1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 49 PAGE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 } else if (type == DIRTY_DENTS) { 56 if (sbi->sb->s_bdi->wb.dirty_exceeded) 57 return false; 58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 60 } else if (type == INO_ENTRIES) { 61 int i; 62 63 for (i = 0; i <= UPDATE_INO; i++) 64 mem_size += (sbi->im[i].ino_num * 65 sizeof(struct ino_entry)) >> PAGE_SHIFT; 66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 67 } else if (type == EXTENT_CACHE) { 68 mem_size = (atomic_read(&sbi->total_ext_tree) * 69 sizeof(struct extent_tree) + 70 atomic_read(&sbi->total_ext_node) * 71 sizeof(struct extent_node)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 73 } else { 74 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 75 return true; 76 } 77 return res; 78 } 79 80 static void clear_node_page_dirty(struct page *page) 81 { 82 struct address_space *mapping = page->mapping; 83 unsigned int long flags; 84 85 if (PageDirty(page)) { 86 spin_lock_irqsave(&mapping->tree_lock, flags); 87 radix_tree_tag_clear(&mapping->page_tree, 88 page_index(page), 89 PAGECACHE_TAG_DIRTY); 90 spin_unlock_irqrestore(&mapping->tree_lock, flags); 91 92 clear_page_dirty_for_io(page); 93 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 94 } 95 ClearPageUptodate(page); 96 } 97 98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 99 { 100 pgoff_t index = current_nat_addr(sbi, nid); 101 return get_meta_page(sbi, index); 102 } 103 104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 105 { 106 struct page *src_page; 107 struct page *dst_page; 108 pgoff_t src_off; 109 pgoff_t dst_off; 110 void *src_addr; 111 void *dst_addr; 112 struct f2fs_nm_info *nm_i = NM_I(sbi); 113 114 src_off = current_nat_addr(sbi, nid); 115 dst_off = next_nat_addr(sbi, src_off); 116 117 /* get current nat block page with lock */ 118 src_page = get_meta_page(sbi, src_off); 119 dst_page = grab_meta_page(sbi, dst_off); 120 f2fs_bug_on(sbi, PageDirty(src_page)); 121 122 src_addr = page_address(src_page); 123 dst_addr = page_address(dst_page); 124 memcpy(dst_addr, src_addr, PAGE_SIZE); 125 set_page_dirty(dst_page); 126 f2fs_put_page(src_page, 1); 127 128 set_to_next_nat(nm_i, nid); 129 130 return dst_page; 131 } 132 133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 134 { 135 return radix_tree_lookup(&nm_i->nat_root, n); 136 } 137 138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 139 nid_t start, unsigned int nr, struct nat_entry **ep) 140 { 141 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 142 } 143 144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 145 { 146 list_del(&e->list); 147 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 148 nm_i->nat_cnt--; 149 kmem_cache_free(nat_entry_slab, e); 150 } 151 152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 153 struct nat_entry *ne) 154 { 155 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 156 struct nat_entry_set *head; 157 158 if (get_nat_flag(ne, IS_DIRTY)) 159 return; 160 161 head = radix_tree_lookup(&nm_i->nat_set_root, set); 162 if (!head) { 163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 164 165 INIT_LIST_HEAD(&head->entry_list); 166 INIT_LIST_HEAD(&head->set_list); 167 head->set = set; 168 head->entry_cnt = 0; 169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 170 } 171 list_move_tail(&ne->list, &head->entry_list); 172 nm_i->dirty_nat_cnt++; 173 head->entry_cnt++; 174 set_nat_flag(ne, IS_DIRTY, true); 175 } 176 177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 178 struct nat_entry *ne) 179 { 180 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 181 struct nat_entry_set *head; 182 183 head = radix_tree_lookup(&nm_i->nat_set_root, set); 184 if (head) { 185 list_move_tail(&ne->list, &nm_i->nat_entries); 186 set_nat_flag(ne, IS_DIRTY, false); 187 head->entry_cnt--; 188 nm_i->dirty_nat_cnt--; 189 } 190 } 191 192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 193 nid_t start, unsigned int nr, struct nat_entry_set **ep) 194 { 195 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 196 start, nr); 197 } 198 199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 200 { 201 struct f2fs_nm_info *nm_i = NM_I(sbi); 202 struct nat_entry *e; 203 bool need = false; 204 205 down_read(&nm_i->nat_tree_lock); 206 e = __lookup_nat_cache(nm_i, nid); 207 if (e) { 208 if (!get_nat_flag(e, IS_CHECKPOINTED) && 209 !get_nat_flag(e, HAS_FSYNCED_INODE)) 210 need = true; 211 } 212 up_read(&nm_i->nat_tree_lock); 213 return need; 214 } 215 216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 217 { 218 struct f2fs_nm_info *nm_i = NM_I(sbi); 219 struct nat_entry *e; 220 bool is_cp = true; 221 222 down_read(&nm_i->nat_tree_lock); 223 e = __lookup_nat_cache(nm_i, nid); 224 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 225 is_cp = false; 226 up_read(&nm_i->nat_tree_lock); 227 return is_cp; 228 } 229 230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 231 { 232 struct f2fs_nm_info *nm_i = NM_I(sbi); 233 struct nat_entry *e; 234 bool need_update = true; 235 236 down_read(&nm_i->nat_tree_lock); 237 e = __lookup_nat_cache(nm_i, ino); 238 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 239 (get_nat_flag(e, IS_CHECKPOINTED) || 240 get_nat_flag(e, HAS_FSYNCED_INODE))) 241 need_update = false; 242 up_read(&nm_i->nat_tree_lock); 243 return need_update; 244 } 245 246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 247 { 248 struct nat_entry *new; 249 250 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 251 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 252 memset(new, 0, sizeof(struct nat_entry)); 253 nat_set_nid(new, nid); 254 nat_reset_flag(new); 255 list_add_tail(&new->list, &nm_i->nat_entries); 256 nm_i->nat_cnt++; 257 return new; 258 } 259 260 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 261 struct f2fs_nat_entry *ne) 262 { 263 struct f2fs_nm_info *nm_i = NM_I(sbi); 264 struct nat_entry *e; 265 266 e = __lookup_nat_cache(nm_i, nid); 267 if (!e) { 268 e = grab_nat_entry(nm_i, nid); 269 node_info_from_raw_nat(&e->ni, ne); 270 } else { 271 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino || 272 nat_get_blkaddr(e) != ne->block_addr || 273 nat_get_version(e) != ne->version); 274 } 275 } 276 277 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 278 block_t new_blkaddr, bool fsync_done) 279 { 280 struct f2fs_nm_info *nm_i = NM_I(sbi); 281 struct nat_entry *e; 282 283 down_write(&nm_i->nat_tree_lock); 284 e = __lookup_nat_cache(nm_i, ni->nid); 285 if (!e) { 286 e = grab_nat_entry(nm_i, ni->nid); 287 copy_node_info(&e->ni, ni); 288 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 289 } else if (new_blkaddr == NEW_ADDR) { 290 /* 291 * when nid is reallocated, 292 * previous nat entry can be remained in nat cache. 293 * So, reinitialize it with new information. 