1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include <trace/events/f2fs.h> 23 24 static struct kmem_cache *nat_entry_slab; 25 static struct kmem_cache *free_nid_slab; 26 27 static void clear_node_page_dirty(struct page *page) 28 { 29 struct address_space *mapping = page->mapping; 30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 31 unsigned int long flags; 32 33 if (PageDirty(page)) { 34 spin_lock_irqsave(&mapping->tree_lock, flags); 35 radix_tree_tag_clear(&mapping->page_tree, 36 page_index(page), 37 PAGECACHE_TAG_DIRTY); 38 spin_unlock_irqrestore(&mapping->tree_lock, flags); 39 40 clear_page_dirty_for_io(page); 41 dec_page_count(sbi, F2FS_DIRTY_NODES); 42 } 43 ClearPageUptodate(page); 44 } 45 46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 47 { 48 pgoff_t index = current_nat_addr(sbi, nid); 49 return get_meta_page(sbi, index); 50 } 51 52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 53 { 54 struct page *src_page; 55 struct page *dst_page; 56 pgoff_t src_off; 57 pgoff_t dst_off; 58 void *src_addr; 59 void *dst_addr; 60 struct f2fs_nm_info *nm_i = NM_I(sbi); 61 62 src_off = current_nat_addr(sbi, nid); 63 dst_off = next_nat_addr(sbi, src_off); 64 65 /* get current nat block page with lock */ 66 src_page = get_meta_page(sbi, src_off); 67 68 /* Dirty src_page means that it is already the new target NAT page. */ 69 if (PageDirty(src_page)) 70 return src_page; 71 72 dst_page = grab_meta_page(sbi, dst_off); 73 74 src_addr = page_address(src_page); 75 dst_addr = page_address(dst_page); 76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 77 set_page_dirty(dst_page); 78 f2fs_put_page(src_page, 1); 79 80 set_to_next_nat(nm_i, nid); 81 82 return dst_page; 83 } 84 85 /* 86 * Readahead NAT pages 87 */ 88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) 89 { 90 struct address_space *mapping = sbi->meta_inode->i_mapping; 91 struct f2fs_nm_info *nm_i = NM_I(sbi); 92 struct blk_plug plug; 93 struct page *page; 94 pgoff_t index; 95 int i; 96 97 blk_start_plug(&plug); 98 99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { 100 if (nid >= nm_i->max_nid) 101 nid = 0; 102 index = current_nat_addr(sbi, nid); 103 104 page = grab_cache_page(mapping, index); 105 if (!page) 106 continue; 107 if (PageUptodate(page)) { 108 f2fs_put_page(page, 1); 109 continue; 110 } 111 if (f2fs_readpage(sbi, page, index, READ)) 112 continue; 113 114 f2fs_put_page(page, 0); 115 } 116 blk_finish_plug(&plug); 117 } 118 119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 120 { 121 return radix_tree_lookup(&nm_i->nat_root, n); 122 } 123 124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 125 nid_t start, unsigned int nr, struct nat_entry **ep) 126 { 127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 128 } 129 130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 131 { 132 list_del(&e->list); 133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 134 nm_i->nat_cnt--; 135 kmem_cache_free(nat_entry_slab, e); 136 } 137 138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct f2fs_nm_info *nm_i = NM_I(sbi); 141 struct nat_entry *e; 142 int is_cp = 1; 143 144 read_lock(&nm_i->nat_tree_lock); 145 e = __lookup_nat_cache(nm_i, nid); 146 if (e && !e->checkpointed) 147 is_cp = 0; 148 read_unlock(&nm_i->nat_tree_lock); 149 return is_cp; 150 } 151 152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 153 { 154 struct nat_entry *new; 155 156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 157 if (!new) 158 return NULL; 159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 160 kmem_cache_free(nat_entry_slab, new); 161 return NULL; 162 } 163 memset(new, 0, sizeof(struct nat_entry)); 164 nat_set_nid(new, nid); 165 list_add_tail(&new->list, &nm_i->nat_entries); 166 nm_i->nat_cnt++; 167 return new; 168 } 169 170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 171 struct f2fs_nat_entry *ne) 172 { 173 struct nat_entry *e; 174 retry: 175 write_lock(&nm_i->nat_tree_lock); 176 e = __lookup_nat_cache(nm_i, nid); 177 if (!e) { 178 e = grab_nat_entry(nm_i, nid); 179 if (!e) { 180 write_unlock(&nm_i->nat_tree_lock); 181 goto retry; 182 } 183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); 184 nat_set_ino(e, le32_to_cpu(ne->ino)); 185 nat_set_version(e, ne->version); 186 e->checkpointed = true; 187 } 188 write_unlock(&nm_i->nat_tree_lock); 189 } 190 191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 192 block_t new_blkaddr) 193 { 194 struct f2fs_nm_info *nm_i = NM_I(sbi); 195 struct nat_entry *e; 196 retry: 197 write_lock(&nm_i->nat_tree_lock); 198 e = __lookup_nat_cache(nm_i, ni->nid); 199 if (!e) { 200 e = grab_nat_entry(nm_i, ni->nid); 201 if (!e) { 202 write_unlock(&nm_i->nat_tree_lock); 203 goto retry; 204 } 205 e->ni = *ni; 206 e->checkpointed = true; 207 BUG_ON(ni->blk_addr == NEW_ADDR); 208 } else if (new_blkaddr == NEW_ADDR) { 209 /* 210 * when nid is reallocated, 211 * previous nat entry can be remained in nat cache. 212 * So, reinitialize it with new information. 213 */ 214 e->ni = *ni; 215 BUG_ON(ni->blk_addr != NULL_ADDR); 216 } 217 218 if (new_blkaddr == NEW_ADDR) 219 e->checkpointed = false; 220 221 /* sanity check */ 222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); 223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && 224 new_blkaddr == NULL_ADDR); 225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && 226 new_blkaddr == NEW_ADDR); 227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && 228 nat_get_blkaddr(e) != NULL_ADDR && 229 new_blkaddr == NEW_ADDR); 230 231 /* increament version no as node is removed */ 232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 233 unsigned char version = nat_get_version(e); 234 nat_set_version(e, inc_node_version(version)); 235 } 236 237 /* change address */ 238 nat_set_blkaddr(e, new_blkaddr); 239 __set_nat_cache_dirty(nm_i, e); 240 write_unlock(&nm_i->nat_tree_lock); 241 } 242 243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 244 { 