1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include <trace/events/f2fs.h> 23 24 static struct kmem_cache *nat_entry_slab; 25 static struct kmem_cache *free_nid_slab; 26 27 static void clear_node_page_dirty(struct page *page) 28 { 29 struct address_space *mapping = page->mapping; 30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 31 unsigned int long flags; 32 33 if (PageDirty(page)) { 34 spin_lock_irqsave(&mapping->tree_lock, flags); 35 radix_tree_tag_clear(&mapping->page_tree, 36 page_index(page), 37 PAGECACHE_TAG_DIRTY); 38 spin_unlock_irqrestore(&mapping->tree_lock, flags); 39 40 clear_page_dirty_for_io(page); 41 dec_page_count(sbi, F2FS_DIRTY_NODES); 42 } 43 ClearPageUptodate(page); 44 } 45 46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 47 { 48 pgoff_t index = current_nat_addr(sbi, nid); 49 return get_meta_page(sbi, index); 50 } 51 52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 53 { 54 struct page *src_page; 55 struct page *dst_page; 56 pgoff_t src_off; 57 pgoff_t dst_off; 58 void *src_addr; 59 void *dst_addr; 60 struct f2fs_nm_info *nm_i = NM_I(sbi); 61 62 src_off = current_nat_addr(sbi, nid); 63 dst_off = next_nat_addr(sbi, src_off); 64 65 /* get current nat block page with lock */ 66 src_page = get_meta_page(sbi, src_off); 67 68 /* Dirty src_page means that it is already the new target NAT page. */ 69 if (PageDirty(src_page)) 70 return src_page; 71 72 dst_page = grab_meta_page(sbi, dst_off); 73 74 src_addr = page_address(src_page); 75 dst_addr = page_address(dst_page); 76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 77 set_page_dirty(dst_page); 78 f2fs_put_page(src_page, 1); 79 80 set_to_next_nat(nm_i, nid); 81 82 return dst_page; 83 } 84 85 /* 86 * Readahead NAT pages 87 */ 88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) 89 { 90 struct address_space *mapping = sbi->meta_inode->i_mapping; 91 struct f2fs_nm_info *nm_i = NM_I(sbi); 92 struct blk_plug plug; 93 struct page *page; 94 pgoff_t index; 95 int i; 96 97 blk_start_plug(&plug); 98 99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { 100 if (nid >= nm_i->max_nid) 101 nid = 0; 102 index = current_nat_addr(sbi, nid); 103 104 page = grab_cache_page(mapping, index); 105 if (!page) 106 continue; 107 if (PageUptodate(page)) { 108 f2fs_put_page(page, 1); 109 continue; 110 } 111 if (f2fs_readpage(sbi, page, index, READ)) 112 continue; 113 114 f2fs_put_page(page, 0); 115 } 116 blk_finish_plug(&plug); 117 } 118 119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 120 { 121 return radix_tree_lookup(&nm_i->nat_root, n); 122 } 123 124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 125 nid_t start, unsigned int nr, struct nat_entry **ep) 126 { 127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 128 } 129 130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 131 { 132 list_del(&e->list); 133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 134 nm_i->nat_cnt--; 135 kmem_cache_free(nat_entry_slab, e); 136 } 137 138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct f2fs_nm_info *nm_i = NM_I(sbi); 141 struct nat_entry *e; 142 int is_cp = 1; 143 144 read_lock(&nm_i->nat_tree_lock); 145 e = __lookup_nat_cache(nm_i, nid); 146 if (e && !e->checkpointed) 147 is_cp = 0; 148 read_unlock(&nm_i->nat_tree_lock); 149 return is_cp; 150 } 151 152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 153 { 154 struct nat_entry *new; 155 156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 157 if (!new) 158 return NULL; 159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 160 kmem_cache_free(nat_entry_slab, new); 161 return NULL; 162 } 163 memset(new, 0, sizeof(struct nat_entry)); 164 nat_set_nid(new, nid); 165 list_add_tail(&new->list, &nm_i->nat_entries); 166 nm_i->nat_cnt++; 167 return new; 168 } 169 170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 171 struct f2fs_nat_entry *ne) 172 { 173 struct nat_entry *e; 174 retry: 175 write_lock(&nm_i->nat_tree_lock); 176 e = __lookup_nat_cache(nm_i, nid); 177 if (!e) { 178 e = grab_nat_entry(nm_i, nid); 179 if (!e) { 180 write_unlock(&nm_i->nat_tree_lock); 181 goto retry; 182 } 183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); 184 nat_set_ino(e, le32_to_cpu(ne->ino)); 185 nat_set_version(e, ne->version); 186 e->checkpointed = true; 187 } 188 write_unlock(&nm_i->nat_tree_lock); 189 } 190 191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 192 block_t new_blkaddr) 193 { 194 struct f2fs_nm_info *nm_i = NM_I(sbi); 195 struct nat_entry *e; 196 retry: 197 write_lock(&nm_i->nat_tree_lock); 198 e = __lookup_nat_cache(nm_i, ni->nid); 199 if (!e) { 200 e = grab_nat_entry(nm_i, ni->nid); 201 if (!e) { 202 write_unlock(&nm_i->nat_tree_lock); 203 goto retry; 204 } 205 e->ni = *ni; 206 e->checkpointed = true; 207 BUG_ON(ni->blk_addr == NEW_ADDR); 208 } else if (new_blkaddr == NEW_ADDR) { 209 /* 210 * when nid is reallocated, 211 * previous nat entry can be remained in nat cache. 212 * So, reinitialize it with new information. 213 */ 214 e->ni = *ni; 215 BUG_ON(ni->blk_addr != NULL_ADDR); 216 } 217 218 if (new_blkaddr == NEW_ADDR) 219 e->checkpointed = false; 220 221 /* sanity check */ 222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); 223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && 224 new_blkaddr == NULL_ADDR); 225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && 226 new_blkaddr == NEW_ADDR); 227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && 228 nat_get_blkaddr(e) != NULL_ADDR && 229 new_blkaddr == NEW_ADDR); 230 231 /* increament version no as node is removed */ 232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 233 unsigned char version = nat_get_version(e); 234 nat_set_version(e, inc_node_version(version)); 235 } 236 237 /* change address */ 238 nat_set_blkaddr(e, new_blkaddr); 239 __set_nat_cache_dirty(nm_i, e); 240 write_unlock(&nm_i->nat_tree_lock); 241 } 242 