scan_nid = nid;
1317 
1318 	/* find free nids from current sum_pages */
1319 	mutex_lock(&curseg->curseg_mutex);
1320 	for (i = 0; i < nats_in_cursum(sum); i++) {
1321 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1322 		nid = le32_to_cpu(nid_in_journal(sum, i));
1323 		if (addr == NULL_ADDR)
1324 			add_free_nid(nm_i, nid);
1325 		else
1326 			remove_free_nid(nm_i, nid);
1327 	}
1328 	mutex_unlock(&curseg->curseg_mutex);
1329 
1330 	/* remove the free nids from current allocated nids */
1331 	list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1332 		struct nat_entry *ne;
1333 
1334 		read_lock(&nm_i->nat_tree_lock);
1335 		ne = __lookup_nat_cache(nm_i, fnid->nid);
1336 		if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1337 			remove_free_nid(nm_i, fnid->nid);
1338 		read_unlock(&nm_i->nat_tree_lock);
1339 	}
1340 }
1341 
1342 /*
1343  * If this function returns success, caller can obtain a new nid
1344  * from second parameter of this function.
1345  * The returned nid could be used ino as well as nid when inode is created.
1346  */
1347 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1348 {
1349 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1350 	struct free_nid *i = NULL;
1351 	struct list_head *this;
1352 retry:
1353 	mutex_lock(&nm_i->build_lock);
1354 	if (!nm_i->fcnt) {
1355 		/* scan NAT in order to build free nid list */
1356 		build_free_nids(sbi);
1357 		if (!nm_i->fcnt) {
1358 			mutex_unlock(&nm_i->build_lock);
1359 			return false;
1360 		}
1361 	}
1362 	mutex_unlock(&nm_i->build_lock);
1363 
1364 	/*
1365 	 * We check fcnt again since previous check is racy as
1366 	 * we didn't hold free_nid_list_lock. So other thread
1367 	 * could consume all of free nids.
1368 	 */
1369 	spin_lock(&nm_i->free_nid_list_lock);
1370 	if (!nm_i->fcnt) {
1371 		spin_unlock(&nm_i->free_nid_list_lock);
1372 		goto retry;
1373 	}
1374 
1375 	BUG_ON(list_empty(&nm_i->free_nid_list));
1376 	list_for_each(this, &nm_i->free_nid_list) {
1377 		i = list_entry(this, struct free_nid, list);
1378 		if (i->state == NID_NEW)
1379 			break;
1380 	}
1381 
1382 	BUG_ON(i->state != NID_NEW);
1383 	*nid = i->nid;
1384 	i->state = NID_ALLOC;
1385 	nm_i->fcnt--;
1386 	spin_unlock(&nm_i->free_nid_list_lock);
1387 	return true;
1388 }
1389 
1390 /*
1391  * alloc_nid() should be called prior to this function.
1392  */
1393 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1394 {
1395 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1396 	struct free_nid *i;
1397 
1398 	spin_lock(&nm_i->free_nid_list_lock);
1399 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1400 	if (i) {
1401 		BUG_ON(i->state != NID_ALLOC);
1402 		__del_from_free_nid_list(i);
1403 	}
1404 	spin_unlock(&nm_i->free_nid_list_lock);
1405 }
1406 
1407 /*
1408  * alloc_nid() should be called prior to this function.
