1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 23 static struct kmem_cache *nat_entry_slab; 24 static struct kmem_cache *free_nid_slab; 25 26 static void clear_node_page_dirty(struct page *page) 27 { 28 struct address_space *mapping = page->mapping; 29 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 30 unsigned int long flags; 31 32 if (PageDirty(page)) { 33 spin_lock_irqsave(&mapping->tree_lock, flags); 34 radix_tree_tag_clear(&mapping->page_tree, 35 page_index(page), 36 PAGECACHE_TAG_DIRTY); 37 spin_unlock_irqrestore(&mapping->tree_lock, flags); 38 39 clear_page_dirty_for_io(page); 40 dec_page_count(sbi, F2FS_DIRTY_NODES); 41 } 42 ClearPageUptodate(page); 43 } 44 45 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 46 { 47 pgoff_t index = current_nat_addr(sbi, nid); 48 return get_meta_page(sbi, index); 49 } 50 51 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 52 { 53 struct page *src_page; 54 struct page *dst_page; 55 pgoff_t src_off; 56 pgoff_t dst_off; 57 void *src_addr; 58 void *dst_addr; 59 struct f2fs_nm_info *nm_i = NM_I(sbi); 60 61 src_off = current_nat_addr(sbi, nid); 62 dst_off = next_nat_addr(sbi, src_off); 63 64 /* get current nat block page with lock */ 65 src_page = get_meta_page(sbi, src_off); 66 67 /* Dirty src_page means that it is already the new target NAT page. */ 68 if (PageDirty(src_page)) 69 return src_page; 70 71 dst_page = grab_meta_page(sbi, dst_off); 72 73 src_addr = page_address(src_page); 74 dst_addr = page_address(dst_page); 75 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 76 set_page_dirty(dst_page); 77 f2fs_put_page(src_page, 1); 78 79 set_to_next_nat(nm_i, nid); 80 81 return dst_page; 82 } 83 84 /* 85 * Readahead NAT pages 86 */ 87 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) 88 { 89 struct address_space *mapping = sbi->meta_inode->i_mapping; 90 struct f2fs_nm_info *nm_i = NM_I(sbi); 91 struct page *page; 92 pgoff_t index; 93 int i; 94 95 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { 96 if (nid >= nm_i->max_nid) 97 nid = 0; 98 index = current_nat_addr(sbi, nid); 99 100 page = grab_cache_page(mapping, index); 101 if (!page) 102 continue; 103 if (PageUptodate(page)) { 104 f2fs_put_page(page, 1); 105 continue; 106 } 107 if (f2fs_readpage(sbi, page, index, READ)) 108 continue; 109 110 f2fs_put_page(page, 0); 111 } 112 } 113 114 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 115 { 116 return radix_tree_lookup(&nm_i->nat_root, n); 117 } 118 119 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 120 nid_t start, unsigned int nr, struct nat_entry **ep) 121 { 122 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 123 } 124 125 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 126 { 127 list_del(&e->list); 128 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 129 nm_i->nat_cnt--; 130 kmem_cache_free(nat_entry_slab, e); 131 } 132 133 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 struct f2fs_nm_info *nm_i = NM_I(sbi); 136 struct nat_entry *e; 137 int is_cp = 1; 138 139 read_lock(&nm_i->nat_tree_lock); 140 e = __lookup_nat_cache(nm_i, nid); 141 if (e && !e->checkpointed) 142 is_cp = 0; 143 read_unlock(&nm_i->nat_tree_lock); 144 return is_cp; 145 } 146 147 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 148 { 149 struct nat_entry *new; 150 151 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 152 if (!new) 153 return NULL; 154 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 155 kmem_cache_free(nat_entry_slab, new); 156 return NULL; 157 } 158 memset(new, 0, sizeof(struct nat_entry)); 159 nat_set_nid(new, nid); 160 list_add_tail(&new->list, &nm_i->nat_entries); 161 nm_i->nat_cnt++; 162 return new; 163 } 164 165 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 166 struct f2fs_nat_entry *ne) 167 { 168 struct nat_entry *e; 169 retry: 170 write_lock(&nm_i->nat_tree_lock); 171 e = __lookup_nat_cache(nm_i, nid); 172 if (!e) { 173 e = grab_nat_entry(nm_i, nid); 174 if (!e) { 175 write_unlock(&nm_i->nat_tree_lock); 176 goto retry; 177 } 178 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); 179 nat_set_ino(e, le32_to_cpu(ne->ino)); 180 nat_set_version(e, ne->version); 181 e->checkpointed = true; 182 } 183 write_unlock(&nm_i->nat_tree_lock); 184 } 185 186 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 187 block_t new_blkaddr) 188 { 189 struct f2fs_nm_info *nm_i = NM_I(sbi); 190 struct nat_entry *e; 191 retry: 192 write_lock(&nm_i->nat_tree_lock); 193 e = __lookup_nat_cache(nm_i, ni->nid); 194 if (!e) { 195 e = grab_nat_entry(nm_i, ni->nid); 196 if (!e) { 197 write_unlock(&nm_i->nat_tree_lock); 198 goto retry; 199 } 200 e->ni = *ni; 201 e->checkpointed = true; 202 BUG_ON(ni->blk_addr == NEW_ADDR); 203 } else if (new_blkaddr == NEW_ADDR) { 204 /* 205 * when nid is reallocated, 206 * previous nat entry can be remained in nat cache. 207 * So, reinitialize it with new information. 208 */ 209 e->ni = *ni; 210 BUG_ON(ni->blk_addr != NULL_ADDR); 211 } 212 213 if (new_blkaddr == NEW_ADDR) 214 e->checkpointed = false; 215 216 /* sanity check */ 217 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); 218 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && 219 new_blkaddr == NULL_ADDR); 220 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && 221 new_blkaddr == NEW_ADDR); 222 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && 223 nat_get_blkaddr(e) != NULL_ADDR && 224 new_blkaddr == NEW_ADDR); 225 226 /* increament version no as node is removed */ 227 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 228 unsigned char version = nat_get_version(e); 229 nat_set_version(e, inc_node_version(version)); 230 } 231 232 /* change address */ 233 nat_set_blkaddr(e, new_blkaddr); 234 __set_nat_cache_dirty(nm_i, e); 235 write_unlock(&nm_i->nat_tree_lock); 236 } 237 238 