xref: /openbmc/linux/fs/f2fs/file.c (revision a1e09b03e6f5c1d713c88259909137c0fd264ede)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47 							F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
117 		set_new_dnode(&dn, inode, NULL, NULL, 0);
118 		err = f2fs_get_block(&dn, page->index);
119 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
120 	}
121 
122 #ifdef CONFIG_F2FS_FS_COMPRESSION
123 	if (!need_alloc) {
124 		set_new_dnode(&dn, inode, NULL, NULL, 0);
125 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
126 		f2fs_put_dnode(&dn);
127 	}
128 #endif
129 	if (err) {
130 		unlock_page(page);
131 		goto out_sem;
132 	}
133 
134 	f2fs_wait_on_page_writeback(page, DATA, false, true);
135 
136 	/* wait for GCed page writeback via META_MAPPING */
137 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138 
139 	/*
140 	 * check to see if the page is mapped already (no holes)
141 	 */
142 	if (PageMappedToDisk(page))
143 		goto out_sem;
144 
145 	/* page is wholly or partially inside EOF */
146 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
147 						i_size_read(inode)) {
148 		loff_t offset;
149 
150 		offset = i_size_read(inode) & ~PAGE_MASK;
151 		zero_user_segment(page, offset, PAGE_SIZE);
152 	}
153 	set_page_dirty(page);
154 	if (!PageUptodate(page))
155 		SetPageUptodate(page);
156 
157 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
158 	f2fs_update_time(sbi, REQ_TIME);
159 
160 	trace_f2fs_vm_page_mkwrite(page, DATA);
161 out_sem:
162 	filemap_invalidate_unlock_shared(inode->i_mapping);
163 
164 	sb_end_pagefault(inode->i_sb);
165 err:
166 	return block_page_mkwrite_return(err);
167 }
168 
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 	.fault		= f2fs_filemap_fault,
171 	.map_pages	= filemap_map_pages,
172 	.page_mkwrite	= f2fs_vm_page_mkwrite,
173 };
174 
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177 	struct dentry *dentry;
178 
179 	/*
180 	 * Make sure to get the non-deleted alias.  The alias associated with
181 	 * the open file descriptor being fsync()'ed may be deleted already.
182 	 */
183 	dentry = d_find_alias(inode);
184 	if (!dentry)
185 		return 0;
186 
187 	*pino = parent_ino(dentry);
188 	dput(dentry);
189 	return 1;
190 }
191 
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
196 
197 	if (!S_ISREG(inode->i_mode))
198 		cp_reason = CP_NON_REGULAR;
199 	else if (f2fs_compressed_file(inode))
200 		cp_reason = CP_COMPRESSED;
201 	else if (inode->i_nlink != 1)
202 		cp_reason = CP_HARDLINK;
203 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 		cp_reason = CP_SB_NEED_CP;
205 	else if (file_wrong_pino(inode))
206 		cp_reason = CP_WRONG_PINO;
207 	else if (!f2fs_space_for_roll_forward(sbi))
208 		cp_reason = CP_NO_SPC_ROLL;
209 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 		cp_reason = CP_NODE_NEED_CP;
211 	else if (test_opt(sbi, FASTBOOT))
212 		cp_reason = CP_FASTBOOT_MODE;
213 	else if (F2FS_OPTION(sbi).active_logs == 2)
214 		cp_reason = CP_SPEC_LOG_NUM;
215 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218 							TRANS_DIR_INO))
219 		cp_reason = CP_RECOVER_DIR;
220 
221 	return cp_reason;
222 }
223 
224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
225 {
226 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
227 	bool ret = false;
228 	/* But we need to avoid that there are some inode updates */
229 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
230 		ret = true;
231 	f2fs_put_page(i, 0);
232 	return ret;
233 }
234 
235 static void try_to_fix_pino(struct inode *inode)
236 {
237 	struct f2fs_inode_info *fi = F2FS_I(inode);
238 	nid_t pino;
239 
240 	down_write(&fi->i_sem);
241 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
242 			get_parent_ino(inode, &pino)) {
243 		f2fs_i_pino_write(inode, pino);
244 		file_got_pino(inode);
245 	}
246 	up_write(&fi->i_sem);
247 }
248 
249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
250 						int datasync, bool atomic)
251 {
252 	struct inode *inode = file->f_mapping->host;
253 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
254 	nid_t ino = inode->i_ino;
255 	int ret = 0;
256 	enum cp_reason_type cp_reason = 0;
257 	struct writeback_control wbc = {
258 		.sync_mode = WB_SYNC_ALL,
259 		.nr_to_write = LONG_MAX,
260 		.for_reclaim = 0,
261 	};
262 	unsigned int seq_id = 0;
263 
264 	if (unlikely(f2fs_readonly(inode->i_sb)))
265 		return 0;
266 
267 	trace_f2fs_sync_file_enter(inode);
268 
269 	if (S_ISDIR(inode->i_mode))
270 		goto go_write;
271 
272 	/* if fdatasync is triggered, let's do in-place-update */
273 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
274 		set_inode_flag(inode, FI_NEED_IPU);
275 	ret = file_write_and_wait_range(file, start, end);
276 	clear_inode_flag(inode, FI_NEED_IPU);
277 
278 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
279 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
280 		return ret;
281 	}
282 
283 	/* if the inode is dirty, let's recover all the time */
284 	if (!f2fs_skip_inode_update(inode, datasync)) {
285 		f2fs_write_inode(inode, NULL);
286 		goto go_write;
287 	}
288 
289 	/*
290 	 * if there is no written data, don't waste time to write recovery info.
291 	 */
292 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
293 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
294 
295 		/* it may call write_inode just prior to fsync */
296 		if (need_inode_page_update(sbi, ino))
297 			goto go_write;
298 
299 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
300 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
301 			goto flush_out;
302 		goto out;
303 	} else {
304 		/*
305 		 * for OPU case, during fsync(), node can be persisted before
306 		 * data when lower device doesn't support write barrier, result
307 		 * in data corruption after SPO.
308 		 * So for strict fsync mode, force to use atomic write sematics
309 		 * to keep write order in between data/node and last node to
310 		 * avoid potential data corruption.
311 		 */
312 		if (F2FS_OPTION(sbi).fsync_mode ==
313 				FSYNC_MODE_STRICT && !atomic)
314 			atomic = true;
315 	}
316 go_write:
317 	/*
318 	 * Both of fdatasync() and fsync() are able to be recovered from
319 	 * sudden-power-off.
320 	 */
321 	down_read(&F2FS_I(inode)->i_sem);
322 	cp_reason = need_do_checkpoint(inode);
323 	up_read(&F2FS_I(inode)->i_sem);
324 
325 	if (cp_reason) {
326 		/* all the dirty node pages should be flushed for POR */
327 		ret = f2fs_sync_fs(inode->i_sb, 1);
328 
329 		/*
330 		 * We've secured consistency through sync_fs. Following pino
331 		 * will be used only for fsynced inodes after checkpoint.
332 		 */
333 		try_to_fix_pino(inode);
334 		clear_inode_flag(inode, FI_APPEND_WRITE);
335 		clear_inode_flag(inode, FI_UPDATE_WRITE);
336 		goto out;
337 	}
338 sync_nodes:
339 	atomic_inc(&sbi->wb_sync_req[NODE]);
340 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
341 	atomic_dec(&sbi->wb_sync_req[NODE]);
342 	if (ret)
343 		goto out;
344 
345 	/* if cp_error was enabled, we should avoid infinite loop */
346 	if (unlikely(f2fs_cp_error(sbi))) {
347 		ret = -EIO;
348 		goto out;
349 	}
350 
351 	if (f2fs_need_inode_block_update(sbi, ino)) {
352 		f2fs_mark_inode_dirty_sync(inode, true);
353 		f2fs_write_inode(inode, NULL);
354 		goto sync_nodes;
355 	}
356 
357 	/*
358 	 * If it's atomic_write, it's just fine to keep write ordering. So
359 	 * here we don't need to wait for node write completion, since we use
360 	 * node chain which serializes node blocks. If one of node writes are
361 	 * reordered, we can see simply broken chain, resulting in stopping
362 	 * roll-forward recovery. It means we'll recover all or none node blocks
363 	 * given fsync mark.
364 	 */
365 	if (!atomic) {
366 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
367 		if (ret)
368 			goto out;
369 	}
370 
371 	/* once recovery info is written, don't need to tack this */
372 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
373 	clear_inode_flag(inode, FI_APPEND_WRITE);
374 flush_out:
375 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
376 		ret = f2fs_issue_flush(sbi, inode->i_ino);
377 	if (!ret) {
378 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
379 		clear_inode_flag(inode, FI_UPDATE_WRITE);
380 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
381 	}
382 	f2fs_update_time(sbi, REQ_TIME);
383 out:
384 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
385 	return ret;
386 }
387 
388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
389 {
390 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
391 		return -EIO;
392 	return f2fs_do_sync_file(file, start, end, datasync, false);
393 }
394 
395 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
396 				pgoff_t index, int whence)
397 {
398 	switch (whence) {
399 	case SEEK_DATA:
400 		if (__is_valid_data_blkaddr(blkaddr))
401 			return true;
402 		if (blkaddr == NEW_ADDR &&
403 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
404 			return true;
405 		break;
406 	case SEEK_HOLE:
407 		if (blkaddr == NULL_ADDR)
408 			return true;
409 		break;
410 	}
411 	return false;
412 }
413 
414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
415 {
416 	struct inode *inode = file->f_mapping->host;
417 	loff_t maxbytes = inode->i_sb->s_maxbytes;
418 	struct dnode_of_data dn;
419 	pgoff_t pgofs, end_offset;
420 	loff_t data_ofs = offset;
421 	loff_t isize;
422 	int err = 0;
423 
424 	inode_lock(inode);
425 
426 	isize = i_size_read(inode);
427 	if (offset >= isize)
428 		goto fail;
429 
430 	/* handle inline data case */
431 	if (f2fs_has_inline_data(inode)) {
432 		if (whence == SEEK_HOLE) {
433 			data_ofs = isize;
434 			goto found;
435 		} else if (whence == SEEK_DATA) {
436 			data_ofs = offset;
437 			goto found;
438 		}
439 	}
440 
441 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
442 
443 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
444 		set_new_dnode(&dn, inode, NULL, NULL, 0);
445 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
446 		if (err && err != -ENOENT) {
447 			goto fail;
448 		} else if (err == -ENOENT) {
449 			/* direct node does not exists */
450 			if (whence == SEEK_DATA) {
451 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
452 				continue;
453 			} else {
454 				goto found;
455 			}
456 		}
457 
458 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
459 
460 		/* find data/hole in dnode block */
461 		for (; dn.ofs_in_node < end_offset;
462 				dn.ofs_in_node++, pgofs++,
463 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
464 			block_t blkaddr;
465 
466 			blkaddr = f2fs_data_blkaddr(&dn);
467 
468 			if (__is_valid_data_blkaddr(blkaddr) &&
469 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
470 					blkaddr, DATA_GENERIC_ENHANCE)) {
471 				f2fs_put_dnode(&dn);
472 				goto fail;
473 			}
474 
475 			if (__found_offset(file->f_mapping, blkaddr,
476 							pgofs, whence)) {
477 				f2fs_put_dnode(&dn);
478 				goto found;
479 			}
480 		}
481 		f2fs_put_dnode(&dn);
482 	}
483 
484 	if (whence == SEEK_DATA)
485 		goto fail;
486 found:
487 	if (whence == SEEK_HOLE && data_ofs > isize)
488 		data_ofs = isize;
489 	inode_unlock(inode);
490 	return vfs_setpos(file, data_ofs, maxbytes);
491 fail:
492 	inode_unlock(inode);
493 	return -ENXIO;
494 }
495 
496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
497 {
498 	struct inode *inode = file->f_mapping->host;
499 	loff_t maxbytes = inode->i_sb->s_maxbytes;
500 
501 	if (f2fs_compressed_file(inode))
502 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
503 
504 	switch (whence) {
505 	case SEEK_SET:
506 	case SEEK_CUR:
507 	case SEEK_END:
508 		return generic_file_llseek_size(file, offset, whence,
509 						maxbytes, i_size_read(inode));
510 	case SEEK_DATA:
511 	case SEEK_HOLE:
512 		if (offset < 0)
513 			return -ENXIO;
514 		return f2fs_seek_block(file, offset, whence);
515 	}
516 
517 	return -EINVAL;
518 }
519 
520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 	struct inode *inode = file_inode(file);
523 
524 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 		return -EIO;
526 
527 	if (!f2fs_is_compress_backend_ready(inode))
528 		return -EOPNOTSUPP;
529 
530 	file_accessed(file);
531 	vma->vm_ops = &f2fs_file_vm_ops;
532 	set_inode_flag(inode, FI_MMAP_FILE);
533 	return 0;
534 }
535 
536 static int f2fs_file_open(struct inode *inode, struct file *filp)
537 {
538 	int err = fscrypt_file_open(inode, filp);
539 
540 	if (err)
541 		return err;
542 
543 	if (!f2fs_is_compress_backend_ready(inode))
544 		return -EOPNOTSUPP;
545 
546 	err = fsverity_file_open(inode, filp);
547 	if (err)
548 		return err;
549 
550 	filp->f_mode |= FMODE_NOWAIT;
551 
552 	return dquot_file_open(inode, filp);
553 }
554 
555 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
556 {
557 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
558 	struct f2fs_node *raw_node;
559 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
560 	__le32 *addr;
561 	int base = 0;
562 	bool compressed_cluster = false;
563 	int cluster_index = 0, valid_blocks = 0;
564 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
565 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
566 
567 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
568 		base = get_extra_isize(dn->inode);
569 
570 	raw_node = F2FS_NODE(dn->node_page);
571 	addr = blkaddr_in_node(raw_node) + base + ofs;
572 
573 	/* Assumption: truncateion starts with cluster */
574 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
575 		block_t blkaddr = le32_to_cpu(*addr);
576 
577 		if (f2fs_compressed_file(dn->inode) &&
578 					!(cluster_index & (cluster_size - 1))) {
579 			if (compressed_cluster)
580 				f2fs_i_compr_blocks_update(dn->inode,
581 							valid_blocks, false);
582 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
583 			valid_blocks = 0;
584 		}
585 
586 		if (blkaddr == NULL_ADDR)
587 			continue;
588 
589 		dn->data_blkaddr = NULL_ADDR;
590 		f2fs_set_data_blkaddr(dn);
591 
592 		if (__is_valid_data_blkaddr(blkaddr)) {
593 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
594 					DATA_GENERIC_ENHANCE))
595 				continue;
596 			if (compressed_cluster)
597 				valid_blocks++;
598 		}
599 
600 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
601 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
602 
603 		f2fs_invalidate_blocks(sbi, blkaddr);
604 
605 		if (!released || blkaddr != COMPRESS_ADDR)
606 			nr_free++;
607 	}
608 
609 	if (compressed_cluster)
610 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
611 
612 	if (nr_free) {
613 		pgoff_t fofs;
614 		/*
615 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
616 		 * we will invalidate all blkaddr in the whole range.
617 		 */
618 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
619 							dn->inode) + ofs;
620 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
621 		dec_valid_block_count(sbi, dn->inode, nr_free);
622 	}
623 	dn->ofs_in_node = ofs;
624 
625 	f2fs_update_time(sbi, REQ_TIME);
626 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
627 					 dn->ofs_in_node, nr_free);
628 }
629 
630 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
631 {
632 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
633 }
634 
635 static int truncate_partial_data_page(struct inode *inode, u64 from,
636 								bool cache_only)
637 {
638 	loff_t offset = from & (PAGE_SIZE - 1);
639 	pgoff_t index = from >> PAGE_SHIFT;
640 	struct address_space *mapping = inode->i_mapping;
641 	struct page *page;
642 
643 	if (!offset && !cache_only)
644 		return 0;
645 
646 	if (cache_only) {
647 		page = find_lock_page(mapping, index);
648 		if (page && PageUptodate(page))
649 			goto truncate_out;
650 		f2fs_put_page(page, 1);
651 		return 0;
652 	}
653 
654 	page = f2fs_get_lock_data_page(inode, index, true);
655 	if (IS_ERR(page))
656 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
657 truncate_out:
658 	f2fs_wait_on_page_writeback(page, DATA, true, true);
659 	zero_user(page, offset, PAGE_SIZE - offset);
660 
661 	/* An encrypted inode should have a key and truncate the last page. */
662 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
663 	if (!cache_only)
664 		set_page_dirty(page);
665 	f2fs_put_page(page, 1);
666 	return 0;
667 }
668 
669 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
670 {
671 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
672 	struct dnode_of_data dn;
673 	pgoff_t free_from;
674 	int count = 0, err = 0;
675 	struct page *ipage;
676 	bool truncate_page = false;
677 
678 	trace_f2fs_truncate_blocks_enter(inode, from);
679 
680 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
681 
682 	if (free_from >= max_file_blocks(inode))
683 		goto free_partial;
684 
685 	if (lock)
686 		f2fs_lock_op(sbi);
687 
688 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
689 	if (IS_ERR(ipage)) {
690 		err = PTR_ERR(ipage);
691 		goto out;
692 	}
693 
694 	if (f2fs_has_inline_data(inode)) {
695 		f2fs_truncate_inline_inode(inode, ipage, from);
696 		f2fs_put_page(ipage, 1);
697 		truncate_page = true;
698 		goto out;
699 	}
700 
701 	set_new_dnode(&dn, inode, ipage, NULL, 0);
702 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
703 	if (err) {
704 		if (err == -ENOENT)
705 			goto free_next;
706 		goto out;
707 	}
708 
709 	count = ADDRS_PER_PAGE(dn.node_page, inode);
710 
711 	count -= dn.ofs_in_node;
712 	f2fs_bug_on(sbi, count < 0);
713 
714 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
715 		f2fs_truncate_data_blocks_range(&dn, count);
716 		free_from += count;
717 	}
718 
719 	f2fs_put_dnode(&dn);
720 free_next:
721 	err = f2fs_truncate_inode_blocks(inode, free_from);
722 out:
723 	if (lock)
724 		f2fs_unlock_op(sbi);
725 free_partial:
726 	/* lastly zero out the first data page */
727 	if (!err)
728 		err = truncate_partial_data_page(inode, from, truncate_page);
729 
730 	trace_f2fs_truncate_blocks_exit(inode, err);
731 	return err;
732 }
733 
734 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
735 {
736 	u64 free_from = from;
737 	int err;
738 
739 #ifdef CONFIG_F2FS_FS_COMPRESSION
740 	/*
741 	 * for compressed file, only support cluster size
742 	 * aligned truncation.
