1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == READ_EXTENT_CACHE) { 89 mem_size = (atomic_read(&sbi->total_ext_tree) * 90 sizeof(struct extent_tree) + 91 atomic_read(&sbi->total_ext_node) * 92 sizeof(struct extent_node)) >> PAGE_SHIFT; 93 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 94 } else if (type == DISCARD_CACHE) { 95 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 96 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 97 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 98 } else if (type == COMPRESS_PAGE) { 99 #ifdef CONFIG_F2FS_FS_COMPRESSION 100 unsigned long free_ram = val.freeram; 101 102 /* 103 * free memory is lower than watermark or cached page count 104 * exceed threshold, deny caching compress page. 105 */ 106 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 107 (COMPRESS_MAPPING(sbi)->nrpages < 108 free_ram * sbi->compress_percent / 100); 109 #else 110 res = false; 111 #endif 112 } else { 113 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 114 return true; 115 } 116 return res; 117 } 118 119 static void clear_node_page_dirty(struct page *page) 120 { 121 if (PageDirty(page)) { 122 f2fs_clear_page_cache_dirty_tag(page); 123 clear_page_dirty_for_io(page); 124 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 125 } 126 ClearPageUptodate(page); 127 } 128 129 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 130 { 131 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 132 } 133 134 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 135 { 136 struct page *src_page; 137 struct page *dst_page; 138 pgoff_t dst_off; 139 void *src_addr; 140 void *dst_addr; 141 struct f2fs_nm_info *nm_i = NM_I(sbi); 142 143 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 144 145 /* get current nat block page with lock */ 146 src_page = get_current_nat_page(sbi, nid); 147 if (IS_ERR(src_page)) 148 return src_page; 149 dst_page = f2fs_grab_meta_page(sbi, dst_off); 150 f2fs_bug_on(sbi, PageDirty(src_page)); 151 152 src_addr = page_address(src_page); 153 dst_addr = page_address(dst_page); 154 memcpy(dst_addr, src_addr, PAGE_SIZE); 155 set_page_dirty(dst_page); 156 f2fs_put_page(src_page, 1); 157 158 set_to_next_nat(nm_i, nid); 159 160 return dst_page; 161 } 162 163 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 164 nid_t nid, bool no_fail) 165 { 166 struct nat_entry *new; 167 168 new = f2fs_kmem_cache_alloc(nat_entry_slab, 169 GFP_F2FS_ZERO, no_fail, sbi); 170 if (new) { 171 nat_set_nid(new, nid); 172 nat_reset_flag(new); 173 } 174 return new; 175 } 176 177 static void __free_nat_entry(struct nat_entry *e) 178 { 179 kmem_cache_free(nat_entry_slab, e); 180 } 181 182 /* must be locked by nat_tree_lock */ 183 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 184 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 185 { 186 if (no_fail) 187 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 188 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 189 return NULL; 190 191 if (raw_ne) 192 node_info_from_raw_nat(&ne->ni, raw_ne); 193 194 spin_lock(&nm_i->nat_list_lock); 195 list_add_tail(&ne->list, &nm_i->nat_entries); 196 spin_unlock(&nm_i->nat_list_lock); 197 198 nm_i->nat_cnt[TOTAL_NAT]++; 199 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 200 return ne; 201 } 202 203 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 204 { 205 struct nat_entry *ne; 206 207 ne = radix_tree_lookup(&nm_i->nat_root, n); 208 209 /* for recent accessed nat entry, move it to tail of lru list */ 210 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 211 spin_lock(&nm_i->nat_list_lock); 212 if (!list_empty(&ne->list)) 213 list_move_tail(&ne->list, &nm_i->nat_entries); 214 spin_unlock(&nm_i->nat_list_lock); 215 } 216 217 return ne; 218 } 219 220 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 221 nid_t start, unsigned int nr, struct nat_entry **ep) 222 { 223 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 224 } 225 226 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 227 { 228 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 229 nm_i->nat_cnt[TOTAL_NAT]--; 230 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 231 __free_nat_entry(e); 232 } 233 234 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 235 struct nat_entry *ne) 236 { 237 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 238 struct nat_entry_set *head; 239 240 head = radix_tree_lookup(&nm_i->nat_set_root, set); 241 if (!head) { 242 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 243 GFP_NOFS, true, NULL); 244 245 INIT_LIST_HEAD(&head->entry_list); 246 INIT_LIST_HEAD(&head->set_list); 247 head->set = set; 248 head->entry_cnt = 0; 249 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 250 } 251 return head; 252 } 253 254 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 255 struct nat_entry *ne) 256 { 257 struct nat_entry_set *head; 258 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 259 260 if (!new_ne) 261 head = __grab_nat_entry_set(nm_i, ne); 262 263 /* 264 * update entry_cnt in below condition: 265 * 1. update NEW_ADDR to valid block address; 266 * 2. update old block address to new one; 267 */ 268 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 269 !get_nat_flag(ne, IS_DIRTY))) 270 head->entry_cnt++; 271 272 set_nat_flag(ne, IS_PREALLOC, new_ne); 273 274 if (get_nat_flag(ne, IS_DIRTY)) 275 goto refresh_list; 276 277 nm_i->nat_cnt[DIRTY_NAT]++; 278 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 279 set_nat_flag(ne, IS_DIRTY, true); 280 refresh_list: 281 spin_lock(&nm_i->nat_list_lock); 282 if (new_ne) 283 list_del_init(&ne->list); 284 else 285 list_move_tail(&ne->list, &head->entry_list); 286 spin_unlock(&nm_i->nat_list_lock); 287 } 288 289 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 290 struct nat_entry_set *set, struct nat_entry *ne) 291 { 292 spin_lock(&nm_i->nat_list_lock); 293 list_move_tail(&ne->list, &nm_i->nat_entries); 294 spin_unlock(&nm_i->nat_list_lock); 295 296 set_nat_flag(ne, IS_DIRTY, false); 297 set->entry_cnt--; 298 nm_i->nat_cnt[DIRTY_NAT]--; 299 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 300 } 301 302 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 303 nid_t start, unsigned int nr, struct nat_entry_set **ep) 304 { 305 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 306 start, nr); 307 } 308 309 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 310 { 311 return NODE_MAPPING(sbi) == page->mapping && 312 IS_DNODE(page) && is_cold_node(page); 313 } 314 315 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 316 { 317 spin_lock_init(&sbi->fsync_node_lock); 318 INIT_LIST_HEAD(&sbi->fsync_node_list); 319 sbi->fsync_seg_id = 0; 320 sbi->fsync_node_num = 0; 321 } 322 323 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 324 struct page *page) 325 { 326 struct fsync_node_entry *fn; 327 unsigned long flags; 328 unsigned int seq_id; 329 330 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 331 GFP_NOFS, true, NULL); 332 333 get_page(page); 334 fn->page = page; 335 INIT_LIST_HEAD(&fn->list); 336 337 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 338 list_add_tail(&fn->list, &sbi->fsync_node_list); 339 fn->seq_id = sbi->fsync_seg_id++; 340 seq_id = fn->seq_id; 341 sbi->fsync_node_num++; 342 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 343 344 return seq_id; 345 } 346 347 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 348 { 349 struct fsync_node_entry *fn; 350 unsigned long flags; 351 352 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 353 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 354 if (fn->page == page) { 355 list_del(&fn->list); 356 sbi->fsync_node_num--; 357 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 358 kmem_cache_free(fsync_node_entry_slab, fn); 359 put_page(page); 360 return; 361 } 362 } 363 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 364 f2fs_bug_on(sbi, 1); 365 } 366 367 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 368 { 369 unsigned long flags; 370 371 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 372 sbi->fsync_seg_id = 0; 373 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 374 } 375 376 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 377 { 378 struct f2fs_nm_info *nm_i = NM_I(sbi); 379 struct nat_entry *e; 380 bool need = false; 381 382 f2fs_down_read(&nm_i->nat_tree_lock); 383 e = __lookup_nat_cache(nm_i, nid); 384 if (e) { 385 if (!get_nat_flag(e, IS_CHECKPOINTED) && 386 !get_nat_flag(e, HAS_FSYNCED_INODE)) 387 need = true; 388 } 389 f2fs_up_read(&nm_i->nat_tree_lock); 390 return need; 391 } 392 393 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 394 { 395 struct f2fs_nm_info *nm_i = NM_I(sbi); 396 struct nat_entry *e; 397 bool is_cp = true; 398 399 f2fs_down_read(&nm_i->nat_tree_lock); 400 e = __lookup_nat_cache(nm_i, nid); 401 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 402 is_cp = false; 403 f2fs_up_read(&nm_i->nat_tree_lock); 404 return is_cp; 405 } 406 407 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 408 { 409 struct f2fs_nm_info *nm_i = NM_I(sbi); 410 struct nat_entry *e; 411 bool need_update = true; 412 413 f2fs_down_read(&nm_i->nat_tree_lock); 414 e = __lookup_nat_cache(nm_i, ino); 415 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 416 (get_nat_flag(e, IS_CHECKPOINTED) || 417 get_nat_flag(e, HAS_FSYNCED_INODE))) 418 need_update = false; 419 f2fs_up_read(&nm_i->nat_tree_lock); 420 return need_update; 421 } 422 423 /* must be locked by nat_tree_lock */ 424 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 425 struct f2fs_nat_entry *ne) 426 { 427 struct f2fs_nm_info *nm_i = NM_I(sbi); 428 struct nat_entry *new, *e; 429 430 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 431 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 432 return; 433 434 new = __alloc_nat_entry(sbi, nid, false); 435 if (!new) 436 return; 437 438 f2fs_down_write(&nm_i->nat_tree_lock); 439 e = __lookup_nat_cache(nm_i, nid); 440 if (!e) 441 e = __init_nat_entry(nm_i, new, ne, false); 442 else 443 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 444 nat_get_blkaddr(e) != 445 le32_to_cpu(ne->block_addr) || 446 nat_get_version(e) != ne->version); 447 f2fs_up_write(&nm_i->nat_tree_lock); 448 if (e != new) 449 __free_nat_entry(new); 450 } 451 452 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 453 block_t new_blkaddr, bool fsync_done) 454 { 455 struct f2fs_nm_info *nm_i = NM_I(sbi); 456 struct nat_entry *e; 457 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 458 459 f2fs_down_write(&nm_i->nat_tree_lock); 460 e = __lookup_nat_cache(nm_i, ni->nid); 461 if (!e) { 462 e = __init_nat_entry(nm_i, new, NULL, true); 463 copy_node_info(&e->ni, ni); 464 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 465 } else if (new_blkaddr == NEW_ADDR) { 466 /* 467 * when nid is reallocated, 468 * previous nat entry can be remained in nat cache. 469 * So, reinitialize it with new information. 