xref: /openbmc/linux/fs/f2fs/node.c (revision 41dfde135f9169948dd0c9bba948774f2e521210)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23 
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 
27 static void clear_node_page_dirty(struct page *page)
28 {
29 	struct address_space *mapping = page->mapping;
30 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 	unsigned int long flags;
32 
33 	if (PageDirty(page)) {
34 		spin_lock_irqsave(&mapping->tree_lock, flags);
35 		radix_tree_tag_clear(&mapping->page_tree,
36 				page_index(page),
37 				PAGECACHE_TAG_DIRTY);
38 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
39 
40 		clear_page_dirty_for_io(page);
41 		dec_page_count(sbi, F2FS_DIRTY_NODES);
42 	}
43 	ClearPageUptodate(page);
44 }
45 
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47 {
48 	pgoff_t index = current_nat_addr(sbi, nid);
49 	return get_meta_page(sbi, index);
50 }
51 
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53 {
54 	struct page *src_page;
55 	struct page *dst_page;
56 	pgoff_t src_off;
57 	pgoff_t dst_off;
58 	void *src_addr;
59 	void *dst_addr;
60 	struct f2fs_nm_info *nm_i = NM_I(sbi);
61 
62 	src_off = current_nat_addr(sbi, nid);
63 	dst_off = next_nat_addr(sbi, src_off);
64 
65 	/* get current nat block page with lock */
66 	src_page = get_meta_page(sbi, src_off);
67 
68 	/* Dirty src_page means that it is already the new target NAT page. */
69 	if (PageDirty(src_page))
70 		return src_page;
71 
72 	dst_page = grab_meta_page(sbi, dst_off);
73 
74 	src_addr = page_address(src_page);
75 	dst_addr = page_address(dst_page);
76 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 	set_page_dirty(dst_page);
78 	f2fs_put_page(src_page, 1);
79 
80 	set_to_next_nat(nm_i, nid);
81 
82 	return dst_page;
83 }
84 
85 /*
86  * Readahead NAT pages
87  */
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89 {
90 	struct address_space *mapping = sbi->meta_inode->i_mapping;
91 	struct f2fs_nm_info *nm_i = NM_I(sbi);
92 	struct blk_plug plug;
93 	struct page *page;
94 	pgoff_t index;
95 	int i;
96 
97 	blk_start_plug(&plug);
98 
99 	for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 		if (nid >= nm_i->max_nid)
101 			nid = 0;
102 		index = current_nat_addr(sbi, nid);
103 
104 		page = grab_cache_page(mapping, index);
105 		if (!page)
106 			continue;
107 		if (PageUptodate(page)) {
108 			f2fs_put_page(page, 1);
109 			continue;
110 		}
111 		if (f2fs_readpage(sbi, page, index, READ))
112 			continue;
113 
114 		f2fs_put_page(page, 0);
115 	}
116 	blk_finish_plug(&plug);
117 }
118 
119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120 {
121 	return radix_tree_lookup(&nm_i->nat_root, n);
122 }
123 
124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 		nid_t start, unsigned int nr, struct nat_entry **ep)
126 {
127 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128 }
129 
130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131 {
132 	list_del(&e->list);
133 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 	nm_i->nat_cnt--;
135 	kmem_cache_free(nat_entry_slab, e);
136 }
137 
138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct f2fs_nm_info *nm_i = NM_I(sbi);
141 	struct nat_entry *e;
142 	int is_cp = 1;
143 
144 	read_lock(&nm_i->nat_tree_lock);
145 	e = __lookup_nat_cache(nm_i, nid);
146 	if (e && !e->checkpointed)
147 		is_cp = 0;
148 	read_unlock(&nm_i->nat_tree_lock);
149 	return is_cp;
150 }
151 
152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153 {
154 	struct nat_entry *new;
155 
156 	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 	if (!new)
158 		return NULL;
159 	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 		kmem_cache_free(nat_entry_slab, new);
161 		return NULL;
162 	}
163 	memset(new, 0, sizeof(struct nat_entry));
164 	nat_set_nid(new, nid);
165 	list_add_tail(&new->list, &nm_i->nat_entries);
166 	nm_i->nat_cnt++;
167 	return new;
168 }
169 
170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 						struct f2fs_nat_entry *ne)
172 {
173 	struct nat_entry *e;
174 retry:
175 	write_lock(&nm_i->nat_tree_lock);
176 	e = __lookup_nat_cache(nm_i, nid);
177 	if (!e) {
178 		e = grab_nat_entry(nm_i, nid);
179 		if (!e) {
180 			write_unlock(&nm_i->nat_tree_lock);
181 			goto retry;
182 		}
183 		nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 		nat_set_ino(e, le32_to_cpu(ne->ino));
185 		nat_set_version(e, ne->version);
186 		e->checkpointed = true;
187 	}
188 	write_unlock(&nm_i->nat_tree_lock);
189 }
190 
191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 			block_t new_blkaddr)
193 {
194 	struct f2fs_nm_info *nm_i = NM_I(sbi);
195 	struct nat_entry *e;
196 retry:
197 	write_lock(&nm_i->nat_tree_lock);
198 	e = __lookup_nat_cache(nm_i, ni->nid);
199 	if (!e) {
200 		e = grab_nat_entry(nm_i, ni->nid);
201 		if (!e) {
202 			write_unlock(&nm_i->nat_tree_lock);
203 			goto retry;
204 		}
205 		e->ni = *ni;
206 		e->checkpointed = true;
207 		BUG_ON(ni->blk_addr == NEW_ADDR);
208 	} else if (new_blkaddr == NEW_ADDR) {
209 		/*
210 		 * when nid is reallocated,
211 		 * previous nat entry can be remained in nat cache.
212 		 * So, reinitialize it with new information.
