xref: /openbmc/linux/fs/f2fs/gc.c (revision 6246ed09111fbb17168619006b4380103c6673c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/gc.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/f2fs_fs.h>
12 #include <linux/kthread.h>
13 #include <linux/delay.h>
14 #include <linux/freezer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/random.h>
17 #include <linux/sched/mm.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "gc.h"
23 #include "iostat.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *victim_entry_slab;
27 
28 static unsigned int count_bits(const unsigned long *addr,
29 				unsigned int offset, unsigned int len);
30 
31 static int gc_thread_func(void *data)
32 {
33 	struct f2fs_sb_info *sbi = data;
34 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 	wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
37 	unsigned int wait_ms;
38 	struct f2fs_gc_control gc_control = {
39 		.victim_segno = NULL_SEGNO,
40 		.should_migrate_blocks = false,
41 		.err_gc_skipped = false };
42 
43 	wait_ms = gc_th->min_sleep_time;
44 
45 	set_freezable();
46 	do {
47 		bool sync_mode, foreground = false;
48 
49 		wait_event_interruptible_timeout(*wq,
50 				kthread_should_stop() || freezing(current) ||
51 				waitqueue_active(fggc_wq) ||
52 				gc_th->gc_wake,
53 				msecs_to_jiffies(wait_ms));
54 
55 		if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
56 			foreground = true;
57 
58 		/* give it a try one time */
59 		if (gc_th->gc_wake)
60 			gc_th->gc_wake = 0;
61 
62 		if (try_to_freeze()) {
63 			stat_other_skip_bggc_count(sbi);
64 			continue;
65 		}
66 		if (kthread_should_stop())
67 			break;
68 
69 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70 			increase_sleep_time(gc_th, &wait_ms);
71 			stat_other_skip_bggc_count(sbi);
72 			continue;
73 		}
74 
75 		if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
76 			f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
77 			f2fs_stop_checkpoint(sbi, false);
78 		}
79 
80 		if (!sb_start_write_trylock(sbi->sb)) {
81 			stat_other_skip_bggc_count(sbi);
82 			continue;
83 		}
84 
85 		/*
86 		 * [GC triggering condition]
87 		 * 0. GC is not conducted currently.
88 		 * 1. There are enough dirty segments.
89 		 * 2. IO subsystem is idle by checking the # of writeback pages.
90 		 * 3. IO subsystem is idle by checking the # of requests in
91 		 *    bdev's request list.
92 		 *
93 		 * Note) We have to avoid triggering GCs frequently.
94 		 * Because it is possible that some segments can be
95 		 * invalidated soon after by user update or deletion.
96 		 * So, I'd like to wait some time to collect dirty segments.
97 		 */
98 		if (sbi->gc_mode == GC_URGENT_HIGH) {
99 			spin_lock(&sbi->gc_urgent_high_lock);
100 			if (sbi->gc_urgent_high_limited) {
101 				if (!sbi->gc_urgent_high_remaining) {
102 					sbi->gc_urgent_high_limited = false;
103 					spin_unlock(&sbi->gc_urgent_high_lock);
104 					sbi->gc_mode = GC_NORMAL;
105 					continue;
106 				}
107 				sbi->gc_urgent_high_remaining--;
108 			}
109 			spin_unlock(&sbi->gc_urgent_high_lock);
110 		}
111 
112 		if (sbi->gc_mode == GC_URGENT_HIGH ||
113 				sbi->gc_mode == GC_URGENT_MID) {
114 			wait_ms = gc_th->urgent_sleep_time;
115 			f2fs_down_write(&sbi->gc_lock);
116 			goto do_gc;
117 		}
118 
119 		if (foreground) {
120 			f2fs_down_write(&sbi->gc_lock);
121 			goto do_gc;
122 		} else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
123 			stat_other_skip_bggc_count(sbi);
124 			goto next;
125 		}
126 
127 		if (!is_idle(sbi, GC_TIME)) {
128 			increase_sleep_time(gc_th, &wait_ms);
129 			f2fs_up_write(&sbi->gc_lock);
130 			stat_io_skip_bggc_count(sbi);
131 			goto next;
132 		}
133 
134 		if (has_enough_invalid_blocks(sbi))
135 			decrease_sleep_time(gc_th, &wait_ms);
136 		else
137 			increase_sleep_time(gc_th, &wait_ms);
138 do_gc:
139 		if (!foreground)
140 			stat_inc_bggc_count(sbi->stat_info);
141 
142 		sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
143 
144 		/* foreground GC was been triggered via f2fs_balance_fs() */
145 		if (foreground)
146 			sync_mode = false;
147 
148 		gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
149 		gc_control.no_bg_gc = foreground;
150 		gc_control.nr_free_secs = foreground ? 1 : 0;
151 
152 		/* if return value is not zero, no victim was selected */
153 		if (f2fs_gc(sbi, &gc_control)) {
154 			/* don't bother wait_ms by foreground gc */
155 			if (!foreground)
156 				wait_ms = gc_th->no_gc_sleep_time;
157 		}
158 
159 		if (foreground)
160 			wake_up_all(&gc_th->fggc_wq);
161 
162 		trace_f2fs_background_gc(sbi->sb, wait_ms,
163 				prefree_segments(sbi), free_segments(sbi));
164 
165 		/* balancing f2fs's metadata periodically */
166 		f2fs_balance_fs_bg(sbi, true);
167 next:
168 		sb_end_write(sbi->sb);
169 
170 	} while (!kthread_should_stop());
171 	return 0;
172 }
173 
174 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
175 {
176 	struct f2fs_gc_kthread *gc_th;
177 	dev_t dev = sbi->sb->s_bdev->bd_dev;
178 	int err = 0;
179 
180 	gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
181 	if (!gc_th) {
182 		err = -ENOMEM;
183 		goto out;
184 	}
185 
186 	gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
187 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
188 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
189 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
190 
191 	gc_th->gc_wake = 0;
192 
193 	sbi->gc_thread = gc_th;
194 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
195 	init_waitqueue_head(&sbi->gc_thread->fggc_wq);
196 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
197 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
198 	if (IS_ERR(gc_th->f2fs_gc_task)) {
199 		err = PTR_ERR(gc_th->f2fs_gc_task);
200 		kfree(gc_th);
201 		sbi->gc_thread = NULL;
202 	}
203 out:
204 	return err;
205 }
206 
207 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
208 {
209 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
210 
211 	if (!gc_th)
212 		return;
213 	kthread_stop(gc_th->f2fs_gc_task);
214 	wake_up_all(&gc_th->fggc_wq);
215 	kfree(gc_th);
216 	sbi->gc_thread = NULL;
217 }
218 
219 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
220 {
221 	int gc_mode;
222 
223 	if (gc_type == BG_GC) {
224 		if (sbi->am.atgc_enabled)
225 			gc_mode = GC_AT;
226 		else
227 			gc_mode = GC_CB;
228 	} else {
229 		gc_mode = GC_GREEDY;
230 	}
231 
232 	switch (sbi->gc_mode) {
233 	case GC_IDLE_CB:
234 		gc_mode = GC_CB;
235 		break;
236 	case GC_IDLE_GREEDY:
237 	case GC_URGENT_HIGH:
238 		gc_mode = GC_GREEDY;
239 		break;
240 	case GC_IDLE_AT:
241 		gc_mode = GC_AT;
242 		break;
243 	}
244 
245 	return gc_mode;
246 }
247 
248 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
249 			int type, struct victim_sel_policy *p)
250 {
251 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
252 
253 	if (p->alloc_mode == SSR) {
254 		p->gc_mode = GC_GREEDY;
255 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
256 		p->max_search = dirty_i->nr_dirty[type];
257 		p->ofs_unit = 1;
258 	} else if (p->alloc_mode == AT_SSR) {
259 		p->gc_mode = GC_GREEDY;
260 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
261 		p->max_search = dirty_i->nr_dirty[type];
262 		p->ofs_unit = 1;
263 	} else {
264 		p->gc_mode = select_gc_type(sbi, gc_type);
265 		p->ofs_unit = sbi->segs_per_sec;
266 		if (__is_large_section(sbi)) {
267 			p->dirty_bitmap = dirty_i->dirty_secmap;
268 			p->max_search = count_bits(p->dirty_bitmap,
269 						0, MAIN_SECS(sbi));
270 		} else {
271 			p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
272 			p->max_search = dirty_i->nr_dirty[DIRTY];
273 		}
274 	}
275 
276 	/*
277 	 * adjust candidates range, should select all dirty segments for
278 	 * foreground GC and urgent GC cases.
