1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "xattr.h" 29 #include "acl.h" 30 #include "gc.h" 31 #include "trace.h" 32 #include <trace/events/f2fs.h> 33 34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 35 { 36 struct inode *inode = file_inode(vmf->vma->vm_file); 37 vm_fault_t ret; 38 39 down_read(&F2FS_I(inode)->i_mmap_sem); 40 ret = filemap_fault(vmf); 41 up_read(&F2FS_I(inode)->i_mmap_sem); 42 43 if (!ret) 44 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 45 F2FS_BLKSIZE); 46 47 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 48 49 return ret; 50 } 51 52 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 53 { 54 struct page *page = vmf->page; 55 struct inode *inode = file_inode(vmf->vma->vm_file); 56 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 57 struct dnode_of_data dn; 58 bool need_alloc = true; 59 int err = 0; 60 61 if (unlikely(f2fs_cp_error(sbi))) { 62 err = -EIO; 63 goto err; 64 } 65 66 if (!f2fs_is_checkpoint_ready(sbi)) { 67 err = -ENOSPC; 68 goto err; 69 } 70 71 #ifdef CONFIG_F2FS_FS_COMPRESSION 72 if (f2fs_compressed_file(inode)) { 73 int ret = f2fs_is_compressed_cluster(inode, page->index); 74 75 if (ret < 0) { 76 err = ret; 77 goto err; 78 } else if (ret) { 79 if (ret < F2FS_I(inode)->i_cluster_size) { 80 err = -EAGAIN; 81 goto err; 82 } 83 need_alloc = false; 84 } 85 } 86 #endif 87 /* should do out of any locked page */ 88 if (need_alloc) 89 f2fs_balance_fs(sbi, true); 90 91 sb_start_pagefault(inode->i_sb); 92 93 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 94 95 file_update_time(vmf->vma->vm_file); 96 down_read(&F2FS_I(inode)->i_mmap_sem); 97 lock_page(page); 98 if (unlikely(page->mapping != inode->i_mapping || 99 page_offset(page) > i_size_read(inode) || 100 !PageUptodate(page))) { 101 unlock_page(page); 102 err = -EFAULT; 103 goto out_sem; 104 } 105 106 if (need_alloc) { 107 /* block allocation */ 108 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 109 set_new_dnode(&dn, inode, NULL, NULL, 0); 110 err = f2fs_get_block(&dn, page->index); 111 f2fs_put_dnode(&dn); 112 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 113 } 114 115 #ifdef CONFIG_F2FS_FS_COMPRESSION 116 if (!need_alloc) { 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 119 f2fs_put_dnode(&dn); 120 } 121 #endif 122 if (err) { 123 unlock_page(page); 124 goto out_sem; 125 } 126 127 f2fs_wait_on_page_writeback(page, DATA, false, true); 128 129 /* wait for GCed page writeback via META_MAPPING */ 130 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 131 132 /* 133 * check to see if the page is mapped already (no holes) 134 */ 135 if (PageMappedToDisk(page)) 136 goto out_sem; 137 138 /* page is wholly or partially inside EOF */ 139 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 140 i_size_read(inode)) { 141 loff_t offset; 142 143 offset = i_size_read(inode) & ~PAGE_MASK; 144 zero_user_segment(page, offset, PAGE_SIZE); 145 } 146 set_page_dirty(page); 147 if (!PageUptodate(page)) 148 SetPageUptodate(page); 149 150 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 151 f2fs_update_time(sbi, REQ_TIME); 152 153 trace_f2fs_vm_page_mkwrite(page, DATA); 154 out_sem: 155 up_read(&F2FS_I(inode)->i_mmap_sem); 156 157 sb_end_pagefault(inode->i_sb); 158 err: 159 return block_page_mkwrite_return(err); 160 } 161 162 static const struct vm_operations_struct f2fs_file_vm_ops = { 163 .fault = f2fs_filemap_fault, 164 .map_pages = filemap_map_pages, 165 .page_mkwrite = f2fs_vm_page_mkwrite, 166 }; 167 168 static int get_parent_ino(struct inode *inode, nid_t *pino) 169 { 170 struct dentry *dentry; 171 172 /* 173 * Make sure to get the non-deleted alias. The alias associated with 174 * the open file descriptor being fsync()'ed may be deleted already. 175 */ 176 dentry = d_find_alias(inode); 177 if (!dentry) 178 return 0; 179 180 *pino = parent_ino(dentry); 181 dput(dentry); 182 return 1; 183 } 184 185 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 186 { 187 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 188 enum cp_reason_type cp_reason = CP_NO_NEEDED; 189 190 if (!S_ISREG(inode->i_mode)) 191 cp_reason = CP_NON_REGULAR; 192 else if (f2fs_compressed_file(inode)) 193 cp_reason = CP_COMPRESSED; 194 else if (inode->i_nlink != 1) 195 cp_reason = CP_HARDLINK; 196 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 197 cp_reason = CP_SB_NEED_CP; 198 else if (file_wrong_pino(inode)) 199 cp_reason = CP_WRONG_PINO; 200 else if (!f2fs_space_for_roll_forward(sbi)) 201 cp_reason = CP_NO_SPC_ROLL; 202 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 203 cp_reason = CP_NODE_NEED_CP; 204 else if (test_opt(sbi, FASTBOOT)) 205 cp_reason = CP_FASTBOOT_MODE; 206 else if (F2FS_OPTION(sbi).active_logs == 2) 207 cp_reason = CP_SPEC_LOG_NUM; 208 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 209 f2fs_need_dentry_mark(sbi, inode->i_ino) && 210 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 211 TRANS_DIR_INO)) 212 cp_reason = CP_RECOVER_DIR; 213 214 return cp_reason; 215 } 216 217 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 218 { 219 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 220 bool ret = false; 221 /* But we need to avoid that there are some inode updates */ 222 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 223 ret = true; 224 f2fs_put_page(i, 0); 225 return ret; 226 } 227 228 static void try_to_fix_pino(struct inode *inode) 229 { 230 struct f2fs_inode_info *fi = F2FS_I(inode); 231 nid_t pino; 232 233 down_write(&fi->i_sem); 234 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 235 get_parent_ino(inode, &pino)) { 236 f2fs_i_pino_write(inode, pino); 237 file_got_pino(inode); 238 } 239 up_write(&fi->i_sem); 240 } 241 242 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 243 int datasync, bool atomic) 244 { 245 struct inode *inode = file->f_mapping->host; 246 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 247 nid_t ino = inode->i_ino; 248 int ret = 0; 249 enum cp_reason_type cp_reason = 0; 250 struct writeback_control wbc = { 251 .sync_mode = WB_SYNC_ALL, 252 .nr_to_write = LONG_MAX, 253 .for_reclaim = 0, 254 }; 255 unsigned int seq_id = 0; 256 257 if (unlikely(f2fs_readonly(inode->i_sb) || 258 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 259 return 0; 260 261 trace_f2fs_sync_file_enter(inode); 262 263 if (S_ISDIR(inode->i_mode)) 264 goto go_write; 265 266 /* if fdatasync is triggered, let's do in-place-update */ 267 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 268 set_inode_flag(inode, FI_NEED_IPU); 269 ret = file_write_and_wait_range(file, start, end); 270 clear_inode_flag(inode, FI_NEED_IPU); 271 272 if (ret) { 273 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 274 return ret; 275 } 276 277 /* if the inode is dirty, let's recover all the time */ 278 if (!f2fs_skip_inode_update(inode, datasync)) { 279 f2fs_write_inode(inode, NULL); 280 goto go_write; 281 } 282 283 /* 284 * if there is no written data, don't waste time to write recovery info. 285 */ 286 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 287 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 288 289 /* it may call write_inode just prior to fsync */ 290 if (need_inode_page_update(sbi, ino)) 291 goto go_write; 292 293 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 294 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 295 goto flush_out; 296 goto out; 297 } 298 go_write: 299 /* 300 * Both of fdatasync() and fsync() are able to be recovered from 301 * sudden-power-off. 302 */ 303 down_read(&F2FS_I(inode)->i_sem); 304 cp_reason = need_do_checkpoint(inode); 305 up_read(&F2FS_I(inode)->i_sem); 306 307 if (cp_reason) { 308 /* all the dirty node pages should be flushed for POR */ 309 ret = f2fs_sync_fs(inode->i_sb, 1); 310 311 /* 312 * We've secured consistency through sync_fs. Following pino 313 * will be used only for fsynced inodes after checkpoint. 314 */ 315 try_to_fix_pino(inode); 316 clear_inode_flag(inode, FI_APPEND_WRITE); 317 clear_inode_flag(inode, FI_UPDATE_WRITE); 318 goto out; 319 } 320 sync_nodes: 321 atomic_inc(&sbi->wb_sync_req[NODE]); 322 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 323 atomic_dec(&sbi->wb_sync_req[NODE]); 324 if (ret) 325 goto out; 326 327 /* if cp_error was enabled, we should avoid infinite loop */ 328 if (unlikely(f2fs_cp_error(sbi))) { 329 ret = -EIO; 330 goto out; 331 } 332 333 if (f2fs_need_inode_block_update(sbi, ino)) { 334 f2fs_mark_inode_dirty_sync(inode, true); 335 f2fs_write_inode(inode, NULL); 336 goto sync_nodes; 337 } 338 339 /* 340 * If it's atomic_write, it's just fine to keep write ordering. So 341 * here we don't need to wait for node write completion, since we use 342 * node chain which serializes node blocks. If one of node writes are 343 * reordered, we can see simply broken chain, resulting in stopping 344 * roll-forward recovery. It means we'll recover all or none node blocks 345 * given fsync mark. 346 */ 347 if (!atomic) { 348 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 349 if (ret) 350 goto out; 351 } 352 353 /* once recovery info is written, don't need to tack this */ 354 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 355 clear_inode_flag(inode, FI_APPEND_WRITE); 356 flush_out: 357 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 358 ret = f2fs_issue_flush(sbi, inode->i_ino); 359 if (!ret) { 360 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 361 clear_inode_flag(inode, FI_UPDATE_WRITE); 362 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 363 } 364 f2fs_update_time(sbi, REQ_TIME); 365 out: 366 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 367 f2fs_trace_ios(NULL, 1); 368 return ret; 369 } 370 371 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 372 { 373 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 374 return -EIO; 375 return f2fs_do_sync_file(file, start, end, datasync, false); 376 } 377 378 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 379 pgoff_t pgofs, int whence) 380 { 381 struct page *page; 382 int nr_pages; 383 384 if (whence != SEEK_DATA) 385 return 0; 386 387 /* find first dirty page index */ 388 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 389 1, &page); 390 if (!nr_pages) 391 return ULONG_MAX; 392 pgofs = page->index; 393 put_page(page); 394 return pgofs; 395 } 396 397 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr, 398 pgoff_t dirty, pgoff_t pgofs, int whence) 399 { 400 switch (whence) { 401 case SEEK_DATA: 402 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 403 __is_valid_data_blkaddr(blkaddr)) 404 return true; 405 break; 406 case SEEK_HOLE: 407 if (blkaddr == NULL_ADDR) 408 return true; 409 break; 410 } 411 return false; 412 } 413 414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 415 { 416 struct inode *inode = file->f_mapping->host; 417 loff_t maxbytes = inode->i_sb->s_maxbytes; 418 struct dnode_of_data dn; 419 pgoff_t pgofs, end_offset, dirty; 420 loff_t data_ofs = offset; 421 loff_t isize; 422 int err = 0; 423 424 inode_lock(inode); 425 426 isize = i_size_read(inode); 427 if (offset >= isize) 428 goto fail; 429 430 /* handle inline data case */ 431 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 432 if (whence == SEEK_HOLE) 433 data_ofs = isize; 434 goto found; 435 } 436 437 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 438 439 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 440 441 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 442 set_new_dnode(&dn, inode, NULL, NULL, 0); 443 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 444 if (err && err != -ENOENT) { 445 goto fail; 446 } else if (err == -ENOENT) { 447 /* direct node does not exists */ 448 if (whence == SEEK_DATA) { 449 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 450 continue; 451 } else { 452 goto found; 453 } 454 } 455 456 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 457 458 /* find data/hole in dnode block */ 459 for (; dn.ofs_in_node < end_offset; 460 dn.ofs_in_node++, pgofs++, 461 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 462 block_t blkaddr; 463 464 blkaddr = f2fs_data_blkaddr(&dn); 465 466 if (__is_valid_data_blkaddr(blkaddr) && 467 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 468 blkaddr, DATA_GENERIC_ENHANCE)) { 469 f2fs_put_dnode(&dn); 470 goto fail; 471 } 472 473 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty, 474 pgofs, whence)) { 475 f2fs_put_dnode(&dn); 476 goto found; 477 } 478 } 479 f2fs_put_dnode(&dn); 480 } 481 482 if (whence == SEEK_DATA) 483 goto fail; 484 found: 485 if (whence == SEEK_HOLE && data_ofs > isize) 486 data_ofs = isize; 487 inode_unlock(inode); 488 return vfs_setpos(file, data_ofs, maxbytes); 489 fail: 490 inode_unlock(inode); 491 return -ENXIO; 492 } 493 494 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 495 { 496 struct inode *inode = file->f_mapping->host; 497 loff_t maxbytes = inode->i_sb->s_maxbytes; 498 499 switch (whence) { 500 case SEEK_SET: 501 case SEEK_CUR: 502 case SEEK_END: 503 return generic_file_llseek_size(file, offset, whence, 504 maxbytes, i_size_read(inode)); 505 case SEEK_DATA: 506 case SEEK_HOLE: 507 if (offset < 0) 508 return -ENXIO; 509 return f2fs_seek_block(file, offset, whence); 510 } 511 512 return -EINVAL; 513 } 514 515 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 516 { 517 struct inode *inode = file_inode(file); 518 int err; 519 520 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 521 return -EIO; 522 523 if (!f2fs_is_compress_backend_ready(inode)) 524 return -EOPNOTSUPP; 525 526 /* we don't need to use inline_data strictly */ 527 err = f2fs_convert_inline_inode(inode); 528 if (err) 529 return err; 530 531 file_accessed(file); 532 vma->vm_ops = &f2fs_file_vm_ops; 533 set_inode_flag(inode, FI_MMAP_FILE); 534 return 0; 535 } 536 537 static int f2fs_file_open(struct inode *inode, struct file *filp) 538 { 539 int err = fscrypt_file_open(inode, filp); 540 541 if (err) 542 return err; 543 544 if (!f2fs_is_compress_backend_ready(inode)) 545 return -EOPNOTSUPP; 546 547 err = fsverity_file_open(inode, filp); 548 if (err) 549 return err; 550 551 filp->f_mode |= FMODE_NOWAIT; 552 553 return dquot_file_open(inode, filp); 554 } 555 556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 557 { 558 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 559 struct f2fs_node *raw_node; 560 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 561 __le32 *addr; 562 int base = 0; 563 bool compressed_cluster = false; 564 int cluster_index = 0, valid_blocks = 0; 565 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 566 bool released = !F2FS_I(dn->inode)->i_compr_blocks; 567 568 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 569 base = get_extra_isize(dn->inode); 570 571 raw_node = F2FS_NODE(dn->node_page); 572 addr = blkaddr_in_node(raw_node) + base + ofs; 573 574 /* Assumption: truncateion starts with cluster */ 575 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 576 block_t blkaddr = le32_to_cpu(*addr); 577 578 if (f2fs_compressed_file(dn->inode) && 579 !