1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_block(&dn, page->index); 119 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 120 } 121 122 #ifdef CONFIG_F2FS_FS_COMPRESSION 123 if (!need_alloc) { 124 set_new_dnode(&dn, inode, NULL, NULL, 0); 125 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 126 f2fs_put_dnode(&dn); 127 } 128 #endif 129 if (err) { 130 unlock_page(page); 131 goto out_sem; 132 } 133 134 f2fs_wait_on_page_writeback(page, DATA, false, true); 135 136 /* wait for GCed page writeback via META_MAPPING */ 137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 138 139 /* 140 * check to see if the page is mapped already (no holes) 141 */ 142 if (PageMappedToDisk(page)) 143 goto out_sem; 144 145 /* page is wholly or partially inside EOF */ 146 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 147 i_size_read(inode)) { 148 loff_t offset; 149 150 offset = i_size_read(inode) & ~PAGE_MASK; 151 zero_user_segment(page, offset, PAGE_SIZE); 152 } 153 set_page_dirty(page); 154 if (!PageUptodate(page)) 155 SetPageUptodate(page); 156 157 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 158 f2fs_update_time(sbi, REQ_TIME); 159 160 trace_f2fs_vm_page_mkwrite(page, DATA); 161 out_sem: 162 filemap_invalidate_unlock_shared(inode->i_mapping); 163 164 sb_end_pagefault(inode->i_sb); 165 err: 166 return block_page_mkwrite_return(err); 167 } 168 169 static const struct vm_operations_struct f2fs_file_vm_ops = { 170 .fault = f2fs_filemap_fault, 171 .map_pages = filemap_map_pages, 172 .page_mkwrite = f2fs_vm_page_mkwrite, 173 }; 174 175 static int get_parent_ino(struct inode *inode, nid_t *pino) 176 { 177 struct dentry *dentry; 178 179 /* 180 * Make sure to get the non-deleted alias. The alias associated with 181 * the open file descriptor being fsync()'ed may be deleted already. 182 */ 183 dentry = d_find_alias(inode); 184 if (!dentry) 185 return 0; 186 187 *pino = parent_ino(dentry); 188 dput(dentry); 189 return 1; 190 } 191 192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 193 { 194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 195 enum cp_reason_type cp_reason = CP_NO_NEEDED; 196 197 if (!S_ISREG(inode->i_mode)) 198 cp_reason = CP_NON_REGULAR; 199 else if (f2fs_compressed_file(inode)) 200 cp_reason = CP_COMPRESSED; 201 else if (inode->i_nlink != 1) 202 cp_reason = CP_HARDLINK; 203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 204 cp_reason = CP_SB_NEED_CP; 205 else if (file_wrong_pino(inode)) 206 cp_reason = CP_WRONG_PINO; 207 else if (!f2fs_space_for_roll_forward(sbi)) 208 cp_reason = CP_NO_SPC_ROLL; 209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 210 cp_reason = CP_NODE_NEED_CP; 211 else if (test_opt(sbi, FASTBOOT)) 212 cp_reason = CP_FASTBOOT_MODE; 213 else if (F2FS_OPTION(sbi).active_logs == 2) 214 cp_reason = CP_SPEC_LOG_NUM; 215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 216 f2fs_need_dentry_mark(sbi, inode->i_ino) && 217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 218 TRANS_DIR_INO)) 219 cp_reason = CP_RECOVER_DIR; 220 221 return cp_reason; 222 } 223 224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 225 { 226 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 227 bool ret = false; 228 /* But we need to avoid that there are some inode updates */ 229 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 230 ret = true; 231 f2fs_put_page(i, 0); 232 return ret; 233 } 234 235 static void try_to_fix_pino(struct inode *inode) 236 { 237 struct f2fs_inode_info *fi = F2FS_I(inode); 238 nid_t pino; 239 240 f2fs_down_write(&fi->i_sem); 241 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 242 get_parent_ino(inode, &pino)) { 243 f2fs_i_pino_write(inode, pino); 244 file_got_pino(inode); 245 } 246 f2fs_up_write(&fi->i_sem); 247 } 248 249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 250 int datasync, bool atomic) 251 { 252 struct inode *inode = file->f_mapping->host; 253 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 254 nid_t ino = inode->i_ino; 255 int ret = 0; 256 enum cp_reason_type cp_reason = 0; 257 struct writeback_control wbc = { 258 .sync_mode = WB_SYNC_ALL, 259 .nr_to_write = LONG_MAX, 260 .for_reclaim = 0, 261 }; 262 unsigned int seq_id = 0; 263 264 if (unlikely(f2fs_readonly(inode->i_sb))) 265 return 0; 266 267 trace_f2fs_sync_file_enter(inode); 268 269 if (S_ISDIR(inode->i_mode)) 270 goto go_write; 271 272 /* if fdatasync is triggered, let's do in-place-update */ 273 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 274 set_inode_flag(inode, FI_NEED_IPU); 275 ret = file_write_and_wait_range(file, start, end); 276 clear_inode_flag(inode, FI_NEED_IPU); 277 278 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 279 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 280 return ret; 281 } 282 283 /* if the inode is dirty, let's recover all the time */ 284 if (!f2fs_skip_inode_update(inode, datasync)) { 285 f2fs_write_inode(inode, NULL); 286 goto go_write; 287 } 288 289 /* 290 * if there is no written data, don't waste time to write recovery info. 291 */ 292 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 293 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 294 295 /* it may call write_inode just prior to fsync */ 296 if (need_inode_page_update(sbi, ino)) 297 goto go_write; 298 299 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 300 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 301 goto flush_out; 302 goto out; 303 } else { 304 /* 305 * for OPU case, during fsync(), node can be persisted before 306 * data when lower device doesn't support write barrier, result 307 * in data corruption after SPO. 308 * So for strict fsync mode, force to use atomic write sematics 309 * to keep write order in between data/node and last node to 310 * avoid potential data corruption. 311 */ 312 if (F2FS_OPTION(sbi).fsync_mode == 313 FSYNC_MODE_STRICT && !atomic) 314 atomic = true; 315 } 316 go_write: 317 /* 318 * Both of fdatasync() and fsync() are able to be recovered from 319 * sudden-power-off. 320 */ 321 f2fs_down_read(&F2FS_I(inode)->i_sem); 322 cp_reason = need_do_checkpoint(inode); 323 f2fs_up_read(&F2FS_I(inode)->i_sem); 324 325 if (cp_reason) { 326 /* all the dirty node pages should be flushed for POR */ 327 ret = f2fs_sync_fs(inode->i_sb, 1); 328 329 /* 330 * We've secured consistency through sync_fs. Following pino 331 * will be used only for fsynced inodes after checkpoint. 332 */ 333 try_to_fix_pino(inode); 334 clear_inode_flag(inode, FI_APPEND_WRITE); 335 clear_inode_flag(inode, FI_UPDATE_WRITE); 336 goto out; 337 } 338 sync_nodes: 339 atomic_inc(&sbi->wb_sync_req[NODE]); 340 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 341 atomic_dec(&sbi->wb_sync_req[NODE]); 342 if (ret) 343 goto out; 344 345 /* if cp_error was enabled, we should avoid infinite loop */ 346 if (unlikely(f2fs_cp_error(sbi))) { 347 ret = -EIO; 348 goto out; 349 } 350 351 if (f2fs_need_inode_block_update(sbi, ino)) { 352 f2fs_mark_inode_dirty_sync(inode, true); 353 f2fs_write_inode(inode, NULL); 354 goto sync_nodes; 355 } 356 357 /* 358 * If it's atomic_write, it's just fine to keep write ordering. So 359 * here we don't need to wait for node write completion, since we use 360 * node chain which serializes node blocks. If one of node writes are 361 * reordered, we can see simply broken chain, resulting in stopping 362 * roll-forward recovery. It means we'll recover all or none node blocks 363 * given fsync mark. 364 */ 365 if (!atomic) { 366 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 367 if (ret) 368 goto out; 369 } 370 371 /* once recovery info is written, don't need to tack this */ 372 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 373 clear_inode_flag(inode, FI_APPEND_WRITE); 374 flush_out: 375 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 376 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 377 ret = f2fs_issue_flush(sbi, inode->i_ino); 378 if (!ret) { 379 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 380 clear_inode_flag(inode, FI_UPDATE_WRITE); 381 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 382 } 383 f2fs_update_time(sbi, REQ_TIME); 384 out: 385 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 386 return ret; 387 } 388 389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 390 { 391 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 392 return -EIO; 393 return f2fs_do_sync_file(file, start, end, datasync, false); 394 } 395 396 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 