213 		 */
214 		e->ni = *ni;
215 		BUG_ON(ni->blk_addr != NULL_ADDR);
216 	}
217 
218 	if (new_blkaddr == NEW_ADDR)
219 		e->checkpointed = false;
220 
221 	/* sanity check */
222 	BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 	BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 			new_blkaddr == NULL_ADDR);
225 	BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 			new_blkaddr == NEW_ADDR);
227 	BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 			nat_get_blkaddr(e) != NULL_ADDR &&
229 			new_blkaddr == NEW_ADDR);
230 
231 	/* increament version no as node is removed */
232 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 		unsigned char version = nat_get_version(e);
234 		nat_set_version(e, inc_node_version(version));
235 	}
236 
237 	/* change address */
238 	nat_set_blkaddr(e, new_blkaddr);
239 	__set_nat_cache_dirty(nm_i, e);
240 	write_unlock(&nm_i->nat_tree_lock);
241 }
242 
243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244 {
245 	struct f2fs_nm_info *nm_i = NM_I(sbi);
246 
247 	if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
248 		return 0;
249 
250 	write_lock(&nm_i->nat_tree_lock);
251 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 		struct nat_entry *ne;
253 		ne = list_first_entry(&nm_i->nat_entries,
254 					struct nat_entry, list);
255 		__del_from_nat_cache(nm_i, ne);
256 		nr_shrink--;
257 	}
258 	write_unlock(&nm_i->nat_tree_lock);
259 	return nr_shrink;
260 }
261 
262 /*
263  * This function returns always success
264  */
265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266 {
267 	struct f2fs_nm_info *nm_i = NM_I(sbi);
268 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 	struct f2fs_summary_block *sum = curseg->sum_blk;
270 	nid_t start_nid = START_NID(nid);
271 	struct f2fs_nat_block *nat_blk;
272 	struct page *page = NULL;
273 	struct f2fs_nat_entry ne;
274 	struct nat_entry *e;
275 	int i;
276 
277 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
278 	ni->nid = nid;
279 
280 	/* Check nat cache */
281 	read_lock(&nm_i->nat_tree_lock);
282 	e = __lookup_nat_cache(nm_i, nid);
283 	if (e) {
284 		ni->ino = nat_get_ino(e);
285 		ni->blk_addr = nat_get_blkaddr(e);
286 		ni->version = nat_get_version(e);
287 	}
288 	read_unlock(&nm_i->nat_tree_lock);
289 	if (e)
290 		return;
291 
292 	/* Check current segment summary */
293 	mutex_lock(&curseg->curseg_mutex);
294 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 	if (i >= 0) {
296 		ne = nat_in_journal(sum, i);
297 		node_info_from_raw_nat(ni, &ne);
298 	}
299 	mutex_unlock(&curseg->curseg_mutex);
300 	if (i >= 0)
301 		goto cache;
302 
303 	/* Fill node_info from nat page */
304 	page = get_current_nat_page(sbi, start_nid);
305 	nat_blk = (struct f2fs_nat_block *)page_address(page);
306 	ne = nat_blk->entries[nid - start_nid];
307 	node_info_from_raw_nat(ni, &ne);
308 	f2fs_put_page(page, 1);
309 cache:
310 	/* cache nat entry */
311 	cache_nat_entry(NM_I(sbi), nid, &ne);
312 }
313 
314 /*
315  * The maximum depth is four.
316  * Offset[0] will have raw inode offset.
317  */
318 static int get_node_path(long block, int offset[4], unsigned int noffset[4])
319 {
320 	const long direct_index = ADDRS_PER_INODE;
321 	const long direct_blks = ADDRS_PER_BLOCK;
322 	const long dptrs_per_blk = NIDS_PER_BLOCK;
323 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 	int n = 0;
326 	int level = 0;
327 
328 	noffset[0] = 0;
329 
330 	if (block < direct_index) {
331 		offset[n] = block;
332 		goto got;
333 	}
334 	block -= direct_index;
335 	if (block < direct_blks) {
336 		offset[n++] = NODE_DIR1_BLOCK;
337 		noffset[n] = 1;
338 		offset[n] = block;
339 		level = 1;
340 		goto got;
341 	}
342 	block -= direct_blks;
343 	if (block < direct_blks) {
344 		offset[n++] = NODE_DIR2_BLOCK;
345 		noffset[n] = 2;
346 		offset[n] = block;
347 		level = 1;
348 		goto got;
349 	}
350 	block -= direct_blks;
351 	if (block < indirect_blks) {
352 		offset[n++] = NODE_IND1_BLOCK;
353 		noffset[n] = 3;
354 		offset[n++] = block / direct_blks;
355 		noffset[n] = 4 + offset[n - 1];
356 		offset[n] = block % direct_blks;
357 		level = 2;
358 		goto got;
359 	}
360 	block -= indirect_blks;
361 	if (block < indirect_blks) {
362 		offset[n++] = NODE_IND2_BLOCK;
363 		noffset[n] = 4 + dptrs_per_blk;
364 		offset[n++] = block / direct_blks;
365 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366 		offset[n] = block % direct_blks;
367 		level = 2;
368 		goto got;
369 	}
370 	block -= indirect_blks;
371 	if (block < dindirect_blks) {
372 		offset[n++] = NODE_DIND_BLOCK;
373 		noffset[n] = 5 + (dptrs_per_blk * 2);
374 		offset[n++] = block / indirect_blks;
375 		noffset[n] = 6 + (dptrs_per_blk * 2) +
376 			      offset[n - 1] * (dptrs_per_blk + 1);
377 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 		noffset[n] = 7 + (dptrs_per_blk * 2) +
379 			      offset[n - 2] * (dptrs_per_blk + 1) +
380 			      offset[n - 1];
381 		offset[n] = block % direct_blks;
382 		level = 3;
383 		goto got;
384 	} else {
385 		BUG();
386 	}
387 got:
388 	return level;
389 }
390 
391 /*
392  * Caller should call f2fs_put_dnode(dn).
393  * Also, it should grab and release a mutex by calling mutex_lock_op() and
394  * mutex_unlock_op() only if ro is not set RDONLY_NODE.
395  * In the case of RDONLY_NODE, we don't need to care about mutex.
396  */
397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398 {
399 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 	struct page *npage[4];
401 	struct page *parent;
402 	int offset[4];
403 	unsigned int noffset[4];
404 	nid_t nids[4];
405 	int level, i;
406 	int err = 0;
407 
408 	level = get_node_path(index, offset, noffset);
409 
410 	nids[0] = dn->inode->i_ino;
411 	npage[0] = dn->inode_page;
412 
413 	if (!npage[0]) {
414 		npage[0] = get_node_page(sbi, nids[0]);
415 		if (IS_ERR(npage[0]))
416 			return PTR_ERR(npage[0]);
417 	}
418 	parent = npage[0];
419 	if (level != 0)
420 		nids[1] = get_nid(parent, offset[0], true);
421 	dn->inode_page = npage[0];
422 	dn->inode_page_locked = true;
423 
424 	/* get indirect or direct nodes */
425 	for (i = 1; i <= level; i++) {
426 		bool done = false;
427 
428 		if (!nids[i] && mode == ALLOC_NODE) {
429 			/* alloc new node */
430 			if (!alloc_nid(sbi, &(nids[i]))) {
431 				err = -ENOSPC;
432 				goto release_pages;
433 			}
434 
435 			dn->nid = nids[i];
436 			npage[i] = new_node_page(dn, noffset[i], NULL);