243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 244 { 245 struct f2fs_nm_info *nm_i = NM_I(sbi); 246 247 if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD) 248 return 0; 249 250 write_lock(&nm_i->nat_tree_lock); 251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 252 struct nat_entry *ne; 253 ne = list_first_entry(&nm_i->nat_entries, 254 struct nat_entry, list); 255 __del_from_nat_cache(nm_i, ne); 256 nr_shrink--; 257 } 258 write_unlock(&nm_i->nat_tree_lock); 259 return nr_shrink; 260 } 261 262 /* 263 * This function returns always success 264 */ 265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 266 { 267 struct f2fs_nm_info *nm_i = NM_I(sbi); 268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 269 struct f2fs_summary_block *sum = curseg->sum_blk; 270 nid_t start_nid = START_NID(nid); 271 struct f2fs_nat_block *nat_blk; 272 struct page *page = NULL; 273 struct f2fs_nat_entry ne; 274 struct nat_entry *e; 275 int i; 276 277 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 278 ni->nid = nid; 279 280 /* Check nat cache */ 281 read_lock(&nm_i->nat_tree_lock); 282 e = __lookup_nat_cache(nm_i, nid); 283 if (e) { 284 ni->ino = nat_get_ino(e); 285 ni->blk_addr = nat_get_blkaddr(e); 286 ni->version = nat_get_version(e); 287 } 288 read_unlock(&nm_i->nat_tree_lock); 289 if (e) 290 return; 291 292 /* Check current segment summary */ 293 mutex_lock(&curseg->curseg_mutex); 294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); 295 if (i >= 0) { 296 ne = nat_in_journal(sum, i); 297 node_info_from_raw_nat(ni, &ne); 298 } 299 mutex_unlock(&curseg->curseg_mutex); 300 if (i >= 0) 301 goto cache; 302 303 /* Fill node_info from nat page */ 304 page = get_current_nat_page(sbi, start_nid); 305 nat_blk = (struct f2fs_nat_block *)page_address(page); 306 ne = nat_blk->entries[nid - start_nid]; 307 node_info_from_raw_nat(ni, &ne); 308 f2fs_put_page(page, 1); 309 cache: 310 /* cache nat entry */ 311 cache_nat_entry(NM_I(sbi), nid, &ne); 312 } 313 314 /* 315 * The maximum depth is four. 316 * Offset[0] will have raw inode offset. 317 */ 318 static int get_node_path(long block, int offset[4], unsigned int noffset[4]) 319 { 320 const long direct_index = ADDRS_PER_INODE; 321 const long direct_blks = ADDRS_PER_BLOCK; 322 const long dptrs_per_blk = NIDS_PER_BLOCK; 323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 325 int n = 0; 326 int level = 0; 327 328 noffset[0] = 0; 329 330 if (block < direct_index) { 331 offset[n] = block; 332 goto got; 333 } 334 block -= direct_index; 335 if (block < direct_blks) { 336 offset[n++] = NODE_DIR1_BLOCK; 337 noffset[n] = 1; 338 offset[n] = block; 339 level = 1; 340 goto got; 341 } 342 block -= direct_blks; 343 if (block < direct_blks) { 344 offset[n++] = NODE_DIR2_BLOCK; 345 noffset[n] = 2; 346 offset[n] = block; 347 level = 1; 348 goto got; 349 } 350 block -= direct_blks; 351 if (block < indirect_blks) { 352 offset[n++] = NODE_IND1_BLOCK; 353 noffset[n] = 3; 354 offset[n++] = block / direct_blks; 355 noffset[n] = 4 + offset[n - 1]; 356 offset[n] = block % direct_blks; 357 level = 2; 358 goto got; 359 } 360 block -= indirect_blks; 361 if (block < indirect_blks) { 362 offset[n++] = NODE_IND2_BLOCK; 363 noffset[n] = 4 + dptrs_per_blk; 364 offset[n++] = block / direct_blks; 365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 366 offset[n] = block % direct_blks; 367 level = 2; 368 goto got; 369 } 370 block -= indirect_blks; 371 if (block < dindirect_blks) { 372 offset[n++] = NODE_DIND_BLOCK; 373 noffset[n] = 5 + (dptrs_per_blk * 2); 374 offset[n++] = block / indirect_blks; 375 noffset[n] = 6 + (dptrs_per_blk * 2) + 376 offset[n - 1] * (dptrs_per_blk + 1); 377 offset[n++] = (block / direct_blks) % dptrs_per_blk; 378 noffset[n] = 7 + (dptrs_per_blk * 2) + 379 offset[n - 2] * (dptrs_per_blk + 1) + 380 offset[n - 1]; 381 offset[n] = block % direct_blks; 382 level = 3; 383 goto got; 384 } else { 385 BUG(); 386 } 387 got: 388 return level; 389 } 390 391 /* 392 * Caller should call f2fs_put_dnode(dn). 393 * Also, it should grab and release a mutex by calling mutex_lock_op() and 394 * mutex_unlock_op() only if ro is not set RDONLY_NODE. 395 * In the case of RDONLY_NODE, we don't need to care about mutex. 396 */ 397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 398 { 399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 400 struct page *npage[4]; 401 struct page *parent; 402 int offset[4]; 403 unsigned int noffset[4]; 404 nid_t nids[4]; 405 int level, i; 406 int err = 0; 407 408 level = get_node_path(index, offset, noffset); 409 410 nids[0] = dn->inode->i_ino; 411 npage[0] = get_node_page(sbi, nids[0]); 412 if (IS_ERR(npage[0])) 413 return PTR_ERR(npage[0]); 414 415 parent = npage[0]; 416 if (level != 0) 417 nids[1] = get_nid(parent, offset[0], true); 418 dn->inode_page = npage[0]; 419 dn->inode_page_locked = true; 420 421 /* get indirect or direct nodes */ 422 for (i = 1; i <= level; i++) { 423 bool done = false; 424 425 if (!nids[i] && mode == ALLOC_NODE) { 426 /* alloc new node */ 427 if (!alloc_nid(sbi, &(nids[i]))) { 428 err = -ENOSPC; 429 goto release_pages; 430 } 431 432 dn->nid = nids[i]; 433 npage[i] = new_node_page(dn, noffset[i]); 434 if (IS_ERR(npage[i])) { 435 alloc_nid_failed(sbi, nids[i]); 436 err = PTR_ERR(npage[i]); 437 goto release_pages; 438 } 439 440 set_nid(parent, offset[i - 1], nids[i], i == 1); 441 alloc_nid_done(sbi, nids[i]); 442 done = true; 443 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 444 npage[i] = get_node_page_ra(parent, offset[i - 1]); 445 if (IS_ERR(npage[i])) { 446 err = PTR_ERR(npage[i]); 447 goto release_pages; 448 } 449 done = true; 450 } 451 if (i == 1) { 452 dn->inode_page_locked = false; 453 unlock_page(parent); 454 } else { 455 f2fs_put_page(parent, 1); 456 } 457 458 if (!done) { 459 npage[i] = get_node_page(sbi, nids[i]); 460 if (IS_ERR(npage[i])) { 461 err = PTR_ERR(npage[i]); 462 f2fs_put_page(npage[0], 