1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include <trace/events/f2fs.h> 23 24 static struct kmem_cache *nat_entry_slab; 25 static struct kmem_cache *free_nid_slab; 26 27 static void clear_node_page_dirty(struct page *page) 28 { 29 struct address_space *mapping = page->mapping; 30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 31 unsigned int long flags; 32 33 if (PageDirty(page)) { 34 spin_lock_irqsave(&mapping->tree_lock, flags); 35 radix_tree_tag_clear(&mapping->page_tree, 36 page_index(page), 37 PAGECACHE_TAG_DIRTY); 38 spin_unlock_irqrestore(&mapping->tree_lock, flags); 39 40 clear_page_dirty_for_io(page); 41 dec_page_count(sbi, F2FS_DIRTY_NODES); 42 } 43 ClearPageUptodate(page); 44 } 45 46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 47 { 48 pgoff_t index = current_nat_addr(sbi, nid); 49 return get_meta_page(sbi, index); 50 } 51 52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 53 { 54 struct page *src_page; 55 struct page *dst_page; 56 pgoff_t src_off; 57 pgoff_t dst_off; 58 void *src_addr; 59 void *dst_addr; 60 struct f2fs_nm_info *nm_i = NM_I(sbi); 61 62 src_off = current_nat_addr(sbi, nid); 63 dst_off = next_nat_addr(sbi, src_off); 64 65 /* get current nat block page with lock */ 66 src_page = get_meta_page(sbi, src_off); 67 68 /* Dirty src_page means that it is already the new target NAT page. */ 69 if (PageDirty(src_page)) 70 return src_page; 71 72 dst_page = grab_meta_page(sbi, dst_off); 73 74 src_addr = page_address(src_page); 75 dst_addr = page_address(dst_page); 76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 77 set_page_dirty(dst_page); 78 f2fs_put_page(src_page, 1); 79 80 set_to_next_nat(nm_i, nid); 81 82 return dst_page; 83 } 84 85 /* 86 * Readahead NAT pages 87 */ 88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) 89 { 90 struct address_space *mapping = sbi->meta_inode->i_mapping; 91 struct f2fs_nm_info *nm_i = NM_I(sbi); 92 struct blk_plug plug; 93 struct page *page; 94 pgoff_t index; 95 int i; 96 97 blk_start_plug(&plug); 98 99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { 100 if (nid >= nm_i->max_nid) 101 nid = 0; 102 index = current_nat_addr(sbi, nid); 103 104 page = grab_cache_page(mapping, index); 105 if (!page) 106 continue; 107 if (PageUptodate(page)) { 108 f2fs_put_page(page, 1); 109 continue; 110 } 111 if (f2fs_readpage(sbi, page, index, READ)) 112 continue; 113 114 f2fs_put_page(page, 0); 115 } 116 blk_finish_plug(&plug); 117 } 118 119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 120 { 121 return radix_tree_lookup(&nm_i->nat_root, n); 122 } 123 124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 125 nid_t start, unsigned int nr, struct nat_entry **ep) 126 { 127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 128 } 129 130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 131 { 132 list_del(&e->list); 133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 134 nm_i->nat_cnt--; 135 kmem_cache_free(nat_entry_slab, e); 136 } 137 138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct f2fs_nm_info *nm_i = NM_I(sbi); 141 struct nat_entry *e; 142 int is_cp = 1; 143 144 read_lock(&nm_i->nat_tree_lock); 145 e = __lookup_nat_cache(nm_i, nid); 146 if (e && !e->checkpointed) 147 is_cp = 0; 148 read_unlock(&nm_i->nat_tree_lock); 149 return is_cp; 150 } 151 152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 153 { 154 struct nat_entry *new; 155 156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 157 if (!new) 158 return NULL; 159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 160 kmem_cache_free(nat_entry_slab, new); 161 return NULL; 162 } 163 memset(new, 0, sizeof(struct nat_entry)); 164 nat_set_nid(new, nid); 165 list_add_tail(&new->list, &nm_i->nat_entries); 166 nm_i->nat_cnt++; 167 return new; 168 } 169 170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 171 struct f2fs_nat_entry *ne) 172 { 173 struct nat_entry *e; 174 retry: 175 write_lock(&nm_i->nat_tree_lock); 176 e = __lookup_nat_cache(nm_i, nid); 177 if (!e) { 178 e = grab_nat_entry(nm_i, nid); 179 if (!e) { 180 write_unlock(&nm_i->nat_tree_lock); 181 goto retry; 182 } 183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); 184 nat_set_ino(e, le32_to_cpu(ne->ino)); 185 nat_set_version(e, ne->version); 186 e->checkpointed = true; 187 } 188 write_unlock(&nm_i->nat_tree_lock); 189 } 190 191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 192 block_t new_blkaddr) 193 { 194 struct f2fs_nm_info *nm_i = NM_I(sbi); 195 struct nat_entry *e; 196 retry: 197 write_lock(&nm_i->nat_tree_lock); 198 e = __lookup_nat_cache(nm_i, ni->nid); 199 if (!e) { 200 e = grab_nat_entry(nm_i, ni->nid); 201 if (!e) { 202 write_unlock(&nm_i->nat_tree_lock); 203 goto retry; 204 } 205 e->ni = *ni; 206 e->checkpointed = true; 207 BUG_ON(ni->blk_addr == NEW_ADDR); 208 } else if (new_blkaddr == NEW_ADDR) { 209 /* 210 * when nid is reallocated, 211 * previous nat entry can be remained in nat cache. 212 * So, reinitialize it with new information. 213 */ 214 e->ni = *ni; 215 BUG_ON(ni->blk_addr != NULL_ADDR); 216 } 217 218 if (new_blkaddr == NEW_ADDR) 219 e->checkpointed = false; 220 221 /* sanity check */ 222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); 223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && 224 new_blkaddr == NULL_ADDR); 225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && 226 new_blkaddr == NEW_ADDR); 227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && 228 nat_get_blkaddr(e) != NULL_ADDR && 229 new_blkaddr == NEW_ADDR); 230 231 /* increament version no as node is removed */ 232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 233 unsigned char version = nat_get_version(e); 234 nat_set_version(e, inc_node_version(version)); 235 } 236 237 /* change address */ 238 nat_set_blkaddr(e, new_blkaddr); 239 __set_nat_cache_dirty(nm_i, e); 240 write_unlock(&nm_i->nat_tree_lock); 241 } 242 243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 244 { 245 struct f2fs_nm_info *nm_i = NM_I(sbi); 246 