245 struct f2fs_nm_info *nm_i = NM_I(sbi); 246 247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD) 248 return 0; 249 250 write_lock(&nm_i->nat_tree_lock); 251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 252 struct nat_entry *ne; 253 ne = list_first_entry(&nm_i->nat_entries, 254 struct nat_entry, list); 255 __del_from_nat_cache(nm_i, ne); 256 nr_shrink--; 257 } 258 write_unlock(&nm_i->nat_tree_lock); 259 return nr_shrink; 260 } 261 262 /* 263 * This function returns always success 264 */ 265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 266 { 267 struct f2fs_nm_info *nm_i = NM_I(sbi); 268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 269 struct f2fs_summary_block *sum = curseg->sum_blk; 270 nid_t start_nid = START_NID(nid); 271 struct f2fs_nat_block *nat_blk; 272 struct page *page = NULL; 273 struct f2fs_nat_entry ne; 274 struct nat_entry *e; 275 int i; 276 277 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 278 ni->nid = nid; 279 280 /* Check nat cache */ 281 read_lock(&nm_i->nat_tree_lock); 282 e = __lookup_nat_cache(nm_i, nid); 283 if (e) { 284 ni->ino = nat_get_ino(e); 285 ni->blk_addr = nat_get_blkaddr(e); 286 ni->version = nat_get_version(e); 287 } 288 read_unlock(&nm_i->nat_tree_lock); 289 if (e) 290 return; 291 292 /* Check current segment summary */ 293 mutex_lock(&curseg->curseg_mutex); 294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); 295 if (i >= 0) { 296 ne = nat_in_journal(sum, i); 297 node_info_from_raw_nat(ni, &ne); 298 } 299 mutex_unlock(&curseg->curseg_mutex); 300 if (i >= 0) 301 goto cache; 302 303 /* Fill node_info from nat page */ 304 page = get_current_nat_page(sbi, start_nid); 305 nat_blk = (struct f2fs_nat_block *)page_address(page); 306 ne = nat_blk->entries[nid - start_nid]; 307 node_info_from_raw_nat(ni, &ne); 308 f2fs_put_page(page, 1); 309 cache: 310 /* cache nat entry */ 311 cache_nat_entry(NM_I(sbi), nid, &ne); 312 } 313 314 /* 315 * The maximum depth is four. 316 * Offset[0] will have raw inode offset. 317 */ 318 static int get_node_path(long block, int offset[4], unsigned int noffset[4]) 319 { 320 const long direct_index = ADDRS_PER_INODE; 321 const long direct_blks = ADDRS_PER_BLOCK; 322 const long dptrs_per_blk = NIDS_PER_BLOCK; 323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 325 int n = 0; 326 int level = 0; 327 328 noffset[0] = 0; 329 330 if (block < direct_index) { 331 offset[n] = block; 332 goto got; 333 } 334 block -= direct_index; 335 if (block < direct_blks) { 336 offset[n++] = NODE_DIR1_BLOCK; 337 noffset[n] = 1; 338 offset[n] = block; 339 level = 1; 340 goto got; 341 } 342 block -= direct_blks; 343 if (block < direct_blks) { 344 offset[n++] = NODE_DIR2_BLOCK; 345 noffset[n] = 2; 346 offset[n] = block; 347 level = 1; 348 goto got; 349 } 350 block -= direct_blks; 351 if (block < indirect_blks) { 352 offset[n++] = NODE_IND1_BLOCK; 353 noffset[n] = 3; 354 offset[n++] = block / direct_blks; 355 noffset[n] = 4 + offset[n - 1]; 356 offset[n] = block % direct_blks; 357 level = 2; 358 goto got; 359 } 360 block -= indirect_blks; 361 if (block < indirect_blks) { 362 offset[n++] = NODE_IND2_BLOCK; 363 noffset[n] = 4 + dptrs_per_blk; 364 offset[n++] = block / direct_blks; 365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 366 offset[n] = block % direct_blks; 367 level = 2; 368 goto got; 369 } 370 block -= indirect_blks; 371 if (block < dindirect_blks) { 372 offset[n++] = NODE_DIND_BLOCK; 373 noffset[n] = 5 + (dptrs_per_blk * 2); 374 offset[n++] = block / indirect_blks; 375 noffset[n] = 6 + (dptrs_per_blk * 2) + 376 offset[n - 1] * (dptrs_per_blk + 1); 377 offset[n++] = (block / direct_blks) % dptrs_per_blk; 378 noffset[n] = 7 + (dptrs_per_blk * 2) + 379 offset[n - 2] * (dptrs_per_blk + 1) + 380 offset[n - 1]; 381 offset[n] = block % direct_blks; 382 level = 3; 383 goto got; 384 } else { 385 BUG(); 386 } 387 got: 388 return level; 389 } 390 391 /* 392 * Caller should call f2fs_put_dnode(dn). 393 * Also, it should grab and release a mutex by calling mutex_lock_op() and 394 * mutex_unlock_op() only if ro is not set RDONLY_NODE. 395 * In the case of RDONLY_NODE, we don't need to care about mutex. 396 */ 397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 398 { 399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 400 struct page *npage[4]; 401 struct page *parent; 402 int offset[4]; 403 unsigned int noffset[4]; 404 nid_t nids[4]; 405 int level, i; 406 int err = 0; 407 408 level = get_node_path(index, offset, noffset); 409 410 nids[0] = dn->inode->i_ino; 411 npage[0] = dn->inode_page; 412 413 if (!npage[0]) { 414 npage[0] = get_node_page(sbi, nids[0]); 415 if (IS_ERR(npage[0])) 416 return PTR_ERR(npage[0]); 417 } 418 parent = npage[0]; 419 if (level != 0) 420 nids[1] = get_nid(parent, offset[0], true); 421 dn->inode_page = npage[0]; 422 dn->inode_page_locked = true; 423 424 /* get indirect or direct nodes */ 425 for (i = 1; i <= level; i++) { 426 bool done = false; 427 428 if (!nids[i] && mode == ALLOC_NODE) { 429 /* alloc new node */ 430 if (!alloc_nid(sbi, &(nids[i]))) { 431 err = -ENOSPC; 432 goto release_pages; 433 } 434 435 dn->nid = nids[i]; 436 npage[i] = new_node_page(dn, noffset[i], NULL); 437 if (IS_ERR(npage[i])) { 438 alloc_nid_failed(sbi, nids[i]); 439 err = PTR_ERR(npage[i]); 440 goto release_pages; 441 } 442 443 set_nid(parent, offset[i - 1], nids[i], i == 1); 444 alloc_nid_done(sbi, nids[i]); 445 done = true; 446 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 447 npage[i] = get_node_page_ra(parent, offset[i - 1]); 448 if (IS_ERR(npage[i])) { 449 err = PTR_ERR(npage[i]); 450 goto release_pages; 451 } 452 done = true; 453 } 454 if (i == 1) { 455 dn->inode_page_locked = false; 456 unlock_page(parent); 457 } else { 458 f2fs_put_page(parent, 1); 459 } 460 461 if (!done) { 462 npage[i] = get_node_page(sbi, nids[i]); 463 if (IS_ERR(npage[i])) { 464 err = PTR_ERR(npage[i]); 465 f2fs_put_page(npage[0], 0); 466 goto release_out; 