397 pgoff_t index, int whence) 398 { 399 switch (whence) { 400 case SEEK_DATA: 401 if (__is_valid_data_blkaddr(blkaddr)) 402 return true; 403 if (blkaddr == NEW_ADDR && 404 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 405 return true; 406 break; 407 case SEEK_HOLE: 408 if (blkaddr == NULL_ADDR) 409 return true; 410 break; 411 } 412 return false; 413 } 414 415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 416 { 417 struct inode *inode = file->f_mapping->host; 418 loff_t maxbytes = inode->i_sb->s_maxbytes; 419 struct dnode_of_data dn; 420 pgoff_t pgofs, end_offset; 421 loff_t data_ofs = offset; 422 loff_t isize; 423 int err = 0; 424 425 inode_lock(inode); 426 427 isize = i_size_read(inode); 428 if (offset >= isize) 429 goto fail; 430 431 /* handle inline data case */ 432 if (f2fs_has_inline_data(inode)) { 433 if (whence == SEEK_HOLE) { 434 data_ofs = isize; 435 goto found; 436 } else if (whence == SEEK_DATA) { 437 data_ofs = offset; 438 goto found; 439 } 440 } 441 442 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 443 444 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 445 set_new_dnode(&dn, inode, NULL, NULL, 0); 446 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 447 if (err && err != -ENOENT) { 448 goto fail; 449 } else if (err == -ENOENT) { 450 /* direct node does not exists */ 451 if (whence == SEEK_DATA) { 452 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 453 continue; 454 } else { 455 goto found; 456 } 457 } 458 459 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 460 461 /* find data/hole in dnode block */ 462 for (; dn.ofs_in_node < end_offset; 463 dn.ofs_in_node++, pgofs++, 464 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 465 block_t blkaddr; 466 467 blkaddr = f2fs_data_blkaddr(&dn); 468 469 if (__is_valid_data_blkaddr(blkaddr) && 470 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 471 blkaddr, DATA_GENERIC_ENHANCE)) { 472 f2fs_put_dnode(&dn); 473 goto fail; 474 } 475 476 if (__found_offset(file->f_mapping, blkaddr, 477 pgofs, whence)) { 478 f2fs_put_dnode(&dn); 479 goto found; 480 } 481 } 482 f2fs_put_dnode(&dn); 483 } 484 485 if (whence == SEEK_DATA) 486 goto fail; 487 found: 488 if (whence == SEEK_HOLE && data_ofs > isize) 489 data_ofs = isize; 490 inode_unlock(inode); 491 return vfs_setpos(file, data_ofs, maxbytes); 492 fail: 493 inode_unlock(inode); 494 return -ENXIO; 495 } 496 497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 498 { 499 struct inode *inode = file->f_mapping->host; 500 loff_t maxbytes = inode->i_sb->s_maxbytes; 501 502 if (f2fs_compressed_file(inode)) 503 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 504 505 switch (whence) { 506 case SEEK_SET: 507 case SEEK_CUR: 508 case SEEK_END: 509 return generic_file_llseek_size(file, offset, whence, 510 maxbytes, i_size_read(inode)); 511 case SEEK_DATA: 512 case SEEK_HOLE: 513 if (offset < 0) 514 return -ENXIO; 515 return f2fs_seek_block(file, offset, whence); 516 } 517 518 return -EINVAL; 519 } 520 521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 522 { 523 struct inode *inode = file_inode(file); 524 525 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 526 return -EIO; 527 528 if (!f2fs_is_compress_backend_ready(inode)) 529 return -EOPNOTSUPP; 530 531 file_accessed(file); 532 vma->vm_ops = &f2fs_file_vm_ops; 533 set_inode_flag(inode, FI_MMAP_FILE); 534 return 0; 535 } 536 537 static int f2fs_file_open(struct inode *inode, struct file *filp) 538 { 539 int err = fscrypt_file_open(inode, filp); 540 541 if (err) 542 return err; 543 544 if (!f2fs_is_compress_backend_ready(inode)) 545 return -EOPNOTSUPP; 546 547 err = fsverity_file_open(inode, filp); 548 if (err) 549 return err; 550 551 filp->f_mode |= FMODE_NOWAIT; 552 553 return dquot_file_open(inode, filp); 554 } 555 556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 557 { 558 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 559 struct f2fs_node *raw_node; 560 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 561 __le32 *addr; 562 int base = 0; 563 bool compressed_cluster = false; 564 int cluster_index = 0, valid_blocks = 0; 565 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 566 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 567 568 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 569 base = get_extra_isize(dn->inode); 570 571 raw_node = F2FS_NODE(dn->node_page); 572 addr = blkaddr_in_node(raw_node) + base + ofs; 573 574 /* Assumption: truncation starts with cluster */ 575 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 576 block_t blkaddr = le32_to_cpu(*addr); 577 578 if (f2fs_compressed_file(dn->inode) && 579 !