xref: /openbmc/linux/fs/f2fs/node.c (revision 6bacf52fb58aeb3e89d9a62970b85a5570aa8ace)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23 
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 
27 static void clear_node_page_dirty(struct page *page)
28 {
29 	struct address_space *mapping = page->mapping;
30 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 	unsigned int long flags;
32 
33 	if (PageDirty(page)) {
34 		spin_lock_irqsave(&mapping->tree_lock, flags);
35 		radix_tree_tag_clear(&mapping->page_tree,
36 				page_index(page),
37 				PAGECACHE_TAG_DIRTY);
38 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
39 
40 		clear_page_dirty_for_io(page);
41 		dec_page_count(sbi, F2FS_DIRTY_NODES);
42 	}
43 	ClearPageUptodate(page);
44 }
45 
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47 {
48 	pgoff_t index = current_nat_addr(sbi, nid);
49 	return get_meta_page(sbi, index);
50 }
51 
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53 {
54 	struct page *src_page;
55 	struct page *dst_page;
56 	pgoff_t src_off;
57 	pgoff_t dst_off;
58 	void *src_addr;
59 	void *dst_addr;
60 	struct f2fs_nm_info *nm_i = NM_I(sbi);
61 
62 	src_off = current_nat_addr(sbi, nid);
63 	dst_off = next_nat_addr(sbi, src_off);
64 
65 	/* get current nat block page with lock */
66 	src_page = get_meta_page(sbi, src_off);
67 
68 	/* Dirty src_page means that it is already the new target NAT page. */
69 	if (PageDirty(src_page))
70 		return src_page;
71 
72 	dst_page = grab_meta_page(sbi, dst_off);
73 
74 	src_addr = page_address(src_page);
75 	dst_addr = page_address(dst_page);
76 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 	set_page_dirty(dst_page);
78 	f2fs_put_page(src_page, 1);
79 
80 	set_to_next_nat(nm_i, nid);
81 
82 	return dst_page;
83 }
84 
85 /*
86  * Readahead NAT pages
87  */
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89 {
90 	struct address_space *mapping = sbi->meta_inode->i_mapping;
91 	struct f2fs_nm_info *nm_i = NM_I(sbi);
92 	struct page *page;
93 	pgoff_t index;
94 	int i;
95 
96 	for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
97 		if (unlikely(nid >= nm_i->max_nid))
98 			nid = 0;
99 		index = current_nat_addr(sbi, nid);
100 
101 		page = grab_cache_page(mapping, index);
102 		if (!page)
103 			continue;
104 		if (PageUptodate(page)) {
105 			mark_page_accessed(page);
106 			f2fs_put_page(page, 1);
107 			continue;
108 		}
109 		f2fs_submit_page_mbio(sbi, page, index, META, READ);
110 		mark_page_accessed(page);
111 		f2fs_put_page(page, 0);
112 	}
113 	f2fs_submit_merged_bio(sbi, META, true, READ);
114 }
115 
116 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
117 {
118 	return radix_tree_lookup(&nm_i->nat_root, n);
119 }
120 
121 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
122 		nid_t start, unsigned int nr, struct nat_entry **ep)
123 {
124 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
125 }
126 
127 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
128 {
129 	list_del(&e->list);
130 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
131 	nm_i->nat_cnt--;
132 	kmem_cache_free(nat_entry_slab, e);
133 }
134 
135 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
136 {
137 	struct f2fs_nm_info *nm_i = NM_I(sbi);
138 	struct nat_entry *e;
139 	int is_cp = 1;
140 
141 	read_lock(&nm_i->nat_tree_lock);
142 	e = __lookup_nat_cache(nm_i, nid);
143 	if (e && !e->checkpointed)
144 		is_cp = 0;
145 	read_unlock(&nm_i->nat_tree_lock);
146 	return is_cp;
147 }
148 
149 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
150 {
151 	struct nat_entry *new;
152 
153 	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
154 	if (!new)
155 		return NULL;
156 	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
157 		kmem_cache_free(nat_entry_slab, new);
158 		return NULL;
159 	}
160 	memset(new, 0, sizeof(struct nat_entry));
161 	nat_set_nid(new, nid);
162 	list_add_tail(&new->list, &nm_i->nat_entries);
163 	nm_i->nat_cnt++;
164 	return new;
165 }
166 
167 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
168 						struct f2fs_nat_entry *ne)
169 {
170 	struct nat_entry *e;
171 retry:
172 	write_lock(&nm_i->nat_tree_lock);
173 	e = __lookup_nat_cache(nm_i, nid);
174 	if (!e) {
175 		e = grab_nat_entry(nm_i, nid);
176 		if (!e) {
177 			write_unlock(&nm_i->nat_tree_lock);
178 			goto retry;
179 		}
180 		nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
181 		nat_set_ino(e, le32_to_cpu(ne->ino));
182 		nat_set_version(e, ne->version);
183 		e->checkpointed = true;
184 	}
185 	write_unlock(&nm_i->nat_tree_lock);
186 }
187 
188 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
189 			block_t new_blkaddr)
190 {
191 	struct f2fs_nm_info *nm_i = NM_I(sbi);
192 	struct nat_entry *e;
193 retry:
194 	write_lock(&nm_i->nat_tree_lock);
195 	e = __lookup_nat_cache(nm_i, ni->nid);
196 	if (!e) {
197 		e = grab_nat_entry(nm_i, ni->nid);
198 		if (!e) {
199 			write_unlock(&nm_i->nat_tree_lock);
200 			goto retry;
201 		}
202 		e->ni = *ni;
203 		e->checkpointed = true;
204 		f2fs_bug_on(ni->blk_addr == NEW_ADDR);
205 	} else if (new_blkaddr == NEW_ADDR) {
206 		/*
207 		 * when nid is reallocated,
208 		 * previous nat entry can be remained in nat cache.
209 		 * So, reinitialize it with new information.