470 */ 471 copy_node_info(&e->ni, ni); 472 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 473 } 474 /* let's free early to reduce memory consumption */ 475 if (e != new) 476 __free_nat_entry(new); 477 478 /* sanity check */ 479 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 480 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 481 new_blkaddr == NULL_ADDR); 482 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 483 new_blkaddr == NEW_ADDR); 484 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 485 new_blkaddr == NEW_ADDR); 486 487 /* increment version no as node is removed */ 488 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 489 unsigned char version = nat_get_version(e); 490 491 nat_set_version(e, inc_node_version(version)); 492 } 493 494 /* change address */ 495 nat_set_blkaddr(e, new_blkaddr); 496 if (!__is_valid_data_blkaddr(new_blkaddr)) 497 set_nat_flag(e, IS_CHECKPOINTED, false); 498 __set_nat_cache_dirty(nm_i, e); 499 500 /* update fsync_mark if its inode nat entry is still alive */ 501 if (ni->nid != ni->ino) 502 e = __lookup_nat_cache(nm_i, ni->ino); 503 if (e) { 504 if (fsync_done && ni->nid == ni->ino) 505 set_nat_flag(e, HAS_FSYNCED_INODE, true); 506 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 507 } 508 f2fs_up_write(&nm_i->nat_tree_lock); 509 } 510 511 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 512 { 513 struct f2fs_nm_info *nm_i = NM_I(sbi); 514 int nr = nr_shrink; 515 516 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 517 return 0; 518 519 spin_lock(&nm_i->nat_list_lock); 520 while (nr_shrink) { 521 struct nat_entry *ne; 522 523 if (list_empty(&nm_i->nat_entries)) 524 break; 525 526 ne = list_first_entry(&nm_i->nat_entries, 527 struct nat_entry, list); 528 list_del(&ne->list); 529 spin_unlock(&nm_i->nat_list_lock); 530 531 __del_from_nat_cache(nm_i, ne); 532 nr_shrink--; 533 534 spin_lock(&nm_i->nat_list_lock); 535 } 536 spin_unlock(&nm_i->nat_list_lock); 537 538 f2fs_up_write(&nm_i->nat_tree_lock); 539 return nr - nr_shrink; 540 } 541 542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 543 struct node_info *ni, bool checkpoint_context) 544 { 545 struct f2fs_nm_info *nm_i = NM_I(sbi); 546 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 547 struct f2fs_journal *journal = curseg->journal; 548 nid_t start_nid = START_NID(nid); 549 struct f2fs_nat_block *nat_blk; 550 struct page *page = NULL; 551 struct f2fs_nat_entry ne; 552 struct nat_entry *e; 553 pgoff_t index; 554 block_t blkaddr; 555 int i; 556 557 ni->nid = nid; 558 retry: 559 /* Check nat cache */ 560 f2fs_down_read(&nm_i->nat_tree_lock); 561 e = __lookup_nat_cache(nm_i, nid); 562 if (e) { 563 ni->ino = nat_get_ino(e); 564 ni->blk_addr = nat_get_blkaddr(e); 565 ni->version = nat_get_version(e); 566 f2fs_up_read(&nm_i->nat_tree_lock); 567 return 0; 568 } 569 570 /* 571 * Check current segment summary by trying to grab journal_rwsem first. 572 * This sem is on the critical path on the checkpoint requiring the above 573 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 574 * while not bothering checkpoint. 575 */ 576 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 577 down_read(&curseg->journal_rwsem); 578 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 579 !down_read_trylock(&curseg->journal_rwsem)) { 580 f2fs_up_read(&nm_i->nat_tree_lock); 581 goto retry; 582 } 583 584 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 585 if (i >= 0) { 586 ne = nat_in_journal(journal, i); 587 node_info_from_raw_nat(ni, &ne); 588 } 589 up_read(&curseg->journal_rwsem); 590 if (i >= 0) { 591 f2fs_up_read(&nm_i->nat_tree_lock); 592 goto cache; 593 } 594 595 /* Fill node_info from nat page */ 596 index = current_nat_addr(sbi, nid); 597 f2fs_up_read(&nm_i->nat_tree_lock); 598 599 page = f2fs_get_meta_page(sbi, index); 600 if (IS_ERR(page)) 601 return PTR_ERR(page); 602 603 nat_blk = (struct f2fs_nat_block *)page_address(page); 604 ne = nat_blk->entries[nid - start_nid]; 605 node_info_from_raw_nat(ni, &ne); 606 f2fs_put_page(page, 1); 607 cache: 608 blkaddr = le32_to_cpu(ne.block_addr); 609 if (__is_valid_data_blkaddr(blkaddr) && 610 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 611 return -EFAULT; 612 613 /* cache nat entry */ 614 cache_nat_entry(sbi, nid, &ne); 615 return 0; 616 } 617 618 /* 619 * readahead MAX_RA_NODE number of node pages. 620 */ 621 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 622 { 623 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 624 struct blk_plug plug; 625 int i, end; 626 nid_t nid; 627 628 blk_start_plug(&plug); 629 630 /* Then, try readahead for siblings of the desired node */ 631 end = start + n; 632 end = min(end, NIDS_PER_BLOCK); 633 for (i = start; i < end; i++) { 634 nid = get_nid(parent, i, false); 635 f2fs_ra_node_page(sbi, nid); 636 } 637 638 blk_finish_plug(&plug); 639 } 640 641 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 642 { 643 const long direct_index = ADDRS_PER_INODE(dn->inode); 644 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 645 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 646 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 647 int cur_level = dn->cur_level; 648 int max_level = dn->max_level; 649 pgoff_t base = 0; 650 651 if (!dn->max_level) 652 return pgofs + 1; 653 654 while (max_level-- > cur_level) 655 skipped_unit *= NIDS_PER_BLOCK; 656 657 switch (dn->max_level) { 658 case 3: 659 base += 2 * indirect_blks; 660 fallthrough; 661 case 2: 662 base += 2 * direct_blks; 663 fallthrough; 664 case 1: 665 base += direct_index; 666 break; 667 default: 668 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 669 } 670 671 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 672 } 673 674 /* 675 * The maximum depth is four. 676 * Offset[0] will have raw inode offset. 677 */ 678 static int get_node_path(struct inode *inode, long block, 679 int offset[4], unsigned int noffset[4]) 680 { 681 const long direct_index = ADDRS_PER_INODE(inode); 682 const long direct_blks = ADDRS_PER_BLOCK(inode); 683 const long dptrs_per_blk = NIDS_PER_BLOCK; 684 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 685 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 686 int n = 0; 687 int level = 0; 688 689 noffset[0] = 0; 690 691 if (block < direct_index) { 692 offset[n] = block; 693 goto got; 694 } 695 block -= direct_index; 696 if (block < direct_blks) { 697 offset[n++] = NODE_DIR1_BLOCK; 698 noffset[n] = 1; 699 offset[n] = block; 700 level = 1; 701 goto got; 702 } 703 block -= direct_blks; 704 if (block < direct_blks) { 705 offset[n++] = NODE_DIR2_BLOCK; 706 noffset[n] = 2; 707 offset[n] = block; 708 level = 1; 709 goto got; 710 } 711 block -= direct_blks; 712 if (block < indirect_blks) { 713 offset[n++] = NODE_IND1_BLOCK; 714 noffset[n] = 3; 715 offset[n++] = block / direct_blks; 716 noffset[n] = 4 + offset[n - 1]; 717 offset[n] = block % direct_blks; 718 level = 2; 719 goto got; 720 } 721 block -= indirect_blks; 722 if (block < indirect_blks) { 723 offset[n++] = NODE_IND2_BLOCK; 724 noffset[n] = 4 + dptrs_per_blk; 725 offset[n++] = block / direct_blks; 726 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 727 offset[n] = block % direct_blks; 728 level = 2; 729 goto got; 730 } 731 block -= indirect_blks; 732 if (block < dindirect_blks) { 733 offset[n++] = NODE_DIND_BLOCK; 734 noffset[n] = 5 + (dptrs_per_blk * 2); 735 offset[n++] = block / indirect_blks; 736 noffset[n] = 6 + (dptrs_per_blk * 2) + 737 offset[n - 1] * (dptrs_per_blk + 1); 738 offset[n++] = (block / direct_blks) % dptrs_per_blk; 739 noffset[n] = 7 + (dptrs_per_blk * 2) + 740 offset[n - 2] * (dptrs_per_blk + 1) + 741 offset[n - 1]; 742 offset[n] = block % direct_blks; 743 level = 3; 744 goto got; 745 } else { 746 return -E2BIG; 747 } 748 got: 749 return level; 750 } 751 752 /* 753 * Caller should call f2fs_put_dnode(dn). 754 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 755 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 756 */ 757 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 758 { 759 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 760 struct page *npage[4]; 761 struct page *parent = NULL; 762 int offset[4]; 763 unsigned int noffset[4]; 764 nid_t nids[4]; 765 int level, i = 0; 766 int err = 0; 767 768 level = get_node_path(dn->inode, index, offset, noffset); 769 if (level < 0) 770 return level; 771 772 nids[0] = dn->inode->i_ino; 773 npage[0] = dn->inode_page; 774 775 if (!npage[0]) { 776 npage[0] = f2fs_get_node_page(sbi, nids[0]); 777 if (IS_ERR(npage[0])) 778 return PTR_ERR(npage[0]); 779 } 780 781 /* if inline_data is set, should not report any block indices */ 782 if (f2fs_has_inline_data(dn->inode) && index) { 783 err = -ENOENT; 784 f2fs_put_page(npage[0], 1); 785 goto release_out; 786 } 787 788 parent = npage[0]; 789 if (level != 0) 790 nids[1] = get_nid(parent, offset[0], true); 791 dn->inode_page = npage[0]; 792 dn->inode_page_locked = true; 793 794 /* get indirect or direct nodes */ 795 for (i = 1; i <= level; i++) { 796 bool done = false; 797 798 if (!nids[i] && mode == ALLOC_NODE) { 799 /* alloc new node */ 800 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 801 err = -ENOSPC; 802 goto release_pages; 803 } 804 805 dn->nid = nids[i]; 806 npage[i] = f2fs_new_node_page(dn, noffset[i]); 807 if (IS_ERR(npage[i])) { 808 f2fs_alloc_nid_failed(sbi, nids[i]); 809 err = PTR_ERR(npage[i]); 810 goto release_pages; 811 } 812 813 set_nid(parent, offset[i - 1], nids[i], i == 1); 814 f2fs_alloc_nid_done(sbi, nids[i]); 815 done = true; 816 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 817 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 818 if (IS_ERR(npage[i])) { 819 err = PTR_ERR(npage[i]); 820 goto release_pages; 821 } 822 done = true; 823 } 824 if (i == 1) { 825 dn->inode_page_locked = false; 826 unlock_page(parent); 827 } else { 828 f2fs_put_page(parent, 1); 829 } 830 831 if (!done) { 832 npage[i] = f2fs_get_node_page(sbi, nids[i]); 833 if (IS_ERR(npage[i])) { 834 err = PTR_ERR(npage[i]); 835 f2fs_put_page(npage[0], 0); 836 goto release_out; 837 } 838 } 839 if (i < level) { 840 parent = npage[i]; 841 nids[i + 1] = get_nid(parent, offset[i], false); 842 } 843 } 844 dn->nid = nids[level]; 845 dn->ofs_in_node = offset[level]; 846 dn->node_page = npage[level]; 847 dn->data_blkaddr = f2fs_data_blkaddr(dn); 848 849 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 850 f2fs_sb_has_readonly(sbi)) { 851 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn); 852 block_t blkaddr; 853 854 if (!c_len) 855 goto out; 856 857 blkaddr = f2fs_data_blkaddr(dn); 858 if (blkaddr == COMPRESS_ADDR) 859 blkaddr = data_blkaddr(dn->inode, dn->node_page, 860 dn->ofs_in_node + 1); 861 862 f2fs_update_extent_tree_range_compressed(dn->inode, 863 index, blkaddr, 864 F2FS_I(dn->inode)->i_cluster_size, 865 c_len); 866 } 867 out: 868 return 0; 869 870 release_pages: 871 f2fs_put_page(parent, 1); 872 if (i > 1) 873 f2fs_put_page(npage[0], 0); 874 release_out: 875 dn->inode_page = NULL; 876 dn->node_page = NULL; 877 if (err == -ENOENT) { 878 dn->cur_level = i; 879 dn->max_level = level; 880 dn->ofs_in_node = offset[level]; 881 } 882 return err; 883 } 884 885 static int truncate_node(struct dnode_of_data *dn) 886 { 887 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 888 struct node_info ni; 889 int err; 890 pgoff_t index; 891 892 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 893 if (err) 894 return err; 895 896 /* Deallocate node address */ 897 f2fs_invalidate_blocks(sbi, ni.blk_addr); 898 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 899 set_node_addr(sbi, &ni, NULL_ADDR, false); 900 901 if (dn->nid == dn->inode->i_ino) { 902 f2fs_remove_orphan_inode(sbi, dn->nid); 903 dec_valid_inode_count(sbi); 904 f2fs_inode_synced(dn->inode); 905 } 906 907 clear_node_page_dirty(dn->node_page); 908 set_sbi_flag(sbi, SBI_IS_DIRTY); 909 910 index = dn->node_page->index; 911 f2fs_put_page(dn->node_page, 1); 912 913 invalidate_mapping_pages(NODE_MAPPING(sbi), 914 index, index); 915 916 dn->node_page = NULL; 917 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 918 919 return 0; 920 } 921 922 static int truncate_dnode(struct dnode_of_data *dn) 923 { 924 struct page *page; 925 int err; 926 927 if (dn->nid == 0) 928 return 1; 929 930 /* get direct node */ 931 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 932 if (PTR_ERR(page) == -ENOENT) 933 return 1; 934 else if (IS_ERR(page)) 935 return PTR_ERR(page); 936 937 /* Make dnode_of_data for parameter */ 938 dn->node_page = page; 939 dn->ofs_in_node = 0; 940 f2fs_truncate_data_blocks(dn); 941 err = truncate_node(dn); 942 if (err) 943 return err; 944 945 return 1; 946 } 947 948 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 949 int ofs, int depth) 950 { 951 struct dnode_of_data rdn = *dn; 952 struct page *page; 953 struct f2fs_node *rn; 954 nid_t child_nid; 955 unsigned int child_nofs; 956 int freed = 0; 957 int i, ret; 958 959 if (dn->nid == 0) 960 return NIDS_PER_BLOCK + 1; 961 962 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 963 964 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 965 if (IS_ERR(page)) { 966 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 967 return PTR_ERR(page); 968 } 969 970 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 971 972 rn = F2FS_NODE(page); 973 if (depth < 3) { 974 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 975 child_nid = le32_to_cpu(rn->in.nid[i]); 976 if (child_nid == 0) 977 continue; 978 rdn.nid = child_nid; 979 ret = truncate_dnode(&rdn); 980 if (ret < 0) 981 goto out_err; 982 if (set_nid(page, i, 0, false)) 983 dn->node_changed = true; 984 } 985 } else { 986 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 987 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 988 child_nid = le32_to_cpu(rn->in.nid[i]); 989 if (child_nid == 0) { 990 child_nofs += NIDS_PER_BLOCK + 1; 991 continue; 992 } 993 rdn.nid = child_nid; 994 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 995 if (ret == (NIDS_PER_BLOCK + 1)) { 996 if (set_nid(page, i, 0, false)) 997 dn->node_changed = true; 998 child_nofs += ret; 999 } else if (ret < 0 && ret != -ENOENT) { 1000 goto out_err; 1001 } 1002 } 1003 freed = child_nofs; 1004 } 1005 1006 if (!ofs) { 1007 /* remove current indirect node */ 1008 dn->node_page = page; 1009 ret = truncate_node(dn); 1010 if (ret) 1011 goto out_err; 1012 freed++; 1013 } else { 1014 f2fs_put_page(page, 1); 1015 } 1016 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1017 return freed; 1018 1019 out_err: 1020 f2fs_put_page(page, 1); 1021 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1022 return ret; 1023 } 1024 1025 static int truncate_partial_nodes(struct dnode_of_data *dn, 1026 struct f2fs_inode *ri, int *offset, int depth) 1027 { 1028 struct page *pages[2]; 1029 nid_t nid[3]; 1030 nid_t child_nid; 1031 int err = 0; 1032 int i; 1033 int idx = depth - 2; 1034 1035 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1036 if (!nid[0]) 1037 return 0; 1038 1039 /* get indirect nodes in the path */ 1040 for (i = 0; i < idx + 1; i++) { 1041 /* reference count'll be increased */ 1042 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1043 if (IS_ERR(pages[i])) { 1044 err = PTR_ERR(pages[i]); 1045 idx = i - 1; 1046 goto fail; 1047 } 1048 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1049 } 1050 1051 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1052 1053 /* free direct nodes linked to a partial indirect node */ 1054 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1055 child_nid = get_nid(pages[idx], i, false); 1056 if (!child_nid) 1057 continue; 1058 dn->nid = child_nid; 1059 err = truncate_dnode(dn); 1060 if (err < 0) 1061 goto fail; 1062 if (set_nid(pages[idx], i, 0, false)) 1063 dn->node_changed = true; 1064 } 1065 1066 if (offset[idx + 1] == 0) { 1067 dn->node_page = pages[idx]; 1068 dn->nid = nid[idx]; 1069 err = truncate_node(dn); 1070 if (err) 1071 goto fail; 1072 } else { 1073 f2fs_put_page(pages[idx], 1); 1074 } 1075 offset[idx]++; 1076 offset[idx + 1] = 0; 1077 idx--; 1078 fail: 1079 for (i = idx; i >= 0; i--) 1080 f2fs_put_page(pages[i], 1); 1081 1082 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1083 1084 return err; 1085 } 1086 1087 /* 1088 * All the block addresses of data and nodes should be nullified. 1089 */ 1090 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1091 { 1092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1093 int err = 0, cont = 1; 1094 int level, offset[4], noffset[4]; 1095 unsigned int nofs = 0; 1096 struct f2fs_inode *ri; 1097 struct dnode_of_data dn; 1098 struct page *page; 1099 1100 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1101 1102 level = get_node_path(inode, from, offset, noffset); 1103 if (level < 0) { 1104 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1105 return level; 1106 } 1107 1108 page = f2fs_get_node_page(sbi, inode->i_ino); 1109 if (IS_ERR(page)) { 1110 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1111 return PTR_ERR(page); 1112 } 1113 1114 set_new_dnode(&dn, inode, page, NULL, 0); 1115 unlock_page(page); 1116 1117 ri = F2FS_INODE(page); 1118 switch (level) { 1119 case 0: 1120 case 1: 1121 nofs = noffset[1]; 1122 break; 1123 case 2: 1124 nofs = noffset[1]; 1125 if (!offset[level - 1]) 1126 goto skip_partial; 1127 err = truncate_partial_nodes(&dn, ri, offset, level); 1128 if (err < 0 && err != -ENOENT) 1129 goto fail; 1130 nofs += 1 + NIDS_PER_BLOCK; 1131 break; 1132 case 3: 1133 nofs = 5 + 2 * NIDS_PER_BLOCK; 1134 if (!offset[level - 1]) 1135 goto skip_partial; 1136 err = truncate_partial_nodes(&dn, ri, offset, level); 1137 if (err < 0 && err != -ENOENT) 1138 goto fail; 1139 break; 1140 default: 1141 BUG(); 1142 } 1143 1144 skip_partial: 1145 while (cont) { 1146 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1147 switch (offset[0]) { 1148 case NODE_DIR1_BLOCK: 1149 case NODE_DIR2_BLOCK: 1150 err = truncate_dnode(&dn); 1151 break; 1152 1153 case NODE_IND1_BLOCK: 1154 case NODE_IND2_BLOCK: 1155 err = truncate_nodes(&dn, nofs, offset[1], 2); 1156 break; 1157 1158 case NODE_DIND_BLOCK: 1159 err = truncate_nodes(&dn, nofs, offset[1], 3); 1160 cont = 0; 1161 break; 1162 1163 default: 1164 BUG(); 1165 } 1166 if (err < 0 && err != -ENOENT) 1167 goto fail; 1168 if (offset[1] == 0 && 1169 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1170 lock_page(page); 1171 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1172 f2fs_wait_on_page_writeback(page, NODE, true, true); 1173 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1174 set_page_dirty(page); 1175 unlock_page(page); 1176 } 1177 offset[1] = 0; 1178 offset[0]++; 1179 nofs += err; 1180 } 1181 fail: 1182 f2fs_put_page(page, 0); 1183 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1184 return err > 0 ? 0 : err; 1185 } 1186 1187 /* caller must lock inode page */ 1188 int f2fs_truncate_xattr_node(struct inode *inode) 1189 { 1190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1191 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1192 struct dnode_of_data dn; 1193 struct page *npage; 1194 int err; 1195 1196 if (!nid) 1197 return 0; 1198 1199 npage = f2fs_get_node_page(sbi, nid); 1200 if (IS_ERR(npage)) 1201 return PTR_ERR(npage); 1202 1203 set_new_dnode(&dn, inode, NULL, npage, nid); 1204 err = truncate_node(&dn); 1205 if (err) { 1206 f2fs_put_page(npage, 1); 1207 return err; 1208 } 1209 1210 f2fs_i_xnid_write(inode, 0); 1211 1212 return 0; 1213 } 1214 1215 /* 1216 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1217 * f2fs_unlock_op(). 1218 */ 1219 int f2fs_remove_inode_page(struct inode *inode) 1220 { 1221 struct dnode_of_data dn; 1222 int err; 1223 1224 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1225 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1226 if (err) 1227 return err; 1228 1229 err = f2fs_truncate_xattr_node(inode); 1230 if (err) { 1231 f2fs_put_dnode(&dn); 1232 return err; 1233 } 1234 1235 /* remove potential inline_data blocks */ 1236 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1237 S_ISLNK(inode->i_mode)) 1238 f2fs_truncate_data_blocks_range(&dn, 1); 1239 1240 /* 0 is possible, after f2fs_new_inode() has failed */ 1241 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1242 f2fs_put_dnode(&dn); 1243 return -EIO; 1244 } 1245 1246 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1247 f2fs_warn(F2FS_I_SB(inode), 1248 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1249 inode->i_ino, (unsigned long long)inode->i_blocks); 1250 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1251 } 1252 1253 /* will put inode & node pages */ 1254 err = truncate_node(&dn); 1255 if (err) { 1256 f2fs_put_dnode(&dn); 1257 return err; 1258 } 1259 return 0; 1260 } 1261 1262 struct page *f2fs_new_inode_page(struct inode *inode) 1263 { 1264 struct dnode_of_data dn; 1265 1266 /* allocate inode page for new inode */ 1267 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1268 1269 /* caller should f2fs_put_page(page, 1); */ 1270 return f2fs_new_node_page(&dn, 0); 1271 } 1272 1273 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1274 { 1275 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1276 struct node_info new_ni; 1277 struct page *page; 1278 int err; 1279 1280 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1281 return ERR_PTR(-EPERM); 1282 1283 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1284 if (!page) 1285 return ERR_PTR(-ENOMEM); 1286 1287 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1288 goto fail; 1289 1290 #ifdef CONFIG_F2FS_CHECK_FS 1291 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1292 if (err) { 1293 dec_valid_node_count(sbi, dn->inode, !ofs); 1294 goto fail; 1295 } 1296 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1297 err = -EFSCORRUPTED; 1298 set_sbi_flag(sbi, SBI_NEED_FSCK); 1299 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1300 goto fail; 1301 } 1302 #endif 1303 new_ni.nid = dn->nid; 1304 new_ni.ino = dn->inode->i_ino; 1305 new_ni.blk_addr = NULL_ADDR; 1306 new_ni.flag = 0; 1307 new_ni.version = 0; 1308 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1309 1310 f2fs_wait_on_page_writeback(page, NODE, true, true); 1311 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1312 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1313 if (!PageUptodate(page)) 1314 SetPageUptodate(page); 1315 if (set_page_dirty(page)) 1316 dn->node_changed = true; 1317 1318 if (f2fs_has_xattr_block(ofs)) 1319 f2fs_i_xnid_write(dn->inode, dn->nid); 1320 1321 if (ofs == 0) 1322 inc_valid_inode_count(sbi); 1323 return page; 1324 1325 fail: 1326 clear_node_page_dirty(page); 1327 f2fs_put_page(page, 1); 1328 return ERR_PTR(err); 1329 } 1330 1331 /* 1332 * Caller should do after getting the following values. 