0); 463 goto release_out; 464 } 465 } 466 if (i < level) { 467 parent = npage[i]; 468 nids[i + 1] = get_nid(parent, offset[i], false); 469 } 470 } 471 dn->nid = nids[level]; 472 dn->ofs_in_node = offset[level]; 473 dn->node_page = npage[level]; 474 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 475 return 0; 476 477 release_pages: 478 f2fs_put_page(parent, 1); 479 if (i > 1) 480 f2fs_put_page(npage[0], 0); 481 release_out: 482 dn->inode_page = NULL; 483 dn->node_page = NULL; 484 return err; 485 } 486 487 static void truncate_node(struct dnode_of_data *dn) 488 { 489 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 490 struct node_info ni; 491 492 get_node_info(sbi, dn->nid, &ni); 493 if (dn->inode->i_blocks == 0) { 494 BUG_ON(ni.blk_addr != NULL_ADDR); 495 goto invalidate; 496 } 497 BUG_ON(ni.blk_addr == NULL_ADDR); 498 499 /* Deallocate node address */ 500 invalidate_blocks(sbi, ni.blk_addr); 501 dec_valid_node_count(sbi, dn->inode, 1); 502 set_node_addr(sbi, &ni, NULL_ADDR); 503 504 if (dn->nid == dn->inode->i_ino) { 505 remove_orphan_inode(sbi, dn->nid); 506 dec_valid_inode_count(sbi); 507 } else { 508 sync_inode_page(dn); 509 } 510 invalidate: 511 clear_node_page_dirty(dn->node_page); 512 F2FS_SET_SB_DIRT(sbi); 513 514 f2fs_put_page(dn->node_page, 1); 515 dn->node_page = NULL; 516 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 517 } 518 519 static int truncate_dnode(struct dnode_of_data *dn) 520 { 521 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 522 struct page *page; 523 524 if (dn->nid == 0) 525 return 1; 526 527 /* get direct node */ 528 page = get_node_page(sbi, dn->nid); 529 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 530 return 1; 531 else if (IS_ERR(page)) 532 return PTR_ERR(page); 533 534 /* Make dnode_of_data for parameter */ 535 dn->node_page = page; 536 dn->ofs_in_node = 0; 537 truncate_data_blocks(dn); 538 truncate_node(dn); 539 return 1; 540 } 541 542 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 543 int ofs, int depth) 544 { 545 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 546 struct dnode_of_data rdn = *dn; 547 struct page *page; 548 struct f2fs_node *rn; 549 nid_t child_nid; 550 unsigned int child_nofs; 551 int freed = 0; 552 int i, ret; 553 554 if (dn->nid == 0) 555 return NIDS_PER_BLOCK + 1; 556 557 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 558 559 page = get_node_page(sbi, dn->nid); 560 if (IS_ERR(page)) { 561 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 562 return PTR_ERR(page); 563 } 564 565 rn = (struct f2fs_node *)page_address(page); 566 if (depth < 3) { 567 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 568 child_nid = le32_to_cpu(rn->in.nid[i]); 569 if (child_nid == 0) 570 continue; 571 rdn.nid = child_nid; 572 ret = truncate_dnode(&rdn); 573 if (ret < 0) 574 goto out_err; 575 set_nid(page, i, 0, false); 576 } 577 } else { 578 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 579 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 580 child_nid = le32_to_cpu(rn->in.nid[i]); 581 if (child_nid == 0) { 582 child_nofs += NIDS_PER_BLOCK + 1; 583 continue; 584 } 585 rdn.nid = child_nid; 586 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 587 if (ret == (NIDS_PER_BLOCK + 1)) { 588 set_nid(page, i, 0, false); 589 child_nofs += ret; 590 } else if (ret < 0 && ret != -ENOENT) { 591 goto out_err; 592 } 593 } 594 freed = child_nofs; 595 } 596 597 if (!ofs) { 598 /* remove current indirect node */ 599 dn->node_page = page; 600 truncate_node(dn); 601 freed++; 602 } else { 603 f2fs_put_page(page, 1); 604 } 605 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 606 return freed; 607 608 out_err: 609 f2fs_put_page(page, 1); 610 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 611 return ret; 612 } 613 614 static int truncate_partial_nodes(struct dnode_of_data *dn, 615 struct f2fs_inode *ri, int *offset, int depth) 616 { 617 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 618 struct page *pages[2]; 619 nid_t nid[3]; 620 nid_t child_nid; 621 int err = 0; 622 int i; 623 int idx = depth - 2; 624 625 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 626 if (!nid[0]) 627 return 0; 628 629 /* get indirect nodes in the path */ 630 for (i = 0; i < depth - 1; i++) { 631 /* refernece count'll be increased */ 632 pages[i] = get_node_page(sbi, nid[i]); 633 if (IS_ERR(pages[i])) { 634 depth = i + 1; 635 err = PTR_ERR(pages[i]); 636 goto fail; 637 } 638 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 639 } 640 641 /* free direct nodes linked to a partial indirect node */ 642 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { 643 child_nid = get_nid(pages[idx], i, false); 644 if (!child_nid) 645 continue; 646 dn->nid = child_nid; 647 err = truncate_dnode(dn); 648 if (err < 0) 649 goto fail; 650 set_nid(pages[idx], i, 0, false); 651 } 652 653 if (offset[depth - 1] == 0) { 654 dn->node_page = pages[idx]; 655 dn->nid = nid[idx]; 656 truncate_node(dn); 657 } else { 658 f2fs_put_page(pages[idx], 1); 659 } 660 offset[idx]++; 661 offset[depth - 1] = 0; 662 fail: 663 for (i = depth - 3; i >= 0; i--) 664 f2fs_put_page(pages[i], 1); 665 666 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 667 668 return err; 669 } 670 671 /* 672 * All the block addresses of data and nodes should be nullified. 