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 239 { 240 struct f2fs_nm_info *nm_i = NM_I(sbi); 241 242 if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD) 243 return 0; 244 245 write_lock(&nm_i->nat_tree_lock); 246 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 247 struct nat_entry *ne; 248 ne = list_first_entry(&nm_i->nat_entries, 249 struct nat_entry, list); 250 __del_from_nat_cache(nm_i, ne); 251 nr_shrink--; 252 } 253 write_unlock(&nm_i->nat_tree_lock); 254 return nr_shrink; 255 } 256 257 /* 258 * This function returns always success 259 */ 260 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 261 { 262 struct f2fs_nm_info *nm_i = NM_I(sbi); 263 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 264 struct f2fs_summary_block *sum = curseg->sum_blk; 265 nid_t start_nid = START_NID(nid); 266 struct f2fs_nat_block *nat_blk; 267 struct page *page = NULL; 268 struct f2fs_nat_entry ne; 269 struct nat_entry *e; 270 int i; 271 272 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 273 ni->nid = nid; 274 275 /* Check nat cache */ 276 read_lock(&nm_i->nat_tree_lock); 277 e = __lookup_nat_cache(nm_i, nid); 278 if (e) { 279 ni->ino = nat_get_ino(e); 280 ni->blk_addr = nat_get_blkaddr(e); 281 ni->version = nat_get_version(e); 282 } 283 read_unlock(&nm_i->nat_tree_lock); 284 if (e) 285 return; 286 287 /* Check current segment summary */ 288 mutex_lock(&curseg->curseg_mutex); 289 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); 290 if (i >= 0) { 291 ne = nat_in_journal(sum, i); 292 node_info_from_raw_nat(ni, &ne); 293 } 294 mutex_unlock(&curseg->curseg_mutex); 295 if (i >= 0) 296 goto cache; 297 298 /* Fill node_info from nat page */ 299 page = get_current_nat_page(sbi, start_nid); 300 nat_blk = (struct f2fs_nat_block *)page_address(page); 301 ne = nat_blk->entries[nid - start_nid]; 302 node_info_from_raw_nat(ni, &ne); 303 f2fs_put_page(page, 1); 304 cache: 305 /* cache nat entry */ 306 cache_nat_entry(NM_I(sbi), nid, &ne); 307 } 308 309 /* 310 * The maximum depth is four. 311 * Offset[0] will have raw inode offset. 312 */ 313 static int get_node_path(long block, int offset[4], unsigned int noffset[4]) 314 { 315 const long direct_index = ADDRS_PER_INODE; 316 const long direct_blks = ADDRS_PER_BLOCK; 317 const long dptrs_per_blk = NIDS_PER_BLOCK; 318 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 319 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 320 int n = 0; 321 int level = 0; 322 323 noffset[0] = 0; 324 325 if (block < direct_index) { 326 offset[n] = block; 327 goto got; 328 } 329 block -= direct_index; 330 if (block < direct_blks) { 331 offset[n++] = NODE_DIR1_BLOCK; 332 noffset[n] = 1; 333 offset[n] = block; 334 level = 1; 335 goto got; 336 } 337 block -= direct_blks; 338 if (block < direct_blks) { 339 offset[n++] = NODE_DIR2_BLOCK; 340 noffset[n] = 2; 341 offset[n] = block; 342 level = 1; 343 goto got; 344 } 345 block -= direct_blks; 346 if (block < indirect_blks) { 347 offset[n++] = NODE_IND1_BLOCK; 348 noffset[n] = 3; 349 offset[n++] = block / direct_blks; 350 noffset[n] = 4 + offset[n - 1]; 351 offset[n] = block % direct_blks; 352 level = 2; 353 goto got; 354 } 355 block -= indirect_blks; 356 if (block < indirect_blks) { 357 offset[n++] = NODE_IND2_BLOCK; 358 noffset[n] = 4 + dptrs_per_blk; 359 offset[n++] = block / direct_blks; 360 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 361 offset[n] = block % direct_blks; 362 level = 2; 363 goto got; 364 } 365 block -= indirect_blks; 366 if (block < dindirect_blks) { 367 offset[n++] = NODE_DIND_BLOCK; 368 noffset[n] = 5 + (dptrs_per_blk * 2); 369 offset[n++] = block / indirect_blks; 370 noffset[n] = 6 + (dptrs_per_blk * 2) + 371 offset[n - 1] * (dptrs_per_blk + 1); 372 offset[n++] = (block / direct_blks) % dptrs_per_blk; 373 noffset[n] = 7 + (dptrs_per_blk * 2) + 374 offset[n - 2] * (dptrs_per_blk + 1) + 375 offset[n - 1]; 376 offset[n] = block % direct_blks; 377 level = 3; 378 goto got; 379 } else { 380 BUG(); 381 } 382 got: 383 return level; 384 } 385 386 /* 387 * Caller should call f2fs_put_dnode(dn). 388 */ 389 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 390 { 391 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 392 struct page *npage[4]; 393 struct page *parent; 394 int offset[4]; 395 unsigned int noffset[4]; 396 nid_t nids[4]; 397 int level, i; 398 int err = 0; 399 400 level = get_node_path(index, offset, noffset); 401 402 nids[0] = dn->inode->i_ino; 403 npage[0] = get_node_page(sbi, nids[0]); 404 if (IS_ERR(npage[0])) 405 return PTR_ERR(npage[0]); 406 407 parent = npage[0]; 408 if (level != 0) 409 nids[1] = get_nid(parent, offset[0], true); 410 dn->inode_page = npage[0]; 411 dn->inode_page_locked = true; 412 413 /* get indirect or direct nodes */ 414 for (i = 1; i <= level; i++) { 415 bool done = false; 416 417 if (!nids[i] && mode == ALLOC_NODE) { 418 mutex_lock_op(sbi, NODE_NEW); 419 420 /* alloc new node */ 421 if (!alloc_nid(sbi, &(nids[i]))) { 422 mutex_unlock_op(sbi, NODE_NEW); 423 err = -ENOSPC; 424 goto release_pages; 425 } 426 427 dn->nid = nids[i]; 428 npage[i] = new_node_page(dn, noffset[i]); 429 if (IS_ERR(npage[i])) { 430 alloc_nid_failed(sbi, nids[i]); 431 mutex_unlock_op(sbi, NODE_NEW); 432 err = PTR_ERR(npage[i]); 433 goto release_pages; 434 } 435 436 set_nid(parent, offset[i - 1], nids[i], i == 1); 437 alloc_nid_done(sbi, nids[i]); 438 mutex_unlock_op(sbi, NODE_NEW); 439 done = true; 440 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 441 npage[i] = get_node_page_ra(parent, offset[i - 1]); 442 if (IS_ERR(npage[i])) { 443 err = PTR_ERR(npage[i]); 444 goto release_pages; 445 } 446 done = true; 447 } 448 if (i == 1) { 449 dn->inode_page_locked = false; 450 unlock_page(parent); 451 } else { 452 f2fs_put_page(parent, 1); 453 } 454 455 if (!done) { 456 