437 			if (IS_ERR(npage[i])) {
438 				alloc_nid_failed(sbi, nids[i]);
439 				err = PTR_ERR(npage[i]);
440 				goto release_pages;
441 			}
442 
443 			set_nid(parent, offset[i - 1], nids[i], i == 1);
444 			alloc_nid_done(sbi, nids[i]);
445 			done = true;
446 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
447 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
448 			if (IS_ERR(npage[i])) {
449 				err = PTR_ERR(npage[i]);
450 				goto release_pages;
451 			}
452 			done = true;
453 		}
454 		if (i == 1) {
455 			dn->inode_page_locked = false;
456 			unlock_page(parent);
457 		} else {
458 			f2fs_put_page(parent, 1);
459 		}
460 
461 		if (!done) {
462 			npage[i] = get_node_page(sbi, nids[i]);
463 			if (IS_ERR(npage[i])) {
464 				err = PTR_ERR(npage[i]);
465 				f2fs_put_page(npage[0], 0);
466 				goto release_out;
467 			}
468 		}
469 		if (i < level) {
470 			parent = npage[i];
471 			nids[i + 1] = get_nid(parent, offset[i], false);
472 		}
473 	}
474 	dn->nid = nids[level];
475 	dn->ofs_in_node = offset[level];
476 	dn->node_page = npage[level];
477 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478 	return 0;
479 
480 release_pages:
481 	f2fs_put_page(parent, 1);
482 	if (i > 1)
483 		f2fs_put_page(npage[0], 0);
484 release_out:
485 	dn->inode_page = NULL;
486 	dn->node_page = NULL;
487 	return err;
488 }
489 
490 static void truncate_node(struct dnode_of_data *dn)
491 {
492 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
493 	struct node_info ni;
494 
495 	get_node_info(sbi, dn->nid, &ni);
496 	if (dn->inode->i_blocks == 0) {
497 		BUG_ON(ni.blk_addr != NULL_ADDR);
498 		goto invalidate;
499 	}
500 	BUG_ON(ni.blk_addr == NULL_ADDR);
501 
502 	/* Deallocate node address */
503 	invalidate_blocks(sbi, ni.blk_addr);
504 	dec_valid_node_count(sbi, dn->inode, 1);
505 	set_node_addr(sbi, &ni, NULL_ADDR);
506 
507 	if (dn->nid == dn->inode->i_ino) {
508 		remove_orphan_inode(sbi, dn->nid);
509 		dec_valid_inode_count(sbi);
510 	} else {
511 		sync_inode_page(dn);
512 	}
513 invalidate:
514 	clear_node_page_dirty(dn->node_page);
515 	F2FS_SET_SB_DIRT(sbi);
516 
517 	f2fs_put_page(dn->node_page, 1);
518 	dn->node_page = NULL;
519 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
520 }
521 
522 static int truncate_dnode(struct dnode_of_data *dn)
523 {
524 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
525 	struct page *page;
526 
527 	if (dn->nid == 0)
528 		return 1;
529 
530 	/* get direct node */
531 	page = get_node_page(sbi, dn->nid);
532 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
533 		return 1;
534 	else if (IS_ERR(page))
535 		return PTR_ERR(page);
536 
537 	/* Make dnode_of_data for parameter */
538 	dn->node_page = page;
539 	dn->ofs_in_node = 0;
540 	truncate_data_blocks(dn);
541 	truncate_node(dn);
542 	return 1;
543 }
544 
545 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
546 						int ofs, int depth)
547 {
548 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
549 	struct dnode_of_data rdn = *dn;
550 	struct page *page;
551 	struct f2fs_node *rn;
552 	nid_t child_nid;
553 	unsigned int child_nofs;
554 	int freed = 0;
555 	int i, ret;
556 
557 	if (dn->nid == 0)
558 		return NIDS_PER_BLOCK + 1;
559 
560 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
561 
562 	page = get_node_page(sbi, dn->nid);
563 	if (IS_ERR(page)) {
564 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
565 		return PTR_ERR(page);
566 	}
567 
568 	rn = F2FS_NODE(page);
569 	if (depth < 3) {
570 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
571 			child_nid = le32_to_cpu(rn->in.nid[i]);
572 			if (child_nid == 0)
573 				continue;
574 			rdn.nid = child_nid;
575 			ret = truncate_dnode(&rdn);
576 			if (ret < 0)
577 				goto out_err;
578 			set_nid(page, i, 0, false);
579 		}
580 	} else {
581 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
582 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
583 			child_nid = le32_to_cpu(rn->in.nid[i]);
584 			if (child_nid == 0) {
585 				child_nofs += NIDS_PER_BLOCK + 1;
586 				continue;
587 			}
588 			rdn.nid = child_nid;
589 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
590 			if (ret == (NIDS_PER_BLOCK + 1)) {
591 				set_nid(page, i, 0, false);
592 				child_nofs += ret;
593 			} else if (ret < 0 && ret != -ENOENT) {
594 				goto out_err;
595 			}
596 		}
597 		freed = child_nofs;
598 	}
599 
600 	if (!ofs) {
601 		/* remove current indirect node */
602 		dn->node_page = page;
603 		truncate_node(dn);
604 		freed++;
605 	} else {
606 		f2fs_put_page(page, 1);
607 	}
608 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
609 	return freed;
610 
611 out_err:
612 	f2fs_put_page(page, 1);
613 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
614 	return ret;
615 }
616 
617 static int truncate_partial_nodes(struct dnode_of_data *dn,
618 			struct f2fs_inode *ri, int *offset, int depth)
619 {
620 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
621 	struct page *pages[2];
622 	nid_t nid[3];
623 	nid_t child_nid;
624 	int err = 0;
625 	int i;
626 	int idx = depth - 2;
627 
628 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
629 	if (!nid[0])
630 		return 0;
631 
632 	/* get indirect nodes in the path */
633 	for (i = 0; i < depth - 1; i++) {
634 		/* refernece count'll be increased */
635 		pages[i] = get_node_page(sbi, nid[i]);
636 		if (IS_ERR(pages[i])) {
637 			depth = i + 1;
638 			err = PTR_ERR(pages[i]);
639 			goto fail;
640 		}
641 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
642 	}
643 
644 	/* free direct nodes linked to a partial indirect node */
645 	for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
646 		child_nid = get_nid(pages[idx], i, false);
647 		if (!child_nid)
648 			continue;
649 		dn->nid = child_nid;
650 		err = truncate_dnode(dn);
651 		if (err < 0)
652 			goto fail;
653 		set_nid(pages[idx], i, 0, false);
654 	}
655 
656 	if (offset[depth - 1] == 0) {
657 		dn->node_page = pages[idx];
658 		dn->nid = nid[idx];
659 		truncate_node(dn);
660 	} else {
661 		f2fs_put_page(pages[idx], 1);
662 	}
663 	offset[idx]++;
664 	offset[depth - 1] = 0;
665 fail:
666 	for (i = depth - 3; i >= 0; i--)
667 		f2fs_put_page(pages[i], 1);
668 
669 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
670 
671 	return err;
672 }
673 
674 /*
675  * All the block addresses of data and nodes should be nullified.
