xref: /openbmc/linux/fs/f2fs/file.c (revision 7c45729a4d6d1c90879e6c5c2df325c2f6db7191)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
24 #include <linux/file.h>
25 
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
34 
35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
36 						struct vm_fault *vmf)
37 {
38 	struct page *page = vmf->page;
39 	struct inode *inode = file_inode(vma->vm_file);
40 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 	struct dnode_of_data dn;
42 	int err;
43 
44 	sb_start_pagefault(inode->i_sb);
45 
46 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47 
48 	/* block allocation */
49 	f2fs_lock_op(sbi);
50 	set_new_dnode(&dn, inode, NULL, NULL, 0);
51 	err = f2fs_reserve_block(&dn, page->index);
52 	if (err) {
53 		f2fs_unlock_op(sbi);
54 		goto out;
55 	}
56 	f2fs_put_dnode(&dn);
57 	f2fs_unlock_op(sbi);
58 
59 	f2fs_balance_fs(sbi, dn.node_changed);
60 
61 	file_update_time(vma->vm_file);
62 	lock_page(page);
63 	if (unlikely(page->mapping != inode->i_mapping ||
64 			page_offset(page) > i_size_read(inode) ||
65 			!PageUptodate(page))) {
66 		unlock_page(page);
67 		err = -EFAULT;
68 		goto out;
69 	}
70 
71 	/*
72 	 * check to see if the page is mapped already (no holes)
73 	 */
74 	if (PageMappedToDisk(page))
75 		goto mapped;
76 
77 	/* page is wholly or partially inside EOF */
78 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
79 						i_size_read(inode)) {
80 		unsigned offset;
81 		offset = i_size_read(inode) & ~PAGE_MASK;
82 		zero_user_segment(page, offset, PAGE_SIZE);
83 	}
84 	set_page_dirty(page);
85 	if (!PageUptodate(page))
86 		SetPageUptodate(page);
87 
88 	trace_f2fs_vm_page_mkwrite(page, DATA);
89 mapped:
90 	/* fill the page */
91 	f2fs_wait_on_page_writeback(page, DATA, false);
92 
93 	/* wait for GCed encrypted page writeback */
94 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
96 
97 	/* if gced page is attached, don't write to cold segment */
98 	clear_cold_data(page);
99 out:
100 	sb_end_pagefault(inode->i_sb);
101 	f2fs_update_time(sbi, REQ_TIME);
102 	return block_page_mkwrite_return(err);
103 }
104 
105 static const struct vm_operations_struct f2fs_file_vm_ops = {
106 	.fault		= filemap_fault,
107 	.map_pages	= filemap_map_pages,
108 	.page_mkwrite	= f2fs_vm_page_mkwrite,
109 };
110 
111 static int get_parent_ino(struct inode *inode, nid_t *pino)
112 {
113 	struct dentry *dentry;
114 
115 	inode = igrab(inode);
116 	dentry = d_find_any_alias(inode);
117 	iput(inode);
118 	if (!dentry)
119 		return 0;
120 
121 	if (update_dent_inode(inode, inode, &dentry->d_name)) {
122 		dput(dentry);
123 		return 0;
124 	}
125 
126 	*pino = parent_ino(dentry);
127 	dput(dentry);
128 	return 1;
129 }
130 
131 static inline bool need_do_checkpoint(struct inode *inode)
132 {
133 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
134 	bool need_cp = false;
135 
136 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
137 		need_cp = true;
138 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
139 		need_cp = true;
140 	else if (file_wrong_pino(inode))
141 		need_cp = true;
142 	else if (!space_for_roll_forward(sbi))
143 		need_cp = true;
144 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
145 		need_cp = true;
146 	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
147 		need_cp = true;
148 	else if (test_opt(sbi, FASTBOOT))
149 		need_cp = true;
150 	else if (sbi->active_logs == 2)
151 		need_cp = true;
152 
153 	return need_cp;
154 }
155 
156 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
157 {
158 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
159 	bool ret = false;
160 	/* But we need to avoid that there are some inode updates */
161 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
162 		ret = true;
163 	f2fs_put_page(i, 0);
164 	return ret;
165 }
166 
167 static void try_to_fix_pino(struct inode *inode)
168 {
169 	struct f2fs_inode_info *fi = F2FS_I(inode);
170 	nid_t pino;
171 
172 	down_write(&fi->i_sem);
173 	fi->xattr_ver = 0;
174 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
175 			get_parent_ino(inode, &pino)) {
176 		f2fs_i_pino_write(inode, pino);
177 		file_got_pino(inode);
178 	}
179 	up_write(&fi->i_sem);
180 }
181 
182 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
183 						int datasync, bool atomic)
184 {
185 	struct inode *inode = file->f_mapping->host;
186 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
187 	nid_t ino = inode->i_ino;
188 	int ret = 0;
189 	bool need_cp = false;
190 	struct writeback_control wbc = {
191 		.sync_mode = WB_SYNC_ALL,
192 		.nr_to_write = LONG_MAX,
193 		.for_reclaim = 0,
194 	};
195 
196 	if (unlikely(f2fs_readonly(inode->i_sb)))
197 		return 0;
198 
199 	trace_f2fs_sync_file_enter(inode);
200 
201 	/* if fdatasync is triggered, let's do in-place-update */
202 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
203 		set_inode_flag(inode, FI_NEED_IPU);
204 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
205 	clear_inode_flag(inode, FI_NEED_IPU);
206 
207 	if (ret) {
208 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
209 		return ret;
210 	}
211 
212 	/* if the inode is dirty, let's recover all the time */
213 	if (!datasync && !f2fs_skip_inode_update(inode)) {
214 		f2fs_write_inode(inode, NULL);
215 		goto go_write;
216 	}
217 
218 	/*
219 	 * if there is no written data, don't waste time to write recovery info.
220 	 */
221 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
222 			!exist_written_data(sbi, ino, APPEND_INO)) {
223 
224 		/* it may call write_inode just prior to fsync */
225 		if (need_inode_page_update(sbi, ino))
226 			goto go_write;
227 
228 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
229 				exist_written_data(sbi, ino, UPDATE_INO))
230 			goto flush_out;
231 		goto out;
232 	}
233 go_write:
234 	/*
235 	 * Both of fdatasync() and fsync() are able to be recovered from
236 	 * sudden-power-off.
237 	 */
238 	down_read(&F2FS_I(inode)->i_sem);
239 	need_cp = need_do_checkpoint(inode);
240 	up_read(&F2FS_I(inode)->i_sem);
241 
242 	if (need_cp) {
243 		/* all the dirty node pages should be flushed for POR */
244 		ret = f2fs_sync_fs(inode->i_sb, 1);
245 
246 		/*
247 		 * We've secured consistency through sync_fs. Following pino
248 		 * will be used only for fsynced inodes after checkpoint.