279 	 */
280 	if (gc_type != FG_GC &&
281 			(sbi->gc_mode != GC_URGENT_HIGH) &&
282 			(p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
283 			p->max_search > sbi->max_victim_search)
284 		p->max_search = sbi->max_victim_search;
285 
286 	/* let's select beginning hot/small space first in no_heap mode*/
287 	if (f2fs_need_rand_seg(sbi))
288 		p->offset = prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
289 	else if (test_opt(sbi, NOHEAP) &&
290 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
291 		p->offset = 0;
292 	else
293 		p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
294 }
295 
296 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
297 				struct victim_sel_policy *p)
298 {
299 	/* SSR allocates in a segment unit */
300 	if (p->alloc_mode == SSR)
301 		return sbi->blocks_per_seg;
302 	else if (p->alloc_mode == AT_SSR)
303 		return UINT_MAX;
304 
305 	/* LFS */
306 	if (p->gc_mode == GC_GREEDY)
307 		return 2 * sbi->blocks_per_seg * p->ofs_unit;
308 	else if (p->gc_mode == GC_CB)
309 		return UINT_MAX;
310 	else if (p->gc_mode == GC_AT)
311 		return UINT_MAX;
312 	else /* No other gc_mode */
313 		return 0;
314 }
315 
316 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
317 {
318 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
319 	unsigned int secno;
320 
321 	/*
322 	 * If the gc_type is FG_GC, we can select victim segments
323 	 * selected by background GC before.
324 	 * Those segments guarantee they have small valid blocks.
325 	 */
326 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
327 		if (sec_usage_check(sbi, secno))
328 			continue;
329 		clear_bit(secno, dirty_i->victim_secmap);
330 		return GET_SEG_FROM_SEC(sbi, secno);
331 	}
332 	return NULL_SEGNO;
333 }
334 
335 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
336 {
337 	struct sit_info *sit_i = SIT_I(sbi);
338 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
339 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
340 	unsigned long long mtime = 0;
341 	unsigned int vblocks;
342 	unsigned char age = 0;
343 	unsigned char u;
344 	unsigned int i;
345 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
346 
347 	for (i = 0; i < usable_segs_per_sec; i++)
348 		mtime += get_seg_entry(sbi, start + i)->mtime;
349 	vblocks = get_valid_blocks(sbi, segno, true);
350 
351 	mtime = div_u64(mtime, usable_segs_per_sec);
352 	vblocks = div_u64(vblocks, usable_segs_per_sec);
353 
354 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
355 
356 	/* Handle if the system time has changed by the user */
357 	if (mtime < sit_i->min_mtime)
358 		sit_i->min_mtime = mtime;
359 	if (mtime > sit_i->max_mtime)
360 		sit_i->max_mtime = mtime;
361 	if (sit_i->max_mtime != sit_i->min_mtime)
362 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
363 				sit_i->max_mtime - sit_i->min_mtime);
364 
365 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
366 }
367 
368 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
369 			unsigned int segno, struct victim_sel_policy *p)
370 {
371 	if (p->alloc_mode == SSR)
372 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
373 
374 	/* alloc_mode == LFS */
375 	if (p->gc_mode == GC_GREEDY)
376 		return get_valid_blocks(sbi, segno, true);
377 	else if (p->gc_mode == GC_CB)
378 		return get_cb_cost(sbi, segno);
379 
380 	f2fs_bug_on(sbi, 1);
381 	return 0;
382 }
383 
384 static unsigned int count_bits(const unsigned long *addr,
385 				unsigned int offset, unsigned int len)
386 {
387 	unsigned int end = offset + len, sum = 0;
388 
389 	while (offset < end) {
390 		if (test_bit(offset++, addr))
391 			++sum;
392 	}
393 	return sum;
394 }
395 
396 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi,
397 				unsigned long long mtime, unsigned int segno,
398 				struct rb_node *parent, struct rb_node **p,
399 				bool left_most)
400 {
401 	struct atgc_management *am = &sbi->am;
402 	struct victim_entry *ve;
403 
404 	ve =  f2fs_kmem_cache_alloc(victim_entry_slab,
405 				GFP_NOFS, true, NULL);
406 
407 	ve->mtime = mtime;
408 	ve->segno = segno;
409 
410 	rb_link_node(&ve->rb_node, parent, p);
411 	rb_insert_color_cached(&ve->rb_node, &am->root, left_most);
412 
413 	list_add_tail(&ve->list, &am->victim_list);
414 
415 	am->victim_count++;
416 
417 	return ve;
418 }
419 
420 static void insert_victim_entry(struct f2fs_sb_info *sbi,
421 				unsigned long long mtime, unsigned int segno)
422 {
423 	struct atgc_management *am = &sbi->am;
424 	struct rb_node **p;
425 	struct rb_node *parent = NULL;
426 	bool left_most = true;
427 
428 	p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most);
429 	attach_victim_entry(sbi, mtime, segno, parent, p, left_most);
430 }
431 
432 static void add_victim_entry(struct f2fs_sb_info *sbi,
433 				struct victim_sel_policy *p, unsigned int segno)
434 {
435 	struct sit_info *sit_i = SIT_I(sbi);
436 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
437 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
438 	unsigned long long mtime = 0;
439 	unsigned int i;
440 
441 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
442 		if (p->gc_mode == GC_AT &&
443 			get_valid_blocks(sbi, segno, true) == 0)
444 			return;
445 	}
446 
447 	for (i = 0; i < sbi->segs_per_sec; i++)
448 		mtime += get_seg_entry(sbi, start + i)->mtime;
449 	mtime = div_u64(mtime, sbi->segs_per_sec);
450 
451 	/* Handle if the system time has changed by the user */
452 	if (mtime < sit_i->min_mtime)
453 		sit_i->min_mtime = mtime;
454 	if (mtime > sit_i->max_mtime)
455 		sit_i->max_mtime = mtime;
456 	if (mtime < sit_i->dirty_min_mtime)
457 		sit_i->dirty_min_mtime = mtime;
458 	if (mtime > sit_i->dirty_max_mtime)
459 		sit_i->dirty_max_mtime = mtime;
460 
461 	/* don't choose young section as candidate */
462 	if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
463 		return;
464 
465 	insert_victim_entry(sbi, mtime, segno);
466 }
467 
468 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi,
469 						struct victim_sel_policy *p)
470 {
471 	struct atgc_management *am = &sbi->am;
472 	struct rb_node *parent = NULL;
473 	bool left_most;
474 
475 	f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most);
476 
477 	return parent;
478 }
479 
480 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
481 						struct victim_sel_policy *p)
482 {
483 	struct sit_info *sit_i = SIT_I(sbi);
484 	struct atgc_management *am = &sbi->am;
485 	struct rb_root_cached *root = &am->root;
486 	struct rb_node *node;
487 	struct rb_entry *re;
488 	struct victim_entry *ve;
489 	unsigned long long total_time;
490 	unsigned long long age, u, accu;
491 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
492 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
493 	unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
494 	unsigned int vblocks;
495 	unsigned int dirty_threshold = max(am->max_candidate_count,
496 					am->candidate_ratio *
497 					am->victim_count / 100);
498 	unsigned int age_weight = am->age_weight;
499 	unsigned int cost;
500 	unsigned int iter = 0;
501 
502 	if (max_mtime < min_mtime)
503 		return;
504 
505 	max_mtime += 1;
506 	total_time = max_mtime - min_mtime;
507 
508 	accu = div64_u64(ULLONG_MAX, total_time);
509 	accu = min_t(unsigned long long, div_u64(accu, 100),
510 					DEFAULT_ACCURACY_CLASS);
511 
512 	node = rb_first_cached(root);
513 next:
514 	re = rb_entry_safe(node, struct rb_entry, rb_node);
515 	if (!re)
516 		return;
517 
518 	ve = (struct victim_entry *)re;
519 
520 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
521 		goto skip;
522 
523 	/* age = 10000 * x% * 60 */
524 	age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
525 								age_weight;
526 
527 	vblocks = get_valid_blocks(sbi, ve->segno, true);
528 	f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
529 
530 	/* u = 10000 * x% * 40 */
531 	u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
532 							(100 - age_weight);
533 
534 	f2fs_bug_on(sbi, age + u >= UINT_MAX);
535 
536 	cost = UINT_MAX - (age + u);
537 	iter++;
538 
539 	if (cost < p->min_cost ||
540 			(cost == p->min_cost && age > p->oldest_age)) {
541 		p->min_cost = cost;
542 		p->oldest_age = age;
543 		p->min_segno = ve->segno;