294 */ 295 copy_node_info(&e->ni, ni); 296 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 297 } 298 299 /* sanity check */ 300 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 301 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 302 new_blkaddr == NULL_ADDR); 303 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 304 new_blkaddr == NEW_ADDR); 305 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 306 nat_get_blkaddr(e) != NULL_ADDR && 307 new_blkaddr == NEW_ADDR); 308 309 /* increment version no as node is removed */ 310 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 311 unsigned char version = nat_get_version(e); 312 nat_set_version(e, inc_node_version(version)); 313 314 /* in order to reuse the nid */ 315 if (nm_i->next_scan_nid > ni->nid) 316 nm_i->next_scan_nid = ni->nid; 317 } 318 319 /* change address */ 320 nat_set_blkaddr(e, new_blkaddr); 321 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 322 set_nat_flag(e, IS_CHECKPOINTED, false); 323 __set_nat_cache_dirty(nm_i, e); 324 325 /* update fsync_mark if its inode nat entry is still alive */ 326 if (ni->nid != ni->ino) 327 e = __lookup_nat_cache(nm_i, ni->ino); 328 if (e) { 329 if (fsync_done && ni->nid == ni->ino) 330 set_nat_flag(e, HAS_FSYNCED_INODE, true); 331 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 332 } 333 up_write(&nm_i->nat_tree_lock); 334 } 335 336 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 337 { 338 struct f2fs_nm_info *nm_i = NM_I(sbi); 339 int nr = nr_shrink; 340 341 if (!down_write_trylock(&nm_i->nat_tree_lock)) 342 return 0; 343 344 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 345 struct nat_entry *ne; 346 ne = list_first_entry(&nm_i->nat_entries, 347 struct nat_entry, list); 348 __del_from_nat_cache(nm_i, ne); 349 nr_shrink--; 350 } 351 up_write(&nm_i->nat_tree_lock); 352 return nr - nr_shrink; 353 } 354 355 /* 356 * This function always returns success 357 */ 358 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 359 { 360 struct f2fs_nm_info *nm_i = NM_I(sbi); 361 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 362 struct f2fs_journal *journal = curseg->journal; 363 nid_t start_nid = START_NID(nid); 364 struct f2fs_nat_block *nat_blk; 365 struct page *page = NULL; 366 struct f2fs_nat_entry ne; 367 struct nat_entry *e; 368 int i; 369 370 ni->nid = nid; 371 372 /* Check nat cache */ 373 down_read(&nm_i->nat_tree_lock); 374 e = __lookup_nat_cache(nm_i, nid); 375 if (e) { 376 ni->ino = nat_get_ino(e); 377 ni->blk_addr = nat_get_blkaddr(e); 378 ni->version = nat_get_version(e); 379 up_read(&nm_i->nat_tree_lock); 380 return; 381 } 382 383 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 384 385 /* Check current segment summary */ 386 down_read(&curseg->journal_rwsem); 387 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 388 if (i >= 0) { 389 ne = nat_in_journal(journal, i); 390 node_info_from_raw_nat(ni, &ne); 391 } 392 up_read(&curseg->journal_rwsem); 393 if (i >= 0) 394 goto cache; 395 396 /* Fill node_info from nat page */ 397 page = get_current_nat_page(sbi, start_nid); 398 nat_blk = (struct f2fs_nat_block *)page_address(page); 399 ne = nat_blk->entries[nid - start_nid]; 400 node_info_from_raw_nat(ni, &ne); 401 f2fs_put_page(page, 1); 402 cache: 403 up_read(&nm_i->nat_tree_lock); 404 /* cache nat entry */ 405 down_write(&nm_i->nat_tree_lock); 406 cache_nat_entry(sbi, nid, &ne); 407 up_write(&nm_i->nat_tree_lock); 408 } 409 410 /* 411 * readahead MAX_RA_NODE number of node pages. 412 */ 413 static void ra_node_pages(struct page *parent, int start, int n) 414 { 415 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 416 struct blk_plug plug; 417 int i, end; 418 nid_t nid; 419 420 blk_start_plug(&plug); 421 422 /* Then, try readahead for siblings of the desired node */ 423 end = start + n; 424 end = min(end, NIDS_PER_BLOCK); 425 for (i = start; i < end; i++) { 426 nid = get_nid(parent, i, false); 427 ra_node_page(sbi, nid); 428 } 429 430 blk_finish_plug(&plug); 431 } 432 433 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 434 { 435 const long direct_index = ADDRS_PER_INODE(dn->inode); 436 const long direct_blks = ADDRS_PER_BLOCK; 437 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 438 unsigned int skipped_unit = ADDRS_PER_BLOCK; 439 int cur_level = dn->cur_level; 440 int max_level = dn->max_level; 441 pgoff_t base = 0; 442 443 if (!dn->max_level) 444 return pgofs + 1; 445 446 while (max_level-- > cur_level) 447 skipped_unit *= NIDS_PER_BLOCK; 448 449 switch (dn->max_level) { 450 case 3: 451 base += 2 * indirect_blks; 452 case 2: 453 base += 2 * direct_blks; 454 case 1: 455 base += direct_index; 456 break; 457 default: 458 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 459 } 460 461 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 462 } 463 464 /* 465 * The maximum depth is four. 466 * Offset[0] will have raw inode offset. 467 */ 468 static int get_node_path(struct inode *inode, long block, 469 int offset[4], unsigned int noffset[4]) 470 { 471 const long direct_index = ADDRS_PER_INODE(inode); 472 const long direct_blks = ADDRS_PER_BLOCK; 473 const long dptrs_per_blk = NIDS_PER_BLOCK; 474 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 475 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 476 int n = 0; 477 int level = 0; 478 479 noffset[0] = 0; 480 481 if (block < direct_index) { 482 offset[n] = block; 483 goto got; 484 } 485 block -= direct_index; 486 if (block < direct_blks) { 487 offset[n++] = NODE_DIR1_BLOCK; 488 noffset[n] = 1; 489 offset[n] = block; 490 level = 1; 491 goto got; 492 } 493 block -= direct_blks; 494 if (block < direct_blks) { 495 offset[n++] = NODE_DIR2_BLOCK; 496 noffset[n] = 2; 497 offset[n] = block; 498 level = 1; 499 goto got; 500 } 501 block -= direct_blks; 502 if (block < indirect_blks) { 503 offset[n++] = NODE_IND1_BLOCK; 504 noffset[n] = 3; 505 offset[n++] = block / direct_blks; 506 noffset[n] = 4 + offset[n - 1]; 507 offset[n] = block % direct_blks; 508 level = 2; 509 goto got; 510 } 511 block -= indirect_blks; 512 if (block < indirect_blks) { 513 offset[n++] = NODE_IND2_BLOCK; 514 noffset[n] = 4 + dptrs_per_blk; 515 offset[n++] = block / direct_blks; 516 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 517 offset[n] = block % direct_blks; 518 level = 2; 519 goto got; 520 } 521 block -= indirect_blks; 522 if (block < dindirect_blks) { 523 offset[n++] = NODE_DIND_BLOCK; 524 noffset[n] = 5 + (dptrs_per_blk * 2); 525 offset[n++] = block / indirect_blks; 526 noffset[n] = 6 + (dptrs_per_blk * 2) + 527 offset[n - 1] * (dptrs_per_blk + 1); 528 offset[n++] = (block / direct_blks) % dptrs_per_blk; 529 noffset[n] = 7 + (dptrs_per_blk * 2) + 530 offset[n - 2] * (dptrs_per_blk + 1) + 531 offset[n - 1]; 532 offset[n] = block % direct_blks; 533 level = 3; 534 goto got; 535 } else { 536 BUG(); 537 } 538 got: 539 return level; 540 } 541 542 /* 543 * Caller should call f2fs_put_dnode(dn). 544 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 545 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 546 * In the case of RDONLY_NODE, we don't need to care about mutex. 547 */ 548 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 549 { 550 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 551 struct page *npage[4]; 552 struct page *parent = NULL; 553 int offset[4]; 554 unsigned int noffset[4]; 555 nid_t nids[4]; 556 int level, i = 0; 557 int err = 0; 558 559 level = get_node_path(dn->inode, index, offset, noffset); 560 561 nids[0] = dn->inode->i_ino; 562 npage[0] = dn->inode_page; 563 564 if (!npage[0]) { 565 npage[0] = get_node_page(sbi, nids[0]); 566 if (IS_ERR(npage[0])) 567 return PTR_ERR(npage[0]); 568 } 569 570 /* if inline_data is set, should not report any block indices */ 571 if (f2fs_has_inline_data(dn->inode) && index) { 572 err = -ENOENT; 573 f2fs_put_page(npage[0], 1); 574 goto release_out; 575 } 576 577 parent = npage[0]; 578 if (level != 0) 579 nids[1] = get_nid(parent, offset[0], true); 580 dn->inode_page = npage[0]; 581 dn->inode_page_locked = true; 582 583 /* get indirect or direct nodes */ 584 for (i = 1; i <= level; i++) { 585 bool done = false; 586 587 if (!nids[i] && mode == ALLOC_NODE) { 588 /* alloc new node */ 589 if (!alloc_nid(sbi, &(nids[i]))) { 590 err = -ENOSPC; 591 goto release_pages; 592 } 593 594 dn->nid = nids[i]; 595 npage[i] = new_node_page(dn, noffset[i], NULL); 596 if (IS_ERR(npage[i])) { 597 alloc_nid_failed(sbi, nids[i]); 598 err = PTR_ERR(npage[i]); 599 goto release_pages; 600 } 601 602 set_nid(parent, offset[i - 1], nids[i], i == 1); 603 alloc_nid_done(sbi, nids[i]); 604 done = true; 605 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 606 npage[i] = get_node_page_ra(parent, offset[i - 1]); 607 if (IS_ERR(npage[i])) { 608 err = PTR_ERR(npage[i]); 609 goto release_pages; 610 } 611 done = true; 612 } 613 if (i == 1) { 614 dn->inode_page_locked = false; 615 unlock_page(parent); 616 } else { 617 f2fs_put_page(parent, 1); 618 } 619 620 if (!done) { 