249 		 */
250 		try_to_fix_pino(inode);
251 		clear_inode_flag(inode, FI_APPEND_WRITE);
252 		clear_inode_flag(inode, FI_UPDATE_WRITE);
253 		goto out;
254 	}
255 sync_nodes:
256 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
257 	if (ret)
258 		goto out;
259 
260 	/* if cp_error was enabled, we should avoid infinite loop */
261 	if (unlikely(f2fs_cp_error(sbi))) {
262 		ret = -EIO;
263 		goto out;
264 	}
265 
266 	if (need_inode_block_update(sbi, ino)) {
267 		f2fs_mark_inode_dirty_sync(inode, true);
268 		f2fs_write_inode(inode, NULL);
269 		goto sync_nodes;
270 	}
271 
272 	ret = wait_on_node_pages_writeback(sbi, ino);
273 	if (ret)
274 		goto out;
275 
276 	/* once recovery info is written, don't need to tack this */
277 	remove_ino_entry(sbi, ino, APPEND_INO);
278 	clear_inode_flag(inode, FI_APPEND_WRITE);
279 flush_out:
280 	remove_ino_entry(sbi, ino, UPDATE_INO);
281 	clear_inode_flag(inode, FI_UPDATE_WRITE);
282 	ret = f2fs_issue_flush(sbi);
283 	f2fs_update_time(sbi, REQ_TIME);
284 out:
285 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
286 	f2fs_trace_ios(NULL, 1);
287 	return ret;
288 }
289 
290 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
291 {
292 	return f2fs_do_sync_file(file, start, end, datasync, false);
293 }
294 
295 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
296 						pgoff_t pgofs, int whence)
297 {
298 	struct pagevec pvec;
299 	int nr_pages;
300 
301 	if (whence != SEEK_DATA)
302 		return 0;
303 
304 	/* find first dirty page index */
305 	pagevec_init(&pvec, 0);
306 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
307 					PAGECACHE_TAG_DIRTY, 1);
308 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
309 	pagevec_release(&pvec);
310 	return pgofs;
311 }
312 
313 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
314 							int whence)
315 {
316 	switch (whence) {
317 	case SEEK_DATA:
318 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
319 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
320 			return true;
321 		break;
322 	case SEEK_HOLE:
323 		if (blkaddr == NULL_ADDR)
324 			return true;
325 		break;
326 	}
327 	return false;
328 }
329 
330 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
331 {
332 	struct inode *inode = file->f_mapping->host;
333 	loff_t maxbytes = inode->i_sb->s_maxbytes;
334 	struct dnode_of_data dn;
335 	pgoff_t pgofs, end_offset, dirty;
336 	loff_t data_ofs = offset;
337 	loff_t isize;
338 	int err = 0;
339 
340 	inode_lock(inode);
341 
342 	isize = i_size_read(inode);
343 	if (offset >= isize)
344 		goto fail;
345 
346 	/* handle inline data case */
347 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
348 		if (whence == SEEK_HOLE)
349 			data_ofs = isize;
350 		goto found;
351 	}
352 
353 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
354 
355 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
356 
357 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
358 		set_new_dnode(&dn, inode, NULL, NULL, 0);
359 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
360 		if (err && err != -ENOENT) {
361 			goto fail;
362 		} else if (err == -ENOENT) {
363 			/* direct node does not exists */
364 			if (whence == SEEK_DATA) {
365 				pgofs = get_next_page_offset(&dn, pgofs);
366 				continue;
367 			} else {
368 				goto found;
369 			}
370 		}
371 
372 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
373 
374 		/* find data/hole in dnode block */
375 		for (; dn.ofs_in_node < end_offset;
376 				dn.ofs_in_node++, pgofs++,
377 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
378 			block_t blkaddr;
379 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
380 
381 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
382 				f2fs_put_dnode(&dn);
383 				goto found;
384 			}
385 		}
386 		f2fs_put_dnode(&dn);
387 	}
388 
389 	if (whence == SEEK_DATA)
390 		goto fail;
391 found:
392 	if (whence == SEEK_HOLE && data_ofs > isize)
393 		data_ofs = isize;
394 	inode_unlock(inode);
395 	return vfs_setpos(file, data_ofs, maxbytes);
396 fail:
397 	inode_unlock(inode);
398 	return -ENXIO;
399 }
400 
401 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
402 {
403 	struct inode *inode = file->f_mapping->host;
404 	loff_t maxbytes = inode->i_sb->s_maxbytes;
405 
406 	switch (whence) {
407 	case SEEK_SET:
408 	case SEEK_CUR:
409 	case SEEK_END:
410 		return generic_file_llseek_size(file, offset, whence,
411 						maxbytes, i_size_read(inode));
412 	case SEEK_DATA:
413 	case SEEK_HOLE:
414 		if (offset < 0)
415 			return -ENXIO;
416 		return f2fs_seek_block(file, offset, whence);
417 	}
418 
419 	return -EINVAL;
420 }
421 
422 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
423 {
424 	struct inode *inode = file_inode(file);
425 	int err;
426 
427 	if (f2fs_encrypted_inode(inode)) {
428 		err = fscrypt_get_encryption_info(inode);
429 		if (err)
430 			return 0;
431 		if (!f2fs_encrypted_inode(inode))
432 			return -ENOKEY;
433 	}
434 
435 	/* we don't need to use inline_data strictly */
436 	err = f2fs_convert_inline_inode(inode);
437 	if (err)
438 		return err;
439 
440 	file_accessed(file);
441 	vma->vm_ops = &f2fs_file_vm_ops;
442 	return 0;
443 }
444 
445 static int f2fs_file_open(struct inode *inode, struct file *filp)
446 {
447 	int ret = generic_file_open(inode, filp);
448 	struct dentry *dir;
449 
450 	if (!ret && f2fs_encrypted_inode(inode)) {
451 		ret = fscrypt_get_encryption_info(inode);
452 		if (ret)
453 			return -EACCES;
454 		if (!fscrypt_has_encryption_key(inode))
455 			return -ENOKEY;
456 	}
457 	dir = dget_parent(file_dentry(filp));
458 	if (f2fs_encrypted_inode(d_inode(dir)) &&
459 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
460 		dput(dir);
461 		return -EPERM;
462 	}
463 	dput(dir);
464 	return ret;
465 }
466 
467 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
468 {
469 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
470 	struct f2fs_node *raw_node;
471 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
472 	__le32 *addr;
473 
474 	raw_node = F2FS_NODE(dn->node_page);
475 	addr = blkaddr_in_node(raw_node) + ofs;
476 
477 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
478 		block_t blkaddr = le32_to_cpu(*addr);
479 		if (blkaddr == NULL_ADDR)
480 			continue;
481 
482 		dn->data_blkaddr = NULL_ADDR;
483 		set_data_blkaddr(dn);
484 		invalidate_blocks(sbi, blkaddr);
485 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
486 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
487 		nr_free++;
488 	}
489 
490 	if (nr_free) {
491 		pgoff_t fofs;
492 		/*
493 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
494 		 * we will invalidate all blkaddr in the whole range.
495 		 */
496 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
497 							dn->inode) + ofs;
498 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
499 		dec_valid_block_count(sbi, dn->inode, nr_free);
500 	}
501 	dn->ofs_in_node = ofs;
502 
503 	f2fs_update_time(sbi, REQ_TIME);
504 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
505 					 dn->ofs_in_node, nr_free);
506 	return nr_free;
507 }
508 
509 void truncate_data_blocks(struct dnode_of_data *dn)
510 {
511 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
512 }
513 
514 static int truncate_partial_data_page(struct inode *inode, u64 from,
515 								bool cache_only)
516 {
517 	unsigned offset = from & (PAGE_SIZE - 1);
518 	pgoff_t index = from >> PAGE_SHIFT;
519 	struct address_space *mapping = inode->i_mapping;
520 	struct page *page;
521 
522 	if (!offset && !cache_only)
523 		return 0;
524 
525 	if (cache_only) {
526 		page = find_lock_page(mapping, index);
527 		if (page && PageUptodate(page))
528 			goto truncate_out;
529 		f2fs_put_page(page, 1);
530 		return 0;
531 	}
532 
533 	page = get_lock_data_page(inode, index, true);
534 	if (IS_ERR(page))
535 		return 0;
536 truncate_out:
537 	f2fs_wait_on_page_writeback(page, DATA, true);
538 	zero_user(page, offset, PAGE_SIZE - offset);
539 	if (!cache_only || !f2fs_encrypted_inode(inode) ||
540 					!S_ISREG(inode->i_mode))