673 */ 674 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 675 { 676 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 677 int err = 0, cont = 1; 678 int level, offset[4], noffset[4]; 679 unsigned int nofs = 0; 680 struct f2fs_node *rn; 681 struct dnode_of_data dn; 682 struct page *page; 683 684 trace_f2fs_truncate_inode_blocks_enter(inode, from); 685 686 level = get_node_path(from, offset, noffset); 687 688 page = get_node_page(sbi, inode->i_ino); 689 if (IS_ERR(page)) { 690 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 691 return PTR_ERR(page); 692 } 693 694 set_new_dnode(&dn, inode, page, NULL, 0); 695 unlock_page(page); 696 697 rn = page_address(page); 698 switch (level) { 699 case 0: 700 case 1: 701 nofs = noffset[1]; 702 break; 703 case 2: 704 nofs = noffset[1]; 705 if (!offset[level - 1]) 706 goto skip_partial; 707 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 708 if (err < 0 && err != -ENOENT) 709 goto fail; 710 nofs += 1 + NIDS_PER_BLOCK; 711 break; 712 case 3: 713 nofs = 5 + 2 * NIDS_PER_BLOCK; 714 if (!offset[level - 1]) 715 goto skip_partial; 716 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 717 if (err < 0 && err != -ENOENT) 718 goto fail; 719 break; 720 default: 721 BUG(); 722 } 723 724 skip_partial: 725 while (cont) { 726 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); 727 switch (offset[0]) { 728 case NODE_DIR1_BLOCK: 729 case NODE_DIR2_BLOCK: 730 err = truncate_dnode(&dn); 731 break; 732 733 case NODE_IND1_BLOCK: 734 case NODE_IND2_BLOCK: 735 err = truncate_nodes(&dn, nofs, offset[1], 2); 736 break; 737 738 case NODE_DIND_BLOCK: 739 err = truncate_nodes(&dn, nofs, offset[1], 3); 740 cont = 0; 741 break; 742 743 default: 744 BUG(); 745 } 746 if (err < 0 && err != -ENOENT) 747 goto fail; 748 if (offset[1] == 0 && 749 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { 750 lock_page(page); 751 wait_on_page_writeback(page); 752 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 753 set_page_dirty(page); 754 unlock_page(page); 755 } 756 offset[1] = 0; 757 offset[0]++; 758 nofs += err; 759 } 760 fail: 761 f2fs_put_page(page, 0); 762 trace_f2fs_truncate_inode_blocks_exit(inode, err); 763 return err > 0 ? 0 : err; 764 } 765 766 /* 767 * Caller should grab and release a mutex by calling mutex_lock_op() and 768 * mutex_unlock_op(). 769 */ 770 int remove_inode_page(struct inode *inode) 771 { 772 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 773 struct page *page; 774 nid_t ino = inode->i_ino; 775 struct dnode_of_data dn; 776 777 page = get_node_page(sbi, ino); 778 if (IS_ERR(page)) 779 return PTR_ERR(page); 780 781 if (F2FS_I(inode)->i_xattr_nid) { 782 nid_t nid = F2FS_I(inode)->i_xattr_nid; 783 struct page *npage = get_node_page(sbi, nid); 784 785 if (IS_ERR(npage)) 786 return PTR_ERR(npage); 787 788 F2FS_I(inode)->i_xattr_nid = 0; 789 set_new_dnode(&dn, inode, page, npage, nid); 790 dn.inode_page_locked = 1; 791 truncate_node(&dn); 792 } 793 794 /* 0 is possible, after f2fs_new_inode() is failed */ 795 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1); 796 set_new_dnode(&dn, inode, page, page, ino); 797 truncate_node(&dn); 798 return 0; 799 } 800 801 int new_inode_page(struct inode *inode, const struct qstr *name) 802 { 803 struct page *page; 804 struct dnode_of_data dn; 805 806 /* allocate inode page for new inode */ 807 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 808 page = new_node_page(&dn, 0); 809 init_dent_inode(name, page); 810 if (IS_ERR(page)) 811 return PTR_ERR(page); 812 f2fs_put_page(page, 1); 813 return 0; 814 } 815 816 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs) 817 { 818 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 819 struct address_space *mapping = sbi->node_inode->i_mapping; 820 struct node_info old_ni, new_ni; 821 struct page *page; 822 int err; 823 824 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) 825 return ERR_PTR(-EPERM); 826 827 page = grab_cache_page(mapping, dn->nid); 828 if (!page) 829 return ERR_PTR(-ENOMEM); 830 831 get_node_info(sbi, dn->nid, &old_ni); 832 833 SetPageUptodate(page); 834 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 835 836 /* Reinitialize old_ni with new node page */ 837 BUG_ON(old_ni.blk_addr != NULL_ADDR); 838 new_ni = old_ni; 839 new_ni.ino = dn->inode->i_ino; 840 841 if (!inc_valid_node_count(sbi, dn->inode, 1)) { 842 err = -ENOSPC; 843 goto fail; 844 } 845 set_node_addr(sbi, &new_ni, NEW_ADDR); 846 set_cold_node(dn->inode, page); 847 848 dn->node_page = page; 849 sync_inode_page(dn); 850 set_page_dirty(page); 851 if (ofs == 0) 852 inc_valid_inode_count(sbi); 853 854 return page; 855 856 fail: 857 clear_node_page_dirty(page); 858 f2fs_put_page(page, 1); 859 return ERR_PTR(err); 860 } 861 862 /* 863 * Caller should do after getting the following values. 864 * 0: f2fs_put_page(page, 0) 865 * LOCKED_PAGE: f2fs_put_page(page, 1) 866 * error: nothing 867 */ 868 static int read_node_page(struct page *page, int type) 869 { 870 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 871 struct node_info ni; 872 873 get_node_info(sbi, page->index, &ni); 874 875 if (ni.blk_addr == NULL_ADDR) { 876 f2fs_put_page(page, 1); 877 return -ENOENT; 878 } 879 880 if (PageUptodate(page)) 881 return LOCKED_PAGE; 882 883 return f2fs_readpage(sbi, page, ni.blk_addr, type); 884 } 885 886 /* 887 * Readahead a node page 888 */ 889 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 890 { 891 struct address_space *mapping = sbi->node_inode->i_mapping; 892 struct page *apage; 893 int err; 894 895 apage = find_get_page(mapping, nid); 896 if (apage && PageUptodate(apage)) { 897 f2fs_put_page(apage, 0); 898 return; 899 } 900 f2fs_put_page(apage, 0); 901 902 apage = grab_cache_page(mapping, nid); 903 if (!apage) 904 return; 905 906 err = read_node_page(apage, READA); 907 if (err == 0) 908 f2fs_put_page(apage, 0); 909 else if (err == LOCKED_PAGE) 910 f2fs_put_page(apage, 1); 911 return; 912 } 913 914 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 915 { 916 struct address_space *mapping = sbi->node_inode->i_mapping; 917 struct page *page; 918 int err; 919 920 page = grab_cache_page(mapping, nid); 921 if (!page) 922 return ERR_PTR(-ENOMEM); 923 924 err = read_node_page(page, READ_SYNC); 925 if (err < 0) 926 return ERR_PTR(err); 927 else if (err == LOCKED_PAGE) 928 goto got_it; 929 930 lock_page(page); 931 if (!PageUptodate(page)) { 932 f2fs_put_page(page, 1); 933 return ERR_PTR(-EIO); 934 } 935 got_it: 936 BUG_ON(nid != nid_of_node(page)); 937 mark_page_accessed(page); 938 return page; 939 } 940 941 /* 942 * Return a locked page for the desired node page. 943 * And, readahead MAX_RA_NODE number of node pages. 