743 	 */
744 	if (f2fs_compressed_file(inode))
745 		free_from = round_up(from,
746 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
747 #endif
748 
749 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
750 	if (err)
751 		return err;
752 
753 #ifdef CONFIG_F2FS_FS_COMPRESSION
754 	/*
755 	 * For compressed file, after release compress blocks, don't allow write
756 	 * direct, but we should allow write direct after truncate to zero.
757 	 */
758 	if (f2fs_compressed_file(inode) && !free_from
759 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
760 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
761 
762 	if (from != free_from) {
763 		err = f2fs_truncate_partial_cluster(inode, from, lock);
764 		if (err)
765 			return err;
766 	}
767 #endif
768 
769 	return 0;
770 }
771 
772 int f2fs_truncate(struct inode *inode)
773 {
774 	int err;
775 
776 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
777 		return -EIO;
778 
779 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
780 				S_ISLNK(inode->i_mode)))
781 		return 0;
782 
783 	trace_f2fs_truncate(inode);
784 
785 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
786 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
787 		return -EIO;
788 	}
789 
790 	err = f2fs_dquot_initialize(inode);
791 	if (err)
792 		return err;
793 
794 	/* we should check inline_data size */
795 	if (!f2fs_may_inline_data(inode)) {
796 		err = f2fs_convert_inline_inode(inode);
797 		if (err)
798 			return err;
799 	}
800 
801 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
802 	if (err)
803 		return err;
804 
805 	inode->i_mtime = inode->i_ctime = current_time(inode);
806 	f2fs_mark_inode_dirty_sync(inode, false);
807 	return 0;
808 }
809 
810 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
811 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
812 {
813 	struct inode *inode = d_inode(path->dentry);
814 	struct f2fs_inode_info *fi = F2FS_I(inode);
815 	struct f2fs_inode *ri;
816 	unsigned int flags;
817 
818 	if (f2fs_has_extra_attr(inode) &&
819 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
820 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
821 		stat->result_mask |= STATX_BTIME;
822 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
823 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
824 	}
825 
826 	flags = fi->i_flags;
827 	if (flags & F2FS_COMPR_FL)
828 		stat->attributes |= STATX_ATTR_COMPRESSED;
829 	if (flags & F2FS_APPEND_FL)
830 		stat->attributes |= STATX_ATTR_APPEND;
831 	if (IS_ENCRYPTED(inode))
832 		stat->attributes |= STATX_ATTR_ENCRYPTED;
833 	if (flags & F2FS_IMMUTABLE_FL)
834 		stat->attributes |= STATX_ATTR_IMMUTABLE;
835 	if (flags & F2FS_NODUMP_FL)
836 		stat->attributes |= STATX_ATTR_NODUMP;
837 	if (IS_VERITY(inode))
838 		stat->attributes |= STATX_ATTR_VERITY;
839 
840 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
841 				  STATX_ATTR_APPEND |
842 				  STATX_ATTR_ENCRYPTED |
843 				  STATX_ATTR_IMMUTABLE |
844 				  STATX_ATTR_NODUMP |
845 				  STATX_ATTR_VERITY);
846 
847 	generic_fillattr(&init_user_ns, inode, stat);
848 
849 	/* we need to show initial sectors used for inline_data/dentries */
850 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
851 					f2fs_has_inline_dentry(inode))
852 		stat->blocks += (stat->size + 511) >> 9;
853 
854 	return 0;
855 }
856 
857 #ifdef CONFIG_F2FS_FS_POSIX_ACL
858 static void __setattr_copy(struct user_namespace *mnt_userns,
859 			   struct inode *inode, const struct iattr *attr)
860 {
861 	unsigned int ia_valid = attr->ia_valid;
862 
863 	if (ia_valid & ATTR_UID)
864 		inode->i_uid = attr->ia_uid;
865 	if (ia_valid & ATTR_GID)
866 		inode->i_gid = attr->ia_gid;
867 	if (ia_valid & ATTR_ATIME)
868 		inode->i_atime = attr->ia_atime;
869 	if (ia_valid & ATTR_MTIME)
870 		inode->i_mtime = attr->ia_mtime;
871 	if (ia_valid & ATTR_CTIME)
872 		inode->i_ctime = attr->ia_ctime;
873 	if (ia_valid & ATTR_MODE) {
874 		umode_t mode = attr->ia_mode;
875 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
876 
877 		if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
878 			mode &= ~S_ISGID;
879 		set_acl_inode(inode, mode);
880 	}
881 }
882 #else
883 #define __setattr_copy setattr_copy
884 #endif
885 
886 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
887 		 struct iattr *attr)
888 {
889 	struct inode *inode = d_inode(dentry);
890 	int err;
891 
892 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
893 		return -EIO;
894 
895 	if (unlikely(IS_IMMUTABLE(inode)))
896 		return -EPERM;
897 
898 	if (unlikely(IS_APPEND(inode) &&
899 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
900 				  ATTR_GID | ATTR_TIMES_SET))))
901 		return -EPERM;
902 
903 	if ((attr->ia_valid & ATTR_SIZE) &&
904 		!f2fs_is_compress_backend_ready(inode))
905 		return -EOPNOTSUPP;
906 
907 	err = setattr_prepare(&init_user_ns, dentry, attr);
908 	if (err)
909 		return err;
910 
911 	err = fscrypt_prepare_setattr(dentry, attr);
912 	if (err)
913 		return err;
914 
915 	err = fsverity_prepare_setattr(dentry, attr);
916 	if (err)
917 		return err;
918 
919 	if (is_quota_modification(inode, attr)) {
920 		err = f2fs_dquot_initialize(inode);
921 		if (err)
922 			return err;
923 	}
924 	if ((attr->ia_valid & ATTR_UID &&
925 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
926 		(attr->ia_valid & ATTR_GID &&
927 		!gid_eq(attr->ia_gid, inode->i_gid))) {
928 		f2fs_lock_op(F2FS_I_SB(inode));
929 		err = dquot_transfer(inode, attr);
930 		if (err) {
931 			set_sbi_flag(F2FS_I_SB(inode),
932 					SBI_QUOTA_NEED_REPAIR);
933 			f2fs_unlock_op(F2FS_I_SB(inode));
934 			return err;
935 		}
936 		/*
937 		 * update uid/gid under lock_op(), so that dquot and inode can
938 		 * be updated atomically.
939 		 */
940 		if (attr->ia_valid & ATTR_UID)
941 			inode->i_uid = attr->ia_uid;
942 		if (attr->ia_valid & ATTR_GID)
943 			inode->i_gid = attr->ia_gid;
944 		f2fs_mark_inode_dirty_sync(inode, true);
945 		f2fs_unlock_op(F2FS_I_SB(inode));
946 	}
947 
948 	if (attr->ia_valid & ATTR_SIZE) {
949 		loff_t old_size = i_size_read(inode);
950 
951 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
952 			/*
953 			 * should convert inline inode before i_size_write to
954 			 * keep smaller than inline_data size with inline flag.
955 			 */
956 			err = f2fs_convert_inline_inode(inode);
957 			if (err)
958 				return err;
959 		}
960 
961 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
962 		filemap_invalidate_lock(inode->i_mapping);
963 
964 		truncate_setsize(inode, attr->ia_size);
965 
966 		if (attr->ia_size <= old_size)
967 			err = f2fs_truncate(inode);
968 		/*
969 		 * do not trim all blocks after i_size if target size is
970 		 * larger than i_size.
971 		 */
972 		filemap_invalidate_unlock(inode->i_mapping);
973 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
974 		if (err)
975 			return err;
976 
977 		spin_lock(&F2FS_I(inode)->i_size_lock);
978 		inode->i_mtime = inode->i_ctime = current_time(inode);
979 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
980 		spin_unlock(&F2FS_I(inode)->i_size_lock);
981 	}
982 
983 	__setattr_copy(&init_user_ns, inode, attr);
984 
985 	if (attr->ia_valid & ATTR_MODE) {
986 		err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
987 
988 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
989 			if (!err)
990 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
991 			clear_inode_flag(inode, FI_ACL_MODE);
992 		}
993 	}
994 
995 	/* file size may changed here */
996 	f2fs_mark_inode_dirty_sync(inode, true);
997 
998 	/* inode change will produce dirty node pages flushed by checkpoint */
999 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1000 
1001 	return err;
1002 }
1003 
1004 const struct inode_operations f2fs_file_inode_operations = {
1005 	.getattr	= f2fs_getattr,
1006 	.setattr	= f2fs_setattr,
1007 	.get_acl	= f2fs_get_acl,
1008 	.set_acl	= f2fs_set_acl,
1009 	.listxattr	= f2fs_listxattr,
1010 	.fiemap		= f2fs_fiemap,
1011 	.fileattr_get	= f2fs_fileattr_get,
1012 	.fileattr_set	= f2fs_fileattr_set,
1013 };
1014 
1015 static int fill_zero(struct inode *inode, pgoff_t index,
1016 					loff_t start, loff_t len)
1017 {
1018 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1019 	struct page *page;
1020 
1021 	if (!len)
1022 		return 0;
1023 
1024 	f2fs_balance_fs(sbi, true);
1025 
1026 	f2fs_lock_op(sbi);
1027 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1028 	f2fs_unlock_op(sbi);
1029 
1030 	if (IS_ERR(page))
1031 		return PTR_ERR(page);
1032 
1033 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1034 	zero_user(page, start, len);
1035 	set_page_dirty(page);
1036 	f2fs_put_page(page, 1);
1037 	return 0;
1038 }
1039 
1040 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1041 {
1042 	int err;
1043 
1044 	while (pg_start < pg_end) {
1045 		struct dnode_of_data dn;
1046 		pgoff_t end_offset, count;
1047 
1048 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1049 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1050 		if (err) {
1051 			if (err == -ENOENT) {
1052 				pg_start = f2fs_get_next_page_offset(&dn,
1053 								pg_start);
1054 				continue;
1055 			}
1056 			return err;
1057 		}
1058 
1059 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1060 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1061 
1062 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1063 
1064 		f2fs_truncate_data_blocks_range(&dn, count);
1065 		f2fs_put_dnode(&dn);
1066 
1067 		pg_start += count;
1068 	}
1069 	return 0;
1070 }
1071 
1072 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1073 {
1074 	pgoff_t pg_start, pg_end;
1075 	loff_t off_start, off_end;
1076 	int ret;
1077 
1078 	ret = f2fs_convert_inline_inode(inode);
1079 	if (ret)
1080 		return ret;
1081 
1082 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1083 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1084 
1085 	off_start = offset & (PAGE_SIZE - 1);
1086 	off_end = (offset + len) & (PAGE_SIZE - 1);
1087 
1088 	if (pg_start == pg_end) {
1089 		ret = fill_zero(inode, pg_start, off_start,
1090 						off_end - off_start);
1091 		if (ret)
1092 			return ret;
1093 	} else {
1094 		if (off_start) {
1095 			ret = fill_zero(inode, pg_start++, off_start,
1096 						PAGE_SIZE - off_start);
1097 			if (ret)
1098 				return ret;
1099 		}
1100 		if (off_end) {
1101 			ret = fill_zero(inode, pg_end, 0, off_end);
1102 			if (ret)
1103 				return ret;
1104 		}
1105 
1106 		if (pg_start < pg_end) {
1107 			loff_t blk_start, blk_end;
1108 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1109 
1110 			f2fs_balance_fs(sbi, true);
1111 
1112 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1113 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1114 
1115 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1116 			filemap_invalidate_lock(inode->i_mapping);
1117 
1118 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1119 
1120 			f2fs_lock_op(sbi);
1121 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1122 			f2fs_unlock_op(sbi);
1123 
1124 			filemap_invalidate_unlock(inode->i_mapping);
1125 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1126 		}
1127 	}
1128 
1129 	return ret;
1130 }
1131 
1132 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1133 				int *do_replace, pgoff_t off, pgoff_t len)
1134 {
1135 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 	struct dnode_of_data dn;
1137 	int ret, done, i;
1138 
1139 next_dnode:
1140 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1141 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1142 	if (ret && ret != -ENOENT) {
1143 		return ret;
1144 	} else if (ret == -ENOENT) {
1145 		if (dn.max_level == 0)
1146 			return -ENOENT;
1147 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1148 						dn.ofs_in_node, len);
1149 		blkaddr += done;
1150 		do_replace += done;
1151 		goto next;
1152 	}
1153 
1154 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1155 							dn.ofs_in_node, len);
1156 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1157 		*blkaddr = f2fs_data_blkaddr(&dn);
1158 
1159 		if (__is_valid_data_blkaddr(*blkaddr) &&
1160 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1161 					DATA_GENERIC_ENHANCE)) {
1162 			f2fs_put_dnode(&dn);
1163 			return -EFSCORRUPTED;
1164 		}
1165 
1166 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1167 
1168 			if (f2fs_lfs_mode(sbi)) {
1169 				f2fs_put_dnode(&dn);
1170 				return -EOPNOTSUPP;
1171 			}
1172 
1173 			/* do not invalidate this block address */
1174 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1175 			*do_replace = 1;
1176 		}
1177 	}
1178 	f2fs_put_dnode(&dn);
1179 next:
1180 	len -= done;
1181 	off += done;
1182 	if (len)
1183 		goto next_dnode;
1184 	return 0;
1185 }
1186 
1187 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1188 				int *do_replace, pgoff_t off, int len)
1189 {
1190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1191 	struct dnode_of_data dn;
1192 	int ret, i;
1193 
1194 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1195 		if (*do_replace == 0)
1196 			continue;
1197 
1198 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1199 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1200 		if (ret) {
1201 			dec_valid_block_count(sbi, inode, 1);
1202 			f2fs_invalidate_blocks(sbi, *blkaddr);
1203 		} else {
1204 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1205 		}
1206 		f2fs_put_dnode(&dn);
1207 	}
1208 	return 0;
1209 }
1210 
1211 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1212 			block_t *blkaddr, int *do_replace,
1213 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1214 {
1215 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1216 	pgoff_t i = 0;
1217 	int ret;
1218 
1219 	while (i < len) {
1220 		if (blkaddr[i] == NULL_ADDR && !full) {
1221 			i++;
1222 			continue;
1223 		}
1224 
1225 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1226 			struct dnode_of_data dn;
1227 			struct node_info ni;
1228 			size_t new_size;
1229 			pgoff_t ilen;
1230 
1231 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1232 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1233 			if (ret)
1234 				return ret;
1235 
1236 			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1237 			if (ret) {
1238 				f2fs_put_dnode(&dn);
1239 				return ret;
1240 			}
1241 
1242 			ilen = min((pgoff_t)
1243 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1244 						dn.ofs_in_node, len - i);
1245 			do {
1246 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1247 				f2fs_truncate_data_blocks_range(&dn, 1);
1248 
1249 				if (do_replace[i]) {
1250 					f2fs_i_blocks_write(src_inode,
1251 							1, false, false);
1252 					f2fs_i_blocks_write(dst_inode,
1253 							1, true, false);
1254 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1255 					blkaddr[i], ni.version, true, false);
1256 
1257 					do_replace[i] = 0;
1258 				}
1259 				dn.ofs_in_node++;
1260 				i++;
1261 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1262 				if (dst_inode->i_size < new_size)
1263 					f2fs_i_size_write(dst_inode, new_size);
1264 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1265 
1266 			f2fs_put_dnode(&dn);
1267 		} else {
1268 			struct page *psrc, *pdst;
1269 
1270 			psrc = f2fs_get_lock_data_page(src_inode,
1271 							src + i, true);
1272 			if (IS_ERR(psrc))
1273 				return PTR_ERR(psrc);
1274 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1275 								true);
1276 			if (IS_ERR(pdst)) {
1277 				f2fs_put_page(psrc, 1);
1278 				return PTR_ERR(pdst);
1279 			}
1280 			f2fs_copy_page(psrc, pdst);
1281 			set_page_dirty(pdst);
1282 			f2fs_put_page(pdst, 1);
1283 			f2fs_put_page(psrc, 1);
1284 
1285 			ret = f2fs_truncate_hole(src_inode,
1286 						src + i, src + i + 1);
1287 			if (ret)
1288 				return ret;
1289 			i++;
1290 		}
1291 	}
1292 	return 0;
1293 }
1294 
1295 static int __exchange_data_block(struct inode *src_inode,
1296 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1297 			pgoff_t len, bool full)
1298 {
1299 	block_t *src_blkaddr;
1300 	int *do_replace;
1301 	pgoff_t olen;
1302 	int ret;
1303 
1304 	while (len) {
1305 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1306 
1307 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1308 					array_size(olen, sizeof(block_t)),
1309 					GFP_NOFS);
1310 		if (!src_blkaddr)
1311 			return -ENOMEM;
1312 
1313 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1314 					array_size(olen, sizeof(int)),
1315 					GFP_NOFS);
1316 		if (!do_replace) {
1317 			kvfree(src_blkaddr);
1318 			return -ENOMEM;
1319 		}
1320 
1321 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1322 					do_replace, src, olen);
1323 		if (ret)
1324 			goto roll_back;
1325 
1326 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1327 					do_replace, src, dst, olen, full);
1328 		if (ret)
1329 			goto roll_back;
1330 
1331 		src += olen;
1332 		dst += olen;
1333 		len -= olen;
1334 
1335 		kvfree(src_blkaddr);
1336 		kvfree(do_replace);
1337 	}
1338 	return 0;
1339 
1340 roll_back:
1341 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1342 	kvfree(src_blkaddr);
1343 	kvfree(do_replace);
1344 	return ret;
1345 }
1346 
1347 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1348 {
1349 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1350 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1351 	pgoff_t start = offset >> PAGE_SHIFT;
1352 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1353 	int ret;
1354 
1355 	f2fs_balance_fs(sbi, true);
1356 
1357 	/* avoid gc operation during block exchange */
1358 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1359 	filemap_invalidate_lock(inode->i_mapping);
1360 
1361 	f2fs_lock_op(sbi);
1362 	f2fs_drop_extent_tree(inode);
1363 	truncate_pagecache(inode, offset);
1364 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1365 	f2fs_unlock_op(sbi);
1366 
1367 	filemap_invalidate_unlock(inode->i_mapping);
1368 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1369 	return ret;
1370 }
1371 
1372 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1373 {
1374 	loff_t new_size;
1375 	int ret;
1376 
1377 	if (offset + len >= i_size_read(inode))
1378 		return -EINVAL;
1379 
1380 	/* collapse range should be aligned to block size of f2fs. */
1381 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1382 		return -EINVAL;
1383 
1384 	ret = f2fs_convert_inline_inode(inode);
1385 	if (ret)
1386 		return ret;
1387 
1388 	/* write out all dirty pages from offset */
1389 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1390 	if (ret)
1391 		return ret;
1392 
1393 	ret = f2fs_do_collapse(inode, offset, len);
1394 	if (ret)
1395 		return ret;
1396 
1397 	/* write out all moved pages, if possible */
1398 	filemap_invalidate_lock(inode->i_mapping);
1399 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1400 	truncate_pagecache(inode, offset);
1401 
1402 	new_size = i_size_read(inode) - len;
1403 	ret = f2fs_truncate_blocks(inode, new_size, true);
1404 	filemap_invalidate_unlock(inode->i_mapping);
1405 	if (!ret)
1406 		f2fs_i_size_write(inode, new_size);
1407 	return ret;
1408 }
1409 
1410 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1411 								pgoff_t end)
1412 {
1413 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1414 	pgoff_t index = start;
1415 	unsigned int ofs_in_node = dn->ofs_in_node;
1416 	blkcnt_t count = 0;
1417 	int ret;
1418 
1419 	for (; index < end; index++, dn->ofs_in_node++) {
1420 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1421 			count++;
1422 	}
1423 
1424 	dn->ofs_in_node = ofs_in_node;
1425 	ret = f2fs_reserve_new_blocks(dn, count);
1426 	if (ret)
1427 		return ret;
1428 
1429 	dn->ofs_in_node = ofs_in_node;
1430 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1431 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1432 		/*
1433 		 * f2fs_reserve_new_blocks will not guarantee entire block
1434 		 * allocation.