541 		set_page_dirty(page);
542 	f2fs_put_page(page, 1);
543 	return 0;
544 }
545 
546 int truncate_blocks(struct inode *inode, u64 from, bool lock)
547 {
548 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
549 	unsigned int blocksize = inode->i_sb->s_blocksize;
550 	struct dnode_of_data dn;
551 	pgoff_t free_from;
552 	int count = 0, err = 0;
553 	struct page *ipage;
554 	bool truncate_page = false;
555 
556 	trace_f2fs_truncate_blocks_enter(inode, from);
557 
558 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
559 
560 	if (free_from >= sbi->max_file_blocks)
561 		goto free_partial;
562 
563 	if (lock)
564 		f2fs_lock_op(sbi);
565 
566 	ipage = get_node_page(sbi, inode->i_ino);
567 	if (IS_ERR(ipage)) {
568 		err = PTR_ERR(ipage);
569 		goto out;
570 	}
571 
572 	if (f2fs_has_inline_data(inode)) {
573 		if (truncate_inline_inode(ipage, from))
574 			set_page_dirty(ipage);
575 		f2fs_put_page(ipage, 1);
576 		truncate_page = true;
577 		goto out;
578 	}
579 
580 	set_new_dnode(&dn, inode, ipage, NULL, 0);
581 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
582 	if (err) {
583 		if (err == -ENOENT)
584 			goto free_next;
585 		goto out;
586 	}
587 
588 	count = ADDRS_PER_PAGE(dn.node_page, inode);
589 
590 	count -= dn.ofs_in_node;
591 	f2fs_bug_on(sbi, count < 0);
592 
593 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
594 		truncate_data_blocks_range(&dn, count);
595 		free_from += count;
596 	}
597 
598 	f2fs_put_dnode(&dn);
599 free_next:
600 	err = truncate_inode_blocks(inode, free_from);
601 out:
602 	if (lock)
603 		f2fs_unlock_op(sbi);
604 free_partial:
605 	/* lastly zero out the first data page */
606 	if (!err)
607 		err = truncate_partial_data_page(inode, from, truncate_page);
608 
609 	trace_f2fs_truncate_blocks_exit(inode, err);
610 	return err;
611 }
612 
613 int f2fs_truncate(struct inode *inode)
614 {
615 	int err;
616 
617 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
618 				S_ISLNK(inode->i_mode)))
619 		return 0;
620 
621 	trace_f2fs_truncate(inode);
622 
623 	/* we should check inline_data size */
624 	if (!f2fs_may_inline_data(inode)) {
625 		err = f2fs_convert_inline_inode(inode);
626 		if (err)
627 			return err;
628 	}
629 
630 	err = truncate_blocks(inode, i_size_read(inode), true);
631 	if (err)
632 		return err;
633 
634 	inode->i_mtime = inode->i_ctime = current_time(inode);
635 	f2fs_mark_inode_dirty_sync(inode, false);
636 	return 0;
637 }
638 
639 int f2fs_getattr(struct vfsmount *mnt,
640 			 struct dentry *dentry, struct kstat *stat)
641 {
642 	struct inode *inode = d_inode(dentry);
643 	generic_fillattr(inode, stat);
644 	stat->blocks <<= 3;
645 	return 0;
646 }
647 
648 #ifdef CONFIG_F2FS_FS_POSIX_ACL
649 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
650 {
651 	unsigned int ia_valid = attr->ia_valid;
652 
653 	if (ia_valid & ATTR_UID)
654 		inode->i_uid = attr->ia_uid;
655 	if (ia_valid & ATTR_GID)
656 		inode->i_gid = attr->ia_gid;
657 	if (ia_valid & ATTR_ATIME)
658 		inode->i_atime = timespec_trunc(attr->ia_atime,
659 						inode->i_sb->s_time_gran);
660 	if (ia_valid & ATTR_MTIME)
661 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
662 						inode->i_sb->s_time_gran);
663 	if (ia_valid & ATTR_CTIME)
664 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
665 						inode->i_sb->s_time_gran);
666 	if (ia_valid & ATTR_MODE) {
667 		umode_t mode = attr->ia_mode;
668 
669 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
670 			mode &= ~S_ISGID;
671 		set_acl_inode(inode, mode);
672 	}
673 }
674 #else
675 #define __setattr_copy setattr_copy
676 #endif
677 
678 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
679 {
680 	struct inode *inode = d_inode(dentry);
681 	int err;
682 
683 	err = setattr_prepare(dentry, attr);
684 	if (err)
685 		return err;
686 
687 	if (attr->ia_valid & ATTR_SIZE) {
688 		if (f2fs_encrypted_inode(inode) &&
689 				fscrypt_get_encryption_info(inode))
690 			return -EACCES;
691 
692 		if (attr->ia_size <= i_size_read(inode)) {
693 			truncate_setsize(inode, attr->ia_size);
694 			err = f2fs_truncate(inode);
695 			if (err)
696 				return err;
697 		} else {
698 			/*
699 			 * do not trim all blocks after i_size if target size is
700 			 * larger than i_size.
701 			 */
702 			truncate_setsize(inode, attr->ia_size);
703 
704 			/* should convert inline inode here */
705 			if (!f2fs_may_inline_data(inode)) {
706 				err = f2fs_convert_inline_inode(inode);
707 				if (err)
708 					return err;
709 			}
710 			inode->i_mtime = inode->i_ctime = current_time(inode);
711 		}
712 	}
713 
714 	__setattr_copy(inode, attr);
715 
716 	if (attr->ia_valid & ATTR_MODE) {
717 		err = posix_acl_chmod(inode, get_inode_mode(inode));
718 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
719 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
720 			clear_inode_flag(inode, FI_ACL_MODE);
721 		}
722 	}
723 
724 	/* update attributes only */
725 	f2fs_mark_inode_dirty_sync(inode, false);
726 
727 	/* inode change will produce dirty node pages flushed by checkpoint */
728 	f2fs_balance_fs(F2FS_I_SB(inode), true);
729 
730 	return err;
731 }
732 
733 const struct inode_operations f2fs_file_inode_operations = {
734 	.getattr	= f2fs_getattr,
735 	.setattr	= f2fs_setattr,
736 	.get_acl	= f2fs_get_acl,
737 	.set_acl	= f2fs_set_acl,
738 #ifdef CONFIG_F2FS_FS_XATTR
739 	.listxattr	= f2fs_listxattr,
740 #endif
741 	.fiemap		= f2fs_fiemap,
742 };
743 
744 static int fill_zero(struct inode *inode, pgoff_t index,
745 					loff_t start, loff_t len)
746 {
747 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
748 	struct page *page;
749 
750 	if (!len)
751 		return 0;
752 
753 	f2fs_balance_fs(sbi, true);
754 
755 	f2fs_lock_op(sbi);
756 	page = get_new_data_page(inode, NULL, index, false);
757 	f2fs_unlock_op(sbi);
758 
759 	if (IS_ERR(page))
760 		return PTR_ERR(page);
761 
762 	f2fs_wait_on_page_writeback(page, DATA, true);
763 	zero_user(page, start, len);
764 	set_page_dirty(page);
765 	f2fs_put_page(page, 1);
766 	return 0;
767 }
768 
769 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
770 {
771 	int err;
772 
773 	while (pg_start < pg_end) {
774 		struct dnode_of_data dn;
775 		pgoff_t end_offset, count;
776 
777 		set_new_dnode(&dn, inode, NULL, NULL, 0);
778 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
779 		if (err) {
780 			if (err == -ENOENT) {
781 				pg_start++;
782 				continue;
783 			}
784 			return err;
785 		}
786 
787 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
788 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
789 
790 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
791 
792 		truncate_data_blocks_range(&dn, count);
793 		f2fs_put_dnode(&dn);
794 
795 		pg_start += count;
796 	}
797 	return 0;
798 }
799 
800 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
801 {
802 	pgoff_t pg_start, pg_end;
803 	loff_t off_start, off_end;
804 	int ret;
805 
806 	ret = f2fs_convert_inline_inode(inode);
807 	if (ret)
808 		return ret;
809 
810 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
811 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
812 
813 	off_start = offset & (PAGE_SIZE - 1);
814 	off_end = (offset + len) & (PAGE_SIZE - 1);
815 
816 	if (pg_start == pg_end) {
817 		ret = fill_zero(inode, pg_start, off_start,
818 						off_end - off_start);
819 		if (ret)
820 			return ret;
821 	} else {
822 		if (off_start) {
823 			ret = fill_zero(inode, pg_start++, off_start,
824 						PAGE_SIZE - off_start);
825 			if (ret)
826 				return ret;
827 		}
828 		if (off_end) {
829 			ret = fill_zero(inode, pg_end, 0, off_end);
830 			if (ret)
831 				return ret;
832 		}
833 
834 		if (pg_start < pg_end) {
835 			struct address_space *mapping = inode->i_mapping;
836 			loff_t blk_start, blk_end;
837 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838 
839 			f2fs_balance_fs(sbi, true);
840 
841 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
842 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
