xref: /openbmc/linux/fs/f2fs/gc.c (revision c765ceda78f0bd9df1217f9beaefea58ecf3865c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/gc.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/f2fs_fs.h>
12 #include <linux/kthread.h>
13 #include <linux/delay.h>
14 #include <linux/freezer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/random.h>
17 #include <linux/sched/mm.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "gc.h"
23 #include "iostat.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *victim_entry_slab;
27 
28 static unsigned int count_bits(const unsigned long *addr,
29 				unsigned int offset, unsigned int len);
30 
31 static int gc_thread_func(void *data)
32 {
33 	struct f2fs_sb_info *sbi = data;
34 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 	wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
37 	unsigned int wait_ms;
38 	struct f2fs_gc_control gc_control = {
39 		.victim_segno = NULL_SEGNO,
40 		.should_migrate_blocks = false,
41 		.err_gc_skipped = false };
42 
43 	wait_ms = gc_th->min_sleep_time;
44 
45 	set_freezable();
46 	do {
47 		bool sync_mode, foreground = false;
48 
49 		wait_event_interruptible_timeout(*wq,
50 				kthread_should_stop() || freezing(current) ||
51 				waitqueue_active(fggc_wq) ||
52 				gc_th->gc_wake,
53 				msecs_to_jiffies(wait_ms));
54 
55 		if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
56 			foreground = true;
57 
58 		/* give it a try one time */
59 		if (gc_th->gc_wake)
60 			gc_th->gc_wake = 0;
61 
62 		if (try_to_freeze()) {
63 			stat_other_skip_bggc_count(sbi);
64 			continue;
65 		}
66 		if (kthread_should_stop())
67 			break;
68 
69 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70 			increase_sleep_time(gc_th, &wait_ms);
71 			stat_other_skip_bggc_count(sbi);
72 			continue;
73 		}
74 
75 		if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
76 			f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
77 			f2fs_stop_checkpoint(sbi, false,
78 					STOP_CP_REASON_FAULT_INJECT);
79 		}
80 
81 		if (!sb_start_write_trylock(sbi->sb)) {
82 			stat_other_skip_bggc_count(sbi);
83 			continue;
84 		}
85 
86 		/*
87 		 * [GC triggering condition]
88 		 * 0. GC is not conducted currently.
89 		 * 1. There are enough dirty segments.
90 		 * 2. IO subsystem is idle by checking the # of writeback pages.
91 		 * 3. IO subsystem is idle by checking the # of requests in
92 		 *    bdev's request list.
93 		 *
94 		 * Note) We have to avoid triggering GCs frequently.
95 		 * Because it is possible that some segments can be
96 		 * invalidated soon after by user update or deletion.
97 		 * So, I'd like to wait some time to collect dirty segments.
98 		 */
99 		if (sbi->gc_mode == GC_URGENT_HIGH ||
100 				sbi->gc_mode == GC_URGENT_MID) {
101 			wait_ms = gc_th->urgent_sleep_time;
102 			f2fs_down_write(&sbi->gc_lock);
103 			goto do_gc;
104 		}
105 
106 		if (foreground) {
107 			f2fs_down_write(&sbi->gc_lock);
108 			goto do_gc;
109 		} else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
110 			stat_other_skip_bggc_count(sbi);
111 			goto next;
112 		}
113 
114 		if (!is_idle(sbi, GC_TIME)) {
115 			increase_sleep_time(gc_th, &wait_ms);
116 			f2fs_up_write(&sbi->gc_lock);
117 			stat_io_skip_bggc_count(sbi);
118 			goto next;
119 		}
120 
121 		if (has_enough_invalid_blocks(sbi))
122 			decrease_sleep_time(gc_th, &wait_ms);
123 		else
124 			increase_sleep_time(gc_th, &wait_ms);
125 do_gc:
126 		if (!foreground)
127 			stat_inc_bggc_count(sbi->stat_info);
128 
129 		sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
130 
131 		/* foreground GC was been triggered via f2fs_balance_fs() */
132 		if (foreground)
133 			sync_mode = false;
134 
135 		gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
136 		gc_control.no_bg_gc = foreground;
137 		gc_control.nr_free_secs = foreground ? 1 : 0;
138 
139 		/* if return value is not zero, no victim was selected */
140 		if (f2fs_gc(sbi, &gc_control)) {
141 			/* don't bother wait_ms by foreground gc */
142 			if (!foreground)
143 				wait_ms = gc_th->no_gc_sleep_time;
144 		} else {
145 			/* reset wait_ms to default sleep time */
146 			if (wait_ms == gc_th->no_gc_sleep_time)
147 				wait_ms = gc_th->min_sleep_time;
148 		}
149 
150 		if (foreground)
151 			wake_up_all(&gc_th->fggc_wq);
152 
153 		trace_f2fs_background_gc(sbi->sb, wait_ms,
154 				prefree_segments(sbi), free_segments(sbi));
155 
156 		/* balancing f2fs's metadata periodically */
157 		f2fs_balance_fs_bg(sbi, true);
158 next:
159 		if (sbi->gc_mode != GC_NORMAL) {
160 			spin_lock(&sbi->gc_remaining_trials_lock);
161 			if (sbi->gc_remaining_trials) {
162 				sbi->gc_remaining_trials--;
163 				if (!sbi->gc_remaining_trials)
164 					sbi->gc_mode = GC_NORMAL;
165 			}
166 			spin_unlock(&sbi->gc_remaining_trials_lock);
167 		}
168 		sb_end_write(sbi->sb);
169 
170 	} while (!kthread_should_stop());
171 	return 0;
172 }
173 
174 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
175 {
176 	struct f2fs_gc_kthread *gc_th;
177 	dev_t dev = sbi->sb->s_bdev->bd_dev;
178 
179 	gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
180 	if (!gc_th)
181 		return -ENOMEM;
182 
183 	gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
184 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
185 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
186 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
187 
188 	gc_th->gc_wake = 0;
189 
190 	sbi->gc_thread = gc_th;
191 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
192 	init_waitqueue_head(&sbi->gc_thread->fggc_wq);
193 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
194 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
195 	if (IS_ERR(gc_th->f2fs_gc_task)) {
196 		int err = PTR_ERR(gc_th->f2fs_gc_task);
197 
198 		kfree(gc_th);
199 		sbi->gc_thread = NULL;
200 		return err;
201 	}
202 
203 	return 0;
204 }
205 
206 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
207 {
208 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
209 
210 	if (!gc_th)
211 		return;
212 	kthread_stop(gc_th->f2fs_gc_task);
213 	wake_up_all(&gc_th->fggc_wq);
214 	kfree(gc_th);
215 	sbi->gc_thread = NULL;
216 }
217 
218 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
219 {
220 	int gc_mode;
221 
222 	if (gc_type == BG_GC) {
223 		if (sbi->am.atgc_enabled)
224 			gc_mode = GC_AT;
225 		else
226 			gc_mode = GC_CB;
227 	} else {
228 		gc_mode = GC_GREEDY;
229 	}
230 
231 	switch (sbi->gc_mode) {
232 	case GC_IDLE_CB:
233 		gc_mode = GC_CB;
234 		break;
235 	case GC_IDLE_GREEDY:
236 	case GC_URGENT_HIGH:
237 		gc_mode = GC_GREEDY;
238 		break;
239 	case GC_IDLE_AT:
240 		gc_mode = GC_AT;
241 		break;
242 	}
243 
244 	return gc_mode;
245 }
246 
247 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
248 			int type, struct victim_sel_policy *p)
249 {
250 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
251 
252 	if (p->alloc_mode == SSR) {
253 		p->gc_mode = GC_GREEDY;
254 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
255 		p->max_search = dirty_i->nr_dirty[type];
256 		p->ofs_unit = 1;
257 	} else if (p->alloc_mode == AT_SSR) {
258 		p->gc_mode = GC_GREEDY;
259 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
260 		p->max_search = dirty_i->nr_dirty[type];
261 		p->ofs_unit = 1;
262 	} else {
263 		p->gc_mode = select_gc_type(sbi, gc_type);
264 		p->ofs_unit = sbi->segs_per_sec;
265 		if (__is_large_section(sbi)) {
266 			p->dirty_bitmap = dirty_i->dirty_secmap;
267 			p->max_search = count_bits(p->dirty_bitmap,
268 						0, MAIN_SECS(sbi));
269 		} else {
270 			p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
271 			p->max_search = dirty_i->nr_dirty[DIRTY];
272 		}
273 	}
274 
275 	/*
276 	 * adjust candidates range, should select all dirty segments for
277 	 * foreground GC and urgent GC cases.