247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD) 248 return 0; 249 250 write_lock(&nm_i->nat_tree_lock); 251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 252 struct nat_entry *ne; 253 ne = list_first_entry(&nm_i->nat_entries, 254 struct nat_entry, list); 255 __del_from_nat_cache(nm_i, ne); 256 nr_shrink--; 257 } 258 write_unlock(&nm_i->nat_tree_lock); 259 return nr_shrink; 260 } 261 262 /* 263 * This function returns always success 264 */ 265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 266 { 267 struct f2fs_nm_info *nm_i = NM_I(sbi); 268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 269 struct f2fs_summary_block *sum = curseg->sum_blk; 270 nid_t start_nid = START_NID(nid); 271 struct f2fs_nat_block *nat_blk; 272 struct page *page = NULL; 273 struct f2fs_nat_entry ne; 274 struct nat_entry *e; 275 int i; 276 277 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 278 ni->nid = nid; 279 280 /* Check nat cache */ 281 read_lock(&nm_i->nat_tree_lock); 282 e = __lookup_nat_cache(nm_i, nid); 283 if (e) { 284 ni->ino = nat_get_ino(e); 285 ni->blk_addr = nat_get_blkaddr(e); 286 ni->version = nat_get_version(e); 287 } 288 read_unlock(&nm_i->nat_tree_lock); 289 if (e) 290 return; 291 292 /* Check current segment summary */ 293 mutex_lock(&curseg->curseg_mutex); 294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); 295 if (i >= 0) { 296 ne = nat_in_journal(sum, i); 297 node_info_from_raw_nat(ni, &ne); 298 } 299 mutex_unlock(&curseg->curseg_mutex); 300 if (i >= 0) 301 goto cache; 302 303 /* Fill node_info from nat page */ 304 page = get_current_nat_page(sbi, start_nid); 305 nat_blk = (struct f2fs_nat_block *)page_address(page); 306 ne = nat_blk->entries[nid - start_nid]; 307 node_info_from_raw_nat(ni, &ne); 308 f2fs_put_page(page, 1); 309 cache: 310 /* cache nat entry */ 311 cache_nat_entry(NM_I(sbi), nid, &ne); 312 } 313 314 /* 315 * The maximum depth is four. 316 * Offset[0] will have raw inode offset. 317 */ 318 static int get_node_path(struct f2fs_inode_info *fi, long block, 319 int offset[4], unsigned int noffset[4]) 320 { 321 const long direct_index = ADDRS_PER_INODE(fi); 322 const long direct_blks = ADDRS_PER_BLOCK; 323 const long dptrs_per_blk = NIDS_PER_BLOCK; 324 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 325 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 326 int n = 0; 327 int level = 0; 328 329 noffset[0] = 0; 330 331 if (block < direct_index) { 332 offset[n] = block; 333 goto got; 334 } 335 block -= direct_index; 336 if (block < direct_blks) { 337 offset[n++] = NODE_DIR1_BLOCK; 338 noffset[n] = 1; 339 offset[n] = block; 340 level = 1; 341 goto got; 342 } 343 block -= direct_blks; 344 if (block < direct_blks) { 345 offset[n++] = NODE_DIR2_BLOCK; 346 noffset[n] = 2; 347 offset[n] = block; 348 level = 1; 349 goto got; 350 } 351 block -= direct_blks; 352 if (block < indirect_blks) { 353 offset[n++] = NODE_IND1_BLOCK; 354 noffset[n] = 3; 355 offset[n++] = block / direct_blks; 356 noffset[n] = 4 + offset[n - 1]; 357 offset[n] = block % direct_blks; 358 level = 2; 359 goto got; 360 } 361 block -= indirect_blks; 362 if (block < indirect_blks) { 363 offset[n++] = NODE_IND2_BLOCK; 364 noffset[n] = 4 + dptrs_per_blk; 365 offset[n++] = block / direct_blks; 366 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 367 offset[n] = block % direct_blks; 368 level = 2; 369 goto got; 370 } 371 block -= indirect_blks; 372 if (block < dindirect_blks) { 373 offset[n++] = NODE_DIND_BLOCK; 374 noffset[n] = 5 + (dptrs_per_blk * 2); 375 offset[n++] = block / indirect_blks; 376 noffset[n] = 6 + (dptrs_per_blk * 2) + 377 offset[n - 1] * (dptrs_per_blk + 1); 378 offset[n++] = (block / direct_blks) % dptrs_per_blk; 379 noffset[n] = 7 + (dptrs_per_blk * 2) + 380 offset[n - 2] * (dptrs_per_blk + 1) + 381 offset[n - 1]; 382 offset[n] = block % direct_blks; 383 level = 3; 384 goto got; 385 } else { 386 BUG(); 387 } 388 got: 389 return level; 390 } 391 392 /* 393 * Caller should call f2fs_put_dnode(dn). 394 * Also, it should grab and release a mutex by calling mutex_lock_op() and 395 * mutex_unlock_op() only if ro is not set RDONLY_NODE. 396 * In the case of RDONLY_NODE, we don't need to care about mutex. 397 */ 398 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 399 { 400 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 401 struct page *npage[4]; 402 struct page *parent; 403 int offset[4]; 404 unsigned int noffset[4]; 405 nid_t nids[4]; 406 int level, i; 407 int err = 0; 408 409 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); 410 411 nids[0] = dn->inode->i_ino; 412 npage[0] = dn->inode_page; 413 414 if (!npage[0]) { 415 npage[0] = get_node_page(sbi, nids[0]); 416 if (IS_ERR(npage[0])) 417 return PTR_ERR(npage[0]); 418 } 419 parent = npage[0]; 420 if (level != 0) 421 nids[1] = get_nid(parent, offset[0], true); 422 dn->inode_page = npage[0]; 423 dn->inode_page_locked = true; 424 425 /* get indirect or direct nodes */ 426 for (i = 1; i <= level; i++) { 427 bool done = false; 428 429 if (!nids[i] && mode == ALLOC_NODE) { 430 /* alloc new node */ 431 if (!alloc_nid(sbi, &(nids[i]))) { 432 err = -ENOSPC; 433 goto release_pages; 434 } 435 436 dn->nid = nids[i]; 437 npage[i] = new_node_page(dn, noffset[i], NULL); 438 if (IS_ERR(npage[i])) { 439 alloc_nid_failed(sbi, nids[i]); 440 err = PTR_ERR(npage[i]); 441 goto release_pages; 442 } 443 444 set_nid(parent, offset[i - 1], nids[i], i == 1); 445 alloc_nid_done(sbi, nids[i]); 446 done = true; 447 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 448 npage[i] = get_node_page_ra(parent, offset[i - 1]); 449 if (IS_ERR(npage[i])) { 450 err = PTR_ERR(npage[i]); 451 goto release_pages; 452 } 453 done = true; 454 } 455 if (i == 1) { 456 dn->inode_page_locked = false; 457 unlock_page(parent); 458 } else { 459 f2fs_put_page(parent, 1); 460 } 461 462 if (!done) { 463 npage[i] = get_node_page(sbi, nids[i]); 464 if (IS_ERR(npage[i])) { 465 err = PTR_ERR(npage[i]); 466 f2fs_put_page(npage[0], 0); 467 goto release_out; 468 } 469 } 470 if (i < level) { 471 parent = npage[i]; 472 nids[i + 1] = get_nid(parent, offset[i], false); 473 } 474 } 475 dn->nid = nids[level]; 476 dn->ofs_in_node = offset[level]; 477 dn->node_page = npage[level]; 478 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 479 return 0; 480 481 release_pages: 482 f2fs_put_page(parent, 1); 483 if (i > 1) 484 f2fs_put_page(npage[0], 0); 485 release_out: 486 dn->inode_page = NULL; 487 dn->node_page = NULL; 488 return err; 489 } 490 491 static void truncate_node(struct dnode_of_data *dn) 492 { 493 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 494 struct node_info ni; 495 496 get_node_info(sbi, dn->nid, &ni); 497 if (dn->inode->i_blocks == 0) { 498 BUG_ON(ni.blk_addr != NULL_ADDR); 499 goto invalidate; 500 } 501 BUG_ON(ni.blk_addr == NULL_ADDR); 502 503 /* Deallocate node address */ 504 invalidate_blocks(sbi, ni.blk_addr); 505 dec_valid_node_count(sbi, dn->inode, 1); 506 set_node_addr(sbi, &ni, NULL_ADDR); 507 508 if (dn->nid == dn->inode->i_ino) { 509 remove_orphan_inode(sbi, dn->nid); 510 dec_valid_inode_count(sbi); 511 } else { 512 sync_inode_page(dn); 513 } 514 invalidate: 515 clear_node_page_dirty(dn->node_page); 516 F2FS_SET_SB_DIRT(sbi); 517 518 f2fs_put_page(dn->node_page, 1); 519 dn->node_page = NULL; 520 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 521 } 522 523 static int truncate_dnode(struct dnode_of_data *dn) 524 { 525 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 526 struct page *page; 527 528 if (dn->nid == 0) 529 return 1; 530 531 /* get direct node */ 532 page = get_node_page(sbi, dn->nid); 533 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 534 return 1; 535 else if (IS_ERR(page)) 536 return PTR_ERR(page); 537 538 /* Make dnode_of_data for parameter */ 539 dn->node_page = page; 540 dn->ofs_in_node = 0; 541 truncate_data_blocks(dn); 542 truncate_node(dn); 543 return 1; 544 } 545 546 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 547 int ofs, int depth) 548 { 549 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 550 struct dnode_of_data rdn = *dn; 551 struct page *page; 552 struct f2fs_node *rn; 553 nid_t child_nid; 554 unsigned int child_nofs; 555 int freed = 0; 556 int i, ret; 557 558 if (dn->nid == 0) 559 return NIDS_PER_BLOCK + 1; 560 561 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 562 563 page = get_node_page(sbi, dn->nid); 564 if (IS_ERR(page)) { 565 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 566 return PTR_ERR(page); 567 } 568 569 rn = F2FS_NODE(page); 570 if (depth < 3) { 571 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 572 child_nid = le32_to_cpu(rn->in.nid[i]); 573 if (child_nid == 0) 574 continue; 575 rdn.nid = child_nid; 576 ret = truncate_dnode(&rdn); 577 if (ret < 0) 578 goto out_err; 579 set_nid(page, i, 0, false); 580 } 581 } else { 582 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 583 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 584 child_nid = le32_to_cpu(rn->in.nid[i]); 585 if (child_nid == 0) { 586 child_nofs += NIDS_PER_BLOCK + 1; 587 continue; 588 } 589 rdn.nid = child_nid; 590 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 591 if (ret == (NIDS_PER_BLOCK + 1)) { 592 set_nid(page, i, 0, false); 593 child_nofs += ret; 594 } else if (ret < 0 && ret != -ENOENT) { 595 goto out_err; 596 } 597 } 598 freed = child_nofs; 599 } 600 601 if (!ofs) { 602 /* remove current indirect node */ 603 dn->node_page = page; 604 truncate_node(dn); 605 freed++; 606 } else { 607 f2fs_put_page(page, 1); 608 } 609 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 610 return freed; 611 612 out_err: 613 f2fs_put_page(page, 1); 614 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 615 return ret; 616 } 617 618 static int truncate_partial_nodes(struct dnode_of_data *dn, 619 struct f2fs_inode *ri, int *offset, int depth) 620 { 621 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 622 struct page *pages[2]; 623 nid_t nid[3]; 624 nid_t child_nid; 625 int err = 0; 626 int i; 627 int idx = depth - 2; 628 629 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 630 if (!nid[0]) 631 return 0; 632 633 /* get indirect nodes in the path */ 634 for (i = 0; i < depth - 1; i++) { 635 /* refernece count'll be increased */ 636 pages[i] = get_node_page(sbi, nid[i]); 637 if (IS_ERR(pages[i])) { 638 depth = i + 1; 639 err = PTR_ERR(pages[i]); 640 goto fail; 641 } 642 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 643 } 644 645 /* free direct nodes linked to a partial indirect node */ 646 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { 647 child_nid = get_nid(pages[idx], i, false); 648 if (!child_nid) 649 continue; 650 dn->nid = child_nid; 651 err = truncate_dnode(dn); 652 if (err < 0) 653 goto fail; 654 set_nid(pages[idx], i, 0, false); 655 } 656 657 if (offset[depth - 1] == 0) { 658 dn->node_page = pages[idx]; 659 dn->nid = nid[idx]; 660 truncate_node(dn); 661 } else { 662 f2fs_put_page(pages[idx], 1); 663 } 664 offset[idx]++; 665 offset[depth - 1] = 0; 666 fail: 667 for (i = depth - 3; i >= 0; i--) 668 f2fs_put_page(pages[i], 1); 669 670 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 671 672 return err; 673 } 674 675 /* 676 * All the block addresses of data and nodes should be nullified. 