544 	}
545 skip:
546 	if (iter < dirty_threshold) {
547 		node = rb_next(node);
548 		goto next;
549 	}
550 }
551 
552 /*
553  * select candidates around source section in range of
554  * [target - dirty_threshold, target + dirty_threshold]
555  */
556 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
557 						struct victim_sel_policy *p)
558 {
559 	struct sit_info *sit_i = SIT_I(sbi);
560 	struct atgc_management *am = &sbi->am;
561 	struct rb_node *node;
562 	struct rb_entry *re;
563 	struct victim_entry *ve;
564 	unsigned long long age;
565 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
566 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
567 	unsigned int seg_blocks = sbi->blocks_per_seg;
568 	unsigned int vblocks;
569 	unsigned int dirty_threshold = max(am->max_candidate_count,
570 					am->candidate_ratio *
571 					am->victim_count / 100);
572 	unsigned int cost;
573 	unsigned int iter = 0;
574 	int stage = 0;
575 
576 	if (max_mtime < min_mtime)
577 		return;
578 	max_mtime += 1;
579 next_stage:
580 	node = lookup_central_victim(sbi, p);
581 next_node:
582 	re = rb_entry_safe(node, struct rb_entry, rb_node);
583 	if (!re) {
584 		if (stage == 0)
585 			goto skip_stage;
586 		return;
587 	}
588 
589 	ve = (struct victim_entry *)re;
590 
591 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
592 		goto skip_node;
593 
594 	age = max_mtime - ve->mtime;
595 
596 	vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
597 	f2fs_bug_on(sbi, !vblocks);
598 
599 	/* rare case */
600 	if (vblocks == seg_blocks)
601 		goto skip_node;
602 
603 	iter++;
604 
605 	age = max_mtime - abs(p->age - age);
606 	cost = UINT_MAX - vblocks;
607 
608 	if (cost < p->min_cost ||
609 			(cost == p->min_cost && age > p->oldest_age)) {
610 		p->min_cost = cost;
611 		p->oldest_age = age;
612 		p->min_segno = ve->segno;
613 	}
614 skip_node:
615 	if (iter < dirty_threshold) {
616 		if (stage == 0)
617 			node = rb_prev(node);
618 		else if (stage == 1)
619 			node = rb_next(node);
620 		goto next_node;
621 	}
622 skip_stage:
623 	if (stage < 1) {
624 		stage++;
625 		iter = 0;
626 		goto next_stage;
627 	}
628 }
629 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
630 						struct victim_sel_policy *p)
631 {
632 	f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
633 						&sbi->am.root, true));
634 
635 	if (p->gc_mode == GC_AT)
636 		atgc_lookup_victim(sbi, p);
637 	else if (p->alloc_mode == AT_SSR)
638 		atssr_lookup_victim(sbi, p);
639 	else
640 		f2fs_bug_on(sbi, 1);
641 }
642 
643 static void release_victim_entry(struct f2fs_sb_info *sbi)
644 {
645 	struct atgc_management *am = &sbi->am;
646 	struct victim_entry *ve, *tmp;
647 
648 	list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
649 		list_del(&ve->list);
650 		kmem_cache_free(victim_entry_slab, ve);
651 		am->victim_count--;
652 	}
653 
654 	am->root = RB_ROOT_CACHED;
655 
656 	f2fs_bug_on(sbi, am->victim_count);
657 	f2fs_bug_on(sbi, !list_empty(&am->victim_list));
658 }
659 
660 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
661 {
662 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
663 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
664 
665 	if (!dirty_i->enable_pin_section)
666 		return false;
667 	if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
668 		dirty_i->pinned_secmap_cnt++;
669 	return true;
670 }
671 
672 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
673 {
674 	return dirty_i->pinned_secmap_cnt;
675 }
676 
677 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
678 						unsigned int secno)
679 {
680 	return dirty_i->enable_pin_section &&
681 		f2fs_pinned_section_exists(dirty_i) &&
682 		test_bit(secno, dirty_i->pinned_secmap);
683 }
684 
685 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
686 {
687 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
688 
689 	if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
690 		memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
691 		DIRTY_I(sbi)->pinned_secmap_cnt = 0;
692 	}
693 	DIRTY_I(sbi)->enable_pin_section = enable;
694 }
695 
696 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
697 							unsigned int segno)
698 {
699 	if (!f2fs_is_pinned_file(inode))
700 		return 0;
701 	if (gc_type != FG_GC)
702 		return -EBUSY;
703 	if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
704 		f2fs_pin_file_control(inode, true);
705 	return -EAGAIN;
706 }
707 
708 /*
709  * This function is called from two paths.
710  * One is garbage collection and the other is SSR segment selection.
711  * When it is called during GC, it just gets a victim segment
712  * and it does not remove it from dirty seglist.
713  * When it is called from SSR segment selection, it finds a segment
714  * which has minimum valid blocks and removes it from dirty seglist.
715  */
716 static int get_victim_by_default(struct f2fs_sb_info *sbi,
717 			unsigned int *result, int gc_type, int type,
718 			char alloc_mode, unsigned long long age)
719 {
720 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
721 	struct sit_info *sm = SIT_I(sbi);
722 	struct victim_sel_policy p;
723 	unsigned int secno, last_victim;
724 	unsigned int last_segment;
725 	unsigned int nsearched;
726 	bool is_atgc;
727 	int ret = 0;
728 
729 	mutex_lock(&dirty_i->seglist_lock);
730 	last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
731 
732 	p.alloc_mode = alloc_mode;
733 	p.age = age;
734 	p.age_threshold = sbi->am.age_threshold;
735 
736 retry:
737 	select_policy(sbi, gc_type, type, &p);
738 	p.min_segno = NULL_SEGNO;
739 	p.oldest_age = 0;
740 	p.min_cost = get_max_cost(sbi, &p);
741 
742 	is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
743 	nsearched = 0;
744 
745 	if (is_atgc)
746 		SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
747 
748 	if (*result != NULL_SEGNO) {
749 		if (!get_valid_blocks(sbi, *result, false)) {
750 			ret = -ENODATA;
751 			goto out;
752 		}
753 
754 		if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
755 			ret = -EBUSY;
756 		else
757 			p.min_segno = *result;
758 		goto out;
759 	}
760 
761 	ret = -ENODATA;
762 	if (p.max_search == 0)
763 		goto out;
764 
765 	if (__is_large_section(sbi) && p.alloc_mode == LFS) {
766 		if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
767 			p.min_segno = sbi->next_victim_seg[BG_GC];
768 			*result = p.min_segno;
769 			sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
770 			goto got_result;
771 		}
772 		if (gc_type == FG_GC &&
773 				sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
774 			p.min_segno = sbi->next_victim_seg[FG_GC];
775 			*result = p.min_segno;
776 			sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
777 			goto got_result;
778 		}
779 	}
780 
781 	last_victim = sm->last_victim[p.gc_mode];
782 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
783 		p.min_segno = check_bg_victims(sbi);
784 		if (p.min_segno != NULL_SEGNO)
785 			goto got_it;
786 	}
787 
788 	while (1) {
789 		unsigned long cost, *dirty_bitmap;
790 		unsigned int unit_no, segno;
791 
792 		dirty_bitmap = p.dirty_bitmap;
793 		unit_no = find_next_bit(dirty_bitmap,
794 				last_segment / p.ofs_unit,
795 				p.offset / p.ofs_unit);
796 		segno = unit_no * p.ofs_unit;
797 		if (segno >= last_segment) {
798 			if (sm->last_victim[p.gc_mode]) {
799 				last_segment =
800 					sm->last_victim[p.gc_mode];
801 				sm->last_victim[p.gc_mode] = 0;
802 				p.offset = 0;
803 				continue;
804 			}
805 			break;
806 		}
807 
808 		p.offset = segno + p.ofs_unit;
809 		nsearched++;
810 
811 #ifdef CONFIG_F2FS_CHECK_FS
812 		/*
813 		 * skip selecting the invalid segno (that is failed due to block
814 		 * validity check failure during GC) to avoid endless GC loop in
815 		 * such cases.
816 		 */
817 		if (test_bit(segno, sm->invalid_segmap))
818 			goto next;
819 #endif
820 
821 		secno = GET_SEC_FROM_SEG(sbi, segno);
822 
823 		if (sec_usage_check(sbi, secno))
824 			goto next;
825 
826 		/* Don't touch checkpointed data */
827 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
828 			if (p.alloc_mode == LFS) {
829 				/*
830 				 * LFS is set to find source section during GC.
831 				 * The victim should have no checkpointed data.