278 	 */
279 	if (gc_type != FG_GC &&
280 			(sbi->gc_mode != GC_URGENT_HIGH) &&
281 			(p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
282 			p->max_search > sbi->max_victim_search)
283 		p->max_search = sbi->max_victim_search;
284 
285 	/* let's select beginning hot/small space first in no_heap mode*/
286 	if (f2fs_need_rand_seg(sbi))
287 		p->offset = get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
288 	else if (test_opt(sbi, NOHEAP) &&
289 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
290 		p->offset = 0;
291 	else
292 		p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
293 }
294 
295 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
296 				struct victim_sel_policy *p)
297 {
298 	/* SSR allocates in a segment unit */
299 	if (p->alloc_mode == SSR)
300 		return sbi->blocks_per_seg;
301 	else if (p->alloc_mode == AT_SSR)
302 		return UINT_MAX;
303 
304 	/* LFS */
305 	if (p->gc_mode == GC_GREEDY)
306 		return 2 * sbi->blocks_per_seg * p->ofs_unit;
307 	else if (p->gc_mode == GC_CB)
308 		return UINT_MAX;
309 	else if (p->gc_mode == GC_AT)
310 		return UINT_MAX;
311 	else /* No other gc_mode */
312 		return 0;
313 }
314 
315 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
316 {
317 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
318 	unsigned int secno;
319 
320 	/*
321 	 * If the gc_type is FG_GC, we can select victim segments
322 	 * selected by background GC before.
323 	 * Those segments guarantee they have small valid blocks.
324 	 */
325 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
326 		if (sec_usage_check(sbi, secno))
327 			continue;
328 		clear_bit(secno, dirty_i->victim_secmap);
329 		return GET_SEG_FROM_SEC(sbi, secno);
330 	}
331 	return NULL_SEGNO;
332 }
333 
334 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
335 {
336 	struct sit_info *sit_i = SIT_I(sbi);
337 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
338 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
339 	unsigned long long mtime = 0;
340 	unsigned int vblocks;
341 	unsigned char age = 0;
342 	unsigned char u;
343 	unsigned int i;
344 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
345 
346 	for (i = 0; i < usable_segs_per_sec; i++)
347 		mtime += get_seg_entry(sbi, start + i)->mtime;
348 	vblocks = get_valid_blocks(sbi, segno, true);
349 
350 	mtime = div_u64(mtime, usable_segs_per_sec);
351 	vblocks = div_u64(vblocks, usable_segs_per_sec);
352 
353 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
354 
355 	/* Handle if the system time has changed by the user */
356 	if (mtime < sit_i->min_mtime)
357 		sit_i->min_mtime = mtime;
358 	if (mtime > sit_i->max_mtime)
359 		sit_i->max_mtime = mtime;
360 	if (sit_i->max_mtime != sit_i->min_mtime)
361 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
362 				sit_i->max_mtime - sit_i->min_mtime);
363 
364 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
365 }
366 
367 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
368 			unsigned int segno, struct victim_sel_policy *p)
369 {
370 	if (p->alloc_mode == SSR)
371 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
372 
373 	/* alloc_mode == LFS */
374 	if (p->gc_mode == GC_GREEDY)
375 		return get_valid_blocks(sbi, segno, true);
376 	else if (p->gc_mode == GC_CB)
377 		return get_cb_cost(sbi, segno);
378 
379 	f2fs_bug_on(sbi, 1);
380 	return 0;
381 }
382 
383 static unsigned int count_bits(const unsigned long *addr,
384 				unsigned int offset, unsigned int len)
385 {
386 	unsigned int end = offset + len, sum = 0;
387 
388 	while (offset < end) {
389 		if (test_bit(offset++, addr))
390 			++sum;
391 	}
392 	return sum;
393 }
394 
395 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi,
396 				unsigned long long mtime, unsigned int segno,
397 				struct rb_node *parent, struct rb_node **p,
398 				bool left_most)
399 {
400 	struct atgc_management *am = &sbi->am;
401 	struct victim_entry *ve;
402 
403 	ve =  f2fs_kmem_cache_alloc(victim_entry_slab,
404 				GFP_NOFS, true, NULL);
405 
406 	ve->mtime = mtime;
407 	ve->segno = segno;
408 
409 	rb_link_node(&ve->rb_node, parent, p);
410 	rb_insert_color_cached(&ve->rb_node, &am->root, left_most);
411 
412 	list_add_tail(&ve->list, &am->victim_list);
413 
414 	am->victim_count++;
415 
416 	return ve;
417 }
418 
419 static void insert_victim_entry(struct f2fs_sb_info *sbi,
420 				unsigned long long mtime, unsigned int segno)
421 {
422 	struct atgc_management *am = &sbi->am;
423 	struct rb_node **p;
424 	struct rb_node *parent = NULL;
425 	bool left_most = true;
426 
427 	p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most);
428 	attach_victim_entry(sbi, mtime, segno, parent, p, left_most);
429 }
430 
431 static void add_victim_entry(struct f2fs_sb_info *sbi,
432 				struct victim_sel_policy *p, unsigned int segno)
433 {
434 	struct sit_info *sit_i = SIT_I(sbi);
435 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
436 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
437 	unsigned long long mtime = 0;
438 	unsigned int i;
439 
440 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
441 		if (p->gc_mode == GC_AT &&
442 			get_valid_blocks(sbi, segno, true) == 0)
443 			return;
444 	}
445 
446 	for (i = 0; i < sbi->segs_per_sec; i++)
447 		mtime += get_seg_entry(sbi, start + i)->mtime;
448 	mtime = div_u64(mtime, sbi->segs_per_sec);
449 
450 	/* Handle if the system time has changed by the user */
451 	if (mtime < sit_i->min_mtime)
452 		sit_i->min_mtime = mtime;
453 	if (mtime > sit_i->max_mtime)
454 		sit_i->max_mtime = mtime;
455 	if (mtime < sit_i->dirty_min_mtime)
456 		sit_i->dirty_min_mtime = mtime;
457 	if (mtime > sit_i->dirty_max_mtime)
458 		sit_i->dirty_max_mtime = mtime;
459 
460 	/* don't choose young section as candidate */
461 	if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
462 		return;
463 
464 	insert_victim_entry(sbi, mtime, segno);
465 }
466 
467 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi,
468 						struct victim_sel_policy *p)
469 {
470 	struct atgc_management *am = &sbi->am;
471 	struct rb_node *parent = NULL;
472 	bool left_most;
473 
474 	f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most);
475 
476 	return parent;
477 }
478 
479 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
480 						struct victim_sel_policy *p)
481 {
482 	struct sit_info *sit_i = SIT_I(sbi);
483 	struct atgc_management *am = &sbi->am;
484 	struct rb_root_cached *root = &am->root;
485 	struct rb_node *node;
486 	struct rb_entry *re;
487 	struct victim_entry *ve;
488 	unsigned long long total_time;
489 	unsigned long long age, u, accu;
490 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
491 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
492 	unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
493 	unsigned int vblocks;
494 	unsigned int dirty_threshold = max(am->max_candidate_count,
495 					am->candidate_ratio *
496 					am->victim_count / 100);
497 	unsigned int age_weight = am->age_weight;
498 	unsigned int cost;
499 	unsigned int iter = 0;
500 
501 	if (max_mtime < min_mtime)
502 		return;
503 
504 	max_mtime += 1;
505 	total_time = max_mtime - min_mtime;
506 
507 	accu = div64_u64(ULLONG_MAX, total_time);
508 	accu = min_t(unsigned long long, div_u64(accu, 100),
509 					DEFAULT_ACCURACY_CLASS);
510 
511 	node = rb_first_cached(root);
512 next:
513 	re = rb_entry_safe(node, struct rb_entry, rb_node);
514 	if (!re)
515 		return;
516 
517 	ve = (struct victim_entry *)re;
518 
519 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
520 		goto skip;
521 
522 	/* age = 10000 * x% * 60 */
523 	age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
524 								age_weight;
525 
526 	vblocks = get_valid_blocks(sbi, ve->segno, true);
527 	f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
528 
529 	/* u = 10000 * x% * 40 */
530 	u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
531 							(100 - age_weight);
532 
533 	f2fs_bug_on(sbi, age + u >= UINT_MAX);
534 
535 	cost = UINT_MAX - (age + u);
536 	iter++;
537 
538 	if (cost < p->min_cost ||
539 			(cost == p->min_cost && age > p->oldest_age)) {
540 		p->min_cost = cost;
541 		p->oldest_age = age;
542 		p->min_segno = ve->segno;
543 	}
544 skip:
545 	if (iter < dirty_threshold) {
546 		node = rb_next(node);
547 		goto next;
548 	}
549 }
550 
551 /*