677 */ 678 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 679 { 680 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 681 struct address_space *node_mapping = sbi->node_inode->i_mapping; 682 int err = 0, cont = 1; 683 int level, offset[4], noffset[4]; 684 unsigned int nofs = 0; 685 struct f2fs_node *rn; 686 struct dnode_of_data dn; 687 struct page *page; 688 689 trace_f2fs_truncate_inode_blocks_enter(inode, from); 690 691 level = get_node_path(F2FS_I(inode), from, offset, noffset); 692 restart: 693 page = get_node_page(sbi, inode->i_ino); 694 if (IS_ERR(page)) { 695 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 696 return PTR_ERR(page); 697 } 698 699 set_new_dnode(&dn, inode, page, NULL, 0); 700 unlock_page(page); 701 702 rn = F2FS_NODE(page); 703 switch (level) { 704 case 0: 705 case 1: 706 nofs = noffset[1]; 707 break; 708 case 2: 709 nofs = noffset[1]; 710 if (!offset[level - 1]) 711 goto skip_partial; 712 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 713 if (err < 0 && err != -ENOENT) 714 goto fail; 715 nofs += 1 + NIDS_PER_BLOCK; 716 break; 717 case 3: 718 nofs = 5 + 2 * NIDS_PER_BLOCK; 719 if (!offset[level - 1]) 720 goto skip_partial; 721 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 722 if (err < 0 && err != -ENOENT) 723 goto fail; 724 break; 725 default: 726 BUG(); 727 } 728 729 skip_partial: 730 while (cont) { 731 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); 732 switch (offset[0]) { 733 case NODE_DIR1_BLOCK: 734 case NODE_DIR2_BLOCK: 735 err = truncate_dnode(&dn); 736 break; 737 738 case NODE_IND1_BLOCK: 739 case NODE_IND2_BLOCK: 740 err = truncate_nodes(&dn, nofs, offset[1], 2); 741 break; 742 743 case NODE_DIND_BLOCK: 744 err = truncate_nodes(&dn, nofs, offset[1], 3); 745 cont = 0; 746 break; 747 748 default: 749 BUG(); 750 } 751 if (err < 0 && err != -ENOENT) 752 goto fail; 753 if (offset[1] == 0 && 754 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { 755 lock_page(page); 756 if (page->mapping != node_mapping) { 757 f2fs_put_page(page, 1); 758 goto restart; 759 } 760 wait_on_page_writeback(page); 761 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 762 set_page_dirty(page); 763 unlock_page(page); 764 } 765 offset[1] = 0; 766 offset[0]++; 767 nofs += err; 768 } 769 fail: 770 f2fs_put_page(page, 0); 771 trace_f2fs_truncate_inode_blocks_exit(inode, err); 772 return err > 0 ? 0 : err; 773 } 774 775 int truncate_xattr_node(struct inode *inode, struct page *page) 776 { 777 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 778 nid_t nid = F2FS_I(inode)->i_xattr_nid; 779 struct dnode_of_data dn; 780 struct page *npage; 781 782 if (!nid) 783 return 0; 784 785 npage = get_node_page(sbi, nid); 786 if (IS_ERR(npage)) 787 return PTR_ERR(npage); 788 789 F2FS_I(inode)->i_xattr_nid = 0; 790 791 /* need to do checkpoint during fsync */ 792 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 793 794 set_new_dnode(&dn, inode, page, npage, nid); 795 796 if (page) 797 dn.inode_page_locked = 1; 798 truncate_node(&dn); 799 return 0; 800 } 801 802 /* 803 * Caller should grab and release a mutex by calling mutex_lock_op() and 804 * mutex_unlock_op(). 805 */ 806 int remove_inode_page(struct inode *inode) 807 { 808 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 809 struct page *page; 810 nid_t ino = inode->i_ino; 811 struct dnode_of_data dn; 812 int err; 813 814 page = get_node_page(sbi, ino); 815 if (IS_ERR(page)) 816 return PTR_ERR(page); 817 818 err = truncate_xattr_node(inode, page); 819 if (err) { 820 f2fs_put_page(page, 1); 821 return err; 822 } 823 824 /* 0 is possible, after f2fs_new_inode() is failed */ 825 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1); 826 set_new_dnode(&dn, inode, page, page, ino); 827 truncate_node(&dn); 828 return 0; 829 } 830 831 struct page *new_inode_page(struct inode *inode, const struct qstr *name) 832 { 833 struct dnode_of_data dn; 834 835 /* allocate inode page for new inode */ 836 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 837 838 /* caller should f2fs_put_page(page, 1); */ 839 return new_node_page(&dn, 0, NULL); 840 } 841 842 struct page *new_node_page(struct dnode_of_data *dn, 843 unsigned int ofs, struct page *ipage) 844 { 845 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 846 struct address_space *mapping = sbi->node_inode->i_mapping; 847 struct node_info old_ni, new_ni; 848 struct page *page; 849 int err; 850 851 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) 852 return ERR_PTR(-EPERM); 853 854 page = grab_cache_page(mapping, dn->nid); 855 if (!page) 856 return ERR_PTR(-ENOMEM); 857 858 if (!inc_valid_node_count(sbi, dn->inode, 1)) { 859 err = -ENOSPC; 860 goto fail; 861 } 862 863 get_node_info(sbi, dn->nid, &old_ni); 864 865 /* Reinitialize old_ni with new node page */ 866 BUG_ON(old_ni.blk_addr != NULL_ADDR); 867 new_ni = old_ni; 868 new_ni.ino = dn->inode->i_ino; 869 set_node_addr(sbi, &new_ni, NEW_ADDR); 870 871 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 872 set_cold_node(dn->inode, page); 873 SetPageUptodate(page); 874 set_page_dirty(page); 875 876 if (ofs == XATTR_NODE_OFFSET) 877 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 878 879 dn->node_page = page; 880 if (ipage) 881 update_inode(dn->inode, ipage); 882 else 883 sync_inode_page(dn); 884 if (ofs == 0) 885 inc_valid_inode_count(sbi); 886 887 return page; 888 889 fail: 890 clear_node_page_dirty(page); 891 f2fs_put_page(page, 1); 892 return ERR_PTR(err); 893 } 894 895 /* 896 * Caller should do after getting the following values. 897 * 0: f2fs_put_page(page, 0) 898 * LOCKED_PAGE: f2fs_put_page(page, 1) 899 * error: nothing 900 */ 901 static int read_node_page(struct page *page, int type) 902 { 903 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 904 struct node_info ni; 905 906 get_node_info(sbi, page->index, &ni); 907 908 if (ni.blk_addr == NULL_ADDR) { 909 f2fs_put_page(page, 1); 910 return -ENOENT; 911 } 912 913 if (PageUptodate(page)) 914 return LOCKED_PAGE; 915 916 return f2fs_readpage(sbi, page, ni.blk_addr, type); 917 } 918 919 /* 920 * Readahead a node page 921 */ 922 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 923 { 924 struct address_space *mapping = sbi->node_inode->i_mapping; 925 struct page *apage; 926 int err; 927 928 apage = find_get_page(mapping, nid); 929 if (apage && PageUptodate(apage)) { 930 f2fs_put_page(apage, 0); 931 return; 932 } 933 f2fs_put_page(apage, 0); 934 935 apage = grab_cache_page(mapping, nid); 936 if (!apage) 937 return; 938 939 err = read_node_page(apage, READA); 940 if (err == 0) 941 f2fs_put_page(apage, 0); 942 else if (err == LOCKED_PAGE) 943 f2fs_put_page(apage, 1); 944 } 945 946 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 947 { 948 struct address_space *mapping = sbi->node_inode->i_mapping; 949 struct page *page; 950 int err; 951 repeat: 952 page = grab_cache_page(mapping, nid); 953 if (!page) 954 return ERR_PTR(-ENOMEM); 955 956 err = read_node_page(page, READ_SYNC); 957 if (err < 0) 958 return ERR_PTR(err); 959 else if (err == LOCKED_PAGE) 960 goto got_it; 961 962 lock_page(page); 963 if (!PageUptodate(page)) { 964 f2fs_put_page(page, 1); 965 return ERR_PTR(-EIO); 966 } 967 if (page->mapping != mapping) { 968 f2fs_put_page(page, 1); 969 goto repeat; 970 } 971 got_it: 972 BUG_ON(nid != nid_of_node(page)); 973 mark_page_accessed(page); 974 return page; 975 } 976 977 /* 978 * Return a locked page for the desired node page. 979 * And, readahead MAX_RA_NODE number of node pages. 