xref: /openbmc/linux/fs/f2fs/file.c (revision f847c699cff3f050286ee0a08632046468e7a511)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "xattr.h"
28 #include "acl.h"
29 #include "gc.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32 
33 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
34 {
35 	struct inode *inode = file_inode(vmf->vma->vm_file);
36 	vm_fault_t ret;
37 
38 	down_read(&F2FS_I(inode)->i_mmap_sem);
39 	ret = filemap_fault(vmf);
40 	up_read(&F2FS_I(inode)->i_mmap_sem);
41 
42 	return ret;
43 }
44 
45 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
46 {
47 	struct page *page = vmf->page;
48 	struct inode *inode = file_inode(vmf->vma->vm_file);
49 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
50 	struct dnode_of_data dn = { .node_changed = false };
51 	int err;
52 
53 	if (unlikely(f2fs_cp_error(sbi))) {
54 		err = -EIO;
55 		goto err;
56 	}
57 
58 	sb_start_pagefault(inode->i_sb);
59 
60 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
61 
62 	file_update_time(vmf->vma->vm_file);
63 	down_read(&F2FS_I(inode)->i_mmap_sem);
64 	lock_page(page);
65 	if (unlikely(page->mapping != inode->i_mapping ||
66 			page_offset(page) > i_size_read(inode) ||
67 			!PageUptodate(page))) {
68 		unlock_page(page);
69 		err = -EFAULT;
70 		goto out_sem;
71 	}
72 
73 	/* block allocation */
74 	__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
75 	set_new_dnode(&dn, inode, NULL, NULL, 0);
76 	err = f2fs_get_block(&dn, page->index);
77 	f2fs_put_dnode(&dn);
78 	__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
79 	if (err) {
80 		unlock_page(page);
81 		goto out_sem;
82 	}
83 
84 	/* fill the page */
85 	f2fs_wait_on_page_writeback(page, DATA, false);
86 
87 	/* wait for GCed page writeback via META_MAPPING */
88 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
89 
90 	/*
91 	 * check to see if the page is mapped already (no holes)
92 	 */
93 	if (PageMappedToDisk(page))
94 		goto out_sem;
95 
96 	/* page is wholly or partially inside EOF */
97 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
98 						i_size_read(inode)) {
99 		loff_t offset;
100 
101 		offset = i_size_read(inode) & ~PAGE_MASK;
102 		zero_user_segment(page, offset, PAGE_SIZE);
103 	}
104 	set_page_dirty(page);
105 	if (!PageUptodate(page))
106 		SetPageUptodate(page);
107 
108 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
109 
110 	trace_f2fs_vm_page_mkwrite(page, DATA);
111 out_sem:
112 	up_read(&F2FS_I(inode)->i_mmap_sem);
113 
114 	f2fs_balance_fs(sbi, dn.node_changed);
115 
116 	sb_end_pagefault(inode->i_sb);
117 	f2fs_update_time(sbi, REQ_TIME);
118 err:
119 	return block_page_mkwrite_return(err);
120 }
121 
122 static const struct vm_operations_struct f2fs_file_vm_ops = {
123 	.fault		= f2fs_filemap_fault,
124 	.map_pages	= filemap_map_pages,
125 	.page_mkwrite	= f2fs_vm_page_mkwrite,
126 };
127 
128 static int get_parent_ino(struct inode *inode, nid_t *pino)
129 {
130 	struct dentry *dentry;
131 
132 	inode = igrab(inode);
133 	dentry = d_find_any_alias(inode);
134 	iput(inode);
135 	if (!dentry)
136 		return 0;
137 
138 	*pino = parent_ino(dentry);
139 	dput(dentry);
140 	return 1;
141 }
142 
143 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
144 {
145 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
146 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
147 
148 	if (!S_ISREG(inode->i_mode))
149 		cp_reason = CP_NON_REGULAR;
150 	else if (inode->i_nlink != 1)
151 		cp_reason = CP_HARDLINK;
152 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
153 		cp_reason = CP_SB_NEED_CP;
154 	else if (file_wrong_pino(inode))
155 		cp_reason = CP_WRONG_PINO;
156 	else if (!f2fs_space_for_roll_forward(sbi))
157 		cp_reason = CP_NO_SPC_ROLL;
158 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
159 		cp_reason = CP_NODE_NEED_CP;
160 	else if (test_opt(sbi, FASTBOOT))
161 		cp_reason = CP_FASTBOOT_MODE;
162 	else if (F2FS_OPTION(sbi).active_logs == 2)
163 		cp_reason = CP_SPEC_LOG_NUM;
164 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
165 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
166 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
167 							TRANS_DIR_INO))
168 		cp_reason = CP_RECOVER_DIR;
169 
170 	return cp_reason;
171 }
172 
173 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
174 {
175 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
176 	bool ret = false;
177 	/* But we need to avoid that there are some inode updates */
178 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
179 		ret = true;
180 	f2fs_put_page(i, 0);
181 	return ret;
182 }
183 
184 static void try_to_fix_pino(struct inode *inode)
185 {
186 	struct f2fs_inode_info *fi = F2FS_I(inode);
187 	nid_t pino;
188 
189 	down_write(&fi->i_sem);
190 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
191 			get_parent_ino(inode, &pino)) {
192 		f2fs_i_pino_write(inode, pino);
193 		file_got_pino(inode);
194 	}
195 	up_write(&fi->i_sem);
196 }
197 
198 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
199 						int datasync, bool atomic)
200 {
201 	struct inode *inode = file->f_mapping->host;
202 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
203 	nid_t ino = inode->i_ino;
204 	int ret = 0;
205 	enum cp_reason_type cp_reason = 0;
206 	struct writeback_control wbc = {
207 		.sync_mode = WB_SYNC_ALL,
208 		.nr_to_write = LONG_MAX,
209 		.for_reclaim = 0,
210 	};
211 	unsigned int seq_id = 0;
212 
213 	if (unlikely(f2fs_readonly(inode->i_sb)))
214 		return 0;
215 
216 	trace_f2fs_sync_file_enter(inode);
217 
218 	/* if fdatasync is triggered, let's do in-place-update */
219 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
220 		set_inode_flag(inode, FI_NEED_IPU);
221 	ret = file_write_and_wait_range(file, start, end);
222 	clear_inode_flag(inode, FI_NEED_IPU);
223 
224 	if (ret) {
225 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
226 		return ret;
227 	}
228 
229 	/* if the inode is dirty, let's recover all the time */
230 	if (!f2fs_skip_inode_update(inode, datasync)) {
231 		f2fs_write_inode(inode, NULL);
232 		goto go_write;
233 	}
234 
235 	/*
236 	 * if there is no written data, don't waste time to write recovery info.
237 	 */
238 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
239 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
240 
241 		/* it may call write_inode just prior to fsync */
242 		if (need_inode_page_update(sbi, ino))
243 			goto go_write;
244 
245 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
246 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
247 			goto flush_out;
248 		goto out;
249 	}
250 go_write:
251 	/*
252 	 * Both of fdatasync() and fsync() are able to be recovered from
253 	 * sudden-power-off.
254 	 */
255 	down_read(&F2FS_I(inode)->i_sem);
256 	cp_reason = need_do_checkpoint(inode);
257 	up_read(&F2FS_I(inode)->i_sem);
258 
259 	if (cp_reason) {
260 		/* all the dirty node pages should be flushed for POR */
261 		ret = f2fs_sync_fs(inode->i_sb, 1);
262 
263 		/*
264 		 * We've secured consistency through sync_fs. Following pino
265 		 * will be used only for fsynced inodes after checkpoint.
266 		 */
267 		try_to_fix_pino(inode);
268 		clear_inode_flag(inode, FI_APPEND_WRITE);
269 		clear_inode_flag(inode, FI_UPDATE_WRITE);
270 		goto out;
271 	}
272 sync_nodes:
273 	atomic_inc(&sbi->wb_sync_req[NODE]);
274 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
275 	atomic_dec(&sbi->wb_sync_req[NODE]);
276 	if (ret)
277 		goto out;
278 
279 	/* if cp_error was enabled, we should avoid infinite loop */
280 	if (unlikely(f2fs_cp_error(sbi))) {
281 		ret = -EIO;
282 		goto out;
283 	}
284 
285 	if (f2fs_need_inode_block_update(sbi, ino)) {
286 		f2fs_mark_inode_dirty_sync(inode, true);
287 		f2fs_write_inode(inode, NULL);
288 		goto sync_nodes;
289 	}
290 
291 	/*
292 	 * If it's atomic_write, it's just fine to keep write ordering. So
293 	 * here we don't need to wait for node write completion, since we use
294 	 * node chain which serializes node blocks. If one of node writes are
295 	 * reordered, we can see simply broken chain, resulting in stopping
296 	 * roll-forward recovery. It means we'll recover all or none node blocks
297 	 * given fsync mark.