(cluster_index & (cluster_size - 1))) { 580 if (compressed_cluster) 581 f2fs_i_compr_blocks_update(dn->inode, 582 valid_blocks, false); 583 compressed_cluster = (blkaddr == COMPRESS_ADDR); 584 valid_blocks = 0; 585 } 586 587 if (blkaddr == NULL_ADDR) 588 continue; 589 590 dn->data_blkaddr = NULL_ADDR; 591 f2fs_set_data_blkaddr(dn); 592 593 if (__is_valid_data_blkaddr(blkaddr)) { 594 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 595 DATA_GENERIC_ENHANCE)) 596 continue; 597 if (compressed_cluster) 598 valid_blocks++; 599 } 600 601 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 602 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 603 604 f2fs_invalidate_blocks(sbi, blkaddr); 605 606 if (!released || blkaddr != COMPRESS_ADDR) 607 nr_free++; 608 } 609 610 if (compressed_cluster) 611 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 612 613 if (nr_free) { 614 pgoff_t fofs; 615 /* 616 * once we invalidate valid blkaddr in range [ofs, ofs + count], 617 * we will invalidate all blkaddr in the whole range. 618 */ 619 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 620 dn->inode) + ofs; 621 f2fs_update_extent_cache_range(dn, fofs, 0, len); 622 dec_valid_block_count(sbi, dn->inode, nr_free); 623 } 624 dn->ofs_in_node = ofs; 625 626 f2fs_update_time(sbi, REQ_TIME); 627 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 628 dn->ofs_in_node, nr_free); 629 } 630 631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 632 { 633 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 634 } 635 636 static int truncate_partial_data_page(struct inode *inode, u64 from, 637 bool cache_only) 638 { 639 loff_t offset = from & (PAGE_SIZE - 1); 640 pgoff_t index = from >> PAGE_SHIFT; 641 struct address_space *mapping = inode->i_mapping; 642 struct page *page; 643 644 if (!offset && !cache_only) 645 return 0; 646 647 if (cache_only) { 648 page = find_lock_page(mapping, index); 649 if (page && PageUptodate(page)) 650 goto truncate_out; 651 f2fs_put_page(page, 1); 652 return 0; 653 } 654 655 page = f2fs_get_lock_data_page(inode, index, true); 656 if (IS_ERR(page)) 657 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 658 truncate_out: 659 f2fs_wait_on_page_writeback(page, DATA, true, true); 660 zero_user(page, offset, PAGE_SIZE - offset); 661 662 /* An encrypted inode should have a key and truncate the last page. */ 663 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 664 if (!cache_only) 665 set_page_dirty(page); 666 f2fs_put_page(page, 1); 667 return 0; 668 } 669 670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 671 { 672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 673 struct dnode_of_data dn; 674 pgoff_t free_from; 675 int count = 0, err = 0; 676 struct page *ipage; 677 bool truncate_page = false; 678 679 trace_f2fs_truncate_blocks_enter(inode, from); 680 681 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 682 683 if (free_from >= sbi->max_file_blocks) 684 goto free_partial; 685 686 if (lock) 687 f2fs_lock_op(sbi); 688 689 ipage = f2fs_get_node_page(sbi, inode->i_ino); 690 if (IS_ERR(ipage)) { 691 err = PTR_ERR(ipage); 692 goto out; 693 } 694 695 if (f2fs_has_inline_data(inode)) { 696 f2fs_truncate_inline_inode(inode, ipage, from); 697 f2fs_put_page(ipage, 1); 698 truncate_page = true; 699 goto out; 700 } 701 702 set_new_dnode(&dn, inode, ipage, NULL, 0); 703 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 704 if (err) { 705 if (err == -ENOENT) 706 goto free_next; 707 goto out; 708 } 709 710 count = ADDRS_PER_PAGE(dn.node_page, inode); 711 712 count -= dn.ofs_in_node; 713 f2fs_bug_on(sbi, count < 0); 714 715 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 716 f2fs_truncate_data_blocks_range(&dn, count); 717 free_from += count; 718 } 719 720 f2fs_put_dnode(&dn); 721 free_next: 722 err = f2fs_truncate_inode_blocks(inode, free_from); 723 out: 724 if (lock) 725 f2fs_unlock_op(sbi); 726 free_partial: 727 /* lastly zero out the first data page */ 728 if (!err) 729 err = truncate_partial_data_page(inode, from, truncate_page); 730 731 trace_f2fs_truncate_blocks_exit(inode, err); 732 return err; 733 } 734 735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 736 { 737 u64 free_from = from; 738 int err; 739 740 #ifdef CONFIG_F2FS_FS_COMPRESSION 741 /* 742 * for compressed file, only support cluster size 743 * aligned truncation. 744 */ 745 if (f2fs_compressed_file(inode)) 746 free_from = round_up(from, 747 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 748 #endif 749 750 err = f2fs_do_truncate_blocks(inode, free_from, lock); 751 if (err) 752 return err; 753 754 #ifdef CONFIG_F2FS_FS_COMPRESSION 755 if (from != free_from) 756 err = f2fs_truncate_partial_cluster(inode, from, lock); 757 #endif 758 759 return err; 760 } 761 762 int f2fs_truncate(struct inode *inode) 763 { 764 int err; 765 766 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 767 return -EIO; 768 769 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 770 S_ISLNK(inode->i_mode))) 771 return 0; 772 773 trace_f2fs_truncate(inode); 774 775 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 776 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 777 return -EIO; 778 } 779 780 /* we should check inline_data size */ 781 if (!f2fs_may_inline_data(inode)) { 782 err = f2fs_convert_inline_inode(inode); 783 if (err) 784 return err; 785 } 786 787 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 788 if (err) 789 return err; 790 791 inode->i_mtime = inode->i_ctime = current_time(inode); 792 f2fs_mark_inode_dirty_sync(inode, false); 793 return 0; 794 } 795 796 int f2fs_getattr(const struct path *path, struct kstat *stat, 797 u32 request_mask, unsigned int query_flags) 798 { 799 struct inode *inode = d_inode(path->dentry); 800 struct f2fs_inode_info *fi = F2FS_I(inode); 801 struct f2fs_inode *ri; 802 unsigned int flags; 803 804 if (f2fs_has_extra_attr(inode) && 805 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 806 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 807 stat->result_mask |= STATX_BTIME; 808 stat->btime.tv_sec = fi->i_crtime.tv_sec; 809 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 810 } 811 812 flags = fi->i_flags; 813 if (flags & F2FS_COMPR_FL) 814 stat->attributes |= STATX_ATTR_COMPRESSED; 815 if (flags & F2FS_APPEND_FL) 816 stat->attributes |= STATX_ATTR_APPEND; 817 if (IS_ENCRYPTED(inode)) 818 stat->attributes |= STATX_ATTR_ENCRYPTED; 819 if (flags & F2FS_IMMUTABLE_FL) 820 stat->attributes |= STATX_ATTR_IMMUTABLE; 821 if (flags & F2FS_NODUMP_FL) 822 stat->attributes |= STATX_ATTR_NODUMP; 823 if (IS_VERITY(inode)) 824 stat->attributes |= STATX_ATTR_VERITY; 825 826 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 827 STATX_ATTR_APPEND | 828 STATX_ATTR_ENCRYPTED | 829 STATX_ATTR_IMMUTABLE | 830 STATX_ATTR_NODUMP | 831 STATX_ATTR_VERITY); 832 833 generic_fillattr(inode, stat); 834 835 /* we need to show initial sectors used for inline_data/dentries */ 836 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 837 f2fs_has_inline_dentry(inode)) 838 stat->blocks += (stat->size + 511) >> 9; 839 840 return 0; 841 } 842 843 #ifdef CONFIG_F2FS_FS_POSIX_ACL 844 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 845 { 846 unsigned int ia_valid = attr->ia_valid; 847 848 if (ia_valid & ATTR_UID) 849 inode->i_uid = attr->ia_uid; 850 if (ia_valid & ATTR_GID) 851 inode->i_gid = attr->ia_gid; 852 if (ia_valid & ATTR_ATIME) 853 inode->i_atime = attr->ia_atime; 854 if (ia_valid & ATTR_MTIME) 855 inode->i_mtime = attr->ia_mtime; 856 if (ia_valid & ATTR_CTIME) 857 inode->i_ctime = attr->ia_ctime; 858 if (ia_valid & ATTR_MODE) { 859 umode_t mode = attr->ia_mode; 860 861 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 862 mode &= ~S_ISGID; 863 set_acl_inode(inode, mode); 864 } 865 } 866 #else 867 #define __setattr_copy setattr_copy 868 #endif 869 870 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 871 { 872 struct inode *inode = d_inode(dentry); 873 int err; 874 875 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 876 return -EIO; 877 878 if ((attr->ia_valid & ATTR_SIZE) && 879 !f2fs_is_compress_backend_ready(inode)) 880 return -EOPNOTSUPP; 881 882 err = setattr_prepare(dentry, attr); 883 if (err) 884 return err; 885 886 err = fscrypt_prepare_setattr(dentry, attr); 887 if (err) 888 return err; 889 890 err = fsverity_prepare_setattr(dentry, attr); 891 if (err) 892 return err; 893 894 if (is_quota_modification(inode, attr)) { 895 err = dquot_initialize(inode); 896 if (err) 897 return err; 898 } 899 if ((attr->ia_valid & ATTR_UID && 900 !uid_eq(attr->ia_uid, inode->i_uid)) || 901 (attr->ia_valid & ATTR_GID && 902 !gid_eq(attr->ia_gid, inode->i_gid))) { 903 f2fs_lock_op(F2FS_I_SB(inode)); 904 err = dquot_transfer(inode, attr); 905 if (err) { 906 set_sbi_flag(F2FS_I_SB(inode), 907 SBI_QUOTA_NEED_REPAIR); 908 f2fs_unlock_op(F2FS_I_SB(inode)); 909 return err; 910 } 911 /* 912 * update uid/gid under lock_op(), so that dquot and inode can 913 * be updated atomically. 914 */ 915 if (attr->ia_valid & ATTR_UID) 916 inode->i_uid = attr->ia_uid; 917 if (attr->ia_valid & ATTR_GID) 918 inode->i_gid = attr->ia_gid; 919 f2fs_mark_inode_dirty_sync(inode, true); 920 f2fs_unlock_op(F2FS_I_SB(inode)); 921 } 922 923 if (attr->ia_valid & ATTR_SIZE) { 924 loff_t old_size = i_size_read(inode); 925 926 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 927 /* 928 * should convert inline inode before i_size_write to 929 * keep smaller than inline_data size with inline flag. 930 */ 931 err = f2fs_convert_inline_inode(inode); 932 if (err) 933 return err; 934 } 935 936 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 937 down_write(&F2FS_I(inode)->i_mmap_sem); 938 939 truncate_setsize(inode, attr->ia_size); 940 941 if (attr->ia_size <= old_size) 942 err = f2fs_truncate(inode); 943 /* 944 * do not trim all blocks after i_size if target size is 945 * larger than i_size. 946 */ 947 up_write(&F2FS_I(inode)->i_mmap_sem); 948 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 949 if (err) 950 return err; 951 952 spin_lock(&F2FS_I(inode)->i_size_lock); 953 inode->i_mtime = inode->i_ctime = current_time(inode); 954 F2FS_I(inode)->last_disk_size = i_size_read(inode); 955 spin_unlock(&F2FS_I(inode)->i_size_lock); 956 } 957 958 __setattr_copy(inode, attr); 959 960 if (attr->ia_valid & ATTR_MODE) { 961 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 962 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 963 inode->i_mode = F2FS_I(inode)->i_acl_mode; 964 clear_inode_flag(inode, FI_ACL_MODE); 965 } 966 } 967 968 /* file size may changed here */ 969 f2fs_mark_inode_dirty_sync(inode, true); 970 971 /* inode change will produce dirty node pages flushed by checkpoint */ 972 f2fs_balance_fs(F2FS_I_SB(inode), true); 973 974 return err; 975 } 976 977 const struct inode_operations f2fs_file_inode_operations = { 978 .getattr = f2fs_getattr, 979 .setattr = f2fs_setattr, 980 .get_acl = f2fs_get_acl, 981 .set_acl = f2fs_set_acl, 982 .listxattr = f2fs_listxattr, 983 .fiemap = f2fs_fiemap, 984 }; 985 986 static int fill_zero(struct inode *inode, pgoff_t index, 987 loff_t start, loff_t len) 988 { 989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 990 struct page *page; 991 992 if (!len) 993 return 0; 994 995 f2fs_balance_fs(sbi, true); 996 997 f2fs_lock_op(sbi); 998 page = f2fs_get_new_data_page(inode, NULL, index, false); 999 f2fs_unlock_op(sbi); 1000 1001 if (IS_ERR(page)) 1002 return PTR_ERR(page); 1003 1004 f2fs_wait_on_page_writeback(page, DATA, true, true); 1005 zero_user(page, start, len); 1006 set_page_dirty(page); 1007 f2fs_put_page(page, 1); 1008 return 0; 1009 } 1010 1011 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1012 { 1013 int err; 1014 1015 while (pg_start < pg_end) { 1016 struct dnode_of_data dn; 1017 pgoff_t end_offset, count; 1018 1019 set_new_dnode(&dn, inode, NULL, NULL, 0); 1020 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1021 if (err) { 1022 if (err == -ENOENT) { 1023 pg_start = f2fs_get_next_page_offset(&dn, 1024 pg_start); 1025 continue; 1026 } 1027 return err; 1028 } 1029 1030 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1031 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1032 1033 