980 */ 981 struct page *get_node_page_ra(struct page *parent, int start) 982 { 983 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); 984 struct address_space *mapping = sbi->node_inode->i_mapping; 985 struct blk_plug plug; 986 struct page *page; 987 int err, i, end; 988 nid_t nid; 989 990 /* First, try getting the desired direct node. */ 991 nid = get_nid(parent, start, false); 992 if (!nid) 993 return ERR_PTR(-ENOENT); 994 repeat: 995 page = grab_cache_page(mapping, nid); 996 if (!page) 997 return ERR_PTR(-ENOMEM); 998 999 err = read_node_page(page, READ_SYNC); 1000 if (err < 0) 1001 return ERR_PTR(err); 1002 else if (err == LOCKED_PAGE) 1003 goto page_hit; 1004 1005 blk_start_plug(&plug); 1006 1007 /* Then, try readahead for siblings of the desired node */ 1008 end = start + MAX_RA_NODE; 1009 end = min(end, NIDS_PER_BLOCK); 1010 for (i = start + 1; i < end; i++) { 1011 nid = get_nid(parent, i, false); 1012 if (!nid) 1013 continue; 1014 ra_node_page(sbi, nid); 1015 } 1016 1017 blk_finish_plug(&plug); 1018 1019 lock_page(page); 1020 if (page->mapping != mapping) { 1021 f2fs_put_page(page, 1); 1022 goto repeat; 1023 } 1024 page_hit: 1025 if (!PageUptodate(page)) { 1026 f2fs_put_page(page, 1); 1027 return ERR_PTR(-EIO); 1028 } 1029 mark_page_accessed(page); 1030 return page; 1031 } 1032 1033 void sync_inode_page(struct dnode_of_data *dn) 1034 { 1035 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1036 update_inode(dn->inode, dn->node_page); 1037 } else if (dn->inode_page) { 1038 if (!dn->inode_page_locked) 1039 lock_page(dn->inode_page); 1040 update_inode(dn->inode, dn->inode_page); 1041 if (!dn->inode_page_locked) 1042 unlock_page(dn->inode_page); 1043 } else { 1044 update_inode_page(dn->inode); 1045 } 1046 } 1047 1048 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1049 struct writeback_control *wbc) 1050 { 1051 struct address_space *mapping = sbi->node_inode->i_mapping; 1052 pgoff_t index, end; 1053 struct pagevec pvec; 1054 int step = ino ? 2 : 0; 1055 int nwritten = 0, wrote = 0; 1056 1057 pagevec_init(&pvec, 0); 1058 1059 next_step: 1060 index = 0; 1061 end = LONG_MAX; 1062 1063 while (index <= end) { 1064 int i, nr_pages; 1065 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1066 PAGECACHE_TAG_DIRTY, 1067 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1068 if (nr_pages == 0) 1069 break; 1070 1071 for (i = 0; i < nr_pages; i++) { 1072 struct page *page = pvec.pages[i]; 1073 1074 /* 1075 * flushing sequence with step: 1076 * 0. indirect nodes 1077 * 1. dentry dnodes 1078 * 2. file dnodes 1079 */ 1080 if (step == 0 && IS_DNODE(page)) 1081 continue; 1082 if (step == 1 && (!IS_DNODE(page) || 1083 is_cold_node(page))) 1084 continue; 1085 if (step == 2 && (!IS_DNODE(page) || 1086 !is_cold_node(page))) 1087 continue; 1088 1089 /* 1090 * If an fsync mode, 1091 * we should not skip writing node pages. 1092 */ 1093 if (ino && ino_of_node(page) == ino) 1094 lock_page(page); 1095 else if (!trylock_page(page)) 1096 continue; 1097 1098 if (unlikely(page->mapping != mapping)) { 1099 continue_unlock: 1100 unlock_page(page); 1101 continue; 1102 } 1103 if (ino && ino_of_node(page) != ino) 1104 goto continue_unlock; 1105 1106 if (!PageDirty(page)) { 1107 /* someone wrote it for us */ 1108 goto continue_unlock; 1109 } 1110 1111 if (!clear_page_dirty_for_io(page)) 1112 goto continue_unlock; 1113 1114 /* called by fsync() */ 1115 if (ino && IS_DNODE(page)) { 1116 int mark = !is_checkpointed_node(sbi, ino); 1117 set_fsync_mark(page, 1); 1118 if (IS_INODE(page)) 1119 set_dentry_mark(page, mark); 1120 nwritten++; 1121 } else { 1122 set_fsync_mark(page, 0); 1123 set_dentry_mark(page, 0); 1124 } 1125 mapping->a_ops->writepage(page, wbc); 1126 wrote++; 1127 1128 if (--wbc->nr_to_write == 0) 1129 break; 1130 } 1131 pagevec_release(&pvec); 1132 cond_resched(); 1133 1134 if (wbc->nr_to_write == 0) { 1135 step = 2; 1136 break; 1137 } 1138 } 1139 1140 if (step < 2) { 1141 step++; 1142 goto next_step; 1143 } 1144 1145 if (wrote) 1146 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); 1147 1148 return nwritten; 1149 } 1150 1151 static int f2fs_write_node_page(struct page *page, 1152 struct writeback_control *wbc) 1153 { 1154 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 1155 nid_t nid; 1156 block_t new_addr; 1157 struct node_info ni; 1158 1159 wait_on_page_writeback(page); 1160 1161 /* get old block addr of this node page */ 1162 nid = nid_of_node(page); 1163 BUG_ON(page->index != nid); 1164 1165 get_node_info(sbi, nid, &ni); 1166 1167 /* This page is already truncated */ 1168 if (ni.blk_addr == NULL_ADDR) { 1169 dec_page_count(sbi, F2FS_DIRTY_NODES); 1170 unlock_page(page); 1171 return 0; 1172 } 1173 1174 if (wbc->for_reclaim) { 1175 dec_page_count(sbi, F2FS_DIRTY_NODES); 1176 wbc->pages_skipped++; 1177 set_page_dirty(page); 1178 return AOP_WRITEPAGE_ACTIVATE; 1179 } 1180 1181 mutex_lock(&sbi->node_write); 1182 set_page_writeback(page); 1183 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); 1184 set_node_addr(sbi, &ni, new_addr); 1185 dec_page_count(sbi, F2FS_DIRTY_NODES); 1186 mutex_unlock(&sbi->node_write); 1187 unlock_page(page); 1188 return 0; 1189 } 1190 1191 /* 1192 * It is very important to gather dirty pages and write at once, so that we can 1193 * submit a big bio without interfering other data writes. 