552  * select candidates around source section in range of
553  * [target - dirty_threshold, target + dirty_threshold]
554  */
555 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
556 						struct victim_sel_policy *p)
557 {
558 	struct sit_info *sit_i = SIT_I(sbi);
559 	struct atgc_management *am = &sbi->am;
560 	struct rb_node *node;
561 	struct rb_entry *re;
562 	struct victim_entry *ve;
563 	unsigned long long age;
564 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
565 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
566 	unsigned int seg_blocks = sbi->blocks_per_seg;
567 	unsigned int vblocks;
568 	unsigned int dirty_threshold = max(am->max_candidate_count,
569 					am->candidate_ratio *
570 					am->victim_count / 100);
571 	unsigned int cost;
572 	unsigned int iter = 0;
573 	int stage = 0;
574 
575 	if (max_mtime < min_mtime)
576 		return;
577 	max_mtime += 1;
578 next_stage:
579 	node = lookup_central_victim(sbi, p);
580 next_node:
581 	re = rb_entry_safe(node, struct rb_entry, rb_node);
582 	if (!re) {
583 		if (stage == 0)
584 			goto skip_stage;
585 		return;
586 	}
587 
588 	ve = (struct victim_entry *)re;
589 
590 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
591 		goto skip_node;
592 
593 	age = max_mtime - ve->mtime;
594 
595 	vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
596 	f2fs_bug_on(sbi, !vblocks);
597 
598 	/* rare case */
599 	if (vblocks == seg_blocks)
600 		goto skip_node;
601 
602 	iter++;
603 
604 	age = max_mtime - abs(p->age - age);
605 	cost = UINT_MAX - vblocks;
606 
607 	if (cost < p->min_cost ||
608 			(cost == p->min_cost && age > p->oldest_age)) {
609 		p->min_cost = cost;
610 		p->oldest_age = age;
611 		p->min_segno = ve->segno;
612 	}
613 skip_node:
614 	if (iter < dirty_threshold) {
615 		if (stage == 0)
616 			node = rb_prev(node);
617 		else if (stage == 1)
618 			node = rb_next(node);
619 		goto next_node;
620 	}
621 skip_stage:
622 	if (stage < 1) {
623 		stage++;
624 		iter = 0;
625 		goto next_stage;
626 	}
627 }
628 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
629 						struct victim_sel_policy *p)
630 {
631 	f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
632 						&sbi->am.root, true));
633 
634 	if (p->gc_mode == GC_AT)
635 		atgc_lookup_victim(sbi, p);
636 	else if (p->alloc_mode == AT_SSR)
637 		atssr_lookup_victim(sbi, p);
638 	else
639 		f2fs_bug_on(sbi, 1);
640 }
641 
642 static void release_victim_entry(struct f2fs_sb_info *sbi)
643 {
644 	struct atgc_management *am = &sbi->am;
645 	struct victim_entry *ve, *tmp;
646 
647 	list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
648 		list_del(&ve->list);
649 		kmem_cache_free(victim_entry_slab, ve);
650 		am->victim_count--;
651 	}
652 
653 	am->root = RB_ROOT_CACHED;
654 
655 	f2fs_bug_on(sbi, am->victim_count);
656 	f2fs_bug_on(sbi, !list_empty(&am->victim_list));
657 }
658 
659 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
660 {
661 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
662 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
663 
664 	if (!dirty_i->enable_pin_section)
665 		return false;
666 	if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
667 		dirty_i->pinned_secmap_cnt++;
668 	return true;
669 }
670 
671 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
672 {
673 	return dirty_i->pinned_secmap_cnt;
674 }
675 
676 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
677 						unsigned int secno)
678 {
679 	return dirty_i->enable_pin_section &&
680 		f2fs_pinned_section_exists(dirty_i) &&
681 		test_bit(secno, dirty_i->pinned_secmap);
682 }
683 
684 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
685 {
686 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
687 
688 	if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
689 		memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
690 		DIRTY_I(sbi)->pinned_secmap_cnt = 0;
691 	}
692 	DIRTY_I(sbi)->enable_pin_section = enable;
693 }
694 
695 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
696 							unsigned int segno)
697 {
698 	if (!f2fs_is_pinned_file(inode))
699 		return 0;
700 	if (gc_type != FG_GC)
701 		return -EBUSY;
702 	if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
703 		f2fs_pin_file_control(inode, true);
704 	return -EAGAIN;
705 }
706 
707 /*
708  * This function is called from two paths.
709  * One is garbage collection and the other is SSR segment selection.
710  * When it is called during GC, it just gets a victim segment
711  * and it does not remove it from dirty seglist.
712  * When it is called from SSR segment selection, it finds a segment
713  * which has minimum valid blocks and removes it from dirty seglist.
714  */
715 static int get_victim_by_default(struct f2fs_sb_info *sbi,
716 			unsigned int *result, int gc_type, int type,
717 			char alloc_mode, unsigned long long age)
718 {
719 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
720 	struct sit_info *sm = SIT_I(sbi);
721 	struct victim_sel_policy p;
722 	unsigned int secno, last_victim;
723 	unsigned int last_segment;
724 	unsigned int nsearched;
725 	bool is_atgc;
726 	int ret = 0;
727 
728 	mutex_lock(&dirty_i->seglist_lock);
729 	last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
730 
731 	p.alloc_mode = alloc_mode;
732 	p.age = age;
733 	p.age_threshold = sbi->am.age_threshold;
734 
735 retry:
736 	select_policy(sbi, gc_type, type, &p);
737 	p.min_segno = NULL_SEGNO;
738 	p.oldest_age = 0;
739 	p.min_cost = get_max_cost(sbi, &p);
740 
741 	is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
742 	nsearched = 0;
743 
744 	if (is_atgc)
745 		SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
746 
747 	if (*result != NULL_SEGNO) {
748 		if (!get_valid_blocks(sbi, *result, false)) {
749 			ret = -ENODATA;
750 			goto out;
751 		}
752 
753 		if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
754 			ret = -EBUSY;
755 		else
756 			p.min_segno = *result;
757 		goto out;
758 	}
759 
760 	ret = -ENODATA;
761 	if (p.max_search == 0)
762 		goto out;
763 
764 	if (__is_large_section(sbi) && p.alloc_mode == LFS) {
765 		if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
766 			p.min_segno = sbi->next_victim_seg[BG_GC];
767 			*result = p.min_segno;
768 			sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
769 			goto got_result;
770 		}
771 		if (gc_type == FG_GC &&
772 				sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
773 			p.min_segno = sbi->next_victim_seg[FG_GC];
774 			*result = p.min_segno;
775 			sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
776 			goto got_result;
777 		}
778 	}
779 
780 	last_victim = sm->last_victim[p.gc_mode];
781 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
782 		p.min_segno = check_bg_victims(sbi);
783 		if (p.min_segno != NULL_SEGNO)
784 			goto got_it;
785 	}
786 
787 	while (1) {
788 		unsigned long cost, *dirty_bitmap;
789 		unsigned int unit_no, segno;
790 
791 		dirty_bitmap = p.dirty_bitmap;
792 		unit_no = find_next_bit(dirty_bitmap,
793 				last_segment / p.ofs_unit,
794 				p.offset / p.ofs_unit);
795 		segno = unit_no * p.ofs_unit;
796 		if (segno >= last_segment) {
797 			if (sm->last_victim[p.gc_mode]) {
798 				last_segment =
799 					sm->last_victim[p.gc_mode];
800 				sm->last_victim[p.gc_mode] = 0;
801 				p.offset = 0;
802 				continue;
803 			}
804 			break;
805 		}
806 
807 		p.offset = segno + p.ofs_unit;
808 		nsearched++;
809 
810 #ifdef CONFIG_F2FS_CHECK_FS
811 		/*
812 		 * skip selecting the invalid segno (that is failed due to block
813 		 * validity check failure during GC) to avoid endless GC loop in
814 		 * such cases.
815 		 */
816 		if (test_bit(segno, sm->invalid_segmap))
817 			goto next;
818 #endif
819 
820 		secno = GET_SEC_FROM_SEG(sbi, segno);
821 
822 		if (sec_usage_check(sbi, secno))
823 			goto next;
824 
825 		/* Don't touch checkpointed data */
826 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
827 			if (p.alloc_mode == LFS) {
828 				/*
829 				 * LFS is set to find source section during GC.
830 				 * The victim should have no checkpointed data.
831 				 */
832 				if (get_ckpt_valid_blocks(sbi, segno, true))
833 					goto next;
834 			} else {
835 				/*
836 				 * SSR | AT_SSR are set to find target segment
837 				 * for writes which can be full by checkpointed
838 				 * and newly written blocks.
