1 /* 2 * fs/f2fs/file.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/stat.h> 14 #include <linux/buffer_head.h> 15 #include <linux/writeback.h> 16 #include <linux/blkdev.h> 17 #include <linux/falloc.h> 18 #include <linux/types.h> 19 #include <linux/compat.h> 20 #include <linux/uaccess.h> 21 #include <linux/mount.h> 22 #include <linux/pagevec.h> 23 #include <linux/uio.h> 24 #include <linux/uuid.h> 25 #include <linux/file.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "xattr.h" 31 #include "acl.h" 32 #include "gc.h" 33 #include "trace.h" 34 #include <trace/events/f2fs.h> 35 36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 37 { 38 struct inode *inode = file_inode(vmf->vma->vm_file); 39 vm_fault_t ret; 40 41 down_read(&F2FS_I(inode)->i_mmap_sem); 42 ret = filemap_fault(vmf); 43 up_read(&F2FS_I(inode)->i_mmap_sem); 44 45 return ret; 46 } 47 48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 49 { 50 struct page *page = vmf->page; 51 struct inode *inode = file_inode(vmf->vma->vm_file); 52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 53 struct dnode_of_data dn; 54 int err; 55 56 if (unlikely(f2fs_cp_error(sbi))) { 57 err = -EIO; 58 goto err; 59 } 60 61 sb_start_pagefault(inode->i_sb); 62 63 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 64 65 /* block allocation */ 66 f2fs_lock_op(sbi); 67 set_new_dnode(&dn, inode, NULL, NULL, 0); 68 err = f2fs_reserve_block(&dn, page->index); 69 if (err) { 70 f2fs_unlock_op(sbi); 71 goto out; 72 } 73 f2fs_put_dnode(&dn); 74 f2fs_unlock_op(sbi); 75 76 f2fs_balance_fs(sbi, dn.node_changed); 77 78 file_update_time(vmf->vma->vm_file); 79 down_read(&F2FS_I(inode)->i_mmap_sem); 80 lock_page(page); 81 if (unlikely(page->mapping != inode->i_mapping || 82 page_offset(page) > i_size_read(inode) || 83 !PageUptodate(page))) { 84 unlock_page(page); 85 err = -EFAULT; 86 goto out_sem; 87 } 88 89 /* 90 * check to see if the page is mapped already (no holes) 91 */ 92 if (PageMappedToDisk(page)) 93 goto mapped; 94 95 /* page is wholly or partially inside EOF */ 96 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 97 i_size_read(inode)) { 98 unsigned offset; 99 offset = i_size_read(inode) & ~PAGE_MASK; 100 zero_user_segment(page, offset, PAGE_SIZE); 101 } 102 set_page_dirty(page); 103 if (!PageUptodate(page)) 104 SetPageUptodate(page); 105 106 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 107 108 trace_f2fs_vm_page_mkwrite(page, DATA); 109 mapped: 110 /* fill the page */ 111 f2fs_wait_on_page_writeback(page, DATA, false); 112 113 /* wait for GCed page writeback via META_MAPPING */ 114 if (f2fs_post_read_required(inode)) 115 f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr); 116 117 out_sem: 118 up_read(&F2FS_I(inode)->i_mmap_sem); 119 out: 120 sb_end_pagefault(inode->i_sb); 121 f2fs_update_time(sbi, REQ_TIME); 122 err: 123 return block_page_mkwrite_return(err); 124 } 125 126 static const struct vm_operations_struct f2fs_file_vm_ops = { 127 .fault = f2fs_filemap_fault, 128 .map_pages = filemap_map_pages, 129 .page_mkwrite = f2fs_vm_page_mkwrite, 130 }; 131 132 static int get_parent_ino(struct inode *inode, nid_t *pino) 133 { 134 struct dentry *dentry; 135 136 inode = igrab(inode); 137 dentry = d_find_any_alias(inode); 138 iput(inode); 139 if (!dentry) 140 return 0; 141 142 *pino = parent_ino(dentry); 143 dput(dentry); 144 return 1; 145 } 146 147 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 148 { 149 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 150 enum cp_reason_type cp_reason = CP_NO_NEEDED; 151 152 if (!S_ISREG(inode->i_mode)) 153 cp_reason = CP_NON_REGULAR; 154 else if (inode->i_nlink != 1) 155 cp_reason = CP_HARDLINK; 156 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 157 cp_reason = CP_SB_NEED_CP; 158 else if (file_wrong_pino(inode)) 159 cp_reason = CP_WRONG_PINO; 160 else if (!space_for_roll_forward(sbi)) 161 cp_reason = CP_NO_SPC_ROLL; 162 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 163 cp_reason = CP_NODE_NEED_CP; 164 else if (test_opt(sbi, FASTBOOT)) 165 cp_reason = CP_FASTBOOT_MODE; 166 else if (F2FS_OPTION(sbi).active_logs == 2) 167 cp_reason = CP_SPEC_LOG_NUM; 168 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 169 need_dentry_mark(sbi, inode->i_ino) && 170 exist_written_data(sbi, F2FS_I(inode)->i_pino, TRANS_DIR_INO)) 171 cp_reason = CP_RECOVER_DIR; 172 173 return cp_reason; 174 } 175 176 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 177 { 178 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 179 bool ret = false; 180 /* But we need to avoid that there are some inode updates */ 181 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino)) 182 ret = true; 183 f2fs_put_page(i, 0); 184 return ret; 185 } 186 187 static void try_to_fix_pino(struct inode *inode) 188 { 189 struct f2fs_inode_info *fi = F2FS_I(inode); 190 nid_t pino; 191 192 down_write(&fi->i_sem); 193 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 194 get_parent_ino(inode, &pino)) { 195 f2fs_i_pino_write(inode, pino); 196 file_got_pino(inode); 197 } 198 up_write(&fi->i_sem); 199 } 200 201 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 202 int datasync, bool atomic) 203 { 204 struct inode *inode = file->f_mapping->host; 205 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 206 nid_t ino = inode->i_ino; 207 int ret = 0; 208 enum cp_reason_type cp_reason = 0; 209 struct writeback_control wbc = { 210 .sync_mode = WB_SYNC_ALL, 211 .nr_to_write = LONG_MAX, 212 .for_reclaim = 0, 213 }; 214 215 if (unlikely(f2fs_readonly(inode->i_sb))) 216 return 0; 217 218 trace_f2fs_sync_file_enter(inode); 219 220 /* if fdatasync is triggered, let's do in-place-update */ 221 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 222 set_inode_flag(inode, FI_NEED_IPU); 223 ret = file_write_and_wait_range(file, start, end); 224 clear_inode_flag(inode, FI_NEED_IPU); 225 226 if (ret) { 227 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 228 return ret; 229 } 230 231 /* if the inode is dirty, let's recover all the time */ 232 if (!f2fs_skip_inode_update(inode, datasync)) { 233 f2fs_write_inode(inode, NULL); 234 goto go_write; 235 } 236 237 /* 238 * if there is no written data, don't waste time to write recovery info. 239 */ 240 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 241 !exist_written_data(sbi, ino, APPEND_INO)) { 242 243 /* it may call write_inode just prior to fsync */ 244 if (need_inode_page_update(sbi, ino)) 245 goto go_write; 246 247 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 248 exist_written_data(sbi, ino, UPDATE_INO)) 249 goto flush_out; 250 goto out; 251 } 252 go_write: 253 /* 254 * Both of fdatasync() and fsync() are able to be recovered from 255 * sudden-power-off. 256 */ 257 down_read(&F2FS_I(inode)->i_sem); 258 cp_reason = need_do_checkpoint(inode); 259 up_read(&F2FS_I(inode)->i_sem); 260 261 if (cp_reason) { 262 /* all the dirty node pages should be flushed for POR */ 263 ret = f2fs_sync_fs(inode->i_sb, 1); 264 265 /* 266 * We've secured consistency through sync_fs. Following pino 267 * will be used only for fsynced inodes after checkpoint. 268 */ 269 try_to_fix_pino(inode); 270 clear_inode_flag(inode, FI_APPEND_WRITE); 271 clear_inode_flag(inode, FI_UPDATE_WRITE); 272 goto out; 273 } 274 sync_nodes: 275 ret = fsync_node_pages(sbi, inode, &wbc, atomic); 276 if (ret) 277 goto out; 278 279 /* if cp_error was enabled, we should avoid infinite loop */ 280 if (unlikely(f2fs_cp_error(sbi))) { 281 ret = -EIO; 282 goto out; 283 } 284 285 if (need_inode_block_update(sbi, ino)) { 286 f2fs_mark_inode_dirty_sync(inode, true); 287 f2fs_write_inode(inode, NULL); 288 goto sync_nodes; 289 } 290 291 /* 292 * If it's atomic_write, it's just fine to keep write ordering. So 293 * here we don't need to wait for node write completion, since we use 294 * node chain which serializes node blocks. If one of node writes are 295 * reordered, we can see simply broken chain, resulting in stopping 296 * roll-forward recovery. It means we'll recover all or none node blocks 297 * given fsync mark. 298 */ 299 if (!atomic) { 300 ret = wait_on_node_pages_writeback(sbi, ino); 301 if (ret) 302 goto out; 303 } 304 305 /* once recovery info is written, don't need to tack this */ 306 remove_ino_entry(sbi, ino, APPEND_INO); 307 clear_inode_flag(inode, FI_APPEND_WRITE); 308 flush_out: 309 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 310 ret = f2fs_issue_flush(sbi, inode->i_ino); 311 if (!ret) { 312 remove_ino_entry(sbi, ino, UPDATE_INO); 313 clear_inode_flag(inode, FI_UPDATE_WRITE); 314 remove_ino_entry(sbi, ino, FLUSH_INO); 315 } 316 f2fs_update_time(sbi, REQ_TIME); 317 out: 318 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 319 f2fs_trace_ios(NULL, 1); 320 return ret; 321 } 322 323 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 324 { 325 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 326 return -EIO; 327 return f2fs_do_sync_file(file, start, end, datasync, false); 328 } 329 330 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 331 pgoff_t pgofs, int whence) 332 { 333 struct page *page; 334 int nr_pages; 335 336 if (whence != SEEK_DATA) 337 return 0; 338 339 /* find first dirty page index */ 340 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 341 1, &page); 342 if (!nr_pages) 343 return ULONG_MAX; 344 pgofs = page->index; 345 put_page(page); 346 return pgofs; 347 } 348 349 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, 350 int whence) 351 { 352 switch (whence) { 353 case SEEK_DATA: 354 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 355 is_valid_blkaddr(blkaddr)) 356 return true; 357 break; 358 case SEEK_HOLE: 359 if (blkaddr == NULL_ADDR) 360 return true; 361 break; 362 } 363 return false; 364 } 365 366 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 367 { 368 struct inode *inode = file->f_mapping->host; 369 loff_t maxbytes = inode->i_sb->s_maxbytes; 370 struct dnode_of_data dn; 371 pgoff_t pgofs, end_offset, dirty; 372 loff_t data_ofs = offset; 373 loff_t isize; 374 int err = 0; 375 376 inode_lock(inode); 377 