1194 * Be default, 512 pages (2MB), a segment size, is quite reasonable. 1195 */ 1196 #define COLLECT_DIRTY_NODES 512 1197 static int f2fs_write_node_pages(struct address_space *mapping, 1198 struct writeback_control *wbc) 1199 { 1200 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1201 long nr_to_write = wbc->nr_to_write; 1202 1203 /* First check balancing cached NAT entries */ 1204 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { 1205 f2fs_sync_fs(sbi->sb, true); 1206 return 0; 1207 } 1208 1209 /* collect a number of dirty node pages and write together */ 1210 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES) 1211 return 0; 1212 1213 /* if mounting is failed, skip writing node pages */ 1214 wbc->nr_to_write = max_hw_blocks(sbi); 1215 sync_node_pages(sbi, 0, wbc); 1216 wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write); 1217 return 0; 1218 } 1219 1220 static int f2fs_set_node_page_dirty(struct page *page) 1221 { 1222 struct address_space *mapping = page->mapping; 1223 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1224 1225 SetPageUptodate(page); 1226 if (!PageDirty(page)) { 1227 __set_page_dirty_nobuffers(page); 1228 inc_page_count(sbi, F2FS_DIRTY_NODES); 1229 SetPagePrivate(page); 1230 return 1; 1231 } 1232 return 0; 1233 } 1234 1235 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset, 1236 unsigned int length) 1237 { 1238 struct inode *inode = page->mapping->host; 1239 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 1240 if (PageDirty(page)) 1241 dec_page_count(sbi, F2FS_DIRTY_NODES); 1242 ClearPagePrivate(page); 1243 } 1244 1245 static int f2fs_release_node_page(struct page *page, gfp_t wait) 1246 { 1247 ClearPagePrivate(page); 1248 return 1; 1249 } 1250 1251 /* 1252 * Structure of the f2fs node operations 1253 */ 1254 const struct address_space_operations f2fs_node_aops = { 1255 .writepage = f2fs_write_node_page, 1256 .writepages = f2fs_write_node_pages, 1257 .set_page_dirty = f2fs_set_node_page_dirty, 1258 .invalidatepage = f2fs_invalidate_node_page, 1259 .releasepage = f2fs_release_node_page, 1260 }; 1261 1262 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) 1263 { 1264 struct list_head *this; 1265 struct free_nid *i; 1266 list_for_each(this, head) { 1267 i = list_entry(this, struct free_nid, list); 1268 if (i->nid == n) 1269 return i; 1270 } 1271 return NULL; 1272 } 1273 1274 static void __del_from_free_nid_list(struct free_nid *i) 1275 { 1276 list_del(&i->list); 1277 kmem_cache_free(free_nid_slab, i); 1278 } 1279 1280 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build) 1281 { 1282 struct free_nid *i; 1283 struct nat_entry *ne; 1284 bool allocated = false; 1285 1286 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) 1287 return -1; 1288 1289 /* 0 nid should not be used */ 1290 if (nid == 0) 1291 return 0; 1292 1293 if (!build) 1294 goto retry; 1295 1296 /* do not add allocated nids */ 1297 read_lock(&nm_i->nat_tree_lock); 1298 ne = __lookup_nat_cache(nm_i, nid); 1299 if (ne && nat_get_blkaddr(ne) != NULL_ADDR) 1300 allocated = true; 1301 read_unlock(&nm_i->nat_tree_lock); 1302 if (allocated) 1303 return 0; 1304 retry: 1305 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1306 if (!i) { 1307 cond_resched(); 1308 goto retry; 1309 } 1310 i->nid = nid; 1311 i->state = NID_NEW; 1312 1313 spin_lock(&nm_i->free_nid_list_lock); 1314 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { 1315 spin_unlock(&nm_i->free_nid_list_lock); 1316 kmem_cache_free(free_nid_slab, i); 1317 return 0; 1318 } 1319 list_add_tail(&i->list, &nm_i->free_nid_list); 1320 nm_i->fcnt++; 1321 spin_unlock(&nm_i->free_nid_list_lock); 1322 return 1; 1323 } 1324 1325 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1326 { 1327 struct free_nid *i; 1328 spin_lock(&nm_i->free_nid_list_lock); 1329 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1330 if (i && i->state == NID_NEW) { 1331 __del_from_free_nid_list(i); 1332 nm_i->fcnt--; 1333 } 1334 spin_unlock(&nm_i->free_nid_list_lock); 1335 } 1336 1337 static void scan_nat_page(struct f2fs_nm_info *nm_i, 1338 struct page *nat_page, nid_t start_nid) 1339 { 1340 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1341 block_t blk_addr; 1342 int i; 1343 1344 i = start_nid % NAT_ENTRY_PER_BLOCK; 1345 1346 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1347 1348 if (start_nid >= nm_i->max_nid) 1349 break; 1350 1351 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1352 BUG_ON(blk_addr == NEW_ADDR); 1353 if (blk_addr == NULL_ADDR) { 1354 if (add_free_nid(nm_i, start_nid, true) < 0) 1355 break; 1356 } 1357 } 1358 } 1359 1360 static void build_free_nids(struct f2fs_sb_info *sbi) 1361 { 1362 struct f2fs_nm_info *nm_i = NM_I(sbi); 1363 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1364 struct f2fs_summary_block *sum = curseg->sum_blk; 1365 int i = 0; 1366 nid_t nid = nm_i->next_scan_nid; 1367 1368 /* Enough entries */ 1369 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1370 return; 1371 1372 /* readahead nat pages to be scanned */ 1373 ra_nat_pages(sbi, nid); 1374 1375 while (1) { 1376 struct page *page = get_current_nat_page(sbi, nid); 1377 1378 scan_nat_page(nm_i, page, nid); 1379 f2fs_put_page(page, 1); 1380 1381 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1382 if (nid >= nm_i->max_nid) 1383 nid = 0; 1384 1385 if (i++ == FREE_NID_PAGES) 1386 break; 1387 } 1388 1389 /* go to the next free nat pages to find free nids abundantly */ 1390 nm_i->next_scan_nid = nid; 1391 1392 /* find free nids from current sum_pages */ 1393 mutex_lock(&curseg->curseg_mutex); 1394 for (i = 0; i < nats_in_cursum(sum); i++) { 1395 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); 1396 nid = le32_to_cpu(nid_in_journal(sum, i)); 1397 if (addr == NULL_ADDR) 1398 add_free_nid(nm_i, nid, true); 1399 else 1400 remove_free_nid(nm_i, nid); 1401 } 1402 mutex_unlock(&curseg->curseg_mutex); 1403 } 1404 1405 /* 1406 * If this function returns success, caller can obtain a new nid 1407 * from second parameter of this function. 