621 npage[i] = get_node_page(sbi, nids[i]); 622 if (IS_ERR(npage[i])) { 623 err = PTR_ERR(npage[i]); 624 f2fs_put_page(npage[0], 0); 625 goto release_out; 626 } 627 } 628 if (i < level) { 629 parent = npage[i]; 630 nids[i + 1] = get_nid(parent, offset[i], false); 631 } 632 } 633 dn->nid = nids[level]; 634 dn->ofs_in_node = offset[level]; 635 dn->node_page = npage[level]; 636 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 637 return 0; 638 639 release_pages: 640 f2fs_put_page(parent, 1); 641 if (i > 1) 642 f2fs_put_page(npage[0], 0); 643 release_out: 644 dn->inode_page = NULL; 645 dn->node_page = NULL; 646 if (err == -ENOENT) { 647 dn->cur_level = i; 648 dn->max_level = level; 649 } 650 return err; 651 } 652 653 static void truncate_node(struct dnode_of_data *dn) 654 { 655 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 656 struct node_info ni; 657 658 get_node_info(sbi, dn->nid, &ni); 659 if (dn->inode->i_blocks == 0) { 660 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); 661 goto invalidate; 662 } 663 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 664 665 /* Deallocate node address */ 666 invalidate_blocks(sbi, ni.blk_addr); 667 dec_valid_node_count(sbi, dn->inode); 668 set_node_addr(sbi, &ni, NULL_ADDR, false); 669 670 if (dn->nid == dn->inode->i_ino) { 671 remove_orphan_inode(sbi, dn->nid); 672 dec_valid_inode_count(sbi); 673 } else { 674 sync_inode_page(dn); 675 } 676 invalidate: 677 clear_node_page_dirty(dn->node_page); 678 set_sbi_flag(sbi, SBI_IS_DIRTY); 679 680 f2fs_put_page(dn->node_page, 1); 681 682 invalidate_mapping_pages(NODE_MAPPING(sbi), 683 dn->node_page->index, dn->node_page->index); 684 685 dn->node_page = NULL; 686 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 687 } 688 689 static int truncate_dnode(struct dnode_of_data *dn) 690 { 691 struct page *page; 692 693 if (dn->nid == 0) 694 return 1; 695 696 /* get direct node */ 697 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 698 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 699 return 1; 700 else if (IS_ERR(page)) 701 return PTR_ERR(page); 702 703 /* Make dnode_of_data for parameter */ 704 dn->node_page = page; 705 dn->ofs_in_node = 0; 706 truncate_data_blocks(dn); 707 truncate_node(dn); 708 return 1; 709 } 710 711 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 712 int ofs, int depth) 713 { 714 struct dnode_of_data rdn = *dn; 715 struct page *page; 716 struct f2fs_node *rn; 717 nid_t child_nid; 718 unsigned int child_nofs; 719 int freed = 0; 720 int i, ret; 721 722 if (dn->nid == 0) 723 return NIDS_PER_BLOCK + 1; 724 725 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 726 727 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 728 if (IS_ERR(page)) { 729 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 730 return PTR_ERR(page); 731 } 732 733 ra_node_pages(page, ofs, NIDS_PER_BLOCK); 734 735 rn = F2FS_NODE(page); 736 if (depth < 3) { 737 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 738 child_nid = le32_to_cpu(rn->in.nid[i]); 739 if (child_nid == 0) 740 continue; 741 rdn.nid = child_nid; 742 ret = truncate_dnode(&rdn); 743 if (ret < 0) 744 goto out_err; 745 if (set_nid(page, i, 0, false)) 746 dn->node_changed = true; 747 } 748 } else { 749 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 750 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 751 child_nid = le32_to_cpu(rn->in.nid[i]); 752 if (child_nid == 0) { 753 child_nofs += NIDS_PER_BLOCK + 1; 754 continue; 755 } 756 rdn.nid = child_nid; 757 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 758 if (ret == (NIDS_PER_BLOCK + 1)) { 759 if (set_nid(page, i, 0, false)) 760 dn->node_changed = true; 761 child_nofs += ret; 762 } else if (ret < 0 && ret != -ENOENT) { 763 goto out_err; 764 } 765 } 766 freed = child_nofs; 767 } 768 769 if (!ofs) { 770 /* remove current indirect node */ 771 dn->node_page = page; 772 truncate_node(dn); 773 freed++; 774 } else { 775 f2fs_put_page(page, 1); 776 } 777 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 778 return freed; 779 780 out_err: 781 f2fs_put_page(page, 1); 782 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 783 return ret; 784 } 785 786 static int truncate_partial_nodes(struct dnode_of_data *dn, 787 struct f2fs_inode *ri, int *offset, int depth) 788 { 789 struct page *pages[2]; 790 nid_t nid[3]; 791 nid_t child_nid; 792 int err = 0; 793 int i; 794 int idx = depth - 2; 795 796 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 797 if (!nid[0]) 798 return 0; 799 800 /* get indirect nodes in the path */ 801 for (i = 0; i < idx + 1; i++) { 802 /* reference count'll be increased */ 803 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 804 if (IS_ERR(pages[i])) { 805 err = PTR_ERR(pages[i]); 806 idx = i - 1; 807 goto fail; 808 } 809 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 810 } 811 812 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 813 814 /* free direct nodes linked to a partial indirect node */ 815 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 816 child_nid = get_nid(pages[idx], i, false); 817 if (!child_nid) 818 continue; 819 dn->nid = child_nid; 820 err = truncate_dnode(dn); 821 if (err < 0) 822 goto fail; 823 if (set_nid(pages[idx], i, 0, false)) 824 dn->node_changed = true; 825 } 826 827 if (offset[idx + 1] == 0) { 828 dn->node_page = pages[idx]; 829 dn->nid = nid[idx]; 830 truncate_node(dn); 831 } else { 832 f2fs_put_page(pages[idx], 1); 833 } 834 offset[idx]++; 835 offset[idx + 1] = 0; 836 idx--; 837 fail: 838 for (i = idx; i >= 0; i--) 839 f2fs_put_page(pages[i], 1); 840 841 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 842 843 return err; 844 } 845 846 /* 847 * All the block addresses of data and nodes should be nullified. 848 */ 849 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 850 { 851 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 852 int err = 0, cont = 1; 853 int level, offset[4], noffset[4]; 854 unsigned int nofs = 0; 855 struct f2fs_inode *ri; 856 struct dnode_of_data dn; 857 struct page *page; 858 859 trace_f2fs_truncate_inode_blocks_enter(inode, from); 860 861 level = get_node_path(inode, from, offset, noffset); 862 863 page = get_node_page(sbi, inode->i_ino); 864 if (IS_ERR(page)) { 865 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 866 return PTR_ERR(page); 867 } 868 869 set_new_dnode(&dn, inode, page, NULL, 0); 870 unlock_page(page); 871 872 ri = F2FS_INODE(page); 873 switch (level) { 874 case 0: 875 case 1: 876 nofs = noffset[1]; 877 break; 878 case 2: 879 nofs = noffset[1]; 880 if (!offset[level - 1]) 881 goto skip_partial; 882 err = truncate_partial_nodes(&dn, ri, offset, level); 883 if (err < 0 && err != -ENOENT) 884 goto fail; 885 nofs += 1 + NIDS_PER_BLOCK; 886 break; 887 case 3: 888 nofs = 5 + 2 * NIDS_PER_BLOCK; 889 if (!offset[level - 1]) 890 goto skip_partial; 891 err = truncate_partial_nodes(&dn, ri, offset, level); 892 if (err < 0 && err != -ENOENT) 893 goto fail; 894 break; 895 default: 896 BUG(); 897 } 898 899 skip_partial: 900 while (cont) { 901 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 902 switch (offset[0]) { 903 case NODE_DIR1_BLOCK: 904 case NODE_DIR2_BLOCK: 905 err = truncate_dnode(&dn); 906 break; 907 908 case NODE_IND1_BLOCK: 909 case NODE_IND2_BLOCK: 910 err = truncate_nodes(&dn, nofs, offset[1], 2); 911 break; 912 913 case NODE_DIND_BLOCK: 914 err = truncate_nodes(&dn, nofs, offset[1], 3); 915 cont = 0; 916 break; 917 918 default: 919 BUG(); 920 } 921 if (err < 0 && err != -ENOENT) 922 goto fail; 923 if (offset[1] == 0 && 924 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 925 lock_page(page); 926 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 927 f2fs_wait_on_page_writeback(page, NODE, true); 928 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 929 set_page_dirty(page); 930 unlock_page(page); 931 } 932 offset[1] = 0; 933 offset[0]++; 934 nofs += err; 935 } 936 fail: 937 f2fs_put_page(page, 0); 938 trace_f2fs_truncate_inode_blocks_exit(inode, err); 939 return err > 0 ? 