832 				 */
833 				if (get_ckpt_valid_blocks(sbi, segno, true))
834 					goto next;
835 			} else {
836 				/*
837 				 * SSR | AT_SSR are set to find target segment
838 				 * for writes which can be full by checkpointed
839 				 * and newly written blocks.
840 				 */
841 				if (!f2fs_segment_has_free_slot(sbi, segno))
842 					goto next;
843 			}
844 		}
845 
846 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
847 			goto next;
848 
849 		if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
850 			goto next;
851 
852 		if (is_atgc) {
853 			add_victim_entry(sbi, &p, segno);
854 			goto next;
855 		}
856 
857 		cost = get_gc_cost(sbi, segno, &p);
858 
859 		if (p.min_cost > cost) {
860 			p.min_segno = segno;
861 			p.min_cost = cost;
862 		}
863 next:
864 		if (nsearched >= p.max_search) {
865 			if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
866 				sm->last_victim[p.gc_mode] =
867 					last_victim + p.ofs_unit;
868 			else
869 				sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
870 			sm->last_victim[p.gc_mode] %=
871 				(MAIN_SECS(sbi) * sbi->segs_per_sec);
872 			break;
873 		}
874 	}
875 
876 	/* get victim for GC_AT/AT_SSR */
877 	if (is_atgc) {
878 		lookup_victim_by_age(sbi, &p);
879 		release_victim_entry(sbi);
880 	}
881 
882 	if (is_atgc && p.min_segno == NULL_SEGNO &&
883 			sm->elapsed_time < p.age_threshold) {
884 		p.age_threshold = 0;
885 		goto retry;
886 	}
887 
888 	if (p.min_segno != NULL_SEGNO) {
889 got_it:
890 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
891 got_result:
892 		if (p.alloc_mode == LFS) {
893 			secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
894 			if (gc_type == FG_GC)
895 				sbi->cur_victim_sec = secno;
896 			else
897 				set_bit(secno, dirty_i->victim_secmap);
898 		}
899 		ret = 0;
900 
901 	}
902 out:
903 	if (p.min_segno != NULL_SEGNO)
904 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
905 				sbi->cur_victim_sec,
906 				prefree_segments(sbi), free_segments(sbi));
907 	mutex_unlock(&dirty_i->seglist_lock);
908 
909 	return ret;
910 }
911 
912 static const struct victim_selection default_v_ops = {
913 	.get_victim = get_victim_by_default,
914 };
915 
916 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
917 {
918 	struct inode_entry *ie;
919 
920 	ie = radix_tree_lookup(&gc_list->iroot, ino);
921 	if (ie)
922 		return ie->inode;
923 	return NULL;
924 }
925 
926 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
927 {
928 	struct inode_entry *new_ie;
929 
930 	if (inode == find_gc_inode(gc_list, inode->i_ino)) {
931 		iput(inode);
932 		return;
933 	}
934 	new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
935 					GFP_NOFS, true, NULL);
936 	new_ie->inode = inode;
937 
938 	f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
939 	list_add_tail(&new_ie->list, &gc_list->ilist);
940 }
941 
942 static void put_gc_inode(struct gc_inode_list *gc_list)
943 {
944 	struct inode_entry *ie, *next_ie;
945 
946 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
947 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
948 		iput(ie->inode);
949 		list_del(&ie->list);
950 		kmem_cache_free(f2fs_inode_entry_slab, ie);
951 	}
952 }
953 
954 static int check_valid_map(struct f2fs_sb_info *sbi,
955 				unsigned int segno, int offset)
956 {
957 	struct sit_info *sit_i = SIT_I(sbi);
958 	struct seg_entry *sentry;
959 	int ret;
960 
961 	down_read(&sit_i->sentry_lock);
962 	sentry = get_seg_entry(sbi, segno);
963 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
964 	up_read(&sit_i->sentry_lock);
965 	return ret;
966 }
967 
968 /*
969  * This function compares node address got in summary with that in NAT.
970  * On validity, copy that node with cold status, otherwise (invalid node)
971  * ignore that.
972  */
973 static int gc_node_segment(struct f2fs_sb_info *sbi,
974 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
975 {
976 	struct f2fs_summary *entry;
977 	block_t start_addr;
978 	int off;
979 	int phase = 0;
980 	bool fggc = (gc_type == FG_GC);
981 	int submitted = 0;
982 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
983 
984 	start_addr = START_BLOCK(sbi, segno);
985 
986 next_step:
987 	entry = sum;
988 
989 	if (fggc && phase == 2)
990 		atomic_inc(&sbi->wb_sync_req[NODE]);
991 
992 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
993 		nid_t nid = le32_to_cpu(entry->nid);
994 		struct page *node_page;
995 		struct node_info ni;
996 		int err;
997 
998 		/* stop BG_GC if there is not enough free sections. */
999 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
1000 			return submitted;
1001 
1002 		if (check_valid_map(sbi, segno, off) == 0)
1003 			continue;
1004 
1005 		if (phase == 0) {
1006 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1007 							META_NAT, true);
1008 			continue;
1009 		}
1010 
1011 		if (phase == 1) {
1012 			f2fs_ra_node_page(sbi, nid);
1013 			continue;
1014 		}
1015 
1016 		/* phase == 2 */
1017 		node_page = f2fs_get_node_page(sbi, nid);
1018 		if (IS_ERR(node_page))
1019 			continue;
1020 
1021 		/* block may become invalid during f2fs_get_node_page */
1022 		if (check_valid_map(sbi, segno, off) == 0) {
1023 			f2fs_put_page(node_page, 1);
1024 			continue;
1025 		}
1026 
1027 		if (f2fs_get_node_info(sbi, nid, &ni, false)) {
1028 			f2fs_put_page(node_page, 1);
1029 			continue;
1030 		}
1031 
1032 		if (ni.blk_addr != start_addr + off) {
1033 			f2fs_put_page(node_page, 1);
1034 			continue;
1035 		}
1036 
1037 		err = f2fs_move_node_page(node_page, gc_type);
1038 		if (!err && gc_type == FG_GC)
1039 			submitted++;
1040 		stat_inc_node_blk_count(sbi, 1, gc_type);
1041 	}
1042 
1043 	if (++phase < 3)
1044 		goto next_step;
1045 
1046 	if (fggc)
1047 		atomic_dec(&sbi->wb_sync_req[NODE]);
1048 	return submitted;
1049 }
1050 
1051 /*
1052  * Calculate start block index indicating the given node offset.
1053  * Be careful, caller should give this node offset only indicating direct node
1054  * blocks. If any node offsets, which point the other types of node blocks such
1055  * as indirect or double indirect node blocks, are given, it must be a caller's
1056  * bug.
1057  */
1058 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1059 {
1060 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1061 	unsigned int bidx;
1062 
1063 	if (node_ofs == 0)
1064 		return 0;
1065 
1066 	if (node_ofs <= 2) {
1067 		bidx = node_ofs - 1;
1068 	} else if (node_ofs <= indirect_blks) {
1069 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1070 
1071 		bidx = node_ofs - 2 - dec;
1072 	} else {
1073 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1074 
1075 		bidx = node_ofs - 5 - dec;
1076 	}
1077 	return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1078 }
1079 
1080 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1081 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1082 {
1083 	struct page *node_page;
1084 	nid_t nid;
1085 	unsigned int ofs_in_node;
1086 	block_t source_blkaddr;
1087 
1088 	nid = le32_to_cpu(sum->nid);
1089 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1090 
1091 	node_page = f2fs_get_node_page(sbi, nid);
1092 	if (IS_ERR(node_page))
1093 		return false;
1094 
1095 	if (f2fs_get_node_info(sbi, nid, dni, false)) {
1096 		f2fs_put_page(node_page, 1);
1097 		return false;
1098 	}
1099 
1100 	if (sum->version != dni->version) {
1101 		f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1102 			  __func__);
1103 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1104 	}
1105 
1106 	if (f2fs_check_nid_range(sbi, dni->ino)) {
1107 		f2fs_put_page(node_page, 1);
1108 		return false;
1109 	}
1110 
1111 	*nofs = ofs_of_node(node_page);
1112 	source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1113 	f2fs_put_page(node_page, 1);
1114 
1115 	if (source_blkaddr != blkaddr) {
1116 #ifdef CONFIG_F2FS_CHECK_FS
1117 		unsigned int segno = GET_SEGNO(sbi, blkaddr);
1118 		unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1119 
1120 		if (unlikely(check_valid_map(sbi, segno, offset))) {
1121 			if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1122 				f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1123 					 blkaddr, source_blkaddr, segno);
1124 				set_sbi_flag(sbi, SBI_NEED_FSCK);
1125 			}
1126 		}
1127 #endif
1128 		return false;
1129 	}
1130 	return true;
1131 }
1132 
1133 static int ra_data_block(struct inode *inode, pgoff_t index)
1134 {
1135 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 	struct address_space *mapping = inode->i_mapping;
1137 	struct dnode_of_data dn;
1138 	struct page *page;
1139 	struct extent_info ei = {0, 0, 0};
1140 	struct f2fs_io_info fio = {
1141 		.sbi = sbi,
1142 		.ino = inode->i_ino,
1143 		.type = DATA,
1144 		.temp = COLD,
1145 		.op = REQ_OP_READ,
1146 		.op_flags = 0,
1147 		.encrypted_page = NULL,
1148 		.in_list = false,
1149 		.retry = false,
1150 	};
1151 	int err;
1152 
1153 	page = f2fs_grab_cache_page(mapping, index, true);
1154 	if (!page)
1155 		return -ENOMEM;
1156 
1157 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1158 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1159 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1160 						DATA_GENERIC_ENHANCE_READ))) {
1161 			err = -EFSCORRUPTED;
1162 			goto put_page;
1163 		}
1164 		goto got_it;
1165 	}
1166 
1167 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1168 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1169 	if (err)
1170 		goto put_page;
1171 	f2fs_put_dnode(&dn);
1172 
1173 	if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1174 		err = -ENOENT;
1175 		goto put_page;
1176 	}
1177 	if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1178 						DATA_GENERIC_ENHANCE))) {
1179 		err = -EFSCORRUPTED;
1180 		goto put_page;
1181 	}
1182 got_it:
1183 	/* read page */
1184 	fio.page = page;
1185 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1186 
1187 	/*
1188 	 * don't cache encrypted data into meta inode until previous dirty
1189 	 * data were writebacked to avoid racing between GC and flush.