467 } 468 } 469 if (i < level) { 470 parent = npage[i]; 471 nids[i + 1] = get_nid(parent, offset[i], false); 472 } 473 } 474 dn->nid = nids[level]; 475 dn->ofs_in_node = offset[level]; 476 dn->node_page = npage[level]; 477 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 478 return 0; 479 480 release_pages: 481 f2fs_put_page(parent, 1); 482 if (i > 1) 483 f2fs_put_page(npage[0], 0); 484 release_out: 485 dn->inode_page = NULL; 486 dn->node_page = NULL; 487 return err; 488 } 489 490 static void truncate_node(struct dnode_of_data *dn) 491 { 492 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 493 struct node_info ni; 494 495 get_node_info(sbi, dn->nid, &ni); 496 if (dn->inode->i_blocks == 0) { 497 BUG_ON(ni.blk_addr != NULL_ADDR); 498 goto invalidate; 499 } 500 BUG_ON(ni.blk_addr == NULL_ADDR); 501 502 /* Deallocate node address */ 503 invalidate_blocks(sbi, ni.blk_addr); 504 dec_valid_node_count(sbi, dn->inode, 1); 505 set_node_addr(sbi, &ni, NULL_ADDR); 506 507 if (dn->nid == dn->inode->i_ino) { 508 remove_orphan_inode(sbi, dn->nid); 509 dec_valid_inode_count(sbi); 510 } else { 511 sync_inode_page(dn); 512 } 513 invalidate: 514 clear_node_page_dirty(dn->node_page); 515 F2FS_SET_SB_DIRT(sbi); 516 517 f2fs_put_page(dn->node_page, 1); 518 dn->node_page = NULL; 519 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 520 } 521 522 static int truncate_dnode(struct dnode_of_data *dn) 523 { 524 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 525 struct page *page; 526 527 if (dn->nid == 0) 528 return 1; 529 530 /* get direct node */ 531 page = get_node_page(sbi, dn->nid); 532 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 533 return 1; 534 else if (IS_ERR(page)) 535 return PTR_ERR(page); 536 537 /* Make dnode_of_data for parameter */ 538 dn->node_page = page; 539 dn->ofs_in_node = 0; 540 truncate_data_blocks(dn); 541 truncate_node(dn); 542 return 1; 543 } 544 545 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 546 int ofs, int depth) 547 { 548 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 549 struct dnode_of_data rdn = *dn; 550 struct page *page; 551 struct f2fs_node *rn; 552 nid_t child_nid; 553 unsigned int child_nofs; 554 int freed = 0; 555 int i, ret; 556 557 if (dn->nid == 0) 558 return NIDS_PER_BLOCK + 1; 559 560 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 561 562 page = get_node_page(sbi, dn->nid); 563 if (IS_ERR(page)) { 564 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 565 return PTR_ERR(page); 566 } 567 568 rn = F2FS_NODE(page); 569 if (depth < 3) { 570 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 571 child_nid = le32_to_cpu(rn->in.nid[i]); 572 if (child_nid == 0) 573 continue; 574 rdn.nid = child_nid; 575 ret = truncate_dnode(&rdn); 576 if (ret < 0) 577 goto out_err; 578 set_nid(page, i, 0, false); 579 } 580 } else { 581 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 582 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 583 child_nid = le32_to_cpu(rn->in.nid[i]); 584 if (child_nid == 0) { 585 child_nofs += NIDS_PER_BLOCK + 1; 586 continue; 587 } 588 rdn.nid = child_nid; 589 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 590 if (ret == (NIDS_PER_BLOCK + 1)) { 591 set_nid(page, i, 0, false); 592 child_nofs += ret; 593 } else if (ret < 0 && ret != -ENOENT) { 594 goto out_err; 595 } 596 } 597 freed = child_nofs; 598 } 599 600 if (!ofs) { 601 /* remove current indirect node */ 602 dn->node_page = page; 603 truncate_node(dn); 604 freed++; 605 } else { 606 f2fs_put_page(page, 1); 607 } 608 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 609 return freed; 610 611 out_err: 612 f2fs_put_page(page, 1); 613 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 614 return ret; 615 } 616 617 static int truncate_partial_nodes(struct dnode_of_data *dn, 618 struct f2fs_inode *ri, int *offset, int depth) 619 { 620 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 621 struct page *pages[2]; 622 nid_t nid[3]; 623 nid_t child_nid; 624 int err = 0; 625 int i; 626 int idx = depth - 2; 627 628 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 629 if (!nid[0]) 630 return 0; 631 632 /* get indirect nodes in the path */ 633 for (i = 0; i < depth - 1; i++) { 634 /* refernece count'll be increased */ 635 pages[i] = get_node_page(sbi, nid[i]); 636 if (IS_ERR(pages[i])) { 637 depth = i + 1; 638 err = PTR_ERR(pages[i]); 639 goto fail; 640 } 641 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 642 } 643 644 /* free direct nodes linked to a partial indirect node */ 645 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { 646 child_nid = get_nid(pages[idx], i, false); 647 if (!child_nid) 648 continue; 649 dn->nid = child_nid; 650 err = truncate_dnode(dn); 651 if (err < 0) 652 goto fail; 653 set_nid(pages[idx], i, 0, false); 654 } 655 656 if (offset[depth - 1] == 0) { 657 dn->node_page = pages[idx]; 658 dn->nid = nid[idx]; 659 truncate_node(dn); 660 } else { 661 f2fs_put_page(pages[idx], 1); 662 } 663 offset[idx]++; 664 offset[depth - 1] = 0; 665 fail: 666 for (i = depth - 3; i >= 0; i--) 667 f2fs_put_page(pages[i], 1); 668 669 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 670 671 return err; 672 } 673 674 /* 675 * All the block addresses of data and nodes should be nullified. 