843 			truncate_inode_pages_range(mapping, blk_start,
844 					blk_end - 1);
845 
846 			f2fs_lock_op(sbi);
847 			ret = truncate_hole(inode, pg_start, pg_end);
848 			f2fs_unlock_op(sbi);
849 		}
850 	}
851 
852 	return ret;
853 }
854 
855 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
856 				int *do_replace, pgoff_t off, pgoff_t len)
857 {
858 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
859 	struct dnode_of_data dn;
860 	int ret, done, i;
861 
862 next_dnode:
863 	set_new_dnode(&dn, inode, NULL, NULL, 0);
864 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
865 	if (ret && ret != -ENOENT) {
866 		return ret;
867 	} else if (ret == -ENOENT) {
868 		if (dn.max_level == 0)
869 			return -ENOENT;
870 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
871 		blkaddr += done;
872 		do_replace += done;
873 		goto next;
874 	}
875 
876 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
877 							dn.ofs_in_node, len);
878 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
879 		*blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
880 		if (!is_checkpointed_data(sbi, *blkaddr)) {
881 
882 			if (test_opt(sbi, LFS)) {
883 				f2fs_put_dnode(&dn);
884 				return -ENOTSUPP;
885 			}
886 
887 			/* do not invalidate this block address */
888 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
889 			*do_replace = 1;
890 		}
891 	}
892 	f2fs_put_dnode(&dn);
893 next:
894 	len -= done;
895 	off += done;
896 	if (len)
897 		goto next_dnode;
898 	return 0;
899 }
900 
901 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
902 				int *do_replace, pgoff_t off, int len)
903 {
904 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
905 	struct dnode_of_data dn;
906 	int ret, i;
907 
908 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
909 		if (*do_replace == 0)
910 			continue;
911 
912 		set_new_dnode(&dn, inode, NULL, NULL, 0);
913 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
914 		if (ret) {
915 			dec_valid_block_count(sbi, inode, 1);
916 			invalidate_blocks(sbi, *blkaddr);
917 		} else {
918 			f2fs_update_data_blkaddr(&dn, *blkaddr);
919 		}
920 		f2fs_put_dnode(&dn);
921 	}
922 	return 0;
923 }
924 
925 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
926 			block_t *blkaddr, int *do_replace,
927 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
928 {
929 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
930 	pgoff_t i = 0;
931 	int ret;
932 
933 	while (i < len) {
934 		if (blkaddr[i] == NULL_ADDR && !full) {
935 			i++;
936 			continue;
937 		}
938 
939 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
940 			struct dnode_of_data dn;
941 			struct node_info ni;
942 			size_t new_size;
943 			pgoff_t ilen;
944 
945 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
946 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
947 			if (ret)
948 				return ret;
949 
950 			get_node_info(sbi, dn.nid, &ni);
951 			ilen = min((pgoff_t)
952 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
953 						dn.ofs_in_node, len - i);
954 			do {
955 				dn.data_blkaddr = datablock_addr(dn.node_page,
956 								dn.ofs_in_node);
957 				truncate_data_blocks_range(&dn, 1);
958 
959 				if (do_replace[i]) {
960 					f2fs_i_blocks_write(src_inode,
961 								1, false);
962 					f2fs_i_blocks_write(dst_inode,
963 								1, true);
964 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
965 					blkaddr[i], ni.version, true, false);
966 
967 					do_replace[i] = 0;
968 				}
969 				dn.ofs_in_node++;
970 				i++;
971 				new_size = (dst + i) << PAGE_SHIFT;
972 				if (dst_inode->i_size < new_size)
973 					f2fs_i_size_write(dst_inode, new_size);
974 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
975 
976 			f2fs_put_dnode(&dn);
977 		} else {
978 			struct page *psrc, *pdst;
979 
980 			psrc = get_lock_data_page(src_inode, src + i, true);
981 			if (IS_ERR(psrc))
982 				return PTR_ERR(psrc);
983 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
984 								true);
985 			if (IS_ERR(pdst)) {
986 				f2fs_put_page(psrc, 1);
987 				return PTR_ERR(pdst);
988 			}
989 			f2fs_copy_page(psrc, pdst);
990 			set_page_dirty(pdst);
991 			f2fs_put_page(pdst, 1);
992 			f2fs_put_page(psrc, 1);
993 
994 			ret = truncate_hole(src_inode, src + i, src + i + 1);
995 			if (ret)
996 				return ret;
997 			i++;
998 		}
999 	}
1000 	return 0;
1001 }
1002 
1003 static int __exchange_data_block(struct inode *src_inode,
1004 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1005 			pgoff_t len, bool full)
1006 {
1007 	block_t *src_blkaddr;
1008 	int *do_replace;
1009 	pgoff_t olen;
1010 	int ret;
1011 
1012 	while (len) {
1013 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1014 
1015 		src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1016 		if (!src_blkaddr)
1017 			return -ENOMEM;
1018 
1019 		do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1020 		if (!do_replace) {
1021 			kvfree(src_blkaddr);
1022 			return -ENOMEM;
1023 		}
1024 
1025 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1026 					do_replace, src, olen);
1027 		if (ret)
1028 			goto roll_back;
1029 
1030 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1031 					do_replace, src, dst, olen, full);
1032 		if (ret)
1033 			goto roll_back;
1034 
1035 		src += olen;
1036 		dst += olen;
1037 		len -= olen;
1038 
1039 		kvfree(src_blkaddr);
1040 		kvfree(do_replace);
1041 	}
1042 	return 0;
1043 
1044 roll_back:
1045 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1046 	kvfree(src_blkaddr);
1047 	kvfree(do_replace);
1048 	return ret;
1049 }
1050 
1051 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1052 {
1053 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1054 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1055 	int ret;
1056 
1057 	f2fs_balance_fs(sbi, true);
1058 	f2fs_lock_op(sbi);
1059 
1060 	f2fs_drop_extent_tree(inode);
1061 
1062 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1063 	f2fs_unlock_op(sbi);
1064 	return ret;
1065 }
1066 
1067 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1068 {
1069 	pgoff_t pg_start, pg_end;
1070 	loff_t new_size;
1071 	int ret;
1072 
1073 	if (offset + len >= i_size_read(inode))
1074 		return -EINVAL;
1075 
1076 	/* collapse range should be aligned to block size of f2fs. */
1077 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1078 		return -EINVAL;
1079 
1080 	ret = f2fs_convert_inline_inode(inode);
1081 	if (ret)
1082 		return ret;
1083 
1084 	pg_start = offset >> PAGE_SHIFT;
1085 	pg_end = (offset + len) >> PAGE_SHIFT;
1086 
1087 	/* write out all dirty pages from offset */
1088 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1089 	if (ret)
1090 		return ret;
1091 
1092 	truncate_pagecache(inode, offset);
1093 
1094 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1095 	if (ret)
1096 		return ret;
1097 
1098 	/* write out all moved pages, if possible */
1099 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1100 	truncate_pagecache(inode, offset);
1101 
1102 	new_size = i_size_read(inode) - len;
1103 	truncate_pagecache(inode, new_size);
1104 
1105 	ret = truncate_blocks(inode, new_size, true);
1106 	if (!ret)
1107 		f2fs_i_size_write(inode, new_size);
1108 
1109 	return ret;
1110 }
1111 
1112 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1113 								pgoff_t end)
1114 {
1115 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1116 	pgoff_t index = start;
1117 	unsigned int ofs_in_node = dn->ofs_in_node;
1118 	blkcnt_t count = 0;
1119 	int ret;
1120 
1121 	for (; index < end; index++, dn->ofs_in_node++) {
1122 		if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1123 			count++;
1124 	}
1125 
1126 	dn->ofs_in_node = ofs_in_node;
1127 	ret = reserve_new_blocks(dn, count);
1128 	if (ret)
1129 		return ret;
1130 
1131 	dn->ofs_in_node = ofs_in_node;
1132 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1133 		dn->data_blkaddr =
1134 				datablock_addr(dn->node_page, dn->ofs_in_node);
1135 		/*
1136 		 * reserve_new_blocks will not guarantee entire block
1137 		 * allocation.