676  */
677 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
678 {
679 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
680 	struct address_space *node_mapping = sbi->node_inode->i_mapping;
681 	int err = 0, cont = 1;
682 	int level, offset[4], noffset[4];
683 	unsigned int nofs = 0;
684 	struct f2fs_node *rn;
685 	struct dnode_of_data dn;
686 	struct page *page;
687 
688 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
689 
690 	level = get_node_path(from, offset, noffset);
691 restart:
692 	page = get_node_page(sbi, inode->i_ino);
693 	if (IS_ERR(page)) {
694 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
695 		return PTR_ERR(page);
696 	}
697 
698 	set_new_dnode(&dn, inode, page, NULL, 0);
699 	unlock_page(page);
700 
701 	rn = F2FS_NODE(page);
702 	switch (level) {
703 	case 0:
704 	case 1:
705 		nofs = noffset[1];
706 		break;
707 	case 2:
708 		nofs = noffset[1];
709 		if (!offset[level - 1])
710 			goto skip_partial;
711 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
712 		if (err < 0 && err != -ENOENT)
713 			goto fail;
714 		nofs += 1 + NIDS_PER_BLOCK;
715 		break;
716 	case 3:
717 		nofs = 5 + 2 * NIDS_PER_BLOCK;
718 		if (!offset[level - 1])
719 			goto skip_partial;
720 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
721 		if (err < 0 && err != -ENOENT)
722 			goto fail;
723 		break;
724 	default:
725 		BUG();
726 	}
727 
728 skip_partial:
729 	while (cont) {
730 		dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
731 		switch (offset[0]) {
732 		case NODE_DIR1_BLOCK:
733 		case NODE_DIR2_BLOCK:
734 			err = truncate_dnode(&dn);
735 			break;
736 
737 		case NODE_IND1_BLOCK:
738 		case NODE_IND2_BLOCK:
739 			err = truncate_nodes(&dn, nofs, offset[1], 2);
740 			break;
741 
742 		case NODE_DIND_BLOCK:
743 			err = truncate_nodes(&dn, nofs, offset[1], 3);
744 			cont = 0;
745 			break;
746 
747 		default:
748 			BUG();
749 		}
750 		if (err < 0 && err != -ENOENT)
751 			goto fail;
752 		if (offset[1] == 0 &&
753 				rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
754 			lock_page(page);
755 			if (page->mapping != node_mapping) {
756 				f2fs_put_page(page, 1);
757 				goto restart;
758 			}
759 			wait_on_page_writeback(page);
760 			rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
761 			set_page_dirty(page);
762 			unlock_page(page);
763 		}
764 		offset[1] = 0;
765 		offset[0]++;
766 		nofs += err;
767 	}
768 fail:
769 	f2fs_put_page(page, 0);
770 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
771 	return err > 0 ? 0 : err;
772 }
773 
774 /*
775  * Caller should grab and release a mutex by calling mutex_lock_op() and
776  * mutex_unlock_op().
777  */
778 int remove_inode_page(struct inode *inode)
779 {
780 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
781 	struct page *page;
782 	nid_t ino = inode->i_ino;
783 	struct dnode_of_data dn;
784 
785 	page = get_node_page(sbi, ino);
786 	if (IS_ERR(page))
787 		return PTR_ERR(page);
788 
789 	if (F2FS_I(inode)->i_xattr_nid) {
790 		nid_t nid = F2FS_I(inode)->i_xattr_nid;
791 		struct page *npage = get_node_page(sbi, nid);
792 
793 		if (IS_ERR(npage))
794 			return PTR_ERR(npage);
795 
796 		F2FS_I(inode)->i_xattr_nid = 0;
797 		set_new_dnode(&dn, inode, page, npage, nid);
798 		dn.inode_page_locked = 1;
799 		truncate_node(&dn);
800 	}
801 
802 	/* 0 is possible, after f2fs_new_inode() is failed */
803 	BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
804 	set_new_dnode(&dn, inode, page, page, ino);
805 	truncate_node(&dn);
806 	return 0;
807 }
808 
809 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
810 {
811 	struct dnode_of_data dn;
812 
813 	/* allocate inode page for new inode */
814 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
815 
816 	/* caller should f2fs_put_page(page, 1); */
817 	return new_node_page(&dn, 0, NULL);
818 }
819 
820 struct page *new_node_page(struct dnode_of_data *dn,
821 				unsigned int ofs, struct page *ipage)
822 {
823 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
824 	struct address_space *mapping = sbi->node_inode->i_mapping;
825 	struct node_info old_ni, new_ni;
826 	struct page *page;
827 	int err;
828 
829 	if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
830 		return ERR_PTR(-EPERM);
831 
832 	page = grab_cache_page(mapping, dn->nid);
833 	if (!page)
834 		return ERR_PTR(-ENOMEM);
835 
836 	get_node_info(sbi, dn->nid, &old_ni);
837 
838 	SetPageUptodate(page);
839 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
840 
841 	/* Reinitialize old_ni with new node page */
842 	BUG_ON(old_ni.blk_addr != NULL_ADDR);
843 	new_ni = old_ni;
844 	new_ni.ino = dn->inode->i_ino;
845 
846 	if (!inc_valid_node_count(sbi, dn->inode, 1)) {
847 		err = -ENOSPC;
848 		goto fail;
849 	}
850 	set_node_addr(sbi, &new_ni, NEW_ADDR);
851 	set_cold_node(dn->inode, page);
852 
853 	dn->node_page = page;
854 	if (ipage)
855 		update_inode(dn->inode, ipage);
856 	else
857 		sync_inode_page(dn);
858 	set_page_dirty(page);
859 	if (ofs == 0)
860 		inc_valid_inode_count(sbi);
861 
862 	return page;
863 
864 fail:
865 	clear_node_page_dirty(page);
866 	f2fs_put_page(page, 1);
867 	return ERR_PTR(err);
868 }
869 
870 /*
871  * Caller should do after getting the following values.
872  * 0: f2fs_put_page(page, 0)
873  * LOCKED_PAGE: f2fs_put_page(page, 1)
874  * error: nothing
875  */
876 static int read_node_page(struct page *page, int type)
877 {
878 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
879 	struct node_info ni;
880 
881 	get_node_info(sbi, page->index, &ni);
882 
883 	if (ni.blk_addr == NULL_ADDR) {
884 		f2fs_put_page(page, 1);
885 		return -ENOENT;
886 	}
887 
888 	if (PageUptodate(page))
889 		return LOCKED_PAGE;
890 
891 	return f2fs_readpage(sbi, page, ni.blk_addr, type);
892 }
893 
894 /*
895  * Readahead a node page
896  */
897 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
898 {
899 	struct address_space *mapping = sbi->node_inode->i_mapping;
900 	struct page *apage;
901 	int err;
902 
903 	apage = find_get_page(mapping, nid);
904 	if (apage && PageUptodate(apage)) {
905 		f2fs_put_page(apage, 0);
906 		return;
907 	}
908 	f2fs_put_page(apage, 0);
909 
910 	apage = grab_cache_page(mapping, nid);
911 	if (!apage)
912 		return;
913 
914 	err = read_node_page(apage, READA);
915 	if (err == 0)
916 		f2fs_put_page(apage, 0);
917 	else if (err == LOCKED_PAGE)
918 		f2fs_put_page(apage, 1);
919 }
920 
921 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
922 {
923 	struct address_space *mapping = sbi->node_inode->i_mapping;
924 	struct page *page;
925 	int err;
926 repeat:
927 	page = grab_cache_page(mapping, nid);
928 	if (!page)
929 		return ERR_PTR(-ENOMEM);
930 
931 	err = read_node_page(page, READ_SYNC);
932 	if (err < 0)
933 		return ERR_PTR(err);
934 	else if (err == LOCKED_PAGE)
935 		goto got_it;
936 
937 	lock_page(page);
938 	if (!PageUptodate(page)) {
939 		f2fs_put_page(page, 1);
940 		return ERR_PTR(-EIO);
941 	}
942 	if (page->mapping != mapping) {
943 		f2fs_put_page(page, 1);
944 		goto repeat;
945 	}
946 got_it:
947 	BUG_ON(nid != nid_of_node(page));
948 	mark_page_accessed(page);
949 	return page;
950 }
951 
952 /*
953  * Return a locked page for the desired node page.