210 		 */
211 		e->ni = *ni;
212 		f2fs_bug_on(ni->blk_addr != NULL_ADDR);
213 	}
214 
215 	if (new_blkaddr == NEW_ADDR)
216 		e->checkpointed = false;
217 
218 	/* sanity check */
219 	f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
220 	f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
221 			new_blkaddr == NULL_ADDR);
222 	f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
223 			new_blkaddr == NEW_ADDR);
224 	f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
225 			nat_get_blkaddr(e) != NULL_ADDR &&
226 			new_blkaddr == NEW_ADDR);
227 
228 	/* increament version no as node is removed */
229 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
230 		unsigned char version = nat_get_version(e);
231 		nat_set_version(e, inc_node_version(version));
232 	}
233 
234 	/* change address */
235 	nat_set_blkaddr(e, new_blkaddr);
236 	__set_nat_cache_dirty(nm_i, e);
237 	write_unlock(&nm_i->nat_tree_lock);
238 }
239 
240 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
241 {
242 	struct f2fs_nm_info *nm_i = NM_I(sbi);
243 
244 	if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
245 		return 0;
246 
247 	write_lock(&nm_i->nat_tree_lock);
248 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
249 		struct nat_entry *ne;
250 		ne = list_first_entry(&nm_i->nat_entries,
251 					struct nat_entry, list);
252 		__del_from_nat_cache(nm_i, ne);
253 		nr_shrink--;
254 	}
255 	write_unlock(&nm_i->nat_tree_lock);
256 	return nr_shrink;
257 }
258 
259 /*
260  * This function returns always success
261  */
262 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
263 {
264 	struct f2fs_nm_info *nm_i = NM_I(sbi);
265 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
266 	struct f2fs_summary_block *sum = curseg->sum_blk;
267 	nid_t start_nid = START_NID(nid);
268 	struct f2fs_nat_block *nat_blk;
269 	struct page *page = NULL;
270 	struct f2fs_nat_entry ne;
271 	struct nat_entry *e;
272 	int i;
273 
274 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
275 	ni->nid = nid;
276 
277 	/* Check nat cache */
278 	read_lock(&nm_i->nat_tree_lock);
279 	e = __lookup_nat_cache(nm_i, nid);
280 	if (e) {
281 		ni->ino = nat_get_ino(e);
282 		ni->blk_addr = nat_get_blkaddr(e);
283 		ni->version = nat_get_version(e);
284 	}
285 	read_unlock(&nm_i->nat_tree_lock);
286 	if (e)
287 		return;
288 
289 	/* Check current segment summary */
290 	mutex_lock(&curseg->curseg_mutex);
291 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
292 	if (i >= 0) {
293 		ne = nat_in_journal(sum, i);
294 		node_info_from_raw_nat(ni, &ne);
295 	}
296 	mutex_unlock(&curseg->curseg_mutex);
297 	if (i >= 0)
298 		goto cache;
299 
300 	/* Fill node_info from nat page */
301 	page = get_current_nat_page(sbi, start_nid);
302 	nat_blk = (struct f2fs_nat_block *)page_address(page);
303 	ne = nat_blk->entries[nid - start_nid];
304 	node_info_from_raw_nat(ni, &ne);
305 	f2fs_put_page(page, 1);
306 cache:
307 	/* cache nat entry */
308 	cache_nat_entry(NM_I(sbi), nid, &ne);
309 }
310 
311 /*
312  * The maximum depth is four.
313  * Offset[0] will have raw inode offset.
314  */
315 static int get_node_path(struct f2fs_inode_info *fi, long block,
316 				int offset[4], unsigned int noffset[4])
317 {
318 	const long direct_index = ADDRS_PER_INODE(fi);
319 	const long direct_blks = ADDRS_PER_BLOCK;
320 	const long dptrs_per_blk = NIDS_PER_BLOCK;
321 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
322 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
323 	int n = 0;
324 	int level = 0;
325 
326 	noffset[0] = 0;
327 
328 	if (block < direct_index) {
329 		offset[n] = block;
330 		goto got;
331 	}
332 	block -= direct_index;
333 	if (block < direct_blks) {
334 		offset[n++] = NODE_DIR1_BLOCK;
335 		noffset[n] = 1;
336 		offset[n] = block;
337 		level = 1;
338 		goto got;
339 	}
340 	block -= direct_blks;
341 	if (block < direct_blks) {
342 		offset[n++] = NODE_DIR2_BLOCK;
343 		noffset[n] = 2;
344 		offset[n] = block;
345 		level = 1;
346 		goto got;
347 	}
348 	block -= direct_blks;
349 	if (block < indirect_blks) {
350 		offset[n++] = NODE_IND1_BLOCK;
351 		noffset[n] = 3;
352 		offset[n++] = block / direct_blks;
353 		noffset[n] = 4 + offset[n - 1];
354 		offset[n] = block % direct_blks;
355 		level = 2;
356 		goto got;
357 	}
358 	block -= indirect_blks;
359 	if (block < indirect_blks) {
360 		offset[n++] = NODE_IND2_BLOCK;
361 		noffset[n] = 4 + dptrs_per_blk;
362 		offset[n++] = block / direct_blks;
363 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
364 		offset[n] = block % direct_blks;
365 		level = 2;
366 		goto got;
367 	}
368 	block -= indirect_blks;
369 	if (block < dindirect_blks) {
370 		offset[n++] = NODE_DIND_BLOCK;
371 		noffset[n] = 5 + (dptrs_per_blk * 2);
372 		offset[n++] = block / indirect_blks;
373 		noffset[n] = 6 + (dptrs_per_blk * 2) +
374 			      offset[n - 1] * (dptrs_per_blk + 1);
375 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
376 		noffset[n] = 7 + (dptrs_per_blk * 2) +
377 			      offset[n - 2] * (dptrs_per_blk + 1) +
378 			      offset[n - 1];
379 		offset[n] = block % direct_blks;
380 		level = 3;
381 		goto got;
382 	} else {
383 		BUG();
384 	}
385 got:
386 	return level;
387 }
388 
389 /*
390  * Caller should call f2fs_put_dnode(dn).
391  * Also, it should grab and release a mutex by calling mutex_lock_op() and
392  * mutex_unlock_op() only if ro is not set RDONLY_NODE.
393  * In the case of RDONLY_NODE, we don't need to care about mutex.
394  */
395 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
396 {
397 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
398 	struct page *npage[4];
399 	struct page *parent;
400 	int offset[4];
401 	unsigned int noffset[4];
402 	nid_t nids[4];
403 	int level, i;
404 	int err = 0;
405 
406 	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
407 
408 	nids[0] = dn->inode->i_ino;
409 	npage[0] = dn->inode_page;
410 
411 	if (!npage[0]) {
412 		npage[0] = get_node_page(sbi, nids[0]);
413 		if (IS_ERR(npage[0]))
414 			return PTR_ERR(npage[0]);
415 	}
416 	parent = npage[0];
417 	if (level != 0)
418 		nids[1] = get_nid(parent, offset[0], true);
419 	dn->inode_page = npage[0];
420 	dn->inode_page_locked = true;
421 
422 	/* get indirect or direct nodes */
423 	for (i = 1; i <= level; i++) {
424 		bool done = false;
425 
426 		if (!nids[i] && mode == ALLOC_NODE) {
427 			/* alloc new node */
428 			if (!alloc_nid(sbi, &(nids[i]))) {
429 				err = -ENOSPC;
430 				goto release_pages;
431 			}
432 
433 			dn->nid = nids[i];
434 			npage[i] = new_node_page(dn, noffset[i], NULL);
435 			if (IS_ERR(npage[i])) {
436 				alloc_nid_failed(sbi, nids[i]);
437 				err = PTR_ERR(npage[i]);
438 				goto release_pages;
439 			}
440 
441 			set_nid(parent, offset[i - 1], nids[i], i == 1);
442 			alloc_nid_done(sbi, nids[i]);
443 			done = true;
444 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
445 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
446 			if (IS_ERR(npage[i])) {
447 				err = PTR_ERR(npage[i]);
448 				goto release_pages;
449 			}
450 			done = true;
451 		}
452 		if (i == 1) {
453 			dn->inode_page_locked = false;
454 			unlock_page(parent);
455 		} else {
456 			f2fs_put_page(parent, 1);
457 		}
458 
459 		if (!done) {
460 			npage[i] = get_node_page(sbi, nids[i]);
461 			if (IS_ERR(npage[i])) {
462 				err = PTR_ERR(npage[i]);
463 				f2fs_put_page(npage[0], 0);
464 				goto release_out;
465 			}
466 		}
467 		if (i < level) {
468 			parent = npage[i];
469 			nids[i + 1] = get_nid(parent, offset[i], false);
470 		}
471 	}
472 	dn->nid = nids[level];
473 	dn->ofs_in_node = offset[level];
474 	dn->node_page = npage[level];
475 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
476 	return 0;
477 
478 release_pages:
479 	f2fs_put_page(parent, 1);
480 	if (i > 1)
481 		f2fs_put_page(npage[0], 0);
482 release_out:
483 	dn->inode_page = NULL;
484 	dn->node_page = NULL;
485 	return err;
486 }
487 
488 static void truncate_node(struct dnode_of_data *dn)
489 {
490 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
491 	struct node_info ni;
492 
493 	get_node_info(sbi, dn->nid, &ni);
494 	if (dn->inode->i_blocks == 0) {