1435 		 */
1436 		if (dn->data_blkaddr == NULL_ADDR) {
1437 			ret = -ENOSPC;
1438 			break;
1439 		}
1440 		if (dn->data_blkaddr != NEW_ADDR) {
1441 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1442 			dn->data_blkaddr = NEW_ADDR;
1443 			f2fs_set_data_blkaddr(dn);
1444 		}
1445 	}
1446 
1447 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1448 
1449 	return ret;
1450 }
1451 
1452 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1453 								int mode)
1454 {
1455 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1456 	struct address_space *mapping = inode->i_mapping;
1457 	pgoff_t index, pg_start, pg_end;
1458 	loff_t new_size = i_size_read(inode);
1459 	loff_t off_start, off_end;
1460 	int ret = 0;
1461 
1462 	ret = inode_newsize_ok(inode, (len + offset));
1463 	if (ret)
1464 		return ret;
1465 
1466 	ret = f2fs_convert_inline_inode(inode);
1467 	if (ret)
1468 		return ret;
1469 
1470 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1471 	if (ret)
1472 		return ret;
1473 
1474 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1475 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1476 
1477 	off_start = offset & (PAGE_SIZE - 1);
1478 	off_end = (offset + len) & (PAGE_SIZE - 1);
1479 
1480 	if (pg_start == pg_end) {
1481 		ret = fill_zero(inode, pg_start, off_start,
1482 						off_end - off_start);
1483 		if (ret)
1484 			return ret;
1485 
1486 		new_size = max_t(loff_t, new_size, offset + len);
1487 	} else {
1488 		if (off_start) {
1489 			ret = fill_zero(inode, pg_start++, off_start,
1490 						PAGE_SIZE - off_start);
1491 			if (ret)
1492 				return ret;
1493 
1494 			new_size = max_t(loff_t, new_size,
1495 					(loff_t)pg_start << PAGE_SHIFT);
1496 		}
1497 
1498 		for (index = pg_start; index < pg_end;) {
1499 			struct dnode_of_data dn;
1500 			unsigned int end_offset;
1501 			pgoff_t end;
1502 
1503 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1504 			filemap_invalidate_lock(mapping);
1505 
1506 			truncate_pagecache_range(inode,
1507 				(loff_t)index << PAGE_SHIFT,
1508 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1509 
1510 			f2fs_lock_op(sbi);
1511 
1512 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1513 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1514 			if (ret) {
1515 				f2fs_unlock_op(sbi);
1516 				filemap_invalidate_unlock(mapping);
1517 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1518 				goto out;
1519 			}
1520 
1521 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1522 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1523 
1524 			ret = f2fs_do_zero_range(&dn, index, end);
1525 			f2fs_put_dnode(&dn);
1526 
1527 			f2fs_unlock_op(sbi);
1528 			filemap_invalidate_unlock(mapping);
1529 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1530 
1531 			f2fs_balance_fs(sbi, dn.node_changed);
1532 
1533 			if (ret)
1534 				goto out;
1535 
1536 			index = end;
1537 			new_size = max_t(loff_t, new_size,
1538 					(loff_t)index << PAGE_SHIFT);
1539 		}
1540 
1541 		if (off_end) {
1542 			ret = fill_zero(inode, pg_end, 0, off_end);
1543 			if (ret)
1544 				goto out;
1545 
1546 			new_size = max_t(loff_t, new_size, offset + len);
1547 		}
1548 	}
1549 
1550 out:
1551 	if (new_size > i_size_read(inode)) {
1552 		if (mode & FALLOC_FL_KEEP_SIZE)
1553 			file_set_keep_isize(inode);
1554 		else
1555 			f2fs_i_size_write(inode, new_size);
1556 	}
1557 	return ret;
1558 }
1559 
1560 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1561 {
1562 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1563 	struct address_space *mapping = inode->i_mapping;
1564 	pgoff_t nr, pg_start, pg_end, delta, idx;
1565 	loff_t new_size;
1566 	int ret = 0;
1567 
1568 	new_size = i_size_read(inode) + len;
1569 	ret = inode_newsize_ok(inode, new_size);
1570 	if (ret)
1571 		return ret;
1572 
1573 	if (offset >= i_size_read(inode))
1574 		return -EINVAL;
1575 
1576 	/* insert range should be aligned to block size of f2fs. */
1577 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1578 		return -EINVAL;
1579 
1580 	ret = f2fs_convert_inline_inode(inode);
1581 	if (ret)
1582 		return ret;
1583 
1584 	f2fs_balance_fs(sbi, true);
1585 
1586 	filemap_invalidate_lock(mapping);
1587 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1588 	filemap_invalidate_unlock(mapping);
1589 	if (ret)
1590 		return ret;
1591 
1592 	/* write out all dirty pages from offset */
1593 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1594 	if (ret)
1595 		return ret;
1596 
1597 	pg_start = offset >> PAGE_SHIFT;
1598 	pg_end = (offset + len) >> PAGE_SHIFT;
1599 	delta = pg_end - pg_start;
1600 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1601 
1602 	/* avoid gc operation during block exchange */
1603 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1604 	filemap_invalidate_lock(mapping);
1605 	truncate_pagecache(inode, offset);
1606 
1607 	while (!ret && idx > pg_start) {
1608 		nr = idx - pg_start;
1609 		if (nr > delta)
1610 			nr = delta;
1611 		idx -= nr;
1612 
1613 		f2fs_lock_op(sbi);
1614 		f2fs_drop_extent_tree(inode);
1615 
1616 		ret = __exchange_data_block(inode, inode, idx,
1617 					idx + delta, nr, false);
1618 		f2fs_unlock_op(sbi);
1619 	}
1620 	filemap_invalidate_unlock(mapping);
1621 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1622 
1623 	/* write out all moved pages, if possible */
1624 	filemap_invalidate_lock(mapping);
1625 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1626 	truncate_pagecache(inode, offset);
1627 	filemap_invalidate_unlock(mapping);
1628 
1629 	if (!ret)
1630 		f2fs_i_size_write(inode, new_size);
1631 	return ret;
1632 }
1633 
1634 static int expand_inode_data(struct inode *inode, loff_t offset,
1635 					loff_t len, int mode)
1636 {
1637 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1638 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1639 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1640 			.m_may_create = true };
1641 	pgoff_t pg_start, pg_end;
1642 	loff_t new_size = i_size_read(inode);
1643 	loff_t off_end;
1644 	block_t expanded = 0;
1645 	int err;
1646 
1647 	err = inode_newsize_ok(inode, (len + offset));
1648 	if (err)
1649 		return err;
1650 
1651 	err = f2fs_convert_inline_inode(inode);
1652 	if (err)
1653 		return err;
1654 
1655 	f2fs_balance_fs(sbi, true);
1656 
1657 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1658 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1659 	off_end = (offset + len) & (PAGE_SIZE - 1);
1660 
1661 	map.m_lblk = pg_start;
1662 	map.m_len = pg_end - pg_start;
1663 	if (off_end)
1664 		map.m_len++;
1665 
1666 	if (!map.m_len)
1667 		return 0;
1668 
1669 	if (f2fs_is_pinned_file(inode)) {
1670 		block_t sec_blks = BLKS_PER_SEC(sbi);
1671 		block_t sec_len = roundup(map.m_len, sec_blks);
1672 
1673 		map.m_len = sec_blks;
1674 next_alloc:
1675 		if (has_not_enough_free_secs(sbi, 0,
1676 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1677 			down_write(&sbi->gc_lock);
1678 			err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1679 			if (err && err != -ENODATA && err != -EAGAIN)
1680 				goto out_err;
1681 		}
1682 
1683 		down_write(&sbi->pin_sem);
1684 
1685 		f2fs_lock_op(sbi);
1686 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1687 		f2fs_unlock_op(sbi);
1688 
1689 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1690 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1691 		file_dont_truncate(inode);
1692 
1693 		up_write(&sbi->pin_sem);
1694 
1695 		expanded += map.m_len;
1696 		sec_len -= map.m_len;
1697 		map.m_lblk += map.m_len;
1698 		if (!err && sec_len)
1699 			goto next_alloc;
1700 
1701 		map.m_len = expanded;
1702 	} else {
1703 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1704 		expanded = map.m_len;
1705 	}
1706 out_err:
1707 	if (err) {
1708 		pgoff_t last_off;
1709 
1710 		if (!expanded)
1711 			return err;
1712 
1713 		last_off = pg_start + expanded - 1;
1714 
1715 		/* update new size to the failed position */
1716 		new_size = (last_off == pg_end) ? offset + len :
1717 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1718 	} else {
1719 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1720 	}
1721 
1722 	if (new_size > i_size_read(inode)) {
1723 		if (mode & FALLOC_FL_KEEP_SIZE)
1724 			file_set_keep_isize(inode);
1725 		else
1726 			f2fs_i_size_write(inode, new_size);
1727 	}
1728 
1729 	return err;
1730 }
1731 
1732 static long f2fs_fallocate(struct file *file, int mode,
1733 				loff_t offset, loff_t len)
1734 {
1735 	struct inode *inode = file_inode(file);
1736 	long ret = 0;
1737 
1738 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1739 		return -EIO;
1740 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1741 		return -ENOSPC;
1742 	if (!f2fs_is_compress_backend_ready(inode))
1743 		return -EOPNOTSUPP;
1744 
1745 	/* f2fs only support ->fallocate for regular file */
1746 	if (!S_ISREG(inode->i_mode))
1747 		return -EINVAL;
1748 
1749 	if (IS_ENCRYPTED(inode) &&
1750 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1751 		return -EOPNOTSUPP;
1752 
1753 	if (f2fs_compressed_file(inode) &&
1754 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1755 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1756 		return -EOPNOTSUPP;
1757 
1758 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1759 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1760 			FALLOC_FL_INSERT_RANGE))
1761 		return -EOPNOTSUPP;
1762 
1763 	inode_lock(inode);
1764 
1765 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1766 		if (offset >= inode->i_size)
1767 			goto out;
1768 
1769 		ret = punch_hole(inode, offset, len);
1770 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1771 		ret = f2fs_collapse_range(inode, offset, len);
1772 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1773 		ret = f2fs_zero_range(inode, offset, len, mode);
1774 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1775 		ret = f2fs_insert_range(inode, offset, len);
1776 	} else {
1777 		ret = expand_inode_data(inode, offset, len, mode);
1778 	}
1779 
1780 	if (!ret) {
1781 		inode->i_mtime = inode->i_ctime = current_time(inode);
1782 		f2fs_mark_inode_dirty_sync(inode, false);
1783 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1784 	}
1785 
1786 out:
1787 	inode_unlock(inode);
1788 
1789 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1790 	return ret;
1791 }
1792 
1793 static int f2fs_release_file(struct inode *inode, struct file *filp)
1794 {
1795 	/*
1796 	 * f2fs_relase_file is called at every close calls. So we should
1797 	 * not drop any inmemory pages by close called by other process.
1798 	 */
1799 	if (!(filp->f_mode & FMODE_WRITE) ||
1800 			atomic_read(&inode->i_writecount) != 1)
1801 		return 0;
1802 
1803 	/* some remained atomic pages should discarded */
1804 	if (f2fs_is_atomic_file(inode))
1805 		f2fs_drop_inmem_pages(inode);
1806 	if (f2fs_is_volatile_file(inode)) {
1807 		set_inode_flag(inode, FI_DROP_CACHE);
1808 		filemap_fdatawrite(inode->i_mapping);
1809 		clear_inode_flag(inode, FI_DROP_CACHE);
1810 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1811 		stat_dec_volatile_write(inode);
1812 	}
1813 	return 0;
1814 }
1815 
1816 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1817 {
1818 	struct inode *inode = file_inode(file);
1819 
1820 	/*
1821 	 * If the process doing a transaction is crashed, we should do
1822 	 * roll-back. Otherwise, other reader/write can see corrupted database
1823 	 * until all the writers close its file. Since this should be done
1824 	 * before dropping file lock, it needs to do in ->flush.