954  * And, readahead MAX_RA_NODE number of node pages.
955  */
956 struct page *get_node_page_ra(struct page *parent, int start)
957 {
958 	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
959 	struct address_space *mapping = sbi->node_inode->i_mapping;
960 	struct blk_plug plug;
961 	struct page *page;
962 	int err, i, end;
963 	nid_t nid;
964 
965 	/* First, try getting the desired direct node. */
966 	nid = get_nid(parent, start, false);
967 	if (!nid)
968 		return ERR_PTR(-ENOENT);
969 repeat:
970 	page = grab_cache_page(mapping, nid);
971 	if (!page)
972 		return ERR_PTR(-ENOMEM);
973 
974 	err = read_node_page(page, READ_SYNC);
975 	if (err < 0)
976 		return ERR_PTR(err);
977 	else if (err == LOCKED_PAGE)
978 		goto page_hit;
979 
980 	blk_start_plug(&plug);
981 
982 	/* Then, try readahead for siblings of the desired node */
983 	end = start + MAX_RA_NODE;
984 	end = min(end, NIDS_PER_BLOCK);
985 	for (i = start + 1; i < end; i++) {
986 		nid = get_nid(parent, i, false);
987 		if (!nid)
988 			continue;
989 		ra_node_page(sbi, nid);
990 	}
991 
992 	blk_finish_plug(&plug);
993 
994 	lock_page(page);
995 	if (page->mapping != mapping) {
996 		f2fs_put_page(page, 1);
997 		goto repeat;
998 	}
999 page_hit:
1000 	if (!PageUptodate(page)) {
1001 		f2fs_put_page(page, 1);
1002 		return ERR_PTR(-EIO);
1003 	}
1004 	mark_page_accessed(page);
1005 	return page;
1006 }
1007 
1008 void sync_inode_page(struct dnode_of_data *dn)
1009 {
1010 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1011 		update_inode(dn->inode, dn->node_page);
1012 	} else if (dn->inode_page) {
1013 		if (!dn->inode_page_locked)
1014 			lock_page(dn->inode_page);
1015 		update_inode(dn->inode, dn->inode_page);
1016 		if (!dn->inode_page_locked)
1017 			unlock_page(dn->inode_page);
1018 	} else {
1019 		update_inode_page(dn->inode);
1020 	}
1021 }
1022 
1023 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1024 					struct writeback_control *wbc)
1025 {
1026 	struct address_space *mapping = sbi->node_inode->i_mapping;
1027 	pgoff_t index, end;
1028 	struct pagevec pvec;
1029 	int step = ino ? 2 : 0;
1030 	int nwritten = 0, wrote = 0;
1031 
1032 	pagevec_init(&pvec, 0);
1033 
1034 next_step:
1035 	index = 0;
1036 	end = LONG_MAX;
1037 
1038 	while (index <= end) {
1039 		int i, nr_pages;
1040 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1041 				PAGECACHE_TAG_DIRTY,
1042 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1043 		if (nr_pages == 0)
1044 			break;
1045 
1046 		for (i = 0; i < nr_pages; i++) {
1047 			struct page *page = pvec.pages[i];
1048 
1049 			/*
1050 			 * flushing sequence with step:
1051 			 * 0. indirect nodes
1052 			 * 1. dentry dnodes
1053 			 * 2. file dnodes
1054 			 */
1055 			if (step == 0 && IS_DNODE(page))
1056 				continue;
1057 			if (step == 1 && (!IS_DNODE(page) ||
1058 						is_cold_node(page)))
1059 				continue;
1060 			if (step == 2 && (!IS_DNODE(page) ||
1061 						!is_cold_node(page)))
1062 				continue;
1063 
1064 			/*
1065 			 * If an fsync mode,
1066 			 * we should not skip writing node pages.
1067 			 */
1068 			if (ino && ino_of_node(page) == ino)
1069 				lock_page(page);
1070 			else if (!trylock_page(page))
1071 				continue;
1072 
1073 			if (unlikely(page->mapping != mapping)) {
1074 continue_unlock:
1075 				unlock_page(page);
1076 				continue;
1077 			}
1078 			if (ino && ino_of_node(page) != ino)
1079 				goto continue_unlock;
1080 
1081 			if (!PageDirty(page)) {
1082 				/* someone wrote it for us */
1083 				goto continue_unlock;
1084 			}
1085 
1086 			if (!clear_page_dirty_for_io(page))
1087 				goto continue_unlock;
1088 
1089 			/* called by fsync() */
1090 			if (ino && IS_DNODE(page)) {
1091 				int mark = !is_checkpointed_node(sbi, ino);
1092 				set_fsync_mark(page, 1);
1093 				if (IS_INODE(page))
1094 					set_dentry_mark(page, mark);
1095 				nwritten++;
1096 			} else {
1097 				set_fsync_mark(page, 0);
1098 				set_dentry_mark(page, 0);
1099 			}
1100 			mapping->a_ops->writepage(page, wbc);
1101 			wrote++;
1102 
1103 			if (--wbc->nr_to_write == 0)
1104 				break;
1105 		}
1106 		pagevec_release(&pvec);
1107 		cond_resched();
1108 
1109 		if (wbc->nr_to_write == 0) {
1110 			step = 2;
1111 			break;
1112 		}
1113 	}
1114 
1115 	if (step < 2) {
1116 		step++;
1117 		goto next_step;
1118 	}
1119 
1120 	if (wrote)
1121 		f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1122 
1123 	return nwritten;
1124 }
1125 
1126 static int f2fs_write_node_page(struct page *page,
1127 				struct writeback_control *wbc)
1128 {
1129 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1130 	nid_t nid;
1131 	block_t new_addr;
1132 	struct node_info ni;
1133 
1134 	wait_on_page_writeback(page);
1135 
1136 	/* get old block addr of this node page */
1137 	nid = nid_of_node(page);
1138 	BUG_ON(page->index != nid);
1139 
1140 	get_node_info(sbi, nid, &ni);
1141 
1142 	/* This page is already truncated */
1143 	if (ni.blk_addr == NULL_ADDR) {
1144 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1145 		unlock_page(page);
1146 		return 0;
1147 	}
1148 
1149 	if (wbc->for_reclaim) {
1150 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1151 		wbc->pages_skipped++;
1152 		set_page_dirty(page);
1153 		return AOP_WRITEPAGE_ACTIVATE;
1154 	}
1155 
1156 	mutex_lock(&sbi->node_write);
1157 	set_page_writeback(page);
1158 	write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1159 	set_node_addr(sbi, &ni, new_addr);
1160 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1161 	mutex_unlock(&sbi->node_write);
1162 	unlock_page(page);
1163 	return 0;
1164 }
1165 
1166 /*
1167  * It is very important to gather dirty pages and write at once, so that we can
1168  * submit a big bio without interfering other data writes.