298 	 */
299 	if (!atomic) {
300 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
301 		if (ret)
302 			goto out;
303 	}
304 
305 	/* once recovery info is written, don't need to tack this */
306 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
307 	clear_inode_flag(inode, FI_APPEND_WRITE);
308 flush_out:
309 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
310 		ret = f2fs_issue_flush(sbi, inode->i_ino);
311 	if (!ret) {
312 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
313 		clear_inode_flag(inode, FI_UPDATE_WRITE);
314 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
315 	}
316 	f2fs_update_time(sbi, REQ_TIME);
317 out:
318 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
319 	f2fs_trace_ios(NULL, 1);
320 	return ret;
321 }
322 
323 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
324 {
325 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
326 		return -EIO;
327 	return f2fs_do_sync_file(file, start, end, datasync, false);
328 }
329 
330 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
331 						pgoff_t pgofs, int whence)
332 {
333 	struct page *page;
334 	int nr_pages;
335 
336 	if (whence != SEEK_DATA)
337 		return 0;
338 
339 	/* find first dirty page index */
340 	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
341 				      1, &page);
342 	if (!nr_pages)
343 		return ULONG_MAX;
344 	pgofs = page->index;
345 	put_page(page);
346 	return pgofs;
347 }
348 
349 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
350 				pgoff_t dirty, pgoff_t pgofs, int whence)
351 {
352 	switch (whence) {
353 	case SEEK_DATA:
354 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
355 			is_valid_data_blkaddr(sbi, blkaddr))
356 			return true;
357 		break;
358 	case SEEK_HOLE:
359 		if (blkaddr == NULL_ADDR)
360 			return true;
361 		break;
362 	}
363 	return false;
364 }
365 
366 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
367 {
368 	struct inode *inode = file->f_mapping->host;
369 	loff_t maxbytes = inode->i_sb->s_maxbytes;
370 	struct dnode_of_data dn;
371 	pgoff_t pgofs, end_offset, dirty;
372 	loff_t data_ofs = offset;
373 	loff_t isize;
374 	int err = 0;
375 
376 	inode_lock(inode);
377 
378 	isize = i_size_read(inode);
379 	if (offset >= isize)
380 		goto fail;
381 
382 	/* handle inline data case */
383 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
384 		if (whence == SEEK_HOLE)
385 			data_ofs = isize;
386 		goto found;
387 	}
388 
389 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
390 
391 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
392 
393 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
394 		set_new_dnode(&dn, inode, NULL, NULL, 0);
395 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
396 		if (err && err != -ENOENT) {
397 			goto fail;
398 		} else if (err == -ENOENT) {
399 			/* direct node does not exists */
400 			if (whence == SEEK_DATA) {
401 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
402 				continue;
403 			} else {
404 				goto found;
405 			}
406 		}
407 
408 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
409 
410 		/* find data/hole in dnode block */
411 		for (; dn.ofs_in_node < end_offset;
412 				dn.ofs_in_node++, pgofs++,
413 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
414 			block_t blkaddr;
415 
416 			blkaddr = datablock_addr(dn.inode,
417 					dn.node_page, dn.ofs_in_node);
418 
419 			if (__is_valid_data_blkaddr(blkaddr) &&
420 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
421 						blkaddr, DATA_GENERIC)) {
422 				f2fs_put_dnode(&dn);
423 				goto fail;
424 			}
425 
426 			if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
427 							pgofs, whence)) {
428 				f2fs_put_dnode(&dn);
429 				goto found;
430 			}
431 		}
432 		f2fs_put_dnode(&dn);
433 	}
434 
435 	if (whence == SEEK_DATA)
436 		goto fail;
437 found:
438 	if (whence == SEEK_HOLE && data_ofs > isize)
439 		data_ofs = isize;
440 	inode_unlock(inode);
441 	return vfs_setpos(file, data_ofs, maxbytes);
442 fail:
443 	inode_unlock(inode);
444 	return -ENXIO;
445 }
446 
447 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
448 {
449 	struct inode *inode = file->f_mapping->host;
450 	loff_t maxbytes = inode->i_sb->s_maxbytes;
451 
452 	switch (whence) {
453 	case SEEK_SET:
454 	case SEEK_CUR:
455 	case SEEK_END:
456 		return generic_file_llseek_size(file, offset, whence,
457 						maxbytes, i_size_read(inode));
458 	case SEEK_DATA:
459 	case SEEK_HOLE:
460 		if (offset < 0)
461 			return -ENXIO;
462 		return f2fs_seek_block(file, offset, whence);
463 	}
464 
465 	return -EINVAL;
466 }
467 
468 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
469 {
470 	struct inode *inode = file_inode(file);
471 	int err;
472 
473 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
474 		return -EIO;
475 
476 	/* we don't need to use inline_data strictly */
477 	err = f2fs_convert_inline_inode(inode);
478 	if (err)
479 		return err;
480 
481 	file_accessed(file);
482 	vma->vm_ops = &f2fs_file_vm_ops;
483 	return 0;
484 }
485 
486 static int f2fs_file_open(struct inode *inode, struct file *filp)
487 {
488 	int err = fscrypt_file_open(inode, filp);
489 
490 	if (err)
491 		return err;
492 
493 	filp->f_mode |= FMODE_NOWAIT;
494 
495 	return dquot_file_open(inode, filp);
496 }
497 
498 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
499 {
500 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
501 	struct f2fs_node *raw_node;
502 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
503 	__le32 *addr;
504 	int base = 0;
505 
506 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
507 		base = get_extra_isize(dn->inode);
508 
509 	raw_node = F2FS_NODE(dn->node_page);
510 	addr = blkaddr_in_node(raw_node) + base + ofs;
511 
512 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
513 		block_t blkaddr = le32_to_cpu(*addr);
514 
515 		if (blkaddr == NULL_ADDR)
516 			continue;
517 
518 		dn->data_blkaddr = NULL_ADDR;
519 		f2fs_set_data_blkaddr(dn);
520 
521 		if (__is_valid_data_blkaddr(blkaddr) &&
522 			!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
523 			continue;
524 
525 		f2fs_invalidate_blocks(sbi, blkaddr);
526 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
527 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
528 		nr_free++;
529 	}
530 
531 	if (nr_free) {
532 		pgoff_t fofs;
533 		/*
534 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
535 		 * we will invalidate all blkaddr in the whole range.
536 		 */
537 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
538 							dn->inode) + ofs;
539 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
540 		dec_valid_block_count(sbi, dn->inode, nr_free);
541 	}
542 	dn->ofs_in_node = ofs;
543 
544 	f2fs_update_time(sbi, REQ_TIME);
545 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
546 					 dn->ofs_in_node, nr_free);
547 }
548 
549 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
550 {
551 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
552 }
553 
554 static int truncate_partial_data_page(struct inode *inode, u64 from,
555 								bool cache_only)
556 {
557 	loff_t offset = from & (PAGE_SIZE - 1);
558 	pgoff_t index = from >> PAGE_SHIFT;
559 	struct address_space *mapping = inode->i_mapping;
560 	struct page *page;
561 
562 	if (!offset && !cache_only)
563 		return 0;
564 
565 	if (cache_only) {
566 		page = find_lock_page(mapping, index);
567 		if (page && PageUptodate(page))
568 			goto truncate_out;
569 		f2fs_put_page(page, 1);
570 		return 0;
571 	}
572 
573 	page = f2fs_get_lock_data_page(inode, index, true);
574 	if (IS_ERR(page))
575 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
576 truncate_out:
577 	f2fs_wait_on_page_writeback(page, DATA, true);
578 	zero_user(page, offset, PAGE_SIZE - offset);
579 
580 	/* An encrypted inode should have a key and truncate the last page. */
581 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
582 	if (!cache_only)
583 		set_page_dirty(page);
584 	f2fs_put_page(page, 1);
585 	return 0;
586 }
587 
588 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
589 {
590 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
591 	struct dnode_of_data dn;
592 	pgoff_t free_from;
593 	int count = 0, err = 0;
594 	struct page *ipage;
595 	bool truncate_page = false;
596 
597 	trace_f2fs_truncate_blocks_enter(inode, from);
598 
599 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
600 
601 	if (free_from >= sbi->max_file_blocks)
602 		goto free_partial;
603 
604 	if (lock)
605 		f2fs_lock_op(sbi);
606 
607 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
608 	if (IS_ERR(ipage)) {
609 		err = PTR_ERR(ipage);
610 		goto out;
611 	}
612 
613 	if (f2fs_has_inline_data(inode)) {
614 		f2fs_truncate_inline_inode(inode, ipage, from);
615 		f2fs_put_page(ipage, 1);
616 		truncate_page = true;
617 		goto out;
618 	}
619 
620 	set_new_dnode(&dn, inode, ipage, NULL, 0);
621 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
622 	if (err) {
623 		if (err == -ENOENT)
624 			goto free_next;
625 		goto out;
626 	}
627 
628 	count = ADDRS_PER_PAGE(dn.node_page, inode);
629 
630 	count -= dn.ofs_in_node;
631 	f2fs_bug_on(sbi, count < 0);
632 
633 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
634 		f2fs_truncate_data_blocks_range(&dn, count);
635 		free_from += count;
636 	}
637 
638 	f2fs_put_dnode(&dn);
639 free_next:
640 	err = f2fs_truncate_inode_blocks(inode, free_from);
641 out:
642 	if (lock)
643 		f2fs_unlock_op(sbi);
644 free_partial:
645 	/* lastly zero out the first data page */
646 	if (!err)
647 		err = truncate_partial_data_page(inode, from, truncate_page);
648 
649 	trace_f2fs_truncate_blocks_exit(inode, err);
650 	return err;
651 }
652 
653 int f2fs_truncate(struct inode *inode)
654 {
655 	int err;
656 
657 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
658 		return -EIO;
659 
660 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
661 				S_ISLNK(inode->i_mode)))
662 		return 0;
663 
664 	trace_f2fs_truncate(inode);
665 
666 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
667 		f2fs_show_injection_info(FAULT_TRUNCATE);
668 		return -EIO;
669 	}
670 
671 	/* we should check inline_data size */
672 	if (!f2fs_may_inline_data(inode)) {
673 		err = f2fs_convert_inline_inode(inode);
674 		if (err)
675 			return err;
676 	}
677 
678 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
679 	if (err)
680 		return err;
681 
682 	inode->i_mtime = inode->i_ctime = current_time(inode);
683 	f2fs_mark_inode_dirty_sync(inode, false);
684 	return 0;
685 }
686 
687 int f2fs_getattr(const struct path *path, struct kstat *stat,
688 		 u32 request_mask, unsigned int query_flags)
689 {
690 	struct inode *inode = d_inode(path->dentry);
691 	struct f2fs_inode_info *fi = F2FS_I(inode);
692 	struct f2fs_inode *ri;
693 	unsigned int flags;
694 
695 	if (f2fs_has_extra_attr(inode) &&
696 			f2fs_sb_has_inode_crtime(inode->i_sb) &&
697 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
698 		stat->result_mask |= STATX_BTIME;
699 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
700 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
701 	}
702 
703 	flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
704 	if (flags & F2FS_APPEND_FL)
705 		stat->attributes |= STATX_ATTR_APPEND;
706 	if (flags & F2FS_COMPR_FL)
707 		stat->attributes |= STATX_ATTR_COMPRESSED;
708 	if (f2fs_encrypted_inode(inode))
709 		stat->attributes |= STATX_ATTR_ENCRYPTED;
710 	if (flags & F2FS_IMMUTABLE_FL)
711 		stat->attributes |= STATX_ATTR_IMMUTABLE;
712 	if (flags & F2FS_NODUMP_FL)
713 		stat->attributes |= STATX_ATTR_NODUMP;
714 
715 	stat->attributes_mask |= (STATX_ATTR_APPEND |
716 				  STATX_ATTR_COMPRESSED |
717 				  STATX_ATTR_ENCRYPTED |
718 				  STATX_ATTR_IMMUTABLE |
719 				  STATX_ATTR_NODUMP);
720 
721 	generic_fillattr(inode, stat);
722 
723 	/* we need to show initial sectors used for inline_data/dentries */
724 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
725 					f2fs_has_inline_dentry(inode))
726 		stat->blocks += (stat->size + 511) >> 9;
727 
728 	return 0;
729 }
730 
731 #ifdef CONFIG_F2FS_FS_POSIX_ACL
732 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
733 {
734 	unsigned int ia_valid = attr->ia_valid;
735 
736 	if (ia_valid & ATTR_UID)
737 		inode->i_uid = attr->ia_uid;
738 	if (ia_valid & ATTR_GID)
739 		inode->i_gid = attr->ia_gid;
740 	if (ia_valid & ATTR_ATIME)
741 		inode->i_atime = timespec64_trunc(attr->ia_atime,
742 						  inode->i_sb->s_time_gran);
743 	if (ia_valid & ATTR_MTIME)
744 		inode->i_mtime = timespec64_trunc(attr->ia_mtime,
745 						  inode->i_sb->s_time_gran);
746 	if (ia_valid & ATTR_CTIME)
747 		inode->i_ctime = timespec64_trunc(attr->ia_ctime,
748 						  inode->i_sb->s_time_gran);
749 	if (ia_valid & ATTR_MODE) {
750 		umode_t mode = attr->ia_mode;
751 
752 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
753 			mode &= ~S_ISGID;
754 		set_acl_inode(inode, mode);
755 	}
756 }
757 #else
758 #define __setattr_copy setattr_copy
759 #endif
760 
761 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
762 {
763 	struct inode *inode = d_inode(dentry);
764 	int err;
765 	bool size_changed = false;
766 
767 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
768 		return -EIO;
769 
770 	err = setattr_prepare(dentry, attr);
771 	if (err)
772 		return err;
773 
774 	err = fscrypt_prepare_setattr(dentry, attr);
775 	if (err)
776 		return err;
777 
778 	if (is_quota_modification(inode, attr)) {
779 		err = dquot_initialize(inode);
780 		if (err)
781 			return err;
782 	}
783 	if ((attr->ia_valid & ATTR_UID &&
784 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
785 		(attr->ia_valid & ATTR_GID &&
786 		!gid_eq(attr->ia_gid, inode->i_gid))) {
787 		err = dquot_transfer(inode, attr);
788 		if (err)
789 			return err;
790 	}
791 
792 	if (attr->ia_valid & ATTR_SIZE) {
793 		bool to_smaller = (attr->ia_size <= i_size_read(inode));
794 
795 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
796 		down_write(&F2FS_I(inode)->i_mmap_sem);
797 
798 		truncate_setsize(inode, attr->ia_size);
799 
800 		if (to_smaller)
801 			err = f2fs_truncate(inode);
802 		/*
803 		 * do not trim all blocks after i_size if target size is
804 		 * larger than i_size.