1190 	 */
1191 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1192 
1193 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1194 
1195 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1196 					dn.data_blkaddr,
1197 					FGP_LOCK | FGP_CREAT, GFP_NOFS);
1198 	if (!fio.encrypted_page) {
1199 		err = -ENOMEM;
1200 		goto put_page;
1201 	}
1202 
1203 	err = f2fs_submit_page_bio(&fio);
1204 	if (err)
1205 		goto put_encrypted_page;
1206 	f2fs_put_page(fio.encrypted_page, 0);
1207 	f2fs_put_page(page, 1);
1208 
1209 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1210 	f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1211 
1212 	return 0;
1213 put_encrypted_page:
1214 	f2fs_put_page(fio.encrypted_page, 1);
1215 put_page:
1216 	f2fs_put_page(page, 1);
1217 	return err;
1218 }
1219 
1220 /*
1221  * Move data block via META_MAPPING while keeping locked data page.
1222  * This can be used to move blocks, aka LBAs, directly on disk.
1223  */
1224 static int move_data_block(struct inode *inode, block_t bidx,
1225 				int gc_type, unsigned int segno, int off)
1226 {
1227 	struct f2fs_io_info fio = {
1228 		.sbi = F2FS_I_SB(inode),
1229 		.ino = inode->i_ino,
1230 		.type = DATA,
1231 		.temp = COLD,
1232 		.op = REQ_OP_READ,
1233 		.op_flags = 0,
1234 		.encrypted_page = NULL,
1235 		.in_list = false,
1236 		.retry = false,
1237 	};
1238 	struct dnode_of_data dn;
1239 	struct f2fs_summary sum;
1240 	struct node_info ni;
1241 	struct page *page, *mpage;
1242 	block_t newaddr;
1243 	int err = 0;
1244 	bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1245 	int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1246 				(fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1247 				CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1248 
1249 	/* do not read out */
1250 	page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1251 	if (!page)
1252 		return -ENOMEM;
1253 
1254 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1255 		err = -ENOENT;
1256 		goto out;
1257 	}
1258 
1259 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1260 	if (err)
1261 		goto out;
1262 
1263 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1264 	err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1265 	if (err)
1266 		goto out;
1267 
1268 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1269 		ClearPageUptodate(page);
1270 		err = -ENOENT;
1271 		goto put_out;
1272 	}
1273 
1274 	/*
1275 	 * don't cache encrypted data into meta inode until previous dirty
1276 	 * data were writebacked to avoid racing between GC and flush.
1277 	 */
1278 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1279 
1280 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1281 
1282 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1283 	if (err)
1284 		goto put_out;
1285 
1286 	/* read page */
1287 	fio.page = page;
1288 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1289 
1290 	if (lfs_mode)
1291 		f2fs_down_write(&fio.sbi->io_order_lock);
1292 
1293 	mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1294 					fio.old_blkaddr, false);
1295 	if (!mpage) {
1296 		err = -ENOMEM;
1297 		goto up_out;
1298 	}
1299 
1300 	fio.encrypted_page = mpage;
1301 
1302 	/* read source block in mpage */
1303 	if (!PageUptodate(mpage)) {
1304 		err = f2fs_submit_page_bio(&fio);
1305 		if (err) {
1306 			f2fs_put_page(mpage, 1);
1307 			goto up_out;
1308 		}
1309 
1310 		f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1311 		f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1312 
1313 		lock_page(mpage);
1314 		if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1315 						!PageUptodate(mpage))) {
1316 			err = -EIO;
1317 			f2fs_put_page(mpage, 1);
1318 			goto up_out;
1319 		}
1320 	}
1321 
1322 	set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1323 
1324 	/* allocate block address */
1325 	f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1326 				&sum, type, NULL);
1327 
1328 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1329 				newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1330 	if (!fio.encrypted_page) {
1331 		err = -ENOMEM;
1332 		f2fs_put_page(mpage, 1);
1333 		goto recover_block;
1334 	}
1335 
1336 	/* write target block */
1337 	f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1338 	memcpy(page_address(fio.encrypted_page),
1339 				page_address(mpage), PAGE_SIZE);
1340 	f2fs_put_page(mpage, 1);
1341 	invalidate_mapping_pages(META_MAPPING(fio.sbi),
1342 				fio.old_blkaddr, fio.old_blkaddr);
1343 	f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr);
1344 
1345 	set_page_dirty(fio.encrypted_page);
1346 	if (clear_page_dirty_for_io(fio.encrypted_page))
1347 		dec_page_count(fio.sbi, F2FS_DIRTY_META);
1348 
1349 	set_page_writeback(fio.encrypted_page);
1350 	ClearPageError(page);
1351 
1352 	fio.op = REQ_OP_WRITE;
1353 	fio.op_flags = REQ_SYNC;
1354 	fio.new_blkaddr = newaddr;
1355 	f2fs_submit_page_write(&fio);
1356 	if (fio.retry) {
1357 		err = -EAGAIN;
1358 		if (PageWriteback(fio.encrypted_page))
1359 			end_page_writeback(fio.encrypted_page);
1360 		goto put_page_out;
1361 	}
1362 
1363 	f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
1364 
1365 	f2fs_update_data_blkaddr(&dn, newaddr);
1366 	set_inode_flag(inode, FI_APPEND_WRITE);
1367 	if (page->index == 0)
1368 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1369 put_page_out:
1370 	f2fs_put_page(fio.encrypted_page, 1);
1371 recover_block:
1372 	if (err)
1373 		f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1374 							true, true, true);
1375 up_out:
1376 	if (lfs_mode)
1377 		f2fs_up_write(&fio.sbi->io_order_lock);
1378 put_out:
1379 	f2fs_put_dnode(&dn);
1380 out:
1381 	f2fs_put_page(page, 1);
1382 	return err;
1383 }
1384 
1385 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1386 							unsigned int segno, int off)
1387 {
1388 	struct page *page;
1389 	int err = 0;
1390 
1391 	page = f2fs_get_lock_data_page(inode, bidx, true);
1392 	if (IS_ERR(page))
1393 		return PTR_ERR(page);
1394 
1395 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1396 		err = -ENOENT;
1397 		goto out;
1398 	}
1399 
1400 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1401 	if (err)
1402 		goto out;
1403 
1404 	if (gc_type == BG_GC) {
1405 		if (PageWriteback(page)) {
1406 			err = -EAGAIN;
1407 			goto out;
1408 		}
1409 		set_page_dirty(page);
1410 		set_page_private_gcing(page);
1411 	} else {
1412 		struct f2fs_io_info fio = {
1413 			.sbi = F2FS_I_SB(inode),
1414 			.ino = inode->i_ino,
1415 			.type = DATA,
1416 			.temp = COLD,
1417 			.op = REQ_OP_WRITE,
1418 			.op_flags = REQ_SYNC,
1419 			.old_blkaddr = NULL_ADDR,
1420 			.page = page,
1421 			.encrypted_page = NULL,
1422 			.need_lock = LOCK_REQ,
1423 			.io_type = FS_GC_DATA_IO,
1424 		};
1425 		bool is_dirty = PageDirty(page);
1426 
1427 retry:
1428 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1429 
1430 		set_page_dirty(page);
1431 		if (clear_page_dirty_for_io(page)) {
1432 			inode_dec_dirty_pages(inode);
1433 			f2fs_remove_dirty_inode(inode);
1434 		}
1435 
1436 		set_page_private_gcing(page);
1437 
1438 		err = f2fs_do_write_data_page(&fio);
1439 		if (err) {
1440 			clear_page_private_gcing(page);
1441 			if (err == -ENOMEM) {
1442 				memalloc_retry_wait(GFP_NOFS);
1443 				goto retry;
1444 			}
1445 			if (is_dirty)
1446 				set_page_dirty(page);
1447 		}
1448 	}
1449 out:
1450 	f2fs_put_page(page, 1);
1451 	return err;
1452 }
1453 
1454 /*
1455  * This function tries to get parent node of victim data block, and identifies
1456  * data block validity. If the block is valid, copy that with cold status and
1457  * modify parent node.