1409  */
1410 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1411 {
1412 	alloc_nid_done(sbi, nid);
1413 	add_free_nid(NM_I(sbi), nid);
1414 }
1415 
1416 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1417 		struct f2fs_summary *sum, struct node_info *ni,
1418 		block_t new_blkaddr)
1419 {
1420 	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1421 	set_node_addr(sbi, ni, new_blkaddr);
1422 	clear_node_page_dirty(page);
1423 }
1424 
1425 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1426 {
1427 	struct address_space *mapping = sbi->node_inode->i_mapping;
1428 	struct f2fs_node *src, *dst;
1429 	nid_t ino = ino_of_node(page);
1430 	struct node_info old_ni, new_ni;
1431 	struct page *ipage;
1432 
1433 	ipage = grab_cache_page(mapping, ino);
1434 	if (!ipage)
1435 		return -ENOMEM;
1436 
1437 	/* Should not use this inode  from free nid list */
1438 	remove_free_nid(NM_I(sbi), ino);
1439 
1440 	get_node_info(sbi, ino, &old_ni);
1441 	SetPageUptodate(ipage);
1442 	fill_node_footer(ipage, ino, ino, 0, true);
1443 
1444 	src = (struct f2fs_node *)page_address(page);
1445 	dst = (struct f2fs_node *)page_address(ipage);
1446 
1447 	memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1448 	dst->i.i_size = 0;
1449 	dst->i.i_blocks = cpu_to_le64(1);
1450 	dst->i.i_links = cpu_to_le32(1);
1451 	dst->i.i_xattr_nid = 0;
1452 
1453 	new_ni = old_ni;
1454 	new_ni.ino = ino;
1455 
1456 	set_node_addr(sbi, &new_ni, NEW_ADDR);
1457 	inc_valid_inode_count(sbi);
1458 
1459 	f2fs_put_page(ipage, 1);
1460 	return 0;
1461 }
1462 
1463 int restore_node_summary(struct f2fs_sb_info *sbi,
1464 			unsigned int segno, struct f2fs_summary_block *sum)
1465 {
1466 	struct f2fs_node *rn;
1467 	struct f2fs_summary *sum_entry;
1468 	struct page *page;
1469 	block_t addr;
1470 	int i, last_offset;
1471 
1472 	/* alloc temporal page for read node */
1473 	page = alloc_page(GFP_NOFS | __GFP_ZERO);
1474 	if (IS_ERR(page))
1475 		return PTR_ERR(page);
1476 	lock_page(page);
1477 
1478 	/* scan the node segment */
1479 	last_offset = sbi->blocks_per_seg;
1480 	addr = START_BLOCK(sbi, segno);
1481 	sum_entry = &sum->entries[0];
1482 
1483 	for (i = 0; i < last_offset; i++, sum_entry++) {
1484 		if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1485 			goto out;
1486 
1487 		rn = (struct f2fs_node *)page_address(page);
1488 		sum_entry->nid = rn->footer.nid;
1489 		sum_entry->version = 0;
1490 		sum_entry->ofs_in_node = 0;
1491 		addr++;
1492 
1493 		/*
1494 		 * In order to read next node page,
1495 		 * we must clear PageUptodate flag.
1496 		 */
1497 		ClearPageUptodate(page);
1498 	}
1499 out:
1500 	unlock_page(page);
1501 	__free_pages(page, 0);
1502 	return 0;
1503 }
1504 
1505 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1506 {
1507 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1508 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1509 	struct f2fs_summary_block *sum = curseg->sum_blk;
1510 	int i;
1511 
1512 	mutex_lock(&curseg->curseg_mutex);
1513 
1514 	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1515 		mutex_unlock(&curseg->curseg_mutex);
1516 		return false;
1517 	}
1518 
1519 	for (i = 0; i < nats_in_cursum(sum); i++) {
1520 		struct nat_entry *ne;
1521 		struct f2fs_nat_entry raw_ne;
1522 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1523 
1524 		raw_ne = nat_in_journal(sum, i);
1525 retry:
1526 		write_lock(&nm_i->nat_tree_lock);
1527 		ne = __lookup_nat_cache(nm_i, nid);
1528 		if (ne) {
1529 			__set_nat_cache_dirty(nm_i, ne);
1530 			write_unlock(&nm_i->nat_tree_lock);
1531 			continue;
1532 		}
1533 		ne = grab_nat_entry(nm_i, nid);
1534 		if (!ne) {
1535 			write_unlock(&nm_i->nat_tree_lock);
1536 			goto retry;
1537 		}
1538 		nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1539 		nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1540 		nat_set_version(ne, raw_ne.version);
1541 		__set_nat_cache_dirty(nm_i, ne);
1542 		write_unlock(&nm_i->nat_tree_lock);
1543 	}
1544 	update_nats_in_cursum(sum, -i);
1545 	mutex_unlock(&curseg->curseg_mutex);
1546 	return true;
1547 }
1548 
1549 /*
1550  * This function is called during the checkpointing process.