839 				 */
840 				if (!f2fs_segment_has_free_slot(sbi, segno))
841 					goto next;
842 			}
843 		}
844 
845 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
846 			goto next;
847 
848 		if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
849 			goto next;
850 
851 		if (is_atgc) {
852 			add_victim_entry(sbi, &p, segno);
853 			goto next;
854 		}
855 
856 		cost = get_gc_cost(sbi, segno, &p);
857 
858 		if (p.min_cost > cost) {
859 			p.min_segno = segno;
860 			p.min_cost = cost;
861 		}
862 next:
863 		if (nsearched >= p.max_search) {
864 			if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
865 				sm->last_victim[p.gc_mode] =
866 					last_victim + p.ofs_unit;
867 			else
868 				sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
869 			sm->last_victim[p.gc_mode] %=
870 				(MAIN_SECS(sbi) * sbi->segs_per_sec);
871 			break;
872 		}
873 	}
874 
875 	/* get victim for GC_AT/AT_SSR */
876 	if (is_atgc) {
877 		lookup_victim_by_age(sbi, &p);
878 		release_victim_entry(sbi);
879 	}
880 
881 	if (is_atgc && p.min_segno == NULL_SEGNO &&
882 			sm->elapsed_time < p.age_threshold) {
883 		p.age_threshold = 0;
884 		goto retry;
885 	}
886 
887 	if (p.min_segno != NULL_SEGNO) {
888 got_it:
889 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
890 got_result:
891 		if (p.alloc_mode == LFS) {
892 			secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
893 			if (gc_type == FG_GC)
894 				sbi->cur_victim_sec = secno;
895 			else
896 				set_bit(secno, dirty_i->victim_secmap);
897 		}
898 		ret = 0;
899 
900 	}
901 out:
902 	if (p.min_segno != NULL_SEGNO)
903 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
904 				sbi->cur_victim_sec,
905 				prefree_segments(sbi), free_segments(sbi));
906 	mutex_unlock(&dirty_i->seglist_lock);
907 
908 	return ret;
909 }
910 
911 static const struct victim_selection default_v_ops = {
912 	.get_victim = get_victim_by_default,
913 };
914 
915 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
916 {
917 	struct inode_entry *ie;
918 
919 	ie = radix_tree_lookup(&gc_list->iroot, ino);
920 	if (ie)
921 		return ie->inode;
922 	return NULL;
923 }
924 
925 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
926 {
927 	struct inode_entry *new_ie;
928 
929 	if (inode == find_gc_inode(gc_list, inode->i_ino)) {
930 		iput(inode);
931 		return;
932 	}
933 	new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
934 					GFP_NOFS, true, NULL);
935 	new_ie->inode = inode;
936 
937 	f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
938 	list_add_tail(&new_ie->list, &gc_list->ilist);
939 }
940 
941 static void put_gc_inode(struct gc_inode_list *gc_list)
942 {
943 	struct inode_entry *ie, *next_ie;
944 
945 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
946 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
947 		iput(ie->inode);
948 		list_del(&ie->list);
949 		kmem_cache_free(f2fs_inode_entry_slab, ie);
950 	}
951 }
952 
953 static int check_valid_map(struct f2fs_sb_info *sbi,
954 				unsigned int segno, int offset)
955 {
956 	struct sit_info *sit_i = SIT_I(sbi);
957 	struct seg_entry *sentry;
958 	int ret;
959 
960 	down_read(&sit_i->sentry_lock);
961 	sentry = get_seg_entry(sbi, segno);
962 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
963 	up_read(&sit_i->sentry_lock);
964 	return ret;
965 }
966 
967 /*
968  * This function compares node address got in summary with that in NAT.
969  * On validity, copy that node with cold status, otherwise (invalid node)
970  * ignore that.
971  */
972 static int gc_node_segment(struct f2fs_sb_info *sbi,
973 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
974 {
975 	struct f2fs_summary *entry;
976 	block_t start_addr;
977 	int off;
978 	int phase = 0;
979 	bool fggc = (gc_type == FG_GC);
980 	int submitted = 0;
981 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
982 
983 	start_addr = START_BLOCK(sbi, segno);
984 
985 next_step:
986 	entry = sum;
987 
988 	if (fggc && phase == 2)
989 		atomic_inc(&sbi->wb_sync_req[NODE]);
990 
991 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
992 		nid_t nid = le32_to_cpu(entry->nid);
993 		struct page *node_page;
994 		struct node_info ni;
995 		int err;
996 
997 		/* stop BG_GC if there is not enough free sections. */
998 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
999 			return submitted;
1000 
1001 		if (check_valid_map(sbi, segno, off) == 0)
1002 			continue;
1003 
1004 		if (phase == 0) {
1005 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1006 							META_NAT, true);
1007 			continue;
1008 		}
1009 
1010 		if (phase == 1) {
1011 			f2fs_ra_node_page(sbi, nid);
1012 			continue;
1013 		}
1014 
1015 		/* phase == 2 */
1016 		node_page = f2fs_get_node_page(sbi, nid);
1017 		if (IS_ERR(node_page))
1018 			continue;
1019 
1020 		/* block may become invalid during f2fs_get_node_page */
1021 		if (check_valid_map(sbi, segno, off) == 0) {
1022 			f2fs_put_page(node_page, 1);
1023 			continue;
1024 		}
1025 
1026 		if (f2fs_get_node_info(sbi, nid, &ni, false)) {
1027 			f2fs_put_page(node_page, 1);
1028 			continue;
1029 		}
1030 
1031 		if (ni.blk_addr != start_addr + off) {
1032 			f2fs_put_page(node_page, 1);
1033 			continue;
1034 		}
1035 
1036 		err = f2fs_move_node_page(node_page, gc_type);
1037 		if (!err && gc_type == FG_GC)
1038 			submitted++;
1039 		stat_inc_node_blk_count(sbi, 1, gc_type);
1040 	}
1041 
1042 	if (++phase < 3)
1043 		goto next_step;
1044 
1045 	if (fggc)
1046 		atomic_dec(&sbi->wb_sync_req[NODE]);
1047 	return submitted;
1048 }
1049 
1050 /*
1051  * Calculate start block index indicating the given node offset.
1052  * Be careful, caller should give this node offset only indicating direct node
1053  * blocks. If any node offsets, which point the other types of node blocks such
1054  * as indirect or double indirect node blocks, are given, it must be a caller's
1055  * bug.
1056  */
1057 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1058 {
1059 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1060 	unsigned int bidx;
1061 
1062 	if (node_ofs == 0)
1063 		return 0;
1064 
1065 	if (node_ofs <= 2) {
1066 		bidx = node_ofs - 1;
1067 	} else if (node_ofs <= indirect_blks) {
1068 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1069 
1070 		bidx = node_ofs - 2 - dec;
1071 	} else {
1072 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1073 
1074 		bidx = node_ofs - 5 - dec;
1075 	}
1076 	return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1077 }
1078 
1079 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1080 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1081 {
1082 	struct page *node_page;
1083 	nid_t nid;
1084 	unsigned int ofs_in_node, max_addrs, base;
1085 	block_t source_blkaddr;
1086 
1087 	nid = le32_to_cpu(sum->nid);
1088 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1089 
1090 	node_page = f2fs_get_node_page(sbi, nid);
1091 	if (IS_ERR(node_page))
1092 		return false;
1093 
1094 	if (f2fs_get_node_info(sbi, nid, dni, false)) {
1095 		f2fs_put_page(node_page, 1);
1096 		return false;
1097 	}
1098 
1099 	if (sum->version != dni->version) {
1100 		f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1101 			  __func__);
1102 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1103 	}
1104 
1105 	if (f2fs_check_nid_range(sbi, dni->ino)) {
1106 		f2fs_put_page(node_page, 1);
1107 		return false;
1108 	}
1109 
1110 	if (IS_INODE(node_page)) {
1111 		base = offset_in_addr(F2FS_INODE(node_page));
1112 		max_addrs = DEF_ADDRS_PER_INODE;
1113 	} else {
1114 		base = 0;
1115 		max_addrs = DEF_ADDRS_PER_BLOCK;
1116 	}
1117 
1118 	if (base + ofs_in_node >= max_addrs) {
1119 		f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u",
1120 			base, ofs_in_node, max_addrs, dni->ino, dni->nid);
1121 		f2fs_put_page(node_page, 1);
1122 		return false;
1123 	}
1124 
1125 	*nofs = ofs_of_node(node_page);
1126 	source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1127 	f2fs_put_page(node_page, 1);
1128 
1129 	if (source_blkaddr != blkaddr) {
1130 #ifdef CONFIG_F2FS_CHECK_FS
1131 		unsigned int segno = GET_SEGNO(sbi, blkaddr);
1132 		unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1133 
1134 		if (unlikely(check_valid_map(sbi, segno, offset))) {
1135 			if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1136 				f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1137 					 blkaddr, source_blkaddr, segno);
1138 				set_sbi_flag(sbi, SBI_NEED_FSCK);
1139 			}
1140 		}
1141 #endif
1142 		return false;
1143 	}
1144 	return true;
1145 }
1146 
1147 static int ra_data_block(struct inode *inode, pgoff_t index)
1148 {
1149 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1150 	struct address_space *mapping = inode->i_mapping;
1151 	struct dnode_of_data dn;
1152 	struct page *page;
1153 	struct extent_info ei = {0, };
1154 	struct f2fs_io_info fio = {
1155 		.sbi = sbi,
1156 		.ino = inode->i_ino,
1157 		.type = DATA,
1158 		.temp = COLD,
1159 		.op = REQ_OP_READ,
1160 		.op_flags = 0,
1161 		.encrypted_page = NULL,
1162 		.in_list = false,
1163 		.retry = false,
1164 	};
1165 	int err;
1166 
1167 	page = f2fs_grab_cache_page(mapping, index, true);
1168 	if (!page)
1169 		return -ENOMEM;
1170 
1171 	if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1172 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1173 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1174 						DATA_GENERIC_ENHANCE_READ))) {
1175 			err = -EFSCORRUPTED;
1176 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1177 			goto put_page;
1178 		}
1179 		goto got_it;
1180 	}
1181 
1182 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1183 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1184 	if (err)
1185 		goto put_page;
1186 	f2fs_put_dnode(&dn);
1187 
1188 	if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1189 		err = -ENOENT;
1190 		goto put_page;
1191 	}
1192 	if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1193 						DATA_GENERIC_ENHANCE))) {
1194 		err = -EFSCORRUPTED;
1195 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1196 		goto put_page;
1197 	}
1198 got_it:
1199 	/* read page */
1200 	fio.page = page;
1201 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1202 
1203 	/*
1204 	 * don't cache encrypted data into meta inode until previous dirty
1205 	 * data were writebacked to avoid racing between GC and flush.