495 		f2fs_bug_on(ni.blk_addr != NULL_ADDR);
496 		goto invalidate;
497 	}
498 	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
499 
500 	/* Deallocate node address */
501 	invalidate_blocks(sbi, ni.blk_addr);
502 	dec_valid_node_count(sbi, dn->inode);
503 	set_node_addr(sbi, &ni, NULL_ADDR);
504 
505 	if (dn->nid == dn->inode->i_ino) {
506 		remove_orphan_inode(sbi, dn->nid);
507 		dec_valid_inode_count(sbi);
508 	} else {
509 		sync_inode_page(dn);
510 	}
511 invalidate:
512 	clear_node_page_dirty(dn->node_page);
513 	F2FS_SET_SB_DIRT(sbi);
514 
515 	f2fs_put_page(dn->node_page, 1);
516 	dn->node_page = NULL;
517 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
518 }
519 
520 static int truncate_dnode(struct dnode_of_data *dn)
521 {
522 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
523 	struct page *page;
524 
525 	if (dn->nid == 0)
526 		return 1;
527 
528 	/* get direct node */
529 	page = get_node_page(sbi, dn->nid);
530 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
531 		return 1;
532 	else if (IS_ERR(page))
533 		return PTR_ERR(page);
534 
535 	/* Make dnode_of_data for parameter */
536 	dn->node_page = page;
537 	dn->ofs_in_node = 0;
538 	truncate_data_blocks(dn);
539 	truncate_node(dn);
540 	return 1;
541 }
542 
543 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
544 						int ofs, int depth)
545 {
546 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
547 	struct dnode_of_data rdn = *dn;
548 	struct page *page;
549 	struct f2fs_node *rn;
550 	nid_t child_nid;
551 	unsigned int child_nofs;
552 	int freed = 0;
553 	int i, ret;
554 
555 	if (dn->nid == 0)
556 		return NIDS_PER_BLOCK + 1;
557 
558 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
559 
560 	page = get_node_page(sbi, dn->nid);
561 	if (IS_ERR(page)) {
562 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
563 		return PTR_ERR(page);
564 	}
565 
566 	rn = F2FS_NODE(page);
567 	if (depth < 3) {
568 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
569 			child_nid = le32_to_cpu(rn->in.nid[i]);
570 			if (child_nid == 0)
571 				continue;
572 			rdn.nid = child_nid;
573 			ret = truncate_dnode(&rdn);
574 			if (ret < 0)
575 				goto out_err;
576 			set_nid(page, i, 0, false);
577 		}
578 	} else {
579 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
580 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
581 			child_nid = le32_to_cpu(rn->in.nid[i]);
582 			if (child_nid == 0) {
583 				child_nofs += NIDS_PER_BLOCK + 1;
584 				continue;
585 			}
586 			rdn.nid = child_nid;
587 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
588 			if (ret == (NIDS_PER_BLOCK + 1)) {
589 				set_nid(page, i, 0, false);
590 				child_nofs += ret;
591 			} else if (ret < 0 && ret != -ENOENT) {
592 				goto out_err;
593 			}
594 		}
595 		freed = child_nofs;
596 	}
597 
598 	if (!ofs) {
599 		/* remove current indirect node */
600 		dn->node_page = page;
601 		truncate_node(dn);
602 		freed++;
603 	} else {
604 		f2fs_put_page(page, 1);
605 	}
606 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
607 	return freed;
608 
609 out_err:
610 	f2fs_put_page(page, 1);
611 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
612 	return ret;
613 }
614 
615 static int truncate_partial_nodes(struct dnode_of_data *dn,
616 			struct f2fs_inode *ri, int *offset, int depth)
617 {
618 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
619 	struct page *pages[2];
620 	nid_t nid[3];
621 	nid_t child_nid;
622 	int err = 0;
623 	int i;
624 	int idx = depth - 2;
625 
626 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
627 	if (!nid[0])
628 		return 0;
629 
630 	/* get indirect nodes in the path */
631 	for (i = 0; i < depth - 1; i++) {
632 		/* refernece count'll be increased */
633 		pages[i] = get_node_page(sbi, nid[i]);
634 		if (IS_ERR(pages[i])) {
635 			depth = i + 1;
636 			err = PTR_ERR(pages[i]);
637 			goto fail;
638 		}
639 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
640 	}
641 
642 	/* free direct nodes linked to a partial indirect node */
643 	for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
644 		child_nid = get_nid(pages[idx], i, false);
645 		if (!child_nid)
646 			continue;
647 		dn->nid = child_nid;
648 		err = truncate_dnode(dn);
649 		if (err < 0)
650 			goto fail;
651 		set_nid(pages[idx], i, 0, false);
652 	}
653 
654 	if (offset[depth - 1] == 0) {
655 		dn->node_page = pages[idx];
656 		dn->nid = nid[idx];
657 		truncate_node(dn);
658 	} else {
659 		f2fs_put_page(pages[idx], 1);
660 	}
661 	offset[idx]++;
662 	offset[depth - 1] = 0;
663 fail:
664 	for (i = depth - 3; i >= 0; i--)
665 		f2fs_put_page(pages[i], 1);
666 
667 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
668 
669 	return err;
670 }
671 
672 /*
673  * All the block addresses of data and nodes should be nullified.
674  */
675 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
676 {
677 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
678 	struct address_space *node_mapping = sbi->node_inode->i_mapping;
679 	int err = 0, cont = 1;
680 	int level, offset[4], noffset[4];
681 	unsigned int nofs = 0;
682 	struct f2fs_node *rn;
683 	struct dnode_of_data dn;
684 	struct page *page;
685 
686 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
687 
688 	level = get_node_path(F2FS_I(inode), from, offset, noffset);
689 restart:
690 	page = get_node_page(sbi, inode->i_ino);
691 	if (IS_ERR(page)) {
692 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
693 		return PTR_ERR(page);
694 	}
695 
696 	set_new_dnode(&dn, inode, page, NULL, 0);
697 	unlock_page(page);
698 
699 	rn = F2FS_NODE(page);
700 	switch (level) {
701 	case 0:
702 	case 1:
703 		nofs = noffset[1];
704 		break;
705 	case 2:
706 		nofs = noffset[1];
707 		if (!offset[level - 1])
708 			goto skip_partial;
709 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
710 		if (err < 0 && err != -ENOENT)
711 			goto fail;
712 		nofs += 1 + NIDS_PER_BLOCK;
713 		break;
714 	case 3:
715 		nofs = 5 + 2 * NIDS_PER_BLOCK;
716 		if (!offset[level - 1])
717 			goto skip_partial;
718 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
719 		if (err < 0 && err != -ENOENT)
720 			goto fail;
721 		break;
722 	default:
723 		BUG();
724 	}
725 
726 skip_partial:
727 	while (cont) {
728 		dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
729 		switch (offset[0]) {
730 		case NODE_DIR1_BLOCK:
731 		case NODE_DIR2_BLOCK:
732 			err = truncate_dnode(&dn);
733 			break;
734 
735 		case NODE_IND1_BLOCK:
736 		case NODE_IND2_BLOCK:
737 			err = truncate_nodes(&dn, nofs, offset[1], 2);
738 			break;
739 
740 		case NODE_DIND_BLOCK:
741 			err = truncate_nodes(&dn, nofs, offset[1], 3);
742 			cont = 0;
743 			break;
744 
745 		default:
746 			BUG();
747 		}
748 		if (err < 0 && err != -ENOENT)
749 			goto fail;
750 		if (offset[1] == 0 &&
751 				rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
752 			lock_page(page);
753 			if (unlikely(page->mapping != node_mapping)) {
754 				f2fs_put_page(page, 1);
755 				goto restart;
756 			}
757 			wait_on_page_writeback(page);
758 			rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
759 			set_page_dirty(page);
760 			unlock_page(page);
761 		}
762 		offset[1] = 0;
763 		offset[0]++;
764 		nofs += err;
765 	}
766 fail:
767 	f2fs_put_page(page, 0);
768 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
769 	return err > 0 ? 0 : err;
770 }
771 
772 int truncate_xattr_node(struct inode *inode, struct page *page)
773 {
774 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
775 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
776 	struct dnode_of_data dn;
777 	struct page *npage;
778 
779 	if (!nid)
780 		return 0;
781 
782 	npage = get_node_page(sbi, nid);
783 	if (IS_ERR(npage))
784 		return PTR_ERR(npage);
785 
786 	F2FS_I(inode)->i_xattr_nid = 0;
787 
788 	/* need to do checkpoint during fsync */
789 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
790 
791 	set_new_dnode(&dn, inode, page, npage, nid);
792 
793 	if (page)
794 		dn.inode_page_locked = true;
795 	truncate_node(&dn);
796 	return 0;
797 }
798 
799 /*
800  * Caller should grab and release a mutex by calling mutex_lock_op() and
801  * mutex_unlock_op().