378 isize = i_size_read(inode); 379 if (offset >= isize) 380 goto fail; 381 382 /* handle inline data case */ 383 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 384 if (whence == SEEK_HOLE) 385 data_ofs = isize; 386 goto found; 387 } 388 389 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 390 391 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 392 393 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 394 set_new_dnode(&dn, inode, NULL, NULL, 0); 395 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 396 if (err && err != -ENOENT) { 397 goto fail; 398 } else if (err == -ENOENT) { 399 /* direct node does not exists */ 400 if (whence == SEEK_DATA) { 401 pgofs = get_next_page_offset(&dn, pgofs); 402 continue; 403 } else { 404 goto found; 405 } 406 } 407 408 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 409 410 /* find data/hole in dnode block */ 411 for (; dn.ofs_in_node < end_offset; 412 dn.ofs_in_node++, pgofs++, 413 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 414 block_t blkaddr; 415 blkaddr = datablock_addr(dn.inode, 416 dn.node_page, dn.ofs_in_node); 417 418 if (__found_offset(blkaddr, dirty, pgofs, whence)) { 419 f2fs_put_dnode(&dn); 420 goto found; 421 } 422 } 423 f2fs_put_dnode(&dn); 424 } 425 426 if (whence == SEEK_DATA) 427 goto fail; 428 found: 429 if (whence == SEEK_HOLE && data_ofs > isize) 430 data_ofs = isize; 431 inode_unlock(inode); 432 return vfs_setpos(file, data_ofs, maxbytes); 433 fail: 434 inode_unlock(inode); 435 return -ENXIO; 436 } 437 438 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 439 { 440 struct inode *inode = file->f_mapping->host; 441 loff_t maxbytes = inode->i_sb->s_maxbytes; 442 443 switch (whence) { 444 case SEEK_SET: 445 case SEEK_CUR: 446 case SEEK_END: 447 return generic_file_llseek_size(file, offset, whence, 448 maxbytes, i_size_read(inode)); 449 case SEEK_DATA: 450 case SEEK_HOLE: 451 if (offset < 0) 452 return -ENXIO; 453 return f2fs_seek_block(file, offset, whence); 454 } 455 456 return -EINVAL; 457 } 458 459 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 460 { 461 struct inode *inode = file_inode(file); 462 int err; 463 464 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 465 return -EIO; 466 467 /* we don't need to use inline_data strictly */ 468 err = f2fs_convert_inline_inode(inode); 469 if (err) 470 return err; 471 472 file_accessed(file); 473 vma->vm_ops = &f2fs_file_vm_ops; 474 return 0; 475 } 476 477 static int f2fs_file_open(struct inode *inode, struct file *filp) 478 { 479 int err = fscrypt_file_open(inode, filp); 480 481 if (err) 482 return err; 483 484 filp->f_mode |= FMODE_NOWAIT; 485 486 return dquot_file_open(inode, filp); 487 } 488 489 void truncate_data_blocks_range(struct dnode_of_data *dn, int count) 490 { 491 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 492 struct f2fs_node *raw_node; 493 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 494 __le32 *addr; 495 int base = 0; 496 497 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 498 base = get_extra_isize(dn->inode); 499 500 raw_node = F2FS_NODE(dn->node_page); 501 addr = blkaddr_in_node(raw_node) + base + ofs; 502 503 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 504 block_t blkaddr = le32_to_cpu(*addr); 505 if (blkaddr == NULL_ADDR) 506 continue; 507 508 dn->data_blkaddr = NULL_ADDR; 509 set_data_blkaddr(dn); 510 invalidate_blocks(sbi, blkaddr); 511 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 512 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 513 nr_free++; 514 } 515 516 if (nr_free) { 517 pgoff_t fofs; 518 /* 519 * once we invalidate valid blkaddr in range [ofs, ofs + count], 520 * we will invalidate all blkaddr in the whole range. 521 */ 522 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), 523 dn->inode) + ofs; 524 f2fs_update_extent_cache_range(dn, fofs, 0, len); 525 dec_valid_block_count(sbi, dn->inode, nr_free); 526 } 527 dn->ofs_in_node = ofs; 528 529 f2fs_update_time(sbi, REQ_TIME); 530 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 531 dn->ofs_in_node, nr_free); 532 } 533 534 void truncate_data_blocks(struct dnode_of_data *dn) 535 { 536 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); 537 } 538 539 static int truncate_partial_data_page(struct inode *inode, u64 from, 540 bool cache_only) 541 { 542 unsigned offset = from & (PAGE_SIZE - 1); 543 pgoff_t index = from >> PAGE_SHIFT; 544 struct address_space *mapping = inode->i_mapping; 545 struct page *page; 546 547 if (!offset && !cache_only) 548 return 0; 549 550 if (cache_only) { 551 page = find_lock_page(mapping, index); 552 if (page && PageUptodate(page)) 553 goto truncate_out; 554 f2fs_put_page(page, 1); 555 return 0; 556 } 557 558 page = get_lock_data_page(inode, index, true); 559 if (IS_ERR(page)) 560 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 561 truncate_out: 562 f2fs_wait_on_page_writeback(page, DATA, true); 563 zero_user(page, offset, PAGE_SIZE - offset); 564 565 /* An encrypted inode should have a key and truncate the last page. */ 566 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode)); 567 if (!cache_only) 568 set_page_dirty(page); 569 f2fs_put_page(page, 1); 570 return 0; 571 } 572 573 int truncate_blocks(struct inode *inode, u64 from, bool lock) 574 { 575 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 576 struct dnode_of_data dn; 577 pgoff_t free_from; 578 int count = 0, err = 0; 579 struct page *ipage; 580 bool truncate_page = false; 581 582 trace_f2fs_truncate_blocks_enter(inode, from); 583 584 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 585 586 if (free_from >= sbi->max_file_blocks) 587 goto free_partial; 588 589 if (lock) 590 f2fs_lock_op(sbi); 591 592 ipage = get_node_page(sbi, inode->i_ino); 593 if (IS_ERR(ipage)) { 594 err = PTR_ERR(ipage); 595 goto out; 596 } 597 598 if (f2fs_has_inline_data(inode)) { 599 truncate_inline_inode(inode, ipage, from); 600 f2fs_put_page(ipage, 1); 601 truncate_page = true; 602 goto out; 603 } 604 605 set_new_dnode(&dn, inode, ipage, NULL, 0); 606 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 607 if (err) { 608 if (err == -ENOENT) 609 goto free_next; 610 goto out; 611 } 612 613 count = ADDRS_PER_PAGE(dn.node_page, inode); 614 615 count -= dn.ofs_in_node; 616 f2fs_bug_on(sbi, count < 0); 617 618 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 619 truncate_data_blocks_range(&dn, count); 620 free_from += count; 621 } 622 623 f2fs_put_dnode(&dn); 624 free_next: 625 err = truncate_inode_blocks(inode, free_from); 626 out: 627 if (lock) 628 f2fs_unlock_op(sbi); 629 free_partial: 630 /* lastly zero out the first data page */ 631 if (!err) 632 err = truncate_partial_data_page(inode, from, truncate_page); 633 634 trace_f2fs_truncate_blocks_exit(inode, err); 635 return err; 636 } 637 638 int f2fs_truncate(struct inode *inode) 639 { 640 int err; 641 642 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 643 return -EIO; 644 645 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 646 S_ISLNK(inode->i_mode))) 647 return 0; 648 649 trace_f2fs_truncate(inode); 650 651 #ifdef CONFIG_F2FS_FAULT_INJECTION 652 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 653 f2fs_show_injection_info(FAULT_TRUNCATE); 654 return -EIO; 655 } 656 #endif 657 /* we should check inline_data size */ 658 if (!f2fs_may_inline_data(inode)) { 659 err = f2fs_convert_inline_inode(inode); 660 if (err) 661 return err; 662 } 663 664 err = truncate_blocks(inode, i_size_read(inode), true); 665 if (err) 666 return err; 667 668 inode->i_mtime = inode->i_ctime = current_time(inode); 669 f2fs_mark_inode_dirty_sync(inode, false); 670 return 0; 671 } 672 673 int f2fs_getattr(const struct path *path, struct kstat *stat, 674 u32 request_mask, unsigned int query_flags) 675 { 676 struct inode *inode = d_inode(path->dentry); 677 struct f2fs_inode_info *fi = F2FS_I(inode); 678 struct f2fs_inode *ri; 679 unsigned int flags; 680 681 if (f2fs_has_extra_attr(inode) && 682 f2fs_sb_has_inode_crtime(inode->i_sb) && 683 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 684 stat->result_mask |= STATX_BTIME; 685 stat->btime.tv_sec = fi->i_crtime.tv_sec; 686 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 687 } 688 689 flags = fi->i_flags & F2FS_FL_USER_VISIBLE; 690 if (flags & F2FS_APPEND_FL) 691 stat->attributes |= STATX_ATTR_APPEND; 692 if (flags & F2FS_COMPR_FL) 693 stat->attributes |= STATX_ATTR_COMPRESSED; 694 if (f2fs_encrypted_inode(inode)) 695 stat->attributes |= STATX_ATTR_ENCRYPTED; 696 if (flags & F2FS_IMMUTABLE_FL) 697 stat->attributes |= STATX_ATTR_IMMUTABLE; 698 if (flags & F2FS_NODUMP_FL) 699 stat->attributes |= STATX_ATTR_NODUMP; 700 701 stat->attributes_mask |= (STATX_ATTR_APPEND | 702 STATX_ATTR_COMPRESSED | 703 STATX_ATTR_ENCRYPTED | 704 STATX_ATTR_IMMUTABLE | 705 STATX_ATTR_NODUMP); 706 707 generic_fillattr(inode, stat); 708 709 /* we need to show initial sectors used for inline_data/dentries */ 710 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 711 f2fs_has_inline_dentry(inode)) 712 stat->blocks += (stat->size + 511) >> 9; 713 714 return 0; 715 } 716 717 #ifdef CONFIG_F2FS_FS_POSIX_ACL 718 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 719 { 720 unsigned int ia_valid = attr->ia_valid; 721 722 if (ia_valid & ATTR_UID) 723 inode->i_uid = attr->ia_uid; 724 if (ia_valid & ATTR_GID) 725 inode->i_gid = attr->ia_gid; 726 if (ia_valid & ATTR_ATIME) 727 inode->i_atime = timespec_trunc(attr->ia_atime, 728 inode->i_sb->s_time_gran); 729 if (ia_valid & ATTR_MTIME) 730 inode->i_mtime = timespec_trunc(attr->ia_mtime, 731 inode->i_sb->s_time_gran); 732 if (ia_valid & ATTR_CTIME) 733 inode->i_ctime = timespec_trunc(attr->ia_ctime, 734 inode->i_sb->s_time_gran); 735 if (ia_valid & ATTR_MODE) { 736 umode_t mode = attr->ia_mode; 737 738 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 739 mode &= ~S_ISGID; 740 set_acl_inode(inode, mode); 741 } 742 } 743 #else 744 #define __setattr_copy setattr_copy 745 #endif 746 747 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 748 { 749 struct inode *inode = d_inode(dentry); 750 int err; 751 bool size_changed = false; 752 753 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 754 return -EIO; 755 756 err = setattr_prepare(dentry, attr); 757 if (err) 758 return err; 759 760 err = fscrypt_prepare_setattr(dentry, attr); 761 if (err) 762 return err; 763 764 if (is_quota_modification(inode, attr)) { 765 err = dquot_initialize(inode); 766 if (err) 767 return err; 768 } 769 if ((attr->ia_valid & ATTR_UID && 770 !uid_eq(attr->ia_uid, inode->i_uid)) || 771 (attr->ia_valid & ATTR_GID && 772 !gid_eq(attr->ia_gid, inode->i_gid))) { 773 err = dquot_transfer(inode, attr); 774 if (err) 775 return err; 776 } 777 778 if (attr->ia_valid & ATTR_SIZE) { 779 if (attr->ia_size <= i_size_read(inode)) { 780 down_write(&F2FS_I(inode)->i_mmap_sem); 781 truncate_setsize(inode, attr->ia_size); 782 err = f2fs_truncate(inode); 783 up_write(&F2FS_I(inode)->i_mmap_sem); 784 if (err) 785 return err; 786 } else { 787 /* 788 * do not trim all blocks after i_size if target size is 789 * larger than i_size. 790 */ 791 down_write(&F2FS_I(inode)->i_mmap_sem); 792 truncate_setsize(inode, attr->ia_size); 793 up_write(&F2FS_I(inode)->i_mmap_sem); 794 795 /* should convert inline inode here */ 796 if (!f2fs_may_inline_data(inode)) { 797 err = f2fs_convert_inline_inode(inode); 798 if (err) 799 return err; 800 } 801 inode->i_mtime = inode->i_ctime = current_time(inode); 802 } 803 804 down_write(&F2FS_I(inode)->i_sem); 805 F2FS_I(inode)->last_disk_size = i_size_read(inode); 806 up_write(&F2FS_I(inode)->i_sem); 807 808 size_changed = true; 809 } 810 811 __setattr_copy(inode, attr); 812 813 if (attr->ia_valid & ATTR_MODE) { 814 err = posix_acl_chmod(inode, get_inode_mode(inode)); 815 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 816 inode->i_mode = F2FS_I(inode)->i_acl_mode; 817 clear_inode_flag(inode, FI_ACL_MODE); 818 } 819 } 820 821 /* file size may changed here */ 822 f2fs_mark_inode_dirty_sync(inode, size_changed); 823 824 /* inode change will produce dirty node pages flushed by checkpoint */ 825 f2fs_balance_fs(F2FS_I_SB(inode), true); 826 827 return err; 828 } 829 830 const struct inode_operations f2fs_file_inode_operations = { 831 .getattr = f2fs_getattr, 832 .setattr = f2fs_setattr, 833 .get_acl = f2fs_get_acl, 834 .set_acl = f2fs_set_acl, 835 #ifdef CONFIG_F2FS_FS_XATTR 836 .listxattr = f2fs_listxattr, 837 #endif 838 .fiemap = f2fs_fiemap, 839 }; 840 841 static int fill_zero(struct inode *inode, pgoff_t index, 842 loff_t start, loff_t len) 843 { 844 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 845 struct page *page; 846 847 if (!len) 848 return 0; 849 850 f2fs_balance_fs(sbi, true); 851 852 f2fs_lock_op(sbi); 853 page = get_new_data_page(inode, NULL, index, false); 854 f2fs_unlock_op(sbi); 855 856 if (IS_ERR(page)) 857 return PTR_ERR(page); 858 859 f2fs_wait_on_page_writeback(page, DATA, true); 860 zero_user(page, start, len); 861 set_page_dirty(page); 862 f2fs_put_page(page, 1); 863 return 0; 864 } 865 866 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 867 { 868 int err; 869 870 while (pg_start < pg_end) { 871 struct dnode_of_data dn; 872 pgoff_t end_offset, count; 873 874 set_new_dnode(&dn, inode, NULL, NULL, 0); 875 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 876 if (err) { 877 if (err == -ENOENT) { 878 pg_start = get_next_page_offset(&dn, pg_start); 879 continue; 880 } 881 return err; 882 } 883 884 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 885 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 886 887 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 888 889 truncate_data_blocks_range(&dn, count); 890 f2fs_put_dnode(&dn); 891 892 pg_start += count; 893 } 894 return 0; 895 } 896 897 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 898 { 899 pgoff_t pg_start, pg_end; 900 loff_t off_start, off_end; 901 int ret; 902 903 ret = f2fs_convert_inline_inode(inode); 904 if (ret) 905 return ret; 906 907 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 908 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 909 910 off_start = offset & (PAGE_SIZE - 1); 911 off_end = (offset + len) & (PAGE_SIZE - 1); 912 913 if (pg_start == pg_end) { 914 ret = fill_zero(inode, pg_start, off_start, 915 off_end - off_start); 916 if (ret) 917 return ret; 918 } else { 919 if (off_start) { 920 ret = fill_zero(inode, pg_start++, off_start, 921 PAGE_SIZE - off_start); 922 if (ret) 923 return ret; 924 } 925 if (off_end) { 926 ret = fill_zero(inode, pg_end, 0, off_end); 927 if (ret) 928 return ret; 929 } 930 931 if (pg_start < pg_end) { 932 struct address_space *mapping = inode->i_mapping; 933 loff_t blk_start, blk_end; 934 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 935 936 f2fs_balance_fs(sbi, true); 937 938 blk_start = (loff_t)pg_start << PAGE_SHIFT; 939 blk_end = (loff_t)pg_end << PAGE_SHIFT; 940 down_write(&F2FS_I(inode)->i_mmap_sem); 941 truncate_inode_pages_range(mapping, blk_start, 942 blk_end - 1); 943 944 f2fs_lock_op(sbi); 945 ret = truncate_hole(inode, pg_start, pg_end); 946 f2fs_unlock_op(sbi); 947 up_write(&F2FS_I(inode)->i_mmap_sem); 948 } 949 } 950 951 return ret; 952 } 953 954 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 955 int *do_replace, pgoff_t off, pgoff_t len) 956 { 957 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 958 struct dnode_of_data dn; 959 int ret, done, i; 960 961 next_dnode: 962 set_new_dnode(&dn, inode, NULL, NULL, 0); 963 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 964 if (ret && ret != -ENOENT) { 965 return ret; 966 } else if (ret == -ENOENT) { 967 if (dn.max_level == 0) 968 return -ENOENT; 969 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len); 970 blkaddr += done; 971 do_replace += done; 972 goto next; 973 } 974 975 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 976 dn.ofs_in_node, len); 977 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 978 *blkaddr = datablock_addr(dn.inode, 979 dn.node_page, dn.ofs_in_node); 980 if (!is_checkpointed_data(sbi, *blkaddr)) { 981 982 if (test_opt(sbi, LFS)) { 983 f2fs_put_dnode(&dn); 984 return -ENOTSUPP; 985 } 986 987 /* do not invalidate this block address */ 988 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 989 *do_replace = 1; 990 } 991 } 992 f2fs_put_dnode(&dn); 993 next: 994 len -= done; 995 off += done; 996 if (len) 997 goto next_dnode; 998 return 0; 999 } 1000 1001 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1002 int *do_replace, pgoff_t off, int len) 1003 { 1004 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1005 struct dnode_of_data dn; 1006 int ret, i; 1007 1008 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1009 if (*do_replace == 0) 1010 continue; 1011 1012 set_new_dnode(&dn, inode, NULL, NULL, 0); 1013 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1014 if (ret) { 1015 dec_valid_block_count(sbi, inode, 1); 1016 invalidate_blocks(sbi, *blkaddr); 1017 } else { 1018 f2fs_update_data_blkaddr(&dn, *blkaddr); 1019 } 1020 f2fs_put_dnode(&dn); 1021 } 1022 return 0; 1023 } 1024 1025 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1026 block_t *blkaddr, int *do_replace, 1027 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1028 { 1029 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1030 pgoff_t i = 0; 1031 int ret; 1032 1033 while (i < len) { 1034 if (blkaddr[i] == NULL_ADDR && !full) { 1035 i++; 1036 continue; 1037 } 1038 1039 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1040 struct dnode_of_data dn; 1041 struct node_info ni; 1042 size_t new_size; 1043 pgoff_t ilen; 1044 1045 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1046 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1047 if (ret) 1048 return ret; 1049 1050 get_node_info(sbi, dn.nid, &ni); 1051 ilen = min((pgoff_t) 1052 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1053 dn.ofs_in_node, len - i); 1054 do { 1055 dn.data_blkaddr = datablock_addr(dn.inode, 1056 dn.node_page, dn.ofs_in_node); 1057 truncate_data_blocks_range(&dn, 1); 1058 1059 if (do_replace[i]) { 1060 f2fs_i_blocks_write(src_inode, 1061 1, false, false); 1062 f2fs_i_blocks_write(dst_inode, 1063 1, true, false); 1064 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1065 blkaddr[i], ni.version, true, false); 1066 1067 do_replace[i] = 0; 1068 } 1069 dn.ofs_in_node++; 1070 i++; 1071 new_size = (dst + i) << PAGE_SHIFT; 1072 if (dst_inode->i_size < new_size) 1073 f2fs_i_size_write(dst_inode, new_size); 1074 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1075 1076 f2fs_put_dnode(&dn); 1077 } else { 1078 struct page *psrc, *pdst; 1079 1080 psrc = get_lock_data_page(src_inode, src + i, true); 1081 if (IS_ERR(psrc)) 1082 return PTR_ERR(psrc); 1083 pdst = get_new_data_page(dst_inode, NULL, dst + i, 1084 true); 1085 if (IS_ERR(pdst)) { 1086 f2fs_put_page(psrc, 1); 1087 return PTR_ERR(pdst); 1088 } 1089 f2fs_copy_page(psrc, pdst); 1090 set_page_dirty(pdst); 1091 f2fs_put_page(pdst, 1); 1092 f2fs_put_page(psrc, 1); 1093 1094 ret = truncate_hole(src_inode, src + i, src + i + 1); 1095 if (ret) 1096 return ret; 1097 i++; 1098 } 1099 } 1100 return 0; 1101 } 1102 1103 static int __exchange_data_block(struct inode *src_inode, 1104 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1105 pgoff_t len, bool full) 1106 { 1107 block_t *src_blkaddr; 1108 int *do_replace; 1109 pgoff_t olen; 1110 int ret; 1111 1112 while (len) { 1113 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len); 1114 1115 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1116 sizeof(block_t) * olen, GFP_KERNEL); 1117 if (!src_blkaddr) 1118 return -ENOMEM; 1119 1120 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1121 sizeof(int) * olen, GFP_KERNEL); 1122 if (!do_replace) { 1123 kvfree(src_blkaddr); 1124 return -ENOMEM; 1125 } 1126 1127 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1128 do_replace, src, olen); 1129 if (ret) 1130 goto roll_back; 1131 1132 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1133 do_replace, src, dst, olen, full); 1134 if (ret) 1135 goto roll_back; 1136 1137 src += olen; 1138 