(cluster_index & (cluster_size - 1))) { 580 if (compressed_cluster) 581 f2fs_i_compr_blocks_update(dn->inode, 582 valid_blocks, false); 583 compressed_cluster = (blkaddr == COMPRESS_ADDR); 584 valid_blocks = 0; 585 } 586 587 if (blkaddr == NULL_ADDR) 588 continue; 589 590 dn->data_blkaddr = NULL_ADDR; 591 f2fs_set_data_blkaddr(dn); 592 593 if (__is_valid_data_blkaddr(blkaddr)) { 594 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 595 DATA_GENERIC_ENHANCE)) 596 continue; 597 if (compressed_cluster) 598 valid_blocks++; 599 } 600 601 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 602 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 603 604 f2fs_invalidate_blocks(sbi, blkaddr); 605 606 if (!released || blkaddr != COMPRESS_ADDR) 607 nr_free++; 608 } 609 610 if (compressed_cluster) 611 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 612 613 if (nr_free) { 614 pgoff_t fofs; 615 /* 616 * once we invalidate valid blkaddr in range [ofs, ofs + count], 617 * we will invalidate all blkaddr in the whole range. 618 */ 619 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 620 dn->inode) + ofs; 621 f2fs_update_extent_cache_range(dn, fofs, 0, len); 622 dec_valid_block_count(sbi, dn->inode, nr_free); 623 } 624 dn->ofs_in_node = ofs; 625 626 f2fs_update_time(sbi, REQ_TIME); 627 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 628 dn->ofs_in_node, nr_free); 629 } 630 631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 632 { 633 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 634 } 635 636 static int truncate_partial_data_page(struct inode *inode, u64 from, 637 bool cache_only) 638 { 639 loff_t offset = from & (PAGE_SIZE - 1); 640 pgoff_t index = from >> PAGE_SHIFT; 641 struct address_space *mapping = inode->i_mapping; 642 struct page *page; 643 644 if (!offset && !cache_only) 645 return 0; 646 647 if (cache_only) { 648 page = find_lock_page(mapping, index); 649 if (page && PageUptodate(page)) 650 goto truncate_out; 651 f2fs_put_page(page, 1); 652 return 0; 653 } 654 655 page = f2fs_get_lock_data_page(inode, index, true); 656 if (IS_ERR(page)) 657 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 658 truncate_out: 659 f2fs_wait_on_page_writeback(page, DATA, true, true); 660 zero_user(page, offset, PAGE_SIZE - offset); 661 662 /* An encrypted inode should have a key and truncate the last page. */ 663 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 664 if (!cache_only) 665 set_page_dirty(page); 666 f2fs_put_page(page, 1); 667 return 0; 668 } 669 670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 671 { 672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 673 struct dnode_of_data dn; 674 pgoff_t free_from; 675 int count = 0, err = 0; 676 struct page *ipage; 677 bool truncate_page = false; 678 679 trace_f2fs_truncate_blocks_enter(inode, from); 680 681 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 682 683 if (free_from >= max_file_blocks(inode)) 684 goto free_partial; 685 686 if (lock) 687 f2fs_lock_op(sbi); 688 689 ipage = f2fs_get_node_page(sbi, inode->i_ino); 690 if (IS_ERR(ipage)) { 691 err = PTR_ERR(ipage); 692 goto out; 693 } 694 695 if (f2fs_has_inline_data(inode)) { 696 f2fs_truncate_inline_inode(inode, ipage, from); 697 f2fs_put_page(ipage, 1); 698 truncate_page = true; 699 goto out; 700 } 701 702 set_new_dnode(&dn, inode, ipage, NULL, 0); 703 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 704 if (err) { 705 if (err == -ENOENT) 706 goto free_next; 707 goto out; 708 } 709 710 count = ADDRS_PER_PAGE(dn.node_page, inode); 711 712 count -= dn.ofs_in_node; 713 f2fs_bug_on(sbi, count < 0); 714 715 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 716 f2fs_truncate_data_blocks_range(&dn, count); 717 free_from += count; 718 } 719 720 f2fs_put_dnode(&dn); 721 free_next: 722 err = f2fs_truncate_inode_blocks(inode, free_from); 723 out: 724 if (lock) 725 f2fs_unlock_op(sbi); 726 free_partial: 727 /* lastly zero out the first data page */ 728 if (!err) 729 err = truncate_partial_data_page(inode, from, truncate_page); 730 731 trace_f2fs_truncate_blocks_exit(inode, err); 732 return err; 733 } 734 735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 736 { 737 u64 free_from = from; 738 int err; 739 740 #ifdef CONFIG_F2FS_FS_COMPRESSION 741 /* 742 * for compressed file, only support cluster size 743 * aligned truncation. 