1408 * The returned nid could be used ino as well as nid when inode is created. 1409 */ 1410 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1411 { 1412 struct f2fs_nm_info *nm_i = NM_I(sbi); 1413 struct free_nid *i = NULL; 1414 struct list_head *this; 1415 retry: 1416 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid) 1417 return false; 1418 1419 spin_lock(&nm_i->free_nid_list_lock); 1420 1421 /* We should not use stale free nids created by build_free_nids */ 1422 if (nm_i->fcnt && !sbi->on_build_free_nids) { 1423 BUG_ON(list_empty(&nm_i->free_nid_list)); 1424 list_for_each(this, &nm_i->free_nid_list) { 1425 i = list_entry(this, struct free_nid, list); 1426 if (i->state == NID_NEW) 1427 break; 1428 } 1429 1430 BUG_ON(i->state != NID_NEW); 1431 *nid = i->nid; 1432 i->state = NID_ALLOC; 1433 nm_i->fcnt--; 1434 spin_unlock(&nm_i->free_nid_list_lock); 1435 return true; 1436 } 1437 spin_unlock(&nm_i->free_nid_list_lock); 1438 1439 /* Let's scan nat pages and its caches to get free nids */ 1440 mutex_lock(&nm_i->build_lock); 1441 sbi->on_build_free_nids = 1; 1442 build_free_nids(sbi); 1443 sbi->on_build_free_nids = 0; 1444 mutex_unlock(&nm_i->build_lock); 1445 goto retry; 1446 } 1447 1448 /* 1449 * alloc_nid() should be called prior to this function. 1450 */ 1451 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1452 { 1453 struct f2fs_nm_info *nm_i = NM_I(sbi); 1454 struct free_nid *i; 1455 1456 spin_lock(&nm_i->free_nid_list_lock); 1457 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1458 BUG_ON(!i || i->state != NID_ALLOC); 1459 __del_from_free_nid_list(i); 1460 spin_unlock(&nm_i->free_nid_list_lock); 1461 } 1462 1463 /* 1464 * alloc_nid() should be called prior to this function. 1465 */ 1466 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1467 { 1468 struct f2fs_nm_info *nm_i = NM_I(sbi); 1469 struct free_nid *i; 1470 1471 if (!nid) 1472 return; 1473 1474 spin_lock(&nm_i->free_nid_list_lock); 1475 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1476 BUG_ON(!i || i->state != NID_ALLOC); 1477 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) { 1478 __del_from_free_nid_list(i); 1479 } else { 1480 i->state = NID_NEW; 1481 nm_i->fcnt++; 1482 } 1483 spin_unlock(&nm_i->free_nid_list_lock); 1484 } 1485 1486 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, 1487 struct f2fs_summary *sum, struct node_info *ni, 1488 block_t new_blkaddr) 1489 { 1490 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); 1491 set_node_addr(sbi, ni, new_blkaddr); 1492 clear_node_page_dirty(page); 1493 } 1494 1495 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1496 { 1497 struct address_space *mapping = sbi->node_inode->i_mapping; 1498 struct f2fs_node *src, *dst; 1499 nid_t ino = ino_of_node(page); 1500 struct node_info old_ni, new_ni; 1501 struct page *ipage; 1502 1503 ipage = grab_cache_page(mapping, ino); 1504 if (!ipage) 1505 return -ENOMEM; 1506 1507 /* Should not use this inode from free nid list */ 1508 remove_free_nid(NM_I(sbi), ino); 1509 1510 get_node_info(sbi, ino, &old_ni); 1511 SetPageUptodate(ipage); 1512 fill_node_footer(ipage, ino, ino, 0, true); 1513 1514 src = F2FS_NODE(page); 1515 dst = F2FS_NODE(ipage); 1516 1517 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); 1518 dst->i.i_size = 0; 1519 dst->i.i_blocks = cpu_to_le64(1); 1520 dst->i.i_links = cpu_to_le32(1); 1521 dst->i.i_xattr_nid = 0; 1522 1523 new_ni = old_ni; 1524 new_ni.ino = ino; 1525 1526 if (!inc_valid_node_count(sbi, NULL, 1)) 1527 WARN_ON(1); 1528 set_node_addr(sbi, &new_ni, NEW_ADDR); 1529 inc_valid_inode_count(sbi); 1530 f2fs_put_page(ipage, 1); 1531 return 0; 1532 } 1533 1534 int restore_node_summary(struct f2fs_sb_info *sbi, 1535 unsigned int segno, struct f2fs_summary_block *sum) 1536 { 1537 struct f2fs_node *rn; 1538 struct f2fs_summary *sum_entry; 1539 struct page *page; 1540 block_t addr; 1541 int i, last_offset; 1542 1543 /* alloc temporal page for read node */ 1544 page = alloc_page(GFP_NOFS | __GFP_ZERO); 1545 if (!page) 1546 return -ENOMEM; 1547 lock_page(page); 1548 1549 /* scan the node segment */ 1550 last_offset = sbi->blocks_per_seg; 1551 addr = START_BLOCK(sbi, segno); 1552 sum_entry = &sum->entries[0]; 1553 1554 for (i = 0; i < last_offset; i++, sum_entry++) { 1555 /* 1556 * In order to read next node page, 1557 * we must clear PageUptodate flag. 1558 */ 1559 ClearPageUptodate(page); 1560 1561 if (f2fs_readpage(sbi, page, addr, READ_SYNC)) 1562 goto out; 1563 1564 lock_page(page); 1565 rn = F2FS_NODE(page); 1566 sum_entry->nid = rn->footer.nid; 1567 sum_entry->version = 0; 1568 sum_entry->ofs_in_node = 0; 1569 addr++; 1570 } 1571 unlock_page(page); 1572 out: 1573 __free_pages(page, 0); 1574 return 0; 1575 } 1576 1577 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) 1578 { 1579 struct f2fs_nm_info *nm_i = NM_I(sbi); 1580 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1581 struct f2fs_summary_block *sum = curseg->sum_blk; 1582 int i; 1583 1584 mutex_lock(&curseg->curseg_mutex); 1585 1586 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { 1587 mutex_unlock(&curseg->curseg_mutex); 1588 return false; 1589 } 1590 1591 for (i = 0; i < nats_in_cursum(sum); i++) { 1592 struct nat_entry *ne; 1593 struct f2fs_nat_entry raw_ne; 1594 nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); 1595 1596 raw_ne = nat_in_journal(sum, i); 1597 retry: 1598 write_lock(&nm_i->nat_tree_lock); 1599 ne = __lookup_nat_cache(nm_i, nid); 1600 if (ne) { 1601 __set_nat_cache_dirty(nm_i, ne); 1602 write_unlock(&nm_i->nat_tree_lock); 1603 continue; 1604 } 1605 ne = grab_nat_entry(nm_i, nid); 1606 if (!ne) { 1607 write_unlock(&nm_i->nat_tree_lock); 1608 goto retry; 1609 } 1610 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); 1611 nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); 1612 nat_set_version(ne, raw_ne.version); 1613 __set_nat_cache_dirty(nm_i, ne); 1614 write_unlock(&nm_i->nat_tree_lock); 1615 } 1616 update_nats_in_cursum(sum, -i); 1617 mutex_unlock(&curseg->curseg_mutex); 1618 return true; 1619 } 1620 1621 /* 1622 * This function is called during the checkpointing process. 