dst += olen; 1139 len -= olen; 1140 1141 kvfree(src_blkaddr); 1142 kvfree(do_replace); 1143 } 1144 return 0; 1145 1146 roll_back: 1147 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len); 1148 kvfree(src_blkaddr); 1149 kvfree(do_replace); 1150 return ret; 1151 } 1152 1153 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end) 1154 { 1155 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1156 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1157 int ret; 1158 1159 f2fs_balance_fs(sbi, true); 1160 f2fs_lock_op(sbi); 1161 1162 f2fs_drop_extent_tree(inode); 1163 1164 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1165 f2fs_unlock_op(sbi); 1166 return ret; 1167 } 1168 1169 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1170 { 1171 pgoff_t pg_start, pg_end; 1172 loff_t new_size; 1173 int ret; 1174 1175 if (offset + len >= i_size_read(inode)) 1176 return -EINVAL; 1177 1178 /* collapse range should be aligned to block size of f2fs. */ 1179 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1180 return -EINVAL; 1181 1182 ret = f2fs_convert_inline_inode(inode); 1183 if (ret) 1184 return ret; 1185 1186 pg_start = offset >> PAGE_SHIFT; 1187 pg_end = (offset + len) >> PAGE_SHIFT; 1188 1189 /* avoid gc operation during block exchange */ 1190 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1191 1192 down_write(&F2FS_I(inode)->i_mmap_sem); 1193 /* write out all dirty pages from offset */ 1194 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1195 if (ret) 1196 goto out_unlock; 1197 1198 truncate_pagecache(inode, offset); 1199 1200 ret = f2fs_do_collapse(inode, pg_start, pg_end); 1201 if (ret) 1202 goto out_unlock; 1203 1204 /* write out all moved pages, if possible */ 1205 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1206 truncate_pagecache(inode, offset); 1207 1208 new_size = i_size_read(inode) - len; 1209 truncate_pagecache(inode, new_size); 1210 1211 ret = truncate_blocks(inode, new_size, true); 1212 if (!ret) 1213 f2fs_i_size_write(inode, new_size); 1214 out_unlock: 1215 up_write(&F2FS_I(inode)->i_mmap_sem); 1216 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1217 return ret; 1218 } 1219 1220 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1221 pgoff_t end) 1222 { 1223 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1224 pgoff_t index = start; 1225 unsigned int ofs_in_node = dn->ofs_in_node; 1226 blkcnt_t count = 0; 1227 int ret; 1228 1229 for (; index < end; index++, dn->ofs_in_node++) { 1230 if (datablock_addr(dn->inode, dn->node_page, 1231 dn->ofs_in_node) == NULL_ADDR) 1232 count++; 1233 } 1234 1235 dn->ofs_in_node = ofs_in_node; 1236 ret = reserve_new_blocks(dn, count); 1237 if (ret) 1238 return ret; 1239 1240 dn->ofs_in_node = ofs_in_node; 1241 for (index = start; index < end; index++, dn->ofs_in_node++) { 1242 dn->data_blkaddr = datablock_addr(dn->inode, 1243 dn->node_page, dn->ofs_in_node); 1244 /* 1245 * reserve_new_blocks will not guarantee entire block 1246 * allocation. 1247 */ 1248 if (dn->data_blkaddr == NULL_ADDR) { 1249 ret = -ENOSPC; 1250 break; 1251 } 1252 if (dn->data_blkaddr != NEW_ADDR) { 1253 invalidate_blocks(sbi, dn->data_blkaddr); 1254 dn->data_blkaddr = NEW_ADDR; 1255 set_data_blkaddr(dn); 1256 } 1257 } 1258 1259 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1260 1261 return ret; 1262 } 1263 1264 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1265 int mode) 1266 { 1267 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1268 struct address_space *mapping = inode->i_mapping; 1269 pgoff_t index, pg_start, pg_end; 1270 loff_t new_size = i_size_read(inode); 1271 loff_t off_start, off_end; 1272 int ret = 0; 1273 1274 ret = inode_newsize_ok(inode, (len + offset)); 1275 if (ret) 1276 return ret; 1277 1278 ret = f2fs_convert_inline_inode(inode); 1279 if (ret) 1280 return ret; 1281 1282 down_write(&F2FS_I(inode)->i_mmap_sem); 1283 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1284 if (ret) 1285 goto out_sem; 1286 1287 truncate_pagecache_range(inode, offset, offset + len - 1); 1288 1289 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1290 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1291 1292 off_start = offset & (PAGE_SIZE - 1); 1293 off_end = (offset + len) & (PAGE_SIZE - 1); 1294 1295 if (pg_start == pg_end) { 1296 ret = fill_zero(inode, pg_start, off_start, 1297 off_end - off_start); 1298 if (ret) 1299 goto out_sem; 1300 1301 new_size = max_t(loff_t, new_size, offset + len); 1302 } else { 1303 if (off_start) { 1304 ret = fill_zero(inode, pg_start++, off_start, 1305 PAGE_SIZE - off_start); 1306 if (ret) 1307 goto out_sem; 1308 1309 new_size = max_t(loff_t, new_size, 1310 (loff_t)pg_start << PAGE_SHIFT); 1311 } 1312 1313 for (index = pg_start; index < pg_end;) { 1314 struct dnode_of_data dn; 1315 unsigned int end_offset; 1316 pgoff_t end; 1317 1318 f2fs_lock_op(sbi); 1319 1320 set_new_dnode(&dn, inode, NULL, NULL, 0); 1321 ret = get_dnode_of_data(&dn, index, ALLOC_NODE); 1322 if (ret) { 1323 f2fs_unlock_op(sbi); 1324 goto out; 1325 } 1326 1327 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1328 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1329 1330 ret = f2fs_do_zero_range(&dn, index, end); 1331 f2fs_put_dnode(&dn); 1332 f2fs_unlock_op(sbi); 1333 1334 f2fs_balance_fs(sbi, dn.node_changed); 1335 1336 if (ret) 1337 goto out; 1338 1339 index = end; 1340 new_size = max_t(loff_t, new_size, 1341 (loff_t)index << PAGE_SHIFT); 1342 } 1343 1344 if (off_end) { 1345 ret = fill_zero(inode, pg_end, 0, off_end); 1346 if (ret) 1347 goto out; 1348 1349 new_size = max_t(loff_t, new_size, offset + len); 1350 } 1351 } 1352 1353 out: 1354 if (new_size > i_size_read(inode)) { 1355 if (mode & FALLOC_FL_KEEP_SIZE) 1356 file_set_keep_isize(inode); 1357 else 1358 f2fs_i_size_write(inode, new_size); 1359 } 1360 out_sem: 1361 up_write(&F2FS_I(inode)->i_mmap_sem); 1362 1363 return ret; 1364 } 1365 1366 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1367 { 1368 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1369 pgoff_t nr, pg_start, pg_end, delta, idx; 1370 loff_t new_size; 1371 int ret = 0; 1372 1373 new_size = i_size_read(inode) + len; 1374 ret = inode_newsize_ok(inode, new_size); 1375 if (ret) 1376 return ret; 1377 1378 if (offset >= i_size_read(inode)) 1379 return -EINVAL; 1380 1381 /* insert range should be aligned to block size of f2fs. */ 1382 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1383 return -EINVAL; 1384 1385 ret = f2fs_convert_inline_inode(inode); 1386 if (ret) 1387 return ret; 1388 1389 f2fs_balance_fs(sbi, true); 1390 1391 /* avoid gc operation during block exchange */ 1392 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1393 1394 down_write(&F2FS_I(inode)->i_mmap_sem); 1395 ret = truncate_blocks(inode, i_size_read(inode), true); 1396 if (ret) 1397 goto out; 1398 1399 /* write out all dirty pages from offset */ 1400 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1401 if (ret) 1402 goto out; 1403 1404 truncate_pagecache(inode, offset); 1405 1406 pg_start = offset >> PAGE_SHIFT; 1407 pg_end = (offset + len) >> PAGE_SHIFT; 1408 delta = pg_end - pg_start; 1409 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1410 1411 while (!ret && idx > pg_start) { 1412 nr = idx - pg_start; 1413 if (nr > delta) 1414 nr = delta; 1415 idx -= nr; 1416 1417 f2fs_lock_op(sbi); 1418 f2fs_drop_extent_tree(inode); 1419 1420 ret = __exchange_data_block(inode, inode, idx, 1421 idx + delta, nr, false); 1422 f2fs_unlock_op(sbi); 1423 } 1424 1425 /* write out all moved pages, if possible */ 1426 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1427 truncate_pagecache(inode, offset); 1428 1429 if (!ret) 1430 f2fs_i_size_write(inode, new_size); 1431 out: 1432 up_write(&F2FS_I(inode)->i_mmap_sem); 1433 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1434 return ret; 1435 } 1436 1437 static int expand_inode_data(struct inode *inode, loff_t offset, 1438 loff_t len, int mode) 1439 { 1440 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1441 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1442 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE }; 1443 pgoff_t pg_end; 1444 loff_t new_size = i_size_read(inode); 1445 loff_t off_end; 1446 int err; 1447 1448 err = inode_newsize_ok(inode, (len + offset)); 1449 if (err) 1450 return err; 1451 1452 err = f2fs_convert_inline_inode(inode); 1453 if (err) 1454 return err; 1455 1456 f2fs_balance_fs(sbi, true); 1457 1458 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1459 off_end = (offset + len) & (PAGE_SIZE - 1); 1460 1461 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1462 map.m_len = pg_end - map.m_lblk; 1463 if (off_end) 1464 map.m_len++; 1465 1466 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1467 if (err) { 1468 pgoff_t last_off; 1469 1470 if (!map.m_len) 1471 return err; 1472 1473 last_off = map.m_lblk + map.m_len - 1; 1474 1475 /* update new size to the failed position */ 1476 new_size = (last_off == pg_end) ? offset + len: 1477 (loff_t)(last_off + 1) << PAGE_SHIFT; 1478 } else { 1479 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1480 } 1481 1482 if (new_size > i_size_read(inode)) { 1483 if (mode & FALLOC_FL_KEEP_SIZE) 1484 file_set_keep_isize(inode); 1485 else 1486 f2fs_i_size_write(inode, new_size); 1487 } 1488 1489 return err; 1490 } 1491 1492 static long f2fs_fallocate(struct file *file, int mode, 1493 loff_t offset, loff_t len) 1494 { 1495 struct inode *inode = file_inode(file); 1496 long ret = 0; 1497 1498 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1499 return -EIO; 1500 1501 /* f2fs only support ->fallocate for regular file */ 1502 if (!S_ISREG(inode->i_mode)) 1503 return -EINVAL; 1504 1505 if (f2fs_encrypted_inode(inode) && 1506 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1507 return -EOPNOTSUPP; 1508 1509 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1510 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1511 FALLOC_FL_INSERT_RANGE)) 1512 return -EOPNOTSUPP; 1513 1514 inode_lock(inode); 1515 1516 if (mode & FALLOC_FL_PUNCH_HOLE) { 1517 if (offset >= inode->i_size) 1518 goto out; 1519 1520 ret = punch_hole(inode, offset, len); 1521 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1522 ret = f2fs_collapse_range(inode, offset, len); 1523 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1524 ret = f2fs_zero_range(inode, offset, len, mode); 1525 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1526 ret = f2fs_insert_range(inode, offset, len); 1527 } else { 1528 ret = expand_inode_data(inode, offset, len, mode); 1529 } 1530 1531 if (!ret) { 1532 inode->i_mtime = inode->i_ctime = current_time(inode); 1533 f2fs_mark_inode_dirty_sync(inode, false); 1534 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1535 } 1536 1537 out: 1538 inode_unlock(inode); 1539 1540 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1541 return ret; 1542 } 1543 1544 static int f2fs_release_file(struct inode *inode, struct file *filp) 1545 { 1546 /* 1547 * f2fs_relase_file is called at every close calls. So we should 1548 * not drop any inmemory pages by close called by other process. 