802  */
803 void remove_inode_page(struct inode *inode)
804 {
805 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
806 	struct page *page;
807 	nid_t ino = inode->i_ino;
808 	struct dnode_of_data dn;
809 
810 	page = get_node_page(sbi, ino);
811 	if (IS_ERR(page))
812 		return;
813 
814 	if (truncate_xattr_node(inode, page)) {
815 		f2fs_put_page(page, 1);
816 		return;
817 	}
818 	/* 0 is possible, after f2fs_new_inode() is failed */
819 	f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
820 	set_new_dnode(&dn, inode, page, page, ino);
821 	truncate_node(&dn);
822 }
823 
824 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
825 {
826 	struct dnode_of_data dn;
827 
828 	/* allocate inode page for new inode */
829 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
830 
831 	/* caller should f2fs_put_page(page, 1); */
832 	return new_node_page(&dn, 0, NULL);
833 }
834 
835 struct page *new_node_page(struct dnode_of_data *dn,
836 				unsigned int ofs, struct page *ipage)
837 {
838 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
839 	struct address_space *mapping = sbi->node_inode->i_mapping;
840 	struct node_info old_ni, new_ni;
841 	struct page *page;
842 	int err;
843 
844 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
845 		return ERR_PTR(-EPERM);
846 
847 	page = grab_cache_page(mapping, dn->nid);
848 	if (!page)
849 		return ERR_PTR(-ENOMEM);
850 
851 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
852 		err = -ENOSPC;
853 		goto fail;
854 	}
855 
856 	get_node_info(sbi, dn->nid, &old_ni);
857 
858 	/* Reinitialize old_ni with new node page */
859 	f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
860 	new_ni = old_ni;
861 	new_ni.ino = dn->inode->i_ino;
862 	set_node_addr(sbi, &new_ni, NEW_ADDR);
863 
864 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
865 	set_cold_node(dn->inode, page);
866 	SetPageUptodate(page);
867 	set_page_dirty(page);
868 
869 	if (ofs == XATTR_NODE_OFFSET)
870 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
871 
872 	dn->node_page = page;
873 	if (ipage)
874 		update_inode(dn->inode, ipage);
875 	else
876 		sync_inode_page(dn);
877 	if (ofs == 0)
878 		inc_valid_inode_count(sbi);
879 
880 	return page;
881 
882 fail:
883 	clear_node_page_dirty(page);
884 	f2fs_put_page(page, 1);
885 	return ERR_PTR(err);
886 }
887 
888 /*
889  * Caller should do after getting the following values.
890  * 0: f2fs_put_page(page, 0)
891  * LOCKED_PAGE: f2fs_put_page(page, 1)
892  * error: nothing
893  */
894 static int read_node_page(struct page *page, int rw)
895 {
896 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
897 	struct node_info ni;
898 
899 	get_node_info(sbi, page->index, &ni);
900 
901 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
902 		f2fs_put_page(page, 1);
903 		return -ENOENT;
904 	}
905 
906 	if (PageUptodate(page))
907 		return LOCKED_PAGE;
908 
909 	return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
910 }
911 
912 /*
913  * Readahead a node page
914  */
915 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
916 {
917 	struct address_space *mapping = sbi->node_inode->i_mapping;
918 	struct page *apage;
919 	int err;
920 
921 	apage = find_get_page(mapping, nid);
922 	if (apage && PageUptodate(apage)) {
923 		f2fs_put_page(apage, 0);
924 		return;
925 	}
926 	f2fs_put_page(apage, 0);
927 
928 	apage = grab_cache_page(mapping, nid);
929 	if (!apage)
930 		return;
931 
932 	err = read_node_page(apage, READA);
933 	if (err == 0)
934 		f2fs_put_page(apage, 0);
935 	else if (err == LOCKED_PAGE)
936 		f2fs_put_page(apage, 1);
937 }
938 
939 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
940 {
941 	struct address_space *mapping = sbi->node_inode->i_mapping;
942 	struct page *page;
943 	int err;
944 repeat:
945 	page = grab_cache_page(mapping, nid);
946 	if (!page)
947 		return ERR_PTR(-ENOMEM);
948 
949 	err = read_node_page(page, READ_SYNC);
950 	if (err < 0)
951 		return ERR_PTR(err);
952 	else if (err == LOCKED_PAGE)
953 		goto got_it;
954 
955 	lock_page(page);
956 	if (unlikely(!PageUptodate(page))) {
957 		f2fs_put_page(page, 1);
958 		return ERR_PTR(-EIO);
959 	}
960 	if (unlikely(page->mapping != mapping)) {
961 		f2fs_put_page(page, 1);
962 		goto repeat;
963 	}
964 got_it:
965 	f2fs_bug_on(nid != nid_of_node(page));
966 	mark_page_accessed(page);
967 	return page;
968 }
969 
970 /*
971  * Return a locked page for the desired node page.
972  * And, readahead MAX_RA_NODE number of node pages.