944 */ 945 struct page *get_node_page_ra(struct page *parent, int start) 946 { 947 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); 948 struct address_space *mapping = sbi->node_inode->i_mapping; 949 struct blk_plug plug; 950 struct page *page; 951 int err, i, end; 952 nid_t nid; 953 954 /* First, try getting the desired direct node. */ 955 nid = get_nid(parent, start, false); 956 if (!nid) 957 return ERR_PTR(-ENOENT); 958 959 page = grab_cache_page(mapping, nid); 960 if (!page) 961 return ERR_PTR(-ENOMEM); 962 963 err = read_node_page(page, READ_SYNC); 964 if (err < 0) 965 return ERR_PTR(err); 966 else if (err == LOCKED_PAGE) 967 goto page_hit; 968 969 blk_start_plug(&plug); 970 971 /* Then, try readahead for siblings of the desired node */ 972 end = start + MAX_RA_NODE; 973 end = min(end, NIDS_PER_BLOCK); 974 for (i = start + 1; i < end; i++) { 975 nid = get_nid(parent, i, false); 976 if (!nid) 977 continue; 978 ra_node_page(sbi, nid); 979 } 980 981 blk_finish_plug(&plug); 982 983 lock_page(page); 984 985 page_hit: 986 if (!PageUptodate(page)) { 987 f2fs_put_page(page, 1); 988 return ERR_PTR(-EIO); 989 } 990 mark_page_accessed(page); 991 return page; 992 } 993 994 void sync_inode_page(struct dnode_of_data *dn) 995 { 996 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 997 update_inode(dn->inode, dn->node_page); 998 } else if (dn->inode_page) { 999 if (!dn->inode_page_locked) 1000 lock_page(dn->inode_page); 1001 update_inode(dn->inode, dn->inode_page); 1002 if (!dn->inode_page_locked) 1003 unlock_page(dn->inode_page); 1004 } else { 1005 update_inode_page(dn->inode); 1006 } 1007 } 1008 1009 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1010 struct writeback_control *wbc) 1011 { 1012 struct address_space *mapping = sbi->node_inode->i_mapping; 1013 pgoff_t index, end; 1014 struct pagevec pvec; 1015 int step = ino ? 2 : 0; 1016 int nwritten = 0, wrote = 0; 1017 1018 pagevec_init(&pvec, 0); 1019 1020 next_step: 1021 index = 0; 1022 end = LONG_MAX; 1023 1024 while (index <= end) { 1025 int i, nr_pages; 1026 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1027 PAGECACHE_TAG_DIRTY, 1028 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1029 if (nr_pages == 0) 1030 break; 1031 1032 for (i = 0; i < nr_pages; i++) { 1033 struct page *page = pvec.pages[i]; 1034 1035 /* 1036 * flushing sequence with step: 1037 * 0. indirect nodes 1038 * 1. dentry dnodes 1039 * 2. file dnodes 1040 */ 1041 if (step == 0 && IS_DNODE(page)) 1042 continue; 1043 if (step == 1 && (!IS_DNODE(page) || 1044 is_cold_node(page))) 1045 continue; 1046 if (step == 2 && (!IS_DNODE(page) || 1047 !is_cold_node(page))) 1048 continue; 1049 1050 /* 1051 * If an fsync mode, 1052 * we should not skip writing node pages. 1053 */ 1054 if (ino && ino_of_node(page) == ino) 1055 lock_page(page); 1056 else if (!trylock_page(page)) 1057 continue; 1058 1059 if (unlikely(page->mapping != mapping)) { 1060 continue_unlock: 1061 unlock_page(page); 1062 continue; 1063 } 1064 if (ino && ino_of_node(page) != ino) 1065 goto continue_unlock; 1066 1067 if (!PageDirty(page)) { 1068 /* someone wrote it for us */ 1069 goto continue_unlock; 1070 } 1071 1072 if (!clear_page_dirty_for_io(page)) 1073 goto continue_unlock; 1074 1075 /* called by fsync() */ 1076 if (ino && IS_DNODE(page)) { 1077 int mark = !is_checkpointed_node(sbi, ino); 1078 set_fsync_mark(page, 1); 1079 if (IS_INODE(page)) 1080 set_dentry_mark(page, mark); 1081 nwritten++; 1082 } else { 1083 set_fsync_mark(page, 0); 1084 set_dentry_mark(page, 0); 1085 } 1086 mapping->a_ops->writepage(page, wbc); 1087 wrote++; 1088 1089 if (--wbc->nr_to_write == 0) 1090 break; 1091 } 1092 pagevec_release(&pvec); 1093 cond_resched(); 1094 1095 if (wbc->nr_to_write == 0) { 1096 step = 2; 1097 break; 1098 } 1099 } 1100 1101 if (step < 2) { 1102 step++; 1103 goto next_step; 1104 } 1105 1106 if (wrote) 1107 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); 1108 1109 return nwritten; 1110 } 1111 1112 static int f2fs_write_node_page(struct page *page, 1113 struct writeback_control *wbc) 1114 { 1115 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 1116 nid_t nid; 1117 block_t new_addr; 1118 struct node_info ni; 1119 1120 wait_on_page_writeback(page); 1121 1122 /* get old block addr of this node page */ 1123 nid = nid_of_node(page); 1124 BUG_ON(page->index != nid); 1125 1126 get_node_info(sbi, nid, &ni); 1127 1128 /* This page is already truncated */ 1129 if (ni.blk_addr == NULL_ADDR) { 1130 dec_page_count(sbi, F2FS_DIRTY_NODES); 1131 unlock_page(page); 1132 return 0; 1133 } 1134 1135 if (wbc->for_reclaim) { 1136 dec_page_count(sbi, F2FS_DIRTY_NODES); 1137 wbc->pages_skipped++; 1138 set_page_dirty(page); 1139 return AOP_WRITEPAGE_ACTIVATE; 1140 } 1141 1142 mutex_lock(&sbi->node_write); 1143 set_page_writeback(page); 1144 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); 1145 set_node_addr(sbi, &ni, new_addr); 1146 dec_page_count(sbi, F2FS_DIRTY_NODES); 1147 mutex_unlock(&sbi->node_write); 1148 unlock_page(page); 1149 return 0; 1150 } 1151 1152 /* 1153 * It is very important to gather dirty pages and write at once, so that we can 1154 * submit a big bio without interfering other data writes. 1155 * Be default, 512 pages (2MB), a segment size, is quite reasonable. 