805 		 */
806 		up_write(&F2FS_I(inode)->i_mmap_sem);
807 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
808 
809 		if (err)
810 			return err;
811 
812 		if (!to_smaller) {
813 			/* should convert inline inode here */
814 			if (!f2fs_may_inline_data(inode)) {
815 				err = f2fs_convert_inline_inode(inode);
816 				if (err)
817 					return err;
818 			}
819 			inode->i_mtime = inode->i_ctime = current_time(inode);
820 		}
821 
822 		down_write(&F2FS_I(inode)->i_sem);
823 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
824 		up_write(&F2FS_I(inode)->i_sem);
825 
826 		size_changed = true;
827 	}
828 
829 	__setattr_copy(inode, attr);
830 
831 	if (attr->ia_valid & ATTR_MODE) {
832 		err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
833 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
834 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
835 			clear_inode_flag(inode, FI_ACL_MODE);
836 		}
837 	}
838 
839 	/* file size may changed here */
840 	f2fs_mark_inode_dirty_sync(inode, size_changed);
841 
842 	/* inode change will produce dirty node pages flushed by checkpoint */
843 	f2fs_balance_fs(F2FS_I_SB(inode), true);
844 
845 	return err;
846 }
847 
848 const struct inode_operations f2fs_file_inode_operations = {
849 	.getattr	= f2fs_getattr,
850 	.setattr	= f2fs_setattr,
851 	.get_acl	= f2fs_get_acl,
852 	.set_acl	= f2fs_set_acl,
853 #ifdef CONFIG_F2FS_FS_XATTR
854 	.listxattr	= f2fs_listxattr,
855 #endif
856 	.fiemap		= f2fs_fiemap,
857 };
858 
859 static int fill_zero(struct inode *inode, pgoff_t index,
860 					loff_t start, loff_t len)
861 {
862 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
863 	struct page *page;
864 
865 	if (!len)
866 		return 0;
867 
868 	f2fs_balance_fs(sbi, true);
869 
870 	f2fs_lock_op(sbi);
871 	page = f2fs_get_new_data_page(inode, NULL, index, false);
872 	f2fs_unlock_op(sbi);
873 
874 	if (IS_ERR(page))
875 		return PTR_ERR(page);
876 
877 	f2fs_wait_on_page_writeback(page, DATA, true);
878 	zero_user(page, start, len);
879 	set_page_dirty(page);
880 	f2fs_put_page(page, 1);
881 	return 0;
882 }
883 
884 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
885 {
886 	int err;
887 
888 	while (pg_start < pg_end) {
889 		struct dnode_of_data dn;
890 		pgoff_t end_offset, count;
891 
892 		set_new_dnode(&dn, inode, NULL, NULL, 0);
893 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
894 		if (err) {
895 			if (err == -ENOENT) {
896 				pg_start = f2fs_get_next_page_offset(&dn,
897 								pg_start);
898 				continue;
899 			}
900 			return err;
901 		}
902 
903 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
904 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
905 
906 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
907 
908 		f2fs_truncate_data_blocks_range(&dn, count);
909 		f2fs_put_dnode(&dn);
910 
911 		pg_start += count;
912 	}
913 	return 0;
914 }
915 
916 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
917 {
918 	pgoff_t pg_start, pg_end;
919 	loff_t off_start, off_end;
920 	int ret;
921 
922 	ret = f2fs_convert_inline_inode(inode);
923 	if (ret)
924 		return ret;
925 
926 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
927 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
928 
929 	off_start = offset & (PAGE_SIZE - 1);
930 	off_end = (offset + len) & (PAGE_SIZE - 1);
931 
932 	if (pg_start == pg_end) {
933 		ret = fill_zero(inode, pg_start, off_start,
934 						off_end - off_start);
935 		if (ret)
936 			return ret;
937 	} else {
938 		if (off_start) {
939 			ret = fill_zero(inode, pg_start++, off_start,
940 						PAGE_SIZE - off_start);
941 			if (ret)
942 				return ret;
943 		}
944 		if (off_end) {
945 			ret = fill_zero(inode, pg_end, 0, off_end);
946 			if (ret)
947 				return ret;
948 		}
949 
950 		if (pg_start < pg_end) {
951 			struct address_space *mapping = inode->i_mapping;
952 			loff_t blk_start, blk_end;
953 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
954 
955 			f2fs_balance_fs(sbi, true);
956 
957 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
958 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
959 
960 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
961 			down_write(&F2FS_I(inode)->i_mmap_sem);
962 
963 			truncate_inode_pages_range(mapping, blk_start,
964 					blk_end - 1);
965 
966 			f2fs_lock_op(sbi);
967 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
968 			f2fs_unlock_op(sbi);
969 
970 			up_write(&F2FS_I(inode)->i_mmap_sem);
971 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
972 		}
973 	}
974 
975 	return ret;
976 }
977 
978 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
979 				int *do_replace, pgoff_t off, pgoff_t len)
980 {
981 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
982 	struct dnode_of_data dn;
983 	int ret, done, i;
984 
985 next_dnode:
986 	set_new_dnode(&dn, inode, NULL, NULL, 0);
987 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
988 	if (ret && ret != -ENOENT) {
989 		return ret;
990 	} else if (ret == -ENOENT) {
991 		if (dn.max_level == 0)
992 			return -ENOENT;
993 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
994 		blkaddr += done;
995 		do_replace += done;
996 		goto next;
997 	}
998 
999 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1000 							dn.ofs_in_node, len);
1001 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1002 		*blkaddr = datablock_addr(dn.inode,
1003 					dn.node_page, dn.ofs_in_node);
1004 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1005 
1006 			if (test_opt(sbi, LFS)) {
1007 				f2fs_put_dnode(&dn);
1008 				return -ENOTSUPP;
1009 			}
1010 
1011 			/* do not invalidate this block address */
1012 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1013 			*do_replace = 1;
1014 		}
1015 	}
1016 	f2fs_put_dnode(&dn);
1017 next:
1018 	len -= done;
1019 	off += done;
1020 	if (len)
1021 		goto next_dnode;
1022 	return 0;
1023 }
1024 
1025 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1026 				int *do_replace, pgoff_t off, int len)
1027 {
1028 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1029 	struct dnode_of_data dn;
1030 	int ret, i;
1031 
1032 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1033 		if (*do_replace == 0)
1034 			continue;
1035 
1036 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1037 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1038 		if (ret) {
1039 			dec_valid_block_count(sbi, inode, 1);
1040 			f2fs_invalidate_blocks(sbi, *blkaddr);
1041 		} else {
1042 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1043 		}
1044 		f2fs_put_dnode(&dn);
1045 	}
1046 	return 0;
1047 }
1048 
1049 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1050 			block_t *blkaddr, int *do_replace,
1051 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1052 {
1053 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1054 	pgoff_t i = 0;
1055 	int ret;
1056 
1057 	while (i < len) {
1058 		if (blkaddr[i] == NULL_ADDR && !full) {
1059 			i++;
1060 			continue;
1061 		}
1062 
1063 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1064 			struct dnode_of_data dn;
1065 			struct node_info ni;
1066 			size_t new_size;
1067 			pgoff_t ilen;
1068 
1069 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1070 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1071 			if (ret)
1072 				return ret;
1073 
1074 			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1075 			if (ret) {
1076 				f2fs_put_dnode(&dn);
1077 				return ret;
1078 			}
1079 
1080 			ilen = min((pgoff_t)
1081 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1082 						dn.ofs_in_node, len - i);
1083 			do {
1084 				dn.data_blkaddr = datablock_addr(dn.inode,
1085 						dn.node_page, dn.ofs_in_node);
1086 				f2fs_truncate_data_blocks_range(&dn, 1);
1087 
1088 				if (do_replace[i]) {
1089 					f2fs_i_blocks_write(src_inode,
1090 							1, false, false);
1091 					f2fs_i_blocks_write(dst_inode,
1092 							1, true, false);
1093 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1094 					blkaddr[i], ni.version, true, false);
1095 
1096 					do_replace[i] = 0;
1097 				}
1098 				dn.ofs_in_node++;
1099 				i++;
1100 				new_size = (dst + i) << PAGE_SHIFT;
1101 				if (dst_inode->i_size < new_size)
1102 					f2fs_i_size_write(dst_inode, new_size);
1103 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1104 
1105 			f2fs_put_dnode(&dn);
1106 		} else {
1107 			struct page *psrc, *pdst;
1108 
1109 			psrc = f2fs_get_lock_data_page(src_inode,
1110 							src + i, true);
1111 			if (IS_ERR(psrc))
1112 				return PTR_ERR(psrc);
1113 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1114 								true);
1115 			if (IS_ERR(pdst)) {
1116 				f2fs_put_page(psrc, 1);
1117 				return PTR_ERR(pdst);
1118 			}
1119 			f2fs_copy_page(psrc, pdst);
1120 			set_page_dirty(pdst);
1121 			f2fs_put_page(pdst, 1);
1122 			f2fs_put_page(psrc, 1);
1123 
1124 			ret = f2fs_truncate_hole(src_inode,
1125 						src + i, src + i + 1);
1126 			if (ret)
1127 				return ret;
1128 			i++;
1129 		}
1130 	}
1131 	return 0;
1132 }
1133 
1134 static int __exchange_data_block(struct inode *src_inode,
1135 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1136 			pgoff_t len, bool full)
1137 {
1138 	block_t *src_blkaddr;
1139 	int *do_replace;
1140 	pgoff_t olen;
1141 	int ret;
1142 
1143 	while (len) {
1144 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1145 
1146 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1147 					array_size(olen, sizeof(block_t)),
1148 					GFP_KERNEL);
1149 		if (!src_blkaddr)
1150 			return -ENOMEM;
1151 
1152 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1153 					array_size(olen, sizeof(int)),
1154 					GFP_KERNEL);
1155 		if (!do_replace) {
1156 			kvfree(src_blkaddr);
1157 			return -ENOMEM;
1158 		}
1159 
1160 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1161 					do_replace, src, olen);
1162 		if (ret)
1163 			goto roll_back;
1164 
1165 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1166 					do_replace, src, dst, olen, full);
1167 		if (ret)
1168 			goto roll_back;
1169 
1170 		src += olen;
1171 		dst += olen;
1172 		len -= olen;
1173 
1174 		kvfree(src_blkaddr);
1175 		kvfree(do_replace);
1176 	}
1177 	return 0;
1178 
1179 roll_back:
1180 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1181 	kvfree(src_blkaddr);
1182 	kvfree(do_replace);
1183 	return ret;
1184 }
1185 
1186 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1187 {
1188 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1189 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1190 	pgoff_t start = offset >> PAGE_SHIFT;
1191 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1192 	int ret;
1193 
1194 	f2fs_balance_fs(sbi, true);
1195 
1196 	/* avoid gc operation during block exchange */
1197 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1198 	down_write(&F2FS_I(inode)->i_mmap_sem);
1199 
1200 	f2fs_lock_op(sbi);
1201 	f2fs_drop_extent_tree(inode);
1202 	truncate_pagecache(inode, offset);
1203 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1204 	f2fs_unlock_op(sbi);
1205 
1206 	up_write(&F2FS_I(inode)->i_mmap_sem);
1207 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1208 	return ret;
1209 }
1210 
1211 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1212 {
1213 	loff_t new_size;
1214 	int ret;
1215 
1216 	if (offset + len >= i_size_read(inode))
1217 		return -EINVAL;
1218 
1219 	/* collapse range should be aligned to block size of f2fs. */
1220 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1221 		return -EINVAL;
1222 
1223 	ret = f2fs_convert_inline_inode(inode);
1224 	if (ret)
1225 		return ret;
1226 
1227 	/* write out all dirty pages from offset */
1228 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1229 	if (ret)
1230 		return ret;
1231 
1232 	ret = f2fs_do_collapse(inode, offset, len);
1233 	if (ret)
1234 		return ret;
1235 
1236 	/* write out all moved pages, if possible */
1237 	down_write(&F2FS_I(inode)->i_mmap_sem);
1238 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1239 	truncate_pagecache(inode, offset);
1240 
1241 	new_size = i_size_read(inode) - len;
1242 	truncate_pagecache(inode, new_size);
1243 
1244 	ret = f2fs_truncate_blocks(inode, new_size, true);
1245 	up_write(&F2FS_I(inode)->i_mmap_sem);
1246 	if (!ret)
1247 		f2fs_i_size_write(inode, new_size);
1248 	return ret;
1249 }
1250 
1251 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1252 								pgoff_t end)
1253 {
1254 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1255 	pgoff_t index = start;
1256 	unsigned int ofs_in_node = dn->ofs_in_node;
1257 	blkcnt_t count = 0;
1258 	int ret;
1259 
1260 	for (; index < end; index++, dn->ofs_in_node++) {
1261 		if (datablock_addr(dn->inode, dn->node_page,
1262 					dn->ofs_in_node) == NULL_ADDR)
1263 			count++;
1264 	}
1265 
1266 	dn->ofs_in_node = ofs_in_node;
1267 	ret = f2fs_reserve_new_blocks(dn, count);
1268 	if (ret)
1269 		return ret;
1270 
1271 	dn->ofs_in_node = ofs_in_node;
1272 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1273 		dn->data_blkaddr = datablock_addr(dn->inode,
1274 					dn->node_page, dn->ofs_in_node);
1275 		/*
1276 		 * f2fs_reserve_new_blocks will not guarantee entire block
1277 		 * allocation.