676 */ 677 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 678 { 679 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 680 struct address_space *node_mapping = sbi->node_inode->i_mapping; 681 int err = 0, cont = 1; 682 int level, offset[4], noffset[4]; 683 unsigned int nofs = 0; 684 struct f2fs_node *rn; 685 struct dnode_of_data dn; 686 struct page *page; 687 688 trace_f2fs_truncate_inode_blocks_enter(inode, from); 689 690 level = get_node_path(from, offset, noffset); 691 restart: 692 page = get_node_page(sbi, inode->i_ino); 693 if (IS_ERR(page)) { 694 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 695 return PTR_ERR(page); 696 } 697 698 set_new_dnode(&dn, inode, page, NULL, 0); 699 unlock_page(page); 700 701 rn = F2FS_NODE(page); 702 switch (level) { 703 case 0: 704 case 1: 705 nofs = noffset[1]; 706 break; 707 case 2: 708 nofs = noffset[1]; 709 if (!offset[level - 1]) 710 goto skip_partial; 711 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 712 if (err < 0 && err != -ENOENT) 713 goto fail; 714 nofs += 1 + NIDS_PER_BLOCK; 715 break; 716 case 3: 717 nofs = 5 + 2 * NIDS_PER_BLOCK; 718 if (!offset[level - 1]) 719 goto skip_partial; 720 err = truncate_partial_nodes(&dn, &rn->i, offset, level); 721 if (err < 0 && err != -ENOENT) 722 goto fail; 723 break; 724 default: 725 BUG(); 726 } 727 728 skip_partial: 729 while (cont) { 730 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); 731 switch (offset[0]) { 732 case NODE_DIR1_BLOCK: 733 case NODE_DIR2_BLOCK: 734 err = truncate_dnode(&dn); 735 break; 736 737 case NODE_IND1_BLOCK: 738 case NODE_IND2_BLOCK: 739 err = truncate_nodes(&dn, nofs, offset[1], 2); 740 break; 741 742 case NODE_DIND_BLOCK: 743 err = truncate_nodes(&dn, nofs, offset[1], 3); 744 cont = 0; 745 break; 746 747 default: 748 BUG(); 749 } 750 if (err < 0 && err != -ENOENT) 751 goto fail; 752 if (offset[1] == 0 && 753 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { 754 lock_page(page); 755 if (page->mapping != node_mapping) { 756 f2fs_put_page(page, 1); 757 goto restart; 758 } 759 wait_on_page_writeback(page); 760 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 761 set_page_dirty(page); 762 unlock_page(page); 763 } 764 offset[1] = 0; 765 offset[0]++; 766 nofs += err; 767 } 768 fail: 769 f2fs_put_page(page, 0); 770 trace_f2fs_truncate_inode_blocks_exit(inode, err); 771 return err > 0 ? 0 : err; 772 } 773 774 /* 775 * Caller should grab and release a mutex by calling mutex_lock_op() and 776 * mutex_unlock_op(). 777 */ 778 int remove_inode_page(struct inode *inode) 779 { 780 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 781 struct page *page; 782 nid_t ino = inode->i_ino; 783 struct dnode_of_data dn; 784 785 page = get_node_page(sbi, ino); 786 if (IS_ERR(page)) 787 return PTR_ERR(page); 788 789 if (F2FS_I(inode)->i_xattr_nid) { 790 nid_t nid = F2FS_I(inode)->i_xattr_nid; 791 struct page *npage = get_node_page(sbi, nid); 792 793 if (IS_ERR(npage)) 794 return PTR_ERR(npage); 795 796 F2FS_I(inode)->i_xattr_nid = 0; 797 set_new_dnode(&dn, inode, page, npage, nid); 798 dn.inode_page_locked = 1; 799 truncate_node(&dn); 800 } 801 802 /* 0 is possible, after f2fs_new_inode() is failed */ 803 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1); 804 set_new_dnode(&dn, inode, page, page, ino); 805 truncate_node(&dn); 806 return 0; 807 } 808 809 struct page *new_inode_page(struct inode *inode, const struct qstr *name) 810 { 811 struct dnode_of_data dn; 812 813 /* allocate inode page for new inode */ 814 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 815 816 /* caller should f2fs_put_page(page, 1); */ 817 return new_node_page(&dn, 0, NULL); 818 } 819 820 struct page *new_node_page(struct dnode_of_data *dn, 821 unsigned int ofs, struct page *ipage) 822 { 823 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 824 struct address_space *mapping = sbi->node_inode->i_mapping; 825 struct node_info old_ni, new_ni; 826 struct page *page; 827 int err; 828 829 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) 830 return ERR_PTR(-EPERM); 831 832 page = grab_cache_page(mapping, dn->nid); 833 if (!page) 834 return ERR_PTR(-ENOMEM); 835 836 if (!inc_valid_node_count(sbi, dn->inode, 1)) { 837 err = -ENOSPC; 838 goto fail; 839 } 840 841 get_node_info(sbi, dn->nid, &old_ni); 842 843 /* Reinitialize old_ni with new node page */ 844 BUG_ON(old_ni.blk_addr != NULL_ADDR); 845 new_ni = old_ni; 846 new_ni.ino = dn->inode->i_ino; 847 set_node_addr(sbi, &new_ni, NEW_ADDR); 848 849 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 850 set_cold_node(dn->inode, page); 851 SetPageUptodate(page); 852 set_page_dirty(page); 853 854 if (ofs == XATTR_NODE_OFFSET) 855 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 856 857 dn->node_page = page; 858 if (ipage) 859 update_inode(dn->inode, ipage); 860 else 861 sync_inode_page(dn); 862 if (ofs == 0) 863 inc_valid_inode_count(sbi); 864 865 return page; 866 867 fail: 868 clear_node_page_dirty(page); 869 f2fs_put_page(page, 1); 870 return ERR_PTR(err); 871 } 872 873 /* 874 * Caller should do after getting the following values. 875 * 0: f2fs_put_page(page, 0) 876 * LOCKED_PAGE: f2fs_put_page(page, 1) 877 * error: nothing 878 */ 879 static int read_node_page(struct page *page, int type) 880 { 881 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 882 struct node_info ni; 883 884 get_node_info(sbi, page->index, &ni); 885 886 if (ni.blk_addr == NULL_ADDR) { 887 f2fs_put_page(page, 1); 888 return -ENOENT; 889 } 890 891 if (PageUptodate(page)) 892 return LOCKED_PAGE; 893 894 return f2fs_readpage(sbi, page, ni.blk_addr, type); 895 } 896 897 /* 898 * Readahead a node page 899 */ 900 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 901 { 902 struct address_space *mapping = sbi->node_inode->i_mapping; 903 struct page *apage; 904 int err; 905 906 apage = find_get_page(mapping, nid); 907 if (apage && PageUptodate(apage)) { 908 f2fs_put_page(apage, 0); 909 return; 910 } 911 f2fs_put_page(apage, 0); 912 913 apage = grab_cache_page(mapping, nid); 914 if (!apage) 915 return; 916 917 err = read_node_page(apage, READA); 918 if (err == 0) 919 f2fs_put_page(apage, 0); 920 else if (err == LOCKED_PAGE) 921 f2fs_put_page(apage, 1); 922 } 923 924 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 925 { 926 struct address_space *mapping = sbi->node_inode->i_mapping; 927 struct page *page; 928 int err; 929 repeat: 930 page = grab_cache_page(mapping, nid); 931 if (!page) 932 return ERR_PTR(-ENOMEM); 933 934 err = read_node_page(page, READ_SYNC); 935 if (err < 0) 936 return ERR_PTR(err); 937 else if (err == LOCKED_PAGE) 938 goto got_it; 939 940 lock_page(page); 941 if (!PageUptodate(page)) { 942 f2fs_put_page(page, 1); 943 return ERR_PTR(-EIO); 944 } 945 if (page->mapping != mapping) { 946 f2fs_put_page(page, 1); 947 goto repeat; 948 } 949 got_it: 950 BUG_ON(nid != nid_of_node(page)); 951 mark_page_accessed(page); 952 return page; 953 } 954 955 /* 956 * Return a locked page for the desired node page. 957 * And, readahead MAX_RA_NODE number of node pages. 