1138 		 */
1139 		if (dn->data_blkaddr == NULL_ADDR) {
1140 			ret = -ENOSPC;
1141 			break;
1142 		}
1143 		if (dn->data_blkaddr != NEW_ADDR) {
1144 			invalidate_blocks(sbi, dn->data_blkaddr);
1145 			dn->data_blkaddr = NEW_ADDR;
1146 			set_data_blkaddr(dn);
1147 		}
1148 	}
1149 
1150 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1151 
1152 	return ret;
1153 }
1154 
1155 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1156 								int mode)
1157 {
1158 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159 	struct address_space *mapping = inode->i_mapping;
1160 	pgoff_t index, pg_start, pg_end;
1161 	loff_t new_size = i_size_read(inode);
1162 	loff_t off_start, off_end;
1163 	int ret = 0;
1164 
1165 	ret = inode_newsize_ok(inode, (len + offset));
1166 	if (ret)
1167 		return ret;
1168 
1169 	ret = f2fs_convert_inline_inode(inode);
1170 	if (ret)
1171 		return ret;
1172 
1173 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1174 	if (ret)
1175 		return ret;
1176 
1177 	truncate_pagecache_range(inode, offset, offset + len - 1);
1178 
1179 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1180 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1181 
1182 	off_start = offset & (PAGE_SIZE - 1);
1183 	off_end = (offset + len) & (PAGE_SIZE - 1);
1184 
1185 	if (pg_start == pg_end) {
1186 		ret = fill_zero(inode, pg_start, off_start,
1187 						off_end - off_start);
1188 		if (ret)
1189 			return ret;
1190 
1191 		if (offset + len > new_size)
1192 			new_size = offset + len;
1193 		new_size = max_t(loff_t, new_size, offset + len);
1194 	} else {
1195 		if (off_start) {
1196 			ret = fill_zero(inode, pg_start++, off_start,
1197 						PAGE_SIZE - off_start);
1198 			if (ret)
1199 				return ret;
1200 
1201 			new_size = max_t(loff_t, new_size,
1202 					(loff_t)pg_start << PAGE_SHIFT);
1203 		}
1204 
1205 		for (index = pg_start; index < pg_end;) {
1206 			struct dnode_of_data dn;
1207 			unsigned int end_offset;
1208 			pgoff_t end;
1209 
1210 			f2fs_lock_op(sbi);
1211 
1212 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1213 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1214 			if (ret) {
1215 				f2fs_unlock_op(sbi);
1216 				goto out;
1217 			}
1218 
1219 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1220 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1221 
1222 			ret = f2fs_do_zero_range(&dn, index, end);
1223 			f2fs_put_dnode(&dn);
1224 			f2fs_unlock_op(sbi);
1225 
1226 			f2fs_balance_fs(sbi, dn.node_changed);
1227 
1228 			if (ret)
1229 				goto out;
1230 
1231 			index = end;
1232 			new_size = max_t(loff_t, new_size,
1233 					(loff_t)index << PAGE_SHIFT);
1234 		}
1235 
1236 		if (off_end) {
1237 			ret = fill_zero(inode, pg_end, 0, off_end);
1238 			if (ret)
1239 				goto out;
1240 
1241 			new_size = max_t(loff_t, new_size, offset + len);
1242 		}
1243 	}
1244 
1245 out:
1246 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1247 		f2fs_i_size_write(inode, new_size);
1248 
1249 	return ret;
1250 }
1251 
1252 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1253 {
1254 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1255 	pgoff_t nr, pg_start, pg_end, delta, idx;
1256 	loff_t new_size;
1257 	int ret = 0;
1258 
1259 	new_size = i_size_read(inode) + len;
1260 	if (new_size > inode->i_sb->s_maxbytes)
1261 		return -EFBIG;
1262 
1263 	if (offset >= i_size_read(inode))
1264 		return -EINVAL;
1265 
1266 	/* insert range should be aligned to block size of f2fs. */
1267 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1268 		return -EINVAL;
1269 
1270 	ret = f2fs_convert_inline_inode(inode);
1271 	if (ret)
1272 		return ret;
1273 
1274 	f2fs_balance_fs(sbi, true);
1275 
1276 	ret = truncate_blocks(inode, i_size_read(inode), true);
1277 	if (ret)
1278 		return ret;
1279 
1280 	/* write out all dirty pages from offset */
1281 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1282 	if (ret)
1283 		return ret;
1284 
1285 	truncate_pagecache(inode, offset);
1286 
1287 	pg_start = offset >> PAGE_SHIFT;
1288 	pg_end = (offset + len) >> PAGE_SHIFT;
1289 	delta = pg_end - pg_start;
1290 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1291 
1292 	while (!ret && idx > pg_start) {
1293 		nr = idx - pg_start;
1294 		if (nr > delta)
1295 			nr = delta;
1296 		idx -= nr;
1297 
1298 		f2fs_lock_op(sbi);
1299 		f2fs_drop_extent_tree(inode);
1300 
1301 		ret = __exchange_data_block(inode, inode, idx,
1302 					idx + delta, nr, false);
1303 		f2fs_unlock_op(sbi);
1304 	}
1305 
1306 	/* write out all moved pages, if possible */
1307 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1308 	truncate_pagecache(inode, offset);
1309 
1310 	if (!ret)
1311 		f2fs_i_size_write(inode, new_size);
1312 	return ret;
1313 }
1314 
1315 static int expand_inode_data(struct inode *inode, loff_t offset,
1316 					loff_t len, int mode)
1317 {
1318 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1319 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1320 	pgoff_t pg_end;
1321 	loff_t new_size = i_size_read(inode);
1322 	loff_t off_end;
1323 	int ret;
1324 
1325 	ret = inode_newsize_ok(inode, (len + offset));
1326 	if (ret)
1327 		return ret;
1328 
1329 	ret = f2fs_convert_inline_inode(inode);
1330 	if (ret)
1331 		return ret;
1332 
1333 	f2fs_balance_fs(sbi, true);
1334 
1335 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1336 	off_end = (offset + len) & (PAGE_SIZE - 1);
1337 
1338 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1339 	map.m_len = pg_end - map.m_lblk;
1340 	if (off_end)
1341 		map.m_len++;
1342 
1343 	ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1344 	if (ret) {
1345 		pgoff_t last_off;
1346 
1347 		if (!map.m_len)
1348 			return ret;
1349 
1350 		last_off = map.m_lblk + map.m_len - 1;
1351 
1352 		/* update new size to the failed position */
1353 		new_size = (last_off == pg_end) ? offset + len:
1354 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1355 	} else {
1356 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1357 	}
1358 
1359 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1360 		f2fs_i_size_write(inode, new_size);
1361 
1362 	return ret;
1363 }
1364 
1365 static long f2fs_fallocate(struct file *file, int mode,
1366 				loff_t offset, loff_t len)
1367 {
1368 	struct inode *inode = file_inode(file);
1369 	long ret = 0;
1370 
1371 	/* f2fs only support ->fallocate for regular file */
1372 	if (!S_ISREG(inode->i_mode))
1373 		return -EINVAL;
1374 
1375 	if (f2fs_encrypted_inode(inode) &&
1376 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1377 		return -EOPNOTSUPP;
1378 
1379 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1380 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1381 			FALLOC_FL_INSERT_RANGE))
1382 		return -EOPNOTSUPP;
1383 
1384 	inode_lock(inode);
1385 
1386 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1387 		if (offset >= inode->i_size)
1388 			goto out;
1389 
1390 		ret = punch_hole(inode, offset, len);
1391 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1392 		ret = f2fs_collapse_range(inode, offset, len);
1393 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1394 		ret = f2fs_zero_range(inode, offset, len, mode);
1395 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1396 		ret = f2fs_insert_range(inode, offset, len);
1397 	} else {
1398 		ret = expand_inode_data(inode, offset, len, mode);
1399 	}
1400 
1401 	if (!ret) {
1402 		inode->i_mtime = inode->i_ctime = current_time(inode);
1403 		f2fs_mark_inode_dirty_sync(inode, false);
1404 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1405 	}
1406 
1407 out:
1408 	inode_unlock(inode);
1409 
1410 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1411 	return ret;
1412 }
1413 
1414 static int f2fs_release_file(struct inode *inode, struct file *filp)
1415 {
1416 	/*
1417 	 * f2fs_relase_file is called at every close calls. So we should
1418 	 * not drop any inmemory pages by close called by other process.