1278 		 */
1279 		if (dn->data_blkaddr == NULL_ADDR) {
1280 			ret = -ENOSPC;
1281 			break;
1282 		}
1283 		if (dn->data_blkaddr != NEW_ADDR) {
1284 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1285 			dn->data_blkaddr = NEW_ADDR;
1286 			f2fs_set_data_blkaddr(dn);
1287 		}
1288 	}
1289 
1290 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1291 
1292 	return ret;
1293 }
1294 
1295 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1296 								int mode)
1297 {
1298 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1299 	struct address_space *mapping = inode->i_mapping;
1300 	pgoff_t index, pg_start, pg_end;
1301 	loff_t new_size = i_size_read(inode);
1302 	loff_t off_start, off_end;
1303 	int ret = 0;
1304 
1305 	ret = inode_newsize_ok(inode, (len + offset));
1306 	if (ret)
1307 		return ret;
1308 
1309 	ret = f2fs_convert_inline_inode(inode);
1310 	if (ret)
1311 		return ret;
1312 
1313 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1314 	if (ret)
1315 		return ret;
1316 
1317 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1318 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1319 
1320 	off_start = offset & (PAGE_SIZE - 1);
1321 	off_end = (offset + len) & (PAGE_SIZE - 1);
1322 
1323 	if (pg_start == pg_end) {
1324 		ret = fill_zero(inode, pg_start, off_start,
1325 						off_end - off_start);
1326 		if (ret)
1327 			return ret;
1328 
1329 		new_size = max_t(loff_t, new_size, offset + len);
1330 	} else {
1331 		if (off_start) {
1332 			ret = fill_zero(inode, pg_start++, off_start,
1333 						PAGE_SIZE - off_start);
1334 			if (ret)
1335 				return ret;
1336 
1337 			new_size = max_t(loff_t, new_size,
1338 					(loff_t)pg_start << PAGE_SHIFT);
1339 		}
1340 
1341 		for (index = pg_start; index < pg_end;) {
1342 			struct dnode_of_data dn;
1343 			unsigned int end_offset;
1344 			pgoff_t end;
1345 
1346 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1347 			down_write(&F2FS_I(inode)->i_mmap_sem);
1348 
1349 			truncate_pagecache_range(inode,
1350 				(loff_t)index << PAGE_SHIFT,
1351 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1352 
1353 			f2fs_lock_op(sbi);
1354 
1355 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1356 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1357 			if (ret) {
1358 				f2fs_unlock_op(sbi);
1359 				up_write(&F2FS_I(inode)->i_mmap_sem);
1360 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1361 				goto out;
1362 			}
1363 
1364 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1365 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1366 
1367 			ret = f2fs_do_zero_range(&dn, index, end);
1368 			f2fs_put_dnode(&dn);
1369 
1370 			f2fs_unlock_op(sbi);
1371 			up_write(&F2FS_I(inode)->i_mmap_sem);
1372 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1373 
1374 			f2fs_balance_fs(sbi, dn.node_changed);
1375 
1376 			if (ret)
1377 				goto out;
1378 
1379 			index = end;
1380 			new_size = max_t(loff_t, new_size,
1381 					(loff_t)index << PAGE_SHIFT);
1382 		}
1383 
1384 		if (off_end) {
1385 			ret = fill_zero(inode, pg_end, 0, off_end);
1386 			if (ret)
1387 				goto out;
1388 
1389 			new_size = max_t(loff_t, new_size, offset + len);
1390 		}
1391 	}
1392 
1393 out:
1394 	if (new_size > i_size_read(inode)) {
1395 		if (mode & FALLOC_FL_KEEP_SIZE)
1396 			file_set_keep_isize(inode);
1397 		else
1398 			f2fs_i_size_write(inode, new_size);
1399 	}
1400 	return ret;
1401 }
1402 
1403 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1404 {
1405 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1406 	pgoff_t nr, pg_start, pg_end, delta, idx;
1407 	loff_t new_size;
1408 	int ret = 0;
1409 
1410 	new_size = i_size_read(inode) + len;
1411 	ret = inode_newsize_ok(inode, new_size);
1412 	if (ret)
1413 		return ret;
1414 
1415 	if (offset >= i_size_read(inode))
1416 		return -EINVAL;
1417 
1418 	/* insert range should be aligned to block size of f2fs. */
1419 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1420 		return -EINVAL;
1421 
1422 	ret = f2fs_convert_inline_inode(inode);
1423 	if (ret)
1424 		return ret;
1425 
1426 	f2fs_balance_fs(sbi, true);
1427 
1428 	down_write(&F2FS_I(inode)->i_mmap_sem);
1429 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1430 	up_write(&F2FS_I(inode)->i_mmap_sem);
1431 	if (ret)
1432 		return ret;
1433 
1434 	/* write out all dirty pages from offset */
1435 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1436 	if (ret)
1437 		return ret;
1438 
1439 	pg_start = offset >> PAGE_SHIFT;
1440 	pg_end = (offset + len) >> PAGE_SHIFT;
1441 	delta = pg_end - pg_start;
1442 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1443 
1444 	/* avoid gc operation during block exchange */
1445 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1446 	down_write(&F2FS_I(inode)->i_mmap_sem);
1447 	truncate_pagecache(inode, offset);
1448 
1449 	while (!ret && idx > pg_start) {
1450 		nr = idx - pg_start;
1451 		if (nr > delta)
1452 			nr = delta;
1453 		idx -= nr;
1454 
1455 		f2fs_lock_op(sbi);
1456 		f2fs_drop_extent_tree(inode);
1457 
1458 		ret = __exchange_data_block(inode, inode, idx,
1459 					idx + delta, nr, false);
1460 		f2fs_unlock_op(sbi);
1461 	}
1462 	up_write(&F2FS_I(inode)->i_mmap_sem);
1463 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1464 
1465 	/* write out all moved pages, if possible */
1466 	down_write(&F2FS_I(inode)->i_mmap_sem);
1467 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1468 	truncate_pagecache(inode, offset);
1469 	up_write(&F2FS_I(inode)->i_mmap_sem);
1470 
1471 	if (!ret)
1472 		f2fs_i_size_write(inode, new_size);
1473 	return ret;
1474 }
1475 
1476 static int expand_inode_data(struct inode *inode, loff_t offset,
1477 					loff_t len, int mode)
1478 {
1479 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1480 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1481 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1482 	pgoff_t pg_end;
1483 	loff_t new_size = i_size_read(inode);
1484 	loff_t off_end;
1485 	int err;
1486 
1487 	err = inode_newsize_ok(inode, (len + offset));
1488 	if (err)
1489 		return err;
1490 
1491 	err = f2fs_convert_inline_inode(inode);
1492 	if (err)
1493 		return err;
1494 
1495 	f2fs_balance_fs(sbi, true);
1496 
1497 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1498 	off_end = (offset + len) & (PAGE_SIZE - 1);
1499 
1500 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1501 	map.m_len = pg_end - map.m_lblk;
1502 	if (off_end)
1503 		map.m_len++;
1504 
1505 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1506 	if (err) {
1507 		pgoff_t last_off;
1508 
1509 		if (!map.m_len)
1510 			return err;
1511 
1512 		last_off = map.m_lblk + map.m_len - 1;
1513 
1514 		/* update new size to the failed position */
1515 		new_size = (last_off == pg_end) ? offset + len :
1516 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1517 	} else {
1518 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1519 	}
1520 
1521 	if (new_size > i_size_read(inode)) {
1522 		if (mode & FALLOC_FL_KEEP_SIZE)
1523 			file_set_keep_isize(inode);
1524 		else
1525 			f2fs_i_size_write(inode, new_size);
1526 	}
1527 
1528 	return err;
1529 }
1530 
1531 static long f2fs_fallocate(struct file *file, int mode,
1532 				loff_t offset, loff_t len)
1533 {
1534 	struct inode *inode = file_inode(file);
1535 	long ret = 0;
1536 
1537 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1538 		return -EIO;
1539 
1540 	/* f2fs only support ->fallocate for regular file */
1541 	if (!S_ISREG(inode->i_mode))
1542 		return -EINVAL;
1543 
1544 	if (f2fs_encrypted_inode(inode) &&
1545 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1546 		return -EOPNOTSUPP;
1547 
1548 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1549 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1550 			FALLOC_FL_INSERT_RANGE))
1551 		return -EOPNOTSUPP;
1552 
1553 	inode_lock(inode);
1554 
1555 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1556 		if (offset >= inode->i_size)
1557 			goto out;
1558 
1559 		ret = punch_hole(inode, offset, len);
1560 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1561 		ret = f2fs_collapse_range(inode, offset, len);
1562 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1563 		ret = f2fs_zero_range(inode, offset, len, mode);
1564 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1565 		ret = f2fs_insert_range(inode, offset, len);
1566 	} else {
1567 		ret = expand_inode_data(inode, offset, len, mode);
1568 	}
1569 
1570 	if (!ret) {
1571 		inode->i_mtime = inode->i_ctime = current_time(inode);
1572 		f2fs_mark_inode_dirty_sync(inode, false);
1573 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1574 	}
1575 
1576 out:
1577 	inode_unlock(inode);
1578 
1579 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1580 	return ret;
1581 }
1582 
1583 static int f2fs_release_file(struct inode *inode, struct file *filp)
1584 {
1585 	/*
1586 	 * f2fs_relase_file is called at every close calls. So we should
1587 	 * not drop any inmemory pages by close called by other process.