1551  */
1552 void flush_nat_entries(struct f2fs_sb_info *sbi)
1553 {
1554 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1555 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1556 	struct f2fs_summary_block *sum = curseg->sum_blk;
1557 	struct list_head *cur, *n;
1558 	struct page *page = NULL;
1559 	struct f2fs_nat_block *nat_blk = NULL;
1560 	nid_t start_nid = 0, end_nid = 0;
1561 	bool flushed;
1562 
1563 	flushed = flush_nats_in_journal(sbi);
1564 
1565 	if (!flushed)
1566 		mutex_lock(&curseg->curseg_mutex);
1567 
1568 	/* 1) flush dirty nat caches */
1569 	list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1570 		struct nat_entry *ne;
1571 		nid_t nid;
1572 		struct f2fs_nat_entry raw_ne;
1573 		int offset = -1;
1574 		block_t old_blkaddr, new_blkaddr;
1575 
1576 		ne = list_entry(cur, struct nat_entry, list);
1577 		nid = nat_get_nid(ne);
1578 
1579 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1580 			continue;
1581 		if (flushed)
1582 			goto to_nat_page;
1583 
1584 		/* if there is room for nat enries in curseg->sumpage */
1585 		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1586 		if (offset >= 0) {
1587 			raw_ne = nat_in_journal(sum, offset);
1588 			old_blkaddr = le32_to_cpu(raw_ne.block_addr);
1589 			goto flush_now;
1590 		}
1591 to_nat_page:
1592 		if (!page || (start_nid > nid || nid > end_nid)) {
1593 			if (page) {
1594 				f2fs_put_page(page, 1);
1595 				page = NULL;
1596 			}
1597 			start_nid = START_NID(nid);
1598 			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1599 
1600 			/*
1601 			 * get nat block with dirty flag, increased reference
1602 			 * count, mapped and lock
1603 			 */
1604 			page = get_next_nat_page(sbi, start_nid);
1605 			nat_blk = page_address(page);
1606 		}
1607 
1608 		BUG_ON(!nat_blk);
1609 		raw_ne = nat_blk->entries[nid - start_nid];
1610 		old_blkaddr = le32_to_cpu(raw_ne.block_addr);
1611 flush_now:
1612 		new_blkaddr = nat_get_blkaddr(ne);
1613 
1614 		raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1615 		raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1616 		raw_ne.version = nat_get_version(ne);
1617 
1618 		if (offset < 0) {
1619 			nat_blk->entries[nid - start_nid] = raw_ne;
1620 		} else {
1621 			nat_in_journal(sum, offset) = raw_ne;
1622 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1623 		}
1624 
1625 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
1626 			write_lock(&nm_i->nat_tree_lock);
1627 			__del_from_nat_cache(nm_i, ne);
1628 			write_unlock(&nm_i->nat_tree_lock);
1629 
1630 			/* We can reuse this freed nid at this point */
1631 			add_free_nid(NM_I(sbi), nid);
1632 		} else {
1633 			write_lock(&nm_i->nat_tree_lock);
1634 			__clear_nat_cache_dirty(nm_i, ne);
1635 			ne->checkpointed = true;
1636 			write_unlock(&nm_i->nat_tree_lock);
1637 		}
1638 	}
1639 	if (!flushed)
1640 		mutex_unlock(&curseg->curseg_mutex);
1641 	f2fs_put_page(page, 1);
1642 
1643 	/* 2) shrink nat caches if necessary */
1644 	try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1645 }
1646 
1647 static int init_node_manager(struct f2fs_sb_info *sbi)
1648 {
1649 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1650 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1651 	unsigned char *version_bitmap;
1652 	unsigned int nat_segs, nat_blocks;