1333 * 0: f2fs_put_page(page, 0) 1334 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1335 */ 1336 static int read_node_page(struct page *page, blk_opf_t op_flags) 1337 { 1338 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1339 struct node_info ni; 1340 struct f2fs_io_info fio = { 1341 .sbi = sbi, 1342 .type = NODE, 1343 .op = REQ_OP_READ, 1344 .op_flags = op_flags, 1345 .page = page, 1346 .encrypted_page = NULL, 1347 }; 1348 int err; 1349 1350 if (PageUptodate(page)) { 1351 if (!f2fs_inode_chksum_verify(sbi, page)) { 1352 ClearPageUptodate(page); 1353 return -EFSBADCRC; 1354 } 1355 return LOCKED_PAGE; 1356 } 1357 1358 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1359 if (err) 1360 return err; 1361 1362 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1363 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { 1364 ClearPageUptodate(page); 1365 return -ENOENT; 1366 } 1367 1368 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1369 1370 err = f2fs_submit_page_bio(&fio); 1371 1372 if (!err) 1373 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1374 1375 return err; 1376 } 1377 1378 /* 1379 * Readahead a node page 1380 */ 1381 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1382 { 1383 struct page *apage; 1384 int err; 1385 1386 if (!nid) 1387 return; 1388 if (f2fs_check_nid_range(sbi, nid)) 1389 return; 1390 1391 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1392 if (apage) 1393 return; 1394 1395 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1396 if (!apage) 1397 return; 1398 1399 err = read_node_page(apage, REQ_RAHEAD); 1400 f2fs_put_page(apage, err ? 1 : 0); 1401 } 1402 1403 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1404 struct page *parent, int start) 1405 { 1406 struct page *page; 1407 int err; 1408 1409 if (!nid) 1410 return ERR_PTR(-ENOENT); 1411 if (f2fs_check_nid_range(sbi, nid)) 1412 return ERR_PTR(-EINVAL); 1413 repeat: 1414 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1415 if (!page) 1416 return ERR_PTR(-ENOMEM); 1417 1418 err = read_node_page(page, 0); 1419 if (err < 0) { 1420 goto out_put_err; 1421 } else if (err == LOCKED_PAGE) { 1422 err = 0; 1423 goto page_hit; 1424 } 1425 1426 if (parent) 1427 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1428 1429 lock_page(page); 1430 1431 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1432 f2fs_put_page(page, 1); 1433 goto repeat; 1434 } 1435 1436 if (unlikely(!PageUptodate(page))) { 1437 err = -EIO; 1438 goto out_err; 1439 } 1440 1441 if (!f2fs_inode_chksum_verify(sbi, page)) { 1442 err = -EFSBADCRC; 1443 goto out_err; 1444 } 1445 page_hit: 1446 if (likely(nid == nid_of_node(page))) 1447 return page; 1448 1449 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1450 nid, nid_of_node(page), ino_of_node(page), 1451 ofs_of_node(page), cpver_of_node(page), 1452 next_blkaddr_of_node(page)); 1453 set_sbi_flag(sbi, SBI_NEED_FSCK); 1454 err = -EINVAL; 1455 out_err: 1456 ClearPageUptodate(page); 1457 out_put_err: 1458 /* ENOENT comes from read_node_page which is not an error. */ 1459 if (err != -ENOENT) 1460 f2fs_handle_page_eio(sbi, page->index, NODE); 1461 f2fs_put_page(page, 1); 1462 return ERR_PTR(err); 1463 } 1464 1465 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1466 { 1467 return __get_node_page(sbi, nid, NULL, 0); 1468 } 1469 1470 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1471 { 1472 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1473 nid_t nid = get_nid(parent, start, false); 1474 1475 return __get_node_page(sbi, nid, parent, start); 1476 } 1477 1478 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1479 { 1480 struct inode *inode; 1481 struct page *page; 1482 int ret; 1483 1484 /* should flush inline_data before evict_inode */ 1485 inode = ilookup(sbi->sb, ino); 1486 if (!inode) 1487 return; 1488 1489 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1490 FGP_LOCK|FGP_NOWAIT, 0); 1491 if (!page) 1492 goto iput_out; 1493 1494 if (!PageUptodate(page)) 1495 goto page_out; 1496 1497 if (!PageDirty(page)) 1498 goto page_out; 1499 1500 if (!clear_page_dirty_for_io(page)) 1501 goto page_out; 1502 1503 ret = f2fs_write_inline_data(inode, page); 1504 inode_dec_dirty_pages(inode); 1505 f2fs_remove_dirty_inode(inode); 1506 if (ret) 1507 set_page_dirty(page); 1508 page_out: 1509 f2fs_put_page(page, 1); 1510 iput_out: 1511 iput(inode); 1512 } 1513 1514 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1515 { 1516 pgoff_t index; 1517 struct pagevec pvec; 1518 struct page *last_page = NULL; 1519 int nr_pages; 1520 1521 pagevec_init(&pvec); 1522 index = 0; 1523 1524 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1525 PAGECACHE_TAG_DIRTY))) { 1526 int i; 1527 1528 for (i = 0; i < nr_pages; i++) { 1529 struct page *page = pvec.pages[i]; 1530 1531 if (unlikely(f2fs_cp_error(sbi))) { 1532 f2fs_put_page(last_page, 0); 1533 pagevec_release(&pvec); 1534 return ERR_PTR(-EIO); 1535 } 1536 1537 if (!IS_DNODE(page) || !is_cold_node(page)) 1538 continue; 1539 if (ino_of_node(page) != ino) 1540 continue; 1541 1542 lock_page(page); 1543 1544 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1545 continue_unlock: 1546 unlock_page(page); 1547 continue; 1548 } 1549 if (ino_of_node(page) != ino) 1550 goto continue_unlock; 1551 1552 if (!PageDirty(page)) { 1553 /* someone wrote it for us */ 1554 goto continue_unlock; 1555 } 1556 1557 if (last_page) 1558 f2fs_put_page(last_page, 0); 1559 1560 get_page(page); 1561 last_page = page; 1562 unlock_page(page); 1563 } 1564 pagevec_release(&pvec); 1565 cond_resched(); 1566 } 1567 return last_page; 1568 } 1569 1570 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1571 struct writeback_control *wbc, bool do_balance, 1572 enum iostat_type io_type, unsigned int *seq_id) 1573 { 1574 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1575 nid_t nid; 1576 struct node_info ni; 1577 struct f2fs_io_info fio = { 1578 .sbi = sbi, 1579 .ino = ino_of_node(page), 1580 .type = NODE, 1581 .op = REQ_OP_WRITE, 1582 .op_flags = wbc_to_write_flags(wbc), 1583 .page = page, 1584 .encrypted_page = NULL, 1585 .submitted = false, 1586 .io_type = io_type, 1587 .io_wbc = wbc, 1588 }; 1589 unsigned int seq; 1590 1591 trace_f2fs_writepage(page, NODE); 1592 1593 if (unlikely(f2fs_cp_error(sbi))) { 1594 ClearPageUptodate(page); 1595 dec_page_count(sbi, F2FS_DIRTY_NODES); 1596 unlock_page(page); 1597 return 0; 1598 } 1599 1600 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1601 goto redirty_out; 1602 1603 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1604 wbc->sync_mode == WB_SYNC_NONE && 1605 IS_DNODE(page) && is_cold_node(page)) 1606 goto redirty_out; 1607 1608 /* get old block addr of this node page */ 1609 nid = nid_of_node(page); 1610 f2fs_bug_on(sbi, page->index != nid); 1611 1612 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1613 goto redirty_out; 1614 1615 if (wbc->for_reclaim) { 1616 if (!f2fs_down_read_trylock(&sbi->node_write)) 1617 goto redirty_out; 1618 } else { 1619 f2fs_down_read(&sbi->node_write); 1620 } 1621 1622 /* This page is already truncated */ 1623 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1624 ClearPageUptodate(page); 1625 dec_page_count(sbi, F2FS_DIRTY_NODES); 1626 f2fs_up_read(&sbi->node_write); 1627 unlock_page(page); 1628 return 0; 1629 } 1630 1631 if (__is_valid_data_blkaddr(ni.blk_addr) && 1632 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1633 DATA_GENERIC_ENHANCE)) { 1634 f2fs_up_read(&sbi->node_write); 1635 goto redirty_out; 1636 } 1637 1638 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) 1639 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1640 1641 /* should add to global list before clearing PAGECACHE status */ 1642 if (f2fs_in_warm_node_list(sbi, page)) { 1643 seq = f2fs_add_fsync_node_entry(sbi, page); 1644 if (seq_id) 1645 *seq_id = seq; 1646 } 1647 1648 set_page_writeback(page); 1649 ClearPageError(page); 1650 1651 fio.old_blkaddr = ni.blk_addr; 1652 f2fs_do_write_node_page(nid, &fio); 1653 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1654 dec_page_count(sbi, F2FS_DIRTY_NODES); 1655 f2fs_up_read(&sbi->node_write); 1656 1657 if (wbc->for_reclaim) { 1658 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1659 submitted = NULL; 1660 } 1661 1662 unlock_page(page); 1663 1664 if (unlikely(f2fs_cp_error(sbi))) { 1665 f2fs_submit_merged_write(sbi, NODE); 1666 submitted = NULL; 1667 } 1668 if (submitted) 1669 *submitted = fio.submitted; 1670 1671 if (do_balance) 1672 f2fs_balance_fs(sbi, false); 1673 return 0; 1674 1675 redirty_out: 1676 redirty_page_for_writepage(wbc, page); 1677 return AOP_WRITEPAGE_ACTIVATE; 1678 } 1679 1680 int f2fs_move_node_page(struct page *node_page, int gc_type) 1681 { 1682 int err = 0; 1683 1684 if (gc_type == FG_GC) { 1685 struct writeback_control wbc = { 1686 .sync_mode = WB_SYNC_ALL, 1687 .nr_to_write = 1, 1688 .for_reclaim = 0, 1689 }; 1690 1691 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1692 1693 set_page_dirty(node_page); 1694 1695 if (!clear_page_dirty_for_io(node_page)) { 1696 err = -EAGAIN; 1697 goto out_page; 1698 } 1699 1700 if (__write_node_page(node_page, false, NULL, 1701 &wbc, false, FS_GC_NODE_IO, NULL)) { 1702 err = -EAGAIN; 1703 unlock_page(node_page); 1704 } 1705 goto release_page; 1706 } else { 1707 /* set page dirty and write it */ 1708 if (!PageWriteback(node_page)) 1709 set_page_dirty(node_page); 1710 } 1711 out_page: 1712 unlock_page(node_page); 1713 release_page: 1714 f2fs_put_page(node_page, 0); 1715 return err; 1716 } 1717 1718 static int f2fs_write_node_page(struct page *page, 1719 struct writeback_control *wbc) 1720 { 1721 return __write_node_page(page, false, NULL, wbc, false, 1722 FS_NODE_IO, NULL); 1723 } 1724 1725 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1726 struct writeback_control *wbc, bool atomic, 1727 unsigned int *seq_id) 1728 { 1729 pgoff_t index; 1730 struct pagevec pvec; 1731 int ret = 0; 1732 struct page *last_page = NULL; 1733 bool marked = false; 1734 nid_t ino = inode->i_ino; 1735 int nr_pages; 1736 int nwritten = 0; 1737 1738 if (atomic) { 1739 last_page = last_fsync_dnode(sbi, ino); 1740 if (IS_ERR_OR_NULL(last_page)) 1741 return PTR_ERR_OR_ZERO(last_page); 1742 } 1743 retry: 1744 pagevec_init(&pvec); 1745 index = 0; 1746 1747 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1748 PAGECACHE_TAG_DIRTY))) { 1749 int i; 1750 1751 for (i = 0; i < nr_pages; i++) { 1752 struct page *page = pvec.pages[i]; 1753 bool submitted = false; 1754 1755 if (unlikely(f2fs_cp_error(sbi))) { 1756 f2fs_put_page(last_page, 0); 1757 pagevec_release(&pvec); 1758 ret = -EIO; 1759 goto out; 1760 } 1761 1762 if (!IS_DNODE(page) || !is_cold_node(page)) 1763 continue; 1764 if (ino_of_node(page) != ino) 1765 continue; 1766 1767 lock_page(page); 1768 1769 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1770 continue_unlock: 1771 unlock_page(page); 1772 continue; 1773 } 1774 if (ino_of_node(page) != ino) 1775 goto continue_unlock; 1776 1777 if (!PageDirty(page) && page != last_page) { 1778 /* someone wrote it for us */ 1779 goto continue_unlock; 1780 } 1781 1782 f2fs_wait_on_page_writeback(page, NODE, true, true); 1783 1784 set_fsync_mark(page, 0); 1785 set_dentry_mark(page, 0); 1786 1787 if (!atomic || page == last_page) { 1788 set_fsync_mark(page, 1); 1789 percpu_counter_inc(&sbi->rf_node_block_count); 1790 if (IS_INODE(page)) { 1791 if (is_inode_flag_set(inode, 1792 FI_DIRTY_INODE)) 1793 f2fs_update_inode(inode, page); 1794 set_dentry_mark(page, 1795 