1588 	 */
1589 	if (!(filp->f_mode & FMODE_WRITE) ||
1590 			atomic_read(&inode->i_writecount) != 1)
1591 		return 0;
1592 
1593 	/* some remained atomic pages should discarded */
1594 	if (f2fs_is_atomic_file(inode))
1595 		f2fs_drop_inmem_pages(inode);
1596 	if (f2fs_is_volatile_file(inode)) {
1597 		set_inode_flag(inode, FI_DROP_CACHE);
1598 		filemap_fdatawrite(inode->i_mapping);
1599 		clear_inode_flag(inode, FI_DROP_CACHE);
1600 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1601 		stat_dec_volatile_write(inode);
1602 	}
1603 	return 0;
1604 }
1605 
1606 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1607 {
1608 	struct inode *inode = file_inode(file);
1609 
1610 	/*
1611 	 * If the process doing a transaction is crashed, we should do
1612 	 * roll-back. Otherwise, other reader/write can see corrupted database
1613 	 * until all the writers close its file. Since this should be done
1614 	 * before dropping file lock, it needs to do in ->flush.
1615 	 */
1616 	if (f2fs_is_atomic_file(inode) &&
1617 			F2FS_I(inode)->inmem_task == current)
1618 		f2fs_drop_inmem_pages(inode);
1619 	return 0;
1620 }
1621 
1622 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1623 {
1624 	struct inode *inode = file_inode(filp);
1625 	struct f2fs_inode_info *fi = F2FS_I(inode);
1626 	unsigned int flags = fi->i_flags;
1627 
1628 	if (f2fs_encrypted_inode(inode))
1629 		flags |= F2FS_ENCRYPT_FL;
1630 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1631 		flags |= F2FS_INLINE_DATA_FL;
1632 
1633 	flags &= F2FS_FL_USER_VISIBLE;
1634 
1635 	return put_user(flags, (int __user *)arg);
1636 }
1637 
1638 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1639 {
1640 	struct f2fs_inode_info *fi = F2FS_I(inode);
1641 	unsigned int oldflags;
1642 
1643 	/* Is it quota file? Do not allow user to mess with it */
1644 	if (IS_NOQUOTA(inode))
1645 		return -EPERM;
1646 
1647 	flags = f2fs_mask_flags(inode->i_mode, flags);
1648 
1649 	oldflags = fi->i_flags;
1650 
1651 	if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
1652 		if (!capable(CAP_LINUX_IMMUTABLE))
1653 			return -EPERM;
1654 
1655 	flags = flags & F2FS_FL_USER_MODIFIABLE;
1656 	flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
1657 	fi->i_flags = flags;
1658 
1659 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1660 		set_inode_flag(inode, FI_PROJ_INHERIT);
1661 	else
1662 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1663 
1664 	inode->i_ctime = current_time(inode);
1665 	f2fs_set_inode_flags(inode);
1666 	f2fs_mark_inode_dirty_sync(inode, false);
1667 	return 0;
1668 }
1669 
1670 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1671 {
1672 	struct inode *inode = file_inode(filp);
1673 	unsigned int flags;
1674 	int ret;
1675 
1676 	if (!inode_owner_or_capable(inode))
1677 		return -EACCES;
1678 
1679 	if (get_user(flags, (int __user *)arg))
1680 		return -EFAULT;
1681 
1682 	ret = mnt_want_write_file(filp);
1683 	if (ret)
1684 		return ret;
1685 
1686 	inode_lock(inode);
1687 
1688 	ret = __f2fs_ioc_setflags(inode, flags);
1689 
1690 	inode_unlock(inode);
1691 	mnt_drop_write_file(filp);
1692 	return ret;
1693 }
1694 
1695 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1696 {
1697 	struct inode *inode = file_inode(filp);
1698 
1699 	return put_user(inode->i_generation, (int __user *)arg);
1700 }
1701 
1702 static int f2fs_ioc_start_atomic_write(struct file *filp)
1703 {
1704 	struct inode *inode = file_inode(filp);
1705 	int ret;
1706 
1707 	if (!inode_owner_or_capable(inode))
1708 		return -EACCES;
1709 
1710 	if (!S_ISREG(inode->i_mode))
1711 		return -EINVAL;
1712 
1713 	ret = mnt_want_write_file(filp);
1714 	if (ret)
1715 		return ret;
1716 
1717 	inode_lock(inode);
1718 
1719 	if (f2fs_is_atomic_file(inode)) {
1720 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1721 			ret = -EINVAL;
1722 		goto out;
1723 	}
1724 
1725 	ret = f2fs_convert_inline_inode(inode);
1726 	if (ret)
1727 		goto out;
1728 
1729 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1730 
1731 	if (!get_dirty_pages(inode))
1732 		goto skip_flush;
1733 
1734 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1735 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1736 					inode->i_ino, get_dirty_pages(inode));
1737 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1738 	if (ret) {
1739 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1740 		goto out;
1741 	}
1742 skip_flush:
1743 	set_inode_flag(inode, FI_ATOMIC_FILE);
1744 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1745 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1746 
1747 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1748 	F2FS_I(inode)->inmem_task = current;
1749 	stat_inc_atomic_write(inode);
1750 	stat_update_max_atomic_write(inode);
1751 out:
1752 	inode_unlock(inode);
1753 	mnt_drop_write_file(filp);
1754 	return ret;
1755 }
1756 
1757 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1758 {
1759 	struct inode *inode = file_inode(filp);
1760 	int ret;
1761 
1762 	if (!inode_owner_or_capable(inode))
1763 		return -EACCES;
1764 
1765 	ret = mnt_want_write_file(filp);
1766 	if (ret)
1767 		return ret;
1768 
1769 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1770 
1771 	inode_lock(inode);
1772 
1773 	if (f2fs_is_volatile_file(inode)) {
1774 		ret = -EINVAL;
1775 		goto err_out;
1776 	}
1777 
1778 	if (f2fs_is_atomic_file(inode)) {
1779 		ret = f2fs_commit_inmem_pages(inode);
1780 		if (ret)
1781 			goto err_out;
1782 
1783 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1784 		if (!ret) {
1785 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1786 			F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
1787 			stat_dec_atomic_write(inode);
1788 		}
1789 	} else {
1790 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1791 	}
1792 err_out:
1793 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1794 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1795 		ret = -EINVAL;
1796 	}
1797 	inode_unlock(inode);
1798 	mnt_drop_write_file(filp);
1799 	return ret;
1800 }
1801 
1802 static int f2fs_ioc_start_volatile_write(struct file *filp)
1803 {
1804 	struct inode *inode = file_inode(filp);
1805 	int ret;
1806 
1807 	if (!inode_owner_or_capable(inode))
1808 		return -EACCES;
1809 
1810 	if (!S_ISREG(inode->i_mode))
1811 		return -EINVAL;
1812 
1813 	ret = mnt_want_write_file(filp);
1814 	if (ret)
1815 		return ret;
1816 
1817 	inode_lock(inode);
1818 
1819 	if (f2fs_is_volatile_file(inode))
1820 		goto out;
1821 
1822 	ret = f2fs_convert_inline_inode(inode);
1823 	if (ret)
1824 		goto out;
1825 
1826 	stat_inc_volatile_write(inode);
1827 	stat_update_max_volatile_write(inode);
1828 
1829 	set_inode_flag(inode, FI_VOLATILE_FILE);
1830 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1831 out:
1832 	inode_unlock(inode);
1833 	mnt_drop_write_file(filp);
1834 	return ret;
1835 }
1836 
1837 static int f2fs_ioc_release_volatile_write(struct file *filp)
1838 {
1839 	struct inode *inode = file_inode(filp);
1840 	int ret;
1841 
1842 	if (!inode_owner_or_capable(inode))
1843 		return -EACCES;
1844 
1845 	ret = mnt_want_write_file(filp);
1846 	if (ret)
1847 		return ret;
1848 
1849 	inode_lock(inode);
1850 
1851 	if (!f2fs_is_volatile_file(inode))
1852 		goto out;
1853 
1854 	if (!f2fs_is_first_block_written(inode)) {
1855 		ret = truncate_partial_data_page(inode, 0, true);
1856 		goto out;
1857 	}
1858 
1859 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1860 out:
1861 	inode_unlock(inode);
1862 	mnt_drop_write_file(filp);
1863 	return ret;
1864 }
1865 
1866 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1867 {
1868 	struct inode *inode = file_inode(filp);
1869 	int ret;
1870 
1871 	if (!inode_owner_or_capable(inode))
1872 		return -EACCES;
1873 
1874 	ret = mnt_want_write_file(filp);
1875 	if (ret)
1876 		return ret;
1877 
1878 	inode_lock(inode);
1879 
1880 	if (f2fs_is_atomic_file(inode))
1881 		f2fs_drop_inmem_pages(inode);
1882 	if (f2fs_is_volatile_file(inode)) {
1883 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1884 		stat_dec_volatile_write(inode);
1885 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1886 	}
1887 
1888 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1889 
1890 	inode_unlock(inode);
1891 
1892 	mnt_drop_write_file(filp);
1893 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1894 	return ret;
1895 }
1896 
1897 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1898 {
1899 	struct inode *inode = file_inode(filp);
1900 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1901 	struct super_block *sb = sbi->sb;
1902 	__u32 in;
1903 	int ret = 0;
1904 
1905 	if (!capable(CAP_SYS_ADMIN))
1906 		return -EPERM;
1907 
1908 	if (get_user(in, (__u32 __user *)arg))
1909 		return -EFAULT;
1910 
1911 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
1912 		ret = mnt_want_write_file(filp);
1913 		if (ret)
1914 			return ret;
1915 	}
1916 
1917 	switch (in) {
1918 	case F2FS_GOING_DOWN_FULLSYNC:
1919 		sb = freeze_bdev(sb->s_bdev);
1920 		if (IS_ERR(sb)) {
1921 			ret = PTR_ERR(sb);
1922 			goto out;
1923 		}
1924 		if (sb) {
1925 			f2fs_stop_checkpoint(sbi, false);
1926 			set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1927 			thaw_bdev(sb->s_bdev, sb);
1928 		}
1929 		break;
1930 	case F2FS_GOING_DOWN_METASYNC:
1931 		/* do checkpoint only */
1932 		ret = f2fs_sync_fs(sb, 1);
1933 		if (ret)
1934 			goto out;
1935 		f2fs_stop_checkpoint(sbi, false);
1936 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1937 		break;
1938 	case F2FS_GOING_DOWN_NOSYNC:
1939 		f2fs_stop_checkpoint(sbi, false);
1940 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1941 		break;
1942 	case F2FS_GOING_DOWN_METAFLUSH:
1943 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1944 		f2fs_stop_checkpoint(sbi, false);
1945 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1946 		break;
1947 	default:
1948 		ret = -EINVAL;
1949 		goto out;
1950 	}
1951 
1952 	f2fs_stop_gc_thread(sbi);
1953 	f2fs_stop_discard_thread(sbi);
1954 
1955 	f2fs_drop_discard_cmd(sbi);
1956 	clear_opt(sbi, DISCARD);
1957 
1958 	f2fs_update_time(sbi, REQ_TIME);
1959 out:
1960 	if (in != F2FS_GOING_DOWN_FULLSYNC)
1961 		mnt_drop_write_file(filp);
1962 	return ret;
1963 }
1964 
1965 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1966 {
1967 	struct inode *inode = file_inode(filp);
1968 	struct super_block *sb = inode->i_sb;