1458  * If the parent node is not valid or the data block address is different,
1459  * the victim data block is ignored.
1460  */
1461 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1462 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1463 		bool force_migrate)
1464 {
1465 	struct super_block *sb = sbi->sb;
1466 	struct f2fs_summary *entry;
1467 	block_t start_addr;
1468 	int off;
1469 	int phase = 0;
1470 	int submitted = 0;
1471 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1472 
1473 	start_addr = START_BLOCK(sbi, segno);
1474 
1475 next_step:
1476 	entry = sum;
1477 
1478 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1479 		struct page *data_page;
1480 		struct inode *inode;
1481 		struct node_info dni; /* dnode info for the data */
1482 		unsigned int ofs_in_node, nofs;
1483 		block_t start_bidx;
1484 		nid_t nid = le32_to_cpu(entry->nid);
1485 
1486 		/*
1487 		 * stop BG_GC if there is not enough free sections.
1488 		 * Or, stop GC if the segment becomes fully valid caused by
1489 		 * race condition along with SSR block allocation.
1490 		 */
1491 		if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1492 			(!force_migrate && get_valid_blocks(sbi, segno, true) ==
1493 							CAP_BLKS_PER_SEC(sbi)))
1494 			return submitted;
1495 
1496 		if (check_valid_map(sbi, segno, off) == 0)
1497 			continue;
1498 
1499 		if (phase == 0) {
1500 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1501 							META_NAT, true);
1502 			continue;
1503 		}
1504 
1505 		if (phase == 1) {
1506 			f2fs_ra_node_page(sbi, nid);
1507 			continue;
1508 		}
1509 
1510 		/* Get an inode by ino with checking validity */
1511 		if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1512 			continue;
1513 
1514 		if (phase == 2) {
1515 			f2fs_ra_node_page(sbi, dni.ino);
1516 			continue;
1517 		}
1518 
1519 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1520 
1521 		if (phase == 3) {
1522 			int err;
1523 
1524 			inode = f2fs_iget(sb, dni.ino);
1525 			if (IS_ERR(inode) || is_bad_inode(inode) ||
1526 					special_file(inode->i_mode))
1527 				continue;
1528 
1529 			err = f2fs_gc_pinned_control(inode, gc_type, segno);
1530 			if (err == -EAGAIN) {
1531 				iput(inode);
1532 				return submitted;
1533 			}
1534 
1535 			if (!f2fs_down_write_trylock(
1536 				&F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1537 				iput(inode);
1538 				sbi->skipped_gc_rwsem++;
1539 				continue;
1540 			}
1541 
1542 			start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1543 								ofs_in_node;
1544 
1545 			if (f2fs_post_read_required(inode)) {
1546 				int err = ra_data_block(inode, start_bidx);
1547 
1548 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1549 				if (err) {
1550 					iput(inode);
1551 					continue;
1552 				}
1553 				add_gc_inode(gc_list, inode);
1554 				continue;
1555 			}
1556 
1557 			data_page = f2fs_get_read_data_page(inode,
1558 						start_bidx, REQ_RAHEAD, true);
1559 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1560 			if (IS_ERR(data_page)) {
1561 				iput(inode);
1562 				continue;
1563 			}
1564 
1565 			f2fs_put_page(data_page, 0);
1566 			add_gc_inode(gc_list, inode);
1567 			continue;
1568 		}
1569 
1570 		/* phase 4 */
1571 		inode = find_gc_inode(gc_list, dni.ino);
1572 		if (inode) {
1573 			struct f2fs_inode_info *fi = F2FS_I(inode);
1574 			bool locked = false;
1575 			int err;
1576 
1577 			if (S_ISREG(inode->i_mode)) {
1578 				if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) {
1579 					sbi->skipped_gc_rwsem++;
1580 					continue;
1581 				}
1582 				if (!f2fs_down_write_trylock(
1583 						&fi->i_gc_rwsem[WRITE])) {
1584 					sbi->skipped_gc_rwsem++;
1585 					f2fs_up_write(&fi->i_gc_rwsem[READ]);
1586 					continue;
1587 				}
1588 				locked = true;
1589 
1590 				/* wait for all inflight aio data */
1591 				inode_dio_wait(inode);
1592 			}
1593 
1594 			start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1595 								+ ofs_in_node;
1596 			if (f2fs_post_read_required(inode))
1597 				err = move_data_block(inode, start_bidx,
1598 							gc_type, segno, off);
1599 			else
1600 				err = move_data_page(inode, start_bidx, gc_type,
1601 								segno, off);
1602 
1603 			if (!err && (gc_type == FG_GC ||
1604 					f2fs_post_read_required(inode)))
1605 				submitted++;
1606 
1607 			if (locked) {
1608 				f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1609 				f2fs_up_write(&fi->i_gc_rwsem[READ]);
1610 			}
1611 
1612 			stat_inc_data_blk_count(sbi, 1, gc_type);
1613 		}
1614 	}
1615 
1616 	if (++phase < 5)
1617 		goto next_step;
1618 
1619 	return submitted;
1620 }
1621 
1622 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1623 			int gc_type)
1624 {
1625 	struct sit_info *sit_i = SIT_I(sbi);
1626 	int ret;
1627 
1628 	down_write(&sit_i->sentry_lock);
1629 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1630 					      NO_CHECK_TYPE, LFS, 0);
1631 	up_write(&sit_i->sentry_lock);
1632 	return ret;
1633 }
1634 
1635 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1636 				unsigned int start_segno,
1637 				struct gc_inode_list *gc_list, int gc_type,
1638 				bool force_migrate)
1639 {
1640 	struct page *sum_page;
1641 	struct f2fs_summary_block *sum;
1642 	struct blk_plug plug;
1643 	unsigned int segno = start_segno;
1644 	unsigned int end_segno = start_segno + sbi->segs_per_sec;
1645 	int seg_freed = 0, migrated = 0;
1646 	unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1647 						SUM_TYPE_DATA : SUM_TYPE_NODE;
1648 	int submitted = 0;
1649 
1650 	if (__is_large_section(sbi))
1651 		end_segno = rounddown(end_segno, sbi->segs_per_sec);
1652 
1653 	/*
1654 	 * zone-capacity can be less than zone-size in zoned devices,
1655 	 * resulting in less than expected usable segments in the zone,
1656 	 * calculate the end segno in the zone which can be garbage collected
1657 	 */
1658 	if (f2fs_sb_has_blkzoned(sbi))
1659 		end_segno -= sbi->segs_per_sec -
1660 					f2fs_usable_segs_in_sec(sbi, segno);
1661 
1662 	sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1663 
1664 	/* readahead multi ssa blocks those have contiguous address */
1665 	if (__is_large_section(sbi))
1666 		f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1667 					end_segno - segno, META_SSA, true);
1668 
1669 	/* reference all summary page */
1670 	while (segno < end_segno) {
1671 		sum_page = f2fs_get_sum_page(sbi, segno++);
1672 		if (IS_ERR(sum_page)) {
1673 			int err = PTR_ERR(sum_page);
1674 
1675 			end_segno = segno - 1;
1676 			for (segno = start_segno; segno < end_segno; segno++) {
1677 				sum_page = find_get_page(META_MAPPING(sbi),
1678 						GET_SUM_BLOCK(sbi, segno));
1679 				f2fs_put_page(sum_page, 0);
1680 				f2fs_put_page(sum_page, 0);
1681 			}
1682 			return err;
1683 		}
1684 		unlock_page(sum_page);
1685 	}
1686 
1687 	blk_start_plug(&plug);
1688 
1689 	for (segno = start_segno; segno < end_segno; segno++) {
1690 
1691 		/* find segment summary of victim */
1692 		sum_page = find_get_page(META_MAPPING(sbi),
1693 					GET_SUM_BLOCK(sbi, segno));
1694 		f2fs_put_page(sum_page, 0);
1695 
1696 		if (get_valid_blocks(sbi, segno, false) == 0)
1697 			goto freed;
1698 		if (gc_type == BG_GC && __is_large_section(sbi) &&
1699 				migrated >= sbi->migration_granularity)
1700 			goto skip;
1701 		if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1702 			goto skip;
1703 
1704 		sum = page_address(sum_page);
1705 		if (type != GET_SUM_TYPE((&sum->footer))) {