npage[i] = get_node_page(sbi, nids[i]); 457 if (IS_ERR(npage[i])) { 458 err = PTR_ERR(npage[i]); 459 f2fs_put_page(npage[0], 0); 460 goto release_out; 461 } 462 } 463 if (i < level) { 464 parent = npage[i]; 465 nids[i + 1] = get_nid(parent, offset[i], false); 466 } 467 } 468 dn->nid = nids[level]; 469 dn->ofs_in_node = offset[level]; 470 dn->node_page = npage[level]; 471 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 472 return 0; 473 474 release_pages: 475 f2fs_put_page(parent, 1); 476 if (i > 1) 477 f2fs_put_page(npage[0], 0); 478 release_out: 479 dn->inode_page = NULL; 480 dn->node_page = NULL; 481 return err; 482 } 483 484 static void truncate_node(struct dnode_of_data *dn) 485 { 486 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 487 struct node_info ni; 488 489 get_node_info(sbi, dn->nid, &ni); 490 if (dn->inode->i_blocks == 0) { 491 BUG_ON(ni.blk_addr != NULL_ADDR); 492 goto invalidate; 493 } 494 BUG_ON(ni.blk_addr == NULL_ADDR); 495 496 /* Deallocate node address */ 497 invalidate_blocks(sbi, ni.blk_addr); 498 dec_valid_node_count(sbi, dn->inode, 1); 499 set_node_addr(sbi, &ni, NULL_ADDR); 500 501 if (dn->nid == dn->inode->i_ino) { 502 remove_orphan_inode(sbi, dn->nid); 503 dec_valid_inode_count(sbi); 504 } else { 505 sync_inode_page(dn); 506 } 507 invalidate: 508 clear_node_page_dirty(dn->node_page); 509 F2FS_SET_SB_DIRT(sbi); 510 511 f2fs_put_page(dn->node_page, 1); 512 dn->node_page = NULL; 513 } 514 515 static int truncate_dnode(struct dnode_of_data *dn) 516 { 517 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 518 struct page *page; 519 520 if (dn->nid == 0) 521 return 1; 522 523 /* get direct node */ 524 page = get_node_page(sbi, dn->nid); 525 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 526 return 1; 527 else if (IS_ERR(page)) 528 return PTR_ERR(page); 529 530 /* Make dnode_of_data for parameter */ 531 dn->node_page = page; 532 dn->ofs_in_node = 0; 533 truncate_data_blocks(dn); 534 truncate_node(dn); 535 return 1; 536 } 537 538 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 539 int ofs, int depth) 540 { 541 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 542 struct dnode_of_data rdn = *dn; 543 struct page *page; 544 struct f2fs_node *rn; 545 nid_t child_nid; 546 unsigned int child_nofs; 547 int freed = 0; 548 int i, ret; 549 550 if (dn->nid == 0) 551 return NIDS_PER_BLOCK + 1; 552 553 page = get_node_page(sbi, dn->nid); 554 if (IS_ERR(page)) 555 return PTR_ERR(page); 556 557 rn = (struct f2fs_node *)page_address(page); 558 if (depth < 3) { 559 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 560 child_nid = le32_to_cpu(rn->in.nid[i]); 561 if (child_nid == 0) 562 continue; 563 rdn.nid = child_nid; 564 ret = truncate_dnode(&rdn); 565 if (ret < 0) 566 goto out_err; 567 set_nid(page, i, 0, false); 568 } 569 } else { 570 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 571 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 572 child_nid = le32_to_cpu(rn->in.nid[i]); 573 if (child_nid == 0) { 574 child_nofs += NIDS_PER_BLOCK + 1; 575 continue; 576 } 577 rdn.nid = child_nid; 578 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 579 if (ret == (NIDS_PER_BLOCK + 1)) { 580 set_nid(page, i, 0, false); 581 child_nofs += ret; 582 } else if (ret < 0 && ret != -ENOENT) { 583 goto out_err; 584 } 585 } 586 freed = child_nofs; 587 } 588 589 if (!ofs) { 590 /* remove current indirect node */ 591 dn->node_page = page; 592 truncate_node(dn); 593 freed++; 594 } else { 595 f2fs_put_page(page, 1); 596 } 597 return freed; 598 599 out_err: 600 f2fs_put_page(page, 1); 601 return ret; 602 } 603 604 static int truncate_partial_nodes(struct dnode_of_data *dn, 605 struct f2fs_inode *ri, int *offset, int depth) 606 { 607 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 608 struct page *pages[2]; 609 nid_t nid[3]; 610 nid_t child_nid; 611 int err = 0; 612 int i; 613 int idx = depth - 2; 614 615 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 616 if (!nid[0]) 617 return 0; 618 619 /* get indirect nodes in the path */ 620 for (i = 0; i < depth - 1; i++) { 621 /* refernece count'll be increased */ 622 pages[i] = get_node_page(sbi, nid[i]); 623 if (IS_ERR(pages[i])) { 624 depth = i + 1; 625 err = PTR_ERR(pages[i]); 626 goto fail; 627 } 628 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 629 } 630 631 /* free direct nodes linked to a partial indirect node */ 632 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { 633 child_nid = get_nid(pages[idx], i, false); 634 if (!child_nid) 635 continue; 636 dn->nid = child_nid; 637 err = truncate_dnode(dn); 638 if (err < 0) 639 goto fail; 640 set_nid(pages[idx], i, 0, false); 641 } 642 643 if (offset[depth - 1] == 0) { 644 dn->node_page = pages[idx]; 645 dn->nid = nid[idx]; 646 truncate_node(dn); 647 } else { 648 f2fs_put_page(pages[idx], 1); 649 } 650 offset[idx]++; 651 offset[depth - 1] = 0; 652 fail: 653 for (i = depth - 3; i >= 0; i--) 654 f2fs_put_page(pages[i], 1); 655 return err; 656 } 657 658 /* 659 * All the block addresses of data and nodes should be nullified. 