958 */ 959 struct page *get_node_page_ra(struct page *parent, int start) 960 { 961 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); 962 struct address_space *mapping = sbi->node_inode->i_mapping; 963 struct blk_plug plug; 964 struct page *page; 965 int err, i, end; 966 nid_t nid; 967 968 /* First, try getting the desired direct node. */ 969 nid = get_nid(parent, start, false); 970 if (!nid) 971 return ERR_PTR(-ENOENT); 972 repeat: 973 page = grab_cache_page(mapping, nid); 974 if (!page) 975 return ERR_PTR(-ENOMEM); 976 977 err = read_node_page(page, READ_SYNC); 978 if (err < 0) 979 return ERR_PTR(err); 980 else if (err == LOCKED_PAGE) 981 goto page_hit; 982 983 blk_start_plug(&plug); 984 985 /* Then, try readahead for siblings of the desired node */ 986 end = start + MAX_RA_NODE; 987 end = min(end, NIDS_PER_BLOCK); 988 for (i = start + 1; i < end; i++) { 989 nid = get_nid(parent, i, false); 990 if (!nid) 991 continue; 992 ra_node_page(sbi, nid); 993 } 994 995 blk_finish_plug(&plug); 996 997 lock_page(page); 998 if (page->mapping != mapping) { 999 f2fs_put_page(page, 1); 1000 goto repeat; 1001 } 1002 page_hit: 1003 if (!PageUptodate(page)) { 1004 f2fs_put_page(page, 1); 1005 return ERR_PTR(-EIO); 1006 } 1007 mark_page_accessed(page); 1008 return page; 1009 } 1010 1011 void sync_inode_page(struct dnode_of_data *dn) 1012 { 1013 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1014 update_inode(dn->inode, dn->node_page); 1015 } else if (dn->inode_page) { 1016 if (!dn->inode_page_locked) 1017 lock_page(dn->inode_page); 1018 update_inode(dn->inode, dn->inode_page); 1019 if (!dn->inode_page_locked) 1020 unlock_page(dn->inode_page); 1021 } else { 1022 update_inode_page(dn->inode); 1023 } 1024 } 1025 1026 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1027 struct writeback_control *wbc) 1028 { 1029 struct address_space *mapping = sbi->node_inode->i_mapping; 1030 pgoff_t index, end; 1031 struct pagevec pvec; 1032 int step = ino ? 2 : 0; 1033 int nwritten = 0, wrote = 0; 1034 1035 pagevec_init(&pvec, 0); 1036 1037 next_step: 1038 index = 0; 1039 end = LONG_MAX; 1040 1041 while (index <= end) { 1042 int i, nr_pages; 1043 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1044 PAGECACHE_TAG_DIRTY, 1045 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1046 if (nr_pages == 0) 1047 break; 1048 1049 for (i = 0; i < nr_pages; i++) { 1050 struct page *page = pvec.pages[i]; 1051 1052 /* 1053 * flushing sequence with step: 1054 * 0. indirect nodes 1055 * 1. dentry dnodes 1056 * 2. file dnodes 1057 */ 1058 if (step == 0 && IS_DNODE(page)) 1059 continue; 1060 if (step == 1 && (!IS_DNODE(page) || 1061 is_cold_node(page))) 1062 continue; 1063 if (step == 2 && (!IS_DNODE(page) || 1064 !is_cold_node(page))) 1065 continue; 1066 1067 /* 1068 * If an fsync mode, 1069 * we should not skip writing node pages. 1070 */ 1071 if (ino && ino_of_node(page) == ino) 1072 lock_page(page); 1073 else if (!trylock_page(page)) 1074 continue; 1075 1076 if (unlikely(page->mapping != mapping)) { 1077 continue_unlock: 1078 unlock_page(page); 1079 continue; 1080 } 1081 if (ino && ino_of_node(page) != ino) 1082 goto continue_unlock; 1083 1084 if (!PageDirty(page)) { 1085 /* someone wrote it for us */ 1086 goto continue_unlock; 1087 } 1088 1089 if (!clear_page_dirty_for_io(page)) 1090 goto continue_unlock; 1091 1092 /* called by fsync() */ 1093 if (ino && IS_DNODE(page)) { 1094 int mark = !is_checkpointed_node(sbi, ino); 1095 set_fsync_mark(page, 1); 1096 if (IS_INODE(page)) 1097 set_dentry_mark(page, mark); 1098 nwritten++; 1099 } else { 1100 set_fsync_mark(page, 0); 1101 set_dentry_mark(page, 0); 1102 } 1103 mapping->a_ops->writepage(page, wbc); 1104 wrote++; 1105 1106 if (--wbc->nr_to_write == 0) 1107 break; 1108 } 1109 pagevec_release(&pvec); 1110 cond_resched(); 1111 1112 if (wbc->nr_to_write == 0) { 1113 step = 2; 1114 break; 1115 } 1116 } 1117 1118 if (step < 2) { 1119 step++; 1120 goto next_step; 1121 } 1122 1123 if (wrote) 1124 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); 1125 1126 return nwritten; 1127 } 1128 1129 static int f2fs_write_node_page(struct page *page, 1130 struct writeback_control *wbc) 1131 { 1132 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 1133 nid_t nid; 1134 block_t new_addr; 1135 struct node_info ni; 1136 1137 wait_on_page_writeback(page); 1138 1139 /* get old block addr of this node page */ 1140 nid = nid_of_node(page); 1141 BUG_ON(page->index != nid); 1142 1143 get_node_info(sbi, nid, &ni); 1144 1145 /* This page is already truncated */ 1146 if (ni.blk_addr == NULL_ADDR) { 1147 dec_page_count(sbi, F2FS_DIRTY_NODES); 1148 unlock_page(page); 1149 return 0; 1150 } 1151 1152 if (wbc->for_reclaim) { 1153 dec_page_count(sbi, F2FS_DIRTY_NODES); 1154 wbc->pages_skipped++; 1155 set_page_dirty(page); 1156 return AOP_WRITEPAGE_ACTIVATE; 1157 } 1158 1159 mutex_lock(&sbi->node_write); 1160 set_page_writeback(page); 1161 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); 1162 set_node_addr(sbi, &ni, new_addr); 1163 dec_page_count(sbi, F2FS_DIRTY_NODES); 1164 mutex_unlock(&sbi->node_write); 1165 unlock_page(page); 1166 return 0; 1167 } 1168 1169 /* 1170 * It is very important to gather dirty pages and write at once, so that we can 1171 * submit a big bio without interfering other data writes. 1172 * Be default, 512 pages (2MB), a segment size, is quite reasonable. 