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1034 1035 f2fs_truncate_data_blocks_range(&dn, count); 1036 f2fs_put_dnode(&dn); 1037 1038 pg_start += count; 1039 } 1040 return 0; 1041 } 1042 1043 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1044 { 1045 pgoff_t pg_start, pg_end; 1046 loff_t off_start, off_end; 1047 int ret; 1048 1049 ret = f2fs_convert_inline_inode(inode); 1050 if (ret) 1051 return ret; 1052 1053 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1054 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1055 1056 off_start = offset & (PAGE_SIZE - 1); 1057 off_end = (offset + len) & (PAGE_SIZE - 1); 1058 1059 if (pg_start == pg_end) { 1060 ret = fill_zero(inode, pg_start, off_start, 1061 off_end - off_start); 1062 if (ret) 1063 return ret; 1064 } else { 1065 if (off_start) { 1066 ret = fill_zero(inode, pg_start++, off_start, 1067 PAGE_SIZE - off_start); 1068 if (ret) 1069 return ret; 1070 } 1071 if (off_end) { 1072 ret = fill_zero(inode, pg_end, 0, off_end); 1073 if (ret) 1074 return ret; 1075 } 1076 1077 if (pg_start < pg_end) { 1078 struct address_space *mapping = inode->i_mapping; 1079 loff_t blk_start, blk_end; 1080 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1081 1082 f2fs_balance_fs(sbi, true); 1083 1084 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1085 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1086 1087 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1088 down_write(&F2FS_I(inode)->i_mmap_sem); 1089 1090 truncate_inode_pages_range(mapping, blk_start, 1091 blk_end - 1); 1092 1093 f2fs_lock_op(sbi); 1094 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1095 f2fs_unlock_op(sbi); 1096 1097 up_write(&F2FS_I(inode)->i_mmap_sem); 1098 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1099 } 1100 } 1101 1102 return ret; 1103 } 1104 1105 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1106 int *do_replace, pgoff_t off, pgoff_t len) 1107 { 1108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1109 struct dnode_of_data dn; 1110 int ret, done, i; 1111 1112 next_dnode: 1113 set_new_dnode(&dn, inode, NULL, NULL, 0); 1114 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1115 if (ret && ret != -ENOENT) { 1116 return ret; 1117 } else if (ret == -ENOENT) { 1118 if (dn.max_level == 0) 1119 return -ENOENT; 1120 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1121 dn.ofs_in_node, len); 1122 blkaddr += done; 1123 do_replace += done; 1124 goto next; 1125 } 1126 1127 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1128 dn.ofs_in_node, len); 1129 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1130 *blkaddr = f2fs_data_blkaddr(&dn); 1131 1132 if (__is_valid_data_blkaddr(*blkaddr) && 1133 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1134 DATA_GENERIC_ENHANCE)) { 1135 f2fs_put_dnode(&dn); 1136 return -EFSCORRUPTED; 1137 } 1138 1139 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1140 1141 if (f2fs_lfs_mode(sbi)) { 1142 f2fs_put_dnode(&dn); 1143 return -EOPNOTSUPP; 1144 } 1145 1146 /* do not invalidate this block address */ 1147 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1148 *do_replace = 1; 1149 } 1150 } 1151 f2fs_put_dnode(&dn); 1152 next: 1153 len -= done; 1154 off += done; 1155 if (len) 1156 goto next_dnode; 1157 return 0; 1158 } 1159 1160 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1161 int *do_replace, pgoff_t off, int len) 1162 { 1163 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1164 struct dnode_of_data dn; 1165 int ret, i; 1166 1167 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1168 if (*do_replace == 0) 1169 continue; 1170 1171 set_new_dnode(&dn, inode, NULL, NULL, 0); 1172 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1173 if (ret) { 1174 dec_valid_block_count(sbi, inode, 1); 1175 f2fs_invalidate_blocks(sbi, *blkaddr); 1176 } else { 1177 f2fs_update_data_blkaddr(&dn, *blkaddr); 1178 } 1179 f2fs_put_dnode(&dn); 1180 } 1181 return 0; 1182 } 1183 1184 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1185 block_t *blkaddr, int *do_replace, 1186 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1187 { 1188 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1189 pgoff_t i = 0; 1190 int ret; 1191 1192 while (i < len) { 1193 if (blkaddr[i] == NULL_ADDR && !full) { 1194 i++; 1195 continue; 1196 } 1197 1198 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1199 struct dnode_of_data dn; 1200 struct node_info ni; 1201 size_t new_size; 1202 pgoff_t ilen; 1203 1204 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1205 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1206 if (ret) 1207 return ret; 1208 1209 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1210 if (ret) { 1211 f2fs_put_dnode(&dn); 1212 return ret; 1213 } 1214 1215 ilen = min((pgoff_t) 1216 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1217 dn.ofs_in_node, len - i); 1218 do { 1219 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1220 f2fs_truncate_data_blocks_range(&dn, 1); 1221 1222 if (do_replace[i]) { 1223 f2fs_i_blocks_write(src_inode, 1224 1, false, false); 1225 f2fs_i_blocks_write(dst_inode, 1226 1, true, false); 1227 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1228 blkaddr[i], ni.version, true, false); 1229 1230 do_replace[i] = 0; 1231 } 1232 dn.ofs_in_node++; 1233 i++; 1234 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1235 if (dst_inode->i_size < new_size) 1236 f2fs_i_size_write(dst_inode, new_size); 1237 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1238 1239 f2fs_put_dnode(&dn); 1240 } else { 1241 struct page *psrc, *pdst; 1242 1243 psrc = f2fs_get_lock_data_page(src_inode, 1244 src + i, true); 1245 if (IS_ERR(psrc)) 1246 return PTR_ERR(psrc); 1247 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1248 true); 1249 if (IS_ERR(pdst)) { 1250 f2fs_put_page(psrc, 1); 1251 return PTR_ERR(pdst); 1252 } 1253 f2fs_copy_page(psrc, pdst); 1254 set_page_dirty(pdst); 1255 f2fs_put_page(pdst, 1); 1256 f2fs_put_page(psrc, 1); 1257 1258 ret = f2fs_truncate_hole(src_inode, 1259 src + i, src + i + 1); 1260 if (ret) 1261 return ret; 1262 i++; 1263 } 1264 } 1265 return 0; 1266 } 1267 1268 static int __exchange_data_block(struct inode *src_inode, 1269 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1270 pgoff_t len, bool full) 1271 { 1272 block_t *src_blkaddr; 1273 int *do_replace; 1274 pgoff_t olen; 1275 int ret; 1276 1277 while (len) { 1278 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1279 1280 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1281 array_size(olen, sizeof(block_t)), 1282 GFP_NOFS); 1283 if (!src_blkaddr) 1284 return -ENOMEM; 1285 1286 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1287 array_size(olen, sizeof(int)), 1288 GFP_NOFS); 1289 if (!do_replace) { 1290 kvfree(src_blkaddr); 1291 return -ENOMEM; 1292 } 1293 1294 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1295 do_replace, src, olen); 1296 if (ret) 1297 goto roll_back; 1298 1299 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1300 do_replace, src, dst, olen, full); 1301 if (ret) 1302 goto roll_back; 1303 1304 src += olen; 1305 dst += olen; 1306 len -= olen; 1307 1308 kvfree(src_blkaddr); 1309 kvfree(do_replace); 1310 } 1311 return 0; 1312 1313 roll_back: 1314 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1315 kvfree(src_blkaddr); 1316 kvfree(do_replace); 1317 return ret; 1318 } 1319 1320 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1321 { 1322 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1323 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1324 pgoff_t start = offset >> PAGE_SHIFT; 1325 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1326 int ret; 1327 1328 f2fs_balance_fs(sbi, true); 1329 1330 /* avoid gc operation during block exchange */ 1331 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1332 down_write(&F2FS_I(inode)->i_mmap_sem); 1333 1334 f2fs_lock_op(sbi); 1335 f2fs_drop_extent_tree(inode); 1336 truncate_pagecache(inode, offset); 1337 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1338 f2fs_unlock_op(sbi); 1339 1340 up_write(&F2FS_I(inode)->i_mmap_sem); 1341 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1342 return ret; 1343 } 1344 1345 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1346 { 1347 loff_t new_size; 1348 int ret; 1349 1350 if (offset + len >= i_size_read(inode)) 1351 return -EINVAL; 1352 1353 /* collapse range should be aligned to block size of f2fs. */ 1354 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1355 return -EINVAL; 1356 1357 ret = f2fs_convert_inline_inode(inode); 1358 if (ret) 1359 return ret; 1360 1361 /* write out all dirty pages from offset */ 1362 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1363 if (ret) 1364 return ret; 1365 1366 ret = f2fs_do_collapse(inode, offset, len); 1367 if (ret) 1368 return ret; 1369 1370 /* write out all moved pages, if possible */ 1371 down_write(&F2FS_I(inode)->i_mmap_sem); 1372 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1373 truncate_pagecache(inode, offset); 1374 1375 new_size = i_size_read(inode) - len; 1376 ret = f2fs_truncate_blocks(inode, new_size, true); 1377 up_write(&F2FS_I(inode)->i_mmap_sem); 1378 if (!ret) 1379 f2fs_i_size_write(inode, new_size); 1380 return ret; 1381 } 1382 1383 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1384 pgoff_t end) 1385 { 1386 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1387 pgoff_t index = start; 1388 unsigned int ofs_in_node = dn->ofs_in_node; 1389 blkcnt_t count = 0; 1390 int ret; 1391 1392 for (; index < end; index++, dn->ofs_in_node++) { 1393 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1394 count++; 1395 } 1396 1397 dn->ofs_in_node = ofs_in_node; 1398 ret = f2fs_reserve_new_blocks(dn, count); 1399 if (ret) 1400 return ret; 1401 1402 dn->ofs_in_node = ofs_in_node; 1403 for (index = start; index < end; index++, dn->ofs_in_node++) { 1404 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1405 /* 1406 * f2fs_reserve_new_blocks will not guarantee entire block 1407 * allocation. 1408 */ 1409 if (dn->data_blkaddr == NULL_ADDR) { 1410 ret = -ENOSPC; 1411 break; 1412 } 1413 if (dn->data_blkaddr != NEW_ADDR) { 1414 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1415 dn->data_blkaddr = NEW_ADDR; 1416 f2fs_set_data_blkaddr(dn); 1417 } 1418 } 1419 1420 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1421 1422 return ret; 1423 } 1424 1425 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1426 int mode) 1427 { 1428 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1429 struct address_space *mapping = inode->i_mapping; 1430 pgoff_t index, pg_start, pg_end; 1431 loff_t new_size = i_size_read(inode); 1432 loff_t off_start, off_end; 1433 int ret = 0; 1434 1435 ret = inode_newsize_ok(inode, (len + offset)); 1436 if (ret) 1437 return ret; 1438 1439 ret = f2fs_convert_inline_inode(inode); 1440 if (ret) 1441 return ret; 1442 1443 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1444 if (ret) 1445 return ret; 1446 1447 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1448 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1449 1450 off_start = offset & (PAGE_SIZE - 1); 1451 off_end = (offset + len) & (PAGE_SIZE - 1); 1452 1453 if (pg_start == pg_end) { 1454 ret = fill_zero(inode, pg_start, off_start, 1455 off_end - off_start); 1456 if (ret) 1457 return ret; 1458 1459 new_size = max_t(loff_t, new_size, offset + len); 1460 } else { 1461 if (off_start) { 1462 ret = fill_zero(inode, pg_start++, off_start, 1463 PAGE_SIZE - off_start); 1464 if (ret) 1465 return ret; 1466 1467 new_size = max_t(loff_t, new_size, 1468 (loff_t)pg_start << PAGE_SHIFT); 1469 } 1470 1471 for (index = pg_start; index < pg_end;) { 1472 struct dnode_of_data dn; 1473 unsigned int end_offset; 1474 pgoff_t end; 1475 1476 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1477 down_write(&F2FS_I(inode)->i_mmap_sem); 1478 1479 truncate_pagecache_range(inode, 1480 (loff_t)index << PAGE_SHIFT, 1481 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1482 1483 f2fs_lock_op(sbi); 1484 1485 set_new_dnode(&dn, inode, NULL, NULL, 0); 1486 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1487 if (ret) { 1488 f2fs_unlock_op(sbi); 1489 up_write(&F2FS_I(inode)->i_mmap_sem); 1490 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1491 goto out; 1492 } 1493 1494 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1495 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1496 1497 ret = f2fs_do_zero_range(&dn, index, end); 1498 f2fs_put_dnode(&dn); 1499 1500 f2fs_unlock_op(sbi); 1501 up_write(&F2FS_I(inode)->i_mmap_sem); 1502 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1503 1504 f2fs_balance_fs(sbi, dn.node_changed); 1505 1506 if (ret) 1507 goto out; 1508 1509 index = end; 1510 new_size = max_t(loff_t, new_size, 1511 (loff_t)index << PAGE_SHIFT); 1512 } 1513 1514 if (off_end) { 1515 ret = fill_zero(inode, pg_end, 0, off_end); 1516 if (ret) 1517 goto out; 1518 1519 new_size = max_t(loff_t, new_size, offset + len); 1520 } 1521 } 1522 1523 out: 1524 if (new_size > i_size_read(inode)) { 1525 if (mode & FALLOC_FL_KEEP_SIZE) 1526 file_set_keep_isize(inode); 1527 else 1528 f2fs_i_size_write(inode, new_size); 1529 } 1530 return ret; 1531 } 1532 1533 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1534 { 1535 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1536 pgoff_t nr, pg_start, pg_end, delta, idx; 1537 loff_t new_size; 1538 int ret = 0; 1539 1540 new_size = i_size_read(inode) + len; 1541 ret = inode_newsize_ok(inode, new_size); 1542 if (ret) 1543 return ret; 1544 1545 if (offset >= i_size_read(inode)) 1546 return -EINVAL; 1547 1548 /* insert range should be aligned to block size of f2fs. */ 1549 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1550 return -EINVAL; 1551 1552 ret = f2fs_convert_inline_inode(inode); 1553 if (ret) 1554 return ret; 1555 1556 f2fs_balance_fs(sbi, true); 1557 1558 down_write(&F2FS_I(inode)->i_mmap_sem); 1559 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1560 up_write(&F2FS_I(inode)->i_mmap_sem); 1561 if (ret) 1562 return ret; 1563 1564 /* write out all dirty pages from offset */ 1565 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1566 if (ret) 1567 return ret; 1568 1569 pg_start = offset >> PAGE_SHIFT; 1570 pg_end = (offset + len) >> PAGE_SHIFT; 1571 delta = pg_end - pg_start; 1572 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1573 1574 /* avoid gc operation during block exchange */ 1575 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1576 down_write(&F2FS_I(inode)->i_mmap_sem); 1577 truncate_pagecache(inode, offset); 1578 1579 while (!ret && idx > pg_start) { 1580 nr = idx - pg_start; 1581 if (nr > delta) 1582 nr = delta; 1583 idx -= nr; 1584 1585 f2fs_lock_op(sbi); 1586 f2fs_drop_extent_tree(inode); 1587 1588 ret = __exchange_data_block(inode, inode, idx, 1589 idx + delta, nr, false); 1590 f2fs_unlock_op(sbi); 1591 } 1592 up_write(&F2FS_I(inode)->i_mmap_sem); 1593 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1594 1595 /* write out all moved pages, if possible */ 1596 down_write(&F2FS_I(inode)->i_mmap_sem); 1597 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1598 truncate_pagecache(inode, offset); 1599 up_write(&F2FS_I(inode)->i_mmap_sem); 1600 1601 if (!ret) 1602 f2fs_i_size_write(inode, new_size); 1603 return ret; 1604 } 1605 1606 static int expand_inode_data(struct inode *inode, loff_t offset, 1607 loff_t len, int mode) 1608 { 1609 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1610 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1611 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1612 .m_may_create = true }; 1613 pgoff_t pg_end; 1614 loff_t new_size = i_size_read(inode); 1615 loff_t off_end; 1616 int err; 1617 1618 err = inode_newsize_ok(inode, (len + offset)); 1619 if (err) 1620 return err; 1621 1622 err = f2fs_convert_inline_inode(inode); 1623 if (err) 1624 return err; 1625 1626 f2fs_balance_fs(sbi, true); 1627 1628 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1629 off_end = (offset + len) & (PAGE_SIZE - 1); 1630 1631 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1632 map.m_len = pg_end - map.m_lblk; 1633 if (off_end) 1634 map.m_len++; 1635 1636 if (!map.m_len) 1637 return 0; 1638 1639 if (f2fs_is_pinned_file(inode)) { 1640 block_t len = (map.m_len >> sbi->log_blocks_per_seg) << 1641 sbi->log_blocks_per_seg; 1642 block_t done = 0; 1643 1644 if (map.m_len % sbi->blocks_per_seg) 1645 len += sbi->blocks_per_seg; 1646 1647 map.m_len = sbi->blocks_per_seg; 1648 next_alloc: 1649 if (has_not_enough_free_secs(sbi, 0, 1650 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1651 down_write(&sbi->gc_lock); 1652 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1653 if (err && err != -ENODATA && err != -EAGAIN) 1654 goto out_err; 1655 } 1656 1657 down_write(&sbi->pin_sem); 1658 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1659 1660 f2fs_lock_op(sbi); 1661 f2fs_allocate_new_segment(sbi, CURSEG_COLD_DATA); 1662 f2fs_unlock_op(sbi); 1663 1664 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1665 up_write(&sbi->pin_sem); 1666 1667 done += map.m_len; 1668 len -= map.m_len; 1669 map.m_lblk += map.m_len; 1670 if (!err && len) 1671 goto next_alloc; 1672 1673 map.m_len = done; 1674 } else { 1675 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1676 } 1677 out_err: 1678 if (err) { 1679 pgoff_t last_off; 1680 1681 if (!map.m_len) 1682 return err; 1683 1684 last_off = map.m_lblk + map.m_len - 1; 1685 1686 /* update new size to the failed position */ 1687 new_size = (last_off == pg_end) ? offset + len : 1688 (loff_t)(last_off + 1) << PAGE_SHIFT; 1689 } else { 1690 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1691 } 1692 1693 if (new_size > i_size_read(inode)) { 1694 if (mode & FALLOC_FL_KEEP_SIZE) 1695 file_set_keep_isize(inode); 1696 else 1697 f2fs_i_size_write(inode, new_size); 1698 } 1699 1700 return err; 1701 } 1702 1703 static long f2fs_fallocate(struct file *file, int mode, 1704 loff_t offset, loff_t len) 1705 { 1706 struct inode *inode = file_inode(file); 1707 long ret = 0; 1708 1709 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1710 return -EIO; 1711 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1712 return -ENOSPC; 1713 if (!f2fs_is_compress_backend_ready(inode)) 1714 return -EOPNOTSUPP; 1715 1716 /* f2fs only support ->fallocate for regular file */ 1717 if (!S_ISREG(inode->i_mode)) 1718 return -EINVAL; 1719 1720 if (IS_ENCRYPTED(inode) && 1721 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1722 return -EOPNOTSUPP; 1723 1724 if (f2fs_compressed_file(inode) && 1725 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1726 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1727 return -EOPNOTSUPP; 1728 1729 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1730 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1731 FALLOC_FL_INSERT_RANGE)) 1732 return -EOPNOTSUPP; 1733 1734 inode_lock(inode); 1735 1736 if (mode & FALLOC_FL_PUNCH_HOLE) { 1737 if (offset >= inode->i_size) 1738 goto out; 1739 1740 ret = punch_hole(inode, offset, len); 1741 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1742 ret = f2fs_collapse_range(inode, offset, len); 1743 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1744 ret = f2fs_zero_range(inode, offset, len, mode); 1745 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1746 ret = f2fs_insert_range(inode, offset, len); 1747 } else { 1748 ret = expand_inode_data(inode, offset, len, mode); 1749 } 1750 1751 if (!ret) { 1752 inode->i_mtime = inode->i_ctime = current_time(inode); 1753 f2fs_mark_inode_dirty_sync(inode, false); 1754 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1755 } 1756 1757 out: 1758 inode_unlock(inode); 1759 1760 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1761 return ret; 1762 } 1763 1764 static int f2fs_release_file(struct inode *inode, struct file *filp) 1765 { 1766 /* 1767 * f2fs_relase_file is called at every close calls. So we should 1768 * not drop any inmemory pages by close called by other process. 1769 */ 1770 if (!(filp->f_mode & FMODE_WRITE) || 1771 atomic_read(&inode->i_writecount) != 1) 1772 return 0; 1773 1774 /* some remained atomic pages should discarded */ 1775 if (f2fs_is_atomic_file(inode)) 1776 f2fs_drop_inmem_pages(inode); 1777 if (f2fs_is_volatile_file(inode)) { 1778 set_inode_flag(inode, FI_DROP_CACHE); 1779 filemap_fdatawrite(inode->i_mapping); 1780 clear_inode_flag(inode, FI_DROP_CACHE); 1781 clear_inode_flag(inode, FI_VOLATILE_FILE); 1782 stat_dec_volatile_write(inode); 1783 } 1784 return 0; 1785 } 1786 1787 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1788 { 1789 struct inode *inode = file_inode(file); 1790 1791 /* 1792 * If the process doing a transaction is crashed, we should do 1793 * roll-back. Otherwise, other reader/write can see corrupted database 1794 * until all the writers close its file. Since this should be done 1795 * before dropping file lock, it needs to do in ->flush. 1796 */ 1797 if (f2fs_is_atomic_file(inode) && 1798 F2FS_I(inode)->inmem_task == current) 1799 f2fs_drop_inmem_pages(inode); 1800 return 0; 1801 } 1802 1803 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1804 { 1805 struct f2fs_inode_info *fi = F2FS_I(inode); 1806 u32 masked_flags = fi->i_flags & mask; 1807 1808 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask)); 1809 1810 /* Is it quota file? Do not allow user to mess with it */ 1811 if (IS_NOQUOTA(inode)) 1812 return -EPERM; 1813 1814 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1815 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1816 return -EOPNOTSUPP; 1817 if (!f2fs_empty_dir(inode)) 1818 return -ENOTEMPTY; 1819 } 1820 1821 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1822 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1823 return -EOPNOTSUPP; 1824 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1825 return -EINVAL; 1826 } 1827 1828 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1829 if (masked_flags & F2FS_COMPR_FL) { 1830 if (f2fs_disable_compressed_file(inode)) 1831 return -EINVAL; 1832 } 1833 if (iflags & F2FS_NOCOMP_FL) 1834 return -EINVAL; 1835 if (iflags & F2FS_COMPR_FL) { 1836 if (!f2fs_may_compress(inode)) 1837 return -EINVAL; 1838 1839 set_compress_context(inode); 1840 } 1841 } 1842 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { 1843 if (masked_flags & F2FS_COMPR_FL) 1844 return -EINVAL; 1845 } 1846 1847 fi->i_flags = iflags | (fi->i_flags & ~mask); 1848 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1849 (fi->i_flags & F2FS_NOCOMP_FL)); 1850 1851 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1852 set_inode_flag(inode, FI_PROJ_INHERIT); 1853 else 1854 clear_inode_flag(inode, FI_PROJ_INHERIT); 1855 1856 inode->i_ctime = current_time(inode); 1857 f2fs_set_inode_flags(inode); 1858 f2fs_mark_inode_dirty_sync(inode, true); 1859 return 0; 1860 } 1861 1862 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ 1863 1864 /* 1865 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1866 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1867 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1868 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1869 */ 1870 1871 static const struct { 1872 u32 iflag; 1873 u32 fsflag; 1874 } f2fs_fsflags_map[] = { 1875 { F2FS_COMPR_FL, FS_COMPR_FL }, 1876 { F2FS_SYNC_FL, FS_SYNC_FL }, 1877 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1878 { F2FS_APPEND_FL, FS_APPEND_FL }, 1879 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1880 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1881 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1882 { F2FS_INDEX_FL, FS_INDEX_FL }, 1883 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1884 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1885 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1886 }; 1887 1888 #define F2FS_GETTABLE_FS_FL ( \ 1889 FS_COMPR_FL | \ 1890 FS_SYNC_FL | \ 1891 FS_IMMUTABLE_FL | \ 1892 FS_APPEND_FL | \ 1893 FS_NODUMP_FL | \ 1894 FS_NOATIME_FL | \ 1895 FS_NOCOMP_FL | \ 1896 FS_INDEX_FL | \ 1897 FS_DIRSYNC_FL | \ 1898 FS_PROJINHERIT_FL | \ 1899 FS_ENCRYPT_FL | \ 1900 FS_INLINE_DATA_FL | \ 1901 FS_NOCOW_FL | \ 1902 FS_VERITY_FL | \ 1903 FS_CASEFOLD_FL) 1904 1905 #define F2FS_SETTABLE_FS_FL ( \ 1906 FS_COMPR_FL | \ 1907 FS_SYNC_FL | \ 1908 FS_IMMUTABLE_FL | \ 1909 FS_APPEND_FL | \ 1910 FS_NODUMP_FL | \ 1911 FS_NOATIME_FL | \ 1912 FS_NOCOMP_FL | \ 1913 FS_DIRSYNC_FL | \ 1914 FS_PROJINHERIT_FL | \ 1915 FS_CASEFOLD_FL) 1916 1917 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1918 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1919 { 1920 u32 fsflags = 0; 1921 int i; 1922 1923 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1924 if (iflags & f2fs_fsflags_map[i].iflag) 1925 fsflags |= f2fs_fsflags_map[i].fsflag; 1926 1927 return fsflags; 1928 } 1929 1930 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1931 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1932 { 1933 u32 iflags = 0; 1934 int i; 1935 1936 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1937 if (fsflags & f2fs_fsflags_map[i].fsflag) 1938 iflags |= f2fs_fsflags_map[i].iflag; 1939 1940 return iflags; 1941 } 1942 1943 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1944 { 1945 struct inode *inode = file_inode(filp); 1946 struct f2fs_inode_info *fi = F2FS_I(inode); 1947 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1948 1949 if (IS_ENCRYPTED(inode)) 1950 fsflags |= FS_ENCRYPT_FL; 1951 if (IS_VERITY(inode)) 1952 fsflags |= FS_VERITY_FL; 1953 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1954 fsflags |= FS_INLINE_DATA_FL; 1955 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1956 fsflags |= FS_NOCOW_FL; 1957 1958 fsflags &= F2FS_GETTABLE_FS_FL; 1959 1960 return put_user(fsflags, (int __user *)arg); 1961 } 1962 1963 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1964 { 1965 struct inode *inode = file_inode(filp); 1966 struct f2fs_inode_info *fi = F2FS_I(inode); 1967 u32 fsflags, old_fsflags; 1968 u32 iflags; 1969 int ret; 1970 1971 if (!inode_owner_or_capable(inode)) 1972 return -EACCES; 1973 1974 if (get_user(fsflags, (int __user *)arg)) 1975 return -EFAULT; 1976 1977 if (fsflags & ~F2FS_GETTABLE_FS_FL) 1978 return -EOPNOTSUPP; 1979 fsflags &= F2FS_SETTABLE_FS_FL; 1980 1981 iflags = f2fs_fsflags_to_iflags(fsflags); 1982 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 1983 return -EOPNOTSUPP; 1984 1985 ret = mnt_want_write_file(filp); 1986 if (ret) 1987 return ret; 1988 1989 inode_lock(inode); 1990 1991 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1992 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 1993 if (ret) 1994 goto out; 1995 1996 ret = f2fs_setflags_common(inode, iflags, 1997 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); 1998 out: 1999 inode_unlock(inode); 2000 mnt_drop_write_file(filp); 2001 return ret; 2002 } 2003 2004 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2005 { 2006 struct inode *inode = file_inode(filp); 2007 2008 return put_user(inode->i_generation, (int __user *)arg); 2009 } 2010 2011 static int f2fs_ioc_start_atomic_write(struct file *filp) 2012 { 2013 struct inode *inode = file_inode(filp); 2014 struct f2fs_inode_info *fi = F2FS_I(inode); 2015 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2016 int ret; 2017 2018 if (!inode_owner_or_capable(inode)) 2019 return -EACCES; 2020 2021 if (!S_ISREG(inode->i_mode)) 2022 return -EINVAL; 2023 2024 if (filp->f_flags & O_DIRECT) 2025 return -EINVAL; 2026 2027 ret = mnt_want_write_file(filp); 2028 if (ret) 2029 return ret; 2030 2031 inode_lock(inode); 2032 2033 f2fs_disable_compressed_file(inode); 2034 2035 if (f2fs_is_atomic_file(inode)) { 2036 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 2037 ret = -EINVAL; 2038 goto out; 2039 } 2040 2041 ret = f2fs_convert_inline_inode(inode); 2042 if (ret) 2043 goto out; 2044 2045 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2046 2047 /* 2048 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2049 * f2fs_is_atomic_file. 2050 */ 2051 if (get_dirty_pages(inode)) 2052 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2053 inode->i_ino, get_dirty_pages(inode)); 2054 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2055 if (ret) { 2056 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2057 goto out; 2058 } 2059 2060 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2061 if (list_empty(&fi->inmem_ilist)) 2062 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 2063 sbi->atomic_files++; 2064 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2065 2066 /* add inode in inmem_list first and set atomic_file */ 2067 set_inode_flag(inode, FI_ATOMIC_FILE); 2068 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2069 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2070 2071 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2072 F2FS_I(inode)->inmem_task = current; 2073 stat_update_max_atomic_write(inode); 2074 out: 2075 inode_unlock(inode); 2076 mnt_drop_write_file(filp); 2077 return ret; 2078 } 2079 2080 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2081 { 2082 struct inode *inode = file_inode(filp); 2083 int ret; 2084 2085 if (!inode_owner_or_capable(inode)) 2086 return -EACCES; 2087 2088 ret = mnt_want_write_file(filp); 2089 if (ret) 2090 return ret; 2091 2092 f2fs_balance_fs(F2FS_I_SB(inode), true); 2093 2094 inode_lock(inode); 2095 2096 if (f2fs_is_volatile_file(inode)) { 2097 ret = -EINVAL; 2098 goto err_out; 2099 } 2100 2101 if (f2fs_is_atomic_file(inode)) { 2102 ret = f2fs_commit_inmem_pages(inode); 2103 if (ret) 2104 goto err_out; 2105 2106 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2107 if (!ret) 2108 f2fs_drop_inmem_pages(inode); 2109 } else { 2110 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2111 } 2112 err_out: 2113 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2114 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2115 ret = -EINVAL; 2116 } 2117 inode_unlock(inode); 2118 mnt_drop_write_file(filp); 2119 return ret; 2120 } 2121 2122 static int f2fs_ioc_start_volatile_write(struct file *filp) 2123 { 2124 struct inode *inode = file_inode(filp); 2125 int ret; 2126 2127 if (!inode_owner_or_capable(inode)) 2128 return -EACCES; 2129 2130 if (!S_ISREG(inode->i_mode)) 2131 return -EINVAL; 2132 2133 ret = mnt_want_write_file(filp); 2134 if (ret) 2135 return ret; 2136 2137 inode_lock(inode); 2138 2139 if (f2fs_is_volatile_file(inode)) 2140 goto out; 2141 2142 ret = f2fs_convert_inline_inode(inode); 2143 if (ret) 2144 goto out; 2145 2146 stat_inc_volatile_write(inode); 2147 stat_update_max_volatile_write(inode); 2148 2149 set_inode_flag(inode, FI_VOLATILE_FILE); 2150 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2151 out: 2152 inode_unlock(inode); 2153 mnt_drop_write_file(filp); 2154 return ret; 2155 } 2156 2157 static int f2fs_ioc_release_volatile_write(struct file *filp) 2158 { 2159 struct inode *inode = file_inode(filp); 2160 int ret; 2161 2162 if (!inode_owner_or_capable(inode)) 2163 return -EACCES; 2164 2165 ret = mnt_want_write_file(filp); 2166 if (ret) 2167 return ret; 2168 2169 inode_lock(inode); 2170 2171 if (!f2fs_is_volatile_file(inode)) 2172 goto out; 2173 2174 if (!f2fs_is_first_block_written(inode)) { 2175 ret = truncate_partial_data_page(inode, 0, true); 2176 goto out; 2177 } 2178 2179 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2180 out: 2181 inode_unlock(inode); 2182 mnt_drop_write_file(filp); 2183 return ret; 2184 } 2185 2186 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2187 { 2188 struct inode *inode = file_inode(filp); 2189 int ret; 2190 2191 if (!inode_owner_or_capable(inode)) 2192 return -EACCES; 2193 2194 ret = mnt_want_write_file(filp); 2195 if (ret) 2196 return ret; 2197 2198 inode_lock(inode); 2199 2200 if (f2fs_is_atomic_file(inode)) 2201 f2fs_drop_inmem_pages(inode); 2202 if (f2fs_is_volatile_file(inode)) { 2203 clear_inode_flag(inode, FI_VOLATILE_FILE); 2204 stat_dec_volatile_write(inode); 2205 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2206 } 2207 2208 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2209 2210 inode_unlock(inode); 2211 2212 mnt_drop_write_file(filp); 2213 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2214 return ret; 2215 } 2216 2217 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2218 { 2219 struct inode *inode = file_inode(filp); 2220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2221 struct super_block *sb = sbi->sb; 2222 __u32 in; 2223 int ret = 0; 2224 2225 if (!capable(CAP_SYS_ADMIN)) 2226 return -EPERM; 2227 2228 if (get_user(in, (__u32 __user *)arg)) 2229 return -EFAULT; 2230 2231 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2232 ret = mnt_want_write_file(filp); 2233 if (ret) { 2234 if (ret == -EROFS) { 2235 ret = 0; 2236 f2fs_stop_checkpoint(sbi, false); 2237 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2238 trace_f2fs_shutdown(sbi, in, ret); 2239 } 2240 return ret; 2241 } 2242 } 2243 2244 switch (in) { 2245 case F2FS_GOING_DOWN_FULLSYNC: 2246 sb = freeze_bdev(sb->s_bdev); 2247 if (IS_ERR(sb)) { 2248 ret = PTR_ERR(sb); 2249 goto out; 2250 } 2251 if (sb) { 2252 f2fs_stop_checkpoint(sbi, false); 2253 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2254 thaw_bdev(sb->s_bdev, sb); 2255 } 2256 break; 2257 case F2FS_GOING_DOWN_METASYNC: 2258 /* do checkpoint only */ 2259 ret = f2fs_sync_fs(sb, 1); 2260 if (ret) 2261 goto out; 2262 f2fs_stop_checkpoint(sbi, false); 2263 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2264 break; 2265 case F2FS_GOING_DOWN_NOSYNC: 2266 f2fs_stop_checkpoint(sbi, false); 2267 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2268 break; 2269 case F2FS_GOING_DOWN_METAFLUSH: 2270 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2271 f2fs_stop_checkpoint(sbi, false); 2272 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2273 break; 2274 case F2FS_GOING_DOWN_NEED_FSCK: 2275 set_sbi_flag(sbi, SBI_NEED_FSCK); 2276 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2277 set_sbi_flag(sbi, SBI_IS_DIRTY); 2278 /* do checkpoint only */ 2279 ret = f2fs_sync_fs(sb, 1); 2280 goto out; 2281 default: 2282 ret = -EINVAL; 2283 goto out; 2284 } 2285 2286 f2fs_stop_gc_thread(sbi); 2287 f2fs_stop_discard_thread(sbi); 2288 2289 f2fs_drop_discard_cmd(sbi); 2290 clear_opt(sbi, DISCARD); 2291 2292 f2fs_update_time(sbi, REQ_TIME); 2293 out: 2294 if (in != F2FS_GOING_DOWN_FULLSYNC) 2295 mnt_drop_write_file(filp); 2296 2297 trace_f2fs_shutdown(sbi, in, ret); 2298 2299 return ret; 2300 } 2301 2302 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2303 { 2304 struct inode *inode = file_inode(filp); 2305 struct super_block *sb = inode->i_sb; 2306 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2307 struct fstrim_range range; 2308 int ret; 2309 2310 if (!capable(CAP_SYS_ADMIN)) 2311 return -EPERM; 2312 2313 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2314 return -EOPNOTSUPP; 2315 2316 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2317 sizeof(range))) 2318 return -EFAULT; 2319 2320 ret = mnt_want_write_file(filp); 2321 if (ret) 2322 return ret; 2323 2324 range.minlen = max((unsigned int)range.minlen, 2325 q->limits.discard_granularity); 2326 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2327 mnt_drop_write_file(filp); 2328 if (ret < 0) 2329 return ret; 2330 2331 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2332 sizeof(range))) 2333 return -EFAULT; 2334 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2335 return 0; 2336 } 2337 2338 static bool uuid_is_nonzero(__u8 u[16]) 2339 { 2340 int i; 2341 2342 for (i = 0; i < 16; i++) 2343 if (u[i]) 2344 return true; 2345 return false; 2346 } 2347 2348 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2349 { 2350 struct inode *inode = file_inode(filp); 2351 2352 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2353 return -EOPNOTSUPP; 2354 2355 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2356 2357 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2358 } 2359 2360 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2361 { 2362 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2363 return -EOPNOTSUPP; 2364 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2365 } 2366 2367 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2368 { 2369 struct inode *inode = file_inode(filp); 2370 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2371 int err; 2372 2373 if (!f2fs_sb_has_encrypt(sbi)) 2374 return -EOPNOTSUPP; 2375 2376 err = mnt_want_write_file(filp); 2377 if (err) 2378 return err; 2379 2380 down_write(&sbi->sb_lock); 2381 2382 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2383 goto got_it; 2384 2385 /* update superblock with uuid */ 2386 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2387 2388 err = f2fs_commit_super(sbi, false); 2389 if (err) { 2390 /* undo new data */ 2391 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2392 goto out_err; 2393 } 2394 got_it: 2395 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2396 16)) 2397 err = -EFAULT; 2398 out_err: 2399 up_write(&sbi->sb_lock); 2400 mnt_drop_write_file(filp); 2401 return err; 2402 } 2403 2404 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2405 unsigned long arg) 2406 { 2407 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2408 return -EOPNOTSUPP; 2409 2410 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2411 } 2412 2413 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2414 { 2415 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2416 return -EOPNOTSUPP; 2417 2418 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2419 } 2420 2421 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2422 { 2423 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2424 return -EOPNOTSUPP; 2425 2426 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2427 } 2428 2429 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2430 unsigned long arg) 2431 { 2432 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2433 return -EOPNOTSUPP; 2434 2435 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2436 } 2437 2438 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2439 unsigned long arg) 2440 { 2441 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2442 return -EOPNOTSUPP; 2443 2444 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2445 } 2446 2447 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2448 { 2449 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2450 return -EOPNOTSUPP; 2451 2452 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2453 } 2454 2455 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2456 { 2457 struct inode *inode = file_inode(filp); 2458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2459 __u32 sync; 2460 int ret; 2461 2462 if (!capable(CAP_SYS_ADMIN)) 2463 return -EPERM; 2464 2465 if (get_user(sync, (__u32 __user *)arg)) 2466 return -EFAULT; 2467 2468 if (f2fs_readonly(sbi->sb)) 2469 return -EROFS; 2470 2471 ret = mnt_want_write_file(filp); 2472 if (ret) 2473 return ret; 2474 2475 if (!sync) { 2476 if (!down_write_trylock(&sbi->gc_lock)) { 2477 ret = -EBUSY; 2478 goto out; 2479 } 2480 } else { 2481 down_write(&sbi->gc_lock); 2482 } 2483 2484 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2485 out: 2486 mnt_drop_write_file(filp); 2487 return ret; 2488 } 2489 2490 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2491 { 2492 struct inode *inode = file_inode(filp); 2493 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2494 struct f2fs_gc_range range; 2495 u64 end; 2496 int ret; 2497 2498 if (!capable(CAP_SYS_ADMIN)) 2499 return -EPERM; 2500 2501 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2502 sizeof(range))) 2503 return -EFAULT; 2504 2505 if (f2fs_readonly(sbi->sb)) 2506 return -EROFS; 2507 2508 end = range.start + range.len; 2509 if (end < range.start || range.start < MAIN_BLKADDR(sbi) || 2510 end >= MAX_BLKADDR(sbi)) 2511 return -EINVAL; 2512 2513 ret = mnt_want_write_file(filp); 2514 if (ret) 2515 return ret; 2516 2517 do_more: 2518 if (!range.sync) { 2519 if (!down_write_trylock(&sbi->gc_lock)) { 2520 ret = -EBUSY; 2521 goto out; 2522 } 2523 } else { 2524 down_write(&sbi->gc_lock); 2525 } 2526 2527 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); 2528 if (ret) { 2529 if (ret == -EBUSY) 2530 ret = -EAGAIN; 2531 goto out; 2532 } 2533 range.start += BLKS_PER_SEC(sbi); 2534 if (range.start <= end) 2535 goto do_more; 2536 out: 2537 mnt_drop_write_file(filp); 2538 return ret; 2539 } 2540 2541 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2542 { 2543 struct inode *inode = file_inode(filp); 2544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2545 int ret; 2546 2547 if (!capable(CAP_SYS_ADMIN)) 2548 return -EPERM; 2549 2550 if (f2fs_readonly(sbi->sb)) 2551 return -EROFS; 2552 2553 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2554 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2555 return -EINVAL; 2556 } 2557 2558 ret = mnt_want_write_file(filp); 2559 if (ret) 2560 return ret; 2561 2562 ret = f2fs_sync_fs(sbi->sb, 1); 2563 2564 mnt_drop_write_file(filp); 2565 return ret; 2566 } 2567 2568 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2569 struct file *filp, 2570 struct f2fs_defragment *range) 2571 { 2572 struct inode *inode = file_inode(filp); 2573 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2574 .m_seg_type = NO_CHECK_TYPE , 2575 .m_may_create = false }; 2576 struct extent_info ei = {0, 0, 0}; 2577 pgoff_t pg_start, pg_end, next_pgofs; 2578 unsigned int blk_per_seg = sbi->blocks_per_seg; 2579 unsigned int total = 0, sec_num; 2580 block_t blk_end = 0; 2581 bool fragmented = false; 2582 int err; 2583 2584 /* if in-place-update policy is enabled, don't waste time here */ 2585 if (f2fs_should_update_inplace(inode, NULL)) 2586 return -EINVAL; 2587 2588 pg_start = range->start >> PAGE_SHIFT; 2589 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2590 2591 f2fs_balance_fs(sbi, true); 2592 2593 inode_lock(inode); 2594 2595 /* writeback all dirty pages in the range */ 2596 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2597 range->start + range->len - 1); 2598 if (err) 2599 goto out; 2600 2601 /* 2602 * lookup mapping info in extent cache, skip defragmenting if physical 2603 * block addresses are continuous. 