660 */ 661 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 662 { 663 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 664 int err = 0, cont = 1; 665 int level, offset[4], noffset[4]; 666 unsigned int nofs = 0; 667 struct f2fs_node *rn; 668 struct dnode_of_data dn; 669 struct page *page; 670 671 level = get_node_path(from, offset, noffset); 672 673 page = get_node_page(sbi, inode->i_ino); 674 if (IS_ERR(page)) 675 return PTR_ERR(page); 676 677 set_new_dnode(&dn, inode, page, NULL, 0); 678 unlock_page(page); 679 680 rn = page_address(page); 681 switch (level) { 682 case 0: 683 case 1: 684 nofs = noffset[1]; 685 break; 686 case 2: 687 nofs = noffset[1]; 688 if (!offset[level - 1]) 689 goto skip_partial; 690 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 691 if (err < 0 && err != -ENOENT) 692 goto fail; 693 nofs += 1 + NIDS_PER_BLOCK; 694 break; 695 case 3: 696 nofs = 5 + 2 * NIDS_PER_BLOCK; 697 if (!offset[level - 1]) 698 goto skip_partial; 699 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 700 if (err < 0 && err != -ENOENT) 701 goto fail; 702 break; 703 default: 704 BUG(); 705 } 706 707 skip_partial: 708 while (cont) { 709 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); 710 switch (offset[0]) { 711 case NODE_DIR1_BLOCK: 712 case NODE_DIR2_BLOCK: 713 err = truncate_dnode(&dn); 714 break; 715 716 case NODE_IND1_BLOCK: 717 case NODE_IND2_BLOCK: 718 err = truncate_nodes(&dn, nofs, offset[1], 2); 719 break; 720 721 case NODE_DIND_BLOCK: 722 err = truncate_nodes(&dn, nofs, offset[1], 3); 723 cont = 0; 724 break; 725 726 default: 727 BUG(); 728 } 729 if (err < 0 && err != -ENOENT) 730 goto fail; 731 if (offset[1] == 0 && 732 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { 733 lock_page(page); 734 wait_on_page_writeback(page); 735 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 736 set_page_dirty(page); 737 unlock_page(page); 738 } 739 offset[1] = 0; 740 offset[0]++; 741 nofs += err; 742 } 743 fail: 744 f2fs_put_page(page, 0); 745 return err > 0 ? 0 : err; 746 } 747 748 int remove_inode_page(struct inode *inode) 749 { 750 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 751 struct page *page; 752 nid_t ino = inode->i_ino; 753 struct dnode_of_data dn; 754 755 mutex_lock_op(sbi, NODE_TRUNC); 756 page = get_node_page(sbi, ino); 757 if (IS_ERR(page)) { 758 mutex_unlock_op(sbi, NODE_TRUNC); 759 return PTR_ERR(page); 760 } 761 762 if (F2FS_I(inode)->i_xattr_nid) { 763 nid_t nid = F2FS_I(inode)->i_xattr_nid; 764 struct page *npage = get_node_page(sbi, nid); 765 766 if (IS_ERR(npage)) { 767 mutex_unlock_op(sbi, NODE_TRUNC); 768 return PTR_ERR(npage); 769 } 770 771 F2FS_I(inode)->i_xattr_nid = 0; 772 set_new_dnode(&dn, inode, page, npage, nid); 773 dn.inode_page_locked = 1; 774 truncate_node(&dn); 775 } 776 777 /* 0 is possible, after f2fs_new_inode() is failed */ 778 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1); 779 set_new_dnode(&dn, inode, page, page, ino); 780 truncate_node(&dn); 781 782 mutex_unlock_op(sbi, NODE_TRUNC); 783 return 0; 784 } 785 786 int new_inode_page(struct inode *inode, const struct qstr *name) 787 { 788 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 789 struct page *page; 790 struct dnode_of_data dn; 791 792 /* allocate inode page for new inode */ 793 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 794 mutex_lock_op(sbi, NODE_NEW); 795 page = new_node_page(&dn, 0); 796 init_dent_inode(name, page); 797 mutex_unlock_op(sbi, NODE_NEW); 798 if (IS_ERR(page)) 799 return PTR_ERR(page); 800 f2fs_put_page(page, 1); 801 return 0; 802 } 803 804 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs) 805 { 806 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 807 struct address_space *mapping = sbi->node_inode->i_mapping; 808 struct node_info old_ni, new_ni; 809 struct page *page; 810 int err; 811 812 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) 813 return ERR_PTR(-EPERM); 814 815 page = grab_cache_page(mapping, dn->nid); 816 if (!page) 817 return ERR_PTR(-ENOMEM); 818 819 get_node_info(sbi, dn->nid, &old_ni); 820 821 SetPageUptodate(page); 822 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 823 824 /* Reinitialize old_ni with new node page */ 825 BUG_ON(old_ni.blk_addr != NULL_ADDR); 826 new_ni = old_ni; 827 new_ni.ino = dn->inode->i_ino; 828 829 if (!inc_valid_node_count(sbi, dn->inode, 1)) { 830 err = -ENOSPC; 831 goto fail; 832 } 833 set_node_addr(sbi, &new_ni, NEW_ADDR); 834 set_cold_node(dn->inode, page); 835 836 dn->node_page = page; 837 sync_inode_page(dn); 838 set_page_dirty(page); 839 if (ofs == 0) 840 inc_valid_inode_count(sbi); 841 842 return page; 843 844 fail: 845 clear_node_page_dirty(page); 846 f2fs_put_page(page, 1); 847 return ERR_PTR(err); 848 } 849 850 static int read_node_page(struct page *page, int type) 851 { 852 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 853 struct node_info ni; 854 855 get_node_info(sbi, page->index, &ni); 856 857 if (ni.blk_addr == NULL_ADDR) { 858 f2fs_put_page(page, 1); 859 return -ENOENT; 860 } 861 862 if (PageUptodate(page)) { 863 unlock_page(page); 864 return 0; 865 } 866 867 return f2fs_readpage(sbi, page, ni.blk_addr, type); 868 } 869 870 /* 871 * Readahead a node page 872 */ 873 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 874 { 875 struct address_space *mapping = sbi->node_inode->i_mapping; 876 struct page *apage; 877 878 apage = find_get_page(mapping, nid); 879 if (apage && PageUptodate(apage)) { 880 f2fs_put_page(apage, 0); 881 return; 882 } 883 f2fs_put_page(apage, 0); 884 885 apage = grab_cache_page(mapping, nid); 886 if (!apage) 887 return; 888 889 if (read_node_page(apage, READA) == 0) 890 f2fs_put_page(apage, 0); 891 return; 892 } 893 894 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 895 { 896 int err; 897 struct page *page; 898 struct address_space *mapping = sbi->node_inode->i_mapping; 899 900 page = grab_cache_page(mapping, nid); 901 if (!page) 902 return ERR_PTR(-ENOMEM); 903 904 err = read_node_page(page, READ_SYNC); 905 if (err) 906 return ERR_PTR(err); 907 908 lock_page(page); 909 if (!PageUptodate(page)) { 910 f2fs_put_page(page, 1); 911 return ERR_PTR(-EIO); 912 } 913 BUG_ON(nid != nid_of_node(page)); 914 mark_page_accessed(page); 915 return page; 916 } 917 918 /* 919 * Return a locked page for the desired node page. 920 * And, readahead MAX_RA_NODE number of node pages. 