1419 	 */
1420 	if (!(filp->f_mode & FMODE_WRITE) ||
1421 			atomic_read(&inode->i_writecount) != 1)
1422 		return 0;
1423 
1424 	/* some remained atomic pages should discarded */
1425 	if (f2fs_is_atomic_file(inode))
1426 		drop_inmem_pages(inode);
1427 	if (f2fs_is_volatile_file(inode)) {
1428 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1429 		set_inode_flag(inode, FI_DROP_CACHE);
1430 		filemap_fdatawrite(inode->i_mapping);
1431 		clear_inode_flag(inode, FI_DROP_CACHE);
1432 	}
1433 	return 0;
1434 }
1435 
1436 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1437 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1438 
1439 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1440 {
1441 	if (S_ISDIR(mode))
1442 		return flags;
1443 	else if (S_ISREG(mode))
1444 		return flags & F2FS_REG_FLMASK;
1445 	else
1446 		return flags & F2FS_OTHER_FLMASK;
1447 }
1448 
1449 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1450 {
1451 	struct inode *inode = file_inode(filp);
1452 	struct f2fs_inode_info *fi = F2FS_I(inode);
1453 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1454 	return put_user(flags, (int __user *)arg);
1455 }
1456 
1457 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1458 {
1459 	struct inode *inode = file_inode(filp);
1460 	struct f2fs_inode_info *fi = F2FS_I(inode);
1461 	unsigned int flags;
1462 	unsigned int oldflags;
1463 	int ret;
1464 
1465 	if (!inode_owner_or_capable(inode))
1466 		return -EACCES;
1467 
1468 	if (get_user(flags, (int __user *)arg))
1469 		return -EFAULT;
1470 
1471 	ret = mnt_want_write_file(filp);
1472 	if (ret)
1473 		return ret;
1474 
1475 	flags = f2fs_mask_flags(inode->i_mode, flags);
1476 
1477 	inode_lock(inode);
1478 
1479 	oldflags = fi->i_flags;
1480 
1481 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1482 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1483 			inode_unlock(inode);
1484 			ret = -EPERM;
1485 			goto out;
1486 		}
1487 	}
1488 
1489 	flags = flags & FS_FL_USER_MODIFIABLE;
1490 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1491 	fi->i_flags = flags;
1492 	inode_unlock(inode);
1493 
1494 	inode->i_ctime = current_time(inode);
1495 	f2fs_set_inode_flags(inode);
1496 out:
1497 	mnt_drop_write_file(filp);
1498 	return ret;
1499 }
1500 
1501 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1502 {
1503 	struct inode *inode = file_inode(filp);
1504 
1505 	return put_user(inode->i_generation, (int __user *)arg);
1506 }
1507 
1508 static int f2fs_ioc_start_atomic_write(struct file *filp)
1509 {
1510 	struct inode *inode = file_inode(filp);
1511 	int ret;
1512 
1513 	if (!inode_owner_or_capable(inode))
1514 		return -EACCES;
1515 
1516 	ret = mnt_want_write_file(filp);
1517 	if (ret)
1518 		return ret;
1519 
1520 	inode_lock(inode);
1521 
1522 	if (f2fs_is_atomic_file(inode))
1523 		goto out;
1524 
1525 	ret = f2fs_convert_inline_inode(inode);
1526 	if (ret)
1527 		goto out;
1528 
1529 	set_inode_flag(inode, FI_ATOMIC_FILE);
1530 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1531 
1532 	if (!get_dirty_pages(inode))
1533 		goto out;
1534 
1535 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1536 		"Unexpected flush for atomic writes: ino=%lu, npages=%lld",
1537 					inode->i_ino, get_dirty_pages(inode));
1538 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1539 	if (ret)
1540 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1541 out:
1542 	inode_unlock(inode);
1543 	mnt_drop_write_file(filp);
1544 	return ret;
1545 }
1546 
1547 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1548 {
1549 	struct inode *inode = file_inode(filp);
1550 	int ret;
1551 
1552 	if (!inode_owner_or_capable(inode))
1553 		return -EACCES;
1554 
1555 	ret = mnt_want_write_file(filp);
1556 	if (ret)
1557 		return ret;
1558 
1559 	inode_lock(inode);
1560 
1561 	if (f2fs_is_volatile_file(inode))
1562 		goto err_out;
1563 
1564 	if (f2fs_is_atomic_file(inode)) {
1565 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1566 		ret = commit_inmem_pages(inode);
1567 		if (ret) {
1568 			set_inode_flag(inode, FI_ATOMIC_FILE);
1569 			goto err_out;
1570 		}
1571 	}
1572 
1573 	ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1574 err_out:
1575 	inode_unlock(inode);
1576 	mnt_drop_write_file(filp);
1577 	return ret;
1578 }
1579 
1580 static int f2fs_ioc_start_volatile_write(struct file *filp)
1581 {
1582 	struct inode *inode = file_inode(filp);
1583 	int ret;
1584 
1585 	if (!inode_owner_or_capable(inode))
1586 		return -EACCES;
1587 
1588 	ret = mnt_want_write_file(filp);
1589 	if (ret)
1590 		return ret;
1591 
1592 	inode_lock(inode);
1593 
1594 	if (f2fs_is_volatile_file(inode))
1595 		goto out;
1596 
1597 	ret = f2fs_convert_inline_inode(inode);
1598 	if (ret)
1599 		goto out;
1600 
1601 	set_inode_flag(inode, FI_VOLATILE_FILE);
1602 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1603 out:
1604 	inode_unlock(inode);
1605 	mnt_drop_write_file(filp);
1606 	return ret;
1607 }
1608 
1609 static int f2fs_ioc_release_volatile_write(struct file *filp)
1610 {
1611 	struct inode *inode = file_inode(filp);
1612 	int ret;
1613 
1614 	if (!inode_owner_or_capable(inode))
1615 		return -EACCES;
1616 
1617 	ret = mnt_want_write_file(filp);
1618 	if (ret)
1619 		return ret;
1620 
1621 	inode_lock(inode);
1622 
1623 	if (!f2fs_is_volatile_file(inode))
1624 		goto out;
1625 
1626 	if (!f2fs_is_first_block_written(inode)) {
1627 		ret = truncate_partial_data_page(inode, 0, true);
1628 		goto out;
1629 	}
1630 
1631 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1632 out:
1633 	inode_unlock(inode);
1634 	mnt_drop_write_file(filp);
1635 	return ret;
1636 }
1637 
1638 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1639 {
1640 	struct inode *inode = file_inode(filp);
1641 	int ret;
1642 
1643 	if (!inode_owner_or_capable(inode))
1644 		return -EACCES;
1645 
1646 	ret = mnt_want_write_file(filp);
1647 	if (ret)
1648 		return ret;
1649 
1650 	inode_lock(inode);
1651 
1652 	if (f2fs_is_atomic_file(inode))
1653 		drop_inmem_pages(inode);
1654 	if (f2fs_is_volatile_file(inode)) {
1655 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1656 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1657 	}
1658 
1659 	inode_unlock(inode);
1660 
1661 	mnt_drop_write_file(filp);
1662 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1663 	return ret;
1664 }
1665 
1666 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1667 {
1668 	struct inode *inode = file_inode(filp);
1669 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1670 	struct super_block *sb = sbi->sb;
1671 	__u32 in;
1672 	int ret;
1673 
1674 	if (!capable(CAP_SYS_ADMIN))
1675 		return -EPERM;
1676 
1677 	if (get_user(in, (__u32 __user *)arg))
1678 		return -EFAULT;
1679 
1680 	ret = mnt_want_write_file(filp);
1681 	if (ret)
1682 		return ret;
1683 
1684 	switch (in) {
1685 	case F2FS_GOING_DOWN_FULLSYNC:
1686 		sb = freeze_bdev(sb->s_bdev);
1687 		if (sb && !IS_ERR(sb)) {
1688 			f2fs_stop_checkpoint(sbi, false);
1689 			thaw_bdev(sb->s_bdev, sb);
1690 		}
1691 		break;
1692 	case F2FS_GOING_DOWN_METASYNC:
1693 		/* do checkpoint only */
1694 		f2fs_sync_fs(sb, 1);
1695 		f2fs_stop_checkpoint(sbi, false);
1696 		break;
1697 	case F2FS_GOING_DOWN_NOSYNC:
1698 		f2fs_stop_checkpoint(sbi, false);
1699 		break;
1700 	case F2FS_GOING_DOWN_METAFLUSH:
1701 		sync_meta_pages(sbi, META, LONG_MAX);
1702 		f2fs_stop_checkpoint(sbi, false);
1703 		break;
1704 	default:
1705 		ret = -EINVAL;
1706 		goto out;
1707 	}
1708 	f2fs_update_time(sbi, REQ_TIME);
1709 out:
1710 	mnt_drop_write_file(filp);
1711 	return ret;
1712 }
1713 
1714 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1715 {
1716 	struct inode *inode = file_inode(filp);
1717 	struct super_block *sb = inode->i_sb;
1718 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1719 	struct fstrim_range range;
1720 	int ret;
1721 
1722 	if (!capable(CAP_SYS_ADMIN))
1723 		return -EPERM;
1724 
1725 	if (!blk_queue_discard(q))
1726 		return -EOPNOTSUPP;
1727 
1728 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1729 				sizeof(range)))
1730 		return -EFAULT;
1731 
1732 	ret = mnt_want_write_file(filp);
1733 	if (ret)
1734 		return ret;