973  */
974 struct page *get_node_page_ra(struct page *parent, int start)
975 {
976 	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
977 	struct address_space *mapping = sbi->node_inode->i_mapping;
978 	struct blk_plug plug;
979 	struct page *page;
980 	int err, i, end;
981 	nid_t nid;
982 
983 	/* First, try getting the desired direct node. */
984 	nid = get_nid(parent, start, false);
985 	if (!nid)
986 		return ERR_PTR(-ENOENT);
987 repeat:
988 	page = grab_cache_page(mapping, nid);
989 	if (!page)
990 		return ERR_PTR(-ENOMEM);
991 
992 	err = read_node_page(page, READ_SYNC);
993 	if (err < 0)
994 		return ERR_PTR(err);
995 	else if (err == LOCKED_PAGE)
996 		goto page_hit;
997 
998 	blk_start_plug(&plug);
999 
1000 	/* Then, try readahead for siblings of the desired node */
1001 	end = start + MAX_RA_NODE;
1002 	end = min(end, NIDS_PER_BLOCK);
1003 	for (i = start + 1; i < end; i++) {
1004 		nid = get_nid(parent, i, false);
1005 		if (!nid)
1006 			continue;
1007 		ra_node_page(sbi, nid);
1008 	}
1009 
1010 	blk_finish_plug(&plug);
1011 
1012 	lock_page(page);
1013 	if (unlikely(page->mapping != mapping)) {
1014 		f2fs_put_page(page, 1);
1015 		goto repeat;
1016 	}
1017 page_hit:
1018 	if (unlikely(!PageUptodate(page))) {
1019 		f2fs_put_page(page, 1);
1020 		return ERR_PTR(-EIO);
1021 	}
1022 	mark_page_accessed(page);
1023 	return page;
1024 }
1025 
1026 void sync_inode_page(struct dnode_of_data *dn)
1027 {
1028 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1029 		update_inode(dn->inode, dn->node_page);
1030 	} else if (dn->inode_page) {
1031 		if (!dn->inode_page_locked)
1032 			lock_page(dn->inode_page);
1033 		update_inode(dn->inode, dn->inode_page);
1034 		if (!dn->inode_page_locked)
1035 			unlock_page(dn->inode_page);
1036 	} else {
1037 		update_inode_page(dn->inode);
1038 	}
1039 }
1040 
1041 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1042 					struct writeback_control *wbc)
1043 {
1044 	struct address_space *mapping = sbi->node_inode->i_mapping;
1045 	pgoff_t index, end;
1046 	struct pagevec pvec;
1047 	int step = ino ? 2 : 0;
1048 	int nwritten = 0, wrote = 0;
1049 
1050 	pagevec_init(&pvec, 0);
1051 
1052 next_step:
1053 	index = 0;
1054 	end = LONG_MAX;
1055 
1056 	while (index <= end) {
1057 		int i, nr_pages;
1058 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1059 				PAGECACHE_TAG_DIRTY,
1060 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1061 		if (nr_pages == 0)
1062 			break;
1063 
1064 		for (i = 0; i < nr_pages; i++) {
1065 			struct page *page = pvec.pages[i];
1066 
1067 			/*
1068 			 * flushing sequence with step:
1069 			 * 0. indirect nodes
1070 			 * 1. dentry dnodes
1071 			 * 2. file dnodes
1072 			 */
1073 			if (step == 0 && IS_DNODE(page))
1074 				continue;
1075 			if (step == 1 && (!IS_DNODE(page) ||
1076 						is_cold_node(page)))
1077 				continue;
1078 			if (step == 2 && (!IS_DNODE(page) ||
1079 						!is_cold_node(page)))
1080 				continue;
1081 
1082 			/*
1083 			 * If an fsync mode,
1084 			 * we should not skip writing node pages.
1085 			 */
1086 			if (ino && ino_of_node(page) == ino)
1087 				lock_page(page);
1088 			else if (!trylock_page(page))
1089 				continue;
1090 
1091 			if (unlikely(page->mapping != mapping)) {
1092 continue_unlock:
1093 				unlock_page(page);
1094 				continue;
1095 			}
1096 			if (ino && ino_of_node(page) != ino)
1097 				goto continue_unlock;
1098 
1099 			if (!PageDirty(page)) {
1100 				/* someone wrote it for us */
1101 				goto continue_unlock;
1102 			}
1103 
1104 			if (!clear_page_dirty_for_io(page))
1105 				goto continue_unlock;
1106 
1107 			/* called by fsync() */
1108 			if (ino && IS_DNODE(page)) {
1109 				int mark = !is_checkpointed_node(sbi, ino);
1110 				set_fsync_mark(page, 1);
1111 				if (IS_INODE(page))
1112 					set_dentry_mark(page, mark);
1113 				nwritten++;
1114 			} else {
1115 				set_fsync_mark(page, 0);
1116 				set_dentry_mark(page, 0);
1117 			}
1118 			mapping->a_ops->writepage(page, wbc);
1119 			wrote++;
1120 
1121 			if (--wbc->nr_to_write == 0)
1122 				break;
1123 		}
1124 		pagevec_release(&pvec);
1125 		cond_resched();
1126 
1127 		if (wbc->nr_to_write == 0) {
1128 			step = 2;
1129 			break;
1130 		}
1131 	}
1132 
1133 	if (step < 2) {
1134 		step++;
1135 		goto next_step;
1136 	}
1137 
1138 	if (wrote)
1139 		f2fs_submit_merged_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL,
1140 									WRITE);
1141 	return nwritten;
1142 }
1143 
1144 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1145 {
1146 	struct address_space *mapping = sbi->node_inode->i_mapping;
1147 	pgoff_t index = 0, end = LONG_MAX;
1148 	struct pagevec pvec;
1149 	int nr_pages;
1150 	int ret2 = 0, ret = 0;
1151 
1152 	pagevec_init(&pvec, 0);
1153 	while ((index <= end) &&
1154 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1155 			PAGECACHE_TAG_WRITEBACK,
1156 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
1157 		unsigned i;
1158 
1159 		for (i = 0; i < nr_pages; i++) {
1160 			struct page *page = pvec.pages[i];
1161 
1162 			/* until radix tree lookup accepts end_index */
1163 			if (unlikely(page->index > end))
1164 				continue;
1165 
1166 			if (ino && ino_of_node(page) == ino) {
1167 				wait_on_page_writeback(page);
1168 				if (TestClearPageError(page))
1169 					ret = -EIO;
1170 			}
1171 		}
1172 		pagevec_release(&pvec);
1173 		cond_resched();
1174 	}
1175 
1176 	if (unlikely(test_and_clear_bit(AS_ENOSPC, &mapping->flags)))
1177 		ret2 = -ENOSPC;
1178 	if (unlikely(test_and_clear_bit(AS_EIO, &mapping->flags)))
1179 		ret2 = -EIO;
1180 	if (!ret)
1181 		ret = ret2;
1182 	return ret;
1183 }
1184 
1185 static int f2fs_write_node_page(struct page *page,
1186 				struct writeback_control *wbc)
1187 {
1188 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1189 	nid_t nid;
1190 	block_t new_addr;
1191 	struct node_info ni;
1192 
1193 	if (unlikely(sbi->por_doing))
1194 		goto redirty_out;
1195 
1196 	wait_on_page_writeback(page);
1197 
1198 	/* get old block addr of this node page */
1199 	nid = nid_of_node(page);
1200 	f2fs_bug_on(page->index != nid);
1201 
1202 	get_node_info(sbi, nid, &ni);
1203 
1204 	/* This page is already truncated */
1205 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1206 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1207 		unlock_page(page);
1208 		return 0;
1209 	}
1210 
1211 	if (wbc->for_reclaim)
1212 		goto redirty_out;
1213 
1214 	mutex_lock(&sbi->node_write);
1215 	set_page_writeback(page);
1216 	write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1217 	set_node_addr(sbi, &ni, new_addr);
1218 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1219 	mutex_unlock(&sbi->node_write);
1220 	unlock_page(page);
1221 	return 0;
1222 
1223 redirty_out:
1224 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1225 	wbc->pages_skipped++;
1226 	set_page_dirty(page);
1227 	return AOP_WRITEPAGE_ACTIVATE;
1228 }
1229 
1230 /*
1231  * It is very important to gather dirty pages and write at once, so that we can
1232  * submit a big bio without interfering other data writes.