921 */ 922 struct page *get_node_page_ra(struct page *parent, int start) 923 { 924 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); 925 struct address_space *mapping = sbi->node_inode->i_mapping; 926 int i, end; 927 int err = 0; 928 nid_t nid; 929 struct page *page; 930 931 /* First, try getting the desired direct node. */ 932 nid = get_nid(parent, start, false); 933 if (!nid) 934 return ERR_PTR(-ENOENT); 935 936 repeat: 937 page = grab_cache_page(mapping, nid); 938 if (!page) 939 return ERR_PTR(-ENOMEM); 940 else if (PageUptodate(page)) 941 goto page_hit; 942 943 err = read_node_page(page, READ_SYNC); 944 if (err) 945 return ERR_PTR(err); 946 947 /* Then, try readahead for siblings of the desired node */ 948 end = start + MAX_RA_NODE; 949 end = min(end, NIDS_PER_BLOCK); 950 for (i = start + 1; i < end; i++) { 951 nid = get_nid(parent, i, false); 952 if (!nid) 953 continue; 954 ra_node_page(sbi, nid); 955 } 956 957 lock_page(page); 958 959 page_hit: 960 if (PageError(page)) { 961 f2fs_put_page(page, 1); 962 return ERR_PTR(-EIO); 963 } 964 965 /* Has the page been truncated? */ 966 if (page->mapping != mapping) { 967 f2fs_put_page(page, 1); 968 goto repeat; 969 } 970 mark_page_accessed(page); 971 return page; 972 } 973 974 void sync_inode_page(struct dnode_of_data *dn) 975 { 976 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 977 update_inode(dn->inode, dn->node_page); 978 } else if (dn->inode_page) { 979 if (!dn->inode_page_locked) 980 lock_page(dn->inode_page); 981 update_inode(dn->inode, dn->inode_page); 982 if (!dn->inode_page_locked) 983 unlock_page(dn->inode_page); 984 } else { 985 f2fs_write_inode(dn->inode, NULL); 986 } 987 } 988 989 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 990 struct writeback_control *wbc) 991 { 992 struct address_space *mapping = sbi->node_inode->i_mapping; 993 pgoff_t index, end; 994 struct pagevec pvec; 995 int step = ino ? 2 : 0; 996 int nwritten = 0, wrote = 0; 997 998 pagevec_init(&pvec, 0); 999 1000 next_step: 1001 index = 0; 1002 end = LONG_MAX; 1003 1004 while (index <= end) { 1005 int i, nr_pages; 1006 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1007 PAGECACHE_TAG_DIRTY, 1008 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1009 if (nr_pages == 0) 1010 break; 1011 1012 for (i = 0; i < nr_pages; i++) { 1013 struct page *page = pvec.pages[i]; 1014 1015 /* 1016 * flushing sequence with step: 1017 * 0. indirect nodes 1018 * 1. dentry dnodes 1019 * 2. file dnodes 1020 */ 1021 if (step == 0 && IS_DNODE(page)) 1022 continue; 1023 if (step == 1 && (!IS_DNODE(page) || 1024 is_cold_node(page))) 1025 continue; 1026 if (step == 2 && (!IS_DNODE(page) || 1027 !is_cold_node(page))) 1028 continue; 1029 1030 /* 1031 * If an fsync mode, 1032 * we should not skip writing node pages. 1033 */ 1034 if (ino && ino_of_node(page) == ino) 1035 lock_page(page); 1036 else if (!trylock_page(page)) 1037 continue; 1038 1039 if (unlikely(page->mapping != mapping)) { 1040 continue_unlock: 1041 unlock_page(page); 1042 continue; 1043 } 1044 if (ino && ino_of_node(page) != ino) 1045 goto continue_unlock; 1046 1047 if (!PageDirty(page)) { 1048 /* someone wrote it for us */ 1049 goto continue_unlock; 1050 } 1051 1052 if (!clear_page_dirty_for_io(page)) 1053 goto continue_unlock; 1054 1055 /* called by fsync() */ 1056 if (ino && IS_DNODE(page)) { 1057 int mark = !is_checkpointed_node(sbi, ino); 1058 set_fsync_mark(page, 1); 1059 if (IS_INODE(page)) 1060 set_dentry_mark(page, mark); 1061 nwritten++; 1062 } else { 1063 set_fsync_mark(page, 0); 1064 set_dentry_mark(page, 0); 1065 } 1066 mapping->a_ops->writepage(page, wbc); 1067 wrote++; 1068 1069 if (--wbc->nr_to_write == 0) 1070 break; 1071 } 1072 pagevec_release(&pvec); 1073 cond_resched(); 1074 1075 if (wbc->nr_to_write == 0) { 1076 step = 2; 1077 break; 1078 } 1079 } 1080 1081 if (step < 2) { 1082 step++; 1083 goto next_step; 1084 } 1085 1086 if (wrote) 1087 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); 1088 1089 return nwritten; 1090 } 1091 1092 static int f2fs_write_node_page(struct page *page, 1093 struct writeback_control *wbc) 1094 { 1095 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 1096 nid_t nid; 1097 block_t new_addr; 1098 struct node_info ni; 1099 1100 wait_on_page_writeback(page); 1101 1102 mutex_lock_op(sbi, NODE_WRITE); 1103 1104 /* get old block addr of this node page */ 1105 nid = nid_of_node(page); 1106 BUG_ON(page->index != nid); 1107 1108 get_node_info(sbi, nid, &ni); 1109 1110 /* This page is already truncated */ 1111 if (ni.blk_addr == NULL_ADDR) 1112 goto out; 1113 1114 if (wbc->for_reclaim) { 1115 dec_page_count(sbi, F2FS_DIRTY_NODES); 1116 wbc->pages_skipped++; 1117 set_page_dirty(page); 1118 mutex_unlock_op(sbi, NODE_WRITE); 1119 return AOP_WRITEPAGE_ACTIVATE; 1120 } 1121 1122 set_page_writeback(page); 1123 1124 /* insert node offset */ 1125 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); 1126 set_node_addr(sbi, &ni, new_addr); 1127 out: 1128 dec_page_count(sbi, F2FS_DIRTY_NODES); 1129 mutex_unlock_op(sbi, NODE_WRITE); 1130 unlock_page(page); 1131 return 0; 1132 } 1133 1134 /* 1135 * It is very important to gather dirty pages and write at once, so that we can 1136 * submit a big bio without interfering other data writes. 1137 * Be default, 512 pages (2MB), a segment size, is quite reasonable. 