f2fs_need_dentry_mark(sbi, ino)); 1796 } 1797 /* may be written by other thread */ 1798 if (!PageDirty(page)) 1799 set_page_dirty(page); 1800 } 1801 1802 if (!clear_page_dirty_for_io(page)) 1803 goto continue_unlock; 1804 1805 ret = __write_node_page(page, atomic && 1806 page == last_page, 1807 &submitted, wbc, true, 1808 FS_NODE_IO, seq_id); 1809 if (ret) { 1810 unlock_page(page); 1811 f2fs_put_page(last_page, 0); 1812 break; 1813 } else if (submitted) { 1814 nwritten++; 1815 } 1816 1817 if (page == last_page) { 1818 f2fs_put_page(page, 0); 1819 marked = true; 1820 break; 1821 } 1822 } 1823 pagevec_release(&pvec); 1824 cond_resched(); 1825 1826 if (ret || marked) 1827 break; 1828 } 1829 if (!ret && atomic && !marked) { 1830 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1831 ino, last_page->index); 1832 lock_page(last_page); 1833 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1834 set_page_dirty(last_page); 1835 unlock_page(last_page); 1836 goto retry; 1837 } 1838 out: 1839 if (nwritten) 1840 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1841 return ret ? -EIO : 0; 1842 } 1843 1844 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1845 { 1846 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1847 bool clean; 1848 1849 if (inode->i_ino != ino) 1850 return 0; 1851 1852 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1853 return 0; 1854 1855 spin_lock(&sbi->inode_lock[DIRTY_META]); 1856 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1857 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1858 1859 if (clean) 1860 return 0; 1861 1862 inode = igrab(inode); 1863 if (!inode) 1864 return 0; 1865 return 1; 1866 } 1867 1868 static bool flush_dirty_inode(struct page *page) 1869 { 1870 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1871 struct inode *inode; 1872 nid_t ino = ino_of_node(page); 1873 1874 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1875 if (!inode) 1876 return false; 1877 1878 f2fs_update_inode(inode, page); 1879 unlock_page(page); 1880 1881 iput(inode); 1882 return true; 1883 } 1884 1885 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1886 { 1887 pgoff_t index = 0; 1888 struct pagevec pvec; 1889 int nr_pages; 1890 1891 pagevec_init(&pvec); 1892 1893 while ((nr_pages = pagevec_lookup_tag(&pvec, 1894 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1895 int i; 1896 1897 for (i = 0; i < nr_pages; i++) { 1898 struct page *page = pvec.pages[i]; 1899 1900 if (!IS_DNODE(page)) 1901 continue; 1902 1903 lock_page(page); 1904 1905 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1906 continue_unlock: 1907 unlock_page(page); 1908 continue; 1909 } 1910 1911 if (!PageDirty(page)) { 1912 /* someone wrote it for us */ 1913 goto continue_unlock; 1914 } 1915 1916 /* flush inline_data, if it's async context. */ 1917 if (page_private_inline(page)) { 1918 clear_page_private_inline(page); 1919 unlock_page(page); 1920 flush_inline_data(sbi, ino_of_node(page)); 1921 continue; 1922 } 1923 unlock_page(page); 1924 } 1925 pagevec_release(&pvec); 1926 cond_resched(); 1927 } 1928 } 1929 1930 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1931 struct writeback_control *wbc, 1932 bool do_balance, enum iostat_type io_type) 1933 { 1934 pgoff_t index; 1935 struct pagevec pvec; 1936 int step = 0; 1937 int nwritten = 0; 1938 int ret = 0; 1939 int nr_pages, done = 0; 1940 1941 pagevec_init(&pvec); 1942 1943 next_step: 1944 index = 0; 1945 1946 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1947 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1948 int i; 1949 1950 for (i = 0; i < nr_pages; i++) { 1951 struct page *page = pvec.pages[i]; 1952 bool submitted = false; 1953 1954 /* give a priority to WB_SYNC threads */ 1955 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1956 wbc->sync_mode == WB_SYNC_NONE) { 1957 done = 1; 1958 break; 1959 } 1960 1961 /* 1962 * flushing sequence with step: 1963 * 0. indirect nodes 1964 * 1. dentry dnodes 1965 * 2. file dnodes 1966 */ 1967 if (step == 0 && IS_DNODE(page)) 1968 continue; 1969 if (step == 1 && (!IS_DNODE(page) || 1970 is_cold_node(page))) 1971 continue; 1972 if (step == 2 && (!IS_DNODE(page) || 1973 !is_cold_node(page))) 1974 continue; 1975 lock_node: 1976 if (wbc->sync_mode == WB_SYNC_ALL) 1977 lock_page(page); 1978 else if (!trylock_page(page)) 1979 continue; 1980 1981 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1982 continue_unlock: 1983 unlock_page(page); 1984 continue; 1985 } 1986 1987 if (!PageDirty(page)) { 1988 /* someone wrote it for us */ 1989 goto continue_unlock; 1990 } 1991 1992 /* flush inline_data/inode, if it's async context. */ 1993 if (!do_balance) 1994 goto write_node; 1995 1996 /* flush inline_data */ 1997 if (page_private_inline(page)) { 1998 clear_page_private_inline(page); 1999 unlock_page(page); 2000 flush_inline_data(sbi, ino_of_node(page)); 2001 goto lock_node; 2002 } 2003 2004 /* flush dirty inode */ 2005 if (IS_INODE(page) && flush_dirty_inode(page)) 2006 goto lock_node; 2007 write_node: 2008 f2fs_wait_on_page_writeback(page, NODE, true, true); 2009 2010 if (!clear_page_dirty_for_io(page)) 2011 goto continue_unlock; 2012 2013 set_fsync_mark(page, 0); 2014 set_dentry_mark(page, 0); 2015 2016 ret = __write_node_page(page, false, &submitted, 2017 wbc, do_balance, io_type, NULL); 2018 if (ret) 2019 unlock_page(page); 2020 else if (submitted) 2021 nwritten++; 2022 2023 if (--wbc->nr_to_write == 0) 2024 break; 2025 } 2026 pagevec_release(&pvec); 2027 cond_resched(); 2028 2029 if (wbc->nr_to_write == 0) { 2030 step = 2; 2031 break; 2032 } 2033 } 2034 2035 if (step < 2) { 2036 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2037 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2038 goto out; 2039 step++; 2040 goto next_step; 2041 } 2042 out: 2043 if (nwritten) 2044 f2fs_submit_merged_write(sbi, NODE); 2045 2046 if (unlikely(f2fs_cp_error(sbi))) 2047 return -EIO; 2048 return ret; 2049 } 2050 2051 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2052 unsigned int seq_id) 2053 { 2054 struct fsync_node_entry *fn; 2055 struct page *page; 2056 struct list_head *head = &sbi->fsync_node_list; 2057 unsigned long flags; 2058 unsigned int cur_seq_id = 0; 2059 int ret2, ret = 0; 2060 2061 while (seq_id && cur_seq_id < seq_id) { 2062 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2063 if (list_empty(head)) { 2064 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2065 break; 2066 } 2067 fn = list_first_entry(head, struct fsync_node_entry, list); 2068 if (fn->seq_id > seq_id) { 2069 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2070 break; 2071 } 2072 cur_seq_id = fn->seq_id; 2073 page = fn->page; 2074 get_page(page); 2075 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2076 2077 f2fs_wait_on_page_writeback(page, NODE, true, false); 2078 if (TestClearPageError(page)) 2079 ret = -EIO; 2080 2081 put_page(page); 2082 2083 if (ret) 2084 break; 2085 } 2086 2087 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 2088 if (!ret) 2089 ret = ret2; 2090 2091 return ret; 2092 } 2093 2094 static int f2fs_write_node_pages(struct address_space *mapping, 2095 struct writeback_control *wbc) 2096 { 2097 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2098 struct blk_plug plug; 2099 long diff; 2100 2101 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2102 goto skip_write; 2103 2104 /* balancing f2fs's metadata in background */ 2105 f2fs_balance_fs_bg(sbi, true); 2106 2107 /* collect a number of dirty node pages and write together */ 2108 if (wbc->sync_mode != WB_SYNC_ALL && 2109 get_pages(sbi, F2FS_DIRTY_NODES) < 2110 nr_pages_to_skip(sbi, NODE)) 2111 goto skip_write; 2112 2113 if (wbc->sync_mode == WB_SYNC_ALL) 2114 atomic_inc(&sbi->wb_sync_req[NODE]); 2115 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2116 /* to avoid potential deadlock */ 2117 if (current->plug) 2118 blk_finish_plug(current->plug); 2119 goto skip_write; 2120 } 2121 2122 trace_f2fs_writepages(mapping->host, wbc, NODE); 2123 2124 diff = nr_pages_to_write(sbi, NODE, wbc); 2125 blk_start_plug(&plug); 2126 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2127 blk_finish_plug(&plug); 2128 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2129 2130 if (wbc->sync_mode == WB_SYNC_ALL) 2131 atomic_dec(&sbi->wb_sync_req[NODE]); 2132 return 0; 2133 2134 skip_write: 2135 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2136 trace_f2fs_writepages(mapping->host, wbc, NODE); 2137 return 0; 2138 } 2139 2140 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2141 struct folio *folio) 2142 { 2143 trace_f2fs_set_page_dirty(&folio->page, NODE); 2144 2145 if (!folio_test_uptodate(folio)) 2146 folio_mark_uptodate(folio); 2147 #ifdef CONFIG_F2FS_CHECK_FS 2148 if (IS_INODE(&folio->page)) 2149 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2150 #endif 2151 if (filemap_dirty_folio(mapping, folio)) { 2152 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2153 set_page_private_reference(&folio->page); 2154 return true; 2155 } 2156 return false; 2157 } 2158 2159 /* 2160 * Structure of the f2fs node operations 2161 */ 2162 const struct address_space_operations f2fs_node_aops = { 2163 .writepage = f2fs_write_node_page, 2164 .writepages = f2fs_write_node_pages, 2165 .dirty_folio = f2fs_dirty_node_folio, 2166 .invalidate_folio = f2fs_invalidate_folio, 2167 .release_folio = f2fs_release_folio, 2168 .migrate_folio = filemap_migrate_folio, 2169 }; 2170 2171 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2172 nid_t n) 2173 { 2174 return radix_tree_lookup(&nm_i->free_nid_root, n); 2175 } 2176 2177 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2178 struct free_nid *i) 2179 { 2180 struct f2fs_nm_info *nm_i = NM_I(sbi); 2181 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2182 2183 if (err) 2184 return err; 2185 2186 nm_i->nid_cnt[FREE_NID]++; 2187 list_add_tail(&i->list, &nm_i->free_nid_list); 2188 return 0; 2189 } 2190 2191 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2192 struct free_nid *i, enum nid_state state) 2193 { 2194 struct f2fs_nm_info *nm_i = NM_I(sbi); 2195 2196 f2fs_bug_on(sbi, state != i->state); 2197 nm_i->nid_cnt[state]--; 2198 if (state == FREE_NID) 2199 list_del(&i->list); 2200 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2201 } 2202 2203 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2204 enum nid_state org_state, enum nid_state dst_state) 2205 { 2206 struct f2fs_nm_info *nm_i = NM_I(sbi); 2207 2208 f2fs_bug_on(sbi, org_state != i->state); 2209 i->state = dst_state; 2210 nm_i->nid_cnt[org_state]--; 2211 nm_i->nid_cnt[dst_state]++; 2212 2213 switch (dst_state) { 2214 case PREALLOC_NID: 2215 list_del(&i->list); 2216 break; 2217 case FREE_NID: 2218 list_add_tail(&i->list, &nm_i->free_nid_list); 2219 break; 2220 default: 2221 BUG_ON(1); 2222 } 2223 } 2224 2225 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2226 { 2227 struct f2fs_nm_info *nm_i = NM_I(sbi); 2228 unsigned int i; 2229 bool ret = true; 2230 2231 f2fs_down_read(&nm_i->nat_tree_lock); 2232 for (i = 0; i < nm_i->nat_blocks; i++) { 2233 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2234 ret = false; 2235 break; 2236 } 2237 } 2238 f2fs_up_read(&nm_i->nat_tree_lock); 2239 2240 return ret; 2241 } 2242 2243 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2244 