1169  * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1170  */
1171 #define COLLECT_DIRTY_NODES	512
1172 static int f2fs_write_node_pages(struct address_space *mapping,
1173 			    struct writeback_control *wbc)
1174 {
1175 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1176 	long nr_to_write = wbc->nr_to_write;
1177 
1178 	/* First check balancing cached NAT entries */
1179 	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1180 		f2fs_sync_fs(sbi->sb, true);
1181 		return 0;
1182 	}
1183 
1184 	/* collect a number of dirty node pages and write together */
1185 	if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1186 		return 0;
1187 
1188 	/* if mounting is failed, skip writing node pages */
1189 	wbc->nr_to_write = max_hw_blocks(sbi);
1190 	sync_node_pages(sbi, 0, wbc);
1191 	wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
1192 	return 0;
1193 }
1194 
1195 static int f2fs_set_node_page_dirty(struct page *page)
1196 {
1197 	struct address_space *mapping = page->mapping;
1198 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1199 
1200 	SetPageUptodate(page);
1201 	if (!PageDirty(page)) {
1202 		__set_page_dirty_nobuffers(page);
1203 		inc_page_count(sbi, F2FS_DIRTY_NODES);
1204 		SetPagePrivate(page);
1205 		return 1;
1206 	}
1207 	return 0;
1208 }
1209 
1210 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1211 				      unsigned int length)
1212 {
1213 	struct inode *inode = page->mapping->host;
1214 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1215 	if (PageDirty(page))
1216 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1217 	ClearPagePrivate(page);
1218 }
1219 
1220 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1221 {
1222 	ClearPagePrivate(page);
1223 	return 1;
1224 }
1225 
1226 /*
1227  * Structure of the f2fs node operations
1228  */
1229 const struct address_space_operations f2fs_node_aops = {
1230 	.writepage	= f2fs_write_node_page,
1231 	.writepages	= f2fs_write_node_pages,
1232 	.set_page_dirty	= f2fs_set_node_page_dirty,
1233 	.invalidatepage	= f2fs_invalidate_node_page,
1234 	.releasepage	= f2fs_release_node_page,
1235 };
1236 
1237 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1238 {
1239 	struct list_head *this;
1240 	struct free_nid *i;
1241 	list_for_each(this, head) {
1242 		i = list_entry(this, struct free_nid, list);
1243 		if (i->nid == n)
1244 			return i;
1245 	}
1246 	return NULL;
1247 }
1248 
1249 static void __del_from_free_nid_list(struct free_nid *i)
1250 {
1251 	list_del(&i->list);
1252 	kmem_cache_free(free_nid_slab, i);
1253 }
1254 
1255 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1256 {
1257 	struct free_nid *i;
1258 	struct nat_entry *ne;
1259 	bool allocated = false;
1260 
1261 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1262 		return -1;
1263 
1264 	/* 0 nid should not be used */
1265 	if (nid == 0)
1266 		return 0;
1267 
1268 	if (!build)
1269 		goto retry;
1270 
1271 	/* do not add allocated nids */
1272 	read_lock(&nm_i->nat_tree_lock);
1273 	ne = __lookup_nat_cache(nm_i, nid);
1274 	if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1275 		allocated = true;
1276 	read_unlock(&nm_i->nat_tree_lock);
1277 	if (allocated)
1278 		return 0;
1279 retry:
1280 	i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1281 	if (!i) {
1282 		cond_resched();
1283 		goto retry;
1284 	}
1285 	i->nid = nid;
1286 	i->state = NID_NEW;
1287 
1288 	spin_lock(&nm_i->free_nid_list_lock);
1289 	if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1290 		spin_unlock(&nm_i->free_nid_list_lock);
1291 		kmem_cache_free(free_nid_slab, i);
1292 		return 0;
1293 	}
1294 	list_add_tail(&i->list, &nm_i->free_nid_list);
1295 	nm_i->fcnt++;
1296 	spin_unlock(&nm_i->free_nid_list_lock);
1297 	return 1;
1298 }
1299 
1300 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1301 {
1302 	struct free_nid *i;
1303 	spin_lock(&nm_i->free_nid_list_lock);
1304 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1305 	if (i && i->state == NID_NEW) {
1306 		__del_from_free_nid_list(i);
1307 		nm_i->fcnt--;
1308 	}
1309 	spin_unlock(&nm_i->free_nid_list_lock);
1310 }
1311 
1312 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1313 			struct page *nat_page, nid_t start_nid)
1314 {
1315 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1316 	block_t blk_addr;
1317 	int i;
1318 
1319 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1320 
1321 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1322 
1323 		if (start_nid >= nm_i->max_nid)
1324 			break;
1325 
1326 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1327 		BUG_ON(blk_addr == NEW_ADDR);
1328 		if (blk_addr == NULL_ADDR) {
1329 			if (add_free_nid(nm_i, start_nid, true) < 0)
1330 				break;
1331 		}
1332 	}
1333 }
1334 
1335 static void build_free_nids(struct f2fs_sb_info *sbi)
1336 {
1337 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1338 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1339 	struct f2fs_summary_block *sum = curseg->sum_blk;
1340 	int i = 0;
1341 	nid_t nid = nm_i->next_scan_nid;
1342 
1343 	/* Enough entries */
1344 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1345 		return;
1346 
1347 	/* readahead nat pages to be scanned */
1348 	ra_nat_pages(sbi, nid);
1349 
1350 	while (1) {
1351 		struct page *page = get_current_nat_page(sbi, nid);
1352 
1353 		scan_nat_page(nm_i, page, nid);
1354 		f2fs_put_page(page, 1);
1355 
1356 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1357 		if (nid >= nm_i->max_nid)
1358 			nid = 0;
1359 
1360 		if (i++ == FREE_NID_PAGES)
1361 			break;
1362 	}
1363 
1364 	/* go to the next free nat pages to find free nids abundantly */
1365 	nm_i->next_scan_nid = nid;
1366 
1367 	/* find free nids from current sum_pages */
1368 	mutex_lock(&curseg->curseg_mutex);
1369 	for (i = 0; i < nats_in_cursum(sum); i++) {
1370 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1371 		nid = le32_to_cpu(nid_in_journal(sum, i));
1372 		if (addr == NULL_ADDR)
1373 			add_free_nid(nm_i, nid, true);
1374 		else
1375 			remove_free_nid(nm_i, nid);
1376 	}
1377 	mutex_unlock(&curseg->curseg_mutex);
1378 }
1379 
1380 /*
1381  * If this function returns success, caller can obtain a new nid
1382  * from second parameter of this function.
1383  * The returned nid could be used ino as well as nid when inode is created.