1138 */ 1139 #define COLLECT_DIRTY_NODES 512 1140 static int f2fs_write_node_pages(struct address_space *mapping, 1141 struct writeback_control *wbc) 1142 { 1143 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1144 struct block_device *bdev = sbi->sb->s_bdev; 1145 long nr_to_write = wbc->nr_to_write; 1146 1147 /* First check balancing cached NAT entries */ 1148 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { 1149 write_checkpoint(sbi, false); 1150 return 0; 1151 } 1152 1153 /* collect a number of dirty node pages and write together */ 1154 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES) 1155 return 0; 1156 1157 /* if mounting is failed, skip writing node pages */ 1158 wbc->nr_to_write = bio_get_nr_vecs(bdev); 1159 sync_node_pages(sbi, 0, wbc); 1160 wbc->nr_to_write = nr_to_write - 1161 (bio_get_nr_vecs(bdev) - wbc->nr_to_write); 1162 return 0; 1163 } 1164 1165 static int f2fs_set_node_page_dirty(struct page *page) 1166 { 1167 struct address_space *mapping = page->mapping; 1168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1169 1170 SetPageUptodate(page); 1171 if (!PageDirty(page)) { 1172 __set_page_dirty_nobuffers(page); 1173 inc_page_count(sbi, F2FS_DIRTY_NODES); 1174 SetPagePrivate(page); 1175 return 1; 1176 } 1177 return 0; 1178 } 1179 1180 static void f2fs_invalidate_node_page(struct page *page, unsigned long offset) 1181 { 1182 struct inode *inode = page->mapping->host; 1183 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 1184 if (PageDirty(page)) 1185 dec_page_count(sbi, F2FS_DIRTY_NODES); 1186 ClearPagePrivate(page); 1187 } 1188 1189 static int f2fs_release_node_page(struct page *page, gfp_t wait) 1190 { 1191 ClearPagePrivate(page); 1192 return 0; 1193 } 1194 1195 /* 1196 * Structure of the f2fs node operations 1197 */ 1198 const struct address_space_operations f2fs_node_aops = { 1199 .writepage = f2fs_write_node_page, 1200 .writepages = f2fs_write_node_pages, 1201 .set_page_dirty = f2fs_set_node_page_dirty, 1202 .invalidatepage = f2fs_invalidate_node_page, 1203 .releasepage = f2fs_release_node_page, 1204 }; 1205 1206 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) 1207 { 1208 struct list_head *this; 1209 struct free_nid *i; 1210 list_for_each(this, head) { 1211 i = list_entry(this, struct free_nid, list); 1212 if (i->nid == n) 1213 return i; 1214 } 1215 return NULL; 1216 } 1217 1218 static void __del_from_free_nid_list(struct free_nid *i) 1219 { 1220 list_del(&i->list); 1221 kmem_cache_free(free_nid_slab, i); 1222 } 1223 1224 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1225 { 1226 struct free_nid *i; 1227 1228 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) 1229 return 0; 1230 retry: 1231 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1232 if (!i) { 1233 cond_resched(); 1234 goto retry; 1235 } 1236 i->nid = nid; 1237 i->state = NID_NEW; 1238 1239 spin_lock(&nm_i->free_nid_list_lock); 1240 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { 1241 spin_unlock(&nm_i->free_nid_list_lock); 1242 kmem_cache_free(free_nid_slab, i); 1243 return 0; 1244 } 1245 list_add_tail(&i->list, &nm_i->free_nid_list); 1246 nm_i->fcnt++; 1247 spin_unlock(&nm_i->free_nid_list_lock); 1248 return 1; 1249 } 1250 1251 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1252 { 1253 struct free_nid *i; 1254 spin_lock(&nm_i->free_nid_list_lock); 1255 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1256 if (i && i->state == NID_NEW) { 1257 __del_from_free_nid_list(i); 1258 nm_i->fcnt--; 1259 } 1260 spin_unlock(&nm_i->free_nid_list_lock); 1261 } 1262 1263 static int scan_nat_page(struct f2fs_nm_info *nm_i, 1264 struct page *nat_page, nid_t start_nid) 1265 { 1266 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1267 block_t blk_addr; 1268 int fcnt = 0; 1269 int i; 1270 1271 /* 0 nid should not be used */ 1272 if (start_nid == 0) 1273 ++start_nid; 1274 1275 i = start_nid % NAT_ENTRY_PER_BLOCK; 1276 1277 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1278 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1279 BUG_ON(blk_addr == NEW_ADDR); 1280 if (blk_addr == NULL_ADDR) 1281 fcnt += add_free_nid(nm_i, start_nid); 1282 } 1283 return fcnt; 1284 } 1285 1286 static void build_free_nids(struct f2fs_sb_info *sbi) 1287 { 1288 struct free_nid *fnid, *next_fnid; 1289 struct f2fs_nm_info *nm_i = NM_I(sbi); 1290 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1291 struct f2fs_summary_block *sum = curseg->sum_blk; 1292 nid_t nid = 0; 1293 bool is_cycled = false; 1294 int fcnt = 0; 1295 int i; 1296 1297 nid = nm_i->next_scan_nid; 1298 nm_i->init_scan_nid = nid; 1299 1300 ra_nat_pages(sbi, nid); 1301 1302 while (1) { 1303 struct page *page = get_current_nat_page(sbi, nid); 1304 1305 fcnt += scan_nat_page(nm_i, page, nid); 1306 f2fs_put_page(page, 1); 1307 1308 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1309 1310 if (nid >= nm_i->max_nid) { 1311 nid = 0; 1312 is_cycled = true; 1313 } 1314 if (fcnt > MAX_FREE_NIDS) 1315 break; 1316 if (is_cycled && nm_i->init_scan_nid <= nid) 1317 break; 1318 } 1319 1320 /* go to the next nat page in order to reuse free nids first */ 1321 nm_i->next_scan_nid = nm_i->init_scan_nid + NAT_ENTRY_PER_BLOCK; 1322 1323 /* find free nids from current sum_pages */ 1324 mutex_lock(&curseg->curseg_mutex); 1325 for (i = 0; i < nats_in_cursum(sum); i++) { 1326 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); 1327 nid = le32_to_cpu(nid_in_journal(sum, i)); 1328 if (addr == NULL_ADDR) 1329 add_free_nid(nm_i, nid); 1330 else 1331 remove_free_nid(nm_i, nid); 1332 } 1333 mutex_unlock(&curseg->curseg_mutex); 1334 1335 /* remove the free nids from current allocated nids */ 1336 list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) { 1337 struct nat_entry *ne; 1338 1339 read_lock(&nm_i->nat_tree_lock); 1340 ne = __lookup_nat_cache(nm_i, fnid->nid); 1341 if (ne && nat_get_blkaddr(ne) != NULL_ADDR) 1342 remove_free_nid(nm_i, fnid->nid); 1343 read_unlock(&nm_i->nat_tree_lock); 1344 } 1345 } 1346 1347 /* 1348 * If this function returns success, caller can obtain a new nid 1349 * from second parameter of this function. 1350 * The returned nid could be used ino as well as nid when inode is created. 