1549 */ 1550 if (!(filp->f_mode & FMODE_WRITE) || 1551 atomic_read(&inode->i_writecount) != 1) 1552 return 0; 1553 1554 /* some remained atomic pages should discarded */ 1555 if (f2fs_is_atomic_file(inode)) 1556 drop_inmem_pages(inode); 1557 if (f2fs_is_volatile_file(inode)) { 1558 clear_inode_flag(inode, FI_VOLATILE_FILE); 1559 stat_dec_volatile_write(inode); 1560 set_inode_flag(inode, FI_DROP_CACHE); 1561 filemap_fdatawrite(inode->i_mapping); 1562 clear_inode_flag(inode, FI_DROP_CACHE); 1563 } 1564 return 0; 1565 } 1566 1567 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1568 { 1569 struct inode *inode = file_inode(file); 1570 1571 /* 1572 * If the process doing a transaction is crashed, we should do 1573 * roll-back. Otherwise, other reader/write can see corrupted database 1574 * until all the writers close its file. Since this should be done 1575 * before dropping file lock, it needs to do in ->flush. 1576 */ 1577 if (f2fs_is_atomic_file(inode) && 1578 F2FS_I(inode)->inmem_task == current) 1579 drop_inmem_pages(inode); 1580 return 0; 1581 } 1582 1583 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1584 { 1585 struct inode *inode = file_inode(filp); 1586 struct f2fs_inode_info *fi = F2FS_I(inode); 1587 unsigned int flags = fi->i_flags; 1588 1589 if (file_is_encrypt(inode)) 1590 flags |= F2FS_ENCRYPT_FL; 1591 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1592 flags |= F2FS_INLINE_DATA_FL; 1593 1594 flags &= F2FS_FL_USER_VISIBLE; 1595 1596 return put_user(flags, (int __user *)arg); 1597 } 1598 1599 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags) 1600 { 1601 struct f2fs_inode_info *fi = F2FS_I(inode); 1602 unsigned int oldflags; 1603 1604 /* Is it quota file? Do not allow user to mess with it */ 1605 if (IS_NOQUOTA(inode)) 1606 return -EPERM; 1607 1608 flags = f2fs_mask_flags(inode->i_mode, flags); 1609 1610 oldflags = fi->i_flags; 1611 1612 if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL)) 1613 if (!capable(CAP_LINUX_IMMUTABLE)) 1614 return -EPERM; 1615 1616 flags = flags & F2FS_FL_USER_MODIFIABLE; 1617 flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE; 1618 fi->i_flags = flags; 1619 1620 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1621 set_inode_flag(inode, FI_PROJ_INHERIT); 1622 else 1623 clear_inode_flag(inode, FI_PROJ_INHERIT); 1624 1625 inode->i_ctime = current_time(inode); 1626 f2fs_set_inode_flags(inode); 1627 f2fs_mark_inode_dirty_sync(inode, false); 1628 return 0; 1629 } 1630 1631 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1632 { 1633 struct inode *inode = file_inode(filp); 1634 unsigned int flags; 1635 int ret; 1636 1637 if (!inode_owner_or_capable(inode)) 1638 return -EACCES; 1639 1640 if (get_user(flags, (int __user *)arg)) 1641 return -EFAULT; 1642 1643 ret = mnt_want_write_file(filp); 1644 if (ret) 1645 return ret; 1646 1647 inode_lock(inode); 1648 1649 ret = __f2fs_ioc_setflags(inode, flags); 1650 1651 inode_unlock(inode); 1652 mnt_drop_write_file(filp); 1653 return ret; 1654 } 1655 1656 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1657 { 1658 struct inode *inode = file_inode(filp); 1659 1660 return put_user(inode->i_generation, (int __user *)arg); 1661 } 1662 1663 static int f2fs_ioc_start_atomic_write(struct file *filp) 1664 { 1665 struct inode *inode = file_inode(filp); 1666 int ret; 1667 1668 if (!inode_owner_or_capable(inode)) 1669 return -EACCES; 1670 1671 if (!S_ISREG(inode->i_mode)) 1672 return -EINVAL; 1673 1674 ret = mnt_want_write_file(filp); 1675 if (ret) 1676 return ret; 1677 1678 inode_lock(inode); 1679 1680 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1681 1682 if (f2fs_is_atomic_file(inode)) 1683 goto out; 1684 1685 ret = f2fs_convert_inline_inode(inode); 1686 if (ret) 1687 goto out; 1688 1689 if (!get_dirty_pages(inode)) 1690 goto skip_flush; 1691 1692 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING, 1693 "Unexpected flush for atomic writes: ino=%lu, npages=%u", 1694 inode->i_ino, get_dirty_pages(inode)); 1695 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 1696 if (ret) 1697 goto out; 1698 skip_flush: 1699 set_inode_flag(inode, FI_ATOMIC_FILE); 1700 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1701 1702 F2FS_I(inode)->inmem_task = current; 1703 stat_inc_atomic_write(inode); 1704 stat_update_max_atomic_write(inode); 1705 out: 1706 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1707 inode_unlock(inode); 1708 mnt_drop_write_file(filp); 1709 return ret; 1710 } 1711 1712 static int f2fs_ioc_commit_atomic_write(struct file *filp) 1713 { 1714 struct inode *inode = file_inode(filp); 1715 int ret; 1716 1717 if (!inode_owner_or_capable(inode)) 1718 return -EACCES; 1719 1720 ret = mnt_want_write_file(filp); 1721 if (ret) 1722 return ret; 1723 1724 inode_lock(inode); 1725 1726 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1727 1728 if (f2fs_is_volatile_file(inode)) { 1729 ret = -EINVAL; 1730 goto err_out; 1731 } 1732 1733 if (f2fs_is_atomic_file(inode)) { 1734 ret = commit_inmem_pages(inode); 1735 if (ret) 1736 goto err_out; 1737 1738 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1739 if (!ret) { 1740 clear_inode_flag(inode, FI_ATOMIC_FILE); 1741 stat_dec_atomic_write(inode); 1742 } 1743 } else { 1744 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 1745 } 1746 err_out: 1747 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1748 inode_unlock(inode); 1749 mnt_drop_write_file(filp); 1750 return ret; 1751 } 1752 1753 static int f2fs_ioc_start_volatile_write(struct file *filp) 1754 { 1755 struct inode *inode = file_inode(filp); 1756 int ret; 1757 1758 if (!inode_owner_or_capable(inode)) 1759 return -EACCES; 1760 1761 if (!S_ISREG(inode->i_mode)) 1762 return -EINVAL; 1763 1764 ret = mnt_want_write_file(filp); 1765 if (ret) 1766 return ret; 1767 1768 inode_lock(inode); 1769 1770 if (f2fs_is_volatile_file(inode)) 1771 goto out; 1772 1773 ret = f2fs_convert_inline_inode(inode); 1774 if (ret) 1775 goto out; 1776 1777 stat_inc_volatile_write(inode); 1778 stat_update_max_volatile_write(inode); 1779 1780 set_inode_flag(inode, FI_VOLATILE_FILE); 1781 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1782 out: 1783 inode_unlock(inode); 1784 mnt_drop_write_file(filp); 1785 return ret; 1786 } 1787 1788 static int f2fs_ioc_release_volatile_write(struct file *filp) 1789 { 1790 struct inode *inode = file_inode(filp); 1791 int ret; 1792 1793 if (!inode_owner_or_capable(inode)) 1794 return -EACCES; 1795 1796 ret = mnt_want_write_file(filp); 1797 if (ret) 1798 return ret; 1799 1800 inode_lock(inode); 1801 1802 if (!f2fs_is_volatile_file(inode)) 1803 goto out; 1804 1805 if (!f2fs_is_first_block_written(inode)) { 1806 ret = truncate_partial_data_page(inode, 0, true); 1807 goto out; 1808 } 1809 1810 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 1811 out: 1812 inode_unlock(inode); 1813 mnt_drop_write_file(filp); 1814 return ret; 1815 } 1816 1817 static int f2fs_ioc_abort_volatile_write(struct file *filp) 1818 { 1819 struct inode *inode = file_inode(filp); 1820 int ret; 1821 1822 if (!inode_owner_or_capable(inode)) 1823 return -EACCES; 1824 1825 ret = mnt_want_write_file(filp); 1826 if (ret) 1827 return ret; 1828 1829 inode_lock(inode); 1830 1831 if (f2fs_is_atomic_file(inode)) 1832 drop_inmem_pages(inode); 1833 if (f2fs_is_volatile_file(inode)) { 1834 clear_inode_flag(inode, FI_VOLATILE_FILE); 1835 stat_dec_volatile_write(inode); 1836 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1837 } 1838 1839 inode_unlock(inode); 1840 1841 mnt_drop_write_file(filp); 1842 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1843 return ret; 1844 } 1845 1846 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 1847 { 1848 struct inode *inode = file_inode(filp); 1849 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1850 struct super_block *sb = sbi->sb; 1851 __u32 in; 1852 int ret; 1853 1854 if (!capable(CAP_SYS_ADMIN)) 1855 return -EPERM; 1856 1857 if (get_user(in, (__u32 __user *)arg)) 1858 return -EFAULT; 1859 1860 if (in != F2FS_GOING_DOWN_FULLSYNC) { 1861 ret = mnt_want_write_file(filp); 1862 if (ret) 1863 return ret; 1864 } 1865 1866 switch (in) { 1867 case F2FS_GOING_DOWN_FULLSYNC: 1868 sb = freeze_bdev(sb->s_bdev); 1869 if (IS_ERR(sb)) { 1870 ret = PTR_ERR(sb); 1871 goto out; 1872 } 1873 if (sb) { 1874 f2fs_stop_checkpoint(sbi, false); 1875 thaw_bdev(sb->s_bdev, sb); 1876 } 1877 break; 1878 case F2FS_GOING_DOWN_METASYNC: 1879 /* do checkpoint only */ 1880 ret = f2fs_sync_fs(sb, 1); 1881 if (ret) 1882 goto out; 1883 f2fs_stop_checkpoint(sbi, false); 1884 break; 1885 case F2FS_GOING_DOWN_NOSYNC: 1886 f2fs_stop_checkpoint(sbi, false); 1887 break; 1888 case F2FS_GOING_DOWN_METAFLUSH: 1889 sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 1890 f2fs_stop_checkpoint(sbi, false); 1891 break; 1892 default: 1893 ret = -EINVAL; 1894 goto out; 1895 } 1896 1897 stop_gc_thread(sbi); 1898 stop_discard_thread(sbi); 1899 1900 drop_discard_cmd(sbi); 1901 clear_opt(sbi, DISCARD); 