2604 */ 2605 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2606 if (ei.fofs + ei.len >= pg_end) 2607 goto out; 2608 } 2609 2610 map.m_lblk = pg_start; 2611 map.m_next_pgofs = &next_pgofs; 2612 2613 /* 2614 * lookup mapping info in dnode page cache, skip defragmenting if all 2615 * physical block addresses are continuous even if there are hole(s) 2616 * in logical blocks. 2617 */ 2618 while (map.m_lblk < pg_end) { 2619 map.m_len = pg_end - map.m_lblk; 2620 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2621 if (err) 2622 goto out; 2623 2624 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2625 map.m_lblk = next_pgofs; 2626 continue; 2627 } 2628 2629 if (blk_end && blk_end != map.m_pblk) 2630 fragmented = true; 2631 2632 /* record total count of block that we're going to move */ 2633 total += map.m_len; 2634 2635 blk_end = map.m_pblk + map.m_len; 2636 2637 map.m_lblk += map.m_len; 2638 } 2639 2640 if (!fragmented) { 2641 total = 0; 2642 goto out; 2643 } 2644 2645 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2646 2647 /* 2648 * make sure there are enough free section for LFS allocation, this can 2649 * avoid defragment running in SSR mode when free section are allocated 2650 * intensively 2651 */ 2652 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2653 err = -EAGAIN; 2654 goto out; 2655 } 2656 2657 map.m_lblk = pg_start; 2658 map.m_len = pg_end - pg_start; 2659 total = 0; 2660 2661 while (map.m_lblk < pg_end) { 2662 pgoff_t idx; 2663 int cnt = 0; 2664 2665 do_map: 2666 map.m_len = pg_end - map.m_lblk; 2667 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2668 if (err) 2669 goto clear_out; 2670 2671 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2672 map.m_lblk = next_pgofs; 2673 goto check; 2674 } 2675 2676 set_inode_flag(inode, FI_DO_DEFRAG); 2677 2678 idx = map.m_lblk; 2679 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2680 struct page *page; 2681 2682 page = f2fs_get_lock_data_page(inode, idx, true); 2683 if (IS_ERR(page)) { 2684 err = PTR_ERR(page); 2685 goto clear_out; 2686 } 2687 2688 set_page_dirty(page); 2689 f2fs_put_page(page, 1); 2690 2691 idx++; 2692 cnt++; 2693 total++; 2694 } 2695 2696 map.m_lblk = idx; 2697 check: 2698 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2699 goto do_map; 2700 2701 clear_inode_flag(inode, FI_DO_DEFRAG); 2702 2703 err = filemap_fdatawrite(inode->i_mapping); 2704 if (err) 2705 goto out; 2706 } 2707 clear_out: 2708 clear_inode_flag(inode, FI_DO_DEFRAG); 2709 out: 2710 inode_unlock(inode); 2711 if (!err) 2712 range->len = (u64)total << PAGE_SHIFT; 2713 return err; 2714 } 2715 2716 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2717 { 2718 struct inode *inode = file_inode(filp); 2719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2720 struct f2fs_defragment range; 2721 int err; 2722 2723 if (!capable(CAP_SYS_ADMIN)) 2724 return -EPERM; 2725 2726 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2727 return -EINVAL; 2728 2729 if (f2fs_readonly(sbi->sb)) 2730 return -EROFS; 2731 2732 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2733 sizeof(range))) 2734 return -EFAULT; 2735 2736 /* verify alignment of offset & size */ 2737 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2738 return -EINVAL; 2739 2740 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2741 sbi->max_file_blocks)) 2742 return -EINVAL; 2743 2744 err = mnt_want_write_file(filp); 2745 if (err) 2746 return err; 2747 2748 err = f2fs_defragment_range(sbi, filp, &range); 2749 mnt_drop_write_file(filp); 2750 2751 f2fs_update_time(sbi, REQ_TIME); 2752 if (err < 0) 2753 return err; 2754 2755 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2756 sizeof(range))) 2757 return -EFAULT; 2758 2759 return 0; 2760 } 2761 2762 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2763 struct file *file_out, loff_t pos_out, size_t len) 2764 { 2765 struct inode *src = file_inode(file_in); 2766 struct inode *dst = file_inode(file_out); 2767 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2768 size_t olen = len, dst_max_i_size = 0; 2769 size_t dst_osize; 2770 int ret; 2771 2772 if (file_in->f_path.mnt != file_out->f_path.mnt || 2773 src->i_sb != dst->i_sb) 2774 return -EXDEV; 2775 2776 if (unlikely(f2fs_readonly(src->i_sb))) 2777 return -EROFS; 2778 2779 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2780 return -EINVAL; 2781 2782 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2783 return -EOPNOTSUPP; 2784 2785 if (src == dst) { 2786 if (pos_in == pos_out) 2787 return 0; 2788 if (pos_out > pos_in && pos_out < pos_in + len) 2789 return -EINVAL; 2790 } 2791 2792 inode_lock(src); 2793 if (src != dst) { 2794 ret = -EBUSY; 2795 if (!inode_trylock(dst)) 2796 goto out; 2797 } 2798 2799 ret = -EINVAL; 2800 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2801 goto out_unlock; 2802 if (len == 0) 2803 olen = len = src->i_size - pos_in; 2804 if (pos_in + len == src->i_size) 2805 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2806 if (len == 0) { 2807 ret = 0; 2808 goto out_unlock; 2809 } 2810 2811 dst_osize = dst->i_size; 2812 if (pos_out + olen > dst->i_size) 2813 dst_max_i_size = pos_out + olen; 2814 2815 /* verify the end result is block aligned */ 2816 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2817 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2818 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2819 goto out_unlock; 2820 2821 ret = f2fs_convert_inline_inode(src); 2822 if (ret) 2823 goto out_unlock; 2824 2825 ret = f2fs_convert_inline_inode(dst); 2826 if (ret) 2827 goto out_unlock; 2828 2829 /* write out all dirty pages from offset */ 2830 ret = filemap_write_and_wait_range(src->i_mapping, 2831 pos_in, pos_in + len); 2832 if (ret) 2833 goto out_unlock; 2834 2835 ret = filemap_write_and_wait_range(dst->i_mapping, 2836 pos_out, pos_out + len); 2837 if (ret) 2838 goto out_unlock; 2839 2840 f2fs_balance_fs(sbi, true); 2841 2842 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2843 if (src != dst) { 2844 ret = -EBUSY; 2845 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2846 goto out_src; 2847 } 2848 2849 f2fs_lock_op(sbi); 2850 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2851 pos_out >> F2FS_BLKSIZE_BITS, 2852 len >> F2FS_BLKSIZE_BITS, false); 2853 2854 if (!ret) { 2855 if (dst_max_i_size) 2856 f2fs_i_size_write(dst, dst_max_i_size); 2857 else if (dst_osize != dst->i_size) 2858 f2fs_i_size_write(dst, dst_osize); 2859 } 2860 f2fs_unlock_op(sbi); 2861 2862 if (src != dst) 2863 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2864 out_src: 2865 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2866 out_unlock: 2867 if (src != dst) 2868 inode_unlock(dst); 2869 out: 2870 inode_unlock(src); 2871 return ret; 2872 } 2873 2874 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2875 { 2876 struct f2fs_move_range range; 2877 struct fd dst; 2878 int err; 2879 2880 if (!(filp->f_mode & FMODE_READ) || 2881 !(filp->f_mode & FMODE_WRITE)) 2882 return -EBADF; 2883 2884 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2885 sizeof(range))) 2886 return -EFAULT; 2887 2888 dst = fdget(range.dst_fd); 2889 if (!dst.file) 2890 return -EBADF; 2891 2892 if (!(dst.file->f_mode & FMODE_WRITE)) { 2893 err = -EBADF; 2894 goto err_out; 2895 } 2896 2897 err = mnt_want_write_file(filp); 2898 if (err) 2899 goto err_out; 2900 2901 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2902 range.pos_out, range.len); 2903 2904 mnt_drop_write_file(filp); 2905 if (err) 2906 goto err_out; 2907 2908 if (copy_to_user((struct f2fs_move_range __user *)arg, 2909 &range, sizeof(range))) 2910 err = -EFAULT; 2911 err_out: 2912 fdput(dst); 2913 return err; 2914 } 2915 2916 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2917 { 2918 struct inode *inode = file_inode(filp); 2919 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2920 struct sit_info *sm = SIT_I(sbi); 2921 unsigned int start_segno = 0, end_segno = 0; 2922 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2923 struct f2fs_flush_device range; 2924 int ret; 2925 2926 if (!capable(CAP_SYS_ADMIN)) 2927 return -EPERM; 2928 2929 if (f2fs_readonly(sbi->sb)) 2930 return -EROFS; 2931 2932 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2933 return -EINVAL; 2934 2935 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2936 sizeof(range))) 2937 return -EFAULT; 2938 2939 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2940 __is_large_section(sbi)) { 2941 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2942 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2943 return -EINVAL; 2944 } 2945 2946 ret = mnt_want_write_file(filp); 2947 if (ret) 2948 return ret; 2949 2950 if (range.dev_num != 0) 2951 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2952 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2953 2954 start_segno = sm->last_victim[FLUSH_DEVICE]; 2955 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2956 start_segno = dev_start_segno; 2957 end_segno = min(start_segno + range.segments, dev_end_segno); 2958 2959 while (start_segno < end_segno) { 2960 if (!down_write_trylock(&sbi->gc_lock)) { 2961 ret = -EBUSY; 2962 goto out; 2963 } 2964 sm->last_victim[GC_CB] = end_segno + 1; 2965 sm->last_victim[GC_GREEDY] = end_segno + 1; 2966 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2967 ret = f2fs_gc(sbi, true, true, start_segno); 2968 if (ret == -EAGAIN) 2969 ret = 0; 2970 else if (ret < 0) 2971 break; 2972 start_segno++; 2973 } 2974 out: 2975 mnt_drop_write_file(filp); 2976 return ret; 2977 } 2978 2979 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2980 { 2981 struct inode *inode = file_inode(filp); 2982 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2983 2984 /* Must validate to set it with SQLite behavior in Android. */ 2985 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2986 2987 return put_user(sb_feature, (u32 __user *)arg); 2988 } 2989 2990 #ifdef CONFIG_QUOTA 2991 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2992 { 2993 struct dquot *transfer_to[MAXQUOTAS] = {}; 2994 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2995 struct super_block *sb = sbi->sb; 2996 int err = 0; 2997 2998 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2999 if (!IS_ERR(transfer_to[PRJQUOTA])) { 3000 err = __dquot_transfer(inode, transfer_to); 3001 if (err) 3002 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3003 dqput(transfer_to[PRJQUOTA]); 3004 } 3005 return err; 3006 } 3007 3008 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3009 { 3010 struct inode *inode = file_inode(filp); 3011 struct f2fs_inode_info *fi = F2FS_I(inode); 3012 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3013 struct page *ipage; 3014 kprojid_t kprojid; 3015 int err; 3016 3017 if (!f2fs_sb_has_project_quota(sbi)) { 3018 if (projid != F2FS_DEF_PROJID) 3019 return -EOPNOTSUPP; 3020 else 3021 return 0; 3022 } 3023 3024 if (!f2fs_has_extra_attr(inode)) 3025 return -EOPNOTSUPP; 3026 3027 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3028 3029 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 3030 return 0; 3031 3032 err = -EPERM; 3033 /* Is it quota file? Do not allow user to mess with it */ 3034 if (IS_NOQUOTA(inode)) 3035 return err; 3036 3037 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3038 if (IS_ERR(ipage)) 3039 return PTR_ERR(ipage); 3040 3041 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 3042 i_projid)) { 3043 err = -EOVERFLOW; 3044 f2fs_put_page(ipage, 1); 3045 return err; 3046 } 3047 f2fs_put_page(ipage, 1); 3048 3049 err = dquot_initialize(inode); 3050 if (err) 3051 return err; 3052 3053 f2fs_lock_op(sbi); 3054 err = f2fs_transfer_project_quota(inode, kprojid); 3055 if (err) 3056 goto out_unlock; 3057 3058 F2FS_I(inode)->i_projid = kprojid; 3059 inode->i_ctime = current_time(inode); 3060 f2fs_mark_inode_dirty_sync(inode, true); 3061 out_unlock: 3062 f2fs_unlock_op(sbi); 3063 return err; 3064 } 3065 #else 3066 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3067 { 3068 return 0; 3069 } 3070 3071 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3072 { 3073 if (projid != F2FS_DEF_PROJID) 3074 return -EOPNOTSUPP; 3075 return 0; 3076 } 3077 #endif 3078 3079 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ 3080 3081 /* 3082 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable 3083 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its 3084 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. 