744 */ 745 if (f2fs_compressed_file(inode)) 746 free_from = round_up(from, 747 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 748 #endif 749 750 err = f2fs_do_truncate_blocks(inode, free_from, lock); 751 if (err) 752 return err; 753 754 #ifdef CONFIG_F2FS_FS_COMPRESSION 755 /* 756 * For compressed file, after release compress blocks, don't allow write 757 * direct, but we should allow write direct after truncate to zero. 758 */ 759 if (f2fs_compressed_file(inode) && !free_from 760 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 761 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 762 763 if (from != free_from) { 764 err = f2fs_truncate_partial_cluster(inode, from, lock); 765 if (err) 766 return err; 767 } 768 #endif 769 770 return 0; 771 } 772 773 int f2fs_truncate(struct inode *inode) 774 { 775 int err; 776 777 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 778 return -EIO; 779 780 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 781 S_ISLNK(inode->i_mode))) 782 return 0; 783 784 trace_f2fs_truncate(inode); 785 786 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 787 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 788 return -EIO; 789 } 790 791 err = f2fs_dquot_initialize(inode); 792 if (err) 793 return err; 794 795 /* we should check inline_data size */ 796 if (!f2fs_may_inline_data(inode)) { 797 err = f2fs_convert_inline_inode(inode); 798 if (err) 799 return err; 800 } 801 802 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 803 if (err) 804 return err; 805 806 inode->i_mtime = inode->i_ctime = current_time(inode); 807 f2fs_mark_inode_dirty_sync(inode, false); 808 return 0; 809 } 810 811 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 812 { 813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 814 815 if (!fscrypt_dio_supported(inode)) 816 return true; 817 if (fsverity_active(inode)) 818 return true; 819 if (f2fs_compressed_file(inode)) 820 return true; 821 822 /* disallow direct IO if any of devices has unaligned blksize */ 823 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 824 return true; 825 /* 826 * for blkzoned device, fallback direct IO to buffered IO, so 827 * all IOs can be serialized by log-structured write. 828 */ 829 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE)) 830 return true; 831 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi)) 832 return true; 833 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 834 return true; 835 836 return false; 837 } 838 839 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 840 struct kstat *stat, u32 request_mask, unsigned int query_flags) 841 { 842 struct inode *inode = d_inode(path->dentry); 843 struct f2fs_inode_info *fi = F2FS_I(inode); 844 struct f2fs_inode *ri = NULL; 845 unsigned int flags; 846 847 if (f2fs_has_extra_attr(inode) && 848 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 849 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 850 stat->result_mask |= STATX_BTIME; 851 stat->btime.tv_sec = fi->i_crtime.tv_sec; 852 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 853 } 854 855 /* 856 * Return the DIO alignment restrictions if requested. We only return 857 * this information when requested, since on encrypted files it might 858 * take a fair bit of work to get if the file wasn't opened recently. 859 * 860 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 861 * cannot represent that, so in that case we report no DIO support. 