1825 	 */
1826 	if (f2fs_is_atomic_file(inode) &&
1827 			F2FS_I(inode)->inmem_task == current)
1828 		f2fs_drop_inmem_pages(inode);
1829 	return 0;
1830 }
1831 
1832 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1833 {
1834 	struct f2fs_inode_info *fi = F2FS_I(inode);
1835 	u32 masked_flags = fi->i_flags & mask;
1836 
1837 	/* mask can be shrunk by flags_valid selector */
1838 	iflags &= mask;
1839 
1840 	/* Is it quota file? Do not allow user to mess with it */
1841 	if (IS_NOQUOTA(inode))
1842 		return -EPERM;
1843 
1844 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1845 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1846 			return -EOPNOTSUPP;
1847 		if (!f2fs_empty_dir(inode))
1848 			return -ENOTEMPTY;
1849 	}
1850 
1851 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1852 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1853 			return -EOPNOTSUPP;
1854 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1855 			return -EINVAL;
1856 	}
1857 
1858 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1859 		if (masked_flags & F2FS_COMPR_FL) {
1860 			if (!f2fs_disable_compressed_file(inode))
1861 				return -EINVAL;
1862 		}
1863 		if (iflags & F2FS_NOCOMP_FL)
1864 			return -EINVAL;
1865 		if (iflags & F2FS_COMPR_FL) {
1866 			if (!f2fs_may_compress(inode))
1867 				return -EINVAL;
1868 			if (S_ISREG(inode->i_mode) && inode->i_size)
1869 				return -EINVAL;
1870 
1871 			set_compress_context(inode);
1872 		}
1873 	}
1874 	if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1875 		if (masked_flags & F2FS_COMPR_FL)
1876 			return -EINVAL;
1877 	}
1878 
1879 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1880 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1881 					(fi->i_flags & F2FS_NOCOMP_FL));
1882 
1883 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1884 		set_inode_flag(inode, FI_PROJ_INHERIT);
1885 	else
1886 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1887 
1888 	inode->i_ctime = current_time(inode);
1889 	f2fs_set_inode_flags(inode);
1890 	f2fs_mark_inode_dirty_sync(inode, true);
1891 	return 0;
1892 }
1893 
1894 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1895 
1896 /*
1897  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1898  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1899  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1900  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1901  *
1902  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1903  * FS_IOC_FSSETXATTR is done by the VFS.
1904  */
1905 
1906 static const struct {
1907 	u32 iflag;
1908 	u32 fsflag;
1909 } f2fs_fsflags_map[] = {
1910 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1911 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1912 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1913 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1914 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1915 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1916 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1917 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1918 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1919 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1920 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1921 };
1922 
1923 #define F2FS_GETTABLE_FS_FL (		\
1924 		FS_COMPR_FL |		\
1925 		FS_SYNC_FL |		\
1926 		FS_IMMUTABLE_FL |	\
1927 		FS_APPEND_FL |		\
1928 		FS_NODUMP_FL |		\
1929 		FS_NOATIME_FL |		\
1930 		FS_NOCOMP_FL |		\
1931 		FS_INDEX_FL |		\
1932 		FS_DIRSYNC_FL |		\
1933 		FS_PROJINHERIT_FL |	\
1934 		FS_ENCRYPT_FL |		\
1935 		FS_INLINE_DATA_FL |	\
1936 		FS_NOCOW_FL |		\
1937 		FS_VERITY_FL |		\
1938 		FS_CASEFOLD_FL)
1939 
1940 #define F2FS_SETTABLE_FS_FL (		\
1941 		FS_COMPR_FL |		\
1942 		FS_SYNC_FL |		\
1943 		FS_IMMUTABLE_FL |	\
1944 		FS_APPEND_FL |		\
1945 		FS_NODUMP_FL |		\
1946 		FS_NOATIME_FL |		\
1947 		FS_NOCOMP_FL |		\
1948 		FS_DIRSYNC_FL |		\
1949 		FS_PROJINHERIT_FL |	\
1950 		FS_CASEFOLD_FL)
1951 
1952 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1953 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1954 {
1955 	u32 fsflags = 0;
1956 	int i;
1957 
1958 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1959 		if (iflags & f2fs_fsflags_map[i].iflag)
1960 			fsflags |= f2fs_fsflags_map[i].fsflag;
1961 
1962 	return fsflags;
1963 }
1964 
1965 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1966 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1967 {
1968 	u32 iflags = 0;
1969 	int i;
1970 
1971 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1972 		if (fsflags & f2fs_fsflags_map[i].fsflag)
1973 			iflags |= f2fs_fsflags_map[i].iflag;
1974 
1975 	return iflags;
1976 }
1977 
1978 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1979 {
1980 	struct inode *inode = file_inode(filp);
1981 
1982 	return put_user(inode->i_generation, (int __user *)arg);
1983 }
1984 
1985 static int f2fs_ioc_start_atomic_write(struct file *filp)
1986 {
1987 	struct inode *inode = file_inode(filp);
1988 	struct f2fs_inode_info *fi = F2FS_I(inode);
1989 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1990 	int ret;
1991 
1992 	if (!inode_owner_or_capable(&init_user_ns, inode))
1993 		return -EACCES;
1994 
1995 	if (!S_ISREG(inode->i_mode))
1996 		return -EINVAL;
1997 
1998 	if (filp->f_flags & O_DIRECT)
1999 		return -EINVAL;
2000 
2001 	ret = mnt_want_write_file(filp);
2002 	if (ret)
2003 		return ret;
2004 
2005 	inode_lock(inode);
2006 
2007 	f2fs_disable_compressed_file(inode);
2008 
2009 	if (f2fs_is_atomic_file(inode)) {
2010 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2011 			ret = -EINVAL;
2012 		goto out;
2013 	}
2014 
2015 	ret = f2fs_convert_inline_inode(inode);
2016 	if (ret)
2017 		goto out;
2018 
2019 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2020 
2021 	/*
2022 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2023 	 * f2fs_is_atomic_file.
2024 	 */
2025 	if (get_dirty_pages(inode))
2026 		f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2027 			  inode->i_ino, get_dirty_pages(inode));
2028 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2029 	if (ret) {
2030 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2031 		goto out;
2032 	}
2033 
2034 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2035 	if (list_empty(&fi->inmem_ilist))
2036 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2037 	sbi->atomic_files++;
2038 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2039 
2040 	/* add inode in inmem_list first and set atomic_file */
2041 	set_inode_flag(inode, FI_ATOMIC_FILE);
2042 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2043 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2044 
2045 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2046 	F2FS_I(inode)->inmem_task = current;
2047 	stat_update_max_atomic_write(inode);
2048 out:
2049 	inode_unlock(inode);
2050 	mnt_drop_write_file(filp);
2051 	return ret;
2052 }
2053 
2054 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2055 {
2056 	struct inode *inode = file_inode(filp);
2057 	int ret;
2058 
2059 	if (!inode_owner_or_capable(&init_user_ns, inode))
2060 		return -EACCES;
2061 
2062 	ret = mnt_want_write_file(filp);
2063 	if (ret)
2064 		return ret;
2065 
2066 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2067 
2068 	inode_lock(inode);
2069 
2070 	if (f2fs_is_volatile_file(inode)) {
2071 		ret = -EINVAL;
2072 		goto err_out;
2073 	}
2074 
2075 	if (f2fs_is_atomic_file(inode)) {
2076 		ret = f2fs_commit_inmem_pages(inode);
2077 		if (ret)
2078 			goto err_out;
2079 
2080 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2081 		if (!ret)
2082 			f2fs_drop_inmem_pages(inode);
2083 	} else {
2084 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2085 	}
2086 err_out:
2087 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2088 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2089 		ret = -EINVAL;
2090 	}
2091 	inode_unlock(inode);
2092 	mnt_drop_write_file(filp);
2093 	return ret;
2094 }
2095 
2096 static int f2fs_ioc_start_volatile_write(struct file *filp)
2097 {
2098 	struct inode *inode = file_inode(filp);
2099 	int ret;
2100 
2101 	if (!inode_owner_or_capable(&init_user_ns, inode))
2102 		return -EACCES;
2103 
2104 	if (!S_ISREG(inode->i_mode))
2105 		return -EINVAL;
2106 
2107 	ret = mnt_want_write_file(filp);
2108 	if (ret)
2109 		return ret;
2110 
2111 	inode_lock(inode);
2112 
2113 	if (f2fs_is_volatile_file(inode))
2114 		goto out;
2115 
2116 	ret = f2fs_convert_inline_inode(inode);
2117 	if (ret)
2118 		goto out;
2119 
2120 	stat_inc_volatile_write(inode);
2121 	stat_update_max_volatile_write(inode);
2122 
2123 	set_inode_flag(inode, FI_VOLATILE_FILE);
2124 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2125 out:
2126 	inode_unlock(inode);
2127 	mnt_drop_write_file(filp);
2128 	return ret;
2129 }
2130 
2131 static int f2fs_ioc_release_volatile_write(struct file *filp)
2132 {
2133 	struct inode *inode = file_inode(filp);
2134 	int ret;
2135 
2136 	if (!inode_owner_or_capable(&init_user_ns, inode))
2137 		return -EACCES;
2138 
2139 	ret = mnt_want_write_file(filp);
2140 	if (ret)
2141 		return ret;
2142 
2143 	inode_lock(inode);
2144 
2145 	if (!f2fs_is_volatile_file(inode))
2146 		goto out;
2147 
2148 	if (!f2fs_is_first_block_written(inode)) {
2149 		ret = truncate_partial_data_page(inode, 0, true);
2150 		goto out;
2151 	}
2152 
2153 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2154 out:
2155 	inode_unlock(inode);
2156 	mnt_drop_write_file(filp);
2157 	return ret;
2158 }
2159 
2160 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2161 {
2162 	struct inode *inode = file_inode(filp);
2163 	int ret;
2164 
2165 	if (!inode_owner_or_capable(&init_user_ns, inode))
2166 		return -EACCES;
2167 
2168 	ret = mnt_want_write_file(filp);
2169 	if (ret)
2170 		return ret;
2171 
2172 	inode_lock(inode);
2173 
2174 	if (f2fs_is_atomic_file(inode))
2175 		f2fs_drop_inmem_pages(inode);
2176 	if (f2fs_is_volatile_file(inode)) {
2177 		clear_inode_flag(inode, FI_VOLATILE_FILE);
2178 		stat_dec_volatile_write(inode);
2179 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2180 	}
2181 
2182 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2183 
2184 	inode_unlock(inode);
2185 
2186 	mnt_drop_write_file(filp);
2187 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2188 	return ret;
2189 }
2190 
2191 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2192 {
2193 	struct inode *inode = file_inode(filp);
2194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2195 	struct super_block *sb = sbi->sb;
2196 	__u32 in;
2197 	int ret = 0;
2198 
2199 	if (!capable(CAP_SYS_ADMIN))
2200 		return -EPERM;
2201 
2202 	if (get_user(in, (__u32 __user *)arg))
2203 		return -EFAULT;
2204 
2205 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2206 		ret = mnt_want_write_file(filp);
2207 		if (ret) {
2208 			if (ret == -EROFS) {
2209 				ret = 0;
2210 				f2fs_stop_checkpoint(sbi, false);
2211 				set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2212 				trace_f2fs_shutdown(sbi, in, ret);
2213 			}
2214 			return ret;
2215 		}
2216 	}
2217 
2218 	switch (in) {
2219 	case F2FS_GOING_DOWN_FULLSYNC:
2220 		ret = freeze_bdev(sb->s_bdev);
2221 		if (ret)
2222 			goto out;
2223 		f2fs_stop_checkpoint(sbi, false);
2224 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2225 		thaw_bdev(sb->s_bdev);
2226 		break;
2227 	case F2FS_GOING_DOWN_METASYNC:
2228 		/* do checkpoint only */
2229 		ret = f2fs_sync_fs(sb, 1);
2230 		if (ret)
2231 			goto out;
2232 		f2fs_stop_checkpoint(sbi, false);
2233 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2234 		break;
2235 	case F2FS_GOING_DOWN_NOSYNC:
2236 		f2fs_stop_checkpoint(sbi, false);
2237 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2238 		break;
2239 	case F2FS_GOING_DOWN_METAFLUSH:
2240 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2241 		f2fs_stop_checkpoint(sbi, false);
2242 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2243 		break;
2244 	case F2FS_GOING_DOWN_NEED_FSCK:
2245 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2246 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2247 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2248 		/* do checkpoint only */
2249 		ret = f2fs_sync_fs(sb, 1);
2250 		goto out;
2251 	default:
2252 		ret = -EINVAL;
2253 		goto out;
2254 	}
2255 
2256 	f2fs_stop_gc_thread(sbi);
2257 	f2fs_stop_discard_thread(sbi);
2258 
2259 	f2fs_drop_discard_cmd(sbi);
2260 	clear_opt(sbi, DISCARD);
2261 
2262 	f2fs_update_time(sbi, REQ_TIME);
2263 out:
2264 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2265 		mnt_drop_write_file(filp);
2266 
2267 	trace_f2fs_shutdown(sbi, in, ret);
2268 
2269 	return ret;
2270 }
2271 
2272 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2273 {
2274 	struct inode *inode = file_inode(filp);
2275 	struct super_block *sb = inode->i_sb;
2276 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2277 	struct fstrim_range range;
2278 	int ret;
2279 
2280 	if (!capable(CAP_SYS_ADMIN))
2281 		return -EPERM;
2282 
2283 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2284 		return -EOPNOTSUPP;
2285 
2286 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2287 				sizeof(range)))
2288 		return -EFAULT;
2289 
2290 	ret = mnt_want_write_file(filp);
2291 	if (ret)
2292 		return ret;
2293 
2294 	range.minlen = max((unsigned int)range.minlen,
2295 				q->limits.discard_granularity);
2296 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2297 	mnt_drop_write_file(filp);
2298 	if (ret < 0)
2299 		return ret;
2300 
2301 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2302 				sizeof(range)))
2303 		return -EFAULT;
2304 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2305 	return 0;
2306 }
2307 
2308 static bool uuid_is_nonzero(__u8 u[16])
2309 {
2310 	int i;
2311 
2312 	for (i = 0; i < 16; i++)
2313 		if (u[i])
2314 			return true;
2315 	return false;
2316 }
2317 
2318 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2319 {
2320 	struct inode *inode = file_inode(filp);
2321 
2322 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2323 		return -EOPNOTSUPP;
2324 
2325 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2326 
2327 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2328 }
2329 
2330 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2331 {
2332 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2333 		return -EOPNOTSUPP;
2334 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2335 }
2336 
2337 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2338 {
2339 	struct inode *inode = file_inode(filp);
2340 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2341 	int err;
2342 
2343 	if (!f2fs_sb_has_encrypt(sbi))
2344 		return -EOPNOTSUPP;
2345 
2346 	err = mnt_want_write_file(filp);
2347 	if (err)
2348 		return err;
2349 
2350 	down_write(&sbi->sb_lock);
2351 
2352 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2353 		goto got_it;
2354 
2355 	/* update superblock with uuid */
2356 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2357 
2358 	err = f2fs_commit_super(sbi, false);
2359 	if (err) {
2360 		/* undo new data */
2361 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2362 		goto out_err;
2363 	}
2364 got_it:
2365 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2366 									16))
2367 		err = -EFAULT;
2368 out_err:
2369 	up_write(&sbi->sb_lock);
2370 	mnt_drop_write_file(filp);
2371 	return err;
2372 }
2373 
2374 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2375 					     unsigned long arg)
2376 {
2377 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2378 		return -EOPNOTSUPP;
2379 
2380 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2381 }
2382 
2383 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2384 {
2385 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2386 		return -EOPNOTSUPP;
2387 
2388 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2389 }
2390 
2391 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2392 {
2393 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2394 		return -EOPNOTSUPP;
2395 
2396 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2397 }
2398 
2399 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2400 						    unsigned long arg)
2401 {
2402 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2403 		return -EOPNOTSUPP;
2404 
2405 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2406 }
2407 
2408 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2409 					      unsigned long arg)
2410 {
2411 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2412 		return -EOPNOTSUPP;
2413 
2414 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2415 }
2416 
2417 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2418 {
2419 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2420 		return -EOPNOTSUPP;
2421 
2422 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2423 }
2424 
2425 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2426 {
2427 	struct inode *inode = file_inode(filp);
2428 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2429 	__u32 sync;
2430 	int ret;
2431 
2432 	if (!capable(CAP_SYS_ADMIN))
2433 		return -EPERM;
2434 
2435 	if (get_user(sync, (__u32 __user *)arg))
2436 		return -EFAULT;
2437 
2438 	if (f2fs_readonly(sbi->sb))
2439 		return -EROFS;
2440 
2441 	ret = mnt_want_write_file(filp);
2442 	if (ret)
2443 		return ret;
2444 
2445 	if (!sync) {
2446 		if (!down_write_trylock(&sbi->gc_lock)) {
2447 			ret = -EBUSY;
2448 			goto out;
2449 		}
2450 	} else {
2451 		down_write(&sbi->gc_lock);
2452 	}
2453 
2454 	ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2455 out:
2456 	mnt_drop_write_file(filp);
2457 	return ret;
2458 }
2459 
2460 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2461 {
2462 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2463 	u64 end;
2464 	int ret;
2465 
2466 	if (!capable(CAP_SYS_ADMIN))
2467 		return -EPERM;
2468 	if (f2fs_readonly(sbi->sb))
2469 		return -EROFS;
2470 
2471 	end = range->start + range->len;
2472 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2473 					end >= MAX_BLKADDR(sbi))
2474 		return -EINVAL;
2475 
2476 	ret = mnt_want_write_file(filp);
2477 	if (ret)
2478 		return ret;
2479 
2480 do_more:
2481 	if (!range->sync) {
2482 		if (!down_write_trylock(&sbi->gc_lock)) {
2483 			ret = -EBUSY;
2484 			goto out;
2485 		}
2486 	} else {
2487 		down_write(&sbi->gc_lock);
2488 	}
2489 
2490 	ret = f2fs_gc(sbi, range->sync, true, false,
2491 				GET_SEGNO(sbi, range->start));
2492 	if (ret) {
2493 		if (ret == -EBUSY)
2494 			ret = -EAGAIN;
2495 		goto out;
2496 	}
2497 	range->start += BLKS_PER_SEC(sbi);
2498 	if (range->start <= end)
2499 		goto do_more;
2500 out:
2501 	mnt_drop_write_file(filp);
2502 	return ret;
2503 }
2504 
2505 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2506 {
2507 	struct f2fs_gc_range range;
2508 
2509 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2510 							sizeof(range)))
2511 		return -EFAULT;
2512 	return __f2fs_ioc_gc_range(filp, &range);
2513 }
2514 
2515 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2516 {
2517 	struct inode *inode = file_inode(filp);
2518 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2519 	int ret;
2520 
2521 	if (!capable(CAP_SYS_ADMIN))
2522 		return -EPERM;
2523 
2524 	if (f2fs_readonly(sbi->sb))
2525 		return -EROFS;
2526 
2527 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2528 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2529 		return -EINVAL;
2530 	}
2531 
2532 	ret = mnt_want_write_file(filp);
2533 	if (ret)
2534 		return ret;
2535 
2536 	ret = f2fs_sync_fs(sbi->sb, 1);
2537 
2538 	mnt_drop_write_file(filp);
2539 	return ret;
2540 }
2541 
2542 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2543 					struct file *filp,
2544 					struct f2fs_defragment *range)
2545 {
2546 	struct inode *inode = file_inode(filp);
2547 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2548 					.m_seg_type = NO_CHECK_TYPE,
2549 					.m_may_create = false };
2550 	struct extent_info ei = {0, 0, 0};
2551 	pgoff_t pg_start, pg_end, next_pgofs;
2552 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2553 	unsigned int total = 0, sec_num;
2554 	block_t blk_end = 0;
2555 	bool fragmented = false;
2556 	int err;
2557 
2558 	/* if in-place-update policy is enabled, don't waste time here */
2559 	if (f2fs_should_update_inplace(inode, NULL))
2560 		return -EINVAL;
2561 
2562 	pg_start = range->start >> PAGE_SHIFT;
2563 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2564 
2565 	f2fs_balance_fs(sbi, true);
2566 
2567 	inode_lock(inode);
2568 
2569 	/* writeback all dirty pages in the range */
2570 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2571 						range->start + range->len - 1);
2572 	if (err)
2573 		goto out;
2574 
2575 	/*
2576 	 * lookup mapping info in extent cache, skip defragmenting if physical
2577 	 * block addresses are continuous.