0 : err; 940 } 941 942 int truncate_xattr_node(struct inode *inode, struct page *page) 943 { 944 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 945 nid_t nid = F2FS_I(inode)->i_xattr_nid; 946 struct dnode_of_data dn; 947 struct page *npage; 948 949 if (!nid) 950 return 0; 951 952 npage = get_node_page(sbi, nid); 953 if (IS_ERR(npage)) 954 return PTR_ERR(npage); 955 956 F2FS_I(inode)->i_xattr_nid = 0; 957 958 /* need to do checkpoint during fsync */ 959 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 960 961 set_new_dnode(&dn, inode, page, npage, nid); 962 963 if (page) 964 dn.inode_page_locked = true; 965 truncate_node(&dn); 966 return 0; 967 } 968 969 /* 970 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 971 * f2fs_unlock_op(). 972 */ 973 int remove_inode_page(struct inode *inode) 974 { 975 struct dnode_of_data dn; 976 int err; 977 978 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 979 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 980 if (err) 981 return err; 982 983 err = truncate_xattr_node(inode, dn.inode_page); 984 if (err) { 985 f2fs_put_dnode(&dn); 986 return err; 987 } 988 989 /* remove potential inline_data blocks */ 990 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 991 S_ISLNK(inode->i_mode)) 992 truncate_data_blocks_range(&dn, 1); 993 994 /* 0 is possible, after f2fs_new_inode() has failed */ 995 f2fs_bug_on(F2FS_I_SB(inode), 996 inode->i_blocks != 0 && inode->i_blocks != 1); 997 998 /* will put inode & node pages */ 999 truncate_node(&dn); 1000 return 0; 1001 } 1002 1003 struct page *new_inode_page(struct inode *inode) 1004 { 1005 struct dnode_of_data dn; 1006 1007 /* allocate inode page for new inode */ 1008 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1009 1010 /* caller should f2fs_put_page(page, 1); */ 1011 return new_node_page(&dn, 0, NULL); 1012 } 1013 1014 struct page *new_node_page(struct dnode_of_data *dn, 1015 unsigned int ofs, struct page *ipage) 1016 { 1017 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1018 struct node_info old_ni, new_ni; 1019 struct page *page; 1020 int err; 1021 1022 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 1023 return ERR_PTR(-EPERM); 1024 1025 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1026 if (!page) 1027 return ERR_PTR(-ENOMEM); 1028 1029 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 1030 err = -ENOSPC; 1031 goto fail; 1032 } 1033 1034 get_node_info(sbi, dn->nid, &old_ni); 1035 1036 /* Reinitialize old_ni with new node page */ 1037 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); 1038 new_ni = old_ni; 1039 new_ni.ino = dn->inode->i_ino; 1040 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1041 1042 f2fs_wait_on_page_writeback(page, NODE, true); 1043 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1044 set_cold_node(dn->inode, page); 1045 SetPageUptodate(page); 1046 if (set_page_dirty(page)) 1047 dn->node_changed = true; 1048 1049 if (f2fs_has_xattr_block(ofs)) 1050 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 1051 1052 dn->node_page = page; 1053 if (ipage) 1054 update_inode(dn->inode, ipage); 1055 else 1056 sync_inode_page(dn); 1057 if (ofs == 0) 1058 inc_valid_inode_count(sbi); 1059 1060 return page; 1061 1062 fail: 1063 clear_node_page_dirty(page); 1064 f2fs_put_page(page, 1); 1065 return ERR_PTR(err); 1066 } 1067 1068 /* 1069 * Caller should do after getting the following values. 1070 * 0: f2fs_put_page(page, 0) 1071 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1072 */ 1073 static int read_node_page(struct page *page, int op_flags) 1074 { 1075 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1076 struct node_info ni; 1077 struct f2fs_io_info fio = { 1078 .sbi = sbi, 1079 .type = NODE, 1080 .op = REQ_OP_READ, 1081 .op_flags = op_flags, 1082 .page = page, 1083 .encrypted_page = NULL, 1084 }; 1085 1086 get_node_info(sbi, page->index, &ni); 1087 1088 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1089 ClearPageUptodate(page); 1090 return -ENOENT; 1091 } 1092 1093 if (PageUptodate(page)) 1094 return LOCKED_PAGE; 1095 1096 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1097 return f2fs_submit_page_bio(&fio); 1098 } 1099 1100 /* 1101 * Readahead a node page 1102 */ 1103 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1104 { 1105 struct page *apage; 1106 int err; 1107 1108 if (!nid) 1109 return; 1110 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1111 1112 rcu_read_lock(); 1113 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); 1114 rcu_read_unlock(); 1115 if (apage) 1116 return; 1117 1118 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1119 if (!apage) 1120 return; 1121 1122 err = read_node_page(apage, REQ_RAHEAD); 1123 f2fs_put_page(apage, err ? 1 : 0); 1124 } 1125 1126 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1127 struct page *parent, int start) 1128 { 1129 struct page *page; 1130 int err; 1131 1132 if (!nid) 1133 return ERR_PTR(-ENOENT); 1134 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1135 repeat: 1136 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1137 if (!page) 1138 return ERR_PTR(-ENOMEM); 1139 1140 err = read_node_page(page, READ_SYNC); 1141 if (err < 0) { 1142 f2fs_put_page(page, 1); 1143 return ERR_PTR(err); 1144 } else if (err == LOCKED_PAGE) { 1145 goto page_hit; 1146 } 1147 1148 if (parent) 1149 ra_node_pages(parent, start + 1, MAX_RA_NODE); 1150 1151 lock_page(page); 1152 1153 if (unlikely(!PageUptodate(page))) { 1154 f2fs_put_page(page, 1); 1155 return ERR_PTR(-EIO); 1156 } 1157 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1158 f2fs_put_page(page, 1); 1159 goto repeat; 1160 } 1161 page_hit: 1162 f2fs_bug_on(sbi, nid != nid_of_node(page)); 1163 return page; 1164 } 1165 1166 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1167 { 1168 return __get_node_page(sbi, nid, NULL, 0); 1169 } 1170 1171 struct page *get_node_page_ra(struct page *parent, int start) 1172 { 1173 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1174 nid_t nid = get_nid(parent, start, false); 1175 1176 return __get_node_page(sbi, nid, parent, start); 1177 } 1178 1179 void sync_inode_page(struct dnode_of_data *dn) 1180 { 1181 int ret = 0; 1182 1183 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1184 ret = update_inode(dn->inode, dn->node_page); 1185 } else if (dn->inode_page) { 1186 if (!dn->inode_page_locked) 1187 lock_page(dn->inode_page); 1188 ret = update_inode(dn->inode, dn->inode_page); 1189 if (!dn->inode_page_locked) 1190 unlock_page(dn->inode_page); 1191 } else { 1192 ret = update_inode_page(dn->inode); 1193 } 1194 dn->node_changed = ret ? true: false; 1195 } 1196 1197 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1198 { 1199 struct inode *inode; 1200 struct page *page; 1201 int ret; 1202 1203 /* should flush inline_data before evict_inode */ 1204 inode = ilookup(sbi->sb, ino); 1205 if (!inode) 1206 return; 1207 1208 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0); 1209 if (!page) 1210 goto iput_out; 1211 1212 if (!PageUptodate(page)) 1213 goto page_out; 1214 1215 if (!PageDirty(page)) 1216 goto page_out; 1217 1218 if (!clear_page_dirty_for_io(page)) 1219 goto page_out; 1220 1221 ret = f2fs_write_inline_data(inode, page); 1222 inode_dec_dirty_pages(inode); 1223 if (ret) 1224 set_page_dirty(page); 1225 page_out: 1226 f2fs_put_page(page, 1); 1227 iput_out: 1228 iput(inode); 1229 } 1230 1231 void move_node_page(struct page *node_page, int gc_type) 1232 { 1233 if (gc_type == FG_GC) { 1234 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page); 1235 struct writeback_control wbc = { 1236 .sync_mode = WB_SYNC_ALL, 1237 .nr_to_write = 1, 1238 .for_reclaim = 0, 1239 }; 1240 1241 set_page_dirty(node_page); 1242 f2fs_wait_on_page_writeback(node_page, NODE, true); 1243 1244 f2fs_bug_on(sbi, PageWriteback(node_page)); 