1969 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1970 	struct fstrim_range range;
1971 	int ret;
1972 
1973 	if (!capable(CAP_SYS_ADMIN))
1974 		return -EPERM;
1975 
1976 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
1977 		return -EOPNOTSUPP;
1978 
1979 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1980 				sizeof(range)))
1981 		return -EFAULT;
1982 
1983 	ret = mnt_want_write_file(filp);
1984 	if (ret)
1985 		return ret;
1986 
1987 	range.minlen = max((unsigned int)range.minlen,
1988 				q->limits.discard_granularity);
1989 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1990 	mnt_drop_write_file(filp);
1991 	if (ret < 0)
1992 		return ret;
1993 
1994 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1995 				sizeof(range)))
1996 		return -EFAULT;
1997 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1998 	return 0;
1999 }
2000 
2001 static bool uuid_is_nonzero(__u8 u[16])
2002 {
2003 	int i;
2004 
2005 	for (i = 0; i < 16; i++)
2006 		if (u[i])
2007 			return true;
2008 	return false;
2009 }
2010 
2011 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2012 {
2013 	struct inode *inode = file_inode(filp);
2014 
2015 	if (!f2fs_sb_has_encrypt(inode->i_sb))
2016 		return -EOPNOTSUPP;
2017 
2018 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2019 
2020 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2021 }
2022 
2023 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2024 {
2025 	if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
2026 		return -EOPNOTSUPP;
2027 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2028 }
2029 
2030 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2031 {
2032 	struct inode *inode = file_inode(filp);
2033 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2034 	int err;
2035 
2036 	if (!f2fs_sb_has_encrypt(inode->i_sb))
2037 		return -EOPNOTSUPP;
2038 
2039 	err = mnt_want_write_file(filp);
2040 	if (err)
2041 		return err;
2042 
2043 	down_write(&sbi->sb_lock);
2044 
2045 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2046 		goto got_it;
2047 
2048 	/* update superblock with uuid */
2049 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2050 
2051 	err = f2fs_commit_super(sbi, false);
2052 	if (err) {
2053 		/* undo new data */
2054 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2055 		goto out_err;
2056 	}
2057 got_it:
2058 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2059 									16))
2060 		err = -EFAULT;
2061 out_err:
2062 	up_write(&sbi->sb_lock);
2063 	mnt_drop_write_file(filp);
2064 	return err;
2065 }
2066 
2067 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2068 {
2069 	struct inode *inode = file_inode(filp);
2070 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2071 	__u32 sync;
2072 	int ret;
2073 
2074 	if (!capable(CAP_SYS_ADMIN))
2075 		return -EPERM;
2076 
2077 	if (get_user(sync, (__u32 __user *)arg))
2078 		return -EFAULT;
2079 
2080 	if (f2fs_readonly(sbi->sb))
2081 		return -EROFS;
2082 
2083 	ret = mnt_want_write_file(filp);
2084 	if (ret)
2085 		return ret;
2086 
2087 	if (!sync) {
2088 		if (!mutex_trylock(&sbi->gc_mutex)) {
2089 			ret = -EBUSY;
2090 			goto out;
2091 		}
2092 	} else {
2093 		mutex_lock(&sbi->gc_mutex);
2094 	}
2095 
2096 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2097 out:
2098 	mnt_drop_write_file(filp);
2099 	return ret;
2100 }
2101 
2102 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2103 {
2104 	struct inode *inode = file_inode(filp);
2105 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2106 	struct f2fs_gc_range range;
2107 	u64 end;
2108 	int ret;
2109 
2110 	if (!capable(CAP_SYS_ADMIN))
2111 		return -EPERM;
2112 
2113 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2114 							sizeof(range)))
2115 		return -EFAULT;
2116 
2117 	if (f2fs_readonly(sbi->sb))
2118 		return -EROFS;
2119 
2120 	end = range.start + range.len;
2121 	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2122 		return -EINVAL;
2123 	}
2124 
2125 	ret = mnt_want_write_file(filp);
2126 	if (ret)
2127 		return ret;
2128 
2129 do_more:
2130 	if (!range.sync) {
2131 		if (!mutex_trylock(&sbi->gc_mutex)) {
2132 			ret = -EBUSY;
2133 			goto out;
2134 		}
2135 	} else {
2136 		mutex_lock(&sbi->gc_mutex);
2137 	}
2138 
2139 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2140 	range.start += sbi->blocks_per_seg;
2141 	if (range.start <= end)
2142 		goto do_more;
2143 out:
2144 	mnt_drop_write_file(filp);
2145 	return ret;
2146 }
2147 
2148 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2149 {
2150 	struct inode *inode = file_inode(filp);
2151 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2152 	int ret;
2153 
2154 	if (!capable(CAP_SYS_ADMIN))
2155 		return -EPERM;
2156 
2157 	if (f2fs_readonly(sbi->sb))
2158 		return -EROFS;
2159 
2160 	ret = mnt_want_write_file(filp);
2161 	if (ret)
2162 		return ret;
2163 
2164 	ret = f2fs_sync_fs(sbi->sb, 1);
2165 
2166 	mnt_drop_write_file(filp);
2167 	return ret;
2168 }
2169 
2170 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2171 					struct file *filp,
2172 					struct f2fs_defragment *range)
2173 {
2174 	struct inode *inode = file_inode(filp);
2175 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2176 					.m_seg_type = NO_CHECK_TYPE };
2177 	struct extent_info ei = {0, 0, 0};
2178 	pgoff_t pg_start, pg_end, next_pgofs;
2179 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2180 	unsigned int total = 0, sec_num;
2181 	block_t blk_end = 0;
2182 	bool fragmented = false;
2183 	int err;
2184 
2185 	/* if in-place-update policy is enabled, don't waste time here */
2186 	if (f2fs_should_update_inplace(inode, NULL))
2187 		return -EINVAL;
2188 
2189 	pg_start = range->start >> PAGE_SHIFT;
2190 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2191 
2192 	f2fs_balance_fs(sbi, true);
2193 
2194 	inode_lock(inode);
2195 
2196 	/* writeback all dirty pages in the range */
2197 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2198 						range->start + range->len - 1);
2199 	if (err)
2200 		goto out;
2201 
2202 	/*
2203 	 * lookup mapping info in extent cache, skip defragmenting if physical
2204 	 * block addresses are continuous.
2205 	 */
2206 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2207 		if (ei.fofs + ei.len >= pg_end)
2208 			goto out;
2209 	}
2210 
2211 	map.m_lblk = pg_start;
2212 	map.m_next_pgofs = &next_pgofs;
2213 
2214 	/*
2215 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2216 	 * physical block addresses are continuous even if there are hole(s)
2217 	 * in logical blocks.
2218 	 */
2219 	while (map.m_lblk < pg_end) {
2220 		map.m_len = pg_end - map.m_lblk;
2221 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2222 		if (err)
2223 			goto out;
2224 
2225 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2226 			map.m_lblk = next_pgofs;
2227 			continue;
2228 		}
2229 
2230 		if (blk_end && blk_end != map.m_pblk)
2231 			fragmented = true;
2232 
2233 		/* record total count of block that we're going to move */
2234 		total += map.m_len;
2235 
2236 		blk_end = map.m_pblk + map.m_len;
2237 
2238 		map.m_lblk += map.m_len;
2239 	}
2240 
2241 	if (!fragmented)
2242 		goto out;
2243 
2244 	sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2245 
2246 	/*
2247 	 * make sure there are enough free section for LFS allocation, this can
2248 	 * avoid defragment running in SSR mode when free section are allocated
2249 	 * intensively
2250 	 */
2251 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2252 		err = -EAGAIN;
2253 		goto out;
2254 	}
2255 
2256 	map.m_lblk = pg_start;
2257 	map.m_len = pg_end - pg_start;
2258 	total = 0;
2259 
2260 	while (map.m_lblk < pg_end) {
2261 		pgoff_t idx;
2262 		int cnt = 0;
2263 
2264 do_map:
2265 		map.m_len = pg_end - map.m_lblk;
2266 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2267 		if (err)
2268 			goto clear_out;
2269 
2270 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2271 			map.m_lblk = next_pgofs;
2272 			continue;
2273 		}
2274 
2275 		set_inode_flag(inode, FI_DO_DEFRAG);
2276 
2277 		idx = map.m_lblk;
2278 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2279 			struct page *page;
2280 
2281 			page = f2fs_get_lock_data_page(inode, idx, true);
2282 			if (IS_ERR(page)) {
2283 				err = PTR_ERR(page);
2284 				goto clear_out;
2285 			}
2286 
2287 			set_page_dirty(page);
2288 			f2fs_put_page(page, 1);
2289 
2290 			idx++;
2291 			cnt++;
2292 			total++;
2293 		}
2294 
2295 		map.m_lblk = idx;
2296 
2297 		if (idx < pg_end && cnt < blk_per_seg)
2298 			goto do_map;
2299 
2300 		clear_inode_flag(inode, FI_DO_DEFRAG);
2301 
2302 		err = filemap_fdatawrite(inode->i_mapping);
2303 		if (err)
2304 			goto out;
2305 	}
2306 clear_out:
2307 	clear_inode_flag(inode, FI_DO_DEFRAG);
2308 out:
2309 	inode_unlock(inode);
2310 	if (!err)
2311 		range->len = (u64)total << PAGE_SHIFT;
2312 	return err;
2313 }
2314 
2315 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2316 {
2317 	struct inode *inode = file_inode(filp);
2318 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2319 	struct f2fs_defragment range;
2320 	int err;
2321 
2322 	if (!capable(CAP_SYS_ADMIN))
2323 		return -EPERM;
2324 
2325 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2326 		return -EINVAL;
2327 
2328 	if (f2fs_readonly(sbi->sb))
2329 		return -EROFS;
2330 
2331 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2332 							sizeof(range)))
2333 		return -EFAULT;
2334 
2335 	/* verify alignment of offset & size */
2336 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2337 		return -EINVAL;
2338 
2339 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2340 					sbi->max_file_blocks))
2341 		return -EINVAL;
2342 
2343 	err = mnt_want_write_file(filp);
2344 	if (err)
2345 		return err;
2346 
2347 	err = f2fs_defragment_range(sbi, filp, &range);
2348 	mnt_drop_write_file(filp);
2349 
2350 	f2fs_update_time(sbi, REQ_TIME);
2351 	if (err < 0)
2352 		return err;
2353 
2354 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2355 							sizeof(range)))
2356 		return -EFAULT;
2357 
2358 	return 0;
2359 }
2360 
2361 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2362 			struct file *file_out, loff_t pos_out, size_t len)
2363 {
2364 	struct inode *src = file_inode(file_in);
2365 	struct inode *dst = file_inode(file_out);
2366 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2367 	size_t olen = len, dst_max_i_size = 0;