1384  */
1385 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1386 {
1387 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1388 	struct free_nid *i = NULL;
1389 	struct list_head *this;
1390 retry:
1391 	if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1392 		return false;
1393 
1394 	spin_lock(&nm_i->free_nid_list_lock);
1395 
1396 	/* We should not use stale free nids created by build_free_nids */
1397 	if (nm_i->fcnt && !sbi->on_build_free_nids) {
1398 		BUG_ON(list_empty(&nm_i->free_nid_list));
1399 		list_for_each(this, &nm_i->free_nid_list) {
1400 			i = list_entry(this, struct free_nid, list);
1401 			if (i->state == NID_NEW)
1402 				break;
1403 		}
1404 
1405 		BUG_ON(i->state != NID_NEW);
1406 		*nid = i->nid;
1407 		i->state = NID_ALLOC;
1408 		nm_i->fcnt--;
1409 		spin_unlock(&nm_i->free_nid_list_lock);
1410 		return true;
1411 	}
1412 	spin_unlock(&nm_i->free_nid_list_lock);
1413 
1414 	/* Let's scan nat pages and its caches to get free nids */
1415 	mutex_lock(&nm_i->build_lock);
1416 	sbi->on_build_free_nids = 1;
1417 	build_free_nids(sbi);
1418 	sbi->on_build_free_nids = 0;
1419 	mutex_unlock(&nm_i->build_lock);
1420 	goto retry;
1421 }
1422 
1423 /*
1424  * alloc_nid() should be called prior to this function.
1425  */
1426 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1427 {
1428 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1429 	struct free_nid *i;
1430 
1431 	spin_lock(&nm_i->free_nid_list_lock);
1432 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1433 	BUG_ON(!i || i->state != NID_ALLOC);
1434 	__del_from_free_nid_list(i);
1435 	spin_unlock(&nm_i->free_nid_list_lock);
1436 }
1437 
1438 /*
1439  * alloc_nid() should be called prior to this function.
1440  */
1441 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1442 {
1443 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1444 	struct free_nid *i;
1445 
1446 	spin_lock(&nm_i->free_nid_list_lock);
1447 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1448 	BUG_ON(!i || i->state != NID_ALLOC);
1449 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1450 		__del_from_free_nid_list(i);
1451 	} else {
1452 		i->state = NID_NEW;
1453 		nm_i->fcnt++;
1454 	}
1455 	spin_unlock(&nm_i->free_nid_list_lock);
1456 }
1457 
1458 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1459 		struct f2fs_summary *sum, struct node_info *ni,
1460 		block_t new_blkaddr)
1461 {
1462 	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1463 	set_node_addr(sbi, ni, new_blkaddr);
1464 	clear_node_page_dirty(page);
1465 }
1466 
1467 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1468 {
1469 	struct address_space *mapping = sbi->node_inode->i_mapping;
1470 	struct f2fs_node *src, *dst;
1471 	nid_t ino = ino_of_node(page);
1472 	struct node_info old_ni, new_ni;
1473 	struct page *ipage;
1474 
1475 	ipage = grab_cache_page(mapping, ino);
1476 	if (!ipage)
1477 		return -ENOMEM;
1478 
1479 	/* Should not use this inode  from free nid list */
1480 	remove_free_nid(NM_I(sbi), ino);
1481 
1482 	get_node_info(sbi, ino, &old_ni);
1483 	SetPageUptodate(ipage);
1484 	fill_node_footer(ipage, ino, ino, 0, true);
1485 
1486 	src = F2FS_NODE(page);
1487 	dst = F2FS_NODE(ipage);
1488 
1489 	memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1490 	dst->i.i_size = 0;
1491 	dst->i.i_blocks = cpu_to_le64(1);
1492 	dst->i.i_links = cpu_to_le32(1);
1493 	dst->i.i_xattr_nid = 0;
1494 
1495 	new_ni = old_ni;
1496 	new_ni.ino = ino;
1497 
1498 	if (!inc_valid_node_count(sbi, NULL, 1))
1499 		WARN_ON(1);
1500 	set_node_addr(sbi, &new_ni, NEW_ADDR);
1501 	inc_valid_inode_count(sbi);
1502 	f2fs_put_page(ipage, 1);
1503 	return 0;
1504 }
1505 
1506 int restore_node_summary(struct f2fs_sb_info *sbi,
1507 			unsigned int segno, struct f2fs_summary_block *sum)
1508 {
1509 	struct f2fs_node *rn;
1510 	struct f2fs_summary *sum_entry;
1511 	struct page *page;
1512 	block_t addr;
1513 	int i, last_offset;
1514 
1515 	/* alloc temporal page for read node */
1516 	page = alloc_page(GFP_NOFS | __GFP_ZERO);
1517 	if (IS_ERR(page))
1518 		return PTR_ERR(page);
1519 	lock_page(page);
1520 
1521 	/* scan the node segment */
1522 	last_offset = sbi->blocks_per_seg;
1523 	addr = START_BLOCK(sbi, segno);
1524 	sum_entry = &sum->entries[0];
1525 
1526 	for (i = 0; i < last_offset; i++, sum_entry++) {
1527 		/*
1528 		 * In order to read next node page,
1529 		 * we must clear PageUptodate flag.
1530 		 */
1531 		ClearPageUptodate(page);
1532 
1533 		if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1534 			goto out;
1535 
1536 		lock_page(page);
1537 		rn = F2FS_NODE(page);
1538 		sum_entry->nid = rn->footer.nid;
1539 		sum_entry->version = 0;
1540 		sum_entry->ofs_in_node = 0;
1541 		addr++;
1542 	}
1543 	unlock_page(page);
1544 out:
1545 	__free_pages(page, 0);
1546 	return 0;
1547 }
1548 
1549 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1550 {
1551 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1552 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1553 	struct f2fs_summary_block *sum = curseg->sum_blk;
1554 	int i;
1555 
1556 	mutex_lock(&curseg->curseg_mutex);
1557 
1558 	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1559 		mutex_unlock(&curseg->curseg_mutex);
1560 		return false;
1561 	}
1562 
1563 	for (i = 0; i < nats_in_cursum(sum); i++) {
1564 		struct nat_entry *ne;
1565 		struct f2fs_nat_entry raw_ne;
1566 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1567 
1568 		raw_ne = nat_in_journal(sum, i);
1569 retry:
1570 		write_lock(&nm_i->nat_tree_lock);
1571 		ne = __lookup_nat_cache(nm_i, nid);
1572 		if (ne) {
1573 			__set_nat_cache_dirty(nm_i, ne);
1574 			write_unlock(&nm_i->nat_tree_lock);
1575 			continue;
1576 		}
1577 		ne = grab_nat_entry(nm_i, nid);
1578 		if (!ne) {
1579 			write_unlock(&nm_i->nat_tree_lock);
1580 			goto retry;
1581 		}
1582 		nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1583 		nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1584 		nat_set_version(ne, raw_ne.version);
1585 		__set_nat_cache_dirty(nm_i, ne);
1586 		write_unlock(&nm_i->nat_tree_lock);
1587 	}
1588 	update_nats_in_cursum(sum, -i);
1589 	mutex_unlock(&curseg->curseg_mutex);
1590 	return true;
1591 }
1592 
1593 /*
1594  * This function is called during the checkpointing process.