1233  * Be default, 512 pages (2MB) * 3 node types, is more reasonable.
1234  */
1235 #define COLLECT_DIRTY_NODES	1536
1236 static int f2fs_write_node_pages(struct address_space *mapping,
1237 			    struct writeback_control *wbc)
1238 {
1239 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1240 	long nr_to_write = wbc->nr_to_write;
1241 
1242 	/* balancing f2fs's metadata in background */
1243 	f2fs_balance_fs_bg(sbi);
1244 
1245 	/* collect a number of dirty node pages and write together */
1246 	if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1247 		return 0;
1248 
1249 	/* if mounting is failed, skip writing node pages */
1250 	wbc->nr_to_write = 3 * max_hw_blocks(sbi);
1251 	sync_node_pages(sbi, 0, wbc);
1252 	wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
1253 						wbc->nr_to_write);
1254 	return 0;
1255 }
1256 
1257 static int f2fs_set_node_page_dirty(struct page *page)
1258 {
1259 	struct address_space *mapping = page->mapping;
1260 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1261 
1262 	trace_f2fs_set_page_dirty(page, NODE);
1263 
1264 	SetPageUptodate(page);
1265 	if (!PageDirty(page)) {
1266 		__set_page_dirty_nobuffers(page);
1267 		inc_page_count(sbi, F2FS_DIRTY_NODES);
1268 		SetPagePrivate(page);
1269 		return 1;
1270 	}
1271 	return 0;
1272 }
1273 
1274 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1275 				      unsigned int length)
1276 {
1277 	struct inode *inode = page->mapping->host;
1278 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1279 	if (PageDirty(page))
1280 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1281 	ClearPagePrivate(page);
1282 }
1283 
1284 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1285 {
1286 	ClearPagePrivate(page);
1287 	return 1;
1288 }
1289 
1290 /*
1291  * Structure of the f2fs node operations
1292  */
1293 const struct address_space_operations f2fs_node_aops = {
1294 	.writepage	= f2fs_write_node_page,
1295 	.writepages	= f2fs_write_node_pages,
1296 	.set_page_dirty	= f2fs_set_node_page_dirty,
1297 	.invalidatepage	= f2fs_invalidate_node_page,
1298 	.releasepage	= f2fs_release_node_page,
1299 };
1300 
1301 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1302 {
1303 	struct list_head *this;
1304 	struct free_nid *i;
1305 	list_for_each(this, head) {
1306 		i = list_entry(this, struct free_nid, list);
1307 		if (i->nid == n)
1308 			return i;
1309 	}
1310 	return NULL;
1311 }
1312 
1313 static void __del_from_free_nid_list(struct free_nid *i)
1314 {
1315 	list_del(&i->list);
1316 	kmem_cache_free(free_nid_slab, i);
1317 }
1318 
1319 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1320 {
1321 	struct free_nid *i;
1322 	struct nat_entry *ne;
1323 	bool allocated = false;
1324 
1325 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1326 		return -1;
1327 
1328 	/* 0 nid should not be used */
1329 	if (unlikely(nid == 0))
1330 		return 0;
1331 
1332 	if (build) {
1333 		/* do not add allocated nids */
1334 		read_lock(&nm_i->nat_tree_lock);
1335 		ne = __lookup_nat_cache(nm_i, nid);
1336 		if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1337 			allocated = true;
1338 		read_unlock(&nm_i->nat_tree_lock);
1339 		if (allocated)
1340 			return 0;
1341 	}
1342 
1343 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1344 	i->nid = nid;
1345 	i->state = NID_NEW;
1346 
1347 	spin_lock(&nm_i->free_nid_list_lock);
1348 	if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1349 		spin_unlock(&nm_i->free_nid_list_lock);
1350 		kmem_cache_free(free_nid_slab, i);
1351 		return 0;
1352 	}
1353 	list_add_tail(&i->list, &nm_i->free_nid_list);
1354 	nm_i->fcnt++;
1355 	spin_unlock(&nm_i->free_nid_list_lock);
1356 	return 1;
1357 }
1358 
1359 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1360 {
1361 	struct free_nid *i;
1362 	spin_lock(&nm_i->free_nid_list_lock);
1363 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1364 	if (i && i->state == NID_NEW) {
1365 		__del_from_free_nid_list(i);
1366 		nm_i->fcnt--;
1367 	}
1368 	spin_unlock(&nm_i->free_nid_list_lock);
1369 }
1370 
1371 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1372 			struct page *nat_page, nid_t start_nid)
1373 {
1374 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1375 	block_t blk_addr;
1376 	int i;
1377 
1378 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1379 
1380 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1381 
1382 		if (unlikely(start_nid >= nm_i->max_nid))
1383 			break;
1384 
1385 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1386 		f2fs_bug_on(blk_addr == NEW_ADDR);
1387 		if (blk_addr == NULL_ADDR) {
1388 			if (add_free_nid(nm_i, start_nid, true) < 0)
1389 				break;
1390 		}
1391 	}
1392 }
1393 
1394 static void build_free_nids(struct f2fs_sb_info *sbi)
1395 {
1396 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1397 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1398 	struct f2fs_summary_block *sum = curseg->sum_blk;
1399 	int i = 0;
1400 	nid_t nid = nm_i->next_scan_nid;
1401 
1402 	/* Enough entries */
1403 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1404 		return;
1405 
1406 	/* readahead nat pages to be scanned */
1407 	ra_nat_pages(sbi, nid);
1408 
1409 	while (1) {
1410 		struct page *page = get_current_nat_page(sbi, nid);
1411 
1412 		scan_nat_page(nm_i, page, nid);
1413 		f2fs_put_page(page, 1);
1414 
1415 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1416 		if (unlikely(nid >= nm_i->max_nid))
1417 			nid = 0;
1418 
1419 		if (i++ == FREE_NID_PAGES)
1420 			break;
1421 	}
1422 
1423 	/* go to the next free nat pages to find free nids abundantly */
1424 	nm_i->next_scan_nid = nid;
1425 
1426 	/* find free nids from current sum_pages */
1427 	mutex_lock(&curseg->curseg_mutex);
1428 	for (i = 0; i < nats_in_cursum(sum); i++) {
1429 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1430 		nid = le32_to_cpu(nid_in_journal(sum, i));
1431 		if (addr == NULL_ADDR)
1432 			add_free_nid(nm_i, nid, true);
1433 		else
1434 			remove_free_nid(nm_i, nid);
1435 	}
1436 	mutex_unlock(&curseg->curseg_mutex);
1437 }
1438 
1439 /*
1440  * If this function returns success, caller can obtain a new nid
1441  * from second parameter of this function.
1442  * The returned nid could be used ino as well as nid when inode is created.