3085 */ 3086 3087 static const struct { 3088 u32 iflag; 3089 u32 xflag; 3090 } f2fs_xflags_map[] = { 3091 { F2FS_SYNC_FL, FS_XFLAG_SYNC }, 3092 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, 3093 { F2FS_APPEND_FL, FS_XFLAG_APPEND }, 3094 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, 3095 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, 3096 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, 3097 }; 3098 3099 #define F2FS_SUPPORTED_XFLAGS ( \ 3100 FS_XFLAG_SYNC | \ 3101 FS_XFLAG_IMMUTABLE | \ 3102 FS_XFLAG_APPEND | \ 3103 FS_XFLAG_NODUMP | \ 3104 FS_XFLAG_NOATIME | \ 3105 FS_XFLAG_PROJINHERIT) 3106 3107 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ 3108 static inline u32 f2fs_iflags_to_xflags(u32 iflags) 3109 { 3110 u32 xflags = 0; 3111 int i; 3112 3113 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3114 if (iflags & f2fs_xflags_map[i].iflag) 3115 xflags |= f2fs_xflags_map[i].xflag; 3116 3117 return xflags; 3118 } 3119 3120 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ 3121 static inline u32 f2fs_xflags_to_iflags(u32 xflags) 3122 { 3123 u32 iflags = 0; 3124 int i; 3125 3126 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3127 if (xflags & f2fs_xflags_map[i].xflag) 3128 iflags |= f2fs_xflags_map[i].iflag; 3129 3130 return iflags; 3131 } 3132 3133 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa) 3134 { 3135 struct f2fs_inode_info *fi = F2FS_I(inode); 3136 3137 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags)); 3138 3139 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3140 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3141 } 3142 3143 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 3144 { 3145 struct inode *inode = file_inode(filp); 3146 struct fsxattr fa; 3147 3148 f2fs_fill_fsxattr(inode, &fa); 3149 3150 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 3151 return -EFAULT; 3152 return 0; 3153 } 3154 3155 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 3156 { 3157 struct inode *inode = file_inode(filp); 3158 struct fsxattr fa, old_fa; 3159 u32 iflags; 3160 int err; 3161 3162 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 3163 return -EFAULT; 3164 3165 /* Make sure caller has proper permission */ 3166 if (!inode_owner_or_capable(inode)) 3167 return -EACCES; 3168 3169 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) 3170 return -EOPNOTSUPP; 3171 3172 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); 3173 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3174 return -EOPNOTSUPP; 3175 3176 err = mnt_want_write_file(filp); 3177 if (err) 3178 return err; 3179 3180 inode_lock(inode); 3181 3182 f2fs_fill_fsxattr(inode, &old_fa); 3183 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 3184 if (err) 3185 goto out; 3186 3187 err = f2fs_setflags_common(inode, iflags, 3188 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); 3189 if (err) 3190 goto out; 3191 3192 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 3193 out: 3194 inode_unlock(inode); 3195 mnt_drop_write_file(filp); 3196 return err; 3197 } 3198 3199 int f2fs_pin_file_control(struct inode *inode, bool inc) 3200 { 3201 struct f2fs_inode_info *fi = F2FS_I(inode); 3202 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3203 3204 /* Use i_gc_failures for normal file as a risk signal. */ 3205 if (inc) 3206 f2fs_i_gc_failures_write(inode, 3207 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3208 3209 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3210 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3211 __func__, inode->i_ino, 3212 fi->i_gc_failures[GC_FAILURE_PIN]); 3213 clear_inode_flag(inode, FI_PIN_FILE); 3214 return -EAGAIN; 3215 } 3216 return 0; 3217 } 3218 3219 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3220 { 3221 struct inode *inode = file_inode(filp); 3222 __u32 pin; 3223 int ret = 0; 3224 3225 if (get_user(pin, (__u32 __user *)arg)) 3226 return -EFAULT; 3227 3228 if (!S_ISREG(inode->i_mode)) 3229 return -EINVAL; 3230 3231 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3232 return -EROFS; 3233 3234 ret = mnt_want_write_file(filp); 3235 if (ret) 3236 return ret; 3237 3238 inode_lock(inode); 3239 3240 if (f2fs_should_update_outplace(inode, NULL)) { 3241 ret = -EINVAL; 3242 goto out; 3243 } 3244 3245 if (!pin) { 3246 clear_inode_flag(inode, FI_PIN_FILE); 3247 f2fs_i_gc_failures_write(inode, 0); 3248 goto done; 3249 } 3250 3251 if (f2fs_pin_file_control(inode, false)) { 3252 ret = -EAGAIN; 3253 goto out; 3254 } 3255 3256 ret = f2fs_convert_inline_inode(inode); 3257 if (ret) 3258 goto out; 3259 3260 if (f2fs_disable_compressed_file(inode)) { 3261 ret = -EOPNOTSUPP; 3262 goto out; 3263 } 3264 3265 set_inode_flag(inode, FI_PIN_FILE); 3266 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3267 done: 3268 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3269 out: 3270 inode_unlock(inode); 3271 mnt_drop_write_file(filp); 3272 return ret; 3273 } 3274 3275 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3276 { 3277 struct inode *inode = file_inode(filp); 3278 __u32 pin = 0; 3279 3280 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3281 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3282 return put_user(pin, (u32 __user *)arg); 3283 } 3284 3285 int f2fs_precache_extents(struct inode *inode) 3286 { 3287 struct f2fs_inode_info *fi = F2FS_I(inode); 3288 struct f2fs_map_blocks map; 3289 pgoff_t m_next_extent; 3290 loff_t end; 3291 int err; 3292 3293 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3294 return -EOPNOTSUPP; 3295 3296 map.m_lblk = 0; 3297 map.m_next_pgofs = NULL; 3298 map.m_next_extent = &m_next_extent; 3299 map.m_seg_type = NO_CHECK_TYPE; 3300 map.m_may_create = false; 3301 end = F2FS_I_SB(inode)->max_file_blocks; 3302 3303 while (map.m_lblk < end) { 3304 map.m_len = end - map.m_lblk; 3305 3306 down_write(&fi->i_gc_rwsem[WRITE]); 3307 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3308 up_write(&fi->i_gc_rwsem[WRITE]); 3309 if (err) 3310 return err; 3311 3312 map.m_lblk = m_next_extent; 3313 } 3314 3315 return err; 3316 } 3317 3318 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3319 { 3320 return f2fs_precache_extents(file_inode(filp)); 3321 } 3322 3323 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3324 { 3325 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3326 __u64 block_count; 3327 3328 if (!capable(CAP_SYS_ADMIN)) 3329 return -EPERM; 3330 3331 if (f2fs_readonly(sbi->sb)) 3332 return -EROFS; 3333 3334 if (copy_from_user(&block_count, (void __user *)arg, 3335 sizeof(block_count))) 3336 return -EFAULT; 3337 3338 return f2fs_resize_fs(sbi, block_count); 3339 } 3340 3341 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3342 { 3343 struct inode *inode = file_inode(filp); 3344 3345 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3346 3347 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3348 f2fs_warn(F2FS_I_SB(inode), 3349 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n", 3350 inode->i_ino); 3351 return -EOPNOTSUPP; 3352 } 3353 3354 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3355 } 3356 3357 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3358 { 3359 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3360 return -EOPNOTSUPP; 3361 3362 return fsverity_ioctl_measure(filp, (void __user *)arg); 3363 } 3364 3365 static int f2fs_get_volume_name(struct file *filp, unsigned long arg) 3366 { 3367 struct inode *inode = file_inode(filp); 3368 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3369 char *vbuf; 3370 int count; 3371 int err = 0; 3372 3373 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3374 if (!vbuf) 3375 return -ENOMEM; 3376 3377 down_read(&sbi->sb_lock); 3378 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3379 ARRAY_SIZE(sbi->raw_super->volume_name), 3380 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3381 up_read(&sbi->sb_lock); 3382 3383 if (copy_to_user((char __user *)arg, vbuf, 3384 min(FSLABEL_MAX, count))) 3385 err = -EFAULT; 3386 3387 kvfree(vbuf); 3388 return err; 3389 } 3390 3391 static int f2fs_set_volume_name(struct file *filp, unsigned long arg) 3392 { 3393 struct inode *inode = file_inode(filp); 3394 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3395 char *vbuf; 3396 int err = 0; 3397 3398 if (!capable(CAP_SYS_ADMIN)) 3399 return -EPERM; 3400 3401 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3402 if (IS_ERR(vbuf)) 3403 return PTR_ERR(vbuf); 3404 3405 err = mnt_want_write_file(filp); 3406 if (err) 3407 goto out; 3408 3409 down_write(&sbi->sb_lock); 3410 3411 memset(sbi->raw_super->volume_name, 0, 3412 sizeof(sbi->raw_super->volume_name)); 3413 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3414 sbi->raw_super->volume_name, 3415 ARRAY_SIZE(sbi->raw_super->volume_name)); 3416 3417 err = f2fs_commit_super(sbi, false); 3418 3419 up_write(&sbi->sb_lock); 3420 3421 mnt_drop_write_file(filp); 3422 out: 3423 kfree(vbuf); 3424 return err; 3425 } 3426 3427 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3428 { 3429 struct inode *inode = file_inode(filp); 3430 __u64 blocks; 3431 3432 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3433 return -EOPNOTSUPP; 3434 3435 if (!f2fs_compressed_file(inode)) 3436 return -EINVAL; 3437 3438 blocks = F2FS_I(inode)->i_compr_blocks; 3439 return put_user(blocks, (u64 __user *)arg); 3440 } 3441 3442 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3443 { 3444 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3445 unsigned int released_blocks = 0; 3446 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3447 block_t blkaddr; 3448 int i; 3449 3450 for (i = 0; i < count; i++) { 3451 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3452 dn->ofs_in_node + i); 3453 3454 if (!__is_valid_data_blkaddr(blkaddr)) 3455 continue; 3456 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3457 DATA_GENERIC_ENHANCE))) 3458 return -EFSCORRUPTED; 3459 } 3460 3461 while (count) { 3462 int compr_blocks = 0; 3463 3464 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3465 blkaddr = f2fs_data_blkaddr(dn); 3466 3467 if (i == 0) { 3468 if (blkaddr == COMPRESS_ADDR) 3469 continue; 3470 dn->ofs_in_node += cluster_size; 3471 goto next; 3472 } 3473 3474 if (__is_valid_data_blkaddr(blkaddr)) 3475 compr_blocks++; 3476 3477 if (blkaddr != NEW_ADDR) 3478 continue; 3479 3480 dn->data_blkaddr = NULL_ADDR; 3481 f2fs_set_data_blkaddr(dn); 3482 } 3483 3484 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3485 dec_valid_block_count(sbi, dn->inode, 3486 cluster_size - compr_blocks); 3487 3488 released_blocks += cluster_size - compr_blocks; 3489 next: 3490 count -= cluster_size; 3491 } 3492 3493 return released_blocks; 3494 } 3495 3496 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3497 { 3498 struct inode *inode = file_inode(filp); 3499 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3500 pgoff_t page_idx = 0, last_idx; 3501 unsigned int released_blocks = 0; 3502 int ret; 3503 int writecount; 3504 3505 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3506 return -EOPNOTSUPP; 3507 3508 if (!f2fs_compressed_file(inode)) 3509 return -EINVAL; 3510 3511 if (f2fs_readonly(sbi->sb)) 3512 return -EROFS; 3513 3514 ret = mnt_want_write_file(filp); 3515 if (ret) 3516 return ret; 3517 3518 f2fs_balance_fs(F2FS_I_SB(inode), true); 3519 3520 inode_lock(inode); 3521 3522 writecount = atomic_read(&inode->i_writecount); 3523 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || writecount) { 3524 ret = -EBUSY; 3525 goto out; 3526 } 3527 3528 if (IS_IMMUTABLE(inode)) { 3529 ret = -EINVAL; 3530 goto out; 3531 } 3532 3533 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3534 if (ret) 3535 goto out; 3536 3537 if (!F2FS_I(inode)->i_compr_blocks) 3538 goto out; 3539 3540 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL; 3541 f2fs_set_inode_flags(inode); 3542 inode->i_ctime = current_time(inode); 3543 f2fs_mark_inode_dirty_sync(inode, true); 3544 3545 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3546 down_write(&F2FS_I(inode)->i_mmap_sem); 3547 3548 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3549 3550 while (page_idx < last_idx) { 3551 struct dnode_of_data dn; 3552 pgoff_t end_offset, count; 3553 3554 set_new_dnode(&dn, inode, NULL, NULL, 0); 3555 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3556 if (ret) { 3557 if (ret == -ENOENT) { 3558 page_idx = f2fs_get_next_page_offset(&dn, 3559 page_idx); 3560 ret = 0; 3561 continue; 3562 } 3563 break; 3564 } 3565 3566 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3567 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3568 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3569 3570 ret = release_compress_blocks(&dn, count); 3571 3572 f2fs_put_dnode(&dn); 3573 3574 if (ret < 0) 3575 break; 3576 3577 page_idx += count; 3578 released_blocks += ret; 3579 } 3580 3581 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3582 up_write(&F2FS_I(inode)->i_mmap_sem); 3583 out: 3584 inode_unlock(inode); 3585 3586 mnt_drop_write_file(filp); 3587 3588 if (ret >= 0) { 3589 ret = put_user(released_blocks, (u64 __user *)arg); 3590 } else if (released_blocks && F2FS_I(inode)->i_compr_blocks) { 3591 set_sbi_flag(sbi, SBI_NEED_FSCK); 3592 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3593 "iblocks=%llu, released=%u, compr_blocks=%llu, " 3594 "run fsck to fix.", 3595 __func__, inode->i_ino, inode->i_blocks, 3596 released_blocks, 3597 F2FS_I(inode)->i_compr_blocks); 3598 } 3599 3600 return ret; 3601 } 3602 3603 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3604 { 3605 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3606 unsigned int reserved_blocks = 0; 3607 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3608 block_t blkaddr; 3609 int i; 3610 3611 for (i = 0; i < count; i++) { 3612 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3613 dn->ofs_in_node + i); 3614 3615 if (!