1173 */ 1174 #define COLLECT_DIRTY_NODES 512 1175 static int f2fs_write_node_pages(struct address_space *mapping, 1176 struct writeback_control *wbc) 1177 { 1178 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1179 long nr_to_write = wbc->nr_to_write; 1180 1181 /* First check balancing cached NAT entries */ 1182 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { 1183 f2fs_sync_fs(sbi->sb, true); 1184 return 0; 1185 } 1186 1187 /* collect a number of dirty node pages and write together */ 1188 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES) 1189 return 0; 1190 1191 /* if mounting is failed, skip writing node pages */ 1192 wbc->nr_to_write = max_hw_blocks(sbi); 1193 sync_node_pages(sbi, 0, wbc); 1194 wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write); 1195 return 0; 1196 } 1197 1198 static int f2fs_set_node_page_dirty(struct page *page) 1199 { 1200 struct address_space *mapping = page->mapping; 1201 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1202 1203 SetPageUptodate(page); 1204 if (!PageDirty(page)) { 1205 __set_page_dirty_nobuffers(page); 1206 inc_page_count(sbi, F2FS_DIRTY_NODES); 1207 SetPagePrivate(page); 1208 return 1; 1209 } 1210 return 0; 1211 } 1212 1213 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset, 1214 unsigned int length) 1215 { 1216 struct inode *inode = page->mapping->host; 1217 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 1218 if (PageDirty(page)) 1219 dec_page_count(sbi, F2FS_DIRTY_NODES); 1220 ClearPagePrivate(page); 1221 } 1222 1223 static int f2fs_release_node_page(struct page *page, gfp_t wait) 1224 { 1225 ClearPagePrivate(page); 1226 return 1; 1227 } 1228 1229 /* 1230 * Structure of the f2fs node operations 1231 */ 1232 const struct address_space_operations f2fs_node_aops = { 1233 .writepage = f2fs_write_node_page, 1234 .writepages = f2fs_write_node_pages, 1235 .set_page_dirty = f2fs_set_node_page_dirty, 1236 .invalidatepage = f2fs_invalidate_node_page, 1237 .releasepage = f2fs_release_node_page, 1238 }; 1239 1240 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) 1241 { 1242 struct list_head *this; 1243 struct free_nid *i; 1244 list_for_each(this, head) { 1245 i = list_entry(this, struct free_nid, list); 1246 if (i->nid == n) 1247 return i; 1248 } 1249 return NULL; 1250 } 1251 1252 static void __del_from_free_nid_list(struct free_nid *i) 1253 { 1254 list_del(&i->list); 1255 kmem_cache_free(free_nid_slab, i); 1256 } 1257 1258 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build) 1259 { 1260 struct free_nid *i; 1261 struct nat_entry *ne; 1262 bool allocated = false; 1263 1264 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) 1265 return -1; 1266 1267 /* 0 nid should not be used */ 1268 if (nid == 0) 1269 return 0; 1270 1271 if (!build) 1272 goto retry; 1273 1274 /* do not add allocated nids */ 1275 read_lock(&nm_i->nat_tree_lock); 1276 ne = __lookup_nat_cache(nm_i, nid); 1277 if (ne && nat_get_blkaddr(ne) != NULL_ADDR) 1278 allocated = true; 1279 read_unlock(&nm_i->nat_tree_lock); 1280 if (allocated) 1281 return 0; 1282 retry: 1283 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1284 if (!i) { 1285 cond_resched(); 1286 goto retry; 1287 } 1288 i->nid = nid; 1289 i->state = NID_NEW; 1290 1291 spin_lock(&nm_i->free_nid_list_lock); 1292 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { 1293 spin_unlock(&nm_i->free_nid_list_lock); 1294 kmem_cache_free(free_nid_slab, i); 1295 return 0; 1296 } 1297 list_add_tail(&i->list, &nm_i->free_nid_list); 1298 nm_i->fcnt++; 1299 spin_unlock(&nm_i->free_nid_list_lock); 1300 return 1; 1301 } 1302 1303 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1304 { 1305 struct free_nid *i; 1306 spin_lock(&nm_i->free_nid_list_lock); 1307 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1308 if (i && i->state == NID_NEW) { 1309 __del_from_free_nid_list(i); 1310 nm_i->fcnt--; 1311 } 1312 spin_unlock(&nm_i->free_nid_list_lock); 1313 } 1314 1315 static void scan_nat_page(struct f2fs_nm_info *nm_i, 1316 struct page *nat_page, nid_t start_nid) 1317 { 1318 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1319 block_t blk_addr; 1320 int i; 1321 1322 i = start_nid % NAT_ENTRY_PER_BLOCK; 1323 1324 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1325 1326 if (start_nid >= nm_i->max_nid) 1327 break; 1328 1329 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1330 BUG_ON(blk_addr == NEW_ADDR); 1331 if (blk_addr == NULL_ADDR) { 1332 if (add_free_nid(nm_i, start_nid, true) < 0) 1333 break; 1334 } 1335 } 1336 } 1337 1338 static void build_free_nids(struct f2fs_sb_info *sbi) 1339 { 1340 struct f2fs_nm_info *nm_i = NM_I(sbi); 1341 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1342 struct f2fs_summary_block *sum = curseg->sum_blk; 1343 int i = 0; 1344 nid_t nid = nm_i->next_scan_nid; 1345 1346 /* Enough entries */ 1347 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1348 return; 1349 1350 /* readahead nat pages to be scanned */ 1351 ra_nat_pages(sbi, nid); 1352 1353 while (1) { 1354 struct page *page = get_current_nat_page(sbi, nid); 1355 1356 scan_nat_page(nm_i, page, nid); 1357 f2fs_put_page(page, 1); 1358 1359 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1360 if (nid >= nm_i->max_nid) 1361 nid = 0; 1362 1363 if (i++ == FREE_NID_PAGES) 1364 break; 1365 } 1366 1367 /* go to the next free nat pages to find free nids abundantly */ 1368 nm_i->next_scan_nid = nid; 1369 1370 /* find free nids from current sum_pages */ 1371 mutex_lock(&curseg->curseg_mutex); 1372 for (i = 0; i < nats_in_cursum(sum); i++) { 1373 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); 1374 nid = le32_to_cpu(nid_in_journal(sum, i)); 1375 if (addr == NULL_ADDR) 1376 add_free_nid(nm_i, nid, true); 1377 else 1378 remove_free_nid(nm_i, nid); 1379 } 1380 mutex_unlock(&curseg->curseg_mutex); 1381 } 1382 1383 /* 1384 * If this function returns success, caller can obtain a new nid 1385 * from second parameter of this function. 1386 * The returned nid could be used ino as well as nid when inode is created. 