1443  */
1444 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1445 {
1446 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1447 	struct free_nid *i = NULL;
1448 	struct list_head *this;
1449 retry:
1450 	if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
1451 		return false;
1452 
1453 	spin_lock(&nm_i->free_nid_list_lock);
1454 
1455 	/* We should not use stale free nids created by build_free_nids */
1456 	if (nm_i->fcnt && !sbi->on_build_free_nids) {
1457 		f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1458 		list_for_each(this, &nm_i->free_nid_list) {
1459 			i = list_entry(this, struct free_nid, list);
1460 			if (i->state == NID_NEW)
1461 				break;
1462 		}
1463 
1464 		f2fs_bug_on(i->state != NID_NEW);
1465 		*nid = i->nid;
1466 		i->state = NID_ALLOC;
1467 		nm_i->fcnt--;
1468 		spin_unlock(&nm_i->free_nid_list_lock);
1469 		return true;
1470 	}
1471 	spin_unlock(&nm_i->free_nid_list_lock);
1472 
1473 	/* Let's scan nat pages and its caches to get free nids */
1474 	mutex_lock(&nm_i->build_lock);
1475 	sbi->on_build_free_nids = true;
1476 	build_free_nids(sbi);
1477 	sbi->on_build_free_nids = false;
1478 	mutex_unlock(&nm_i->build_lock);
1479 	goto retry;
1480 }
1481 
1482 /*
1483  * alloc_nid() should be called prior to this function.
1484  */
1485 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1486 {
1487 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1488 	struct free_nid *i;
1489 
1490 	spin_lock(&nm_i->free_nid_list_lock);
1491 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1492 	f2fs_bug_on(!i || i->state != NID_ALLOC);
1493 	__del_from_free_nid_list(i);
1494 	spin_unlock(&nm_i->free_nid_list_lock);
1495 }
1496 
1497 /*
1498  * alloc_nid() should be called prior to this function.
1499  */
1500 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1501 {
1502 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1503 	struct free_nid *i;
1504 
1505 	if (!nid)
1506 		return;
1507 
1508 	spin_lock(&nm_i->free_nid_list_lock);
1509 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1510 	f2fs_bug_on(!i || i->state != NID_ALLOC);
1511 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1512 		__del_from_free_nid_list(i);
1513 	} else {
1514 		i->state = NID_NEW;
1515 		nm_i->fcnt++;
1516 	}
1517 	spin_unlock(&nm_i->free_nid_list_lock);
1518 }
1519 
1520 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1521 		struct f2fs_summary *sum, struct node_info *ni,
1522 		block_t new_blkaddr)
1523 {
1524 	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1525 	set_node_addr(sbi, ni, new_blkaddr);
1526 	clear_node_page_dirty(page);
1527 }
1528 
1529 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1530 {
1531 	struct address_space *mapping = sbi->node_inode->i_mapping;
1532 	struct f2fs_node *src, *dst;
1533 	nid_t ino = ino_of_node(page);
1534 	struct node_info old_ni, new_ni;
1535 	struct page *ipage;
1536 
1537 	ipage = grab_cache_page(mapping, ino);
1538 	if (!ipage)
1539 		return -ENOMEM;
1540 
1541 	/* Should not use this inode  from free nid list */
1542 	remove_free_nid(NM_I(sbi), ino);
1543 
1544 	get_node_info(sbi, ino, &old_ni);
1545 	SetPageUptodate(ipage);
1546 	fill_node_footer(ipage, ino, ino, 0, true);
1547 
1548 	src = F2FS_NODE(page);
1549 	dst = F2FS_NODE(ipage);
1550 
1551 	memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1552 	dst->i.i_size = 0;
1553 	dst->i.i_blocks = cpu_to_le64(1);
1554 	dst->i.i_links = cpu_to_le32(1);
1555 	dst->i.i_xattr_nid = 0;
1556 
1557 	new_ni = old_ni;
1558 	new_ni.ino = ino;
1559 
1560 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1561 		WARN_ON(1);
1562 	set_node_addr(sbi, &new_ni, NEW_ADDR);
1563 	inc_valid_inode_count(sbi);
1564 	f2fs_put_page(ipage, 1);
1565 	return 0;
1566 }
1567 
1568 /*
1569  * ra_sum_pages() merge contiguous pages into one bio and submit.
1570  * these pre-readed pages are linked in pages list.
1571  */
1572 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1573 				int start, int nrpages)
1574 {
1575 	struct page *page;
1576 	int page_idx = start;
1577 
1578 	for (; page_idx < start + nrpages; page_idx++) {
1579 		/* alloc temporal page for read node summary info*/
1580 		page = alloc_page(GFP_F2FS_ZERO);
1581 		if (!page) {
1582 			struct page *tmp;
1583 			list_for_each_entry_safe(page, tmp, pages, lru) {
1584 				list_del(&page->lru);
1585 				unlock_page(page);
1586 				__free_pages(page, 0);
1587 			}
1588 			return -ENOMEM;
1589 		}
1590 
1591 		lock_page(page);
1592 		page->index = page_idx;
1593 		list_add_tail(&page->lru, pages);
1594 	}
1595 
1596 	list_for_each_entry(page, pages, lru)
1597 		f2fs_submit_page_mbio(sbi, page, page->index, META, READ);
1598 
1599 	f2fs_submit_merged_bio(sbi, META, true, READ);
1600 	return 0;
1601 }
1602 
1603 int restore_node_summary(struct f2fs_sb_info *sbi,
1604 			unsigned int segno, struct f2fs_summary_block *sum)
1605 {
1606 	struct f2fs_node *rn;
1607 	struct f2fs_summary *sum_entry;
1608 	struct page *page, *tmp;
1609 	block_t addr;
1610 	int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1611 	int i, last_offset, nrpages, err = 0;
1612 	LIST_HEAD(page_list);
1613 
1614 	/* scan the node segment */
1615 	last_offset = sbi->blocks_per_seg;
1616 	addr = START_BLOCK(sbi, segno);
1617 	sum_entry = &sum->entries[0];
1618 
1619 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1620 		nrpages = min(last_offset - i, bio_blocks);
1621 
1622 		/* read ahead node pages */
1623 		err = ra_sum_pages(sbi, &page_list, addr, nrpages);
1624 		if (err)
1625 			return err;
1626 
1627 		list_for_each_entry_safe(page, tmp, &page_list, lru) {
1628 
1629 			lock_page(page);
1630 			if (unlikely(!PageUptodate(page))) {
1631 				err = -EIO;
1632 			} else {
1633 				rn = F2FS_NODE(page);
1634 				sum_entry->nid = rn->footer.nid;
1635 				sum_entry->version = 0;
1636 				sum_entry->ofs_in_node = 0;
1637 				sum_entry++;
1638 			}
1639 
1640 			list_del(&page->lru);
1641 			unlock_page(page);
1642 			__free_pages(page, 0);
1643 		}
1644 	}
1645 	return err;
1646 }
1647 
1648 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1649 {
1650 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1651 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1652 	struct f2fs_summary_block *sum = curseg->sum_blk;
1653 	int i;
1654 
1655 	mutex_lock(&curseg->curseg_mutex);
1656 
1657 	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1658 		mutex_unlock(&curseg->curseg_mutex);
1659 		return false;
1660 	}
1661 
1662 	for (i = 0; i < nats_in_cursum(sum); i++) {
1663 		struct nat_entry *ne;
1664 		struct f2fs_nat_entry raw_ne;
1665 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1666 
1667 		raw_ne = nat_in_journal(sum, i);
1668 retry:
1669 		write_lock(&nm_i->nat_tree_lock);
1670 		ne = __lookup_nat_cache(nm_i, nid);
1671 		if (ne) {
1672 			__set_nat_cache_dirty(nm_i, ne);
1673 			write_unlock(&nm_i->nat_tree_lock);
1674 			continue;
1675 		}
1676 		ne = grab_nat_entry(nm_i, nid);
1677 		if (!ne) {
1678 			write_unlock(&nm_i->nat_tree_lock);
1679 			goto retry;
1680 		}
1681 		nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1682 		nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1683 		nat_set_version(ne, raw_ne.version);
1684 		__set_nat_cache_dirty(nm_i, ne);
1685 		write_unlock(&nm_i->nat_tree_lock);
1686 	}
1687 	update_nats_in_cursum(sum, -i);
1688 	mutex_unlock(&curseg->curseg_mutex);
1689 	return true;
1690 }
1691 
1692 /*
1693  * This function is called during the checkpointing process.