862 */ 863 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 864 unsigned int bsize = i_blocksize(inode); 865 866 stat->result_mask |= STATX_DIOALIGN; 867 if (!f2fs_force_buffered_io(inode, WRITE)) { 868 stat->dio_mem_align = bsize; 869 stat->dio_offset_align = bsize; 870 } 871 } 872 873 flags = fi->i_flags; 874 if (flags & F2FS_COMPR_FL) 875 stat->attributes |= STATX_ATTR_COMPRESSED; 876 if (flags & F2FS_APPEND_FL) 877 stat->attributes |= STATX_ATTR_APPEND; 878 if (IS_ENCRYPTED(inode)) 879 stat->attributes |= STATX_ATTR_ENCRYPTED; 880 if (flags & F2FS_IMMUTABLE_FL) 881 stat->attributes |= STATX_ATTR_IMMUTABLE; 882 if (flags & F2FS_NODUMP_FL) 883 stat->attributes |= STATX_ATTR_NODUMP; 884 if (IS_VERITY(inode)) 885 stat->attributes |= STATX_ATTR_VERITY; 886 887 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 888 STATX_ATTR_APPEND | 889 STATX_ATTR_ENCRYPTED | 890 STATX_ATTR_IMMUTABLE | 891 STATX_ATTR_NODUMP | 892 STATX_ATTR_VERITY); 893 894 generic_fillattr(mnt_userns, inode, stat); 895 896 /* we need to show initial sectors used for inline_data/dentries */ 897 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 898 f2fs_has_inline_dentry(inode)) 899 stat->blocks += (stat->size + 511) >> 9; 900 901 return 0; 902 } 903 904 #ifdef CONFIG_F2FS_FS_POSIX_ACL 905 static void __setattr_copy(struct user_namespace *mnt_userns, 906 struct inode *inode, const struct iattr *attr) 907 { 908 unsigned int ia_valid = attr->ia_valid; 909 910 i_uid_update(mnt_userns, attr, inode); 911 i_gid_update(mnt_userns, attr, inode); 912 if (ia_valid & ATTR_ATIME) 913 inode->i_atime = attr->ia_atime; 914 if (ia_valid & ATTR_MTIME) 915 inode->i_mtime = attr->ia_mtime; 916 if (ia_valid & ATTR_CTIME) 917 inode->i_ctime = attr->ia_ctime; 918 if (ia_valid & ATTR_MODE) { 919 umode_t mode = attr->ia_mode; 920 vfsgid_t vfsgid = i_gid_into_vfsgid(mnt_userns, inode); 921 922 if (!vfsgid_in_group_p(vfsgid) && 923 !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) 924 mode &= ~S_ISGID; 925 set_acl_inode(inode, mode); 926 } 927 } 928 #else 929 #define __setattr_copy setattr_copy 930 #endif 931 932 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 933 struct iattr *attr) 934 { 935 struct inode *inode = d_inode(dentry); 936 int err; 937 938 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 939 return -EIO; 940 941 if (unlikely(IS_IMMUTABLE(inode))) 942 return -EPERM; 943 944 if (unlikely(IS_APPEND(inode) && 945 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 946 ATTR_GID | ATTR_TIMES_SET)))) 947 return -EPERM; 948 949 if ((attr->ia_valid & ATTR_SIZE) && 950 !f2fs_is_compress_backend_ready(inode)) 951 return -EOPNOTSUPP; 952 953 err = setattr_prepare(mnt_userns, dentry, attr); 954 if (err) 955 return err; 956 957 err = fscrypt_prepare_setattr(dentry, attr); 958 if (err) 959 return err; 960 961 err = fsverity_prepare_setattr(dentry, attr); 962 if (err) 963 return err; 964 965 if (is_quota_modification(mnt_userns, inode, attr)) { 966 err = f2fs_dquot_initialize(inode); 967 if (err) 968 return err; 969 } 970 if (i_uid_needs_update(mnt_userns, attr, inode) || 971 i_gid_needs_update(mnt_userns, attr, inode)) { 972 f2fs_lock_op(F2FS_I_SB(inode)); 973 err = dquot_transfer(mnt_userns, inode, attr); 974 if (err) { 975 set_sbi_flag(F2FS_I_SB(inode), 976 SBI_QUOTA_NEED_REPAIR); 977 f2fs_unlock_op(F2FS_I_SB(inode)); 978 return err; 979 } 980 /* 981 * update uid/gid under lock_op(), so that dquot and inode can 982 * be updated atomically. 983 */ 984 i_uid_update(mnt_userns, attr, inode); 985 i_gid_update(mnt_userns, attr, inode); 986 f2fs_mark_inode_dirty_sync(inode, true); 987 f2fs_unlock_op(F2FS_I_SB(inode)); 988 } 989 990 if (attr->ia_valid & ATTR_SIZE) { 991 loff_t old_size = i_size_read(inode); 992 993 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 994 /* 995 * should convert inline inode before i_size_write to 996 * keep smaller than inline_data size with inline flag. 997 */ 998 err = f2fs_convert_inline_inode(inode); 999 if (err) 1000 return err; 1001 } 1002 1003 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1004 filemap_invalidate_lock(inode->i_mapping); 1005 1006 truncate_setsize(inode, attr->ia_size); 1007 1008 if (attr->ia_size <= old_size) 1009 err = f2fs_truncate(inode); 1010 /* 1011 * do not trim all blocks after i_size if target size is 1012 * larger than i_size. 1013 */ 1014 filemap_invalidate_unlock(inode->i_mapping); 1015 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1016 if (err) 1017 return err; 1018 1019 spin_lock(&F2FS_I(inode)->i_size_lock); 