1387 */ 1388 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1389 { 1390 struct f2fs_nm_info *nm_i = NM_I(sbi); 1391 struct free_nid *i = NULL; 1392 struct list_head *this; 1393 retry: 1394 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid) 1395 return false; 1396 1397 spin_lock(&nm_i->free_nid_list_lock); 1398 1399 /* We should not use stale free nids created by build_free_nids */ 1400 if (nm_i->fcnt && !sbi->on_build_free_nids) { 1401 BUG_ON(list_empty(&nm_i->free_nid_list)); 1402 list_for_each(this, &nm_i->free_nid_list) { 1403 i = list_entry(this, struct free_nid, list); 1404 if (i->state == NID_NEW) 1405 break; 1406 } 1407 1408 BUG_ON(i->state != NID_NEW); 1409 *nid = i->nid; 1410 i->state = NID_ALLOC; 1411 nm_i->fcnt--; 1412 spin_unlock(&nm_i->free_nid_list_lock); 1413 return true; 1414 } 1415 spin_unlock(&nm_i->free_nid_list_lock); 1416 1417 /* Let's scan nat pages and its caches to get free nids */ 1418 mutex_lock(&nm_i->build_lock); 1419 sbi->on_build_free_nids = 1; 1420 build_free_nids(sbi); 1421 sbi->on_build_free_nids = 0; 1422 mutex_unlock(&nm_i->build_lock); 1423 goto retry; 1424 } 1425 1426 /* 1427 * alloc_nid() should be called prior to this function. 1428 */ 1429 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1430 { 1431 struct f2fs_nm_info *nm_i = NM_I(sbi); 1432 struct free_nid *i; 1433 1434 spin_lock(&nm_i->free_nid_list_lock); 1435 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1436 BUG_ON(!i || i->state != NID_ALLOC); 1437 __del_from_free_nid_list(i); 1438 spin_unlock(&nm_i->free_nid_list_lock); 1439 } 1440 1441 /* 1442 * alloc_nid() should be called prior to this function. 1443 */ 1444 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1445 { 1446 struct f2fs_nm_info *nm_i = NM_I(sbi); 1447 struct free_nid *i; 1448 1449 spin_lock(&nm_i->free_nid_list_lock); 1450 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1451 BUG_ON(!i || i->state != NID_ALLOC); 1452 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) { 1453 __del_from_free_nid_list(i); 1454 } else { 1455 i->state = NID_NEW; 1456 nm_i->fcnt++; 1457 } 1458 spin_unlock(&nm_i->free_nid_list_lock); 1459 } 1460 1461 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, 1462 struct f2fs_summary *sum, struct node_info *ni, 1463 block_t new_blkaddr) 1464 { 1465 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); 1466 set_node_addr(sbi, ni, new_blkaddr); 1467 clear_node_page_dirty(page); 1468 } 1469 1470 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1471 { 1472 struct address_space *mapping = sbi->node_inode->i_mapping; 1473 struct f2fs_node *src, *dst; 1474 nid_t ino = ino_of_node(page); 1475 struct node_info old_ni, new_ni; 1476 struct page *ipage; 1477 1478 ipage = grab_cache_page(mapping, ino); 1479 if (!ipage) 1480 return -ENOMEM; 1481 1482 /* Should not use this inode from free nid list */ 1483 remove_free_nid(NM_I(sbi), ino); 1484 1485 get_node_info(sbi, ino, &old_ni); 1486 SetPageUptodate(ipage); 1487 fill_node_footer(ipage, ino, ino, 0, true); 1488 1489 src = F2FS_NODE(page); 1490 dst = F2FS_NODE(ipage); 1491 1492 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); 1493 dst->i.i_size = 0; 1494 dst->i.i_blocks = cpu_to_le64(1); 1495 dst->i.i_links = cpu_to_le32(1); 1496 dst->i.i_xattr_nid = 0; 1497 1498 new_ni = old_ni; 1499 new_ni.ino = ino; 1500 1501 if (!inc_valid_node_count(sbi, NULL, 1)) 1502 WARN_ON(1); 1503 set_node_addr(sbi, &new_ni, NEW_ADDR); 1504 inc_valid_inode_count(sbi); 1505 f2fs_put_page(ipage, 1); 1506 return 0; 1507 } 1508 1509 int restore_node_summary(struct f2fs_sb_info *sbi, 1510 unsigned int segno, struct f2fs_summary_block *sum) 1511 { 1512 struct f2fs_node *rn; 1513 struct f2fs_summary *sum_entry; 1514 struct page *page; 1515 block_t addr; 1516 int i, last_offset; 1517 1518 /* alloc temporal page for read node */ 1519 page = alloc_page(GFP_NOFS | __GFP_ZERO); 1520 if (IS_ERR(page)) 1521 return PTR_ERR(page); 1522 lock_page(page); 1523 1524 /* scan the node segment */ 1525 last_offset = sbi->blocks_per_seg; 1526 addr = START_BLOCK(sbi, segno); 1527 sum_entry = &sum->entries[0]; 1528 1529 for (i = 0; i < last_offset; i++, sum_entry++) { 1530 /* 1531 * In order to read next node page, 1532 * we must clear PageUptodate flag. 1533 */ 1534 ClearPageUptodate(page); 1535 1536 if (f2fs_readpage(sbi, page, addr, READ_SYNC)) 1537 goto out; 1538 1539 lock_page(page); 1540 rn = F2FS_NODE(page); 1541 sum_entry->nid = rn->footer.nid; 1542 sum_entry->version = 0; 1543 sum_entry->ofs_in_node = 0; 1544 addr++; 1545 } 1546 unlock_page(page); 1547 out: 1548 __free_pages(page, 0); 1549 return 0; 1550 } 1551 1552 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) 1553 { 1554 struct f2fs_nm_info *nm_i = NM_I(sbi); 1555 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1556 struct f2fs_summary_block *sum = curseg->sum_blk; 1557 int i; 1558 1559 mutex_lock(&curseg->curseg_mutex); 1560 1561 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { 1562 mutex_unlock(&curseg->curseg_mutex); 1563 return false; 1564 } 1565 1566 for (i = 0; i < nats_in_cursum(sum); i++) { 1567 struct nat_entry *ne; 1568 struct f2fs_nat_entry raw_ne; 1569 nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); 1570 1571 raw_ne = nat_in_journal(sum, i); 1572 retry: 1573 write_lock(&nm_i->nat_tree_lock); 1574 ne = __lookup_nat_cache(nm_i, nid); 1575 if (ne) { 1576 __set_nat_cache_dirty(nm_i, ne); 1577 write_unlock(&nm_i->nat_tree_lock); 1578 continue; 1579 } 1580 ne = grab_nat_entry(nm_i, nid); 1581 if (!ne) { 1582 write_unlock(&nm_i->nat_tree_lock); 1583 goto retry; 1584 } 1585 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); 1586 nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); 1587 nat_set_version(ne, raw_ne.version); 1588 __set_nat_cache_dirty(nm_i, ne); 1589 write_unlock(&nm_i->nat_tree_lock); 1590 } 1591 update_nats_in_cursum(sum, -i); 1592 mutex_unlock(&curseg->curseg_mutex); 1593 return true; 1594 } 1595 1596 /* 1597 * This function is called during the checkpointing process. 