1206 	 */
1207 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1208 
1209 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1210 
1211 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1212 					dn.data_blkaddr,
1213 					FGP_LOCK | FGP_CREAT, GFP_NOFS);
1214 	if (!fio.encrypted_page) {
1215 		err = -ENOMEM;
1216 		goto put_page;
1217 	}
1218 
1219 	err = f2fs_submit_page_bio(&fio);
1220 	if (err)
1221 		goto put_encrypted_page;
1222 	f2fs_put_page(fio.encrypted_page, 0);
1223 	f2fs_put_page(page, 1);
1224 
1225 	f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
1226 	f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1227 
1228 	return 0;
1229 put_encrypted_page:
1230 	f2fs_put_page(fio.encrypted_page, 1);
1231 put_page:
1232 	f2fs_put_page(page, 1);
1233 	return err;
1234 }
1235 
1236 /*
1237  * Move data block via META_MAPPING while keeping locked data page.
1238  * This can be used to move blocks, aka LBAs, directly on disk.
1239  */
1240 static int move_data_block(struct inode *inode, block_t bidx,
1241 				int gc_type, unsigned int segno, int off)
1242 {
1243 	struct f2fs_io_info fio = {
1244 		.sbi = F2FS_I_SB(inode),
1245 		.ino = inode->i_ino,
1246 		.type = DATA,
1247 		.temp = COLD,
1248 		.op = REQ_OP_READ,
1249 		.op_flags = 0,
1250 		.encrypted_page = NULL,
1251 		.in_list = false,
1252 		.retry = false,
1253 	};
1254 	struct dnode_of_data dn;
1255 	struct f2fs_summary sum;
1256 	struct node_info ni;
1257 	struct page *page, *mpage;
1258 	block_t newaddr;
1259 	int err = 0;
1260 	bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1261 	int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1262 				(fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1263 				CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1264 
1265 	/* do not read out */
1266 	page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1267 	if (!page)
1268 		return -ENOMEM;
1269 
1270 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1271 		err = -ENOENT;
1272 		goto out;
1273 	}
1274 
1275 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1276 	if (err)
1277 		goto out;
1278 
1279 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1280 	err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1281 	if (err)
1282 		goto out;
1283 
1284 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1285 		ClearPageUptodate(page);
1286 		err = -ENOENT;
1287 		goto put_out;
1288 	}
1289 
1290 	/*
1291 	 * don't cache encrypted data into meta inode until previous dirty
1292 	 * data were writebacked to avoid racing between GC and flush.
1293 	 */
1294 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1295 
1296 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1297 
1298 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1299 	if (err)
1300 		goto put_out;
1301 
1302 	/* read page */
1303 	fio.page = page;
1304 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1305 
1306 	if (lfs_mode)
1307 		f2fs_down_write(&fio.sbi->io_order_lock);
1308 
1309 	mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1310 					fio.old_blkaddr, false);
1311 	if (!mpage) {
1312 		err = -ENOMEM;
1313 		goto up_out;
1314 	}
1315 
1316 	fio.encrypted_page = mpage;
1317 
1318 	/* read source block in mpage */
1319 	if (!PageUptodate(mpage)) {
1320 		err = f2fs_submit_page_bio(&fio);
1321 		if (err) {
1322 			f2fs_put_page(mpage, 1);
1323 			goto up_out;
1324 		}
1325 
1326 		f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO,
1327 							F2FS_BLKSIZE);
1328 		f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO,
1329 							F2FS_BLKSIZE);
1330 
1331 		lock_page(mpage);
1332 		if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1333 						!PageUptodate(mpage))) {
1334 			err = -EIO;
1335 			f2fs_put_page(mpage, 1);
1336 			goto up_out;
1337 		}
1338 	}
1339 
1340 	set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1341 
1342 	/* allocate block address */
1343 	f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1344 				&sum, type, NULL);
1345 
1346 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1347 				newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1348 	if (!fio.encrypted_page) {
1349 		err = -ENOMEM;
1350 		f2fs_put_page(mpage, 1);
1351 		goto recover_block;
1352 	}
1353 
1354 	/* write target block */
1355 	f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1356 	memcpy(page_address(fio.encrypted_page),
1357 				page_address(mpage), PAGE_SIZE);
1358 	f2fs_put_page(mpage, 1);
1359 	invalidate_mapping_pages(META_MAPPING(fio.sbi),
1360 				fio.old_blkaddr, fio.old_blkaddr);
1361 	f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr);
1362 
1363 	set_page_dirty(fio.encrypted_page);
1364 	if (clear_page_dirty_for_io(fio.encrypted_page))
1365 		dec_page_count(fio.sbi, F2FS_DIRTY_META);
1366 
1367 	set_page_writeback(fio.encrypted_page);
1368 	ClearPageError(page);
1369 
1370 	fio.op = REQ_OP_WRITE;
1371 	fio.op_flags = REQ_SYNC;
1372 	fio.new_blkaddr = newaddr;
1373 	f2fs_submit_page_write(&fio);
1374 	if (fio.retry) {
1375 		err = -EAGAIN;
1376 		if (PageWriteback(fio.encrypted_page))
1377 			end_page_writeback(fio.encrypted_page);
1378 		goto put_page_out;
1379 	}
1380 
1381 	f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE);
1382 
1383 	f2fs_update_data_blkaddr(&dn, newaddr);
1384 	set_inode_flag(inode, FI_APPEND_WRITE);
1385 	if (page->index == 0)
1386 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1387 put_page_out:
1388 	f2fs_put_page(fio.encrypted_page, 1);
1389 recover_block:
1390 	if (err)
1391 		f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1392 							true, true, true);
1393 up_out:
1394 	if (lfs_mode)
1395 		f2fs_up_write(&fio.sbi->io_order_lock);
1396 put_out:
1397 	f2fs_put_dnode(&dn);
1398 out:
1399 	f2fs_put_page(page, 1);
1400 	return err;
1401 }
1402 
1403 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1404 							unsigned int segno, int off)
1405 {
1406 	struct page *page;
1407 	int err = 0;
1408 
1409 	page = f2fs_get_lock_data_page(inode, bidx, true);
1410 	if (IS_ERR(page))
1411 		return PTR_ERR(page);
1412 
1413 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1414 		err = -ENOENT;
1415 		goto out;
1416 	}
1417 
1418 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1419 	if (err)
1420 		goto out;
1421 
1422 	if (gc_type == BG_GC) {
1423 		if (PageWriteback(page)) {
1424 			err = -EAGAIN;
1425 			goto out;
1426 		}
1427 		set_page_dirty(page);
1428 		set_page_private_gcing(page);
1429 	} else {
1430 		struct f2fs_io_info fio = {
1431 			.sbi = F2FS_I_SB(inode),
1432 			.ino = inode->i_ino,
1433 			.type = DATA,
1434 			.temp = COLD,
1435 			.op = REQ_OP_WRITE,
1436 			.op_flags = REQ_SYNC,
1437 			.old_blkaddr = NULL_ADDR,
1438 			.page = page,
1439 			.encrypted_page = NULL,
1440 			.need_lock = LOCK_REQ,
1441 			.io_type = FS_GC_DATA_IO,
1442 		};
1443 		bool is_dirty = PageDirty(page);
1444 
1445 retry:
1446 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1447 
1448 		set_page_dirty(page);
1449 		if (clear_page_dirty_for_io(page)) {
1450 			inode_dec_dirty_pages(inode);
1451 			f2fs_remove_dirty_inode(inode);
1452 		}
1453 
1454 		set_page_private_gcing(page);
1455 
1456 		err = f2fs_do_write_data_page(&fio);
1457 		if (err) {
1458 			clear_page_private_gcing(page);
1459 			if (err == -ENOMEM) {
1460 				memalloc_retry_wait(GFP_NOFS);
1461 				goto retry;
1462 			}
1463 			if (is_dirty)
1464 				set_page_dirty(page);
1465 		}
1466 	}
1467 out:
1468 	f2fs_put_page(page, 1);
1469 	return err;
1470 }
1471 
1472 /*
1473  * This function tries to get parent node of victim data block, and identifies
1474  * data block validity. If the block is valid, copy that with cold status and
1475  * modify parent node.