1020 inode->i_mtime = inode->i_ctime = current_time(inode); 1021 F2FS_I(inode)->last_disk_size = i_size_read(inode); 1022 spin_unlock(&F2FS_I(inode)->i_size_lock); 1023 } 1024 1025 __setattr_copy(mnt_userns, inode, attr); 1026 1027 if (attr->ia_valid & ATTR_MODE) { 1028 err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode)); 1029 1030 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1031 if (!err) 1032 inode->i_mode = F2FS_I(inode)->i_acl_mode; 1033 clear_inode_flag(inode, FI_ACL_MODE); 1034 } 1035 } 1036 1037 /* file size may changed here */ 1038 f2fs_mark_inode_dirty_sync(inode, true); 1039 1040 /* inode change will produce dirty node pages flushed by checkpoint */ 1041 f2fs_balance_fs(F2FS_I_SB(inode), true); 1042 1043 return err; 1044 } 1045 1046 const struct inode_operations f2fs_file_inode_operations = { 1047 .getattr = f2fs_getattr, 1048 .setattr = f2fs_setattr, 1049 .get_acl = f2fs_get_acl, 1050 .set_acl = f2fs_set_acl, 1051 .listxattr = f2fs_listxattr, 1052 .fiemap = f2fs_fiemap, 1053 .fileattr_get = f2fs_fileattr_get, 1054 .fileattr_set = f2fs_fileattr_set, 1055 }; 1056 1057 static int fill_zero(struct inode *inode, pgoff_t index, 1058 loff_t start, loff_t len) 1059 { 1060 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1061 struct page *page; 1062 1063 if (!len) 1064 return 0; 1065 1066 f2fs_balance_fs(sbi, true); 1067 1068 f2fs_lock_op(sbi); 1069 page = f2fs_get_new_data_page(inode, NULL, index, false); 1070 f2fs_unlock_op(sbi); 1071 1072 if (IS_ERR(page)) 1073 return PTR_ERR(page); 1074 1075 f2fs_wait_on_page_writeback(page, DATA, true, true); 1076 zero_user(page, start, len); 1077 set_page_dirty(page); 1078 f2fs_put_page(page, 1); 1079 return 0; 1080 } 1081 1082 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1083 { 1084 int err; 1085 1086 while (pg_start < pg_end) { 1087 struct dnode_of_data dn; 1088 pgoff_t end_offset, count; 1089 1090 set_new_dnode(&dn, inode, NULL, NULL, 0); 1091 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1092 if (err) { 1093 if (err == -ENOENT) { 1094 pg_start = f2fs_get_next_page_offset(&dn, 1095 pg_start); 1096 continue; 1097 } 1098 return err; 1099 } 1100 1101 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1102 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1103 1104 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1105 1106 f2fs_truncate_data_blocks_range(&dn, count); 1107 f2fs_put_dnode(&dn); 1108 1109 pg_start += count; 1110 } 1111 return 0; 1112 } 1113 1114 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1115 { 1116 pgoff_t pg_start, pg_end; 1117 loff_t off_start, off_end; 1118 int ret; 1119 1120 ret = f2fs_convert_inline_inode(inode); 1121 if (ret) 1122 return ret; 1123 1124 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1125 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1126 1127 off_start = offset & (PAGE_SIZE - 1); 1128 off_end = (offset + len) & (PAGE_SIZE - 1); 1129 1130 if (pg_start == pg_end) { 1131 ret = fill_zero(inode, pg_start, off_start, 1132 off_end - off_start); 1133 if (ret) 1134 return ret; 1135 } else { 1136 if (off_start) { 1137 ret = fill_zero(inode, pg_start++, off_start, 1138 PAGE_SIZE - off_start); 1139 if (ret) 1140 return ret; 1141 } 1142 if (off_end) { 1143 ret = fill_zero(inode, pg_end, 0, off_end); 1144 if (ret) 1145 return ret; 1146 } 1147 1148 if (pg_start < pg_end) { 1149 loff_t blk_start, blk_end; 1150 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1151 1152 f2fs_balance_fs(sbi, true); 1153 1154 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1155 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1156 1157 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1158 filemap_invalidate_lock(inode->i_mapping); 1159 1160 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1161 1162 f2fs_lock_op(sbi); 1163 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1164 f2fs_unlock_op(sbi); 1165 1166 filemap_invalidate_unlock(inode->i_mapping); 1167 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1168 } 1169 } 1170 1171 return ret; 1172 } 1173 1174 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1175 int *do_replace, pgoff_t off, pgoff_t len) 1176 { 1177 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1178 