bool set, bool build) 2245 { 2246 struct f2fs_nm_info *nm_i = NM_I(sbi); 2247 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2248 unsigned int nid_ofs = nid - START_NID(nid); 2249 2250 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2251 return; 2252 2253 if (set) { 2254 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2255 return; 2256 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2257 nm_i->free_nid_count[nat_ofs]++; 2258 } else { 2259 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2260 return; 2261 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2262 if (!build) 2263 nm_i->free_nid_count[nat_ofs]--; 2264 } 2265 } 2266 2267 /* return if the nid is recognized as free */ 2268 static bool add_free_nid(struct f2fs_sb_info *sbi, 2269 nid_t nid, bool build, bool update) 2270 { 2271 struct f2fs_nm_info *nm_i = NM_I(sbi); 2272 struct free_nid *i, *e; 2273 struct nat_entry *ne; 2274 int err = -EINVAL; 2275 bool ret = false; 2276 2277 /* 0 nid should not be used */ 2278 if (unlikely(nid == 0)) 2279 return false; 2280 2281 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2282 return false; 2283 2284 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2285 i->nid = nid; 2286 i->state = FREE_NID; 2287 2288 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2289 2290 spin_lock(&nm_i->nid_list_lock); 2291 2292 if (build) { 2293 /* 2294 * Thread A Thread B 2295 * - f2fs_create 2296 * - f2fs_new_inode 2297 * - f2fs_alloc_nid 2298 * - __insert_nid_to_list(PREALLOC_NID) 2299 * - f2fs_balance_fs_bg 2300 * - f2fs_build_free_nids 2301 * - __f2fs_build_free_nids 2302 * - scan_nat_page 2303 * - add_free_nid 2304 * - __lookup_nat_cache 2305 * - f2fs_add_link 2306 * - f2fs_init_inode_metadata 2307 * - f2fs_new_inode_page 2308 * - f2fs_new_node_page 2309 * - set_node_addr 2310 * - f2fs_alloc_nid_done 2311 * - __remove_nid_from_list(PREALLOC_NID) 2312 * - __insert_nid_to_list(FREE_NID) 2313 */ 2314 ne = __lookup_nat_cache(nm_i, nid); 2315 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2316 nat_get_blkaddr(ne) != NULL_ADDR)) 2317 goto err_out; 2318 2319 e = __lookup_free_nid_list(nm_i, nid); 2320 if (e) { 2321 if (e->state == FREE_NID) 2322 ret = true; 2323 goto err_out; 2324 } 2325 } 2326 ret = true; 2327 err = __insert_free_nid(sbi, i); 2328 err_out: 2329 if (update) { 2330 update_free_nid_bitmap(sbi, nid, ret, build); 2331 if (!build) 2332 nm_i->available_nids++; 2333 } 2334 spin_unlock(&nm_i->nid_list_lock); 2335 radix_tree_preload_end(); 2336 2337 if (err) 2338 kmem_cache_free(free_nid_slab, i); 2339 return ret; 2340 } 2341 2342 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2343 { 2344 struct f2fs_nm_info *nm_i = NM_I(sbi); 2345 struct free_nid *i; 2346 bool need_free = false; 2347 2348 spin_lock(&nm_i->nid_list_lock); 2349 i = __lookup_free_nid_list(nm_i, nid); 2350 if (i && i->state == FREE_NID) { 2351 __remove_free_nid(sbi, i, FREE_NID); 2352 need_free = true; 2353 } 2354 spin_unlock(&nm_i->nid_list_lock); 2355 2356 if (need_free) 2357 kmem_cache_free(free_nid_slab, i); 2358 } 2359 2360 static int scan_nat_page(struct f2fs_sb_info *sbi, 2361 struct page *nat_page, nid_t start_nid) 2362 { 2363 struct f2fs_nm_info *nm_i = NM_I(sbi); 2364 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2365 block_t blk_addr; 2366 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2367 int i; 2368 2369 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2370 2371 i = start_nid % NAT_ENTRY_PER_BLOCK; 2372 2373 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2374 if (unlikely(start_nid >= nm_i->max_nid)) 2375 break; 2376 2377 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2378 2379 if (blk_addr == NEW_ADDR) 2380 return -EINVAL; 2381 2382 if (blk_addr == NULL_ADDR) { 2383 add_free_nid(sbi, start_nid, true, true); 2384 } else { 2385 spin_lock(&NM_I(sbi)->nid_list_lock); 2386 update_free_nid_bitmap(sbi, start_nid, false, true); 2387 spin_unlock(&NM_I(sbi)->nid_list_lock); 2388 } 2389 } 2390 2391 return 0; 2392 } 2393 2394 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2395 { 2396 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2397 struct f2fs_journal *journal = curseg->journal; 2398 int i; 2399 2400 down_read(&curseg->journal_rwsem); 2401 for (i = 0; i < nats_in_cursum(journal); i++) { 2402 block_t addr; 2403 nid_t nid; 2404 2405 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2406 nid = le32_to_cpu(nid_in_journal(journal, i)); 2407 if (addr == NULL_ADDR) 2408 add_free_nid(sbi, nid, true, false); 2409 else 2410 remove_free_nid(sbi, nid); 2411 } 2412 up_read(&curseg->journal_rwsem); 2413 } 2414 2415 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2416 { 2417 struct f2fs_nm_info *nm_i = NM_I(sbi); 2418 unsigned int i, idx; 2419 nid_t nid; 2420 2421 f2fs_down_read(&nm_i->nat_tree_lock); 2422 2423 for (i = 0; i < nm_i->nat_blocks; i++) { 2424 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2425 continue; 2426 if (!nm_i->free_nid_count[i]) 2427 continue; 2428 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2429 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2430 NAT_ENTRY_PER_BLOCK, idx); 2431 if (idx >= NAT_ENTRY_PER_BLOCK) 2432 break; 2433 2434 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2435 add_free_nid(sbi, nid, true, false); 2436 2437 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2438 goto out; 2439 } 2440 } 2441 out: 2442 scan_curseg_cache(sbi); 2443 2444 f2fs_up_read(&nm_i->nat_tree_lock); 2445 } 2446 2447 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2448 bool sync, bool mount) 2449 { 2450 struct f2fs_nm_info *nm_i = NM_I(sbi); 2451 int i = 0, ret; 2452 nid_t nid = nm_i->next_scan_nid; 2453 2454 if (unlikely(nid >= nm_i->max_nid)) 2455 nid = 0; 2456 2457 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2458 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2459 2460 /* Enough entries */ 2461 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2462 return 0; 2463 2464 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2465 return 0; 2466 2467 if (!mount) { 2468 /* try to find free nids in free_nid_bitmap */ 2469 scan_free_nid_bits(sbi); 2470 2471 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2472 return 0; 2473 } 2474 2475 /* readahead nat pages to be scanned */ 2476 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2477 META_NAT, true); 2478 2479 f2fs_down_read(&nm_i->nat_tree_lock); 2480 2481 while (1) { 2482 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2483 nm_i->nat_block_bitmap)) { 2484 struct page *page = get_current_nat_page(sbi, nid); 2485 2486 if (IS_ERR(page)) { 2487 ret = PTR_ERR(page); 2488 } else { 2489 ret = scan_nat_page(sbi, page, nid); 2490 f2fs_put_page(page, 1); 2491 } 2492 2493 if (ret) { 2494 f2fs_up_read(&nm_i->nat_tree_lock); 2495 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2496 return ret; 2497 } 2498 } 2499 2500 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2501 if (unlikely(nid >= nm_i->max_nid)) 2502 nid = 0; 2503 2504 if (++i >= FREE_NID_PAGES) 2505 break; 2506 } 2507 2508 /* go to the next free nat pages to find free nids abundantly */ 2509 nm_i->next_scan_nid = nid; 2510 2511 /* find free nids from current sum_pages */ 2512 scan_curseg_cache(sbi); 2513 2514 f2fs_up_read(&nm_i->nat_tree_lock); 2515 2516 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2517 nm_i->ra_nid_pages, META_NAT, false); 2518 2519 return 0; 2520 } 2521 2522 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2523 { 2524 int ret; 2525 2526 mutex_lock(&NM_I(sbi)->build_lock); 2527 ret = __f2fs_build_free_nids(sbi, sync, mount); 2528 mutex_unlock(&NM_I(sbi)->build_lock); 2529 2530 return ret; 2531 } 2532 2533 /* 2534 * If this function returns success, caller can obtain a new nid 2535 * from second parameter of this function. 2536 * The returned nid could be used ino as well as nid when inode is created. 2537 */ 2538 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2539 { 2540 struct f2fs_nm_info *nm_i = NM_I(sbi); 2541 struct free_nid *i = NULL; 2542 retry: 2543 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2544 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID); 2545 return false; 2546 } 2547 2548 spin_lock(&nm_i->nid_list_lock); 2549 2550 if (unlikely(nm_i->available_nids == 0)) { 2551 spin_unlock(&nm_i->nid_list_lock); 2552 return false; 2553 } 2554 2555 /* We should not use stale free nids created by f2fs_build_free_nids */ 2556 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2557 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2558 i = list_first_entry(&nm_i->free_nid_list, 2559 struct free_nid, list); 2560 *nid = i->nid; 2561 2562 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2563 nm_i->available_nids--; 2564 2565 update_free_nid_bitmap(sbi, *nid, false, false); 2566 2567 spin_unlock(&nm_i->nid_list_lock); 2568 return true; 2569 } 2570 spin_unlock(&nm_i->nid_list_lock); 2571 2572 /* Let's scan nat pages and its caches to get free nids */ 2573 if (!f2fs_build_free_nids(sbi, true, false)) 2574 goto retry; 2575 return false; 2576 } 2577 2578 /* 2579 * f2fs_alloc_nid() should be called prior to this function. 2580 */ 2581 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2582 { 2583 struct f2fs_nm_info *nm_i = NM_I(sbi); 2584 struct free_nid *i; 2585 2586 spin_lock(&nm_i->nid_list_lock); 2587 i = __lookup_free_nid_list(nm_i, nid); 2588 f2fs_bug_on(sbi, !i); 2589 __remove_free_nid(sbi, i, PREALLOC_NID); 2590 spin_unlock(&nm_i->nid_list_lock); 2591 2592 kmem_cache_free(free_nid_slab, i); 2593 } 2594 2595 /* 2596 * f2fs_alloc_nid() should be called prior to this function. 