1653 
1654 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1655 
1656 	/* segment_count_nat includes pair segment so divide to 2. */
1657 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1658 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1659 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1660 	nm_i->fcnt = 0;
1661 	nm_i->nat_cnt = 0;
1662 
1663 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1664 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1665 	INIT_LIST_HEAD(&nm_i->nat_entries);
1666 	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1667 
1668 	mutex_init(&nm_i->build_lock);
1669 	spin_lock_init(&nm_i->free_nid_list_lock);
1670 	rwlock_init(&nm_i->nat_tree_lock);
1671 
1672 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1673 	nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1674 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1675 
1676 	nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
1677 	if (!nm_i->nat_bitmap)
1678 		return -ENOMEM;
1679 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1680 	if (!version_bitmap)
1681 		return -EFAULT;
1682 
1683 	/* copy version bitmap */
1684 	memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
1685 	return 0;
1686 }
1687 
1688 int build_node_manager(struct f2fs_sb_info *sbi)
1689 {
1690 	int err;
1691 
1692 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1693 	if (!sbi->nm_info)
1694 		return -ENOMEM;
1695 
1696 	err = init_node_manager(sbi);
1697 	if (err)
1698 		return err;
1699 
1700 	build_free_nids(sbi);
1701 	return 0;
1702 }
1703 
1704 void destroy_node_manager(struct f2fs_sb_info *sbi)
1705 {
1706 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1707 	struct free_nid *i, *next_i;
1708 	struct nat_entry *natvec[NATVEC_SIZE];
1709 	nid_t nid = 0;
1710 	unsigned int found;
1711 
1712 	if (!nm_i)
1713 		return;
1714 
1715 	/* destroy free nid list */
1716 	spin_lock(&nm_i->free_nid_list_lock);
1717 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1718 		BUG_ON(i->state == NID_ALLOC);
1719 		__del_from_free_nid_list(i);
1720 		nm_i->fcnt--;
1721 	}
1722 	BUG_ON(nm_i->fcnt);
1723 	spin_unlock(&nm_i->free_nid_list_lock);
1724 
1725 	/* destroy nat cache */
1726 	write_lock(&nm_i->nat_tree_lock);
1727 	while ((found = __gang_lookup_nat_cache(nm_i,
1728 					nid, NATVEC_SIZE, natvec))) {
1729 		unsigned idx;
1730 		for (idx = 0; idx < found; idx++) {
1731 			struct nat_entry *e = natvec[idx];
1732 			nid = nat_get_nid(e) + 1;
1733 			__del_from_nat_cache(nm_i, e);
1734 		}
1735 	}
1736 	BUG_ON(nm_i->nat_cnt);
1737 	write_unlock(&nm_i->nat_tree_lock);
1738 
1739 	kfree(nm_i->nat_bitmap);
1740 	sbi->nm_info = NULL;
1741 	kfree(nm_i);
1742 }
1743 
1744 int create_node_manager_caches(void)
1745 {
1746 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1747 			sizeof(struct nat_entry), NULL);
1748 	if (!nat_entry_slab)
1749 		return -ENOMEM;
1750 
1751 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
1752 			sizeof(struct free_nid), NULL);
1753 	if (!free_nid_slab) {
1754 		kmem_cache_destroy(nat_entry_slab);
1755 		return -ENOMEM;
1756 	}
1757 	return 0;
1758 }
1759 
1760 void destroy_node_manager_caches(void)
1761 {
1762 	kmem_cache_destroy(free_nid_slab);
1763 	kmem_cache_destroy(nat_entry_slab);
1764 }
1765