2368 	size_t dst_osize;
2369 	int ret;
2370 
2371 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2372 				src->i_sb != dst->i_sb)
2373 		return -EXDEV;
2374 
2375 	if (unlikely(f2fs_readonly(src->i_sb)))
2376 		return -EROFS;
2377 
2378 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2379 		return -EINVAL;
2380 
2381 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2382 		return -EOPNOTSUPP;
2383 
2384 	if (src == dst) {
2385 		if (pos_in == pos_out)
2386 			return 0;
2387 		if (pos_out > pos_in && pos_out < pos_in + len)
2388 			return -EINVAL;
2389 	}
2390 
2391 	inode_lock(src);
2392 	if (src != dst) {
2393 		ret = -EBUSY;
2394 		if (!inode_trylock(dst))
2395 			goto out;
2396 	}
2397 
2398 	ret = -EINVAL;
2399 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2400 		goto out_unlock;
2401 	if (len == 0)
2402 		olen = len = src->i_size - pos_in;
2403 	if (pos_in + len == src->i_size)
2404 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2405 	if (len == 0) {
2406 		ret = 0;
2407 		goto out_unlock;
2408 	}
2409 
2410 	dst_osize = dst->i_size;
2411 	if (pos_out + olen > dst->i_size)
2412 		dst_max_i_size = pos_out + olen;
2413 
2414 	/* verify the end result is block aligned */
2415 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2416 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2417 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2418 		goto out_unlock;
2419 
2420 	ret = f2fs_convert_inline_inode(src);
2421 	if (ret)
2422 		goto out_unlock;
2423 
2424 	ret = f2fs_convert_inline_inode(dst);
2425 	if (ret)
2426 		goto out_unlock;
2427 
2428 	/* write out all dirty pages from offset */
2429 	ret = filemap_write_and_wait_range(src->i_mapping,
2430 					pos_in, pos_in + len);
2431 	if (ret)
2432 		goto out_unlock;
2433 
2434 	ret = filemap_write_and_wait_range(dst->i_mapping,
2435 					pos_out, pos_out + len);
2436 	if (ret)
2437 		goto out_unlock;
2438 
2439 	f2fs_balance_fs(sbi, true);
2440 
2441 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2442 	if (src != dst) {
2443 		ret = -EBUSY;
2444 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2445 			goto out_src;
2446 	}
2447 
2448 	f2fs_lock_op(sbi);
2449 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2450 				pos_out >> F2FS_BLKSIZE_BITS,
2451 				len >> F2FS_BLKSIZE_BITS, false);
2452 
2453 	if (!ret) {
2454 		if (dst_max_i_size)
2455 			f2fs_i_size_write(dst, dst_max_i_size);
2456 		else if (dst_osize != dst->i_size)
2457 			f2fs_i_size_write(dst, dst_osize);
2458 	}
2459 	f2fs_unlock_op(sbi);
2460 
2461 	if (src != dst)
2462 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2463 out_src:
2464 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2465 out_unlock:
2466 	if (src != dst)
2467 		inode_unlock(dst);
2468 out:
2469 	inode_unlock(src);
2470 	return ret;
2471 }
2472 
2473 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2474 {
2475 	struct f2fs_move_range range;
2476 	struct fd dst;
2477 	int err;
2478 
2479 	if (!(filp->f_mode & FMODE_READ) ||
2480 			!(filp->f_mode & FMODE_WRITE))
2481 		return -EBADF;
2482 
2483 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2484 							sizeof(range)))
2485 		return -EFAULT;
2486 
2487 	dst = fdget(range.dst_fd);
2488 	if (!dst.file)
2489 		return -EBADF;
2490 
2491 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2492 		err = -EBADF;
2493 		goto err_out;
2494 	}
2495 
2496 	err = mnt_want_write_file(filp);
2497 	if (err)
2498 		goto err_out;
2499 
2500 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2501 					range.pos_out, range.len);
2502 
2503 	mnt_drop_write_file(filp);
2504 	if (err)
2505 		goto err_out;
2506 
2507 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2508 						&range, sizeof(range)))
2509 		err = -EFAULT;
2510 err_out:
2511 	fdput(dst);
2512 	return err;
2513 }
2514 
2515 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2516 {
2517 	struct inode *inode = file_inode(filp);
2518 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2519 	struct sit_info *sm = SIT_I(sbi);
2520 	unsigned int start_segno = 0, end_segno = 0;
2521 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2522 	struct f2fs_flush_device range;
2523 	int ret;
2524 
2525 	if (!capable(CAP_SYS_ADMIN))
2526 		return -EPERM;
2527 
2528 	if (f2fs_readonly(sbi->sb))
2529 		return -EROFS;
2530 
2531 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2532 							sizeof(range)))
2533 		return -EFAULT;
2534 
2535 	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2536 			sbi->segs_per_sec != 1) {
2537 		f2fs_msg(sbi->sb, KERN_WARNING,
2538 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2539 				range.dev_num, sbi->s_ndevs,
2540 				sbi->segs_per_sec);
2541 		return -EINVAL;
2542 	}
2543 
2544 	ret = mnt_want_write_file(filp);
2545 	if (ret)
2546 		return ret;
2547 
2548 	if (range.dev_num != 0)
2549 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2550 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2551 
2552 	start_segno = sm->last_victim[FLUSH_DEVICE];
2553 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2554 		start_segno = dev_start_segno;
2555 	end_segno = min(start_segno + range.segments, dev_end_segno);
2556 
2557 	while (start_segno < end_segno) {
2558 		if (!mutex_trylock(&sbi->gc_mutex)) {
2559 			ret = -EBUSY;
2560 			goto out;
2561 		}
2562 		sm->last_victim[GC_CB] = end_segno + 1;
2563 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2564 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2565 		ret = f2fs_gc(sbi, true, true, start_segno);
2566 		if (ret == -EAGAIN)
2567 			ret = 0;
2568 		else if (ret < 0)
2569 			break;
2570 		start_segno++;
2571 	}
2572 out:
2573 	mnt_drop_write_file(filp);
2574 	return ret;
2575 }
2576 
2577 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2578 {
2579 	struct inode *inode = file_inode(filp);
2580 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2581 
2582 	/* Must validate to set it with SQLite behavior in Android. */
2583 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2584 
2585 	return put_user(sb_feature, (u32 __user *)arg);
2586 }
2587 
2588 #ifdef CONFIG_QUOTA
2589 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2590 {
2591 	struct inode *inode = file_inode(filp);
2592 	struct f2fs_inode_info *fi = F2FS_I(inode);
2593 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2594 	struct super_block *sb = sbi->sb;
2595 	struct dquot *transfer_to[MAXQUOTAS] = {};
2596 	struct page *ipage;
2597 	kprojid_t kprojid;
2598 	int err;
2599 
2600 	if (!f2fs_sb_has_project_quota(sb)) {
2601 		if (projid != F2FS_DEF_PROJID)
2602 			return -EOPNOTSUPP;
2603 		else
2604 			return 0;
2605 	}
2606 
2607 	if (!f2fs_has_extra_attr(inode))
2608 		return -EOPNOTSUPP;
2609 
2610 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2611 
2612 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2613 		return 0;
2614 
2615 	err = -EPERM;
2616 	/* Is it quota file? Do not allow user to mess with it */
2617 	if (IS_NOQUOTA(inode))
2618 		return err;
2619 
2620 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2621 	if (IS_ERR(ipage))
2622 		return PTR_ERR(ipage);
2623 
2624 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2625 								i_projid)) {
2626 		err = -EOVERFLOW;
2627 		f2fs_put_page(ipage, 1);
2628 		return err;
2629 	}
2630 	f2fs_put_page(ipage, 1);
2631 
2632 	err = dquot_initialize(inode);
2633 	if (err)
2634 		return err;
2635 
2636 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2637 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2638 		err = __dquot_transfer(inode, transfer_to);
2639 		dqput(transfer_to[PRJQUOTA]);
2640 		if (err)
2641 			goto out_dirty;
2642 	}
2643 
2644 	F2FS_I(inode)->i_projid = kprojid;
2645 	inode->i_ctime = current_time(inode);
2646 out_dirty:
2647 	f2fs_mark_inode_dirty_sync(inode, true);
2648 	return err;
2649 }
2650 #else
2651 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2652 {
2653 	if (projid != F2FS_DEF_PROJID)
2654 		return -EOPNOTSUPP;
2655 	return 0;
2656 }
2657 #endif
2658 
2659 /* Transfer internal flags to xflags */
2660 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2661 {
2662 	__u32 xflags = 0;
2663 
2664 	if (iflags & F2FS_SYNC_FL)
2665 		xflags |= FS_XFLAG_SYNC;
2666 	if (iflags & F2FS_IMMUTABLE_FL)
2667 		xflags |= FS_XFLAG_IMMUTABLE;
2668 	if (iflags & F2FS_APPEND_FL)
2669 		xflags |= FS_XFLAG_APPEND;
2670 	if (iflags & F2FS_NODUMP_FL)
2671 		xflags |= FS_XFLAG_NODUMP;
2672 	if (iflags & F2FS_NOATIME_FL)
2673 		xflags |= FS_XFLAG_NOATIME;
2674 	if (iflags & F2FS_PROJINHERIT_FL)
2675 		xflags |= FS_XFLAG_PROJINHERIT;
2676 	return xflags;
2677 }
2678 
2679 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2680 				  FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2681 				  FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2682 
2683 /* Transfer xflags flags to internal */
2684 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2685 {
2686 	unsigned long iflags = 0;
2687 
2688 	if (xflags & FS_XFLAG_SYNC)
2689 		iflags |= F2FS_SYNC_FL;
2690 	if (xflags & FS_XFLAG_IMMUTABLE)
2691 		iflags |= F2FS_IMMUTABLE_FL;
2692 	if (xflags & FS_XFLAG_APPEND)
2693 		iflags |= F2FS_APPEND_FL;
2694 	if (xflags & FS_XFLAG_NODUMP)
2695 		iflags |= F2FS_NODUMP_FL;
2696 	if (xflags & FS_XFLAG_NOATIME)
2697 		iflags |= F2FS_NOATIME_FL;
2698 	if (xflags & FS_XFLAG_PROJINHERIT)
2699 		iflags |= F2FS_PROJINHERIT_FL;
2700 
2701 	return iflags;
2702 }
2703 
2704 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2705 {
2706 	struct inode *inode = file_inode(filp);
2707 	struct f2fs_inode_info *fi = F2FS_I(inode);
2708 	struct fsxattr fa;
2709 
2710 	memset(&fa, 0, sizeof(struct fsxattr));
2711 	fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2712 				F2FS_FL_USER_VISIBLE);
2713 
2714 	if (f2fs_sb_has_project_quota(inode->i_sb))
2715 		fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2716 							fi->i_projid);
2717 
2718 	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2719 		return -EFAULT;
2720 	return 0;
2721 }
2722 
2723 static int f2fs_ioctl_check_project(struct inode *inode, struct fsxattr *fa)
2724 {
2725 	/*
2726 	 * Project Quota ID state is only allowed to change from within the init
2727 	 * namespace. Enforce that restriction only if we are trying to change
2728 	 * the quota ID state. Everything else is allowed in user namespaces.