2597 */ 2598 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2599 { 2600 struct f2fs_nm_info *nm_i = NM_I(sbi); 2601 struct free_nid *i; 2602 bool need_free = false; 2603 2604 if (!nid) 2605 return; 2606 2607 spin_lock(&nm_i->nid_list_lock); 2608 i = __lookup_free_nid_list(nm_i, nid); 2609 f2fs_bug_on(sbi, !i); 2610 2611 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2612 __remove_free_nid(sbi, i, PREALLOC_NID); 2613 need_free = true; 2614 } else { 2615 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2616 } 2617 2618 nm_i->available_nids++; 2619 2620 update_free_nid_bitmap(sbi, nid, true, false); 2621 2622 spin_unlock(&nm_i->nid_list_lock); 2623 2624 if (need_free) 2625 kmem_cache_free(free_nid_slab, i); 2626 } 2627 2628 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2629 { 2630 struct f2fs_nm_info *nm_i = NM_I(sbi); 2631 int nr = nr_shrink; 2632 2633 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2634 return 0; 2635 2636 if (!mutex_trylock(&nm_i->build_lock)) 2637 return 0; 2638 2639 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2640 struct free_nid *i, *next; 2641 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2642 2643 spin_lock(&nm_i->nid_list_lock); 2644 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2645 if (!nr_shrink || !batch || 2646 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2647 break; 2648 __remove_free_nid(sbi, i, FREE_NID); 2649 kmem_cache_free(free_nid_slab, i); 2650 nr_shrink--; 2651 batch--; 2652 } 2653 spin_unlock(&nm_i->nid_list_lock); 2654 } 2655 2656 mutex_unlock(&nm_i->build_lock); 2657 2658 return nr - nr_shrink; 2659 } 2660 2661 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2662 { 2663 void *src_addr, *dst_addr; 2664 size_t inline_size; 2665 struct page *ipage; 2666 struct f2fs_inode *ri; 2667 2668 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2669 if (IS_ERR(ipage)) 2670 return PTR_ERR(ipage); 2671 2672 ri = F2FS_INODE(page); 2673 if (ri->i_inline & F2FS_INLINE_XATTR) { 2674 if (!f2fs_has_inline_xattr(inode)) { 2675 set_inode_flag(inode, FI_INLINE_XATTR); 2676 stat_inc_inline_xattr(inode); 2677 } 2678 } else { 2679 if (f2fs_has_inline_xattr(inode)) { 2680 stat_dec_inline_xattr(inode); 2681 clear_inode_flag(inode, FI_INLINE_XATTR); 2682 } 2683 goto update_inode; 2684 } 2685 2686 dst_addr = inline_xattr_addr(inode, ipage); 2687 src_addr = inline_xattr_addr(inode, page); 2688 inline_size = inline_xattr_size(inode); 2689 2690 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2691 memcpy(dst_addr, src_addr, inline_size); 2692 update_inode: 2693 f2fs_update_inode(inode, ipage); 2694 f2fs_put_page(ipage, 1); 2695 return 0; 2696 } 2697 2698 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2699 { 2700 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2701 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2702 nid_t new_xnid; 2703 struct dnode_of_data dn; 2704 struct node_info ni; 2705 struct page *xpage; 2706 int err; 2707 2708 if (!prev_xnid) 2709 goto recover_xnid; 2710 2711 /* 1: invalidate the previous xattr nid */ 2712 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2713 if (err) 2714 return err; 2715 2716 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2717 dec_valid_node_count(sbi, inode, false); 2718 set_node_addr(sbi, &ni, NULL_ADDR, false); 2719 2720 recover_xnid: 2721 /* 2: update xattr nid in inode */ 2722 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2723 return -ENOSPC; 2724 2725 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2726 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2727 if (IS_ERR(xpage)) { 2728 f2fs_alloc_nid_failed(sbi, new_xnid); 2729 return PTR_ERR(xpage); 2730 } 2731 2732 f2fs_alloc_nid_done(sbi, new_xnid); 2733 f2fs_update_inode_page(inode); 2734 2735 /* 3: update and set xattr node page dirty */ 2736 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2737 2738 set_page_dirty(xpage); 2739 f2fs_put_page(xpage, 1); 2740 2741 return 0; 2742 } 2743 2744 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2745 { 2746 struct f2fs_inode *src, *dst; 2747 nid_t ino = ino_of_node(page); 2748 struct node_info old_ni, new_ni; 2749 struct page *ipage; 2750 int err; 2751 2752 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2753 if (err) 2754 return err; 2755 2756 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2757 return -EINVAL; 2758 retry: 2759 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2760 if (!ipage) { 2761 memalloc_retry_wait(GFP_NOFS); 2762 goto retry; 2763 } 2764 2765 /* Should not use this inode from free nid list */ 2766 remove_free_nid(sbi, ino); 2767 2768 if (!PageUptodate(ipage)) 2769 SetPageUptodate(ipage); 2770 fill_node_footer(ipage, ino, ino, 0, true); 2771 set_cold_node(ipage, false); 2772 2773 src = F2FS_INODE(page); 2774 dst = F2FS_INODE(ipage); 2775 2776 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2777 dst->i_size = 0; 2778 dst->i_blocks = cpu_to_le64(1); 2779 dst->i_links = cpu_to_le32(1); 2780 dst->i_xattr_nid = 0; 2781 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2782 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2783 dst->i_extra_isize = src->i_extra_isize; 2784 2785 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2786 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2787 i_inline_xattr_size)) 2788 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2789 2790 if (f2fs_sb_has_project_quota(sbi) && 2791 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2792 i_projid)) 2793 dst->i_projid = src->i_projid; 2794 2795 if (f2fs_sb_has_inode_crtime(sbi) && 2796 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2797 i_crtime_nsec)) { 2798 dst->i_crtime = src->i_crtime; 2799 dst->i_crtime_nsec = src->i_crtime_nsec; 2800 } 2801 } 2802 2803 new_ni = old_ni; 2804 new_ni.ino = ino; 2805 2806 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2807 WARN_ON(1); 2808 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2809 inc_valid_inode_count(sbi); 2810 set_page_dirty(ipage); 2811 f2fs_put_page(ipage, 1); 2812 return 0; 2813 } 2814 2815 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2816 unsigned int segno, struct f2fs_summary_block *sum) 2817 { 2818 struct f2fs_node *rn; 2819 struct f2fs_summary *sum_entry; 2820 block_t addr; 2821 int i, idx, last_offset, nrpages; 2822 2823 /* scan the node segment */ 2824 last_offset = sbi->blocks_per_seg; 2825 addr = START_BLOCK(sbi, segno); 2826 sum_entry = &sum->entries[0]; 2827 2828 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2829 nrpages = bio_max_segs(last_offset - i); 2830 2831 /* readahead node pages */ 2832 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2833 2834 for (idx = addr; idx < addr + nrpages; idx++) { 2835 struct page *page = f2fs_get_tmp_page(sbi, idx); 2836 2837 if (IS_ERR(page)) 2838 return PTR_ERR(page); 2839 2840 rn = F2FS_NODE(page); 2841 sum_entry->nid = rn->footer.nid; 2842 sum_entry->version = 0; 2843 sum_entry->ofs_in_node = 0; 2844 sum_entry++; 2845 f2fs_put_page(page, 1); 2846 } 2847 2848 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2849 addr + nrpages); 2850 } 2851 return 0; 2852 } 2853 2854 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2855 { 2856 struct f2fs_nm_info *nm_i = NM_I(sbi); 2857 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2858 struct f2fs_journal *journal = curseg->journal; 2859 int i; 2860 2861 down_write(&curseg->journal_rwsem); 2862 for (i = 0; i < nats_in_cursum(journal); i++) { 2863 struct nat_entry *ne; 2864 struct f2fs_nat_entry raw_ne; 2865 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2866 2867 if (f2fs_check_nid_range(sbi, nid)) 2868 continue; 2869 2870 raw_ne = nat_in_journal(journal, i); 2871 2872 ne = __lookup_nat_cache(nm_i, nid); 2873 if (!ne) { 2874 ne = __alloc_nat_entry(sbi, nid, true); 2875 __init_nat_entry(nm_i, ne, &raw_ne, true); 2876 } 2877 2878 /* 2879 * if a free nat in journal has not been used after last 2880 * checkpoint, we should remove it from available nids, 2881 * since later we will add it again. 2882 */ 2883 if (!get_nat_flag(ne, IS_DIRTY) && 2884 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2885 spin_lock(&nm_i->nid_list_lock); 2886 nm_i->available_nids--; 2887 spin_unlock(&nm_i->nid_list_lock); 2888 } 2889 2890 __set_nat_cache_dirty(nm_i, ne); 2891 } 2892 update_nats_in_cursum(journal, -i); 2893 up_write(&curseg->journal_rwsem); 2894 } 2895 2896 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2897 struct list_head *head, int max) 2898 { 2899 struct nat_entry_set *cur; 2900 2901 if (nes->entry_cnt >= max) 2902 goto add_out; 2903 2904 list_for_each_entry(cur, head, set_list) { 2905 if (cur->entry_cnt >= nes->entry_cnt) { 2906 list_add(&nes->set_list, cur->set_list.prev); 2907 return; 2908 } 2909 } 2910 add_out: 2911 list_add_tail(&nes->set_list, head); 2912 } 2913 2914 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2915 unsigned int valid) 2916 { 2917 if (valid == 0) { 2918 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2919 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2920 return; 2921 } 2922 2923 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2924 if (valid == NAT_ENTRY_PER_BLOCK) 2925 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2926 else 2927 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2928 } 2929 2930 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2931 struct page *page) 2932 { 2933 struct f2fs_nm_info *nm_i = NM_I(sbi); 2934 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2935 struct f2fs_nat_block *nat_blk = page_address(page); 2936 int valid = 0; 2937 int i = 0; 2938 2939 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2940 return; 2941 2942 if (nat_index == 0) { 2943 valid = 1; 2944 i = 1; 2945 } 2946 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2947 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2948 valid++; 2949 } 2950 2951 __update_nat_bits(nm_i, nat_index, valid); 2952 } 2953 2954 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2955 { 2956 struct f2fs_nm_info *nm_i = NM_I(sbi); 2957 unsigned int nat_ofs; 2958 2959 f2fs_down_read(&nm_i->nat_tree_lock); 2960 2961 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 2962 unsigned int valid = 0, nid_ofs = 0; 2963 2964 /* handle nid zero due to it should never be used */ 2965 if (unlikely(nat_ofs == 0)) { 2966 valid = 1; 2967 nid_ofs = 1; 2968 } 2969 2970 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 2971 if (!test_bit_le(nid_ofs, 2972 nm_i->free_nid_bitmap[nat_ofs])) 2973 valid++; 2974 } 2975 2976 __update_nat_bits(nm_i, nat_ofs, valid); 2977 } 2978 2979 f2fs_up_read(&nm_i->nat_tree_lock); 2980 } 2981 2982 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2983 struct nat_entry_set *set, struct cp_control *cpc) 2984 { 2985 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2986 struct f2fs_journal *journal = curseg->journal; 2987 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2988 bool to_journal = true; 2989 struct f2fs_nat_block *nat_blk; 2990 struct nat_entry *ne, *cur; 2991 struct page *page = NULL; 2992 2993 /* 2994 * there are two steps to flush nat entries: 2995 * #1, flush nat entries to journal in current hot data summary block. 2996 * #2, flush nat entries to nat page. 2997 */ 2998 if ((cpc->reason & CP_UMOUNT) || 2999 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3000 to_journal = false; 3001 3002 if (to_journal) { 3003 down_write(&curseg->journal_rwsem); 3004 } else { 3005 page = get_next_nat_page(sbi, start_nid); 3006 if (IS_ERR(page)) 3007 return PTR_ERR(page); 3008 3009 nat_blk = page_address(page); 3010 f2fs_bug_on(sbi, !nat_blk); 3011 } 3012 3013 /* flush dirty nats in nat entry set */ 3014 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3015 struct f2fs_nat_entry *raw_ne; 3016 nid_t nid = nat_get_nid(ne); 3017 int offset; 3018 3019 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3020 3021 if (to_journal) { 3022 offset = f2fs_lookup_journal_in_cursum(journal, 3023 NAT_JOURNAL, nid, 1); 3024 f2fs_bug_on(sbi, offset < 0); 3025 raw_ne = &nat_in_journal(journal, offset); 3026 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3027 } else { 3028 raw_ne = &nat_blk->entries[nid - start_nid]; 3029 } 3030 raw_nat_from_node_info(raw_ne, &ne->ni); 3031 nat_reset_flag(ne); 3032 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3033 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3034 add_free_nid(sbi, nid, false, true); 3035 } else { 3036 spin_lock(&NM_I(sbi)->nid_list_lock); 3037 update_free_nid_bitmap(sbi, nid, false, false); 3038 spin_unlock(&NM_I(sbi)->nid_list_lock); 3039 } 3040 } 3041 3042 if (to_journal) { 3043 up_write(&curseg->journal_rwsem); 3044 } else { 3045 update_nat_bits(sbi, start_nid, page); 3046 f2fs_put_page(page, 1); 3047 } 3048 3049 /* Allow dirty nats by node block allocation in write_begin */ 3050 if (!set->entry_cnt) { 3051 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3052 kmem_cache_free(nat_entry_set_slab, set); 3053 } 3054 return 0; 3055 } 3056 3057 /* 3058 * This function is called during the checkpointing process. 