1245 if (!clear_page_dirty_for_io(node_page)) 1246 goto out_page; 1247 1248 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc)) 1249 unlock_page(node_page); 1250 goto release_page; 1251 } else { 1252 /* set page dirty and write it */ 1253 if (!PageWriteback(node_page)) 1254 set_page_dirty(node_page); 1255 } 1256 out_page: 1257 unlock_page(node_page); 1258 release_page: 1259 f2fs_put_page(node_page, 0); 1260 } 1261 1262 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1263 { 1264 pgoff_t index, end; 1265 struct pagevec pvec; 1266 struct page *last_page = NULL; 1267 1268 pagevec_init(&pvec, 0); 1269 index = 0; 1270 end = ULONG_MAX; 1271 1272 while (index <= end) { 1273 int i, nr_pages; 1274 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1275 PAGECACHE_TAG_DIRTY, 1276 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1277 if (nr_pages == 0) 1278 break; 1279 1280 for (i = 0; i < nr_pages; i++) { 1281 struct page *page = pvec.pages[i]; 1282 1283 if (unlikely(f2fs_cp_error(sbi))) { 1284 f2fs_put_page(last_page, 0); 1285 pagevec_release(&pvec); 1286 return ERR_PTR(-EIO); 1287 } 1288 1289 if (!IS_DNODE(page) || !is_cold_node(page)) 1290 continue; 1291 if (ino_of_node(page) != ino) 1292 continue; 1293 1294 lock_page(page); 1295 1296 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1297 continue_unlock: 1298 unlock_page(page); 1299 continue; 1300 } 1301 if (ino_of_node(page) != ino) 1302 goto continue_unlock; 1303 1304 if (!PageDirty(page)) { 1305 /* someone wrote it for us */ 1306 goto continue_unlock; 1307 } 1308 1309 if (last_page) 1310 f2fs_put_page(last_page, 0); 1311 1312 get_page(page); 1313 last_page = page; 1314 unlock_page(page); 1315 } 1316 pagevec_release(&pvec); 1317 cond_resched(); 1318 } 1319 return last_page; 1320 } 1321 1322 int fsync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1323 struct writeback_control *wbc, bool atomic) 1324 { 1325 pgoff_t index, end; 1326 struct pagevec pvec; 1327 int ret = 0; 1328 struct page *last_page = NULL; 1329 bool marked = false; 1330 1331 if (atomic) { 1332 last_page = last_fsync_dnode(sbi, ino); 1333 if (IS_ERR_OR_NULL(last_page)) 1334 return PTR_ERR_OR_ZERO(last_page); 1335 } 1336 retry: 1337 pagevec_init(&pvec, 0); 1338 index = 0; 1339 end = ULONG_MAX; 1340 1341 while (index <= end) { 1342 int i, nr_pages; 1343 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1344 PAGECACHE_TAG_DIRTY, 1345 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1346 if (nr_pages == 0) 1347 break; 1348 1349 for (i = 0; i < nr_pages; i++) { 1350 struct page *page = pvec.pages[i]; 1351 1352 if (unlikely(f2fs_cp_error(sbi))) { 1353 f2fs_put_page(last_page, 0); 1354 pagevec_release(&pvec); 1355 return -EIO; 1356 } 1357 1358 if (!IS_DNODE(page) || !is_cold_node(page)) 1359 continue; 1360 if (ino_of_node(page) != ino) 1361 continue; 1362 1363 lock_page(page); 1364 1365 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1366 continue_unlock: 1367 unlock_page(page); 1368 continue; 1369 } 1370 if (ino_of_node(page) != ino) 1371 goto continue_unlock; 1372 1373 if (!PageDirty(page) && page != last_page) { 1374 /* someone wrote it for us */ 1375 goto continue_unlock; 1376 } 1377 1378 f2fs_wait_on_page_writeback(page, NODE, true); 1379 BUG_ON(PageWriteback(page)); 1380 1381 if (!atomic || page == last_page) { 1382 set_fsync_mark(page, 1); 1383 if (IS_INODE(page)) 1384 set_dentry_mark(page, 1385 need_dentry_mark(sbi, ino)); 1386 /* may be written by other thread */ 1387 if (!PageDirty(page)) 1388 set_page_dirty(page); 1389 } 1390 1391 if (!clear_page_dirty_for_io(page)) 1392 goto continue_unlock; 1393 1394 ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc); 1395 if (ret) { 1396 unlock_page(page); 1397 f2fs_put_page(last_page, 0); 1398 break; 1399 } 1400 if (page == last_page) { 1401 f2fs_put_page(page, 0); 1402 marked = true; 1403 break; 1404 } 1405 } 1406 pagevec_release(&pvec); 1407 cond_resched(); 1408 1409 if (ret || marked) 1410 break; 1411 } 1412 if (!ret && atomic && !marked) { 1413 f2fs_msg(sbi->sb, KERN_DEBUG, 1414 "Retry to write fsync mark: ino=%u, idx=%lx", 1415 ino, last_page->index); 1416 lock_page(last_page); 1417 set_page_dirty(last_page); 1418 unlock_page(last_page); 1419 goto retry; 1420 } 1421 return ret ? -EIO: 0; 1422 } 1423 1424 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc) 1425 { 1426 pgoff_t index, end; 1427 struct pagevec pvec; 1428 int step = 0; 1429 int nwritten = 0; 1430 1431 pagevec_init(&pvec, 0); 1432 1433 next_step: 1434 index = 0; 1435 end = ULONG_MAX; 1436 1437 while (index <= end) { 1438 int i, nr_pages; 1439 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1440 PAGECACHE_TAG_DIRTY, 1441 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1442 if (nr_pages == 0) 1443 break; 1444 1445 for (i = 0; i < nr_pages; i++) { 1446 struct page *page = pvec.pages[i]; 1447 1448 if (unlikely(f2fs_cp_error(sbi))) { 1449 pagevec_release(&pvec); 1450 return -EIO; 1451 } 1452 1453 /* 1454 * flushing sequence with step: 1455 * 0. indirect nodes 1456 * 1. dentry dnodes 1457 * 2. file dnodes 1458 */ 1459 if (step == 0 && IS_DNODE(page)) 1460 continue; 1461 if (step == 1 && (!IS_DNODE(page) || 1462 is_cold_node(page))) 1463 continue; 1464 if (step == 2 && (!IS_DNODE(page) || 1465 !is_cold_node(page))) 1466 continue; 1467 lock_node: 1468 if (!trylock_page(page)) 1469 continue; 1470 1471 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1472 continue_unlock: 1473 unlock_page(page); 1474 continue; 1475 } 1476 1477 if (!PageDirty(page)) { 1478 /* someone wrote it for us */ 1479 goto continue_unlock; 1480 } 1481 1482 /* flush inline_data */ 1483 if (is_inline_node(page)) { 1484 clear_inline_node(page); 1485 unlock_page(page); 1486 flush_inline_data(sbi, ino_of_node(page)); 1487 goto lock_node; 1488 } 1489 1490 f2fs_wait_on_page_writeback(page, NODE, true); 1491 1492 BUG_ON(PageWriteback(page)); 1493 if (!clear_page_dirty_for_io(page)) 1494 goto continue_unlock; 1495 1496 set_fsync_mark(page, 0); 1497 set_dentry_mark(page, 0); 1498 1499 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) 1500 unlock_page(page); 1501 1502 if (--wbc->nr_to_write == 0) 1503 break; 1504 } 1505 pagevec_release(&pvec); 1506 cond_resched(); 1507 1508 if (wbc->nr_to_write == 0) { 1509 step = 2; 1510 break; 1511 } 1512 } 1513 1514 if (step < 2) { 1515 step++; 1516 goto next_step; 1517 } 1518 return nwritten; 1519 } 1520 1521 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1522 { 1523 pgoff_t index = 0, end = ULONG_MAX; 1524 struct pagevec pvec; 1525 int ret2 = 0, ret = 0; 1526 1527 pagevec_init(&pvec, 0); 1528 1529 while (index <= end) { 1530 int i, nr_pages; 1531 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1532 PAGECACHE_TAG_WRITEBACK, 1533 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1534 if (nr_pages == 0) 1535 break; 1536 1537 for (i = 0; i < nr_pages; i++) { 1538 struct page *page = pvec.pages[i]; 1539 1540 /* until radix tree lookup accepts end_index */ 1541 if (unlikely(page->index > end)) 1542 continue; 1543 1544 if (ino && ino_of_node(page) == ino) { 1545 f2fs_wait_on_page_writeback(page, NODE, true); 1546 if (TestClearPageError(page)) 1547 ret = -EIO; 1548 } 1549 } 1550 pagevec_release(&pvec); 1551 cond_resched(); 1552 } 1553 1554 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags))) 1555 ret2 = -ENOSPC; 1556 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags))) 1557 ret2 = -EIO; 1558 if (!ret) 1559 ret = ret2; 1560 return ret; 1561 } 1562 1563 static int f2fs_write_node_page(struct page *page, 1564 struct writeback_control *wbc) 1565 { 1566 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1567 nid_t nid; 1568 struct node_info ni; 1569 struct f2fs_io_info fio = { 1570 .sbi = sbi, 1571 .type = NODE, 1572 .op = REQ_OP_WRITE, 1573 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0, 1574 .page = page, 1575 .encrypted_page = NULL, 1576 }; 1577 1578 