1902 1903 f2fs_update_time(sbi, REQ_TIME); 1904 out: 1905 if (in != F2FS_GOING_DOWN_FULLSYNC) 1906 mnt_drop_write_file(filp); 1907 return ret; 1908 } 1909 1910 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 1911 { 1912 struct inode *inode = file_inode(filp); 1913 struct super_block *sb = inode->i_sb; 1914 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1915 struct fstrim_range range; 1916 int ret; 1917 1918 if (!capable(CAP_SYS_ADMIN)) 1919 return -EPERM; 1920 1921 if (!blk_queue_discard(q)) 1922 return -EOPNOTSUPP; 1923 1924 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 1925 sizeof(range))) 1926 return -EFAULT; 1927 1928 ret = mnt_want_write_file(filp); 1929 if (ret) 1930 return ret; 1931 1932 range.minlen = max((unsigned int)range.minlen, 1933 q->limits.discard_granularity); 1934 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 1935 mnt_drop_write_file(filp); 1936 if (ret < 0) 1937 return ret; 1938 1939 if (copy_to_user((struct fstrim_range __user *)arg, &range, 1940 sizeof(range))) 1941 return -EFAULT; 1942 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1943 return 0; 1944 } 1945 1946 static bool uuid_is_nonzero(__u8 u[16]) 1947 { 1948 int i; 1949 1950 for (i = 0; i < 16; i++) 1951 if (u[i]) 1952 return true; 1953 return false; 1954 } 1955 1956 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 1957 { 1958 struct inode *inode = file_inode(filp); 1959 1960 if (!f2fs_sb_has_encrypt(inode->i_sb)) 1961 return -EOPNOTSUPP; 1962 1963 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1964 1965 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 1966 } 1967 1968 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 1969 { 1970 if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb)) 1971 return -EOPNOTSUPP; 1972 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 1973 } 1974 1975 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 1976 { 1977 struct inode *inode = file_inode(filp); 1978 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1979 int err; 1980 1981 if (!f2fs_sb_has_encrypt(inode->i_sb)) 1982 return -EOPNOTSUPP; 1983 1984 err = mnt_want_write_file(filp); 1985 if (err) 1986 return err; 1987 1988 down_write(&sbi->sb_lock); 1989 1990 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 1991 goto got_it; 1992 1993 /* update superblock with uuid */ 1994 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 1995 1996 err = f2fs_commit_super(sbi, false); 1997 if (err) { 1998 /* undo new data */ 1999 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2000 goto out_err; 2001 } 2002 got_it: 2003 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2004 16)) 2005 err = -EFAULT; 2006 out_err: 2007 up_write(&sbi->sb_lock); 2008 mnt_drop_write_file(filp); 2009 return err; 2010 } 2011 2012 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2013 { 2014 struct inode *inode = file_inode(filp); 2015 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2016 __u32 sync; 2017 int ret; 2018 2019 if (!capable(CAP_SYS_ADMIN)) 2020 return -EPERM; 2021 2022 if (get_user(sync, (__u32 __user *)arg)) 2023 return -EFAULT; 2024 2025 if (f2fs_readonly(sbi->sb)) 2026 return -EROFS; 2027 2028 ret = mnt_want_write_file(filp); 2029 if (ret) 2030 return ret; 2031 2032 if (!sync) { 2033 if (!mutex_trylock(&sbi->gc_mutex)) { 2034 ret = -EBUSY; 2035 goto out; 2036 } 2037 } else { 2038 mutex_lock(&sbi->gc_mutex); 2039 } 2040 2041 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2042 out: 2043 mnt_drop_write_file(filp); 2044 return ret; 2045 } 2046 2047 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2048 { 2049 struct inode *inode = file_inode(filp); 2050 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2051 struct f2fs_gc_range range; 2052 u64 end; 2053 int ret; 2054 2055 if (!capable(CAP_SYS_ADMIN)) 2056 return -EPERM; 2057 2058 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2059 sizeof(range))) 2060 return -EFAULT; 2061 2062 if (f2fs_readonly(sbi->sb)) 2063 return -EROFS; 2064 2065 end = range.start + range.len; 2066 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) { 2067 return -EINVAL; 2068 } 2069 2070 ret = mnt_want_write_file(filp); 2071 if (ret) 2072 return ret; 2073 2074 do_more: 2075 if (!range.sync) { 2076 if (!mutex_trylock(&sbi->gc_mutex)) { 2077 ret = -EBUSY; 2078 goto out; 2079 } 2080 } else { 2081 mutex_lock(&sbi->gc_mutex); 2082 } 2083 2084 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); 2085 range.start += sbi->blocks_per_seg; 2086 if (range.start <= end) 2087 goto do_more; 2088 out: 2089 mnt_drop_write_file(filp); 2090 return ret; 2091 } 2092 2093 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2094 { 2095 struct inode *inode = file_inode(filp); 2096 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2097 int ret; 2098 2099 if (!capable(CAP_SYS_ADMIN)) 2100 return -EPERM; 2101 2102 if (f2fs_readonly(sbi->sb)) 2103 return -EROFS; 2104 2105 ret = mnt_want_write_file(filp); 2106 if (ret) 2107 return ret; 2108 2109 ret = f2fs_sync_fs(sbi->sb, 1); 2110 2111 mnt_drop_write_file(filp); 2112 return ret; 2113 } 2114 2115 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2116 struct file *filp, 2117 struct f2fs_defragment *range) 2118 { 2119 struct inode *inode = file_inode(filp); 2120 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2121 .m_seg_type = NO_CHECK_TYPE }; 2122 struct extent_info ei = {0,0,0}; 2123 pgoff_t pg_start, pg_end, next_pgofs; 2124 unsigned int blk_per_seg = sbi->blocks_per_seg; 2125 unsigned int total = 0, sec_num; 2126 block_t blk_end = 0; 2127 bool fragmented = false; 2128 int err; 2129 2130 /* if in-place-update policy is enabled, don't waste time here */ 2131 if (should_update_inplace(inode, NULL)) 2132 return -EINVAL; 2133 2134 pg_start = range->start >> PAGE_SHIFT; 2135 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2136 2137 f2fs_balance_fs(sbi, true); 2138 2139 inode_lock(inode); 2140 2141 /* writeback all dirty pages in the range */ 2142 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2143 range->start + range->len - 1); 2144 if (err) 2145 goto out; 2146 2147 /* 2148 * lookup mapping info in extent cache, skip defragmenting if physical 2149 * block addresses are continuous. 2150 */ 2151 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2152 if (ei.fofs + ei.len >= pg_end) 2153 goto out; 2154 } 2155 2156 map.m_lblk = pg_start; 2157 map.m_next_pgofs = &next_pgofs; 2158 2159 /* 2160 * lookup mapping info in dnode page cache, skip defragmenting if all 2161 * physical block addresses are continuous even if there are hole(s) 2162 * in logical blocks. 2163 */ 2164 while (map.m_lblk < pg_end) { 2165 map.m_len = pg_end - map.m_lblk; 2166 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2167 if (err) 2168 goto out; 2169 2170 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2171 map.m_lblk = next_pgofs; 2172 continue; 2173 } 2174 2175 if (blk_end && blk_end != map.m_pblk) 2176 fragmented = true; 2177 2178 /* record total count of block that we're going to move */ 2179 total += map.m_len; 2180 2181 blk_end = map.m_pblk + map.m_len; 2182 2183 map.m_lblk += map.m_len; 2184 } 2185 2186 if (!fragmented) 2187 goto out; 2188 2189 sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi); 2190 2191 /* 2192 * make sure there are enough free section for LFS allocation, this can 2193 * avoid defragment running in SSR mode when free section are allocated 2194 * intensively 2195 */ 2196 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2197 err = -EAGAIN; 2198 goto out; 2199 } 2200 2201 map.m_lblk = pg_start; 2202 map.m_len = pg_end - pg_start; 2203 total = 0; 2204 2205 while (map.m_lblk < pg_end) { 2206 pgoff_t idx; 2207 int cnt = 0; 2208 2209 do_map: 2210 map.m_len = pg_end - map.m_lblk; 2211 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2212 if (err) 2213 goto clear_out; 2214 2215 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2216 map.m_lblk = next_pgofs; 2217 continue; 2218 } 2219 2220 set_inode_flag(inode, FI_DO_DEFRAG); 2221 2222 idx = map.m_lblk; 2223 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2224 struct page *page; 2225 2226 page = get_lock_data_page(inode, idx, true); 2227 if (IS_ERR(page)) { 2228 err = PTR_ERR(page); 2229 goto clear_out; 2230 } 2231 2232 set_page_dirty(page); 2233 f2fs_put_page(page, 1); 2234 2235 idx++; 2236 cnt++; 2237 total++; 2238 } 2239 2240 map.m_lblk = idx; 2241 2242 if (idx < pg_end && cnt < blk_per_seg) 2243 goto do_map; 2244 2245 clear_inode_flag(inode, FI_DO_DEFRAG); 2246 2247 err = filemap_fdatawrite(inode->i_mapping); 2248 if (err) 2249 goto out; 2250 } 2251 clear_out: 2252 clear_inode_flag(inode, FI_DO_DEFRAG); 2253 out: 2254 inode_unlock(inode); 2255 if (!err) 2256 range->len = (u64)total << PAGE_SHIFT; 2257 return err; 2258 } 2259 2260 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2261 { 2262 struct inode *inode = file_inode(filp); 2263 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2264 struct f2fs_defragment range; 2265 int err; 2266 2267 if (!capable(CAP_SYS_ADMIN)) 2268 return -EPERM; 2269 2270 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2271 return -EINVAL; 2272 2273 if (f2fs_readonly(sbi->sb)) 2274 return -EROFS; 2275 2276 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2277 sizeof(range))) 2278 return -EFAULT; 2279 2280 /* verify alignment of offset & size */ 2281 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2282 return -EINVAL; 2283 2284 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2285 sbi->max_file_blocks)) 2286 return -EINVAL; 2287 2288 err = mnt_want_write_file(filp); 2289 if (err) 2290 return err; 2291 2292 err = f2fs_defragment_range(sbi, filp, &range); 2293 mnt_drop_write_file(filp); 2294 2295 f2fs_update_time(sbi, REQ_TIME); 2296 if (err < 0) 2297 return err; 2298 2299 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2300 sizeof(range))) 2301 return -EFAULT; 2302 2303 return 0; 2304 } 2305 2306 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2307 struct file *file_out, loff_t pos_out, size_t len) 2308 { 2309 struct