2578 	 */
2579 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2580 		if (ei.fofs + ei.len >= pg_end)
2581 			goto out;
2582 	}
2583 
2584 	map.m_lblk = pg_start;
2585 	map.m_next_pgofs = &next_pgofs;
2586 
2587 	/*
2588 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2589 	 * physical block addresses are continuous even if there are hole(s)
2590 	 * in logical blocks.
2591 	 */
2592 	while (map.m_lblk < pg_end) {
2593 		map.m_len = pg_end - map.m_lblk;
2594 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2595 		if (err)
2596 			goto out;
2597 
2598 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2599 			map.m_lblk = next_pgofs;
2600 			continue;
2601 		}
2602 
2603 		if (blk_end && blk_end != map.m_pblk)
2604 			fragmented = true;
2605 
2606 		/* record total count of block that we're going to move */
2607 		total += map.m_len;
2608 
2609 		blk_end = map.m_pblk + map.m_len;
2610 
2611 		map.m_lblk += map.m_len;
2612 	}
2613 
2614 	if (!fragmented) {
2615 		total = 0;
2616 		goto out;
2617 	}
2618 
2619 	sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2620 
2621 	/*
2622 	 * make sure there are enough free section for LFS allocation, this can
2623 	 * avoid defragment running in SSR mode when free section are allocated
2624 	 * intensively
2625 	 */
2626 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2627 		err = -EAGAIN;
2628 		goto out;
2629 	}
2630 
2631 	map.m_lblk = pg_start;
2632 	map.m_len = pg_end - pg_start;
2633 	total = 0;
2634 
2635 	while (map.m_lblk < pg_end) {
2636 		pgoff_t idx;
2637 		int cnt = 0;
2638 
2639 do_map:
2640 		map.m_len = pg_end - map.m_lblk;
2641 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2642 		if (err)
2643 			goto clear_out;
2644 
2645 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2646 			map.m_lblk = next_pgofs;
2647 			goto check;
2648 		}
2649 
2650 		set_inode_flag(inode, FI_DO_DEFRAG);
2651 
2652 		idx = map.m_lblk;
2653 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2654 			struct page *page;
2655 
2656 			page = f2fs_get_lock_data_page(inode, idx, true);
2657 			if (IS_ERR(page)) {
2658 				err = PTR_ERR(page);
2659 				goto clear_out;
2660 			}
2661 
2662 			set_page_dirty(page);
2663 			f2fs_put_page(page, 1);
2664 
2665 			idx++;
2666 			cnt++;
2667 			total++;
2668 		}
2669 
2670 		map.m_lblk = idx;
2671 check:
2672 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2673 			goto do_map;
2674 
2675 		clear_inode_flag(inode, FI_DO_DEFRAG);
2676 
2677 		err = filemap_fdatawrite(inode->i_mapping);
2678 		if (err)
2679 			goto out;
2680 	}
2681 clear_out:
2682 	clear_inode_flag(inode, FI_DO_DEFRAG);
2683 out:
2684 	inode_unlock(inode);
2685 	if (!err)
2686 		range->len = (u64)total << PAGE_SHIFT;
2687 	return err;
2688 }
2689 
2690 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2691 {
2692 	struct inode *inode = file_inode(filp);
2693 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2694 	struct f2fs_defragment range;
2695 	int err;
2696 
2697 	if (!capable(CAP_SYS_ADMIN))
2698 		return -EPERM;
2699 
2700 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2701 		return -EINVAL;
2702 
2703 	if (f2fs_readonly(sbi->sb))
2704 		return -EROFS;
2705 
2706 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2707 							sizeof(range)))
2708 		return -EFAULT;
2709 
2710 	/* verify alignment of offset & size */
2711 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2712 		return -EINVAL;
2713 
2714 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2715 					max_file_blocks(inode)))
2716 		return -EINVAL;
2717 
2718 	err = mnt_want_write_file(filp);
2719 	if (err)
2720 		return err;
2721 
2722 	err = f2fs_defragment_range(sbi, filp, &range);
2723 	mnt_drop_write_file(filp);
2724 
2725 	f2fs_update_time(sbi, REQ_TIME);
2726 	if (err < 0)
2727 		return err;
2728 
2729 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2730 							sizeof(range)))
2731 		return -EFAULT;
2732 
2733 	return 0;
2734 }
2735 
2736 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2737 			struct file *file_out, loff_t pos_out, size_t len)
2738 {
2739 	struct inode *src = file_inode(file_in);
2740 	struct inode *dst = file_inode(file_out);
2741 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2742 	size_t olen = len, dst_max_i_size = 0;
2743 	size_t dst_osize;
2744 	int ret;
2745 
2746 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2747 				src->i_sb != dst->i_sb)
2748 		return -EXDEV;
2749 
2750 	if (unlikely(f2fs_readonly(src->i_sb)))
2751 		return -EROFS;
2752 
2753 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2754 		return -EINVAL;
2755 
2756 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2757 		return -EOPNOTSUPP;
2758 
2759 	if (pos_out < 0 || pos_in < 0)
2760 		return -EINVAL;
2761 
2762 	if (src == dst) {
2763 		if (pos_in == pos_out)
2764 			return 0;
2765 		if (pos_out > pos_in && pos_out < pos_in + len)
2766 			return -EINVAL;
2767 	}
2768 
2769 	inode_lock(src);
2770 	if (src != dst) {
2771 		ret = -EBUSY;
2772 		if (!inode_trylock(dst))
2773 			goto out;
2774 	}
2775 
2776 	ret = -EINVAL;
2777 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2778 		goto out_unlock;
2779 	if (len == 0)
2780 		olen = len = src->i_size - pos_in;
2781 	if (pos_in + len == src->i_size)
2782 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2783 	if (len == 0) {
2784 		ret = 0;
2785 		goto out_unlock;
2786 	}
2787 
2788 	dst_osize = dst->i_size;
2789 	if (pos_out + olen > dst->i_size)
2790 		dst_max_i_size = pos_out + olen;
2791 
2792 	/* verify the end result is block aligned */
2793 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2794 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2795 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2796 		goto out_unlock;
2797 
2798 	ret = f2fs_convert_inline_inode(src);
2799 	if (ret)
2800 		goto out_unlock;
2801 
2802 	ret = f2fs_convert_inline_inode(dst);
2803 	if (ret)
2804 		goto out_unlock;
2805 
2806 	/* write out all dirty pages from offset */
2807 	ret = filemap_write_and_wait_range(src->i_mapping,
2808 					pos_in, pos_in + len);
2809 	if (ret)
2810 		goto out_unlock;
2811 
2812 	ret = filemap_write_and_wait_range(dst->i_mapping,
2813 					pos_out, pos_out + len);
2814 	if (ret)
2815 		goto out_unlock;
2816 
2817 	f2fs_balance_fs(sbi, true);
2818 
2819 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2820 	if (src != dst) {
2821 		ret = -EBUSY;
2822 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2823 			goto out_src;
2824 	}
2825 
2826 	f2fs_lock_op(sbi);
2827 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2828 				pos_out >> F2FS_BLKSIZE_BITS,
2829 				len >> F2FS_BLKSIZE_BITS, false);
2830 
2831 	if (!ret) {
2832 		if (dst_max_i_size)
2833 			f2fs_i_size_write(dst, dst_max_i_size);
2834 		else if (dst_osize != dst->i_size)
2835 			f2fs_i_size_write(dst, dst_osize);
2836 	}
2837 	f2fs_unlock_op(sbi);
2838 
2839 	if (src != dst)
2840 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2841 out_src:
2842 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2843 out_unlock:
2844 	if (src != dst)
2845 		inode_unlock(dst);
2846 out:
2847 	inode_unlock(src);
2848 	return ret;
2849 }
2850 
2851 static int __f2fs_ioc_move_range(struct file *filp,
2852 				struct f2fs_move_range *range)
2853 {
2854 	struct fd dst;
2855 	int err;
2856 
2857 	if (!(filp->f_mode & FMODE_READ) ||
2858 			!(filp->f_mode & FMODE_WRITE))
2859 		return -EBADF;
2860 
2861 	dst = fdget(range->dst_fd);
2862 	if (!dst.file)
2863 		return -EBADF;
2864 
2865 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2866 		err = -EBADF;
2867 		goto err_out;
2868 	}
2869 
2870 	err = mnt_want_write_file(filp);
2871 	if (err)
2872 		goto err_out;
2873 
2874 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2875 					range->pos_out, range->len);
2876 
2877 	mnt_drop_write_file(filp);
2878 err_out:
2879 	fdput(dst);
2880 	return err;
2881 }
2882 
2883 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2884 {
2885 	struct f2fs_move_range range;
2886 
2887 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2888 							sizeof(range)))
2889 		return -EFAULT;
2890 	return __f2fs_ioc_move_range(filp, &range);
2891 }
2892 
2893 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2894 {
2895 	struct inode *inode = file_inode(filp);
2896 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2897 	struct sit_info *sm = SIT_I(sbi);
2898 	unsigned int start_segno = 0, end_segno = 0;
2899 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2900 	struct f2fs_flush_device range;
2901 	int ret;
2902 
2903 	if (!capable(CAP_SYS_ADMIN))
2904 		return -EPERM;
2905 
2906 	if (f2fs_readonly(sbi->sb))
2907 		return -EROFS;
2908 
2909 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2910 		return -EINVAL;
2911 
2912 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2913 							sizeof(range)))
2914 		return -EFAULT;
2915 
2916 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2917 			__is_large_section(sbi)) {
2918 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2919 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2920 		return -EINVAL;
2921 	}
2922 
2923 	ret = mnt_want_write_file(filp);
2924 	if (ret)
2925 		return ret;
2926 
2927 	if (range.dev_num != 0)
2928 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2929 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2930 
2931 	start_segno = sm->last_victim[FLUSH_DEVICE];
2932 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2933 		start_segno = dev_start_segno;
2934 	end_segno = min(start_segno + range.segments, dev_end_segno);
2935 
2936 	while (start_segno < end_segno) {
2937 		if (!down_write_trylock(&sbi->gc_lock)) {
2938 			ret = -EBUSY;
2939 			goto out;
2940 		}
2941 		sm->last_victim[GC_CB] = end_segno + 1;
2942 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2943 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2944 		ret = f2fs_gc(sbi, true, true, true, start_segno);
2945 		if (ret == -EAGAIN)
2946 			ret = 0;
2947 		else if (ret < 0)
2948 			break;
2949 		start_segno++;
2950 	}
2951 out:
2952 	mnt_drop_write_file(filp);
2953 	return ret;
2954 }
2955 
2956 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2957 {
2958 	struct inode *inode = file_inode(filp);
2959 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2960 
2961 	/* Must validate to set it with SQLite behavior in Android. */
2962 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2963 
2964 	return put_user(sb_feature, (u32 __user *)arg);
2965 }
2966 
2967 #ifdef CONFIG_QUOTA
2968 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2969 {
2970 	struct dquot *transfer_to[MAXQUOTAS] = {};
2971 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2972 	struct super_block *sb = sbi->sb;
2973 	int err = 0;
2974 
2975 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2976 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2977 		err = __dquot_transfer(inode, transfer_to);
2978 		if (err)
2979 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2980 		dqput(transfer_to[PRJQUOTA]);
2981 	}
2982 	return err;
2983 }
2984 
2985 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2986 {
2987 	struct f2fs_inode_info *fi = F2FS_I(inode);
2988 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2989 	struct page *ipage;
2990 	kprojid_t kprojid;
2991 	int err;
2992 
2993 	if (!f2fs_sb_has_project_quota(sbi)) {
2994 		if (projid != F2FS_DEF_PROJID)
2995 			return -EOPNOTSUPP;
2996 		else
2997 			return 0;
2998 	}
2999 
3000 	if (!f2fs_has_extra_attr(inode))
3001 		return -EOPNOTSUPP;
3002 
3003 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3004 
3005 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3006 		return 0;
3007 
3008 	err = -EPERM;
3009 	/* Is it quota file? Do not allow user to mess with it */
3010 	if (IS_NOQUOTA(inode))
3011 		return err;
3012 
3013 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3014 	if (IS_ERR(ipage))
3015 		return PTR_ERR(ipage);
3016 
3017 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3018 								i_projid)) {
3019 		err = -EOVERFLOW;
3020 		f2fs_put_page(ipage, 1);
3021 		return err;
3022 	}
3023 	f2fs_put_page(ipage, 1);
3024 
3025 	err = f2fs_dquot_initialize(inode);
3026 	if (err)
3027 		return err;
3028 
3029 	f2fs_lock_op(sbi);
3030 	err = f2fs_transfer_project_quota(inode, kprojid);
3031 	if (err)
3032 		goto out_unlock;
3033 
3034 	F2FS_I(inode)->i_projid = kprojid;
3035 	inode->i_ctime = current_time(inode);
3036 	f2fs_mark_inode_dirty_sync(inode, true);
3037 out_unlock:
3038 	f2fs_unlock_op(sbi);
3039 	return err;
3040 }
3041 #else
3042 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3043 {
3044 	return 0;
3045 }
3046 
3047 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3048 {
3049 	if (projid != F2FS_DEF_PROJID)
3050 		return -EOPNOTSUPP;
3051 	return 0;
3052 }
3053 #endif
3054 
3055 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3056 {
3057 	struct inode *inode = d_inode(dentry);
3058 	struct f2fs_inode_info *fi = F2FS_I(inode);
3059 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3060 
3061 	if (IS_ENCRYPTED(inode))
3062 		fsflags |= FS_ENCRYPT_FL;
3063 	if (IS_VERITY(inode))
3064 		fsflags |= FS_VERITY_FL;
3065 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3066 		fsflags |= FS_INLINE_DATA_FL;
3067 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3068 		fsflags |= FS_NOCOW_FL;
3069 
3070 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3071 
3072 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3073 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3074 
3075 	return 0;
3076 }
3077 
3078 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3079 		      struct dentry *dentry, struct fileattr *fa)
3080 {
3081 	struct inode *inode = d_inode(dentry);
3082 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3083 	u32 iflags;
3084 	int err;
3085 
3086 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3087 		return -EIO;
3088 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3089 		return -ENOSPC;
3090 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3091 		return -EOPNOTSUPP;
3092 	fsflags &= F2FS_SETTABLE_FS_FL;
3093 	if (!fa->flags_valid)
3094 		mask &= FS_COMMON_FL;
3095 
3096 	iflags = f2fs_fsflags_to_iflags(fsflags);
3097 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3098 		return -EOPNOTSUPP;
3099 
3100 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3101 	if (!err)
3102 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3103 
3104 	return err;
3105 }
3106 
3107 int f2fs_pin_file_control(struct inode *inode, bool inc)
3108 {
3109 	struct f2fs_inode_info *fi = F2FS_I(inode);
3110 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3111 
3112 	/* Use i_gc_failures for normal file as a risk signal. */
3113 	if (inc)
3114 		f2fs_i_gc_failures_write(inode,
3115 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3116 
3117 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3118 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3119 			  __func__, inode->i_ino,
3120 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3121 		clear_inode_flag(inode, FI_PIN_FILE);
3122 		return -EAGAIN;
3123 	}
3124 	return 0;
3125 }
3126 
3127 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3128 {
3129 	struct inode *inode = file_inode(filp);
3130 	__u32 pin;
3131 	int ret = 0;
3132 
3133 	if (get_user(pin, (__u32 __user *)arg))
3134 		return -EFAULT;
3135 
3136 	if (!S_ISREG(inode->i_mode))
3137 		return -EINVAL;
3138 
3139 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3140 		return -EROFS;
3141 
3142 	ret = mnt_want_write_file(filp);
3143 	if (ret)
3144 		return ret;
3145 
3146 	inode_lock(inode);
3147 
3148 	if (f2fs_should_update_outplace(inode, NULL)) {
3149 		ret = -EINVAL;
3150 		goto out;
3151 	}
3152 
3153 	if (!pin) {
3154 		clear_inode_flag(inode, FI_PIN_FILE);
3155 		f2fs_i_gc_failures_write(inode, 0);
3156 		goto done;
3157 	}
3158 
3159 	if (f2fs_pin_file_control(inode, false)) {
3160 		ret = -EAGAIN;
3161 		goto out;
3162 	}
3163 
3164 	ret = f2fs_convert_inline_inode(inode);
3165 	if (ret)
3166 		goto out;
3167 
3168 	if (!f2fs_disable_compressed_file(inode)) {
3169 		ret = -EOPNOTSUPP;