2729 	 */
2730 	if (current_user_ns() == &init_user_ns)
2731 		return 0;
2732 
2733 	if (__kprojid_val(F2FS_I(inode)->i_projid) != fa->fsx_projid)
2734 		return -EINVAL;
2735 
2736 	if (F2FS_I(inode)->i_flags & F2FS_PROJINHERIT_FL) {
2737 		if (!(fa->fsx_xflags & FS_XFLAG_PROJINHERIT))
2738 			return -EINVAL;
2739 	} else {
2740 		if (fa->fsx_xflags & FS_XFLAG_PROJINHERIT)
2741 			return -EINVAL;
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2748 {
2749 	struct inode *inode = file_inode(filp);
2750 	struct f2fs_inode_info *fi = F2FS_I(inode);
2751 	struct fsxattr fa;
2752 	unsigned int flags;
2753 	int err;
2754 
2755 	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2756 		return -EFAULT;
2757 
2758 	/* Make sure caller has proper permission */
2759 	if (!inode_owner_or_capable(inode))
2760 		return -EACCES;
2761 
2762 	if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2763 		return -EOPNOTSUPP;
2764 
2765 	flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2766 	if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2767 		return -EOPNOTSUPP;
2768 
2769 	err = mnt_want_write_file(filp);
2770 	if (err)
2771 		return err;
2772 
2773 	inode_lock(inode);
2774 	err = f2fs_ioctl_check_project(inode, &fa);
2775 	if (err)
2776 		goto out;
2777 	flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2778 				(flags & F2FS_FL_XFLAG_VISIBLE);
2779 	err = __f2fs_ioc_setflags(inode, flags);
2780 	if (err)
2781 		goto out;
2782 
2783 	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2784 out:
2785 	inode_unlock(inode);
2786 	mnt_drop_write_file(filp);
2787 	return err;
2788 }
2789 
2790 int f2fs_pin_file_control(struct inode *inode, bool inc)
2791 {
2792 	struct f2fs_inode_info *fi = F2FS_I(inode);
2793 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2794 
2795 	/* Use i_gc_failures for normal file as a risk signal. */
2796 	if (inc)
2797 		f2fs_i_gc_failures_write(inode,
2798 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
2799 
2800 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
2801 		f2fs_msg(sbi->sb, KERN_WARNING,
2802 			"%s: Enable GC = ino %lx after %x GC trials\n",
2803 			__func__, inode->i_ino,
2804 			fi->i_gc_failures[GC_FAILURE_PIN]);
2805 		clear_inode_flag(inode, FI_PIN_FILE);
2806 		return -EAGAIN;
2807 	}
2808 	return 0;
2809 }
2810 
2811 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2812 {
2813 	struct inode *inode = file_inode(filp);
2814 	__u32 pin;
2815 	int ret = 0;
2816 
2817 	if (!inode_owner_or_capable(inode))
2818 		return -EACCES;
2819 
2820 	if (get_user(pin, (__u32 __user *)arg))
2821 		return -EFAULT;
2822 
2823 	if (!S_ISREG(inode->i_mode))
2824 		return -EINVAL;
2825 
2826 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2827 		return -EROFS;
2828 
2829 	ret = mnt_want_write_file(filp);
2830 	if (ret)
2831 		return ret;
2832 
2833 	inode_lock(inode);
2834 
2835 	if (f2fs_should_update_outplace(inode, NULL)) {
2836 		ret = -EINVAL;
2837 		goto out;
2838 	}
2839 
2840 	if (!pin) {
2841 		clear_inode_flag(inode, FI_PIN_FILE);
2842 		f2fs_i_gc_failures_write(inode, 0);
2843 		goto done;
2844 	}
2845 
2846 	if (f2fs_pin_file_control(inode, false)) {
2847 		ret = -EAGAIN;
2848 		goto out;
2849 	}
2850 	ret = f2fs_convert_inline_inode(inode);
2851 	if (ret)
2852 		goto out;
2853 
2854 	set_inode_flag(inode, FI_PIN_FILE);
2855 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2856 done:
2857 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2858 out:
2859 	inode_unlock(inode);
2860 	mnt_drop_write_file(filp);
2861 	return ret;
2862 }
2863 
2864 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2865 {
2866 	struct inode *inode = file_inode(filp);
2867 	__u32 pin = 0;
2868 
2869 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2870 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2871 	return put_user(pin, (u32 __user *)arg);
2872 }
2873 
2874 int f2fs_precache_extents(struct inode *inode)
2875 {
2876 	struct f2fs_inode_info *fi = F2FS_I(inode);
2877 	struct f2fs_map_blocks map;
2878 	pgoff_t m_next_extent;
2879 	loff_t end;
2880 	int err;
2881 
2882 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
2883 		return -EOPNOTSUPP;
2884 
2885 	map.m_lblk = 0;
2886 	map.m_next_pgofs = NULL;
2887 	map.m_next_extent = &m_next_extent;
2888 	map.m_seg_type = NO_CHECK_TYPE;
2889 	end = F2FS_I_SB(inode)->max_file_blocks;
2890 
2891 	while (map.m_lblk < end) {
2892 		map.m_len = end - map.m_lblk;
2893 
2894 		down_write(&fi->i_gc_rwsem[WRITE]);
2895 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2896 		up_write(&fi->i_gc_rwsem[WRITE]);
2897 		if (err)
2898 			return err;
2899 
2900 		map.m_lblk = m_next_extent;
2901 	}
2902 
2903 	return err;
2904 }
2905 
2906 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2907 {
2908 	return f2fs_precache_extents(file_inode(filp));
2909 }
2910 
2911 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2912 {
2913 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2914 		return -EIO;
2915 
2916 	switch (cmd) {
2917 	case F2FS_IOC_GETFLAGS:
2918 		return f2fs_ioc_getflags(filp, arg);
2919 	case F2FS_IOC_SETFLAGS:
2920 		return f2fs_ioc_setflags(filp, arg);
2921 	case F2FS_IOC_GETVERSION:
2922 		return f2fs_ioc_getversion(filp, arg);
2923 	case F2FS_IOC_START_ATOMIC_WRITE:
2924 		return f2fs_ioc_start_atomic_write(filp);
2925 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2926 		return f2fs_ioc_commit_atomic_write(filp);
2927 	case F2FS_IOC_START_VOLATILE_WRITE:
2928 		return f2fs_ioc_start_volatile_write(filp);
2929 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2930 		return f2fs_ioc_release_volatile_write(filp);
2931 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2932 		return f2fs_ioc_abort_volatile_write(filp);
2933 	case F2FS_IOC_SHUTDOWN:
2934 		return f2fs_ioc_shutdown(filp, arg);
2935 	case FITRIM:
2936 		return f2fs_ioc_fitrim(filp, arg);
2937 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2938 		return f2fs_ioc_set_encryption_policy(filp, arg);
2939 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2940 		return f2fs_ioc_get_encryption_policy(filp, arg);
2941 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2942 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2943 	case F2FS_IOC_GARBAGE_COLLECT:
2944 		return f2fs_ioc_gc(filp, arg);
2945 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2946 		return f2fs_ioc_gc_range(filp, arg);
2947 	case F2FS_IOC_WRITE_CHECKPOINT:
2948 		return f2fs_ioc_write_checkpoint(filp, arg);
2949 	case F2FS_IOC_DEFRAGMENT:
2950 		return f2fs_ioc_defragment(filp, arg);
2951 	case F2FS_IOC_MOVE_RANGE:
2952 		return f2fs_ioc_move_range(filp, arg);
2953 	case F2FS_IOC_FLUSH_DEVICE:
2954 		return f2fs_ioc_flush_device(filp, arg);
2955 	case F2FS_IOC_GET_FEATURES:
2956 		return f2fs_ioc_get_features(filp, arg);
2957 	case F2FS_IOC_FSGETXATTR:
2958 		return f2fs_ioc_fsgetxattr(filp, arg);
2959 	case F2FS_IOC_FSSETXATTR:
2960 		return f2fs_ioc_fssetxattr(filp, arg);
2961 	case F2FS_IOC_GET_PIN_FILE:
2962 		return f2fs_ioc_get_pin_file(filp, arg);
2963 	case F2FS_IOC_SET_PIN_FILE:
2964 		return f2fs_ioc_set_pin_file(filp, arg);
2965 	case F2FS_IOC_PRECACHE_EXTENTS:
2966 		return f2fs_ioc_precache_extents(filp, arg);
2967 	default:
2968 		return -ENOTTY;
2969 	}
2970 }
2971 
2972 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2973 {
2974 	struct file *file = iocb->ki_filp;
2975 	struct inode *inode = file_inode(file);
2976 	ssize_t ret;
2977 
2978 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2979 		return -EIO;
2980 
2981 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2982 		return -EINVAL;
2983 
2984 	if (!inode_trylock(inode)) {
2985 		if (iocb->ki_flags & IOCB_NOWAIT)
2986 			return -EAGAIN;
2987 		inode_lock(inode);
2988 	}
2989 
2990 	ret = generic_write_checks(iocb, from);
2991 	if (ret > 0) {
2992 		bool preallocated = false;
2993 		size_t target_size = 0;
2994 		int err;
2995 
2996 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2997 			set_inode_flag(inode, FI_NO_PREALLOC);
2998 
2999 		if ((iocb->ki_flags & IOCB_NOWAIT) &&
3000 			(iocb->ki_flags & IOCB_DIRECT)) {
3001 				if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3002 						iov_iter_count(from)) ||
3003 					f2fs_has_inline_data(inode) ||
3004 					f2fs_force_buffered_io(inode,
3005 							iocb, from)) {
3006 						clear_inode_flag(inode,
3007 								FI_NO_PREALLOC);
3008 						inode_unlock(inode);
3009 						return -EAGAIN;
3010 				}
3011 
3012 		} else {
3013 			preallocated = true;
3014 			target_size = iocb->ki_pos + iov_iter_count(from);
3015 
3016 			err = f2fs_preallocate_blocks(iocb, from);
3017 			if (err) {
3018 				clear_inode_flag(inode, FI_NO_PREALLOC);
3019 				inode_unlock(inode);
3020 				return err;
3021 			}
3022 		}
3023 		ret = __generic_file_write_iter(iocb, from);
3024 		clear_inode_flag(inode, FI_NO_PREALLOC);
3025 
3026 		/* if we couldn't write data, we should deallocate blocks. */
3027 		if (preallocated && i_size_read(inode) < target_size)
3028 			f2fs_truncate(inode);
3029 
3030 		if (ret > 0)
3031 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3032 	}
3033 	inode_unlock(inode);
3034 
3035 	if (ret > 0)
3036 		ret = generic_write_sync(iocb, ret);
3037 	return ret;
3038 }
3039 
3040 #ifdef CONFIG_COMPAT
3041 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3042 {
3043 	switch (cmd) {
3044 	case F2FS_IOC32_GETFLAGS:
3045 		cmd = F2FS_IOC_GETFLAGS;
3046 		break;
3047 	case F2FS_IOC32_SETFLAGS:
3048 		cmd = F2FS_IOC_SETFLAGS;
3049 		break;
3050 	case F2FS_IOC32_GETVERSION:
3051 		cmd = F2FS_IOC_GETVERSION;
3052 		break;
3053 	case F2FS_IOC_START_ATOMIC_WRITE:
3054 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3055 	case F2FS_IOC_START_VOLATILE_WRITE:
3056 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3057 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3058 	case F2FS_IOC_SHUTDOWN:
3059 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3060 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3061 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3062 	case F2FS_IOC_GARBAGE_COLLECT:
3063 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3064 	case F2FS_IOC_WRITE_CHECKPOINT:
3065 	case F2FS_IOC_DEFRAGMENT:
3066 	case F2FS_IOC_MOVE_RANGE:
3067 	case F2FS_IOC_FLUSH_DEVICE:
3068 	case F2FS_IOC_GET_FEATURES:
3069 	case F2FS_IOC_FSGETXATTR:
3070 	case F2FS_IOC_FSSETXATTR:
3071 	case F2FS_IOC_GET_PIN_FILE:
3072 	case F2FS_IOC_SET_PIN_FILE:
3073 	case F2FS_IOC_PRECACHE_EXTENTS:
3074 		break;
3075 	default:
3076 		return -ENOIOCTLCMD;
3077 	}
3078 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3079 }
3080 #endif
3081 
3082 const struct file_operations f2fs_file_operations = {
3083 	.llseek		= f2fs_llseek,
3084 	.read_iter	= generic_file_read_iter,
3085 	.write_iter	= f2fs_file_write_iter,
3086 	.open		= f2fs_file_open,
3087 	.release	= f2fs_release_file,
3088 	.mmap		= f2fs_file_mmap,
3089 	.flush		= f2fs_file_flush,
3090 	.fsync		= f2fs_sync_file,
3091 	.fallocate	= f2fs_fallocate,
3092 	.unlocked_ioctl	= f2fs_ioctl,
3093 #ifdef CONFIG_COMPAT
3094 	.compat_ioctl	= f2fs_compat_ioctl,
3095 #endif
3096 	.splice_read	= generic_file_splice_read,
3097 	.splice_write	= iter_file_splice_write,
3098 };
3099