1156 */ 1157 #define COLLECT_DIRTY_NODES 512 1158 static int f2fs_write_node_pages(struct address_space *mapping, 1159 struct writeback_control *wbc) 1160 { 1161 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1162 struct block_device *bdev = sbi->sb->s_bdev; 1163 long nr_to_write = wbc->nr_to_write; 1164 1165 /* First check balancing cached NAT entries */ 1166 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { 1167 f2fs_sync_fs(sbi->sb, true); 1168 return 0; 1169 } 1170 1171 /* collect a number of dirty node pages and write together */ 1172 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES) 1173 return 0; 1174 1175 /* if mounting is failed, skip writing node pages */ 1176 wbc->nr_to_write = bio_get_nr_vecs(bdev); 1177 sync_node_pages(sbi, 0, wbc); 1178 wbc->nr_to_write = nr_to_write - 1179 (bio_get_nr_vecs(bdev) - wbc->nr_to_write); 1180 return 0; 1181 } 1182 1183 static int f2fs_set_node_page_dirty(struct page *page) 1184 { 1185 struct address_space *mapping = page->mapping; 1186 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1187 1188 SetPageUptodate(page); 1189 if (!PageDirty(page)) { 1190 __set_page_dirty_nobuffers(page); 1191 inc_page_count(sbi, F2FS_DIRTY_NODES); 1192 SetPagePrivate(page); 1193 return 1; 1194 } 1195 return 0; 1196 } 1197 1198 static void f2fs_invalidate_node_page(struct page *page, unsigned long offset) 1199 { 1200 struct inode *inode = page->mapping->host; 1201 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 1202 if (PageDirty(page)) 1203 dec_page_count(sbi, F2FS_DIRTY_NODES); 1204 ClearPagePrivate(page); 1205 } 1206 1207 static int f2fs_release_node_page(struct page *page, gfp_t wait) 1208 { 1209 ClearPagePrivate(page); 1210 return 1; 1211 } 1212 1213 /* 1214 * Structure of the f2fs node operations 1215 */ 1216 const struct address_space_operations f2fs_node_aops = { 1217 .writepage = f2fs_write_node_page, 1218 .writepages = f2fs_write_node_pages, 1219 .set_page_dirty = f2fs_set_node_page_dirty, 1220 .invalidatepage = f2fs_invalidate_node_page, 1221 .releasepage = f2fs_release_node_page, 1222 }; 1223 1224 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) 1225 { 1226 struct list_head *this; 1227 struct free_nid *i; 1228 list_for_each(this, head) { 1229 i = list_entry(this, struct free_nid, list); 1230 if (i->nid == n) 1231 return i; 1232 } 1233 return NULL; 1234 } 1235 1236 static void __del_from_free_nid_list(struct free_nid *i) 1237 { 1238 list_del(&i->list); 1239 kmem_cache_free(free_nid_slab, i); 1240 } 1241 1242 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1243 { 1244 struct free_nid *i; 1245 1246 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) 1247 return 0; 1248 1249 /* 0 nid should not be used */ 1250 if (nid == 0) 1251 return 0; 1252 retry: 1253 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1254 if (!i) { 1255 cond_resched(); 1256 goto retry; 1257 } 1258 i->nid = nid; 1259 i->state = NID_NEW; 1260 1261 spin_lock(&nm_i->free_nid_list_lock); 1262 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { 1263 spin_unlock(&nm_i->free_nid_list_lock); 1264 kmem_cache_free(free_nid_slab, i); 1265 return 0; 1266 } 1267 list_add_tail(&i->list, &nm_i->free_nid_list); 1268 nm_i->fcnt++; 1269 spin_unlock(&nm_i->free_nid_list_lock); 1270 return 1; 1271 } 1272 1273 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1274 { 1275 struct free_nid *i; 1276 spin_lock(&nm_i->free_nid_list_lock); 1277 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1278 if (i && i->state == NID_NEW) { 1279 __del_from_free_nid_list(i); 1280 nm_i->fcnt--; 1281 } 1282 spin_unlock(&nm_i->free_nid_list_lock); 1283 } 1284 1285 static int scan_nat_page(struct f2fs_nm_info *nm_i, 1286 struct page *nat_page, nid_t start_nid) 1287 { 1288 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1289 block_t blk_addr; 1290 int fcnt = 0; 1291 int i; 1292 1293 i = start_nid % NAT_ENTRY_PER_BLOCK; 1294 1295 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1296 if (start_nid >= nm_i->max_nid) 1297 break; 1298 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1299 BUG_ON(blk_addr == NEW_ADDR); 1300 if (blk_addr == NULL_ADDR) 1301 fcnt += add_free_nid(nm_i, start_nid); 1302 } 1303 return fcnt; 1304 } 1305 1306 static void build_free_nids(struct f2fs_sb_info *sbi) 1307 { 1308 struct free_nid *fnid, *next_fnid; 1309 struct f2fs_nm_info *nm_i = NM_I(sbi); 1310 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1311 struct f2fs_summary_block *sum = curseg->sum_blk; 1312 nid_t nid = 0; 1313 bool is_cycled = false; 1314 int fcnt = 0; 1315 int i; 1316 1317 nid = nm_i->next_scan_nid; 1318 nm_i->init_scan_nid = nid; 1319 1320 ra_nat_pages(sbi, nid); 1321 1322 while (1) { 1323 struct page *page = get_current_nat_page(sbi, nid); 1324 1325 fcnt += scan_nat_page(nm_i, page, nid); 1326 f2fs_put_page(page, 1); 1327 1328 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1329 1330 if (nid >= nm_i->max_nid) { 1331 nid = 0; 1332 is_cycled = true; 1333 } 1334 if (fcnt > MAX_FREE_NIDS) 1335 break; 1336 if (is_cycled && nm_i->init_scan_nid <= nid) 1337 break; 1338 } 1339 1340 /* go to the next nat page in order to reuse free nids first */ 1341 nm_i->next_scan_nid = nm_i->init_scan_nid + NAT_ENTRY_PER_BLOCK; 1342 1343 /* find free nids from current sum_pages */ 1344 mutex_lock(&curseg->curseg_mutex); 1345 for (i = 0; i < nats_in_cursum(sum); i++) { 1346 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); 1347 nid = le32_to_cpu(nid_in_journal(sum, i)); 1348 if (addr == NULL_ADDR) 1349 add_free_nid(nm_i, nid); 1350 else 1351 remove_free_nid(nm_i, nid); 1352 } 1353 mutex_unlock(&curseg->curseg_mutex); 1354 1355 /* remove the free nids from current allocated nids */ 1356 list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) { 1357 struct nat_entry *ne; 1358 1359 read_lock(&nm_i->nat_tree_lock); 1360 ne = __lookup_nat_cache(nm_i, fnid->nid); 1361 if (ne && nat_get_blkaddr(ne) != NULL_ADDR) 1362 remove_free_nid(nm_i, fnid->nid); 1363 read_unlock(&nm_i->nat_tree_lock); 1364 } 1365 } 1366 1367 /* 1368 * If this function returns success, caller can obtain a new nid 1369 * from second parameter of this function. 1370 * The returned nid could be used ino as well as nid when inode is created. 