3170 		goto out;
3171 	}
3172 
3173 	set_inode_flag(inode, FI_PIN_FILE);
3174 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3175 done:
3176 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3177 out:
3178 	inode_unlock(inode);
3179 	mnt_drop_write_file(filp);
3180 	return ret;
3181 }
3182 
3183 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3184 {
3185 	struct inode *inode = file_inode(filp);
3186 	__u32 pin = 0;
3187 
3188 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3189 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3190 	return put_user(pin, (u32 __user *)arg);
3191 }
3192 
3193 int f2fs_precache_extents(struct inode *inode)
3194 {
3195 	struct f2fs_inode_info *fi = F2FS_I(inode);
3196 	struct f2fs_map_blocks map;
3197 	pgoff_t m_next_extent;
3198 	loff_t end;
3199 	int err;
3200 
3201 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3202 		return -EOPNOTSUPP;
3203 
3204 	map.m_lblk = 0;
3205 	map.m_next_pgofs = NULL;
3206 	map.m_next_extent = &m_next_extent;
3207 	map.m_seg_type = NO_CHECK_TYPE;
3208 	map.m_may_create = false;
3209 	end = max_file_blocks(inode);
3210 
3211 	while (map.m_lblk < end) {
3212 		map.m_len = end - map.m_lblk;
3213 
3214 		down_write(&fi->i_gc_rwsem[WRITE]);
3215 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3216 		up_write(&fi->i_gc_rwsem[WRITE]);
3217 		if (err)
3218 			return err;
3219 
3220 		map.m_lblk = m_next_extent;
3221 	}
3222 
3223 	return 0;
3224 }
3225 
3226 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3227 {
3228 	return f2fs_precache_extents(file_inode(filp));
3229 }
3230 
3231 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3232 {
3233 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3234 	__u64 block_count;
3235 
3236 	if (!capable(CAP_SYS_ADMIN))
3237 		return -EPERM;
3238 
3239 	if (f2fs_readonly(sbi->sb))
3240 		return -EROFS;
3241 
3242 	if (copy_from_user(&block_count, (void __user *)arg,
3243 			   sizeof(block_count)))
3244 		return -EFAULT;
3245 
3246 	return f2fs_resize_fs(sbi, block_count);
3247 }
3248 
3249 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3250 {
3251 	struct inode *inode = file_inode(filp);
3252 
3253 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3254 
3255 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3256 		f2fs_warn(F2FS_I_SB(inode),
3257 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3258 			  inode->i_ino);
3259 		return -EOPNOTSUPP;
3260 	}
3261 
3262 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3263 }
3264 
3265 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3266 {
3267 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3268 		return -EOPNOTSUPP;
3269 
3270 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3271 }
3272 
3273 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3274 {
3275 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3276 		return -EOPNOTSUPP;
3277 
3278 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3279 }
3280 
3281 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3282 {
3283 	struct inode *inode = file_inode(filp);
3284 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3285 	char *vbuf;
3286 	int count;
3287 	int err = 0;
3288 
3289 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3290 	if (!vbuf)
3291 		return -ENOMEM;
3292 
3293 	down_read(&sbi->sb_lock);
3294 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3295 			ARRAY_SIZE(sbi->raw_super->volume_name),
3296 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3297 	up_read(&sbi->sb_lock);
3298 
3299 	if (copy_to_user((char __user *)arg, vbuf,
3300 				min(FSLABEL_MAX, count)))
3301 		err = -EFAULT;
3302 
3303 	kfree(vbuf);
3304 	return err;
3305 }
3306 
3307 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3308 {
3309 	struct inode *inode = file_inode(filp);
3310 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3311 	char *vbuf;
3312 	int err = 0;
3313 
3314 	if (!capable(CAP_SYS_ADMIN))
3315 		return -EPERM;
3316 
3317 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3318 	if (IS_ERR(vbuf))
3319 		return PTR_ERR(vbuf);
3320 
3321 	err = mnt_want_write_file(filp);
3322 	if (err)
3323 		goto out;
3324 
3325 	down_write(&sbi->sb_lock);
3326 
3327 	memset(sbi->raw_super->volume_name, 0,
3328 			sizeof(sbi->raw_super->volume_name));
3329 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3330 			sbi->raw_super->volume_name,
3331 			ARRAY_SIZE(sbi->raw_super->volume_name));
3332 
3333 	err = f2fs_commit_super(sbi, false);
3334 
3335 	up_write(&sbi->sb_lock);
3336 
3337 	mnt_drop_write_file(filp);
3338 out:
3339 	kfree(vbuf);
3340 	return err;
3341 }
3342 
3343 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3344 {
3345 	struct inode *inode = file_inode(filp);
3346 	__u64 blocks;
3347 
3348 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3349 		return -EOPNOTSUPP;
3350 
3351 	if (!f2fs_compressed_file(inode))
3352 		return -EINVAL;
3353 
3354 	blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3355 	return put_user(blocks, (u64 __user *)arg);
3356 }
3357 
3358 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3359 {
3360 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3361 	unsigned int released_blocks = 0;
3362 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3363 	block_t blkaddr;
3364 	int i;
3365 
3366 	for (i = 0; i < count; i++) {
3367 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3368 						dn->ofs_in_node + i);
3369 
3370 		if (!__is_valid_data_blkaddr(blkaddr))
3371 			continue;
3372 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3373 					DATA_GENERIC_ENHANCE)))
3374 			return -EFSCORRUPTED;
3375 	}
3376 
3377 	while (count) {
3378 		int compr_blocks = 0;
3379 
3380 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3381 			blkaddr = f2fs_data_blkaddr(dn);
3382 
3383 			if (i == 0) {
3384 				if (blkaddr == COMPRESS_ADDR)
3385 					continue;
3386 				dn->ofs_in_node += cluster_size;
3387 				goto next;
3388 			}
3389 
3390 			if (__is_valid_data_blkaddr(blkaddr))
3391 				compr_blocks++;
3392 
3393 			if (blkaddr != NEW_ADDR)
3394 				continue;
3395 
3396 			dn->data_blkaddr = NULL_ADDR;
3397 			f2fs_set_data_blkaddr(dn);
3398 		}
3399 
3400 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3401 		dec_valid_block_count(sbi, dn->inode,
3402 					cluster_size - compr_blocks);
3403 
3404 		released_blocks += cluster_size - compr_blocks;
3405 next:
3406 		count -= cluster_size;
3407 	}
3408 
3409 	return released_blocks;
3410 }
3411 
3412 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3413 {
3414 	struct inode *inode = file_inode(filp);
3415 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3416 	pgoff_t page_idx = 0, last_idx;
3417 	unsigned int released_blocks = 0;
3418 	int ret;
3419 	int writecount;
3420 
3421 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3422 		return -EOPNOTSUPP;
3423 
3424 	if (!f2fs_compressed_file(inode))
3425 		return -EINVAL;
3426 
3427 	if (f2fs_readonly(sbi->sb))
3428 		return -EROFS;
3429 
3430 	ret = mnt_want_write_file(filp);
3431 	if (ret)
3432 		return ret;
3433 
3434 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3435 
3436 	inode_lock(inode);
3437 
3438 	writecount = atomic_read(&inode->i_writecount);
3439 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3440 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3441 		ret = -EBUSY;
3442 		goto out;
3443 	}
3444 
3445 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3446 		ret = -EINVAL;
3447 		goto out;
3448 	}
3449 
3450 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3451 	if (ret)
3452 		goto out;
3453 
3454 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3455 	inode->i_ctime = current_time(inode);
3456 	f2fs_mark_inode_dirty_sync(inode, true);
3457 
3458 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3459 		goto out;
3460 
3461 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3462 	filemap_invalidate_lock(inode->i_mapping);
3463 
3464 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3465 
3466 	while (page_idx < last_idx) {
3467 		struct dnode_of_data dn;
3468 		pgoff_t end_offset, count;
3469 
3470 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3471 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3472 		if (ret) {
3473 			if (ret == -ENOENT) {
3474 				page_idx = f2fs_get_next_page_offset(&dn,
3475 								page_idx);
3476 				ret = 0;
3477 				continue;
3478 			}
3479 			break;
3480 		}
3481 
3482 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3483 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3484 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3485 
3486 		ret = release_compress_blocks(&dn, count);
3487 
3488 		f2fs_put_dnode(&dn);
3489 
3490 		if (ret < 0)
3491 			break;
3492 
3493 		page_idx += count;
3494 		released_blocks += ret;
3495 	}
3496 
3497 	filemap_invalidate_unlock(inode->i_mapping);
3498 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3499 out:
3500 	inode_unlock(inode);
3501 
3502 	mnt_drop_write_file(filp);
3503 
3504 	if (ret >= 0) {
3505 		ret = put_user(released_blocks, (u64 __user *)arg);
3506 	} else if (released_blocks &&
3507 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3508 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3509 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3510 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3511 			"run fsck to fix.",
3512 			__func__, inode->i_ino, inode->i_blocks,
3513 			released_blocks,
3514 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3515 	}
3516 
3517 	return ret;
3518 }
3519 
3520 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3521 {
3522 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3523 	unsigned int reserved_blocks = 0;
3524 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3525 	block_t blkaddr;
3526 	int i;
3527 
3528 	for (i = 0; i < count; i++) {
3529 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3530 						dn->ofs_in_node + i);
3531 
3532 		if (!__is_valid_data_blkaddr(blkaddr))
3533 			continue;
3534 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3535 					DATA_GENERIC_ENHANCE)))
3536 			return -EFSCORRUPTED;
3537 	}
3538 
3539 	while (count) {
3540 		int compr_blocks = 0;
3541 		blkcnt_t reserved;
3542 		int ret;
3543 
3544 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3545 			blkaddr = f2fs_data_blkaddr(dn);
3546 
3547 			if (i == 0) {
3548 				if (blkaddr == COMPRESS_ADDR)
3549 					continue;
3550 				dn->ofs_in_node += cluster_size;
3551 				goto next;
3552 			}
3553 
3554 			if (__is_valid_data_blkaddr(blkaddr)) {
3555 				compr_blocks++;
3556 				continue;
3557 			}
3558 
3559 			dn->data_blkaddr = NEW_ADDR;
3560 			f2fs_set_data_blkaddr(dn);
3561 		}
3562 
3563 		reserved = cluster_size - compr_blocks;
3564 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3565 		if (ret)
3566 			return ret;
3567 
3568 		if (reserved != cluster_size - compr_blocks)
3569 			return -ENOSPC;
3570 
3571 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3572 
3573 		reserved_blocks += reserved;
3574 next:
3575 		count -= cluster_size;
3576 	}
3577 
3578 	return reserved_blocks;
3579 }
3580 
3581 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3582 {
3583 	struct inode *inode = file_inode(filp);
3584 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3585 	pgoff_t page_idx = 0, last_idx;
3586 	unsigned int reserved_blocks = 0;
3587 	int ret;
3588 
3589 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3590 		return -EOPNOTSUPP;
3591 
3592 	if (!f2fs_compressed_file(inode))
3593 		return -EINVAL;
3594 
3595 	if (f2fs_readonly(sbi->sb))
3596 		return -EROFS;
3597 
3598 	ret = mnt_want_write_file(filp);
3599 	if (ret)
3600 		return ret;
3601 
3602 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3603 		goto out;
3604 
3605 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3606 
3607 	inode_lock(inode);
3608 
3609 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3610 		ret = -EINVAL;
3611 		goto unlock_inode;
3612 	}
3613 
3614 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3615 	filemap_invalidate_lock(inode->i_mapping);
3616 
3617 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3618 
3619 	while (page_idx < last_idx) {
3620 		struct dnode_of_data dn;
3621 		pgoff_t end_offset, count;
3622 
3623 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3624 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3625 		if (ret) {
3626 			if (ret == -ENOENT) {
3627 				page_idx = f2fs_get_next_page_offset(&dn,
3628 								page_idx);
3629 				ret = 0;
3630 				continue;
3631 			}
3632 			break;
3633 		}
3634 
3635 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3636 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3637 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3638 
3639 		ret = reserve_compress_blocks(&dn, count);
3640 
3641 		f2fs_put_dnode(&dn);
3642 
3643 		if (ret < 0)
3644 			break;
3645 
3646 		page_idx += count;
3647 		reserved_blocks += ret;
3648 	}
3649 
3650 	filemap_invalidate_unlock(inode->i_mapping);
3651 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3652 
3653 	if (ret >= 0) {
3654 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3655 		inode->i_ctime = current_time(inode);
3656 		f2fs_mark_inode_dirty_sync(inode, true);
3657 	}
3658 unlock_inode:
3659 	inode_unlock(inode);
3660 out:
3661 	mnt_drop_write_file(filp);
3662 
3663 	if (ret >= 0) {
3664 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3665 	} else if (reserved_blocks &&
3666 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3667 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3668 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3669 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3670 			"run fsck to fix.",
3671 			__func__, inode->i_ino, inode->i_blocks,
3672 			reserved_blocks,
3673 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3674 	}
3675 
3676 	return ret;
3677 }
3678 
3679 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3680 		pgoff_t off, block_t block, block_t len, u32 flags)
3681 {
3682 	struct request_queue *q = bdev_get_queue(bdev);
3683 	sector_t sector = SECTOR_FROM_BLOCK(block);
3684 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3685 	int ret = 0;
3686 
3687 	if (!q)
3688 		return -ENXIO;
3689 
3690 	if (flags & F2FS_TRIM_FILE_DISCARD)
3691 		ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3692 						blk_queue_secure_erase(q) ?
3693 						BLKDEV_DISCARD_SECURE : 0);
3694 
3695 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3696 		if (IS_ENCRYPTED(inode))
3697 			ret = fscrypt_zeroout_range(inode, off, block, len);
3698 		else
3699 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3700 					GFP_NOFS, 0);
3701 	}
3702 
3703 	return ret;
3704 }
3705 
3706 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3707 {
3708 	struct inode *inode = file_inode(filp);
3709 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3710 	struct address_space *mapping = inode->i_mapping;
3711 	struct block_device *prev_bdev = NULL;
3712 	struct f2fs_sectrim_range range;
3713 	pgoff_t index, pg_end, prev_index = 0;
3714 	block_t prev_block = 0, len = 0;
3715 	loff_t end_addr;
3716 	bool to_end = false;
3717 	int ret = 0;
3718 
3719 	if (!(filp->f_mode & FMODE_WRITE))
3720 		return -EBADF;
3721 
3722 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3723 				sizeof(range)))
3724 		return -EFAULT;
3725 
3726 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3727 			!S_ISREG(inode->i_mode))
3728 		return -EINVAL;
3729 
3730 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3731 			!f2fs_hw_support_discard(sbi)) ||
3732 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3733 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3734 		return -EOPNOTSUPP;
3735 
3736 	file_start_write(filp);
3737 	inode_lock(inode);
3738 
3739 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3740 			range.start >= inode->i_size) {
3741 		ret = -EINVAL;
3742 		goto err;
3743 	}
3744 
3745 	if (range.len == 0)
3746 		goto err;
3747 
3748 	if (inode->i_size - range.start > range.len) {
3749 		end_addr = range.start + range.len;
3750 	} else {
3751 		end_addr = range.len == (u64)-1 ?