1706 			f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1707 				 segno, type, GET_SUM_TYPE((&sum->footer)));
1708 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1709 			f2fs_stop_checkpoint(sbi, false);
1710 			goto skip;
1711 		}
1712 
1713 		/*
1714 		 * this is to avoid deadlock:
1715 		 * - lock_page(sum_page)         - f2fs_replace_block
1716 		 *  - check_valid_map()            - down_write(sentry_lock)
1717 		 *   - down_read(sentry_lock)     - change_curseg()
1718 		 *                                  - lock_page(sum_page)
1719 		 */
1720 		if (type == SUM_TYPE_NODE)
1721 			submitted += gc_node_segment(sbi, sum->entries, segno,
1722 								gc_type);
1723 		else
1724 			submitted += gc_data_segment(sbi, sum->entries, gc_list,
1725 							segno, gc_type,
1726 							force_migrate);
1727 
1728 		stat_inc_seg_count(sbi, type, gc_type);
1729 		sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1730 		migrated++;
1731 
1732 freed:
1733 		if (gc_type == FG_GC &&
1734 				get_valid_blocks(sbi, segno, false) == 0)
1735 			seg_freed++;
1736 
1737 		if (__is_large_section(sbi) && segno + 1 < end_segno)
1738 			sbi->next_victim_seg[gc_type] = segno + 1;
1739 skip:
1740 		f2fs_put_page(sum_page, 0);
1741 	}
1742 
1743 	if (submitted)
1744 		f2fs_submit_merged_write(sbi,
1745 				(type == SUM_TYPE_NODE) ? NODE : DATA);
1746 
1747 	blk_finish_plug(&plug);
1748 
1749 	stat_inc_call_count(sbi->stat_info);
1750 
1751 	return seg_freed;
1752 }
1753 
1754 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1755 {
1756 	int gc_type = gc_control->init_gc_type;
1757 	unsigned int segno = gc_control->victim_segno;
1758 	int sec_freed = 0, seg_freed = 0, total_freed = 0;
1759 	int ret = 0;
1760 	struct cp_control cpc;
1761 	struct gc_inode_list gc_list = {
1762 		.ilist = LIST_HEAD_INIT(gc_list.ilist),
1763 		.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1764 	};
1765 	unsigned int skipped_round = 0, round = 0;
1766 
1767 	trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc,
1768 				gc_control->nr_free_secs,
1769 				get_pages(sbi, F2FS_DIRTY_NODES),
1770 				get_pages(sbi, F2FS_DIRTY_DENTS),
1771 				get_pages(sbi, F2FS_DIRTY_IMETA),
1772 				free_sections(sbi),
1773 				free_segments(sbi),
1774 				reserved_segments(sbi),
1775 				prefree_segments(sbi));
1776 
1777 	cpc.reason = __get_cp_reason(sbi);
1778 	sbi->skipped_gc_rwsem = 0;
1779 gc_more:
1780 	if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1781 		ret = -EINVAL;
1782 		goto stop;
1783 	}
1784 	if (unlikely(f2fs_cp_error(sbi))) {
1785 		ret = -EIO;
1786 		goto stop;
1787 	}
1788 
1789 	if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1790 		/*
1791 		 * For example, if there are many prefree_segments below given
1792 		 * threshold, we can make them free by checkpoint. Then, we
1793 		 * secure free segments which doesn't need fggc any more.
1794 		 */
1795 		if (prefree_segments(sbi)) {
1796 			ret = f2fs_write_checkpoint(sbi, &cpc);
1797 			if (ret)
1798 				goto stop;
1799 		}
1800 		if (has_not_enough_free_secs(sbi, 0, 0))
1801 			gc_type = FG_GC;
1802 	}
1803 
1804 	/* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1805 	if (gc_type == BG_GC && gc_control->no_bg_gc) {
1806 		ret = -EINVAL;
1807 		goto stop;
1808 	}
1809 retry:
1810 	ret = __get_victim(sbi, &segno, gc_type);
1811 	if (ret) {
1812 		/* allow to search victim from sections has pinned data */
1813 		if (ret == -ENODATA && gc_type == FG_GC &&
1814 				f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1815 			f2fs_unpin_all_sections(sbi, false);
1816 			goto retry;
1817 		}
1818 		goto stop;
1819 	}
1820 
1821 	seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type,
1822 				gc_control->should_migrate_blocks);
1823 	total_freed += seg_freed;
1824 
1825 	if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
1826 		sec_freed++;
1827 
1828 	if (gc_type == FG_GC)
1829 		sbi->cur_victim_sec = NULL_SEGNO;
1830 
1831 	if (gc_control->init_gc_type == FG_GC ||
1832 	    !has_not_enough_free_secs(sbi,
1833 				(gc_type == FG_GC) ? sec_freed : 0, 0)) {
1834 		if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs)
1835 			goto go_gc_more;
1836 		goto stop;
1837 	}
1838 
1839 	/* FG_GC stops GC by skip_count */
1840 	if (gc_type == FG_GC) {
1841 		if (sbi->skipped_gc_rwsem)
1842 			skipped_round++;
1843 		round++;
1844 		if (skipped_round > MAX_SKIP_GC_COUNT &&
1845 				skipped_round * 2 >= round) {
1846 			ret = f2fs_write_checkpoint(sbi, &cpc);
1847 			goto stop;
1848 		}
1849 	}
1850 
1851 	/* Write checkpoint to reclaim prefree segments */
1852 	if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE &&
1853 				prefree_segments(sbi)) {
1854 		ret = f2fs_write_checkpoint(sbi, &cpc);
1855 		if (ret)
1856 			goto stop;
1857 	}
1858 go_gc_more:
1859 	segno = NULL_SEGNO;
1860 	goto gc_more;
1861 
1862 stop:
1863 	SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1864 	SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1865 
1866 	if (gc_type == FG_GC)
1867 		f2fs_unpin_all_sections(sbi, true);
1868 
1869 	trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1870 				get_pages(sbi, F2FS_DIRTY_NODES),
1871 				get_pages(sbi, F2FS_DIRTY_DENTS),
1872 				get_pages(sbi, F2FS_DIRTY_IMETA),
1873 				free_sections(sbi),
1874 				free_segments(sbi),
1875 				reserved_segments(sbi),
1876 				prefree_segments(sbi));
1877 
1878 	f2fs_up_write(&sbi->gc_lock);
1879 
1880 	put_gc_inode(&gc_list);
1881 
1882 	if (gc_control->err_gc_skipped && !ret)
1883 		ret = sec_freed ? 0 : -EAGAIN;
1884 	return ret;
1885 }
1886 
1887 int __init f2fs_create_garbage_collection_cache(void)
1888 {
1889 	victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1890 					sizeof(struct victim_entry));
1891 	if (!victim_entry_slab)
1892 		return -ENOMEM;
1893 	return 0;
1894 }
1895 
1896 void f2fs_destroy_garbage_collection_cache(void)
1897 {
1898 	kmem_cache_destroy(victim_entry_slab);
1899 }
1900 
1901 static void init_atgc_management(struct f2fs_sb_info *sbi)
1902 {
1903 	struct atgc_management *am = &sbi->am;
1904 
1905 	if (test_opt(sbi, ATGC) &&
1906 		SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1907 		am->atgc_enabled = true;
1908 
1909 	am->root = RB_ROOT_CACHED;
1910 	INIT_LIST_HEAD(&am->victim_list);
1911 	am->victim_count = 0;
1912 
1913 	am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1914 	am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1915 	am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1916 	am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1917 }
1918 
1919 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1920 {
1921 	DIRTY_I(sbi)->v_ops = &default_v_ops;
1922 
1923 	sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1924 
1925 	/* give warm/cold data area from slower device */
1926 	if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1927 		SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1928 				GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1929 
1930 	init_atgc_management(sbi);
1931 }
1932 
1933 static int free_segment_range(struct f2fs_sb_info *sbi,
1934 				unsigned int secs, bool gc_only)
1935 {
1936 	unsigned int segno, next_inuse, start, end;
1937 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1938 	int gc_mode, gc_type;
1939 	int err = 0;
1940 	int type;
1941 
1942 	/* Force block allocation for GC */
1943 	MAIN_SECS(sbi) -= secs;
1944 	start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1945 	end = MAIN_SEGS(sbi) - 1;
1946 