1371 */ 1372 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1373 { 1374 struct f2fs_nm_info *nm_i = NM_I(sbi); 1375 struct free_nid *i = NULL; 1376 struct list_head *this; 1377 retry: 1378 mutex_lock(&nm_i->build_lock); 1379 if (!nm_i->fcnt) { 1380 /* scan NAT in order to build free nid list */ 1381 build_free_nids(sbi); 1382 if (!nm_i->fcnt) { 1383 mutex_unlock(&nm_i->build_lock); 1384 return false; 1385 } 1386 } 1387 mutex_unlock(&nm_i->build_lock); 1388 1389 /* 1390 * We check fcnt again since previous check is racy as 1391 * we didn't hold free_nid_list_lock. So other thread 1392 * could consume all of free nids. 1393 */ 1394 spin_lock(&nm_i->free_nid_list_lock); 1395 if (!nm_i->fcnt) { 1396 spin_unlock(&nm_i->free_nid_list_lock); 1397 goto retry; 1398 } 1399 1400 BUG_ON(list_empty(&nm_i->free_nid_list)); 1401 list_for_each(this, &nm_i->free_nid_list) { 1402 i = list_entry(this, struct free_nid, list); 1403 if (i->state == NID_NEW) 1404 break; 1405 } 1406 1407 BUG_ON(i->state != NID_NEW); 1408 *nid = i->nid; 1409 i->state = NID_ALLOC; 1410 nm_i->fcnt--; 1411 spin_unlock(&nm_i->free_nid_list_lock); 1412 return true; 1413 } 1414 1415 /* 1416 * alloc_nid() should be called prior to this function. 1417 */ 1418 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1419 { 1420 struct f2fs_nm_info *nm_i = NM_I(sbi); 1421 struct free_nid *i; 1422 1423 spin_lock(&nm_i->free_nid_list_lock); 1424 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1425 BUG_ON(!i || i->state != NID_ALLOC); 1426 __del_from_free_nid_list(i); 1427 spin_unlock(&nm_i->free_nid_list_lock); 1428 } 1429 1430 /* 1431 * alloc_nid() should be called prior to this function. 1432 */ 1433 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1434 { 1435 struct f2fs_nm_info *nm_i = NM_I(sbi); 1436 struct free_nid *i; 1437 1438 spin_lock(&nm_i->free_nid_list_lock); 1439 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1440 BUG_ON(!i || i->state != NID_ALLOC); 1441 i->state = NID_NEW; 1442 nm_i->fcnt++; 1443 spin_unlock(&nm_i->free_nid_list_lock); 1444 } 1445 1446 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, 1447 struct f2fs_summary *sum, struct node_info *ni, 1448 block_t new_blkaddr) 1449 { 1450 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); 1451 set_node_addr(sbi, ni, new_blkaddr); 1452 clear_node_page_dirty(page); 1453 } 1454 1455 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1456 { 1457 struct address_space *mapping = sbi->node_inode->i_mapping; 1458 struct f2fs_node *src, *dst; 1459 nid_t ino = ino_of_node(page); 1460 struct node_info old_ni, new_ni; 1461 struct page *ipage; 1462 1463 ipage = grab_cache_page(mapping, ino); 1464 if (!ipage) 1465 return -ENOMEM; 1466 1467 /* Should not use this inode from free nid list */ 1468 remove_free_nid(NM_I(sbi), ino); 1469 1470 get_node_info(sbi, ino, &old_ni); 1471 SetPageUptodate(ipage); 1472 fill_node_footer(ipage, ino, ino, 0, true); 1473 1474 src = (struct f2fs_node *)page_address(page); 1475 dst = (struct f2fs_node *)page_address(ipage); 1476 1477 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); 1478 dst->i.i_size = 0; 1479 dst->i.i_blocks = cpu_to_le64(1); 1480 dst->i.i_links = cpu_to_le32(1); 1481 dst->i.i_xattr_nid = 0; 1482 1483 new_ni = old_ni; 1484 new_ni.ino = ino; 1485 1486 set_node_addr(sbi, &new_ni, NEW_ADDR); 1487 inc_valid_inode_count(sbi); 1488 1489 f2fs_put_page(ipage, 1); 1490 return 0; 1491 } 1492 1493 int restore_node_summary(struct f2fs_sb_info *sbi, 1494 unsigned int segno, struct f2fs_summary_block *sum) 1495 { 1496 struct f2fs_node *rn; 1497 struct f2fs_summary *sum_entry; 1498 struct page *page; 1499 block_t addr; 1500 int i, last_offset; 1501 1502 /* alloc temporal page for read node */ 1503 page = alloc_page(GFP_NOFS | __GFP_ZERO); 1504 if (IS_ERR(page)) 1505 return PTR_ERR(page); 1506 lock_page(page); 1507 1508 /* scan the node segment */ 1509 last_offset = sbi->blocks_per_seg; 1510 addr = START_BLOCK(sbi, segno); 1511 sum_entry = &sum->entries[0]; 1512 1513 for (i = 0; i < last_offset; i++, sum_entry++) { 1514 /* 1515 * In order to read next node page, 1516 * we must clear PageUptodate flag. 1517 */ 1518 ClearPageUptodate(page); 1519 1520 if (f2fs_readpage(sbi, page, addr, READ_SYNC)) 1521 goto out; 1522 1523 lock_page(page); 1524 rn = (struct f2fs_node *)page_address(page); 1525 sum_entry->nid = rn->footer.nid; 1526 sum_entry->version = 0; 1527 sum_entry->ofs_in_node = 0; 1528 addr++; 1529 } 1530 unlock_page(page); 1531 out: 1532 __free_pages(page, 0); 1533 return 0; 1534 } 1535 1536 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) 1537 { 1538 struct f2fs_nm_info *nm_i = NM_I(sbi); 1539 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1540 struct f2fs_summary_block *sum = curseg->sum_blk; 1541 int i; 1542 1543 mutex_lock(&curseg->curseg_mutex); 1544 1545 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { 1546 mutex_unlock(&curseg->curseg_mutex); 1547 return false; 1548 } 1549 1550 for (i = 0; i < nats_in_cursum(sum); i++) { 1551 struct nat_entry *ne; 1552 struct f2fs_nat_entry raw_ne; 1553 nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); 1554 1555 raw_ne = nat_in_journal(sum, i); 1556 retry: 1557 write_lock(&nm_i->nat_tree_lock); 1558 ne = __lookup_nat_cache(nm_i, nid); 1559 if (ne) { 1560 __set_nat_cache_dirty(nm_i, ne); 1561 write_unlock(&nm_i->nat_tree_lock); 1562 continue; 1563 } 1564 ne = grab_nat_entry(nm_i, nid); 1565 if (!ne) { 1566 write_unlock(&nm_i->nat_tree_lock); 1567 goto retry; 1568 } 1569 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); 1570 nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); 1571 nat_set_version(ne, raw_ne.version); 1572 __set_nat_cache_dirty(nm_i, ne); 1573 write_unlock(&nm_i->nat_tree_lock); 1574 } 1575 update_nats_in_cursum(sum, -i); 1576 mutex_unlock(&curseg->curseg_mutex); 1577 return true; 1578 } 1579 1580 /* 1581 * This function is called during the checkpointing process. 