1595  */
1596 void flush_nat_entries(struct f2fs_sb_info *sbi)
1597 {
1598 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1599 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1600 	struct f2fs_summary_block *sum = curseg->sum_blk;
1601 	struct list_head *cur, *n;
1602 	struct page *page = NULL;
1603 	struct f2fs_nat_block *nat_blk = NULL;
1604 	nid_t start_nid = 0, end_nid = 0;
1605 	bool flushed;
1606 
1607 	flushed = flush_nats_in_journal(sbi);
1608 
1609 	if (!flushed)
1610 		mutex_lock(&curseg->curseg_mutex);
1611 
1612 	/* 1) flush dirty nat caches */
1613 	list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1614 		struct nat_entry *ne;
1615 		nid_t nid;
1616 		struct f2fs_nat_entry raw_ne;
1617 		int offset = -1;
1618 		block_t new_blkaddr;
1619 
1620 		ne = list_entry(cur, struct nat_entry, list);
1621 		nid = nat_get_nid(ne);
1622 
1623 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1624 			continue;
1625 		if (flushed)
1626 			goto to_nat_page;
1627 
1628 		/* if there is room for nat enries in curseg->sumpage */
1629 		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1630 		if (offset >= 0) {
1631 			raw_ne = nat_in_journal(sum, offset);
1632 			goto flush_now;
1633 		}
1634 to_nat_page:
1635 		if (!page || (start_nid > nid || nid > end_nid)) {
1636 			if (page) {
1637 				f2fs_put_page(page, 1);
1638 				page = NULL;
1639 			}
1640 			start_nid = START_NID(nid);
1641 			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1642 
1643 			/*
1644 			 * get nat block with dirty flag, increased reference
1645 			 * count, mapped and lock
1646 			 */
1647 			page = get_next_nat_page(sbi, start_nid);
1648 			nat_blk = page_address(page);
1649 		}
1650 
1651 		BUG_ON(!nat_blk);
1652 		raw_ne = nat_blk->entries[nid - start_nid];
1653 flush_now:
1654 		new_blkaddr = nat_get_blkaddr(ne);
1655 
1656 		raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1657 		raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1658 		raw_ne.version = nat_get_version(ne);
1659 
1660 		if (offset < 0) {
1661 			nat_blk->entries[nid - start_nid] = raw_ne;
1662 		} else {
1663 			nat_in_journal(sum, offset) = raw_ne;
1664 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1665 		}
1666 
1667 		if (nat_get_blkaddr(ne) == NULL_ADDR &&
1668 				add_free_nid(NM_I(sbi), nid, false) <= 0) {
1669 			write_lock(&nm_i->nat_tree_lock);
1670 			__del_from_nat_cache(nm_i, ne);
1671 			write_unlock(&nm_i->nat_tree_lock);
1672 		} else {
1673 			write_lock(&nm_i->nat_tree_lock);
1674 			__clear_nat_cache_dirty(nm_i, ne);
1675 			ne->checkpointed = true;
1676 			write_unlock(&nm_i->nat_tree_lock);
1677 		}
1678 	}
1679 	if (!flushed)
1680 		mutex_unlock(&curseg->curseg_mutex);
1681 	f2fs_put_page(page, 1);
1682 
1683 	/* 2) shrink nat caches if necessary */
1684 	try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1685 }
1686 
1687 static int init_node_manager(struct f2fs_sb_info *sbi)
1688 {
1689 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1690 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1691 	unsigned char *version_bitmap;
1692 	unsigned int nat_segs, nat_blocks;
1693 
1694 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1695 
1696 	/* segment_count_nat includes pair segment so divide to 2. */
1697 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1698 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1699 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1700 	nm_i->fcnt = 0;
1701 	nm_i->nat_cnt = 0;
1702 
1703 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1704 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1705 	INIT_LIST_HEAD(&nm_i->nat_entries);
1706 	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1707 
1708 	mutex_init(&nm_i->build_lock);
1709 	spin_lock_init(&nm_i->free_nid_list_lock);
1710 	rwlock_init(&nm_i->nat_tree_lock);
1711 
1712 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1713 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1714 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1715 	if (!version_bitmap)
1716 		return -EFAULT;
1717 
1718 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1719 					GFP_KERNEL);
1720 	if (!nm_i->nat_bitmap)
1721 		return -ENOMEM;
1722 	return 0;
1723 }
1724 
1725 int build_node_manager(struct f2fs_sb_info *sbi)
1726 {
1727 	int err;
1728 
1729 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1730 	if (!sbi->nm_info)
1731 		return -ENOMEM;
1732 
1733 	err = init_node_manager(sbi);
1734 	if (err)
1735 		return err;
1736 
1737 	build_free_nids(sbi);
1738 	return 0;
1739 }
1740 
1741 void destroy_node_manager(struct f2fs_sb_info *sbi)
1742 {
1743 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1744 	struct free_nid *i, *next_i;
1745 	struct nat_entry *natvec[NATVEC_SIZE];
1746 	nid_t nid = 0;
1747 	unsigned int found;
1748 
1749 	if (!nm_i)
1750 		return;
1751 
1752 	/* destroy free nid list */
1753 	spin_lock(&nm_i->free_nid_list_lock);
1754 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1755 		BUG_ON(i->state == NID_ALLOC);
1756 		__del_from_free_nid_list(i);
1757 		nm_i->fcnt--;
1758 	}
1759 	BUG_ON(nm_i->fcnt);
1760 	spin_unlock(&nm_i->free_nid_list_lock);
1761 
1762 	/* destroy nat cache */
1763 	write_lock(&nm_i->nat_tree_lock);
1764 	while ((found = __gang_lookup_nat_cache(nm_i,
1765 					nid, NATVEC_SIZE, natvec))) {
1766 		unsigned idx;
1767 		for (idx = 0; idx < found; idx++) {
1768 			struct nat_entry *e = natvec[idx];
1769 			nid = nat_get_nid(e) + 1;
1770 			__del_from_nat_cache(nm_i, e);
1771 		}
1772 	}
1773 	BUG_ON(nm_i->nat_cnt);
1774 	write_unlock(&nm_i->nat_tree_lock);
1775 
1776 	kfree(nm_i->nat_bitmap);
1777 	sbi->nm_info = NULL;
1778 	kfree(nm_i);
1779 }
1780 
1781 int __init create_node_manager_caches(void)
1782 {
1783 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1784 			sizeof(struct nat_entry), NULL);
1785 	if (!nat_entry_slab)
1786 		return -ENOMEM;
1787 
1788 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
1789 			sizeof(struct free_nid), NULL);
1790 	if (!free_nid_slab) {
1791 		kmem_cache_destroy(nat_entry_slab);
1792 		return -ENOMEM;
1793 	}
1794 	return 0;
1795 }
1796 
1797 void destroy_node_manager_caches(void)
1798 {
1799 	kmem_cache_destroy(free_nid_slab);
1800 	kmem_cache_destroy(nat_entry_slab);
1801 }
1802