1476  * If the parent node is not valid or the data block address is different,
1477  * the victim data block is ignored.
1478  */
1479 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1480 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1481 		bool force_migrate)
1482 {
1483 	struct super_block *sb = sbi->sb;
1484 	struct f2fs_summary *entry;
1485 	block_t start_addr;
1486 	int off;
1487 	int phase = 0;
1488 	int submitted = 0;
1489 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1490 
1491 	start_addr = START_BLOCK(sbi, segno);
1492 
1493 next_step:
1494 	entry = sum;
1495 
1496 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1497 		struct page *data_page;
1498 		struct inode *inode;
1499 		struct node_info dni; /* dnode info for the data */
1500 		unsigned int ofs_in_node, nofs;
1501 		block_t start_bidx;
1502 		nid_t nid = le32_to_cpu(entry->nid);
1503 
1504 		/*
1505 		 * stop BG_GC if there is not enough free sections.
1506 		 * Or, stop GC if the segment becomes fully valid caused by
1507 		 * race condition along with SSR block allocation.
1508 		 */
1509 		if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1510 			(!force_migrate && get_valid_blocks(sbi, segno, true) ==
1511 							CAP_BLKS_PER_SEC(sbi)))
1512 			return submitted;
1513 
1514 		if (check_valid_map(sbi, segno, off) == 0)
1515 			continue;
1516 
1517 		if (phase == 0) {
1518 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1519 							META_NAT, true);
1520 			continue;
1521 		}
1522 
1523 		if (phase == 1) {
1524 			f2fs_ra_node_page(sbi, nid);
1525 			continue;
1526 		}
1527 
1528 		/* Get an inode by ino with checking validity */
1529 		if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1530 			continue;
1531 
1532 		if (phase == 2) {
1533 			f2fs_ra_node_page(sbi, dni.ino);
1534 			continue;
1535 		}
1536 
1537 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1538 
1539 		if (phase == 3) {
1540 			int err;
1541 
1542 			inode = f2fs_iget(sb, dni.ino);
1543 			if (IS_ERR(inode) || is_bad_inode(inode) ||
1544 					special_file(inode->i_mode))
1545 				continue;
1546 
1547 			err = f2fs_gc_pinned_control(inode, gc_type, segno);
1548 			if (err == -EAGAIN) {
1549 				iput(inode);
1550 				return submitted;
1551 			}
1552 
1553 			if (!f2fs_down_write_trylock(
1554 				&F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1555 				iput(inode);
1556 				sbi->skipped_gc_rwsem++;
1557 				continue;
1558 			}
1559 
1560 			start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1561 								ofs_in_node;
1562 
1563 			if (f2fs_post_read_required(inode)) {
1564 				int err = ra_data_block(inode, start_bidx);
1565 
1566 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1567 				if (err) {
1568 					iput(inode);
1569 					continue;
1570 				}
1571 				add_gc_inode(gc_list, inode);
1572 				continue;
1573 			}
1574 
1575 			data_page = f2fs_get_read_data_page(inode, start_bidx,
1576 							REQ_RAHEAD, true, NULL);
1577 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1578 			if (IS_ERR(data_page)) {
1579 				iput(inode);
1580 				continue;
1581 			}
1582 
1583 			f2fs_put_page(data_page, 0);
1584 			add_gc_inode(gc_list, inode);
1585 			continue;
1586 		}
1587 
1588 		/* phase 4 */
1589 		inode = find_gc_inode(gc_list, dni.ino);
1590 		if (inode) {
1591 			struct f2fs_inode_info *fi = F2FS_I(inode);
1592 			bool locked = false;
1593 			int err;
1594 
1595 			if (S_ISREG(inode->i_mode)) {
1596 				if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) {
1597 					sbi->skipped_gc_rwsem++;
1598 					continue;
1599 				}
1600 				if (!f2fs_down_write_trylock(
1601 						&fi->i_gc_rwsem[WRITE])) {
1602 					sbi->skipped_gc_rwsem++;
1603 					f2fs_up_write(&fi->i_gc_rwsem[READ]);
1604 					continue;
1605 				}
1606 				locked = true;
1607 
1608 				/* wait for all inflight aio data */
1609 				inode_dio_wait(inode);
1610 			}
1611 
1612 			start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1613 								+ ofs_in_node;
1614 			if (f2fs_post_read_required(inode))
1615 				err = move_data_block(inode, start_bidx,
1616 							gc_type, segno, off);
1617 			else
1618 				err = move_data_page(inode, start_bidx, gc_type,
1619 								segno, off);
1620 
1621 			if (!err && (gc_type == FG_GC ||
1622 					f2fs_post_read_required(inode)))
1623 				submitted++;
1624 
1625 			if (locked) {
1626 				f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1627 				f2fs_up_write(&fi->i_gc_rwsem[READ]);
1628 			}
1629 
1630 			stat_inc_data_blk_count(sbi, 1, gc_type);
1631 		}
1632 	}
1633 
1634 	if (++phase < 5)
1635 		goto next_step;
1636 
1637 	return submitted;
1638 }
1639 
1640 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1641 			int gc_type)
1642 {
1643 	struct sit_info *sit_i = SIT_I(sbi);
1644 	int ret;
1645 
1646 	down_write(&sit_i->sentry_lock);
1647 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1648 					      NO_CHECK_TYPE, LFS, 0);
1649 	up_write(&sit_i->sentry_lock);
1650 	return ret;
1651 }
1652 
1653 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1654 				unsigned int start_segno,
1655 				struct gc_inode_list *gc_list, int gc_type,
1656 				bool force_migrate)
1657 {
1658 	struct page *sum_page;
1659 	struct f2fs_summary_block *sum;
1660 	struct blk_plug plug;
1661 	unsigned int segno = start_segno;
1662 	unsigned int end_segno = start_segno + sbi->segs_per_sec;
1663 	int seg_freed = 0, migrated = 0;
1664 	unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1665 						SUM_TYPE_DATA : SUM_TYPE_NODE;
1666 	int submitted = 0;
1667 
1668 	if (__is_large_section(sbi))
1669 		end_segno = rounddown(end_segno, sbi->segs_per_sec);
1670 
1671 	/*
1672 	 * zone-capacity can be less than zone-size in zoned devices,
1673 	 * resulting in less than expected usable segments in the zone,
1674 	 * calculate the end segno in the zone which can be garbage collected
1675 	 */
1676 	if (f2fs_sb_has_blkzoned(sbi))
1677 		end_segno -= sbi->segs_per_sec -
1678 					f2fs_usable_segs_in_sec(sbi, segno);
1679 
1680 	sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1681 
1682 	/* readahead multi ssa blocks those have contiguous address */
1683 	if (__is_large_section(sbi))
1684 		f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1685 					end_segno - segno, META_SSA, true);
1686 
1687 	/* reference all summary page */
1688 	while (segno < end_segno) {
1689 		sum_page = f2fs_get_sum_page(sbi, segno++);
1690 		if (IS_ERR(sum_page)) {
1691 			int err = PTR_ERR(sum_page);
1692 
1693 			end_segno = segno - 1;
1694 			for (segno = start_segno; segno < end_segno; segno++) {
1695 				sum_page = find_get_page(META_MAPPING(sbi),
1696 						GET_SUM_BLOCK(sbi, segno));
1697 				f2fs_put_page(sum_page, 0);
1698 				f2fs_put_page(sum_page, 0);
1699 			}
1700 			return err;
1701 		}
1702 		unlock_page(sum_page);
1703 	}
1704 
1705 	blk_start_plug(&plug);
1706 
1707 	for (segno = start_segno; segno < end_segno; segno++) {
1708 
1709 		/* find segment summary of victim */
1710 		sum_page = find_get_page(META_MAPPING(sbi),
1711 					GET_SUM_BLOCK(sbi, segno));
1712 		f2fs_put_page(sum_page, 0);
1713 
1714 		if (get_valid_blocks(sbi, segno, false) == 0)
1715 			goto freed;
1716 		if (gc_type == BG_GC && __is_large_section(sbi) &&
1717 				migrated >= sbi->migration_granularity)
1718 			goto skip;
1719 		if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1720 			goto skip;
1721 
1722 		sum = page_address(sum_page);
1723 		if (type != GET_SUM_TYPE((&sum->footer))) {