trace_f2fs_writepage(page, NODE); 1579 1580 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1581 goto redirty_out; 1582 if (unlikely(f2fs_cp_error(sbi))) 1583 goto redirty_out; 1584 1585 /* get old block addr of this node page */ 1586 nid = nid_of_node(page); 1587 f2fs_bug_on(sbi, page->index != nid); 1588 1589 if (wbc->for_reclaim) { 1590 if (!down_read_trylock(&sbi->node_write)) 1591 goto redirty_out; 1592 } else { 1593 down_read(&sbi->node_write); 1594 } 1595 1596 get_node_info(sbi, nid, &ni); 1597 1598 /* This page is already truncated */ 1599 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1600 ClearPageUptodate(page); 1601 dec_page_count(sbi, F2FS_DIRTY_NODES); 1602 up_read(&sbi->node_write); 1603 unlock_page(page); 1604 return 0; 1605 } 1606 1607 set_page_writeback(page); 1608 fio.old_blkaddr = ni.blk_addr; 1609 write_node_page(nid, &fio); 1610 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1611 dec_page_count(sbi, F2FS_DIRTY_NODES); 1612 up_read(&sbi->node_write); 1613 1614 if (wbc->for_reclaim) 1615 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE); 1616 1617 unlock_page(page); 1618 1619 if (unlikely(f2fs_cp_error(sbi))) 1620 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1621 1622 return 0; 1623 1624 redirty_out: 1625 redirty_page_for_writepage(wbc, page); 1626 return AOP_WRITEPAGE_ACTIVATE; 1627 } 1628 1629 static int f2fs_write_node_pages(struct address_space *mapping, 1630 struct writeback_control *wbc) 1631 { 1632 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1633 long diff; 1634 1635 /* balancing f2fs's metadata in background */ 1636 f2fs_balance_fs_bg(sbi); 1637 1638 /* collect a number of dirty node pages and write together */ 1639 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1640 goto skip_write; 1641 1642 trace_f2fs_writepages(mapping->host, wbc, NODE); 1643 1644 diff = nr_pages_to_write(sbi, NODE, wbc); 1645 wbc->sync_mode = WB_SYNC_NONE; 1646 sync_node_pages(sbi, wbc); 1647 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1648 return 0; 1649 1650 skip_write: 1651 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1652 trace_f2fs_writepages(mapping->host, wbc, NODE); 1653 return 0; 1654 } 1655 1656 static int f2fs_set_node_page_dirty(struct page *page) 1657 { 1658 trace_f2fs_set_page_dirty(page, NODE); 1659 1660 SetPageUptodate(page); 1661 if (!PageDirty(page)) { 1662 __set_page_dirty_nobuffers(page); 1663 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1664 SetPagePrivate(page); 1665 f2fs_trace_pid(page); 1666 return 1; 1667 } 1668 return 0; 1669 } 1670 1671 /* 1672 * Structure of the f2fs node operations 1673 */ 1674 const struct address_space_operations f2fs_node_aops = { 1675 .writepage = f2fs_write_node_page, 1676 .writepages = f2fs_write_node_pages, 1677 .set_page_dirty = f2fs_set_node_page_dirty, 1678 .invalidatepage = f2fs_invalidate_page, 1679 .releasepage = f2fs_release_page, 1680 }; 1681 1682 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1683 nid_t n) 1684 { 1685 return radix_tree_lookup(&nm_i->free_nid_root, n); 1686 } 1687 1688 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i, 1689 struct free_nid *i) 1690 { 1691 list_del(&i->list); 1692 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1693 } 1694 1695 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1696 { 1697 struct f2fs_nm_info *nm_i = NM_I(sbi); 1698 struct free_nid *i; 1699 struct nat_entry *ne; 1700 1701 if (!available_free_memory(sbi, FREE_NIDS)) 1702 return -1; 1703 1704 /* 0 nid should not be used */ 1705 if (unlikely(nid == 0)) 1706 return 0; 1707 1708 if (build) { 1709 /* do not add allocated nids */ 1710 ne = __lookup_nat_cache(nm_i, nid); 1711 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1712 nat_get_blkaddr(ne) != NULL_ADDR)) 1713 return 0; 1714 } 1715 1716 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1717 i->nid = nid; 1718 i->state = NID_NEW; 1719 1720 if (radix_tree_preload(GFP_NOFS)) { 1721 kmem_cache_free(free_nid_slab, i); 1722 return 0; 1723 } 1724 1725 spin_lock(&nm_i->free_nid_list_lock); 1726 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) { 1727 spin_unlock(&nm_i->free_nid_list_lock); 1728 radix_tree_preload_end(); 1729 kmem_cache_free(free_nid_slab, i); 1730 return 0; 1731 } 1732 list_add_tail(&i->list, &nm_i->free_nid_list); 1733 nm_i->fcnt++; 1734 spin_unlock(&nm_i->free_nid_list_lock); 1735 radix_tree_preload_end(); 1736 return 1; 1737 } 1738 1739 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1740 { 1741 struct free_nid *i; 1742 bool need_free = false; 1743 1744 spin_lock(&nm_i->free_nid_list_lock); 1745 i = __lookup_free_nid_list(nm_i, nid); 1746 if (i && i->state == NID_NEW) { 1747 __del_from_free_nid_list(nm_i, i); 1748 nm_i->fcnt--; 1749 need_free = true; 1750 } 1751 spin_unlock(&nm_i->free_nid_list_lock); 1752 1753 if (need_free) 1754 kmem_cache_free(free_nid_slab, i); 1755 } 1756 1757 static void scan_nat_page(struct f2fs_sb_info *sbi, 1758 struct page *nat_page, nid_t start_nid) 1759 { 1760 struct f2fs_nm_info *nm_i = NM_I(sbi); 1761 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1762 block_t blk_addr; 1763 int i; 1764 1765 i = start_nid % NAT_ENTRY_PER_BLOCK; 1766 1767 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1768 1769 if (unlikely(start_nid >= nm_i->max_nid)) 1770 break; 1771 1772 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1773 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1774 if (blk_addr == NULL_ADDR) { 1775 if (add_free_nid(sbi, start_nid, true) < 0) 1776 break; 1777 } 1778 } 1779 } 1780 1781 static void build_free_nids(struct f2fs_sb_info *sbi) 1782 { 1783 struct f2fs_nm_info *nm_i = NM_I(sbi); 1784 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1785 struct f2fs_journal *journal = curseg->journal; 1786 int i = 0; 1787 nid_t nid = nm_i->next_scan_nid; 1788 1789 /* Enough entries */ 1790 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1791 return; 1792 1793 /* readahead nat pages to be scanned */ 1794 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 1795 META_NAT, true); 1796 1797 down_read(&nm_i->nat_tree_lock); 1798 1799 while (1) { 1800 struct page *page = get_current_nat_page(sbi, nid); 1801 1802 scan_nat_page(sbi, page, nid); 1803 f2fs_put_page(page, 1); 1804 1805 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1806 if (unlikely(nid >= nm_i->max_nid)) 1807 nid = 0; 1808 1809 if (++i >= FREE_NID_PAGES) 1810 break; 1811 } 1812 1813 /* go to the next free nat pages to find free nids abundantly */ 1814 nm_i->next_scan_nid = nid; 1815 1816 /* find free nids from current sum_pages */ 1817 down_read(&curseg->journal_rwsem); 1818 for (i = 0; i < nats_in_cursum(journal); i++) { 1819 block_t addr; 1820 1821 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1822 nid = le32_to_cpu(nid_in_journal(journal, i)); 1823 if (addr == NULL_ADDR) 1824 add_free_nid(sbi, nid, true); 1825 else 1826 remove_free_nid(nm_i, nid); 1827 } 1828 up_read(&curseg->journal_rwsem); 1829 up_read(&nm_i->nat_tree_lock); 1830 1831 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 1832 nm_i->ra_nid_pages, META_NAT, false); 1833 } 1834 1835 /* 1836 * If this function returns success, caller can obtain a new nid 1837 * from second parameter of this function. 1838 * The returned nid could be used ino as well as nid when inode is created. 