__is_valid_data_blkaddr(blkaddr)) 3616 continue; 3617 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3618 DATA_GENERIC_ENHANCE))) 3619 return -EFSCORRUPTED; 3620 } 3621 3622 while (count) { 3623 int compr_blocks = 0; 3624 blkcnt_t reserved; 3625 int ret; 3626 3627 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3628 blkaddr = f2fs_data_blkaddr(dn); 3629 3630 if (i == 0) { 3631 if (blkaddr == COMPRESS_ADDR) 3632 continue; 3633 dn->ofs_in_node += cluster_size; 3634 goto next; 3635 } 3636 3637 if (__is_valid_data_blkaddr(blkaddr)) { 3638 compr_blocks++; 3639 continue; 3640 } 3641 3642 dn->data_blkaddr = NEW_ADDR; 3643 f2fs_set_data_blkaddr(dn); 3644 } 3645 3646 reserved = cluster_size - compr_blocks; 3647 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3648 if (ret) 3649 return ret; 3650 3651 if (reserved != cluster_size - compr_blocks) 3652 return -ENOSPC; 3653 3654 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3655 3656 reserved_blocks += reserved; 3657 next: 3658 count -= cluster_size; 3659 } 3660 3661 return reserved_blocks; 3662 } 3663 3664 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3665 { 3666 struct inode *inode = file_inode(filp); 3667 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3668 pgoff_t page_idx = 0, last_idx; 3669 unsigned int reserved_blocks = 0; 3670 int ret; 3671 3672 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3673 return -EOPNOTSUPP; 3674 3675 if (!f2fs_compressed_file(inode)) 3676 return -EINVAL; 3677 3678 if (f2fs_readonly(sbi->sb)) 3679 return -EROFS; 3680 3681 ret = mnt_want_write_file(filp); 3682 if (ret) 3683 return ret; 3684 3685 if (F2FS_I(inode)->i_compr_blocks) 3686 goto out; 3687 3688 f2fs_balance_fs(F2FS_I_SB(inode), true); 3689 3690 inode_lock(inode); 3691 3692 if (!IS_IMMUTABLE(inode)) { 3693 ret = -EINVAL; 3694 goto unlock_inode; 3695 } 3696 3697 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3698 down_write(&F2FS_I(inode)->i_mmap_sem); 3699 3700 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3701 3702 while (page_idx < last_idx) { 3703 struct dnode_of_data dn; 3704 pgoff_t end_offset, count; 3705 3706 set_new_dnode(&dn, inode, NULL, NULL, 0); 3707 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3708 if (ret) { 3709 if (ret == -ENOENT) { 3710 page_idx = f2fs_get_next_page_offset(&dn, 3711 page_idx); 3712 ret = 0; 3713 continue; 3714 } 3715 break; 3716 } 3717 3718 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3719 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3720 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3721 3722 ret = reserve_compress_blocks(&dn, count); 3723 3724 f2fs_put_dnode(&dn); 3725 3726 if (ret < 0) 3727 break; 3728 3729 page_idx += count; 3730 reserved_blocks += ret; 3731 } 3732 3733 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3734 up_write(&F2FS_I(inode)->i_mmap_sem); 3735 3736 if (ret >= 0) { 3737 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL; 3738 f2fs_set_inode_flags(inode); 3739 inode->i_ctime = current_time(inode); 3740 f2fs_mark_inode_dirty_sync(inode, true); 3741 } 3742 unlock_inode: 3743 inode_unlock(inode); 3744 out: 3745 mnt_drop_write_file(filp); 3746 3747 if (ret >= 0) { 3748 ret = put_user(reserved_blocks, (u64 __user *)arg); 3749 } else if (reserved_blocks && F2FS_I(inode)->i_compr_blocks) { 3750 set_sbi_flag(sbi, SBI_NEED_FSCK); 3751 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3752 "iblocks=%llu, reserved=%u, compr_blocks=%llu, " 3753 "run fsck to fix.", 3754 __func__, inode->i_ino, inode->i_blocks, 3755 reserved_blocks, 3756 F2FS_I(inode)->i_compr_blocks); 3757 } 3758 3759 return ret; 3760 } 3761 3762 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 3763 { 3764 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 3765 return -EIO; 3766 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 3767 return -ENOSPC; 3768 3769 switch (cmd) { 3770 case F2FS_IOC_GETFLAGS: 3771 return f2fs_ioc_getflags(filp, arg); 3772 case F2FS_IOC_SETFLAGS: 3773 return f2fs_ioc_setflags(filp, arg); 3774 case F2FS_IOC_GETVERSION: 3775 return f2fs_ioc_getversion(filp, arg); 3776 case F2FS_IOC_START_ATOMIC_WRITE: 3777 return f2fs_ioc_start_atomic_write(filp); 3778 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3779 return f2fs_ioc_commit_atomic_write(filp); 3780 case F2FS_IOC_START_VOLATILE_WRITE: 3781 return f2fs_ioc_start_volatile_write(filp); 3782 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3783 return f2fs_ioc_release_volatile_write(filp); 3784 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3785 return f2fs_ioc_abort_volatile_write(filp); 3786 case F2FS_IOC_SHUTDOWN: 3787 return f2fs_ioc_shutdown(filp, arg); 3788 case FITRIM: 3789 return f2fs_ioc_fitrim(filp, arg); 3790 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3791 return f2fs_ioc_set_encryption_policy(filp, arg); 3792 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3793 return f2fs_ioc_get_encryption_policy(filp, arg); 3794 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3795 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 3796 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3797 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 3798 case FS_IOC_ADD_ENCRYPTION_KEY: 3799 return f2fs_ioc_add_encryption_key(filp, arg); 3800 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3801 return f2fs_ioc_remove_encryption_key(filp, arg); 3802 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3803 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 3804 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3805 return f2fs_ioc_get_encryption_key_status(filp, arg); 3806 case FS_IOC_GET_ENCRYPTION_NONCE: 3807 return f2fs_ioc_get_encryption_nonce(filp, arg); 3808 case F2FS_IOC_GARBAGE_COLLECT: 3809 return f2fs_ioc_gc(filp, arg); 3810 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3811 return f2fs_ioc_gc_range(filp, arg); 3812 case F2FS_IOC_WRITE_CHECKPOINT: 3813 return f2fs_ioc_write_checkpoint(filp, arg); 3814 case F2FS_IOC_DEFRAGMENT: 3815 return f2fs_ioc_defragment(filp, arg); 3816 case F2FS_IOC_MOVE_RANGE: 3817 return f2fs_ioc_move_range(filp, arg); 3818 case F2FS_IOC_FLUSH_DEVICE: 3819 return f2fs_ioc_flush_device(filp, arg); 3820 case F2FS_IOC_GET_FEATURES: 3821 return f2fs_ioc_get_features(filp, arg); 3822 case F2FS_IOC_FSGETXATTR: 3823 return f2fs_ioc_fsgetxattr(filp, arg); 3824 case F2FS_IOC_FSSETXATTR: 3825 return f2fs_ioc_fssetxattr(filp, arg); 3826 case F2FS_IOC_GET_PIN_FILE: 3827 return f2fs_ioc_get_pin_file(filp, arg); 3828 case F2FS_IOC_SET_PIN_FILE: 3829 return f2fs_ioc_set_pin_file(filp, arg); 3830 case F2FS_IOC_PRECACHE_EXTENTS: 3831 return f2fs_ioc_precache_extents(filp, arg); 3832 case F2FS_IOC_RESIZE_FS: 3833 return f2fs_ioc_resize_fs(filp, arg); 3834 case FS_IOC_ENABLE_VERITY: 3835 return f2fs_ioc_enable_verity(filp, arg); 3836 case FS_IOC_MEASURE_VERITY: 3837 return f2fs_ioc_measure_verity(filp, arg); 3838 case F2FS_IOC_GET_VOLUME_NAME: 3839 return f2fs_get_volume_name(filp, arg); 3840 case F2FS_IOC_SET_VOLUME_NAME: 3841 return f2fs_set_volume_name(filp, arg); 3842 case F2FS_IOC_GET_COMPRESS_BLOCKS: 3843 return f2fs_get_compress_blocks(filp, arg); 3844 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 3845 return f2fs_release_compress_blocks(filp, arg); 3846 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 3847 return f2fs_reserve_compress_blocks(filp, arg); 3848 default: 3849 return -ENOTTY; 3850 } 3851 } 3852 3853 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 3854 { 3855 struct file *file = iocb->ki_filp; 3856 struct inode *inode = file_inode(file); 3857 int ret; 3858 3859 if (!f2fs_is_compress_backend_ready(inode)) 3860 return -EOPNOTSUPP; 3861 3862 ret = generic_file_read_iter(iocb, iter); 3863 3864 if (ret > 0) 3865 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret); 3866 3867 return ret; 3868 } 3869 3870 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3871 { 3872 struct file *file = iocb->ki_filp; 3873 struct inode *inode = file_inode(file); 3874 ssize_t ret; 3875 3876 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 3877 ret = -EIO; 3878 goto out; 3879 } 3880 3881 if (!f2fs_is_compress_backend_ready(inode)) { 3882 ret = -EOPNOTSUPP; 3883 goto out; 3884 } 3885 3886 if (iocb->ki_flags & IOCB_NOWAIT) { 3887 if (!inode_trylock(inode)) { 3888 ret = -EAGAIN; 3889 goto out; 3890 } 3891 } else { 3892 inode_lock(inode); 3893 } 3894 3895 ret = generic_write_checks(iocb, from); 3896 if (ret > 0) { 3897 bool preallocated = false; 3898 size_t target_size = 0; 3899 int err; 3900 3901 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 3902 set_inode_flag(inode, FI_NO_PREALLOC); 3903 3904 if ((iocb->ki_flags & IOCB_NOWAIT)) { 3905 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 3906 iov_iter_count(from)) || 3907 f2fs_has_inline_data(inode) || 3908 f2fs_force_buffered_io(inode, iocb, from)) { 3909 clear_inode_flag(inode, FI_NO_PREALLOC); 3910 inode_unlock(inode); 3911 ret = -EAGAIN; 3912 goto out; 3913 } 3914 goto write; 3915 } 3916 3917 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 3918 goto write; 3919 3920 if (iocb->ki_flags & IOCB_DIRECT) { 3921 /* 3922 * Convert inline data for Direct I/O before entering 3923 * f2fs_direct_IO(). 3924 */ 3925 err = f2fs_convert_inline_inode(inode); 3926 if (err) 3927 goto out_err; 3928 /* 3929 * If force_buffere_io() is true, we have to allocate 3930 * blocks all the time, since f2fs_direct_IO will fall 3931 * back to buffered IO. 3932 */ 3933 if (!f2fs_force_buffered_io(inode, iocb, from) && 3934 allow_outplace_dio(inode, iocb, from)) 3935 goto write; 3936 } 3937 preallocated = true; 3938 target_size = iocb->ki_pos + iov_iter_count(from); 3939 3940 err = f2fs_preallocate_blocks(iocb, from); 3941 if (err) { 3942 out_err: 3943 clear_inode_flag(inode, FI_NO_PREALLOC); 3944 inode_unlock(inode); 3945 ret = err; 3946 goto out; 3947 } 3948 write: 3949 ret = __generic_file_write_iter(iocb, from); 3950 clear_inode_flag(inode, FI_NO_PREALLOC); 3951 3952 /* if we couldn't write data, we should deallocate blocks. */ 3953 if (preallocated && i_size_read(inode) < target_size) 3954 f2fs_truncate(inode); 3955 3956 if (ret > 0) 3957 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 3958 } 3959 inode_unlock(inode); 3960 out: 3961 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 3962 iov_iter_count(from), ret); 3963 if (ret > 0) 3964 ret = generic_write_sync(iocb, ret); 3965 return ret; 3966 } 3967 3968 #ifdef CONFIG_COMPAT 3969 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3970 { 3971 switch (cmd) { 3972 case F2FS_IOC32_GETFLAGS: 3973 cmd = F2FS_IOC_GETFLAGS; 3974 break; 3975 case F2FS_IOC32_SETFLAGS: 3976 cmd = F2FS_IOC_SETFLAGS; 3977 break; 3978 case F2FS_IOC32_GETVERSION: 3979 cmd = F2FS_IOC_GETVERSION; 3980 break; 3981 case F2FS_IOC_START_ATOMIC_WRITE: 3982 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3983 case F2FS_IOC_START_VOLATILE_WRITE: 3984 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3985 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3986 case F2FS_IOC_SHUTDOWN: 3987 case FITRIM: 3988 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3989 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3990 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3991 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3992 case FS_IOC_ADD_ENCRYPTION_KEY: 3993 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3994 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3995 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3996 case FS_IOC_GET_ENCRYPTION_NONCE: 3997 case F2FS_IOC_GARBAGE_COLLECT: 3998 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3999 case F2FS_IOC_WRITE_CHECKPOINT: 4000 case F2FS_IOC_DEFRAGMENT: 4001 case F2FS_IOC_MOVE_RANGE: 4002 case F2FS_IOC_FLUSH_DEVICE: 4003 case F2FS_IOC_GET_FEATURES: 4004 case F2FS_IOC_FSGETXATTR: 4005 case F2FS_IOC_FSSETXATTR: 4006 case F2FS_IOC_GET_PIN_FILE: 4007 case F2FS_IOC_SET_PIN_FILE: 4008 case F2FS_IOC_PRECACHE_EXTENTS: 4009 case F2FS_IOC_RESIZE_FS: 4010 case FS_IOC_ENABLE_VERITY: 4011 case FS_IOC_MEASURE_VERITY: 4012 case F2FS_IOC_GET_VOLUME_NAME: 4013 case F2FS_IOC_SET_VOLUME_NAME: 4014 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4015 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4016 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4017 break; 4018 default: 4019 return -ENOIOCTLCMD; 4020 } 4021 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4022 } 4023 #endif 4024 4025 const struct file_operations f2fs_file_operations = { 4026 .llseek = f2fs_llseek, 4027 .read_iter = f2fs_file_read_iter, 4028 .write_iter = f2fs_file_write_iter, 4029 .open = f2fs_file_open, 4030 .release = f2fs_release_file, 4031 .mmap = f2fs_file_mmap, 4032 .flush = f2fs_file_flush, 4033 .fsync = f2fs_sync_file, 4034 .fallocate = f2fs_fallocate, 4035 .unlocked_ioctl = f2fs_ioctl, 4036 #ifdef CONFIG_COMPAT 4037 .compat_ioctl = f2fs_compat_ioctl, 4038 #endif 4039 .splice_read = generic_file_splice_read, 4040 .splice_write = iter_file_splice_write, 4041 }; 4042