inode *src = file_inode(file_in); 2310 struct inode *dst = file_inode(file_out); 2311 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2312 size_t olen = len, dst_max_i_size = 0; 2313 size_t dst_osize; 2314 int ret; 2315 2316 if (file_in->f_path.mnt != file_out->f_path.mnt || 2317 src->i_sb != dst->i_sb) 2318 return -EXDEV; 2319 2320 if (unlikely(f2fs_readonly(src->i_sb))) 2321 return -EROFS; 2322 2323 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2324 return -EINVAL; 2325 2326 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst)) 2327 return -EOPNOTSUPP; 2328 2329 if (src == dst) { 2330 if (pos_in == pos_out) 2331 return 0; 2332 if (pos_out > pos_in && pos_out < pos_in + len) 2333 return -EINVAL; 2334 } 2335 2336 inode_lock(src); 2337 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2338 if (src != dst) { 2339 ret = -EBUSY; 2340 if (!inode_trylock(dst)) 2341 goto out; 2342 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) { 2343 inode_unlock(dst); 2344 goto out; 2345 } 2346 } 2347 2348 ret = -EINVAL; 2349 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2350 goto out_unlock; 2351 if (len == 0) 2352 olen = len = src->i_size - pos_in; 2353 if (pos_in + len == src->i_size) 2354 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2355 if (len == 0) { 2356 ret = 0; 2357 goto out_unlock; 2358 } 2359 2360 dst_osize = dst->i_size; 2361 if (pos_out + olen > dst->i_size) 2362 dst_max_i_size = pos_out + olen; 2363 2364 /* verify the end result is block aligned */ 2365 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2366 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2367 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2368 goto out_unlock; 2369 2370 ret = f2fs_convert_inline_inode(src); 2371 if (ret) 2372 goto out_unlock; 2373 2374 ret = f2fs_convert_inline_inode(dst); 2375 if (ret) 2376 goto out_unlock; 2377 2378 /* write out all dirty pages from offset */ 2379 ret = filemap_write_and_wait_range(src->i_mapping, 2380 pos_in, pos_in + len); 2381 if (ret) 2382 goto out_unlock; 2383 2384 ret = filemap_write_and_wait_range(dst->i_mapping, 2385 pos_out, pos_out + len); 2386 if (ret) 2387 goto out_unlock; 2388 2389 f2fs_balance_fs(sbi, true); 2390 f2fs_lock_op(sbi); 2391 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2392 pos_out >> F2FS_BLKSIZE_BITS, 2393 len >> F2FS_BLKSIZE_BITS, false); 2394 2395 if (!ret) { 2396 if (dst_max_i_size) 2397 f2fs_i_size_write(dst, dst_max_i_size); 2398 else if (dst_osize != dst->i_size) 2399 f2fs_i_size_write(dst, dst_osize); 2400 } 2401 f2fs_unlock_op(sbi); 2402 out_unlock: 2403 if (src != dst) { 2404 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2405 inode_unlock(dst); 2406 } 2407 out: 2408 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2409 inode_unlock(src); 2410 return ret; 2411 } 2412 2413 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2414 { 2415 struct f2fs_move_range range; 2416 struct fd dst; 2417 int err; 2418 2419 if (!(filp->f_mode & FMODE_READ) || 2420 !(filp->f_mode & FMODE_WRITE)) 2421 return -EBADF; 2422 2423 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2424 sizeof(range))) 2425 return -EFAULT; 2426 2427 dst = fdget(range.dst_fd); 2428 if (!dst.file) 2429 return -EBADF; 2430 2431 if (!(dst.file->f_mode & FMODE_WRITE)) { 2432 err = -EBADF; 2433 goto err_out; 2434 } 2435 2436 err = mnt_want_write_file(filp); 2437 if (err) 2438 goto err_out; 2439 2440 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2441 range.pos_out, range.len); 2442 2443 mnt_drop_write_file(filp); 2444 if (err) 2445 goto err_out; 2446 2447 if (copy_to_user((struct f2fs_move_range __user *)arg, 2448 &range, sizeof(range))) 2449 err = -EFAULT; 2450 err_out: 2451 fdput(dst); 2452 return err; 2453 } 2454 2455 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2456 { 2457 struct inode *inode = file_inode(filp); 2458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2459 struct sit_info *sm = SIT_I(sbi); 2460 unsigned int start_segno = 0, end_segno = 0; 2461 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2462 struct f2fs_flush_device range; 2463 int ret; 2464 2465 if (!capable(CAP_SYS_ADMIN)) 2466 return -EPERM; 2467 2468 if (f2fs_readonly(sbi->sb)) 2469 return -EROFS; 2470 2471 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2472 sizeof(range))) 2473 return -EFAULT; 2474 2475 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num || 2476 sbi->segs_per_sec != 1) { 2477 f2fs_msg(sbi->sb, KERN_WARNING, 2478 "Can't flush %u in %d for segs_per_sec %u != 1\n", 2479 range.dev_num, sbi->s_ndevs, 2480 sbi->segs_per_sec); 2481 return -EINVAL; 2482 } 2483 2484 ret = mnt_want_write_file(filp); 2485 if (ret) 2486 return ret; 2487 2488 if (range.dev_num != 0) 2489 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2490 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2491 2492 start_segno = sm->last_victim[FLUSH_DEVICE]; 2493 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2494 start_segno = dev_start_segno; 2495 end_segno = min(start_segno + range.segments, dev_end_segno); 2496 2497 while (start_segno < end_segno) { 2498 if (!mutex_trylock(&sbi->gc_mutex)) { 2499 ret = -EBUSY; 2500 goto out; 2501 } 2502 sm->last_victim[GC_CB] = end_segno + 1; 2503 sm->last_victim[GC_GREEDY] = end_segno + 1; 2504 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2505 ret = f2fs_gc(sbi, true, true, start_segno); 2506 if (ret == -EAGAIN) 2507 ret = 0; 2508 else if (ret < 0) 2509 break; 2510 start_segno++; 2511 } 2512 out: 2513 mnt_drop_write_file(filp); 2514 return ret; 2515 } 2516 2517 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2518 { 2519 struct inode *inode = file_inode(filp); 2520 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2521 2522 /* Must validate to set it with SQLite behavior in Android. */ 2523 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2524 2525 return put_user(sb_feature, (u32 __user *)arg); 2526 } 2527 2528 #ifdef CONFIG_QUOTA 2529 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2530 { 2531 struct inode *inode = file_inode(filp); 2532 struct f2fs_inode_info *fi = F2FS_I(inode); 2533 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2534 struct super_block *sb = sbi->sb; 2535 struct dquot *transfer_to[MAXQUOTAS] = {}; 2536 struct page *ipage; 2537 kprojid_t kprojid; 2538 int err; 2539 2540 if (!f2fs_sb_has_project_quota(sb)) { 2541 if (projid != F2FS_DEF_PROJID) 2542 return -EOPNOTSUPP; 2543 else 2544 return 0; 2545 } 2546 2547 if (!f2fs_has_extra_attr(inode)) 2548 return -EOPNOTSUPP; 2549 2550 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 2551 2552 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 2553 return 0; 2554 2555 err = mnt_want_write_file(filp); 2556 if (err) 2557 return err; 2558 2559 err = -EPERM; 2560 inode_lock(inode); 2561 2562 /* Is it quota file? Do not allow user to mess with it */ 2563 if (IS_NOQUOTA(inode)) 2564 goto out_unlock; 2565 2566 ipage = get_node_page(sbi, inode->i_ino); 2567 if (IS_ERR(ipage)) { 2568 err = PTR_ERR(ipage); 2569 goto out_unlock; 2570 } 2571 2572 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 2573 i_projid)) { 2574 err = -EOVERFLOW; 2575 f2fs_put_page(ipage, 1); 2576 goto out_unlock; 2577 } 2578 f2fs_put_page(ipage, 1); 2579 2580 err = dquot_initialize(inode); 2581 if (err) 2582 goto out_unlock; 2583 2584 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2585 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2586 err = __dquot_transfer(inode, transfer_to); 2587 dqput(transfer_to[PRJQUOTA]); 2588 if (err) 2589 goto out_dirty; 2590 } 2591 2592 F2FS_I(inode)->i_projid = kprojid; 2593 inode->i_ctime = current_time(inode); 2594 out_dirty: 2595 f2fs_mark_inode_dirty_sync(inode, true); 2596 out_unlock: 2597 inode_unlock(inode); 2598 mnt_drop_write_file(filp); 2599 return err; 2600 } 2601 #else 2602 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2603 { 2604 if (projid != F2FS_DEF_PROJID) 2605 return -EOPNOTSUPP; 2606 return 0; 2607 } 2608 #endif 2609 2610 /* Transfer internal flags to xflags */ 2611 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags) 2612 { 2613 __u32 xflags = 0; 2614 2615 if (iflags & F2FS_SYNC_FL) 2616 xflags |= FS_XFLAG_SYNC; 2617 if (iflags & F2FS_IMMUTABLE_FL) 2618 xflags |= FS_XFLAG_IMMUTABLE; 2619 if (iflags & F2FS_APPEND_FL) 2620 xflags |= FS_XFLAG_APPEND; 2621 if (iflags & F2FS_NODUMP_FL) 2622 xflags |= FS_XFLAG_NODUMP; 2623 if (iflags & F2FS_NOATIME_FL) 2624 xflags |= FS_XFLAG_NOATIME; 2625 if (iflags & F2FS_PROJINHERIT_FL) 2626 xflags |= FS_XFLAG_PROJINHERIT; 2627 return xflags; 2628 } 2629 2630 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \ 2631 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \ 2632 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT) 2633 2634 /* Transfer xflags flags to internal */ 2635 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags) 2636 { 2637 unsigned long iflags = 0; 2638 2639 if (xflags & FS_XFLAG_SYNC) 2640 iflags |= F2FS_SYNC_FL; 2641 if (xflags & FS_XFLAG_IMMUTABLE) 2642 iflags |= F2FS_IMMUTABLE_FL; 2643 if (xflags & FS_XFLAG_APPEND) 2644 iflags |= F2FS_APPEND_FL; 2645 if (xflags & FS_XFLAG_NODUMP) 2646 iflags |= F2FS_NODUMP_FL; 2647 if (xflags & FS_XFLAG_NOATIME) 2648 iflags |= F2FS_NOATIME_FL; 2649 if (xflags & FS_XFLAG_PROJINHERIT) 2650 iflags |= F2FS_PROJINHERIT_FL; 2651 2652 return iflags; 2653 } 2654 2655 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 2656 { 2657 struct inode *inode = file_inode(filp); 2658 struct f2fs_inode_info *fi = F2FS_I(inode); 2659 struct fsxattr fa; 2660 2661 memset(&fa, 0, sizeof(struct fsxattr)); 2662 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags & 2663 F2FS_FL_USER_VISIBLE); 2664 2665 if (f2fs_sb_has_project_quota(inode->i_sb)) 2666 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns, 2667 fi->i_projid); 2668 2669 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 2670 return -EFAULT; 2671 return 0; 2672 } 2673 2674 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 2675 { 2676 struct inode *inode = file_inode(filp); 2677 