1735 
1736 	range.minlen = max((unsigned int)range.minlen,
1737 				q->limits.discard_granularity);
1738 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1739 	mnt_drop_write_file(filp);
1740 	if (ret < 0)
1741 		return ret;
1742 
1743 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1744 				sizeof(range)))
1745 		return -EFAULT;
1746 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1747 	return 0;
1748 }
1749 
1750 static bool uuid_is_nonzero(__u8 u[16])
1751 {
1752 	int i;
1753 
1754 	for (i = 0; i < 16; i++)
1755 		if (u[i])
1756 			return true;
1757 	return false;
1758 }
1759 
1760 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1761 {
1762 	struct fscrypt_policy policy;
1763 	struct inode *inode = file_inode(filp);
1764 
1765 	if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1766 							sizeof(policy)))
1767 		return -EFAULT;
1768 
1769 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1770 
1771 	return fscrypt_process_policy(filp, &policy);
1772 }
1773 
1774 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1775 {
1776 	struct fscrypt_policy policy;
1777 	struct inode *inode = file_inode(filp);
1778 	int err;
1779 
1780 	err = fscrypt_get_policy(inode, &policy);
1781 	if (err)
1782 		return err;
1783 
1784 	if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1785 		return -EFAULT;
1786 	return 0;
1787 }
1788 
1789 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1790 {
1791 	struct inode *inode = file_inode(filp);
1792 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1793 	int err;
1794 
1795 	if (!f2fs_sb_has_crypto(inode->i_sb))
1796 		return -EOPNOTSUPP;
1797 
1798 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1799 		goto got_it;
1800 
1801 	err = mnt_want_write_file(filp);
1802 	if (err)
1803 		return err;
1804 
1805 	/* update superblock with uuid */
1806 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1807 
1808 	err = f2fs_commit_super(sbi, false);
1809 	if (err) {
1810 		/* undo new data */
1811 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1812 		mnt_drop_write_file(filp);
1813 		return err;
1814 	}
1815 	mnt_drop_write_file(filp);
1816 got_it:
1817 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1818 									16))
1819 		return -EFAULT;
1820 	return 0;
1821 }
1822 
1823 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1824 {
1825 	struct inode *inode = file_inode(filp);
1826 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1827 	__u32 sync;
1828 	int ret;
1829 
1830 	if (!capable(CAP_SYS_ADMIN))
1831 		return -EPERM;
1832 
1833 	if (get_user(sync, (__u32 __user *)arg))
1834 		return -EFAULT;
1835 
1836 	if (f2fs_readonly(sbi->sb))
1837 		return -EROFS;
1838 
1839 	ret = mnt_want_write_file(filp);
1840 	if (ret)
1841 		return ret;
1842 
1843 	if (!sync) {
1844 		if (!mutex_trylock(&sbi->gc_mutex)) {
1845 			ret = -EBUSY;
1846 			goto out;
1847 		}
1848 	} else {
1849 		mutex_lock(&sbi->gc_mutex);
1850 	}
1851 
1852 	ret = f2fs_gc(sbi, sync);
1853 out:
1854 	mnt_drop_write_file(filp);
1855 	return ret;
1856 }
1857 
1858 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1859 {
1860 	struct inode *inode = file_inode(filp);
1861 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1862 	int ret;
1863 
1864 	if (!capable(CAP_SYS_ADMIN))
1865 		return -EPERM;
1866 
1867 	if (f2fs_readonly(sbi->sb))
1868 		return -EROFS;
1869 
1870 	ret = mnt_want_write_file(filp);
1871 	if (ret)
1872 		return ret;
1873 
1874 	ret = f2fs_sync_fs(sbi->sb, 1);
1875 
1876 	mnt_drop_write_file(filp);
1877 	return ret;
1878 }
1879 
1880 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1881 					struct file *filp,
1882 					struct f2fs_defragment *range)
1883 {
1884 	struct inode *inode = file_inode(filp);
1885 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1886 	struct extent_info ei;
1887 	pgoff_t pg_start, pg_end;
1888 	unsigned int blk_per_seg = sbi->blocks_per_seg;
1889 	unsigned int total = 0, sec_num;
1890 	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1891 	block_t blk_end = 0;
1892 	bool fragmented = false;
1893 	int err;
1894 
1895 	/* if in-place-update policy is enabled, don't waste time here */
1896 	if (need_inplace_update(inode))
1897 		return -EINVAL;
1898 
1899 	pg_start = range->start >> PAGE_SHIFT;
1900 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
1901 
1902 	f2fs_balance_fs(sbi, true);
1903 
1904 	inode_lock(inode);
1905 
1906 	/* writeback all dirty pages in the range */
1907 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1908 						range->start + range->len - 1);
1909 	if (err)
1910 		goto out;
1911 
1912 	/*
1913 	 * lookup mapping info in extent cache, skip defragmenting if physical
1914 	 * block addresses are continuous.
1915 	 */
1916 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1917 		if (ei.fofs + ei.len >= pg_end)
1918 			goto out;
1919 	}
1920 
1921 	map.m_lblk = pg_start;
1922 
1923 	/*
1924 	 * lookup mapping info in dnode page cache, skip defragmenting if all
1925 	 * physical block addresses are continuous even if there are hole(s)
1926 	 * in logical blocks.
1927 	 */
1928 	while (map.m_lblk < pg_end) {
1929 		map.m_len = pg_end - map.m_lblk;
1930 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1931 		if (err)
1932 			goto out;
1933 
1934 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1935 			map.m_lblk++;
1936 			continue;
1937 		}
1938 
1939 		if (blk_end && blk_end != map.m_pblk) {
1940 			fragmented = true;
1941 			break;
1942 		}
1943 		blk_end = map.m_pblk + map.m_len;
1944 
1945 		map.m_lblk += map.m_len;
1946 	}
1947 
1948 	if (!fragmented)
1949 		goto out;
1950 
1951 	map.m_lblk = pg_start;
1952 	map.m_len = pg_end - pg_start;
1953 
1954 	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1955 
1956 	/*
1957 	 * make sure there are enough free section for LFS allocation, this can
1958 	 * avoid defragment running in SSR mode when free section are allocated
1959 	 * intensively
1960 	 */
1961 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
1962 		err = -EAGAIN;
1963 		goto out;
1964 	}
1965 
1966 	while (map.m_lblk < pg_end) {
1967 		pgoff_t idx;
1968 		int cnt = 0;
1969 
1970 do_map:
1971 		map.m_len = pg_end - map.m_lblk;
1972 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1973 		if (err)
1974 			goto clear_out;
1975 
1976 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1977 			map.m_lblk++;
1978 			continue;
1979 		}
1980 
1981 		set_inode_flag(inode, FI_DO_DEFRAG);
1982 
1983 		idx = map.m_lblk;
1984 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1985 			struct page *page;
1986 
1987 			page = get_lock_data_page(inode, idx, true);
1988 			if (IS_ERR(page)) {
1989 				err = PTR_ERR(page);
1990 				goto clear_out;
1991 			}
1992 
1993 			set_page_dirty(page);
1994 			f2fs_put_page(page, 1);
1995 
1996 			idx++;
1997 			cnt++;
1998 			total++;
1999 		}
2000 
2001 		map.m_lblk = idx;
2002 
2003 		if (idx < pg_end && cnt < blk_per_seg)
2004 			goto do_map;
2005 
2006 		clear_inode_flag(inode, FI_DO_DEFRAG);
2007 
2008 		err = filemap_fdatawrite(inode->i_mapping);
2009 		if (err)
2010 			goto out;
2011 	}
2012 clear_out:
2013 	clear_inode_flag(inode, FI_DO_DEFRAG);
2014 out:
2015 	inode_unlock(inode);
2016 	if (!err)
2017 		range->len = (u64)total << PAGE_SHIFT;
2018 	return err;
2019 }
2020 
2021 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2022 {
2023 	struct inode *inode = file_inode(filp);
2024 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2025 	struct f2fs_defragment range;
2026 	int err;
2027 
2028 	if (!capable(CAP_SYS_ADMIN))
2029 		return -EPERM;
2030 
2031 	if (!S_ISREG(inode->i_mode))
2032 		return -EINVAL;
2033 
2034 	err = mnt_want_write_file(filp);
2035 	if (err)
2036 		return err;
2037 
2038 	if (f2fs_readonly(sbi->sb)) {
2039 		err = -EROFS;
2040 		goto out;
2041 	}
2042 
2043 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2044 							sizeof(range))) {
2045 		err = -EFAULT;
2046 		goto out;
2047 	}
2048 
2049 	/* verify alignment of offset & size */
2050 	if (range.start & (F2FS_BLKSIZE - 1) ||
2051 		range.len & (F2FS_BLKSIZE - 1)) {
2052 		err = -EINVAL;
2053 		goto out;
2054 	}
2055 
2056 	err = f2fs_defragment_range(sbi, filp, &range);