1351 */ 1352 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1353 { 1354 struct f2fs_nm_info *nm_i = NM_I(sbi); 1355 struct free_nid *i = NULL; 1356 struct list_head *this; 1357 retry: 1358 mutex_lock(&nm_i->build_lock); 1359 if (!nm_i->fcnt) { 1360 /* scan NAT in order to build free nid list */ 1361 build_free_nids(sbi); 1362 if (!nm_i->fcnt) { 1363 mutex_unlock(&nm_i->build_lock); 1364 return false; 1365 } 1366 } 1367 mutex_unlock(&nm_i->build_lock); 1368 1369 /* 1370 * We check fcnt again since previous check is racy as 1371 * we didn't hold free_nid_list_lock. So other thread 1372 * could consume all of free nids. 1373 */ 1374 spin_lock(&nm_i->free_nid_list_lock); 1375 if (!nm_i->fcnt) { 1376 spin_unlock(&nm_i->free_nid_list_lock); 1377 goto retry; 1378 } 1379 1380 BUG_ON(list_empty(&nm_i->free_nid_list)); 1381 list_for_each(this, &nm_i->free_nid_list) { 1382 i = list_entry(this, struct free_nid, list); 1383 if (i->state == NID_NEW) 1384 break; 1385 } 1386 1387 BUG_ON(i->state != NID_NEW); 1388 *nid = i->nid; 1389 i->state = NID_ALLOC; 1390 nm_i->fcnt--; 1391 spin_unlock(&nm_i->free_nid_list_lock); 1392 return true; 1393 } 1394 1395 /* 1396 * alloc_nid() should be called prior to this function. 1397 */ 1398 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1399 { 1400 struct f2fs_nm_info *nm_i = NM_I(sbi); 1401 struct free_nid *i; 1402 1403 spin_lock(&nm_i->free_nid_list_lock); 1404 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1405 if (i) { 1406 BUG_ON(i->state != NID_ALLOC); 1407 __del_from_free_nid_list(i); 1408 } 1409 spin_unlock(&nm_i->free_nid_list_lock); 1410 } 1411 1412 /* 1413 * alloc_nid() should be called prior to this function. 1414 */ 1415 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1416 { 1417 alloc_nid_done(sbi, nid); 1418 add_free_nid(NM_I(sbi), nid); 1419 } 1420 1421 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, 1422 struct f2fs_summary *sum, struct node_info *ni, 1423 block_t new_blkaddr) 1424 { 1425 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); 1426 set_node_addr(sbi, ni, new_blkaddr); 1427 clear_node_page_dirty(page); 1428 } 1429 1430 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1431 { 1432 struct address_space *mapping = sbi->node_inode->i_mapping; 1433 struct f2fs_node *src, *dst; 1434 nid_t ino = ino_of_node(page); 1435 struct node_info old_ni, new_ni; 1436 struct page *ipage; 1437 1438 ipage = grab_cache_page(mapping, ino); 1439 if (!ipage) 1440 return -ENOMEM; 1441 1442 /* Should not use this inode from free nid list */ 1443 remove_free_nid(NM_I(sbi), ino); 1444 1445 get_node_info(sbi, ino, &old_ni); 1446 SetPageUptodate(ipage); 1447 fill_node_footer(ipage, ino, ino, 0, true); 1448 1449 src = (struct f2fs_node *)page_address(page); 1450 dst = (struct f2fs_node *)page_address(ipage); 1451 1452 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); 1453 dst->i.i_size = 0; 1454 dst->i.i_blocks = cpu_to_le64(1); 1455 dst->i.i_links = cpu_to_le32(1); 1456 dst->i.i_xattr_nid = 0; 1457 1458 new_ni = old_ni; 1459 new_ni.ino = ino; 1460 1461 set_node_addr(sbi, &new_ni, NEW_ADDR); 1462 inc_valid_inode_count(sbi); 1463 1464 f2fs_put_page(ipage, 1); 1465 return 0; 1466 } 1467 1468 int restore_node_summary(struct f2fs_sb_info *sbi, 1469 unsigned int segno, struct f2fs_summary_block *sum) 1470 { 1471 struct f2fs_node *rn; 1472 struct f2fs_summary *sum_entry; 1473 struct page *page; 1474 block_t addr; 1475 int i, last_offset; 1476 1477 /* alloc temporal page for read node */ 1478 page = alloc_page(GFP_NOFS | __GFP_ZERO); 1479 if (IS_ERR(page)) 1480 return PTR_ERR(page); 1481 lock_page(page); 1482 1483 /* scan the node segment */ 1484 last_offset = sbi->blocks_per_seg; 1485 addr = START_BLOCK(sbi, segno); 1486 sum_entry = &sum->entries[0]; 1487 1488 for (i = 0; i < last_offset; i++, sum_entry++) { 1489 /* 1490 * In order to read next node page, 1491 * we must clear PageUptodate flag. 1492 */ 1493 ClearPageUptodate(page); 1494 1495 if (f2fs_readpage(sbi, page, addr, READ_SYNC)) 1496 goto out; 1497 1498 lock_page(page); 1499 rn = (struct f2fs_node *)page_address(page); 1500 sum_entry->nid = rn->footer.nid; 1501 sum_entry->version = 0; 1502 sum_entry->ofs_in_node = 0; 1503 addr++; 1504 } 1505 unlock_page(page); 1506 out: 1507 __free_pages(page, 0); 1508 return 0; 1509 } 1510 1511 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) 1512 { 1513 struct f2fs_nm_info *nm_i = NM_I(sbi); 1514 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1515 struct f2fs_summary_block *sum = curseg->sum_blk; 1516 int i; 1517 1518 mutex_lock(&curseg->curseg_mutex); 1519 1520 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { 1521 mutex_unlock(&curseg->curseg_mutex); 1522 return false; 1523 } 1524 1525 for (i = 0; i < nats_in_cursum(sum); i++) { 1526 struct nat_entry *ne; 1527 struct f2fs_nat_entry raw_ne; 1528 nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); 1529 1530 raw_ne = nat_in_journal(sum, i); 1531 retry: 1532 write_lock(&nm_i->nat_tree_lock); 1533 ne = __lookup_nat_cache(nm_i, nid); 1534 if (ne) { 1535 __set_nat_cache_dirty(nm_i, ne); 1536 write_unlock(&nm_i->nat_tree_lock); 1537 continue; 1538 } 1539 ne = grab_nat_entry(nm_i, nid); 1540 if (!ne) { 1541 write_unlock(&nm_i->nat_tree_lock); 1542 goto retry; 1543 } 1544 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); 1545 nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); 1546 nat_set_version(ne, raw_ne.version); 1547 __set_nat_cache_dirty(nm_i, ne); 1548 write_unlock(&nm_i->nat_tree_lock); 1549 } 1550 update_nats_in_cursum(sum, -i); 1551 mutex_unlock(&curseg->curseg_mutex); 1552 return true; 1553 } 1554 1555 /* 1556 * This function is called during the checkpointing process. 