1598 */ 1599 void flush_nat_entries(struct f2fs_sb_info *sbi) 1600 { 1601 struct f2fs_nm_info *nm_i = NM_I(sbi); 1602 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1603 struct f2fs_summary_block *sum = curseg->sum_blk; 1604 struct list_head *cur, *n; 1605 struct page *page = NULL; 1606 struct f2fs_nat_block *nat_blk = NULL; 1607 nid_t start_nid = 0, end_nid = 0; 1608 bool flushed; 1609 1610 flushed = flush_nats_in_journal(sbi); 1611 1612 if (!flushed) 1613 mutex_lock(&curseg->curseg_mutex); 1614 1615 /* 1) flush dirty nat caches */ 1616 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { 1617 struct nat_entry *ne; 1618 nid_t nid; 1619 struct f2fs_nat_entry raw_ne; 1620 int offset = -1; 1621 block_t new_blkaddr; 1622 1623 ne = list_entry(cur, struct nat_entry, list); 1624 nid = nat_get_nid(ne); 1625 1626 if (nat_get_blkaddr(ne) == NEW_ADDR) 1627 continue; 1628 if (flushed) 1629 goto to_nat_page; 1630 1631 /* if there is room for nat enries in curseg->sumpage */ 1632 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); 1633 if (offset >= 0) { 1634 raw_ne = nat_in_journal(sum, offset); 1635 goto flush_now; 1636 } 1637 to_nat_page: 1638 if (!page || (start_nid > nid || nid > end_nid)) { 1639 if (page) { 1640 f2fs_put_page(page, 1); 1641 page = NULL; 1642 } 1643 start_nid = START_NID(nid); 1644 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; 1645 1646 /* 1647 * get nat block with dirty flag, increased reference 1648 * count, mapped and lock 1649 */ 1650 page = get_next_nat_page(sbi, start_nid); 1651 nat_blk = page_address(page); 1652 } 1653 1654 BUG_ON(!nat_blk); 1655 raw_ne = nat_blk->entries[nid - start_nid]; 1656 flush_now: 1657 new_blkaddr = nat_get_blkaddr(ne); 1658 1659 raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); 1660 raw_ne.block_addr = cpu_to_le32(new_blkaddr); 1661 raw_ne.version = nat_get_version(ne); 1662 1663 if (offset < 0) { 1664 nat_blk->entries[nid - start_nid] = raw_ne; 1665 } else { 1666 nat_in_journal(sum, offset) = raw_ne; 1667 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1668 } 1669 1670 if (nat_get_blkaddr(ne) == NULL_ADDR && 1671 add_free_nid(NM_I(sbi), nid, false) <= 0) { 1672 write_lock(&nm_i->nat_tree_lock); 1673 __del_from_nat_cache(nm_i, ne); 1674 write_unlock(&nm_i->nat_tree_lock); 1675 } else { 1676 write_lock(&nm_i->nat_tree_lock); 1677 __clear_nat_cache_dirty(nm_i, ne); 1678 ne->checkpointed = true; 1679 write_unlock(&nm_i->nat_tree_lock); 1680 } 1681 } 1682 if (!flushed) 1683 mutex_unlock(&curseg->curseg_mutex); 1684 f2fs_put_page(page, 1); 1685 1686 /* 2) shrink nat caches if necessary */ 1687 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); 1688 } 1689 1690 static int init_node_manager(struct f2fs_sb_info *sbi) 1691 { 1692 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1693 struct f2fs_nm_info *nm_i = NM_I(sbi); 1694 unsigned char *version_bitmap; 1695 unsigned int nat_segs, nat_blocks; 1696 1697 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 1698 1699 /* segment_count_nat includes pair segment so divide to 2. */ 1700 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 1701 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 1702 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 1703 nm_i->fcnt = 0; 1704 nm_i->nat_cnt = 0; 1705 1706 INIT_LIST_HEAD(&nm_i->free_nid_list); 1707 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); 1708 INIT_LIST_HEAD(&nm_i->nat_entries); 1709 INIT_LIST_HEAD(&nm_i->dirty_nat_entries); 1710 1711 mutex_init(&nm_i->build_lock); 1712 spin_lock_init(&nm_i->free_nid_list_lock); 1713 rwlock_init(&nm_i->nat_tree_lock); 1714 1715 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1716 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 1717 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 1718 if (!version_bitmap) 1719 return -EFAULT; 1720 1721 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 1722 GFP_KERNEL); 1723 if (!nm_i->nat_bitmap) 1724 return -ENOMEM; 1725 return 0; 1726 } 1727 1728 int build_node_manager(struct f2fs_sb_info *sbi) 1729 { 1730 int err; 1731 1732 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 1733 if (!sbi->nm_info) 1734 return -ENOMEM; 1735 1736 err = init_node_manager(sbi); 1737 if (err) 1738 return err; 1739 1740 build_free_nids(sbi); 1741 return 0; 1742 } 1743 1744 void destroy_node_manager(struct f2fs_sb_info *sbi) 1745 { 1746 struct f2fs_nm_info *nm_i = NM_I(sbi); 1747 struct free_nid *i, *next_i; 1748 struct nat_entry *natvec[NATVEC_SIZE]; 1749 nid_t nid = 0; 1750 unsigned int found; 1751 1752 if (!nm_i) 1753 return; 1754 1755 /* destroy free nid list */ 1756 spin_lock(&nm_i->free_nid_list_lock); 1757 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 1758 BUG_ON(i->state == NID_ALLOC); 1759 __del_from_free_nid_list(i); 1760 nm_i->fcnt--; 1761 } 1762 BUG_ON(nm_i->fcnt); 1763 spin_unlock(&nm_i->free_nid_list_lock); 1764 1765 /* destroy nat cache */ 1766 write_lock(&nm_i->nat_tree_lock); 1767 while ((found = __gang_lookup_nat_cache(nm_i, 1768 nid, NATVEC_SIZE, natvec))) { 1769 unsigned idx; 1770 for (idx = 0; idx < found; idx++) { 1771 struct nat_entry *e = natvec[idx]; 1772 nid = nat_get_nid(e) + 1; 1773 __del_from_nat_cache(nm_i, e); 1774 } 1775 } 1776 BUG_ON(nm_i->nat_cnt); 1777 write_unlock(&nm_i->nat_tree_lock); 1778 1779 kfree(nm_i->nat_bitmap); 1780 sbi->nm_info = NULL; 1781 kfree(nm_i); 1782 } 1783 1784 int __init create_node_manager_caches(void) 1785 { 1786 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 1787 sizeof(struct nat_entry), NULL); 1788 if (!nat_entry_slab) 1789 return -ENOMEM; 1790 1791 free_nid_slab = f2fs_kmem_cache_create("free_nid", 1792 sizeof(struct free_nid), NULL); 1793 if (!free_nid_slab) { 1794 kmem_cache_destroy(nat_entry_slab); 1795 return -ENOMEM; 1796 } 1797 return 0; 1798 } 1799 1800 void destroy_node_manager_caches(void) 1801 { 1802 kmem_cache_destroy(free_nid_slab); 1803 kmem_cache_destroy(nat_entry_slab); 1804 } 1805