2057 	f2fs_update_time(sbi, REQ_TIME);
2058 	if (err < 0)
2059 		goto out;
2060 
2061 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2062 							sizeof(range)))
2063 		err = -EFAULT;
2064 out:
2065 	mnt_drop_write_file(filp);
2066 	return err;
2067 }
2068 
2069 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2070 			struct file *file_out, loff_t pos_out, size_t len)
2071 {
2072 	struct inode *src = file_inode(file_in);
2073 	struct inode *dst = file_inode(file_out);
2074 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2075 	size_t olen = len, dst_max_i_size = 0;
2076 	size_t dst_osize;
2077 	int ret;
2078 
2079 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2080 				src->i_sb != dst->i_sb)
2081 		return -EXDEV;
2082 
2083 	if (unlikely(f2fs_readonly(src->i_sb)))
2084 		return -EROFS;
2085 
2086 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2087 		return -EINVAL;
2088 
2089 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2090 		return -EOPNOTSUPP;
2091 
2092 	if (src == dst) {
2093 		if (pos_in == pos_out)
2094 			return 0;
2095 		if (pos_out > pos_in && pos_out < pos_in + len)
2096 			return -EINVAL;
2097 	}
2098 
2099 	inode_lock(src);
2100 	if (src != dst) {
2101 		if (!inode_trylock(dst)) {
2102 			ret = -EBUSY;
2103 			goto out;
2104 		}
2105 	}
2106 
2107 	ret = -EINVAL;
2108 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2109 		goto out_unlock;
2110 	if (len == 0)
2111 		olen = len = src->i_size - pos_in;
2112 	if (pos_in + len == src->i_size)
2113 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2114 	if (len == 0) {
2115 		ret = 0;
2116 		goto out_unlock;
2117 	}
2118 
2119 	dst_osize = dst->i_size;
2120 	if (pos_out + olen > dst->i_size)
2121 		dst_max_i_size = pos_out + olen;
2122 
2123 	/* verify the end result is block aligned */
2124 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2125 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2126 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2127 		goto out_unlock;
2128 
2129 	ret = f2fs_convert_inline_inode(src);
2130 	if (ret)
2131 		goto out_unlock;
2132 
2133 	ret = f2fs_convert_inline_inode(dst);
2134 	if (ret)
2135 		goto out_unlock;
2136 
2137 	/* write out all dirty pages from offset */
2138 	ret = filemap_write_and_wait_range(src->i_mapping,
2139 					pos_in, pos_in + len);
2140 	if (ret)
2141 		goto out_unlock;
2142 
2143 	ret = filemap_write_and_wait_range(dst->i_mapping,
2144 					pos_out, pos_out + len);
2145 	if (ret)
2146 		goto out_unlock;
2147 
2148 	f2fs_balance_fs(sbi, true);
2149 	f2fs_lock_op(sbi);
2150 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2151 				pos_out >> F2FS_BLKSIZE_BITS,
2152 				len >> F2FS_BLKSIZE_BITS, false);
2153 
2154 	if (!ret) {
2155 		if (dst_max_i_size)
2156 			f2fs_i_size_write(dst, dst_max_i_size);
2157 		else if (dst_osize != dst->i_size)
2158 			f2fs_i_size_write(dst, dst_osize);
2159 	}
2160 	f2fs_unlock_op(sbi);
2161 out_unlock:
2162 	if (src != dst)
2163 		inode_unlock(dst);
2164 out:
2165 	inode_unlock(src);
2166 	return ret;
2167 }
2168 
2169 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2170 {
2171 	struct f2fs_move_range range;
2172 	struct fd dst;
2173 	int err;
2174 
2175 	if (!(filp->f_mode & FMODE_READ) ||
2176 			!(filp->f_mode & FMODE_WRITE))
2177 		return -EBADF;
2178 
2179 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2180 							sizeof(range)))
2181 		return -EFAULT;
2182 
2183 	dst = fdget(range.dst_fd);
2184 	if (!dst.file)
2185 		return -EBADF;
2186 
2187 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2188 		err = -EBADF;
2189 		goto err_out;
2190 	}
2191 
2192 	err = mnt_want_write_file(filp);
2193 	if (err)
2194 		goto err_out;
2195 
2196 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2197 					range.pos_out, range.len);
2198 
2199 	mnt_drop_write_file(filp);
2200 
2201 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2202 						&range, sizeof(range)))
2203 		err = -EFAULT;
2204 err_out:
2205 	fdput(dst);
2206 	return err;
2207 }
2208 
2209 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2210 {
2211 	switch (cmd) {
2212 	case F2FS_IOC_GETFLAGS:
2213 		return f2fs_ioc_getflags(filp, arg);
2214 	case F2FS_IOC_SETFLAGS:
2215 		return f2fs_ioc_setflags(filp, arg);
2216 	case F2FS_IOC_GETVERSION:
2217 		return f2fs_ioc_getversion(filp, arg);
2218 	case F2FS_IOC_START_ATOMIC_WRITE:
2219 		return f2fs_ioc_start_atomic_write(filp);
2220 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2221 		return f2fs_ioc_commit_atomic_write(filp);
2222 	case F2FS_IOC_START_VOLATILE_WRITE:
2223 		return f2fs_ioc_start_volatile_write(filp);
2224 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2225 		return f2fs_ioc_release_volatile_write(filp);
2226 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2227 		return f2fs_ioc_abort_volatile_write(filp);
2228 	case F2FS_IOC_SHUTDOWN:
2229 		return f2fs_ioc_shutdown(filp, arg);
2230 	case FITRIM:
2231 		return f2fs_ioc_fitrim(filp, arg);
2232 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2233 		return f2fs_ioc_set_encryption_policy(filp, arg);
2234 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2235 		return f2fs_ioc_get_encryption_policy(filp, arg);
2236 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2237 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2238 	case F2FS_IOC_GARBAGE_COLLECT:
2239 		return f2fs_ioc_gc(filp, arg);
2240 	case F2FS_IOC_WRITE_CHECKPOINT:
2241 		return f2fs_ioc_write_checkpoint(filp, arg);
2242 	case F2FS_IOC_DEFRAGMENT:
2243 		return f2fs_ioc_defragment(filp, arg);
2244 	case F2FS_IOC_MOVE_RANGE:
2245 		return f2fs_ioc_move_range(filp, arg);
2246 	default:
2247 		return -ENOTTY;
2248 	}
2249 }
2250 
2251 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2252 {
2253 	struct file *file = iocb->ki_filp;
2254 	struct inode *inode = file_inode(file);
2255 	struct blk_plug plug;
2256 	ssize_t ret;
2257 
2258 	if (f2fs_encrypted_inode(inode) &&
2259 				!fscrypt_has_encryption_key(inode) &&
2260 				fscrypt_get_encryption_info(inode))
2261 		return -EACCES;
2262 
2263 	inode_lock(inode);
2264 	ret = generic_write_checks(iocb, from);
2265 	if (ret > 0) {
2266 		ret = f2fs_preallocate_blocks(iocb, from);
2267 		if (!ret) {
2268 			blk_start_plug(&plug);
2269 			ret = __generic_file_write_iter(iocb, from);
2270 			blk_finish_plug(&plug);
2271 		}
2272 	}
2273 	inode_unlock(inode);
2274 
2275 	if (ret > 0)
2276 		ret = generic_write_sync(iocb, ret);
2277 	return ret;
2278 }
2279 
2280 #ifdef CONFIG_COMPAT
2281 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2282 {
2283 	switch (cmd) {
2284 	case F2FS_IOC32_GETFLAGS:
2285 		cmd = F2FS_IOC_GETFLAGS;
2286 		break;
2287 	case F2FS_IOC32_SETFLAGS:
2288 		cmd = F2FS_IOC_SETFLAGS;
2289 		break;
2290 	case F2FS_IOC32_GETVERSION:
2291 		cmd = F2FS_IOC_GETVERSION;
2292 		break;
2293 	case F2FS_IOC_START_ATOMIC_WRITE:
2294 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2295 	case F2FS_IOC_START_VOLATILE_WRITE:
2296 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2297 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2298 	case F2FS_IOC_SHUTDOWN:
2299 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2300 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2301 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2302 	case F2FS_IOC_GARBAGE_COLLECT:
2303 	case F2FS_IOC_WRITE_CHECKPOINT:
2304 	case F2FS_IOC_DEFRAGMENT:
2305 		break;
2306 	case F2FS_IOC_MOVE_RANGE:
2307 		break;
2308 	default:
2309 		return -ENOIOCTLCMD;
2310 	}
2311 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2312 }
2313 #endif
2314 
2315 const struct file_operations f2fs_file_operations = {
2316 	.llseek		= f2fs_llseek,
2317 	.read_iter	= generic_file_read_iter,
2318 	.write_iter	= f2fs_file_write_iter,
2319 	.open		= f2fs_file_open,
2320 	.release	= f2fs_release_file,
2321 	.mmap		= f2fs_file_mmap,
2322 	.fsync		= f2fs_sync_file,
2323 	.fallocate	= f2fs_fallocate,
2324 	.unlocked_ioctl	= f2fs_ioctl,
2325 #ifdef CONFIG_COMPAT
2326 	.compat_ioctl	= f2fs_compat_ioctl,
2327 #endif
2328 	.splice_read	= generic_file_splice_read,
2329 	.splice_write	= iter_file_splice_write,
2330 };
2331