1582 */ 1583 void flush_nat_entries(struct f2fs_sb_info *sbi) 1584 { 1585 struct f2fs_nm_info *nm_i = NM_I(sbi); 1586 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1587 struct f2fs_summary_block *sum = curseg->sum_blk; 1588 struct list_head *cur, *n; 1589 struct page *page = NULL; 1590 struct f2fs_nat_block *nat_blk = NULL; 1591 nid_t start_nid = 0, end_nid = 0; 1592 bool flushed; 1593 1594 flushed = flush_nats_in_journal(sbi); 1595 1596 if (!flushed) 1597 mutex_lock(&curseg->curseg_mutex); 1598 1599 /* 1) flush dirty nat caches */ 1600 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { 1601 struct nat_entry *ne; 1602 nid_t nid; 1603 struct f2fs_nat_entry raw_ne; 1604 int offset = -1; 1605 block_t new_blkaddr; 1606 1607 ne = list_entry(cur, struct nat_entry, list); 1608 nid = nat_get_nid(ne); 1609 1610 if (nat_get_blkaddr(ne) == NEW_ADDR) 1611 continue; 1612 if (flushed) 1613 goto to_nat_page; 1614 1615 /* if there is room for nat enries in curseg->sumpage */ 1616 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); 1617 if (offset >= 0) { 1618 raw_ne = nat_in_journal(sum, offset); 1619 goto flush_now; 1620 } 1621 to_nat_page: 1622 if (!page || (start_nid > nid || nid > end_nid)) { 1623 if (page) { 1624 f2fs_put_page(page, 1); 1625 page = NULL; 1626 } 1627 start_nid = START_NID(nid); 1628 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; 1629 1630 /* 1631 * get nat block with dirty flag, increased reference 1632 * count, mapped and lock 1633 */ 1634 page = get_next_nat_page(sbi, start_nid); 1635 nat_blk = page_address(page); 1636 } 1637 1638 BUG_ON(!nat_blk); 1639 raw_ne = nat_blk->entries[nid - start_nid]; 1640 flush_now: 1641 new_blkaddr = nat_get_blkaddr(ne); 1642 1643 raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); 1644 raw_ne.block_addr = cpu_to_le32(new_blkaddr); 1645 raw_ne.version = nat_get_version(ne); 1646 1647 if (offset < 0) { 1648 nat_blk->entries[nid - start_nid] = raw_ne; 1649 } else { 1650 nat_in_journal(sum, offset) = raw_ne; 1651 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1652 } 1653 1654 if (nat_get_blkaddr(ne) == NULL_ADDR && 1655 !add_free_nid(NM_I(sbi), nid)) { 1656 write_lock(&nm_i->nat_tree_lock); 1657 __del_from_nat_cache(nm_i, ne); 1658 write_unlock(&nm_i->nat_tree_lock); 1659 } else { 1660 write_lock(&nm_i->nat_tree_lock); 1661 __clear_nat_cache_dirty(nm_i, ne); 1662 ne->checkpointed = true; 1663 write_unlock(&nm_i->nat_tree_lock); 1664 } 1665 } 1666 if (!flushed) 1667 mutex_unlock(&curseg->curseg_mutex); 1668 f2fs_put_page(page, 1); 1669 1670 /* 2) shrink nat caches if necessary */ 1671 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); 1672 } 1673 1674 static int init_node_manager(struct f2fs_sb_info *sbi) 1675 { 1676 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1677 struct f2fs_nm_info *nm_i = NM_I(sbi); 1678 unsigned char *version_bitmap; 1679 unsigned int nat_segs, nat_blocks; 1680 1681 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 1682 1683 /* segment_count_nat includes pair segment so divide to 2. */ 1684 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 1685 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 1686 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 1687 nm_i->fcnt = 0; 1688 nm_i->nat_cnt = 0; 1689 1690 INIT_LIST_HEAD(&nm_i->free_nid_list); 1691 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); 1692 INIT_LIST_HEAD(&nm_i->nat_entries); 1693 INIT_LIST_HEAD(&nm_i->dirty_nat_entries); 1694 1695 mutex_init(&nm_i->build_lock); 1696 spin_lock_init(&nm_i->free_nid_list_lock); 1697 rwlock_init(&nm_i->nat_tree_lock); 1698 1699 nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1700 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1701 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 1702 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 1703 if (!version_bitmap) 1704 return -EFAULT; 1705 1706 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 1707 GFP_KERNEL); 1708 if (!nm_i->nat_bitmap) 1709 return -ENOMEM; 1710 return 0; 1711 } 1712 1713 int build_node_manager(struct f2fs_sb_info *sbi) 1714 { 1715 int err; 1716 1717 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 1718 if (!sbi->nm_info) 1719 return -ENOMEM; 1720 1721 err = init_node_manager(sbi); 1722 if (err) 1723 return err; 1724 1725 build_free_nids(sbi); 1726 return 0; 1727 } 1728 1729 void destroy_node_manager(struct f2fs_sb_info *sbi) 1730 { 1731 struct f2fs_nm_info *nm_i = NM_I(sbi); 1732 struct free_nid *i, *next_i; 1733 struct nat_entry *natvec[NATVEC_SIZE]; 1734 nid_t nid = 0; 1735 unsigned int found; 1736 1737 if (!nm_i) 1738 return; 1739 1740 /* destroy free nid list */ 1741 spin_lock(&nm_i->free_nid_list_lock); 1742 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 1743 BUG_ON(i->state == NID_ALLOC); 1744 __del_from_free_nid_list(i); 1745 nm_i->fcnt--; 1746 } 1747 BUG_ON(nm_i->fcnt); 1748 spin_unlock(&nm_i->free_nid_list_lock); 1749 1750 /* destroy nat cache */ 1751 write_lock(&nm_i->nat_tree_lock); 1752 while ((found = __gang_lookup_nat_cache(nm_i, 1753 nid, NATVEC_SIZE, natvec))) { 1754 unsigned idx; 1755 for (idx = 0; idx < found; idx++) { 1756 struct nat_entry *e = natvec[idx]; 1757 nid = nat_get_nid(e) + 1; 1758 __del_from_nat_cache(nm_i, e); 1759 } 1760 } 1761 BUG_ON(nm_i->nat_cnt); 1762 write_unlock(&nm_i->nat_tree_lock); 1763 1764 kfree(nm_i->nat_bitmap); 1765 sbi->nm_info = NULL; 1766 kfree(nm_i); 1767 } 1768 1769 int __init create_node_manager_caches(void) 1770 { 1771 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 1772 sizeof(struct nat_entry), NULL); 1773 if (!nat_entry_slab) 1774 return -ENOMEM; 1775 1776 free_nid_slab = f2fs_kmem_cache_create("free_nid", 1777 sizeof(struct free_nid), NULL); 1778 if (!free_nid_slab) { 1779 kmem_cache_destroy(nat_entry_slab); 1780 return -ENOMEM; 1781 } 1782 return 0; 1783 } 1784 1785 void destroy_node_manager_caches(void) 1786 { 1787 kmem_cache_destroy(free_nid_slab); 1788 kmem_cache_destroy(nat_entry_slab); 1789 } 1790