3752 			sbi->sb->s_maxbytes : inode->i_size;
3753 		to_end = true;
3754 	}
3755 
3756 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3757 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3758 		ret = -EINVAL;
3759 		goto err;
3760 	}
3761 
3762 	index = F2FS_BYTES_TO_BLK(range.start);
3763 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3764 
3765 	ret = f2fs_convert_inline_inode(inode);
3766 	if (ret)
3767 		goto err;
3768 
3769 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3770 	filemap_invalidate_lock(mapping);
3771 
3772 	ret = filemap_write_and_wait_range(mapping, range.start,
3773 			to_end ? LLONG_MAX : end_addr - 1);
3774 	if (ret)
3775 		goto out;
3776 
3777 	truncate_inode_pages_range(mapping, range.start,
3778 			to_end ? -1 : end_addr - 1);
3779 
3780 	while (index < pg_end) {
3781 		struct dnode_of_data dn;
3782 		pgoff_t end_offset, count;
3783 		int i;
3784 
3785 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3786 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3787 		if (ret) {
3788 			if (ret == -ENOENT) {
3789 				index = f2fs_get_next_page_offset(&dn, index);
3790 				continue;
3791 			}
3792 			goto out;
3793 		}
3794 
3795 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3796 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3797 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3798 			struct block_device *cur_bdev;
3799 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3800 
3801 			if (!__is_valid_data_blkaddr(blkaddr))
3802 				continue;
3803 
3804 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3805 						DATA_GENERIC_ENHANCE)) {
3806 				ret = -EFSCORRUPTED;
3807 				f2fs_put_dnode(&dn);
3808 				goto out;
3809 			}
3810 
3811 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3812 			if (f2fs_is_multi_device(sbi)) {
3813 				int di = f2fs_target_device_index(sbi, blkaddr);
3814 
3815 				blkaddr -= FDEV(di).start_blk;
3816 			}
3817 
3818 			if (len) {
3819 				if (prev_bdev == cur_bdev &&
3820 						index == prev_index + len &&
3821 						blkaddr == prev_block + len) {
3822 					len++;
3823 				} else {
3824 					ret = f2fs_secure_erase(prev_bdev,
3825 						inode, prev_index, prev_block,
3826 						len, range.flags);
3827 					if (ret) {
3828 						f2fs_put_dnode(&dn);
3829 						goto out;
3830 					}
3831 
3832 					len = 0;
3833 				}
3834 			}
3835 
3836 			if (!len) {
3837 				prev_bdev = cur_bdev;
3838 				prev_index = index;
3839 				prev_block = blkaddr;
3840 				len = 1;
3841 			}
3842 		}
3843 
3844 		f2fs_put_dnode(&dn);
3845 
3846 		if (fatal_signal_pending(current)) {
3847 			ret = -EINTR;
3848 			goto out;
3849 		}
3850 		cond_resched();
3851 	}
3852 
3853 	if (len)
3854 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3855 				prev_block, len, range.flags);
3856 out:
3857 	filemap_invalidate_unlock(mapping);
3858 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3859 err:
3860 	inode_unlock(inode);
3861 	file_end_write(filp);
3862 
3863 	return ret;
3864 }
3865 
3866 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3867 {
3868 	struct inode *inode = file_inode(filp);
3869 	struct f2fs_comp_option option;
3870 
3871 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3872 		return -EOPNOTSUPP;
3873 
3874 	inode_lock_shared(inode);
3875 
3876 	if (!f2fs_compressed_file(inode)) {
3877 		inode_unlock_shared(inode);
3878 		return -ENODATA;
3879 	}
3880 
3881 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3882 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3883 
3884 	inode_unlock_shared(inode);
3885 
3886 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3887 				sizeof(option)))
3888 		return -EFAULT;
3889 
3890 	return 0;
3891 }
3892 
3893 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3894 {
3895 	struct inode *inode = file_inode(filp);
3896 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3897 	struct f2fs_comp_option option;
3898 	int ret = 0;
3899 
3900 	if (!f2fs_sb_has_compression(sbi))
3901 		return -EOPNOTSUPP;
3902 
3903 	if (!(filp->f_mode & FMODE_WRITE))
3904 		return -EBADF;
3905 
3906 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3907 				sizeof(option)))
3908 		return -EFAULT;
3909 
3910 	if (!f2fs_compressed_file(inode) ||
3911 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3912 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3913 			option.algorithm >= COMPRESS_MAX)
3914 		return -EINVAL;
3915 
3916 	file_start_write(filp);
3917 	inode_lock(inode);
3918 
3919 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3920 		ret = -EBUSY;
3921 		goto out;
3922 	}
3923 
3924 	if (inode->i_size != 0) {
3925 		ret = -EFBIG;
3926 		goto out;
3927 	}
3928 
3929 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3930 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3931 	F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3932 	f2fs_mark_inode_dirty_sync(inode, true);
3933 
3934 	if (!f2fs_is_compress_backend_ready(inode))
3935 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3936 			"but current kernel doesn't support this algorithm.");
3937 out:
3938 	inode_unlock(inode);
3939 	file_end_write(filp);
3940 
3941 	return ret;
3942 }
3943 
3944 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3945 {
3946 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3947 	struct address_space *mapping = inode->i_mapping;
3948 	struct page *page;
3949 	pgoff_t redirty_idx = page_idx;
3950 	int i, page_len = 0, ret = 0;
3951 
3952 	page_cache_ra_unbounded(&ractl, len, 0);
3953 
3954 	for (i = 0; i < len; i++, page_idx++) {
3955 		page = read_cache_page(mapping, page_idx, NULL, NULL);
3956 		if (IS_ERR(page)) {
3957 			ret = PTR_ERR(page);
3958 			break;
3959 		}
3960 		page_len++;
3961 	}
3962 
3963 	for (i = 0; i < page_len; i++, redirty_idx++) {
3964 		page = find_lock_page(mapping, redirty_idx);
3965 		if (!page) {
3966 			ret = -ENOMEM;
3967 			break;
3968 		}
3969 		set_page_dirty(page);
3970 		f2fs_put_page(page, 1);
3971 		f2fs_put_page(page, 0);
3972 	}
3973 
3974 	return ret;
3975 }
3976 
3977 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3978 {
3979 	struct inode *inode = file_inode(filp);
3980 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3981 	struct f2fs_inode_info *fi = F2FS_I(inode);
3982 	pgoff_t page_idx = 0, last_idx;
3983 	unsigned int blk_per_seg = sbi->blocks_per_seg;
3984 	int cluster_size = F2FS_I(inode)->i_cluster_size;
3985 	int count, ret;
3986 
3987 	if (!f2fs_sb_has_compression(sbi) ||
3988 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3989 		return -EOPNOTSUPP;
3990 
3991 	if (!(filp->f_mode & FMODE_WRITE))
3992 		return -EBADF;
3993 
3994 	if (!f2fs_compressed_file(inode))
3995 		return -EINVAL;
3996 
3997 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3998 
3999 	file_start_write(filp);
4000 	inode_lock(inode);
4001 
4002 	if (!f2fs_is_compress_backend_ready(inode)) {
4003 		ret = -EOPNOTSUPP;
4004 		goto out;
4005 	}
4006 
4007 	if (f2fs_is_mmap_file(inode)) {
4008 		ret = -EBUSY;
4009 		goto out;
4010 	}
4011 
4012 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4013 	if (ret)
4014 		goto out;
4015 
4016 	if (!atomic_read(&fi->i_compr_blocks))
4017 		goto out;
4018 
4019 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4020 
4021 	count = last_idx - page_idx;
4022 	while (count) {
4023 		int len = min(cluster_size, count);
4024 
4025 		ret = redirty_blocks(inode, page_idx, len);
4026 		if (ret < 0)
4027 			break;
4028 
4029 		if (get_dirty_pages(inode) >= blk_per_seg)
4030 			filemap_fdatawrite(inode->i_mapping);
4031 
4032 		count -= len;
4033 		page_idx += len;
4034 	}
4035 
4036 	if (!ret)
4037 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4038 							LLONG_MAX);
4039 
4040 	if (ret)
4041 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4042 			  __func__, ret);
4043 out:
4044 	inode_unlock(inode);
4045 	file_end_write(filp);
4046 
4047 	return ret;
4048 }
4049 
4050 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4051 {
4052 	struct inode *inode = file_inode(filp);
4053 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4054 	pgoff_t page_idx = 0, last_idx;
4055 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4056 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4057 	int count, ret;
4058 
4059 	if (!f2fs_sb_has_compression(sbi) ||
4060 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4061 		return -EOPNOTSUPP;
4062 
4063 	if (!(filp->f_mode & FMODE_WRITE))
4064 		return -EBADF;
4065 
4066 	if (!f2fs_compressed_file(inode))
4067 		return -EINVAL;
4068 
4069 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4070 
4071 	file_start_write(filp);
4072 	inode_lock(inode);
4073 
4074 	if (!f2fs_is_compress_backend_ready(inode)) {
4075 		ret = -EOPNOTSUPP;
4076 		goto out;
4077 	}
4078 
4079 	if (f2fs_is_mmap_file(inode)) {
4080 		ret = -EBUSY;
4081 		goto out;
4082 	}
4083 
4084 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4085 	if (ret)
4086 		goto out;
4087 
4088 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4089 
4090 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4091 
4092 	count = last_idx - page_idx;
4093 	while (count) {
4094 		int len = min(cluster_size, count);
4095 
4096 		ret = redirty_blocks(inode, page_idx, len);
4097 		if (ret < 0)
4098 			break;
4099 
4100 		if (get_dirty_pages(inode) >= blk_per_seg)
4101 			filemap_fdatawrite(inode->i_mapping);
4102 
4103 		count -= len;
4104 		page_idx += len;
4105 	}
4106 
4107 	if (!ret)
4108 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4109 							LLONG_MAX);
4110 
4111 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4112 
4113 	if (ret)
4114 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4115 			  __func__, ret);
4116 out:
4117 	inode_unlock(inode);
4118 	file_end_write(filp);
4119 
4120 	return ret;
4121 }
4122 
4123 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4124 {
4125 	switch (cmd) {
4126 	case FS_IOC_GETVERSION:
4127 		return f2fs_ioc_getversion(filp, arg);
4128 	case F2FS_IOC_START_ATOMIC_WRITE:
4129 		return f2fs_ioc_start_atomic_write(filp);
4130 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4131 		return f2fs_ioc_commit_atomic_write(filp);
4132 	case F2FS_IOC_START_VOLATILE_WRITE:
4133 		return f2fs_ioc_start_volatile_write(filp);
4134 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4135 		return f2fs_ioc_release_volatile_write(filp);
4136 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4137 		return f2fs_ioc_abort_volatile_write(filp);
4138 	case F2FS_IOC_SHUTDOWN:
4139 		return f2fs_ioc_shutdown(filp, arg);
4140 	case FITRIM:
4141 		return f2fs_ioc_fitrim(filp, arg);
4142 	case FS_IOC_SET_ENCRYPTION_POLICY:
4143 		return f2fs_ioc_set_encryption_policy(filp, arg);
4144 	case FS_IOC_GET_ENCRYPTION_POLICY:
4145 		return f2fs_ioc_get_encryption_policy(filp, arg);
4146 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4147 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4148 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4149 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4150 	case FS_IOC_ADD_ENCRYPTION_KEY:
4151 		return f2fs_ioc_add_encryption_key(filp, arg);
4152 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4153 		return f2fs_ioc_remove_encryption_key(filp, arg);
4154 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4155 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4156 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4157 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4158 	case FS_IOC_GET_ENCRYPTION_NONCE:
4159 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4160 	case F2FS_IOC_GARBAGE_COLLECT:
4161 		return f2fs_ioc_gc(filp, arg);
4162 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4163 		return f2fs_ioc_gc_range(filp, arg);
4164 	case F2FS_IOC_WRITE_CHECKPOINT:
4165 		return f2fs_ioc_write_checkpoint(filp, arg);
4166 	case F2FS_IOC_DEFRAGMENT:
4167 		return f2fs_ioc_defragment(filp, arg);
4168 	case F2FS_IOC_MOVE_RANGE:
4169 		return f2fs_ioc_move_range(filp, arg);
4170 	case F2FS_IOC_FLUSH_DEVICE:
4171 		return f2fs_ioc_flush_device(filp, arg);
4172 	case F2FS_IOC_GET_FEATURES:
4173 		return f2fs_ioc_get_features(filp, arg);
4174 	case F2FS_IOC_GET_PIN_FILE:
4175 		return f2fs_ioc_get_pin_file(filp, arg);
4176 	case F2FS_IOC_SET_PIN_FILE:
4177 		return f2fs_ioc_set_pin_file(filp, arg);
4178 	case F2FS_IOC_PRECACHE_EXTENTS:
4179 		return f2fs_ioc_precache_extents(filp, arg);
4180 	case F2FS_IOC_RESIZE_FS:
4181 		return f2fs_ioc_resize_fs(filp, arg);
4182 	case FS_IOC_ENABLE_VERITY:
4183 		return f2fs_ioc_enable_verity(filp, arg);
4184 	case FS_IOC_MEASURE_VERITY:
4185 		return f2fs_ioc_measure_verity(filp, arg);
4186 	case FS_IOC_READ_VERITY_METADATA:
4187 		return f2fs_ioc_read_verity_metadata(filp, arg);
4188 	case FS_IOC_GETFSLABEL:
4189 		return f2fs_ioc_getfslabel(filp, arg);
4190 	case FS_IOC_SETFSLABEL:
4191 		return f2fs_ioc_setfslabel(filp, arg);
4192 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4193 		return f2fs_get_compress_blocks(filp, arg);
4194 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4195 		return f2fs_release_compress_blocks(filp, arg);
4196 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4197 		return f2fs_reserve_compress_blocks(filp, arg);
4198 	case F2FS_IOC_SEC_TRIM_FILE:
4199 		return f2fs_sec_trim_file(filp, arg);
4200 	case F2FS_IOC_GET_COMPRESS_OPTION:
4201 		return f2fs_ioc_get_compress_option(filp, arg);
4202 	case F2FS_IOC_SET_COMPRESS_OPTION:
4203 		return f2fs_ioc_set_compress_option(filp, arg);
4204 	case F2FS_IOC_DECOMPRESS_FILE:
4205 		return f2fs_ioc_decompress_file(filp, arg);
4206 	case F2FS_IOC_COMPRESS_FILE:
4207 		return f2fs_ioc_compress_file(filp, arg);
4208 	default:
4209 		return -ENOTTY;
4210 	}
4211 }
4212 
4213 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4214 {
4215 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4216 		return -EIO;
4217 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4218 		return -ENOSPC;
4219 
4220 	return __f2fs_ioctl(filp, cmd, arg);
4221 }
4222 
4223 /*
4224  * Return %true if the given read or write request should use direct I/O, or
4225  * %false if it should use buffered I/O.
4226  */
4227 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4228 				struct iov_iter *iter)
4229 {
4230 	unsigned int align;
4231 
4232 	if (!(iocb->ki_flags & IOCB_DIRECT))
4233 		return false;
4234 
4235 	if (f2fs_force_buffered_io(inode, iocb, iter))
4236 		return false;
4237 
4238 	/*
4239 	 * Direct I/O not aligned to the disk's logical_block_size will be
4240 	 * attempted, but will fail with -EINVAL.
4241 	 *
4242 	 * f2fs additionally requires that direct I/O be aligned to the
4243 	 * filesystem block size, which is often a stricter requirement.
4244 	 * However, f2fs traditionally falls back to buffered I/O on requests
4245 	 * that are logical_block_size-aligned but not fs-block aligned.
4246 	 *
4247 	 * The below logic implements this behavior.
4248 	 */
4249 	align = iocb->ki_pos | iov_iter_alignment(iter);
4250 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4251 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4252 		return false;
4253 
4254 	return true;
4255 }
4256 
4257 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4258 				unsigned int flags)
4259 {
4260 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4261 
4262 	dec_page_count(sbi, F2FS_DIO_READ);
4263 	if (error)
4264 		return error;
4265 	f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, size);
4266 	return 0;
4267 }
4268 
4269 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4270 	.end_io = f2fs_dio_read_end_io,
4271 };
4272 
4273 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4274 {
4275 	struct file *file = iocb->ki_filp;
4276 	struct inode *inode = file_inode(file);
4277 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4278 	struct f2fs_inode_info *fi = F2FS_I(inode);
4279 	const loff_t pos = iocb->ki_pos;
4280 	const size_t count = iov_iter_count(to);
4281 	struct iomap_dio *dio;
4282 	ssize_t ret;
4283 
4284 	if (count == 0)
4285 		return 0; /* skip atime update */
4286 
4287 	trace_f2fs_direct_IO_enter(inode, pos, count, READ);
4288 
4289 	if (iocb->ki_flags & IOCB_NOWAIT) {
4290 		if (!down_read_trylock(&fi->i_gc_rwsem[READ])) {
4291 			ret = -EAGAIN;
4292 			goto out;
4293 		}
4294 	} else {
4295 		down_read(&fi->i_gc_rwsem[READ]);
4296 	}
4297 
4298 	/*
4299 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4300 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4301 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4302 	 */
4303 	inc_page_count(sbi, F2FS_DIO_READ);
4304 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4305 			     &f2fs_iomap_dio_read_ops, 0, 0);
4306 	if (IS_ERR_OR_NULL(dio)) {
4307 		ret = PTR_ERR_OR_ZERO(dio);
4308 		if (ret != -EIOCBQUEUED)
4309 			dec_page_count(sbi, F2FS_DIO_READ);
4310 	} else {
4311 		ret = iomap_dio_complete(dio);
4312 	}
4313 
4314 	up_read(&fi->i_gc_rwsem[READ]);
4315 
4316 	file_accessed(file);
4317 out:
4318 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4319 	return ret;
4320 }
4321 
4322 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4323 {
4324 	struct inode *inode = file_inode(iocb->ki_filp);
4325 	ssize_t ret;
4326 
4327 	if (!f2fs_is_compress_backend_ready(inode))
4328 		return -EOPNOTSUPP;
4329 
4330 	if (f2fs_should_use_dio(inode, iocb, to))
4331 		return f2fs_dio_read_iter(iocb, to);
4332 
4333 	ret = filemap_read(iocb, to, 0);
4334 	if (ret > 0)
4335 		f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_READ_IO, ret);
4336 	return ret;
4337 }
4338 
4339 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4340 {
4341 	struct file *file = iocb->ki_filp;
4342 	struct inode *inode = file_inode(file);
4343 	ssize_t count;
4344 	int err;
4345 
4346 	if (IS_IMMUTABLE(inode))
4347 		return -EPERM;
4348 
4349 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4350 		return -EPERM;
4351 
4352 	count = generic_write_checks(iocb, from);
4353 	if (count <= 0)
4354 		return count;
4355 
4356 	err = file_modified(file);
4357 	if (err)
4358 		return err;
4359 	return count;
4360 }
4361 
4362 /*
4363  * Preallocate blocks for a write request, if it is possible and helpful to do
4364  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4365  * blocks were preallocated, or a negative errno value if something went
4366  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4367  * requested blocks (not just some of them) have been allocated.