1623 */ 1624 void flush_nat_entries(struct f2fs_sb_info *sbi) 1625 { 1626 struct f2fs_nm_info *nm_i = NM_I(sbi); 1627 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1628 struct f2fs_summary_block *sum = curseg->sum_blk; 1629 struct list_head *cur, *n; 1630 struct page *page = NULL; 1631 struct f2fs_nat_block *nat_blk = NULL; 1632 nid_t start_nid = 0, end_nid = 0; 1633 bool flushed; 1634 1635 flushed = flush_nats_in_journal(sbi); 1636 1637 if (!flushed) 1638 mutex_lock(&curseg->curseg_mutex); 1639 1640 /* 1) flush dirty nat caches */ 1641 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { 1642 struct nat_entry *ne; 1643 nid_t nid; 1644 struct f2fs_nat_entry raw_ne; 1645 int offset = -1; 1646 block_t new_blkaddr; 1647 1648 ne = list_entry(cur, struct nat_entry, list); 1649 nid = nat_get_nid(ne); 1650 1651 if (nat_get_blkaddr(ne) == NEW_ADDR) 1652 continue; 1653 if (flushed) 1654 goto to_nat_page; 1655 1656 /* if there is room for nat enries in curseg->sumpage */ 1657 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); 1658 if (offset >= 0) { 1659 raw_ne = nat_in_journal(sum, offset); 1660 goto flush_now; 1661 } 1662 to_nat_page: 1663 if (!page || (start_nid > nid || nid > end_nid)) { 1664 if (page) { 1665 f2fs_put_page(page, 1); 1666 page = NULL; 1667 } 1668 start_nid = START_NID(nid); 1669 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; 1670 1671 /* 1672 * get nat block with dirty flag, increased reference 1673 * count, mapped and lock 1674 */ 1675 page = get_next_nat_page(sbi, start_nid); 1676 nat_blk = page_address(page); 1677 } 1678 1679 BUG_ON(!nat_blk); 1680 raw_ne = nat_blk->entries[nid - start_nid]; 1681 flush_now: 1682 new_blkaddr = nat_get_blkaddr(ne); 1683 1684 raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); 1685 raw_ne.block_addr = cpu_to_le32(new_blkaddr); 1686 raw_ne.version = nat_get_version(ne); 1687 1688 if (offset < 0) { 1689 nat_blk->entries[nid - start_nid] = raw_ne; 1690 } else { 1691 nat_in_journal(sum, offset) = raw_ne; 1692 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1693 } 1694 1695 if (nat_get_blkaddr(ne) == NULL_ADDR && 1696 add_free_nid(NM_I(sbi), nid, false) <= 0) { 1697 write_lock(&nm_i->nat_tree_lock); 1698 __del_from_nat_cache(nm_i, ne); 1699 write_unlock(&nm_i->nat_tree_lock); 1700 } else { 1701 write_lock(&nm_i->nat_tree_lock); 1702 __clear_nat_cache_dirty(nm_i, ne); 1703 ne->checkpointed = true; 1704 write_unlock(&nm_i->nat_tree_lock); 1705 } 1706 } 1707 if (!flushed) 1708 mutex_unlock(&curseg->curseg_mutex); 1709 f2fs_put_page(page, 1); 1710 1711 /* 2) shrink nat caches if necessary */ 1712 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); 1713 } 1714 1715 static int init_node_manager(struct f2fs_sb_info *sbi) 1716 { 1717 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1718 struct f2fs_nm_info *nm_i = NM_I(sbi); 1719 unsigned char *version_bitmap; 1720 unsigned int nat_segs, nat_blocks; 1721 1722 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 1723 1724 /* segment_count_nat includes pair segment so divide to 2. */ 1725 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 1726 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 1727 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 1728 nm_i->fcnt = 0; 1729 nm_i->nat_cnt = 0; 1730 1731 INIT_LIST_HEAD(&nm_i->free_nid_list); 1732 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); 1733 INIT_LIST_HEAD(&nm_i->nat_entries); 1734 INIT_LIST_HEAD(&nm_i->dirty_nat_entries); 1735 1736 mutex_init(&nm_i->build_lock); 1737 spin_lock_init(&nm_i->free_nid_list_lock); 1738 rwlock_init(&nm_i->nat_tree_lock); 1739 1740 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1741 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 1742 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 1743 if (!version_bitmap) 1744 return -EFAULT; 1745 1746 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 1747 GFP_KERNEL); 1748 if (!nm_i->nat_bitmap) 1749 return -ENOMEM; 1750 return 0; 1751 } 1752 1753 int build_node_manager(struct f2fs_sb_info *sbi) 1754 { 1755 int err; 1756 1757 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 1758 if (!sbi->nm_info) 1759 return -ENOMEM; 1760 1761 err = init_node_manager(sbi); 1762 if (err) 1763 return err; 1764 1765 build_free_nids(sbi); 1766 return 0; 1767 } 1768 1769 void destroy_node_manager(struct f2fs_sb_info *sbi) 1770 { 1771 struct f2fs_nm_info *nm_i = NM_I(sbi); 1772 struct free_nid *i, *next_i; 1773 struct nat_entry *natvec[NATVEC_SIZE]; 1774 nid_t nid = 0; 1775 unsigned int found; 1776 1777 if (!nm_i) 1778 return; 1779 1780 /* destroy free nid list */ 1781 spin_lock(&nm_i->free_nid_list_lock); 1782 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 1783 BUG_ON(i->state == NID_ALLOC); 1784 __del_from_free_nid_list(i); 1785 nm_i->fcnt--; 1786 } 1787 BUG_ON(nm_i->fcnt); 1788 spin_unlock(&nm_i->free_nid_list_lock); 1789 1790 /* destroy nat cache */ 1791 write_lock(&nm_i->nat_tree_lock); 1792 while ((found = __gang_lookup_nat_cache(nm_i, 1793 nid, NATVEC_SIZE, natvec))) { 1794 unsigned idx; 1795 for (idx = 0; idx < found; idx++) { 1796 struct nat_entry *e = natvec[idx]; 1797 nid = nat_get_nid(e) + 1; 1798 __del_from_nat_cache(nm_i, e); 1799 } 1800 } 1801 BUG_ON(nm_i->nat_cnt); 1802 write_unlock(&nm_i->nat_tree_lock); 1803 1804 kfree(nm_i->nat_bitmap); 1805 sbi->nm_info = NULL; 1806 kfree(nm_i); 1807 } 1808 1809 int __init create_node_manager_caches(void) 1810 { 1811 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 1812 sizeof(struct nat_entry), NULL); 1813 if (!nat_entry_slab) 1814 return -ENOMEM; 1815 1816 free_nid_slab = f2fs_kmem_cache_create("free_nid", 1817 sizeof(struct free_nid), NULL); 1818 if (!free_nid_slab) { 1819 kmem_cache_destroy(nat_entry_slab); 1820 return -ENOMEM; 1821 } 1822 return 0; 1823 } 1824 1825 void destroy_node_manager_caches(void) 1826 { 1827 kmem_cache_destroy(free_nid_slab); 1828 kmem_cache_destroy(nat_entry_slab); 1829 } 1830