1839 */ 1840 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1841 { 1842 struct f2fs_nm_info *nm_i = NM_I(sbi); 1843 struct free_nid *i = NULL; 1844 retry: 1845 #ifdef CONFIG_F2FS_FAULT_INJECTION 1846 if (time_to_inject(FAULT_ALLOC_NID)) 1847 return false; 1848 #endif 1849 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) 1850 return false; 1851 1852 spin_lock(&nm_i->free_nid_list_lock); 1853 1854 /* We should not use stale free nids created by build_free_nids */ 1855 if (nm_i->fcnt && !on_build_free_nids(nm_i)) { 1856 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 1857 list_for_each_entry(i, &nm_i->free_nid_list, list) 1858 if (i->state == NID_NEW) 1859 break; 1860 1861 f2fs_bug_on(sbi, i->state != NID_NEW); 1862 *nid = i->nid; 1863 i->state = NID_ALLOC; 1864 nm_i->fcnt--; 1865 spin_unlock(&nm_i->free_nid_list_lock); 1866 return true; 1867 } 1868 spin_unlock(&nm_i->free_nid_list_lock); 1869 1870 /* Let's scan nat pages and its caches to get free nids */ 1871 mutex_lock(&nm_i->build_lock); 1872 build_free_nids(sbi); 1873 mutex_unlock(&nm_i->build_lock); 1874 goto retry; 1875 } 1876 1877 /* 1878 * alloc_nid() should be called prior to this function. 1879 */ 1880 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1881 { 1882 struct f2fs_nm_info *nm_i = NM_I(sbi); 1883 struct free_nid *i; 1884 1885 spin_lock(&nm_i->free_nid_list_lock); 1886 i = __lookup_free_nid_list(nm_i, nid); 1887 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1888 __del_from_free_nid_list(nm_i, i); 1889 spin_unlock(&nm_i->free_nid_list_lock); 1890 1891 kmem_cache_free(free_nid_slab, i); 1892 } 1893 1894 /* 1895 * alloc_nid() should be called prior to this function. 1896 */ 1897 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1898 { 1899 struct f2fs_nm_info *nm_i = NM_I(sbi); 1900 struct free_nid *i; 1901 bool need_free = false; 1902 1903 if (!nid) 1904 return; 1905 1906 spin_lock(&nm_i->free_nid_list_lock); 1907 i = __lookup_free_nid_list(nm_i, nid); 1908 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1909 if (!available_free_memory(sbi, FREE_NIDS)) { 1910 __del_from_free_nid_list(nm_i, i); 1911 need_free = true; 1912 } else { 1913 i->state = NID_NEW; 1914 nm_i->fcnt++; 1915 } 1916 spin_unlock(&nm_i->free_nid_list_lock); 1917 1918 if (need_free) 1919 kmem_cache_free(free_nid_slab, i); 1920 } 1921 1922 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 1923 { 1924 struct f2fs_nm_info *nm_i = NM_I(sbi); 1925 struct free_nid *i, *next; 1926 int nr = nr_shrink; 1927 1928 if (!mutex_trylock(&nm_i->build_lock)) 1929 return 0; 1930 1931 spin_lock(&nm_i->free_nid_list_lock); 1932 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 1933 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK) 1934 break; 1935 if (i->state == NID_ALLOC) 1936 continue; 1937 __del_from_free_nid_list(nm_i, i); 1938 kmem_cache_free(free_nid_slab, i); 1939 nm_i->fcnt--; 1940 nr_shrink--; 1941 } 1942 spin_unlock(&nm_i->free_nid_list_lock); 1943 mutex_unlock(&nm_i->build_lock); 1944 1945 return nr - nr_shrink; 1946 } 1947 1948 void recover_inline_xattr(struct inode *inode, struct page *page) 1949 { 1950 void *src_addr, *dst_addr; 1951 size_t inline_size; 1952 struct page *ipage; 1953 struct f2fs_inode *ri; 1954 1955 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 1956 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 1957 1958 ri = F2FS_INODE(page); 1959 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 1960 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR); 1961 goto update_inode; 1962 } 1963 1964 dst_addr = inline_xattr_addr(ipage); 1965 src_addr = inline_xattr_addr(page); 1966 inline_size = inline_xattr_size(inode); 1967 1968 f2fs_wait_on_page_writeback(ipage, NODE, true); 1969 memcpy(dst_addr, src_addr, inline_size); 1970 update_inode: 1971 update_inode(inode, ipage); 1972 f2fs_put_page(ipage, 1); 1973 } 1974 1975 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 1976 { 1977 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1978 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 1979 nid_t new_xnid = nid_of_node(page); 1980 struct node_info ni; 1981 1982 /* 1: invalidate the previous xattr nid */ 1983 if (!prev_xnid) 1984 goto recover_xnid; 1985 1986 /* Deallocate node address */ 1987 get_node_info(sbi, prev_xnid, &ni); 1988 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 1989 invalidate_blocks(sbi, ni.blk_addr); 1990 dec_valid_node_count(sbi, inode); 1991 set_node_addr(sbi, &ni, NULL_ADDR, false); 1992 1993 recover_xnid: 1994 /* 2: allocate new xattr nid */ 1995 if (unlikely(!inc_valid_node_count(sbi, inode))) 1996 f2fs_bug_on(sbi, 1); 1997 1998 remove_free_nid(NM_I(sbi), new_xnid); 1999 get_node_info(sbi, new_xnid, &ni); 2000 ni.ino = inode->i_ino; 2001 set_node_addr(sbi, &ni, NEW_ADDR, false); 2002 F2FS_I(inode)->i_xattr_nid = new_xnid; 2003 2004 /* 3: update xattr blkaddr */ 2005 refresh_sit_entry(sbi, NEW_ADDR, blkaddr); 2006 set_node_addr(sbi, &ni, blkaddr, false); 2007 2008 update_inode_page(inode); 2009 } 2010 2011 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2012 { 2013 struct f2fs_inode *src, *dst; 2014 nid_t ino = ino_of_node(page); 2015 struct node_info old_ni, new_ni; 2016 struct page *ipage; 2017 2018 get_node_info(sbi, ino, &old_ni); 2019 2020 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2021 return -EINVAL; 2022 2023 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2024 if (!ipage) 2025 return -ENOMEM; 2026 2027 /* Should not use this inode from free nid list */ 2028 remove_free_nid(NM_I(sbi), ino); 2029 2030 SetPageUptodate(ipage); 2031 fill_node_footer(ipage, ino, ino, 0, true); 2032 2033 src = F2FS_INODE(page); 2034 dst = F2FS_INODE(ipage); 2035 2036 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2037 dst->i_size = 0; 2038 dst->i_blocks = cpu_to_le64(1); 2039 dst->i_links = cpu_to_le32(1); 2040 dst->i_xattr_nid = 0; 2041 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 2042 2043 new_ni = old_ni; 2044 new_ni.ino = ino; 2045 2046 if (unlikely(!inc_valid_node_count(sbi, NULL))) 2047 WARN_ON(1); 2048 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2049 inc_valid_inode_count(sbi); 2050 set_page_dirty(ipage); 2051 f2fs_put_page(ipage, 1); 2052 return 0; 2053 } 2054 2055 int restore_node_summary(struct f2fs_sb_info *sbi, 2056 unsigned int segno, struct f2fs_summary_block *sum) 2057 { 2058 struct f2fs_node *rn; 2059 struct f2fs_summary *sum_entry; 2060 block_t addr; 2061 int bio_blocks = MAX_BIO_BLOCKS(sbi); 2062 int i, idx, last_offset, nrpages; 2063 2064 /* scan the node segment */ 2065 last_offset = sbi->blocks_per_seg; 2066 addr = START_BLOCK(sbi, segno); 2067 sum_entry = &sum->entries[0]; 2068 2069 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2070 nrpages = min(last_offset - i, bio_blocks); 2071 2072 /* readahead node pages */ 2073 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2074 2075 for (idx = addr; idx < addr + nrpages; idx++) { 2076 struct page *page = get_tmp_page(sbi, idx); 2077 2078 rn = F2FS_NODE(page); 2079 sum_entry->nid = rn->footer.nid; 2080 sum_entry->version = 0; 2081 sum_entry->ofs_in_node = 0; 2082 sum_entry++; 2083 f2fs_put_page(page, 1); 2084 } 2085 2086 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2087 addr + nrpages); 2088 } 2089 return 0; 2090 } 2091 2092 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2093 { 2094 struct f2fs_nm_info *nm_i = NM_I(sbi); 2095 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2096 struct f2fs_journal *journal = curseg->journal; 2097 int i; 2098 2099 down_write(&curseg->journal_rwsem); 2100 for (i = 0; i < nats_in_cursum(journal); i++) { 2101 struct nat_entry *ne; 2102 struct f2fs_nat_entry raw_ne; 2103 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2104 2105 raw_ne = nat_in_journal(journal, i); 2106 2107 ne = __lookup_nat_cache(nm_i, nid); 2108 if (!ne) { 2109 ne = grab_nat_entry(nm_i, nid); 2110 node_info_from_raw_nat(&ne->ni, &raw_ne); 2111 } 2112 __set_nat_cache_dirty(nm_i, ne); 2113 } 2114 update_nats_in_cursum(journal, -i); 2115 up_write(&curseg->journal_rwsem); 2116 } 2117 2118 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2119 struct list_head *head, int max) 2120 { 2121 struct nat_entry_set *cur; 2122 2123 if (nes->entry_cnt >= max) 2124 goto add_out; 2125 2126 list_for_each_entry(cur, head, set_list) { 2127 if (cur->entry_cnt >= nes->entry_cnt) { 2128 list_add(&nes->set_list, cur->set_list.prev); 2129 return; 2130 } 2131 } 2132 add_out: 2133 list_add_tail(&nes->set_list, head); 2134 } 2135 2136 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2137 struct nat_entry_set *set) 2138 { 2139 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2140 struct f2fs_journal *journal = curseg->journal; 2141 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2142 bool to_journal = true; 2143 struct f2fs_nat_block *nat_blk; 2144 struct nat_entry *ne, *cur; 2145 struct page *page = NULL; 2146 2147 /* 2148 * there are two steps to flush nat entries: 2149 * #1, flush nat entries to journal in current hot data summary block. 