4368  */
4369 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4370 				   bool dio)
4371 {
4372 	struct inode *inode = file_inode(iocb->ki_filp);
4373 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4374 	const loff_t pos = iocb->ki_pos;
4375 	const size_t count = iov_iter_count(iter);
4376 	struct f2fs_map_blocks map = {};
4377 	int flag;
4378 	int ret;
4379 
4380 	/* If it will be an out-of-place direct write, don't bother. */
4381 	if (dio && f2fs_lfs_mode(sbi))
4382 		return 0;
4383 	/*
4384 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4385 	 * buffered IO, if DIO meets any holes.
4386 	 */
4387 	if (dio && i_size_read(inode) &&
4388 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4389 		return 0;
4390 
4391 	/* No-wait I/O can't allocate blocks. */
4392 	if (iocb->ki_flags & IOCB_NOWAIT)
4393 		return 0;
4394 
4395 	/* If it will be a short write, don't bother. */
4396 	if (fault_in_iov_iter_readable(iter, count))
4397 		return 0;
4398 
4399 	if (f2fs_has_inline_data(inode)) {
4400 		/* If the data will fit inline, don't bother. */
4401 		if (pos + count <= MAX_INLINE_DATA(inode))
4402 			return 0;
4403 		ret = f2fs_convert_inline_inode(inode);
4404 		if (ret)
4405 			return ret;
4406 	}
4407 
4408 	/* Do not preallocate blocks that will be written partially in 4KB. */
4409 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4410 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4411 	if (map.m_len > map.m_lblk)
4412 		map.m_len -= map.m_lblk;
4413 	else
4414 		map.m_len = 0;
4415 	map.m_may_create = true;
4416 	if (dio) {
4417 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4418 		flag = F2FS_GET_BLOCK_PRE_DIO;
4419 	} else {
4420 		map.m_seg_type = NO_CHECK_TYPE;
4421 		flag = F2FS_GET_BLOCK_PRE_AIO;
4422 	}
4423 
4424 	ret = f2fs_map_blocks(inode, &map, 1, flag);
4425 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4426 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4427 		return ret;
4428 	if (ret == 0)
4429 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4430 	return map.m_len;
4431 }
4432 
4433 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4434 					struct iov_iter *from)
4435 {
4436 	struct file *file = iocb->ki_filp;
4437 	struct inode *inode = file_inode(file);
4438 	ssize_t ret;
4439 
4440 	if (iocb->ki_flags & IOCB_NOWAIT)
4441 		return -EOPNOTSUPP;
4442 
4443 	current->backing_dev_info = inode_to_bdi(inode);
4444 	ret = generic_perform_write(file, from, iocb->ki_pos);
4445 	current->backing_dev_info = NULL;
4446 
4447 	if (ret > 0) {
4448 		iocb->ki_pos += ret;
4449 		f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_IO, ret);
4450 	}
4451 	return ret;
4452 }
4453 
4454 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4455 				 unsigned int flags)
4456 {
4457 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4458 
4459 	dec_page_count(sbi, F2FS_DIO_WRITE);
4460 	if (error)
4461 		return error;
4462 	f2fs_update_iostat(sbi, APP_DIRECT_IO, size);
4463 	return 0;
4464 }
4465 
4466 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4467 	.end_io = f2fs_dio_write_end_io,
4468 };
4469 
4470 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4471 				   bool *may_need_sync)
4472 {
4473 	struct file *file = iocb->ki_filp;
4474 	struct inode *inode = file_inode(file);
4475 	struct f2fs_inode_info *fi = F2FS_I(inode);
4476 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4477 	const bool do_opu = f2fs_lfs_mode(sbi);
4478 	const int whint_mode = F2FS_OPTION(sbi).whint_mode;
4479 	const loff_t pos = iocb->ki_pos;
4480 	const ssize_t count = iov_iter_count(from);
4481 	const enum rw_hint hint = iocb->ki_hint;
4482 	unsigned int dio_flags;
4483 	struct iomap_dio *dio;
4484 	ssize_t ret;
4485 
4486 	trace_f2fs_direct_IO_enter(inode, pos, count, WRITE);
4487 
4488 	if (iocb->ki_flags & IOCB_NOWAIT) {
4489 		/* f2fs_convert_inline_inode() and block allocation can block */
4490 		if (f2fs_has_inline_data(inode) ||
4491 		    !f2fs_overwrite_io(inode, pos, count)) {
4492 			ret = -EAGAIN;
4493 			goto out;
4494 		}
4495 
4496 		if (!down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4497 			ret = -EAGAIN;
4498 			goto out;
4499 		}
4500 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
4501 			up_read(&fi->i_gc_rwsem[WRITE]);
4502 			ret = -EAGAIN;
4503 			goto out;
4504 		}
4505 	} else {
4506 		ret = f2fs_convert_inline_inode(inode);
4507 		if (ret)
4508 			goto out;
4509 
4510 		down_read(&fi->i_gc_rwsem[WRITE]);
4511 		if (do_opu)
4512 			down_read(&fi->i_gc_rwsem[READ]);
4513 	}
4514 	if (whint_mode == WHINT_MODE_OFF)
4515 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
4516 
4517 	/*
4518 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4519 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4520 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4521 	 */
4522 	inc_page_count(sbi, F2FS_DIO_WRITE);
4523 	dio_flags = 0;
4524 	if (pos + count > inode->i_size)
4525 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4526 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4527 			     &f2fs_iomap_dio_write_ops, dio_flags, 0);
4528 	if (IS_ERR_OR_NULL(dio)) {
4529 		ret = PTR_ERR_OR_ZERO(dio);
4530 		if (ret == -ENOTBLK)
4531 			ret = 0;
4532 		if (ret != -EIOCBQUEUED)
4533 			dec_page_count(sbi, F2FS_DIO_WRITE);
4534 	} else {
4535 		ret = iomap_dio_complete(dio);
4536 	}
4537 
4538 	if (whint_mode == WHINT_MODE_OFF)
4539 		iocb->ki_hint = hint;
4540 	if (do_opu)
4541 		up_read(&fi->i_gc_rwsem[READ]);
4542 	up_read(&fi->i_gc_rwsem[WRITE]);
4543 
4544 	if (ret < 0)
4545 		goto out;
4546 	if (pos + ret > inode->i_size)
4547 		f2fs_i_size_write(inode, pos + ret);
4548 	if (!do_opu)
4549 		set_inode_flag(inode, FI_UPDATE_WRITE);
4550 
4551 	if (iov_iter_count(from)) {
4552 		ssize_t ret2;
4553 		loff_t bufio_start_pos = iocb->ki_pos;
4554 
4555 		/*
4556 		 * The direct write was partial, so we need to fall back to a
4557 		 * buffered write for the remainder.
4558 		 */
4559 
4560 		ret2 = f2fs_buffered_write_iter(iocb, from);
4561 		if (iov_iter_count(from))
4562 			f2fs_write_failed(inode, iocb->ki_pos);
4563 		if (ret2 < 0)
4564 			goto out;
4565 
4566 		/*
4567 		 * Ensure that the pagecache pages are written to disk and
4568 		 * invalidated to preserve the expected O_DIRECT semantics.
4569 		 */
4570 		if (ret2 > 0) {
4571 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4572 
4573 			ret += ret2;
4574 
4575 			ret2 = filemap_write_and_wait_range(file->f_mapping,
4576 							    bufio_start_pos,
4577 							    bufio_end_pos);
4578 			if (ret2 < 0)
4579 				goto out;
4580 			invalidate_mapping_pages(file->f_mapping,
4581 						 bufio_start_pos >> PAGE_SHIFT,
4582 						 bufio_end_pos >> PAGE_SHIFT);
4583 		}
4584 	} else {
4585 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4586 		*may_need_sync = false;
4587 	}
4588 out:
4589 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4590 	return ret;
4591 }
4592 
4593 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4594 {
4595 	struct inode *inode = file_inode(iocb->ki_filp);
4596 	const loff_t orig_pos = iocb->ki_pos;
4597 	const size_t orig_count = iov_iter_count(from);
4598 	loff_t target_size;
4599 	bool dio;
4600 	bool may_need_sync = true;
4601 	int preallocated;
4602 	ssize_t ret;
4603 
4604 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4605 		ret = -EIO;
4606 		goto out;
4607 	}
4608 
4609 	if (!f2fs_is_compress_backend_ready(inode)) {
4610 		ret = -EOPNOTSUPP;
4611 		goto out;
4612 	}
4613 
4614 	if (iocb->ki_flags & IOCB_NOWAIT) {
4615 		if (!inode_trylock(inode)) {
4616 			ret = -EAGAIN;
4617 			goto out;
4618 		}
4619 	} else {
4620 		inode_lock(inode);
4621 	}
4622 
4623 	ret = f2fs_write_checks(iocb, from);
4624 	if (ret <= 0)
4625 		goto out_unlock;
4626 
4627 	/* Determine whether we will do a direct write or a buffered write. */
4628 	dio = f2fs_should_use_dio(inode, iocb, from);
4629 
4630 	/* Possibly preallocate the blocks for the write. */
4631 	target_size = iocb->ki_pos + iov_iter_count(from);
4632 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4633 	if (preallocated < 0)
4634 		ret = preallocated;
4635 	else
4636 		/* Do the actual write. */
4637 		ret = dio ?
4638 			f2fs_dio_write_iter(iocb, from, &may_need_sync):
4639 			f2fs_buffered_write_iter(iocb, from);
4640 
4641 	/* Don't leave any preallocated blocks around past i_size. */
4642 	if (preallocated && i_size_read(inode) < target_size) {
4643 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4644 		filemap_invalidate_lock(inode->i_mapping);
4645 		if (!f2fs_truncate(inode))
4646 			file_dont_truncate(inode);
4647 		filemap_invalidate_unlock(inode->i_mapping);
4648 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4649 	} else {
4650 		file_dont_truncate(inode);
4651 	}
4652 
4653 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4654 out_unlock:
4655 	inode_unlock(inode);
4656 out:
4657 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4658 	if (ret > 0 && may_need_sync)
4659 		ret = generic_write_sync(iocb, ret);
4660 	return ret;
4661 }
4662 
4663 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4664 		int advice)
4665 {
4666 	struct inode *inode;
4667 	struct address_space *mapping;
4668 	struct backing_dev_info *bdi;
4669 
4670 	if (advice == POSIX_FADV_SEQUENTIAL) {
4671 		inode = file_inode(filp);
4672 		if (S_ISFIFO(inode->i_mode))
4673 			return -ESPIPE;
4674 
4675 		mapping = filp->f_mapping;
4676 		if (!mapping || len < 0)
4677 			return -EINVAL;
4678 
4679 		bdi = inode_to_bdi(mapping->host);
4680 		filp->f_ra.ra_pages = bdi->ra_pages *
4681 			F2FS_I_SB(inode)->seq_file_ra_mul;
4682 		spin_lock(&filp->f_lock);
4683 		filp->f_mode &= ~FMODE_RANDOM;
4684 		spin_unlock(&filp->f_lock);
4685 		return 0;
4686 	}
4687 
4688 	return generic_fadvise(filp, offset, len, advice);
4689 }
4690 
4691 #ifdef CONFIG_COMPAT
4692 struct compat_f2fs_gc_range {
4693 	u32 sync;
4694 	compat_u64 start;
4695 	compat_u64 len;
4696 };
4697 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4698 						struct compat_f2fs_gc_range)
4699 
4700 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4701 {
4702 	struct compat_f2fs_gc_range __user *urange;
4703 	struct f2fs_gc_range range;
4704 	int err;
4705 
4706 	urange = compat_ptr(arg);
4707 	err = get_user(range.sync, &urange->sync);
4708 	err |= get_user(range.start, &urange->start);
4709 	err |= get_user(range.len, &urange->len);
4710 	if (err)
4711 		return -EFAULT;
4712 
4713 	return __f2fs_ioc_gc_range(file, &range);
4714 }
4715 
4716 struct compat_f2fs_move_range {
4717 	u32 dst_fd;
4718 	compat_u64 pos_in;
4719 	compat_u64 pos_out;
4720 	compat_u64 len;
4721 };
4722 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4723 					struct compat_f2fs_move_range)
4724 
4725 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4726 {
4727 	struct compat_f2fs_move_range __user *urange;
4728 	struct f2fs_move_range range;
4729 	int err;
4730 
4731 	urange = compat_ptr(arg);
4732 	err = get_user(range.dst_fd, &urange->dst_fd);
4733 	err |= get_user(range.pos_in, &urange->pos_in);
4734 	err |= get_user(range.pos_out, &urange->pos_out);
4735 	err |= get_user(range.len, &urange->len);
4736 	if (err)
4737 		return -EFAULT;
4738 
4739 	return __f2fs_ioc_move_range(file, &range);
4740 }
4741 
4742 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4743 {
4744 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4745 		return -EIO;
4746 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4747 		return -ENOSPC;
4748 
4749 	switch (cmd) {
4750 	case FS_IOC32_GETVERSION:
4751 		cmd = FS_IOC_GETVERSION;
4752 		break;
4753 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4754 		return f2fs_compat_ioc_gc_range(file, arg);
4755 	case F2FS_IOC32_MOVE_RANGE:
4756 		return f2fs_compat_ioc_move_range(file, arg);
4757 	case F2FS_IOC_START_ATOMIC_WRITE:
4758 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4759 	case F2FS_IOC_START_VOLATILE_WRITE:
4760 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4761 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4762 	case F2FS_IOC_SHUTDOWN:
4763 	case FITRIM:
4764 	case FS_IOC_SET_ENCRYPTION_POLICY:
4765 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4766 	case FS_IOC_GET_ENCRYPTION_POLICY:
4767 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4768 	case FS_IOC_ADD_ENCRYPTION_KEY:
4769 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4770 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4771 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4772 	case FS_IOC_GET_ENCRYPTION_NONCE:
4773 	case F2FS_IOC_GARBAGE_COLLECT:
4774 	case F2FS_IOC_WRITE_CHECKPOINT:
4775 	case F2FS_IOC_DEFRAGMENT:
4776 	case F2FS_IOC_FLUSH_DEVICE:
4777 	case F2FS_IOC_GET_FEATURES:
4778 	case F2FS_IOC_GET_PIN_FILE:
4779 	case F2FS_IOC_SET_PIN_FILE:
4780 	case F2FS_IOC_PRECACHE_EXTENTS:
4781 	case F2FS_IOC_RESIZE_FS:
4782 	case FS_IOC_ENABLE_VERITY:
4783 	case FS_IOC_MEASURE_VERITY:
4784 	case FS_IOC_READ_VERITY_METADATA:
4785 	case FS_IOC_GETFSLABEL:
4786 	case FS_IOC_SETFSLABEL:
4787 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4788 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4789 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4790 	case F2FS_IOC_SEC_TRIM_FILE:
4791 	case F2FS_IOC_GET_COMPRESS_OPTION:
4792 	case F2FS_IOC_SET_COMPRESS_OPTION:
4793 	case F2FS_IOC_DECOMPRESS_FILE:
4794 	case F2FS_IOC_COMPRESS_FILE:
4795 		break;
4796 	default:
4797 		return -ENOIOCTLCMD;
4798 	}
4799 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4800 }
4801 #endif
4802 
4803 const struct file_operations f2fs_file_operations = {
4804 	.llseek		= f2fs_llseek,
4805 	.read_iter	= f2fs_file_read_iter,
4806 	.write_iter	= f2fs_file_write_iter,
4807 	.open		= f2fs_file_open,
4808 	.release	= f2fs_release_file,
4809 	.mmap		= f2fs_file_mmap,
4810 	.flush		= f2fs_file_flush,
4811 	.fsync		= f2fs_sync_file,
4812 	.fallocate	= f2fs_fallocate,
4813 	.unlocked_ioctl	= f2fs_ioctl,
4814 #ifdef CONFIG_COMPAT
4815 	.compat_ioctl	= f2fs_compat_ioctl,
4816 #endif
4817 	.splice_read	= generic_file_splice_read,
4818 	.splice_write	= iter_file_splice_write,
4819 	.fadvise	= f2fs_file_fadvise,
4820 };
4821