1724 			f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1725 				 segno, type, GET_SUM_TYPE((&sum->footer)));
1726 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1727 			f2fs_stop_checkpoint(sbi, false,
1728 				STOP_CP_REASON_CORRUPTED_SUMMARY);
1729 			goto skip;
1730 		}
1731 
1732 		/*
1733 		 * this is to avoid deadlock:
1734 		 * - lock_page(sum_page)         - f2fs_replace_block
1735 		 *  - check_valid_map()            - down_write(sentry_lock)
1736 		 *   - down_read(sentry_lock)     - change_curseg()
1737 		 *                                  - lock_page(sum_page)
1738 		 */
1739 		if (type == SUM_TYPE_NODE)
1740 			submitted += gc_node_segment(sbi, sum->entries, segno,
1741 								gc_type);
1742 		else
1743 			submitted += gc_data_segment(sbi, sum->entries, gc_list,
1744 							segno, gc_type,
1745 							force_migrate);
1746 
1747 		stat_inc_seg_count(sbi, type, gc_type);
1748 		sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1749 		migrated++;
1750 
1751 freed:
1752 		if (gc_type == FG_GC &&
1753 				get_valid_blocks(sbi, segno, false) == 0)
1754 			seg_freed++;
1755 
1756 		if (__is_large_section(sbi))
1757 			sbi->next_victim_seg[gc_type] =
1758 				(segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO;
1759 skip:
1760 		f2fs_put_page(sum_page, 0);
1761 	}
1762 
1763 	if (submitted)
1764 		f2fs_submit_merged_write(sbi,
1765 				(type == SUM_TYPE_NODE) ? NODE : DATA);
1766 
1767 	blk_finish_plug(&plug);
1768 
1769 	stat_inc_call_count(sbi->stat_info);
1770 
1771 	return seg_freed;
1772 }
1773 
1774 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1775 {
1776 	int gc_type = gc_control->init_gc_type;
1777 	unsigned int segno = gc_control->victim_segno;
1778 	int sec_freed = 0, seg_freed = 0, total_freed = 0;
1779 	int ret = 0;
1780 	struct cp_control cpc;
1781 	struct gc_inode_list gc_list = {
1782 		.ilist = LIST_HEAD_INIT(gc_list.ilist),
1783 		.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1784 	};
1785 	unsigned int skipped_round = 0, round = 0;
1786 
1787 	trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc,
1788 				gc_control->nr_free_secs,
1789 				get_pages(sbi, F2FS_DIRTY_NODES),
1790 				get_pages(sbi, F2FS_DIRTY_DENTS),
1791 				get_pages(sbi, F2FS_DIRTY_IMETA),
1792 				free_sections(sbi),
1793 				free_segments(sbi),
1794 				reserved_segments(sbi),
1795 				prefree_segments(sbi));
1796 
1797 	cpc.reason = __get_cp_reason(sbi);
1798 	sbi->skipped_gc_rwsem = 0;
1799 gc_more:
1800 	if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1801 		ret = -EINVAL;
1802 		goto stop;
1803 	}
1804 	if (unlikely(f2fs_cp_error(sbi))) {
1805 		ret = -EIO;
1806 		goto stop;
1807 	}
1808 
1809 	if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1810 		/*
1811 		 * For example, if there are many prefree_segments below given
1812 		 * threshold, we can make them free by checkpoint. Then, we
1813 		 * secure free segments which doesn't need fggc any more.
1814 		 */
1815 		if (prefree_segments(sbi)) {
1816 			ret = f2fs_write_checkpoint(sbi, &cpc);
1817 			if (ret)
1818 				goto stop;
1819 		}
1820 		if (has_not_enough_free_secs(sbi, 0, 0))
1821 			gc_type = FG_GC;
1822 	}
1823 
1824 	/* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1825 	if (gc_type == BG_GC && gc_control->no_bg_gc) {
1826 		ret = -EINVAL;
1827 		goto stop;
1828 	}
1829 retry:
1830 	ret = __get_victim(sbi, &segno, gc_type);
1831 	if (ret) {
1832 		/* allow to search victim from sections has pinned data */
1833 		if (ret == -ENODATA && gc_type == FG_GC &&
1834 				f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1835 			f2fs_unpin_all_sections(sbi, false);
1836 			goto retry;
1837 		}
1838 		goto stop;
1839 	}
1840 
1841 	seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type,
1842 				gc_control->should_migrate_blocks);
1843 	total_freed += seg_freed;
1844 
1845 	if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
1846 		sec_freed++;
1847 
1848 	if (gc_type == FG_GC)
1849 		sbi->cur_victim_sec = NULL_SEGNO;
1850 
1851 	if (gc_control->init_gc_type == FG_GC ||
1852 	    !has_not_enough_free_secs(sbi,
1853 				(gc_type == FG_GC) ? sec_freed : 0, 0)) {
1854 		if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs)
1855 			goto go_gc_more;
1856 		goto stop;
1857 	}
1858 
1859 	/* FG_GC stops GC by skip_count */
1860 	if (gc_type == FG_GC) {
1861 		if (sbi->skipped_gc_rwsem)
1862 			skipped_round++;
1863 		round++;
1864 		if (skipped_round > MAX_SKIP_GC_COUNT &&
1865 				skipped_round * 2 >= round) {
1866 			ret = f2fs_write_checkpoint(sbi, &cpc);
1867 			goto stop;
1868 		}
1869 	}
1870 
1871 	/* Write checkpoint to reclaim prefree segments */
1872 	if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE &&
1873 				prefree_segments(sbi)) {
1874 		ret = f2fs_write_checkpoint(sbi, &cpc);
1875 		if (ret)
1876 			goto stop;
1877 	}
1878 go_gc_more:
1879 	segno = NULL_SEGNO;
1880 	goto gc_more;
1881 
1882 stop:
1883 	SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1884 	SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1885 
1886 	if (gc_type == FG_GC)
1887 		f2fs_unpin_all_sections(sbi, true);
1888 
1889 	trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1890 				get_pages(sbi, F2FS_DIRTY_NODES),
1891 				get_pages(sbi, F2FS_DIRTY_DENTS),
1892 				get_pages(sbi, F2FS_DIRTY_IMETA),
1893 				free_sections(sbi),
1894 				free_segments(sbi),
1895 				reserved_segments(sbi),
1896 				prefree_segments(sbi));
1897 
1898 	f2fs_up_write(&sbi->gc_lock);
1899 
1900 	put_gc_inode(&gc_list);
1901 
1902 	if (gc_control->err_gc_skipped && !ret)
1903 		ret = sec_freed ? 0 : -EAGAIN;
1904 	return ret;
1905 }
1906 
1907 int __init f2fs_create_garbage_collection_cache(void)
1908 {
1909 	victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1910 					sizeof(struct victim_entry));
1911 	return victim_entry_slab ? 0 : -ENOMEM;
1912 }
1913 
1914 void f2fs_destroy_garbage_collection_cache(void)
1915 {
1916 	kmem_cache_destroy(victim_entry_slab);
1917 }
1918 
1919 static void init_atgc_management(struct f2fs_sb_info *sbi)
1920 {
1921 	struct atgc_management *am = &sbi->am;
1922 
1923 	if (test_opt(sbi, ATGC) &&
1924 		SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1925 		am->atgc_enabled = true;
1926 
1927 	am->root = RB_ROOT_CACHED;
1928 	INIT_LIST_HEAD(&am->victim_list);
1929 	am->victim_count = 0;
1930 
1931 	am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1932 	am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1933 	am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1934 	am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1935 }
1936 
1937 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1938 {
1939 	DIRTY_I(sbi)->v_ops = &default_v_ops;
1940 
1941 	sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1942 
1943 	/* give warm/cold data area from slower device */
1944 	if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1945 		SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1946 				GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1947 
1948 	init_atgc_management(sbi);
1949 }
1950 
1951 static int free_segment_range(struct f2fs_sb_info *sbi,
1952 				unsigned int secs, bool gc_only)
1953 {
1954 	unsigned int segno, next_inuse, start, end;
1955 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1956 	int gc_mode, gc_type;
1957 	int err = 0;
1958 	int type;
1959 
1960 	/* Force block allocation for GC */
1961 	MAIN_SECS(sbi) -= secs;
1962 	start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1963 	end = MAIN_SEGS(sbi) - 1;