2150 * #2, flush nat entries to nat page. 2151 */ 2152 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2153 to_journal = false; 2154 2155 if (to_journal) { 2156 down_write(&curseg->journal_rwsem); 2157 } else { 2158 page = get_next_nat_page(sbi, start_nid); 2159 nat_blk = page_address(page); 2160 f2fs_bug_on(sbi, !nat_blk); 2161 } 2162 2163 /* flush dirty nats in nat entry set */ 2164 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2165 struct f2fs_nat_entry *raw_ne; 2166 nid_t nid = nat_get_nid(ne); 2167 int offset; 2168 2169 if (nat_get_blkaddr(ne) == NEW_ADDR) 2170 continue; 2171 2172 if (to_journal) { 2173 offset = lookup_journal_in_cursum(journal, 2174 NAT_JOURNAL, nid, 1); 2175 f2fs_bug_on(sbi, offset < 0); 2176 raw_ne = &nat_in_journal(journal, offset); 2177 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2178 } else { 2179 raw_ne = &nat_blk->entries[nid - start_nid]; 2180 } 2181 raw_nat_from_node_info(raw_ne, &ne->ni); 2182 nat_reset_flag(ne); 2183 __clear_nat_cache_dirty(NM_I(sbi), ne); 2184 if (nat_get_blkaddr(ne) == NULL_ADDR) 2185 add_free_nid(sbi, nid, false); 2186 } 2187 2188 if (to_journal) 2189 up_write(&curseg->journal_rwsem); 2190 else 2191 f2fs_put_page(page, 1); 2192 2193 f2fs_bug_on(sbi, set->entry_cnt); 2194 2195 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2196 kmem_cache_free(nat_entry_set_slab, set); 2197 } 2198 2199 /* 2200 * This function is called during the checkpointing process. 2201 */ 2202 void flush_nat_entries(struct f2fs_sb_info *sbi) 2203 { 2204 struct f2fs_nm_info *nm_i = NM_I(sbi); 2205 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2206 struct f2fs_journal *journal = curseg->journal; 2207 struct nat_entry_set *setvec[SETVEC_SIZE]; 2208 struct nat_entry_set *set, *tmp; 2209 unsigned int found; 2210 nid_t set_idx = 0; 2211 LIST_HEAD(sets); 2212 2213 if (!nm_i->dirty_nat_cnt) 2214 return; 2215 2216 down_write(&nm_i->nat_tree_lock); 2217 2218 /* 2219 * if there are no enough space in journal to store dirty nat 2220 * entries, remove all entries from journal and merge them 2221 * into nat entry set. 2222 */ 2223 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2224 remove_nats_in_journal(sbi); 2225 2226 while ((found = __gang_lookup_nat_set(nm_i, 2227 set_idx, SETVEC_SIZE, setvec))) { 2228 unsigned idx; 2229 set_idx = setvec[found - 1]->set + 1; 2230 for (idx = 0; idx < found; idx++) 2231 __adjust_nat_entry_set(setvec[idx], &sets, 2232 MAX_NAT_JENTRIES(journal)); 2233 } 2234 2235 /* flush dirty nats in nat entry set */ 2236 list_for_each_entry_safe(set, tmp, &sets, set_list) 2237 __flush_nat_entry_set(sbi, set); 2238 2239 up_write(&nm_i->nat_tree_lock); 2240 2241 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); 2242 } 2243 2244 static int init_node_manager(struct f2fs_sb_info *sbi) 2245 { 2246 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2247 struct f2fs_nm_info *nm_i = NM_I(sbi); 2248 unsigned char *version_bitmap; 2249 unsigned int nat_segs, nat_blocks; 2250 2251 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2252 2253 /* segment_count_nat includes pair segment so divide to 2. */ 2254 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2255 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2256 2257 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 2258 2259 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2260 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; 2261 nm_i->fcnt = 0; 2262 nm_i->nat_cnt = 0; 2263 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2264 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2265 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2266 2267 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2268 INIT_LIST_HEAD(&nm_i->free_nid_list); 2269 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2270 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2271 INIT_LIST_HEAD(&nm_i->nat_entries); 2272 2273 mutex_init(&nm_i->build_lock); 2274 spin_lock_init(&nm_i->free_nid_list_lock); 2275 init_rwsem(&nm_i->nat_tree_lock); 2276 2277 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2278 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2279 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2280 if (!version_bitmap) 2281 return -EFAULT; 2282 2283 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2284 GFP_KERNEL); 2285 if (!nm_i->nat_bitmap) 2286 return -ENOMEM; 2287 return 0; 2288 } 2289 2290 int build_node_manager(struct f2fs_sb_info *sbi) 2291 { 2292 int err; 2293 2294 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2295 if (!sbi->nm_info) 2296 return -ENOMEM; 2297 2298 err = init_node_manager(sbi); 2299 if (err) 2300 return err; 2301 2302 build_free_nids(sbi); 2303 return 0; 2304 } 2305 2306 void destroy_node_manager(struct f2fs_sb_info *sbi) 2307 { 2308 struct f2fs_nm_info *nm_i = NM_I(sbi); 2309 struct free_nid *i, *next_i; 2310 struct nat_entry *natvec[NATVEC_SIZE]; 2311 struct nat_entry_set *setvec[SETVEC_SIZE]; 2312 nid_t nid = 0; 2313 unsigned int found; 2314 2315 if (!nm_i) 2316 return; 2317 2318 /* destroy free nid list */ 2319 spin_lock(&nm_i->free_nid_list_lock); 2320 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 2321 f2fs_bug_on(sbi, i->state == NID_ALLOC); 2322 __del_from_free_nid_list(nm_i, i); 2323 nm_i->fcnt--; 2324 spin_unlock(&nm_i->free_nid_list_lock); 2325 kmem_cache_free(free_nid_slab, i); 2326 spin_lock(&nm_i->free_nid_list_lock); 2327 } 2328 f2fs_bug_on(sbi, nm_i->fcnt); 2329 spin_unlock(&nm_i->free_nid_list_lock); 2330 2331 /* destroy nat cache */ 2332 down_write(&nm_i->nat_tree_lock); 2333 while ((found = __gang_lookup_nat_cache(nm_i, 2334 nid, NATVEC_SIZE, natvec))) { 2335 unsigned idx; 2336 2337 nid = nat_get_nid(natvec[found - 1]) + 1; 2338 for (idx = 0; idx < found; idx++) 2339 __del_from_nat_cache(nm_i, natvec[idx]); 2340 } 2341 f2fs_bug_on(sbi, nm_i->nat_cnt); 2342 2343 /* destroy nat set cache */ 2344 nid = 0; 2345 while ((found = __gang_lookup_nat_set(nm_i, 2346 nid, SETVEC_SIZE, setvec))) { 2347 unsigned idx; 2348 2349 nid = setvec[found - 1]->set + 1; 2350 for (idx = 0; idx < found; idx++) { 2351 /* entry_cnt is not zero, when cp_error was occurred */ 2352 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2353 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2354 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2355 } 2356 } 2357 up_write(&nm_i->nat_tree_lock); 2358 2359 kfree(nm_i->nat_bitmap); 2360 sbi->nm_info = NULL; 2361 kfree(nm_i); 2362 } 2363 2364 int __init create_node_manager_caches(void) 2365 { 2366 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2367 sizeof(struct nat_entry)); 2368 if (!nat_entry_slab) 2369 goto fail; 2370 2371 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2372 sizeof(struct free_nid)); 2373 if (!free_nid_slab) 2374 goto destroy_nat_entry; 2375 2376 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2377 sizeof(struct nat_entry_set)); 2378 if (!nat_entry_set_slab) 2379 goto destroy_free_nid; 2380 return 0; 2381 2382 destroy_free_nid: 2383 kmem_cache_destroy(free_nid_slab); 2384 destroy_nat_entry: 2385 kmem_cache_destroy(nat_entry_slab); 2386 fail: 2387 return -ENOMEM; 2388 } 2389 2390 void destroy_node_manager_caches(void) 2391 { 2392 kmem_cache_destroy(nat_entry_set_slab); 2393 kmem_cache_destroy(free_nid_slab); 2394 kmem_cache_destroy(nat_entry_slab); 2395 } 2396