1694  */
1695 void flush_nat_entries(struct f2fs_sb_info *sbi)
1696 {
1697 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1698 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1699 	struct f2fs_summary_block *sum = curseg->sum_blk;
1700 	struct list_head *cur, *n;
1701 	struct page *page = NULL;
1702 	struct f2fs_nat_block *nat_blk = NULL;
1703 	nid_t start_nid = 0, end_nid = 0;
1704 	bool flushed;
1705 
1706 	flushed = flush_nats_in_journal(sbi);
1707 
1708 	if (!flushed)
1709 		mutex_lock(&curseg->curseg_mutex);
1710 
1711 	/* 1) flush dirty nat caches */
1712 	list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1713 		struct nat_entry *ne;
1714 		nid_t nid;
1715 		struct f2fs_nat_entry raw_ne;
1716 		int offset = -1;
1717 		block_t new_blkaddr;
1718 
1719 		ne = list_entry(cur, struct nat_entry, list);
1720 		nid = nat_get_nid(ne);
1721 
1722 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1723 			continue;
1724 		if (flushed)
1725 			goto to_nat_page;
1726 
1727 		/* if there is room for nat enries in curseg->sumpage */
1728 		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1729 		if (offset >= 0) {
1730 			raw_ne = nat_in_journal(sum, offset);
1731 			goto flush_now;
1732 		}
1733 to_nat_page:
1734 		if (!page || (start_nid > nid || nid > end_nid)) {
1735 			if (page) {
1736 				f2fs_put_page(page, 1);
1737 				page = NULL;
1738 			}
1739 			start_nid = START_NID(nid);
1740 			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1741 
1742 			/*
1743 			 * get nat block with dirty flag, increased reference
1744 			 * count, mapped and lock
1745 			 */
1746 			page = get_next_nat_page(sbi, start_nid);
1747 			nat_blk = page_address(page);
1748 		}
1749 
1750 		f2fs_bug_on(!nat_blk);
1751 		raw_ne = nat_blk->entries[nid - start_nid];
1752 flush_now:
1753 		new_blkaddr = nat_get_blkaddr(ne);
1754 
1755 		raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1756 		raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1757 		raw_ne.version = nat_get_version(ne);
1758 
1759 		if (offset < 0) {
1760 			nat_blk->entries[nid - start_nid] = raw_ne;
1761 		} else {
1762 			nat_in_journal(sum, offset) = raw_ne;
1763 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1764 		}
1765 
1766 		if (nat_get_blkaddr(ne) == NULL_ADDR &&
1767 				add_free_nid(NM_I(sbi), nid, false) <= 0) {
1768 			write_lock(&nm_i->nat_tree_lock);
1769 			__del_from_nat_cache(nm_i, ne);
1770 			write_unlock(&nm_i->nat_tree_lock);
1771 		} else {
1772 			write_lock(&nm_i->nat_tree_lock);
1773 			__clear_nat_cache_dirty(nm_i, ne);
1774 			ne->checkpointed = true;
1775 			write_unlock(&nm_i->nat_tree_lock);
1776 		}
1777 	}
1778 	if (!flushed)
1779 		mutex_unlock(&curseg->curseg_mutex);
1780 	f2fs_put_page(page, 1);
1781 
1782 	/* 2) shrink nat caches if necessary */
1783 	try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1784 }
1785 
1786 static int init_node_manager(struct f2fs_sb_info *sbi)
1787 {
1788 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1789 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1790 	unsigned char *version_bitmap;
1791 	unsigned int nat_segs, nat_blocks;
1792 
1793 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1794 
1795 	/* segment_count_nat includes pair segment so divide to 2. */
1796 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1797 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1798 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1799 	nm_i->fcnt = 0;
1800 	nm_i->nat_cnt = 0;
1801 
1802 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1803 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1804 	INIT_LIST_HEAD(&nm_i->nat_entries);
1805 	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1806 
1807 	mutex_init(&nm_i->build_lock);
1808 	spin_lock_init(&nm_i->free_nid_list_lock);
1809 	rwlock_init(&nm_i->nat_tree_lock);
1810 
1811 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1812 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1813 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1814 	if (!version_bitmap)
1815 		return -EFAULT;
1816 
1817 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1818 					GFP_KERNEL);
1819 	if (!nm_i->nat_bitmap)
1820 		return -ENOMEM;
1821 	return 0;
1822 }
1823 
1824 int build_node_manager(struct f2fs_sb_info *sbi)
1825 {
1826 	int err;
1827 
1828 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1829 	if (!sbi->nm_info)
1830 		return -ENOMEM;
1831 
1832 	err = init_node_manager(sbi);
1833 	if (err)
1834 		return err;
1835 
1836 	build_free_nids(sbi);
1837 	return 0;
1838 }
1839 
1840 void destroy_node_manager(struct f2fs_sb_info *sbi)
1841 {
1842 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1843 	struct free_nid *i, *next_i;
1844 	struct nat_entry *natvec[NATVEC_SIZE];
1845 	nid_t nid = 0;
1846 	unsigned int found;
1847 
1848 	if (!nm_i)
1849 		return;
1850 
1851 	/* destroy free nid list */
1852 	spin_lock(&nm_i->free_nid_list_lock);
1853 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1854 		f2fs_bug_on(i->state == NID_ALLOC);
1855 		__del_from_free_nid_list(i);
1856 		nm_i->fcnt--;
1857 	}
1858 	f2fs_bug_on(nm_i->fcnt);
1859 	spin_unlock(&nm_i->free_nid_list_lock);
1860 
1861 	/* destroy nat cache */
1862 	write_lock(&nm_i->nat_tree_lock);
1863 	while ((found = __gang_lookup_nat_cache(nm_i,
1864 					nid, NATVEC_SIZE, natvec))) {
1865 		unsigned idx;
1866 		for (idx = 0; idx < found; idx++) {
1867 			struct nat_entry *e = natvec[idx];
1868 			nid = nat_get_nid(e) + 1;
1869 			__del_from_nat_cache(nm_i, e);
1870 		}
1871 	}
1872 	f2fs_bug_on(nm_i->nat_cnt);
1873 	write_unlock(&nm_i->nat_tree_lock);
1874 
1875 	kfree(nm_i->nat_bitmap);
1876 	sbi->nm_info = NULL;
1877 	kfree(nm_i);
1878 }
1879 
1880 int __init create_node_manager_caches(void)
1881 {
1882 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1883 			sizeof(struct nat_entry), NULL);
1884 	if (!nat_entry_slab)
1885 		return -ENOMEM;
1886 
1887 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
1888 			sizeof(struct free_nid), NULL);
1889 	if (!free_nid_slab) {
1890 		kmem_cache_destroy(nat_entry_slab);
1891 		return -ENOMEM;
1892 	}
1893 	return 0;
1894 }
1895 
1896 void destroy_node_manager_caches(void)
1897 {
1898 	kmem_cache_destroy(free_nid_slab);
1899 	kmem_cache_destroy(nat_entry_slab);
1900 }
1901