1947 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1948 	for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1949 		if (SIT_I(sbi)->last_victim[gc_mode] >= start)
1950 			SIT_I(sbi)->last_victim[gc_mode] = 0;
1951 
1952 	for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1953 		if (sbi->next_victim_seg[gc_type] >= start)
1954 			sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1955 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1956 
1957 	/* Move out cursegs from the target range */
1958 	for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
1959 		f2fs_allocate_segment_for_resize(sbi, type, start, end);
1960 
1961 	/* do GC to move out valid blocks in the range */
1962 	for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1963 		struct gc_inode_list gc_list = {
1964 			.ilist = LIST_HEAD_INIT(gc_list.ilist),
1965 			.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1966 		};
1967 
1968 		do_garbage_collect(sbi, segno, &gc_list, FG_GC, true);
1969 		put_gc_inode(&gc_list);
1970 
1971 		if (!gc_only && get_valid_blocks(sbi, segno, true)) {
1972 			err = -EAGAIN;
1973 			goto out;
1974 		}
1975 		if (fatal_signal_pending(current)) {
1976 			err = -ERESTARTSYS;
1977 			goto out;
1978 		}
1979 	}
1980 	if (gc_only)
1981 		goto out;
1982 
1983 	err = f2fs_write_checkpoint(sbi, &cpc);
1984 	if (err)
1985 		goto out;
1986 
1987 	next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
1988 	if (next_inuse <= end) {
1989 		f2fs_err(sbi, "segno %u should be free but still inuse!",
1990 			 next_inuse);
1991 		f2fs_bug_on(sbi, 1);
1992 	}
1993 out:
1994 	MAIN_SECS(sbi) += secs;
1995 	return err;
1996 }
1997 
1998 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
1999 {
2000 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2001 	int section_count;
2002 	int segment_count;
2003 	int segment_count_main;
2004 	long long block_count;
2005 	int segs = secs * sbi->segs_per_sec;
2006 
2007 	f2fs_down_write(&sbi->sb_lock);
2008 
2009 	section_count = le32_to_cpu(raw_sb->section_count);
2010 	segment_count = le32_to_cpu(raw_sb->segment_count);
2011 	segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2012 	block_count = le64_to_cpu(raw_sb->block_count);
2013 
2014 	raw_sb->section_count = cpu_to_le32(section_count + secs);
2015 	raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2016 	raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2017 	raw_sb->block_count = cpu_to_le64(block_count +
2018 					(long long)segs * sbi->blocks_per_seg);
2019 	if (f2fs_is_multi_device(sbi)) {
2020 		int last_dev = sbi->s_ndevs - 1;
2021 		int dev_segs =
2022 			le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2023 
2024 		raw_sb->devs[last_dev].total_segments =
2025 						cpu_to_le32(dev_segs + segs);
2026 	}
2027 
2028 	f2fs_up_write(&sbi->sb_lock);
2029 }
2030 
2031 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2032 {
2033 	int segs = secs * sbi->segs_per_sec;
2034 	long long blks = (long long)segs * sbi->blocks_per_seg;
2035 	long long user_block_count =
2036 				le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2037 
2038 	SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2039 	MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2040 	MAIN_SECS(sbi) += secs;
2041 	FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2042 	FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2043 	F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2044 
2045 	if (f2fs_is_multi_device(sbi)) {
2046 		int last_dev = sbi->s_ndevs - 1;
2047 
2048 		FDEV(last_dev).total_segments =
2049 				(int)FDEV(last_dev).total_segments + segs;
2050 		FDEV(last_dev).end_blk =
2051 				(long long)FDEV(last_dev).end_blk + blks;
2052 #ifdef CONFIG_BLK_DEV_ZONED
2053 		FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
2054 					(int)(blks >> sbi->log_blocks_per_blkz);
2055 #endif
2056 	}
2057 }
2058 
2059 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count)
2060 {
2061 	__u64 old_block_count, shrunk_blocks;
2062 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2063 	unsigned int secs;
2064 	int err = 0;
2065 	__u32 rem;
2066 
2067 	old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2068 	if (block_count > old_block_count)
2069 		return -EINVAL;
2070 
2071 	if (f2fs_is_multi_device(sbi)) {
2072 		int last_dev = sbi->s_ndevs - 1;
2073 		__u64 last_segs = FDEV(last_dev).total_segments;
2074 
2075 		if (block_count + last_segs * sbi->blocks_per_seg <=
2076 								old_block_count)
2077 			return -EINVAL;
2078 	}
2079 
2080 	/* new fs size should align to section size */
2081 	div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2082 	if (rem)
2083 		return -EINVAL;
2084 
2085 	if (block_count == old_block_count)
2086 		return 0;
2087 
2088 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2089 		f2fs_err(sbi, "Should run fsck to repair first.");
2090 		return -EFSCORRUPTED;
2091 	}
2092 
2093 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2094 		f2fs_err(sbi, "Checkpoint should be enabled.");
2095 		return -EINVAL;
2096 	}
2097 
2098 	shrunk_blocks = old_block_count - block_count;
2099 	secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2100 
2101 	/* stop other GC */
2102 	if (!f2fs_down_write_trylock(&sbi->gc_lock))
2103 		return -EAGAIN;
2104 
2105 	/* stop CP to protect MAIN_SEC in free_segment_range */
2106 	f2fs_lock_op(sbi);
2107 
2108 	spin_lock(&sbi->stat_lock);
2109 	if (shrunk_blocks + valid_user_blocks(sbi) +
2110 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2111 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2112 		err = -ENOSPC;
2113 	spin_unlock(&sbi->stat_lock);
2114 
2115 	if (err)
2116 		goto out_unlock;
2117 
2118 	err = free_segment_range(sbi, secs, true);
2119 
2120 out_unlock:
2121 	f2fs_unlock_op(sbi);
2122 	f2fs_up_write(&sbi->gc_lock);
2123 	if (err)
2124 		return err;
2125 
2126 	set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2127 
2128 	freeze_super(sbi->sb);
2129 	f2fs_down_write(&sbi->gc_lock);
2130 	f2fs_down_write(&sbi->cp_global_sem);
2131 
2132 	spin_lock(&sbi->stat_lock);
2133 	if (shrunk_blocks + valid_user_blocks(sbi) +
2134 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2135 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2136 		err = -ENOSPC;
2137 	else
2138 		sbi->user_block_count -= shrunk_blocks;
2139 	spin_unlock(&sbi->stat_lock);
2140 	if (err)
2141 		goto out_err;
2142 
2143 	err = free_segment_range(sbi, secs, false);
2144 	if (err)
2145 		goto recover_out;
2146 
2147 	update_sb_metadata(sbi, -secs);
2148 
2149 	err = f2fs_commit_super(sbi, false);
2150 	if (err) {
2151 		update_sb_metadata(sbi, secs);
2152 		goto recover_out;
2153 	}
2154 
2155 	update_fs_metadata(sbi, -secs);
2156 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2157 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2158 
2159 	err = f2fs_write_checkpoint(sbi, &cpc);
2160 	if (err) {
2161 		update_fs_metadata(sbi, secs);
2162 		update_sb_metadata(sbi, secs);
2163 		f2fs_commit_super(sbi, false);
2164 	}
2165 recover_out:
2166 	if (err) {
2167 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2168 		f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2169 
2170 		spin_lock(&sbi->stat_lock);
2171 		sbi->user_block_count += shrunk_blocks;
2172 		spin_unlock(&sbi->stat_lock);
2173 	}
2174 out_err:
2175 	f2fs_up_write(&sbi->cp_global_sem);
2176 	f2fs_up_write(&sbi->gc_lock);
2177 	thaw_super(sbi->sb);
2178 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2179 	return err;
2180 }
2181