1964 
1965 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1966 	for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1967 		if (SIT_I(sbi)->last_victim[gc_mode] >= start)
1968 			SIT_I(sbi)->last_victim[gc_mode] = 0;
1969 
1970 	for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1971 		if (sbi->next_victim_seg[gc_type] >= start)
1972 			sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1973 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1974 
1975 	/* Move out cursegs from the target range */
1976 	for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
1977 		f2fs_allocate_segment_for_resize(sbi, type, start, end);
1978 
1979 	/* do GC to move out valid blocks in the range */
1980 	for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1981 		struct gc_inode_list gc_list = {
1982 			.ilist = LIST_HEAD_INIT(gc_list.ilist),
1983 			.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1984 		};
1985 
1986 		do_garbage_collect(sbi, segno, &gc_list, FG_GC, true);
1987 		put_gc_inode(&gc_list);
1988 
1989 		if (!gc_only && get_valid_blocks(sbi, segno, true)) {
1990 			err = -EAGAIN;
1991 			goto out;
1992 		}
1993 		if (fatal_signal_pending(current)) {
1994 			err = -ERESTARTSYS;
1995 			goto out;
1996 		}
1997 	}
1998 	if (gc_only)
1999 		goto out;
2000 
2001 	err = f2fs_write_checkpoint(sbi, &cpc);
2002 	if (err)
2003 		goto out;
2004 
2005 	next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
2006 	if (next_inuse <= end) {
2007 		f2fs_err(sbi, "segno %u should be free but still inuse!",
2008 			 next_inuse);
2009 		f2fs_bug_on(sbi, 1);
2010 	}
2011 out:
2012 	MAIN_SECS(sbi) += secs;
2013 	return err;
2014 }
2015 
2016 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2017 {
2018 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2019 	int section_count;
2020 	int segment_count;
2021 	int segment_count_main;
2022 	long long block_count;
2023 	int segs = secs * sbi->segs_per_sec;
2024 
2025 	f2fs_down_write(&sbi->sb_lock);
2026 
2027 	section_count = le32_to_cpu(raw_sb->section_count);
2028 	segment_count = le32_to_cpu(raw_sb->segment_count);
2029 	segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2030 	block_count = le64_to_cpu(raw_sb->block_count);
2031 
2032 	raw_sb->section_count = cpu_to_le32(section_count + secs);
2033 	raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2034 	raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2035 	raw_sb->block_count = cpu_to_le64(block_count +
2036 					(long long)segs * sbi->blocks_per_seg);
2037 	if (f2fs_is_multi_device(sbi)) {
2038 		int last_dev = sbi->s_ndevs - 1;
2039 		int dev_segs =
2040 			le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2041 
2042 		raw_sb->devs[last_dev].total_segments =
2043 						cpu_to_le32(dev_segs + segs);
2044 	}
2045 
2046 	f2fs_up_write(&sbi->sb_lock);
2047 }
2048 
2049 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2050 {
2051 	int segs = secs * sbi->segs_per_sec;
2052 	long long blks = (long long)segs * sbi->blocks_per_seg;
2053 	long long user_block_count =
2054 				le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2055 
2056 	SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2057 	MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2058 	MAIN_SECS(sbi) += secs;
2059 	FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2060 	FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2061 	F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2062 
2063 	if (f2fs_is_multi_device(sbi)) {
2064 		int last_dev = sbi->s_ndevs - 1;
2065 
2066 		FDEV(last_dev).total_segments =
2067 				(int)FDEV(last_dev).total_segments + segs;
2068 		FDEV(last_dev).end_blk =
2069 				(long long)FDEV(last_dev).end_blk + blks;
2070 #ifdef CONFIG_BLK_DEV_ZONED
2071 		FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
2072 					(int)(blks >> sbi->log_blocks_per_blkz);
2073 #endif
2074 	}
2075 }
2076 
2077 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count)
2078 {
2079 	__u64 old_block_count, shrunk_blocks;
2080 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2081 	unsigned int secs;
2082 	int err = 0;
2083 	__u32 rem;
2084 
2085 	old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2086 	if (block_count > old_block_count)
2087 		return -EINVAL;
2088 
2089 	if (f2fs_is_multi_device(sbi)) {
2090 		int last_dev = sbi->s_ndevs - 1;
2091 		__u64 last_segs = FDEV(last_dev).total_segments;
2092 
2093 		if (block_count + last_segs * sbi->blocks_per_seg <=
2094 								old_block_count)
2095 			return -EINVAL;
2096 	}
2097 
2098 	/* new fs size should align to section size */
2099 	div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2100 	if (rem)
2101 		return -EINVAL;
2102 
2103 	if (block_count == old_block_count)
2104 		return 0;
2105 
2106 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2107 		f2fs_err(sbi, "Should run fsck to repair first.");
2108 		return -EFSCORRUPTED;
2109 	}
2110 
2111 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2112 		f2fs_err(sbi, "Checkpoint should be enabled.");
2113 		return -EINVAL;
2114 	}
2115 
2116 	shrunk_blocks = old_block_count - block_count;
2117 	secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2118 
2119 	/* stop other GC */
2120 	if (!f2fs_down_write_trylock(&sbi->gc_lock))
2121 		return -EAGAIN;
2122 
2123 	/* stop CP to protect MAIN_SEC in free_segment_range */
2124 	f2fs_lock_op(sbi);
2125 
2126 	spin_lock(&sbi->stat_lock);
2127 	if (shrunk_blocks + valid_user_blocks(sbi) +
2128 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2129 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2130 		err = -ENOSPC;
2131 	spin_unlock(&sbi->stat_lock);
2132 
2133 	if (err)
2134 		goto out_unlock;
2135 
2136 	err = free_segment_range(sbi, secs, true);
2137 
2138 out_unlock:
2139 	f2fs_unlock_op(sbi);
2140 	f2fs_up_write(&sbi->gc_lock);
2141 	if (err)
2142 		return err;
2143 
2144 	freeze_super(sbi->sb);
2145 	f2fs_down_write(&sbi->gc_lock);
2146 	f2fs_down_write(&sbi->cp_global_sem);
2147 
2148 	spin_lock(&sbi->stat_lock);
2149 	if (shrunk_blocks + valid_user_blocks(sbi) +
2150 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2151 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2152 		err = -ENOSPC;
2153 	else
2154 		sbi->user_block_count -= shrunk_blocks;
2155 	spin_unlock(&sbi->stat_lock);
2156 	if (err)
2157 		goto out_err;
2158 
2159 	set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2160 	err = free_segment_range(sbi, secs, false);
2161 	if (err)
2162 		goto recover_out;
2163 
2164 	update_sb_metadata(sbi, -secs);
2165 
2166 	err = f2fs_commit_super(sbi, false);
2167 	if (err) {
2168 		update_sb_metadata(sbi, secs);
2169 		goto recover_out;
2170 	}
2171 
2172 	update_fs_metadata(sbi, -secs);
2173 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2174 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2175 
2176 	err = f2fs_write_checkpoint(sbi, &cpc);
2177 	if (err) {
2178 		update_fs_metadata(sbi, secs);
2179 		update_sb_metadata(sbi, secs);
2180 		f2fs_commit_super(sbi, false);
2181 	}
2182 recover_out:
2183 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2184 	if (err) {
2185 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2186 		f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2187 
2188 		spin_lock(&sbi->stat_lock);
2189 		sbi->user_block_count += shrunk_blocks;
2190 		spin_unlock(&sbi->stat_lock);
2191 	}
2192 out_err:
2193 	f2fs_up_write(&sbi->cp_global_sem);
2194 	f2fs_up_write(&sbi->gc_lock);
2195 	thaw_super(sbi->sb);
2196 	return err;
2197 }
2198