3059 */ 3060 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3061 { 3062 struct f2fs_nm_info *nm_i = NM_I(sbi); 3063 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3064 struct f2fs_journal *journal = curseg->journal; 3065 struct nat_entry_set *setvec[SETVEC_SIZE]; 3066 struct nat_entry_set *set, *tmp; 3067 unsigned int found; 3068 nid_t set_idx = 0; 3069 LIST_HEAD(sets); 3070 int err = 0; 3071 3072 /* 3073 * during unmount, let's flush nat_bits before checking 3074 * nat_cnt[DIRTY_NAT]. 3075 */ 3076 if (cpc->reason & CP_UMOUNT) { 3077 f2fs_down_write(&nm_i->nat_tree_lock); 3078 remove_nats_in_journal(sbi); 3079 f2fs_up_write(&nm_i->nat_tree_lock); 3080 } 3081 3082 if (!nm_i->nat_cnt[DIRTY_NAT]) 3083 return 0; 3084 3085 f2fs_down_write(&nm_i->nat_tree_lock); 3086 3087 /* 3088 * if there are no enough space in journal to store dirty nat 3089 * entries, remove all entries from journal and merge them 3090 * into nat entry set. 3091 */ 3092 if (cpc->reason & CP_UMOUNT || 3093 !__has_cursum_space(journal, 3094 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3095 remove_nats_in_journal(sbi); 3096 3097 while ((found = __gang_lookup_nat_set(nm_i, 3098 set_idx, SETVEC_SIZE, setvec))) { 3099 unsigned idx; 3100 3101 set_idx = setvec[found - 1]->set + 1; 3102 for (idx = 0; idx < found; idx++) 3103 __adjust_nat_entry_set(setvec[idx], &sets, 3104 MAX_NAT_JENTRIES(journal)); 3105 } 3106 3107 /* flush dirty nats in nat entry set */ 3108 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3109 err = __flush_nat_entry_set(sbi, set, cpc); 3110 if (err) 3111 break; 3112 } 3113 3114 f2fs_up_write(&nm_i->nat_tree_lock); 3115 /* Allow dirty nats by node block allocation in write_begin */ 3116 3117 return err; 3118 } 3119 3120 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3121 { 3122 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3123 struct f2fs_nm_info *nm_i = NM_I(sbi); 3124 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3125 unsigned int i; 3126 __u64 cp_ver = cur_cp_version(ckpt); 3127 block_t nat_bits_addr; 3128 3129 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3130 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3131 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3132 if (!nm_i->nat_bits) 3133 return -ENOMEM; 3134 3135 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3136 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3137 3138 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3139 return 0; 3140 3141 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3142 nm_i->nat_bits_blocks; 3143 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3144 struct page *page; 3145 3146 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3147 if (IS_ERR(page)) 3148 return PTR_ERR(page); 3149 3150 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3151 page_address(page), F2FS_BLKSIZE); 3152 f2fs_put_page(page, 1); 3153 } 3154 3155 cp_ver |= (cur_cp_crc(ckpt) << 32); 3156 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3157 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3158 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3159 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3160 return 0; 3161 } 3162 3163 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3164 return 0; 3165 } 3166 3167 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3168 { 3169 struct f2fs_nm_info *nm_i = NM_I(sbi); 3170 unsigned int i = 0; 3171 nid_t nid, last_nid; 3172 3173 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3174 return; 3175 3176 for (i = 0; i < nm_i->nat_blocks; i++) { 3177 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3178 if (i >= nm_i->nat_blocks) 3179 break; 3180 3181 __set_bit_le(i, nm_i->nat_block_bitmap); 3182 3183 nid = i * NAT_ENTRY_PER_BLOCK; 3184 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3185 3186 spin_lock(&NM_I(sbi)->nid_list_lock); 3187 for (; nid < last_nid; nid++) 3188 update_free_nid_bitmap(sbi, nid, true, true); 3189 spin_unlock(&NM_I(sbi)->nid_list_lock); 3190 } 3191 3192 for (i = 0; i < nm_i->nat_blocks; i++) { 3193 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3194 if (i >= nm_i->nat_blocks) 3195 break; 3196 3197 __set_bit_le(i, nm_i->nat_block_bitmap); 3198 } 3199 } 3200 3201 static int init_node_manager(struct f2fs_sb_info *sbi) 3202 { 3203 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3204 struct f2fs_nm_info *nm_i = NM_I(sbi); 3205 unsigned char *version_bitmap; 3206 unsigned int nat_segs; 3207 int err; 3208 3209 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3210 3211 /* segment_count_nat includes pair segment so divide to 2. */ 3212 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3213 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3214 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3215 3216 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3217 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3218 F2FS_RESERVED_NODE_NUM; 3219 nm_i->nid_cnt[FREE_NID] = 0; 3220 nm_i->nid_cnt[PREALLOC_NID] = 0; 3221 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3222 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3223 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3224 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3225 3226 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3227 INIT_LIST_HEAD(&nm_i->free_nid_list); 3228 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3229 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3230 INIT_LIST_HEAD(&nm_i->nat_entries); 3231 spin_lock_init(&nm_i->nat_list_lock); 3232 3233 mutex_init(&nm_i->build_lock); 3234 spin_lock_init(&nm_i->nid_list_lock); 3235 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3236 3237 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3238 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3239 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3240 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3241 GFP_KERNEL); 3242 if (!nm_i->nat_bitmap) 3243 return -ENOMEM; 3244 3245 err = __get_nat_bitmaps(sbi); 3246 if (err) 3247 return err; 3248 3249 #ifdef CONFIG_F2FS_CHECK_FS 3250 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3251 GFP_KERNEL); 3252 if (!nm_i->nat_bitmap_mir) 3253 return -ENOMEM; 3254 #endif 3255 3256 return 0; 3257 } 3258 3259 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3260 { 3261 struct f2fs_nm_info *nm_i = NM_I(sbi); 3262 int i; 3263 3264 nm_i->free_nid_bitmap = 3265 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3266 nm_i->nat_blocks), 3267 GFP_KERNEL); 3268 if (!nm_i->free_nid_bitmap) 3269 return -ENOMEM; 3270 3271 for (i = 0; i < nm_i->nat_blocks; i++) { 3272 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3273 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3274 if (!nm_i->free_nid_bitmap[i]) 3275 return -ENOMEM; 3276 } 3277 3278 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3279 GFP_KERNEL); 3280 if (!nm_i->nat_block_bitmap) 3281 return -ENOMEM; 3282 3283 nm_i->free_nid_count = 3284 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3285 nm_i->nat_blocks), 3286 GFP_KERNEL); 3287 if (!nm_i->free_nid_count) 3288 return -ENOMEM; 3289 return 0; 3290 } 3291 3292 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3293 { 3294 int err; 3295 3296 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3297 GFP_KERNEL); 3298 if (!sbi->nm_info) 3299 return -ENOMEM; 3300 3301 err = init_node_manager(sbi); 3302 if (err) 3303 return err; 3304 3305 err = init_free_nid_cache(sbi); 3306 if (err) 3307 return err; 3308 3309 /* load free nid status from nat_bits table */ 3310 load_free_nid_bitmap(sbi); 3311 3312 return f2fs_build_free_nids(sbi, true, true); 3313 } 3314 3315 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3316 { 3317 struct f2fs_nm_info *nm_i = NM_I(sbi); 3318 struct free_nid *i, *next_i; 3319 struct nat_entry *natvec[NATVEC_SIZE]; 3320 struct nat_entry_set *setvec[SETVEC_SIZE]; 3321 nid_t nid = 0; 3322 unsigned int found; 3323 3324 if (!nm_i) 3325 return; 3326 3327 /* destroy free nid list */ 3328 spin_lock(&nm_i->nid_list_lock); 3329 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3330 __remove_free_nid(sbi, i, FREE_NID); 3331 spin_unlock(&nm_i->nid_list_lock); 3332 kmem_cache_free(free_nid_slab, i); 3333 spin_lock(&nm_i->nid_list_lock); 3334 } 3335 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3336 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3337 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3338 spin_unlock(&nm_i->nid_list_lock); 3339 3340 /* destroy nat cache */ 3341 f2fs_down_write(&nm_i->nat_tree_lock); 3342 while ((found = __gang_lookup_nat_cache(nm_i, 3343 nid, NATVEC_SIZE, natvec))) { 3344 unsigned idx; 3345 3346 nid = nat_get_nid(natvec[found - 1]) + 1; 3347 for (idx = 0; idx < found; idx++) { 3348 spin_lock(&nm_i->nat_list_lock); 3349 list_del(&natvec[idx]->list); 3350 spin_unlock(&nm_i->nat_list_lock); 3351 3352 __del_from_nat_cache(nm_i, natvec[idx]); 3353 } 3354 } 3355 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3356 3357 /* destroy nat set cache */ 3358 nid = 0; 3359 while ((found = __gang_lookup_nat_set(nm_i, 3360 nid, SETVEC_SIZE, setvec))) { 3361 unsigned idx; 3362 3363 nid = setvec[found - 1]->set + 1; 3364 for (idx = 0; idx < found; idx++) { 3365 /* entry_cnt is not zero, when cp_error was occurred */ 3366 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3367 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3368 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3369 } 3370 } 3371 f2fs_up_write(&nm_i->nat_tree_lock); 3372 3373 kvfree(nm_i->nat_block_bitmap); 3374 if (nm_i->free_nid_bitmap) { 3375 int i; 3376 3377 for (i = 0; i < nm_i->nat_blocks; i++) 3378 kvfree(nm_i->free_nid_bitmap[i]); 3379 kvfree(nm_i->free_nid_bitmap); 3380 } 3381 kvfree(nm_i->free_nid_count); 3382 3383 kvfree(nm_i->nat_bitmap); 3384 kvfree(nm_i->nat_bits); 3385 #ifdef CONFIG_F2FS_CHECK_FS 3386 kvfree(nm_i->nat_bitmap_mir); 3387 #endif 3388 sbi->nm_info = NULL; 3389 kfree(nm_i); 3390 } 3391 3392 int __init f2fs_create_node_manager_caches(void) 3393 { 3394 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3395 sizeof(struct nat_entry)); 3396 if (!nat_entry_slab) 3397 goto fail; 3398 3399 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3400 sizeof(struct free_nid)); 3401 if (!free_nid_slab) 3402 goto destroy_nat_entry; 3403 3404 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3405 sizeof(struct nat_entry_set)); 3406 if (!nat_entry_set_slab) 3407 goto destroy_free_nid; 3408 3409 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3410 sizeof(struct fsync_node_entry)); 3411 if (!fsync_node_entry_slab) 3412 goto destroy_nat_entry_set; 3413 return 0; 3414 3415 destroy_nat_entry_set: 3416 kmem_cache_destroy(nat_entry_set_slab); 3417 destroy_free_nid: 3418 kmem_cache_destroy(free_nid_slab); 3419 destroy_nat_entry: 3420 kmem_cache_destroy(nat_entry_slab); 3421 fail: 3422 return -ENOMEM; 3423 } 3424 3425 void f2fs_destroy_node_manager_caches(void) 3426 { 3427 kmem_cache_destroy(fsync_node_entry_slab); 3428 kmem_cache_destroy(nat_entry_set_slab); 3429 kmem_cache_destroy(free_nid_slab); 3430 kmem_cache_destroy(nat_entry_slab); 3431 } 3432