1557 */ 1558 void flush_nat_entries(struct f2fs_sb_info *sbi) 1559 { 1560 struct f2fs_nm_info *nm_i = NM_I(sbi); 1561 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1562 struct f2fs_summary_block *sum = curseg->sum_blk; 1563 struct list_head *cur, *n; 1564 struct page *page = NULL; 1565 struct f2fs_nat_block *nat_blk = NULL; 1566 nid_t start_nid = 0, end_nid = 0; 1567 bool flushed; 1568 1569 flushed = flush_nats_in_journal(sbi); 1570 1571 if (!flushed) 1572 mutex_lock(&curseg->curseg_mutex); 1573 1574 /* 1) flush dirty nat caches */ 1575 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { 1576 struct nat_entry *ne; 1577 nid_t nid; 1578 struct f2fs_nat_entry raw_ne; 1579 int offset = -1; 1580 block_t new_blkaddr; 1581 1582 ne = list_entry(cur, struct nat_entry, list); 1583 nid = nat_get_nid(ne); 1584 1585 if (nat_get_blkaddr(ne) == NEW_ADDR) 1586 continue; 1587 if (flushed) 1588 goto to_nat_page; 1589 1590 /* if there is room for nat enries in curseg->sumpage */ 1591 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); 1592 if (offset >= 0) { 1593 raw_ne = nat_in_journal(sum, offset); 1594 goto flush_now; 1595 } 1596 to_nat_page: 1597 if (!page || (start_nid > nid || nid > end_nid)) { 1598 if (page) { 1599 f2fs_put_page(page, 1); 1600 page = NULL; 1601 } 1602 start_nid = START_NID(nid); 1603 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; 1604 1605 /* 1606 * get nat block with dirty flag, increased reference 1607 * count, mapped and lock 1608 */ 1609 page = get_next_nat_page(sbi, start_nid); 1610 nat_blk = page_address(page); 1611 } 1612 1613 BUG_ON(!nat_blk); 1614 raw_ne = nat_blk->entries[nid - start_nid]; 1615 flush_now: 1616 new_blkaddr = nat_get_blkaddr(ne); 1617 1618 raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); 1619 raw_ne.block_addr = cpu_to_le32(new_blkaddr); 1620 raw_ne.version = nat_get_version(ne); 1621 1622 if (offset < 0) { 1623 nat_blk->entries[nid - start_nid] = raw_ne; 1624 } else { 1625 nat_in_journal(sum, offset) = raw_ne; 1626 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1627 } 1628 1629 if (nat_get_blkaddr(ne) == NULL_ADDR) { 1630 write_lock(&nm_i->nat_tree_lock); 1631 __del_from_nat_cache(nm_i, ne); 1632 write_unlock(&nm_i->nat_tree_lock); 1633 1634 /* We can reuse this freed nid at this point */ 1635 add_free_nid(NM_I(sbi), nid); 1636 } else { 1637 write_lock(&nm_i->nat_tree_lock); 1638 __clear_nat_cache_dirty(nm_i, ne); 1639 ne->checkpointed = true; 1640 write_unlock(&nm_i->nat_tree_lock); 1641 } 1642 } 1643 if (!flushed) 1644 mutex_unlock(&curseg->curseg_mutex); 1645 f2fs_put_page(page, 1); 1646 1647 /* 2) shrink nat caches if necessary */ 1648 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); 1649 } 1650 1651 static int init_node_manager(struct f2fs_sb_info *sbi) 1652 { 1653 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1654 struct f2fs_nm_info *nm_i = NM_I(sbi); 1655 unsigned char *version_bitmap; 1656 unsigned int nat_segs, nat_blocks; 1657 1658 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 1659 1660 /* segment_count_nat includes pair segment so divide to 2. */ 1661 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 1662 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 1663 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 1664 nm_i->fcnt = 0; 1665 nm_i->nat_cnt = 0; 1666 1667 INIT_LIST_HEAD(&nm_i->free_nid_list); 1668 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); 1669 INIT_LIST_HEAD(&nm_i->nat_entries); 1670 INIT_LIST_HEAD(&nm_i->dirty_nat_entries); 1671 1672 mutex_init(&nm_i->build_lock); 1673 spin_lock_init(&nm_i->free_nid_list_lock); 1674 rwlock_init(&nm_i->nat_tree_lock); 1675 1676 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 1677 nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1678 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1679 1680 nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL); 1681 if (!nm_i->nat_bitmap) 1682 return -ENOMEM; 1683 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 1684 if (!version_bitmap) 1685 return -EFAULT; 1686 1687 /* copy version bitmap */ 1688 memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size); 1689 return 0; 1690 } 1691 1692 int build_node_manager(struct f2fs_sb_info *sbi) 1693 { 1694 int err; 1695 1696 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 1697 if (!sbi->nm_info) 1698 return -ENOMEM; 1699 1700 err = init_node_manager(sbi); 1701 if (err) 1702 return err; 1703 1704 build_free_nids(sbi); 1705 return 0; 1706 } 1707 1708 void destroy_node_manager(struct f2fs_sb_info *sbi) 1709 { 1710 struct f2fs_nm_info *nm_i = NM_I(sbi); 1711 struct free_nid *i, *next_i; 1712 struct nat_entry *natvec[NATVEC_SIZE]; 1713 nid_t nid = 0; 1714 unsigned int found; 1715 1716 if (!nm_i) 1717 return; 1718 1719 /* destroy free nid list */ 1720 spin_lock(&nm_i->free_nid_list_lock); 1721 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 1722 BUG_ON(i->state == NID_ALLOC); 1723 __del_from_free_nid_list(i); 1724 nm_i->fcnt--; 1725 } 1726 BUG_ON(nm_i->fcnt); 1727 spin_unlock(&nm_i->free_nid_list_lock); 1728 1729 /* destroy nat cache */ 1730 write_lock(&nm_i->nat_tree_lock); 1731 while ((found = __gang_lookup_nat_cache(nm_i, 1732 nid, NATVEC_SIZE, natvec))) { 1733 unsigned idx; 1734 for (idx = 0; idx < found; idx++) { 1735 struct nat_entry *e = natvec[idx]; 1736 nid = nat_get_nid(e) + 1; 1737 __del_from_nat_cache(nm_i, e); 1738 } 1739 } 1740 BUG_ON(nm_i->nat_cnt); 1741 write_unlock(&nm_i->nat_tree_lock); 1742 1743 kfree(nm_i->nat_bitmap); 1744 sbi->nm_info = NULL; 1745 kfree(nm_i); 1746 } 1747 1748 int __init create_node_manager_caches(void) 1749 { 1750 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 1751 sizeof(struct nat_entry), NULL); 1752 if (!nat_entry_slab) 1753 return -ENOMEM; 1754 1755 free_nid_slab = f2fs_kmem_cache_create("free_nid", 1756 sizeof(struct free_nid), NULL); 1757 if (!free_nid_slab) { 1758 kmem_cache_destroy(nat_entry_slab); 1759 return -ENOMEM; 1760 } 1761 return 0; 1762 } 1763 1764 void destroy_node_manager_caches(void) 1765 { 1766 kmem_cache_destroy(free_nid_slab); 1767 kmem_cache_destroy(nat_entry_slab); 1768 } 1769