struct f2fs_inode_info *fi = F2FS_I(inode); 2678 struct fsxattr fa; 2679 unsigned int flags; 2680 int err; 2681 2682 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 2683 return -EFAULT; 2684 2685 /* Make sure caller has proper permission */ 2686 if (!inode_owner_or_capable(inode)) 2687 return -EACCES; 2688 2689 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS) 2690 return -EOPNOTSUPP; 2691 2692 flags = f2fs_xflags_to_iflags(fa.fsx_xflags); 2693 if (f2fs_mask_flags(inode->i_mode, flags) != flags) 2694 return -EOPNOTSUPP; 2695 2696 err = mnt_want_write_file(filp); 2697 if (err) 2698 return err; 2699 2700 inode_lock(inode); 2701 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) | 2702 (flags & F2FS_FL_XFLAG_VISIBLE); 2703 err = __f2fs_ioc_setflags(inode, flags); 2704 inode_unlock(inode); 2705 mnt_drop_write_file(filp); 2706 if (err) 2707 return err; 2708 2709 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 2710 if (err) 2711 return err; 2712 2713 return 0; 2714 } 2715 2716 int f2fs_pin_file_control(struct inode *inode, bool inc) 2717 { 2718 struct f2fs_inode_info *fi = F2FS_I(inode); 2719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2720 2721 /* Use i_gc_failures for normal file as a risk signal. */ 2722 if (inc) 2723 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1); 2724 2725 if (fi->i_gc_failures > sbi->gc_pin_file_threshold) { 2726 f2fs_msg(sbi->sb, KERN_WARNING, 2727 "%s: Enable GC = ino %lx after %x GC trials\n", 2728 __func__, inode->i_ino, fi->i_gc_failures); 2729 clear_inode_flag(inode, FI_PIN_FILE); 2730 return -EAGAIN; 2731 } 2732 return 0; 2733 } 2734 2735 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 2736 { 2737 struct inode *inode = file_inode(filp); 2738 __u32 pin; 2739 int ret = 0; 2740 2741 if (!inode_owner_or_capable(inode)) 2742 return -EACCES; 2743 2744 if (get_user(pin, (__u32 __user *)arg)) 2745 return -EFAULT; 2746 2747 if (!S_ISREG(inode->i_mode)) 2748 return -EINVAL; 2749 2750 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 2751 return -EROFS; 2752 2753 ret = mnt_want_write_file(filp); 2754 if (ret) 2755 return ret; 2756 2757 inode_lock(inode); 2758 2759 if (should_update_outplace(inode, NULL)) { 2760 ret = -EINVAL; 2761 goto out; 2762 } 2763 2764 if (!pin) { 2765 clear_inode_flag(inode, FI_PIN_FILE); 2766 F2FS_I(inode)->i_gc_failures = 1; 2767 goto done; 2768 } 2769 2770 if (f2fs_pin_file_control(inode, false)) { 2771 ret = -EAGAIN; 2772 goto out; 2773 } 2774 ret = f2fs_convert_inline_inode(inode); 2775 if (ret) 2776 goto out; 2777 2778 set_inode_flag(inode, FI_PIN_FILE); 2779 ret = F2FS_I(inode)->i_gc_failures; 2780 done: 2781 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2782 out: 2783 inode_unlock(inode); 2784 mnt_drop_write_file(filp); 2785 return ret; 2786 } 2787 2788 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 2789 { 2790 struct inode *inode = file_inode(filp); 2791 __u32 pin = 0; 2792 2793 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2794 pin = F2FS_I(inode)->i_gc_failures; 2795 return put_user(pin, (u32 __user *)arg); 2796 } 2797 2798 int f2fs_precache_extents(struct inode *inode) 2799 { 2800 struct f2fs_inode_info *fi = F2FS_I(inode); 2801 struct f2fs_map_blocks map; 2802 pgoff_t m_next_extent; 2803 loff_t end; 2804 int err; 2805 2806 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 2807 return -EOPNOTSUPP; 2808 2809 map.m_lblk = 0; 2810 map.m_next_pgofs = NULL; 2811 map.m_next_extent = &m_next_extent; 2812 map.m_seg_type = NO_CHECK_TYPE; 2813 end = F2FS_I_SB(inode)->max_file_blocks; 2814 2815 while (map.m_lblk < end) { 2816 map.m_len = end - map.m_lblk; 2817 2818 down_write(&fi->i_gc_rwsem[WRITE]); 2819 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 2820 up_write(&fi->i_gc_rwsem[WRITE]); 2821 if (err) 2822 return err; 2823 2824 map.m_lblk = m_next_extent; 2825 } 2826 2827 return err; 2828 } 2829 2830 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 2831 { 2832 return f2fs_precache_extents(file_inode(filp)); 2833 } 2834 2835 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 2836 { 2837 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 2838 return -EIO; 2839 2840 switch (cmd) { 2841 case F2FS_IOC_GETFLAGS: 2842 return f2fs_ioc_getflags(filp, arg); 2843 case F2FS_IOC_SETFLAGS: 2844 return f2fs_ioc_setflags(filp, arg); 2845 case F2FS_IOC_GETVERSION: 2846 return f2fs_ioc_getversion(filp, arg); 2847 case F2FS_IOC_START_ATOMIC_WRITE: 2848 return f2fs_ioc_start_atomic_write(filp); 2849 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 2850 return f2fs_ioc_commit_atomic_write(filp); 2851 case F2FS_IOC_START_VOLATILE_WRITE: 2852 return f2fs_ioc_start_volatile_write(filp); 2853 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 2854 return f2fs_ioc_release_volatile_write(filp); 2855 case F2FS_IOC_ABORT_VOLATILE_WRITE: 2856 return f2fs_ioc_abort_volatile_write(filp); 2857 case F2FS_IOC_SHUTDOWN: 2858 return f2fs_ioc_shutdown(filp, arg); 2859 case FITRIM: 2860 return f2fs_ioc_fitrim(filp, arg); 2861 case F2FS_IOC_SET_ENCRYPTION_POLICY: 2862 return f2fs_ioc_set_encryption_policy(filp, arg); 2863 case F2FS_IOC_GET_ENCRYPTION_POLICY: 2864 return f2fs_ioc_get_encryption_policy(filp, arg); 2865 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 2866 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 2867 case F2FS_IOC_GARBAGE_COLLECT: 2868 return f2fs_ioc_gc(filp, arg); 2869 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 2870 return f2fs_ioc_gc_range(filp, arg); 2871 case F2FS_IOC_WRITE_CHECKPOINT: 2872 return f2fs_ioc_write_checkpoint(filp, arg); 2873 case F2FS_IOC_DEFRAGMENT: 2874 return f2fs_ioc_defragment(filp, arg); 2875 case F2FS_IOC_MOVE_RANGE: 2876 return f2fs_ioc_move_range(filp, arg); 2877 case F2FS_IOC_FLUSH_DEVICE: 2878 return f2fs_ioc_flush_device(filp, arg); 2879 case F2FS_IOC_GET_FEATURES: 2880 return f2fs_ioc_get_features(filp, arg); 2881 case F2FS_IOC_FSGETXATTR: 2882 return f2fs_ioc_fsgetxattr(filp, arg); 2883 case F2FS_IOC_FSSETXATTR: 2884 return f2fs_ioc_fssetxattr(filp, arg); 2885 case F2FS_IOC_GET_PIN_FILE: 2886 return f2fs_ioc_get_pin_file(filp, arg); 2887 case F2FS_IOC_SET_PIN_FILE: 2888 return f2fs_ioc_set_pin_file(filp, arg); 2889 case F2FS_IOC_PRECACHE_EXTENTS: 2890 return f2fs_ioc_precache_extents(filp, arg); 2891 default: 2892 return -ENOTTY; 2893 } 2894 } 2895 2896 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2897 { 2898 struct file *file = iocb->ki_filp; 2899 struct inode *inode = file_inode(file); 2900 ssize_t ret; 2901 2902 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2903 return -EIO; 2904 2905 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2906 return -EINVAL; 2907 2908 if (!inode_trylock(inode)) { 2909 if (iocb->ki_flags & IOCB_NOWAIT) 2910 return -EAGAIN; 2911 inode_lock(inode); 2912 } 2913 2914 ret = generic_write_checks(iocb, from); 2915 if (ret > 0) { 2916 bool preallocated = false; 2917 size_t target_size = 0; 2918 int err; 2919 2920 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 2921 set_inode_flag(inode, FI_NO_PREALLOC); 2922 2923 if ((iocb->ki_flags & IOCB_NOWAIT) && 2924 (iocb->ki_flags & IOCB_DIRECT)) { 2925 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 2926 iov_iter_count(from)) || 2927 f2fs_has_inline_data(inode) || 2928 f2fs_force_buffered_io(inode, WRITE)) { 2929 clear_inode_flag(inode, 2930 FI_NO_PREALLOC); 2931 inode_unlock(inode); 2932 return -EAGAIN; 2933 } 2934 2935 } else { 2936 preallocated = true; 2937 target_size = iocb->ki_pos + iov_iter_count(from); 2938 2939 err = f2fs_preallocate_blocks(iocb, from); 2940 if (err) { 2941 clear_inode_flag(inode, FI_NO_PREALLOC); 2942 inode_unlock(inode); 2943 return err; 2944 } 2945 } 2946 ret = __generic_file_write_iter(iocb, from); 2947 clear_inode_flag(inode, FI_NO_PREALLOC); 2948 2949 /* if we couldn't write data, we should deallocate blocks. */ 2950 if (preallocated && i_size_read(inode) < target_size) 2951 f2fs_truncate(inode); 2952 2953 if (ret > 0) 2954 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 2955 } 2956 inode_unlock(inode); 2957 2958 if (ret > 0) 2959 ret = generic_write_sync(iocb, ret); 2960 return ret; 2961 } 2962 2963 #ifdef CONFIG_COMPAT 2964 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2965 { 2966 switch (cmd) { 2967 case F2FS_IOC32_GETFLAGS: 2968 cmd = F2FS_IOC_GETFLAGS; 2969 break; 2970 case F2FS_IOC32_SETFLAGS: 2971 cmd = F2FS_IOC_SETFLAGS; 2972 break; 2973 case F2FS_IOC32_GETVERSION: 2974 cmd = F2FS_IOC_GETVERSION; 2975 break; 2976 case F2FS_IOC_START_ATOMIC_WRITE: 2977 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 2978 case F2FS_IOC_START_VOLATILE_WRITE: 2979 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 2980 case F2FS_IOC_ABORT_VOLATILE_WRITE: 2981 case F2FS_IOC_SHUTDOWN: 2982 case F2FS_IOC_SET_ENCRYPTION_POLICY: 2983 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 2984 case F2FS_IOC_GET_ENCRYPTION_POLICY: 2985 case F2FS_IOC_GARBAGE_COLLECT: 2986 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 2987 case F2FS_IOC_WRITE_CHECKPOINT: 2988 case F2FS_IOC_DEFRAGMENT: 2989 case F2FS_IOC_MOVE_RANGE: 2990 case F2FS_IOC_FLUSH_DEVICE: 2991 case F2FS_IOC_GET_FEATURES: 2992 case F2FS_IOC_FSGETXATTR: 2993 case F2FS_IOC_FSSETXATTR: 2994 case F2FS_IOC_GET_PIN_FILE: 2995 case F2FS_IOC_SET_PIN_FILE: 2996 case F2FS_IOC_PRECACHE_EXTENTS: 2997 break; 2998 default: 2999 return -ENOIOCTLCMD; 3000 } 3001 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 3002 } 3003 #endif 3004 3005 const struct file_operations f2fs_file_operations = { 3006 .llseek = f2fs_llseek, 3007 .read_iter = generic_file_read_iter, 3008 .write_iter = f2fs_file_write_iter, 3009 .open = f2fs_file_open, 3010 .release = f2fs_release_file, 3011 .mmap = f2fs_file_mmap, 3012 .flush = f2fs_file_flush, 3013 .fsync = f2fs_sync_file, 3014 .fallocate = f2fs_fallocate, 3015 .unlocked_ioctl = f2fs_ioctl, 3016 #ifdef CONFIG_COMPAT 3017 .compat_ioctl = f2fs_compat_ioctl, 3018 #endif 3019 .splice_read = generic_file_splice_read, 3020 .splice_write = iter_file_splice_write, 3021 }; 3022