struct dnode_of_data dn; 1179 int ret, done, i; 1180 1181 next_dnode: 1182 set_new_dnode(&dn, inode, NULL, NULL, 0); 1183 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1184 if (ret && ret != -ENOENT) { 1185 return ret; 1186 } else if (ret == -ENOENT) { 1187 if (dn.max_level == 0) 1188 return -ENOENT; 1189 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1190 dn.ofs_in_node, len); 1191 blkaddr += done; 1192 do_replace += done; 1193 goto next; 1194 } 1195 1196 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1197 dn.ofs_in_node, len); 1198 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1199 *blkaddr = f2fs_data_blkaddr(&dn); 1200 1201 if (__is_valid_data_blkaddr(*blkaddr) && 1202 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1203 DATA_GENERIC_ENHANCE)) { 1204 f2fs_put_dnode(&dn); 1205 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1206 return -EFSCORRUPTED; 1207 } 1208 1209 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1210 1211 if (f2fs_lfs_mode(sbi)) { 1212 f2fs_put_dnode(&dn); 1213 return -EOPNOTSUPP; 1214 } 1215 1216 /* do not invalidate this block address */ 1217 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1218 *do_replace = 1; 1219 } 1220 } 1221 f2fs_put_dnode(&dn); 1222 next: 1223 len -= done; 1224 off += done; 1225 if (len) 1226 goto next_dnode; 1227 return 0; 1228 } 1229 1230 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1231 int *do_replace, pgoff_t off, int len) 1232 { 1233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1234 struct dnode_of_data dn; 1235 int ret, i; 1236 1237 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1238 if (*do_replace == 0) 1239 continue; 1240 1241 set_new_dnode(&dn, inode, NULL, NULL, 0); 1242 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1243 if (ret) { 1244 dec_valid_block_count(sbi, inode, 1); 1245 f2fs_invalidate_blocks(sbi, *blkaddr); 1246 } else { 1247 f2fs_update_data_blkaddr(&dn, *blkaddr); 1248 } 1249 f2fs_put_dnode(&dn); 1250 } 1251 return 0; 1252 } 1253 1254 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1255 block_t *blkaddr, int *do_replace, 1256 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1257 { 1258 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1259 pgoff_t i = 0; 1260 int ret; 1261 1262 while (i < len) { 1263 if (blkaddr[i] == NULL_ADDR && !full) { 1264 i++; 1265 continue; 1266 } 1267 1268 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1269 struct dnode_of_data dn; 1270 struct node_info ni; 1271 size_t new_size; 1272 pgoff_t ilen; 1273 1274 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1275 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1276 if (ret) 1277 return ret; 1278 1279 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1280 if (ret) { 1281 f2fs_put_dnode(&dn); 1282 return ret; 1283 } 1284 1285 ilen = min((pgoff_t) 1286 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1287 dn.ofs_in_node, len - i); 1288 do { 1289 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1290 f2fs_truncate_data_blocks_range(&dn, 1); 1291 1292 if (do_replace[i]) { 1293 f2fs_i_blocks_write(src_inode, 1294 1, false, false); 1295 f2fs_i_blocks_write(dst_inode, 1296 1, true, false); 1297 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1298 blkaddr[i], ni.version, true, false); 1299 1300 do_replace[i] = 0; 1301 } 1302 dn.ofs_in_node++; 1303 i++; 1304 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1305 if (dst_inode->i_size < new_size) 1306 f2fs_i_size_write(dst_inode, new_size); 1307 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1308 1309 f2fs_put_dnode(&dn); 1310 } else { 1311 struct page *psrc, *pdst; 1312 1313 psrc = f2fs_get_lock_data_page(src_inode, 1314 src + i, true); 1315 if (IS_ERR(psrc)) 1316 return PTR_ERR(psrc); 1317 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1318 true); 1319 if (IS_ERR(pdst)) { 1320 f2fs_put_page(psrc, 1); 1321 return PTR_ERR(pdst); 1322 } 1323 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1324 set_page_dirty(pdst); 1325 f2fs_put_page(pdst, 1); 1326 f2fs_put_page(psrc, 1); 1327 1328 ret = f2fs_truncate_hole(src_inode, 1329 src + i, src + i + 1); 1330 if (ret) 1331 return ret; 1332 i++; 1333 } 1334 } 1335 return 0; 1336 } 1337 1338 static int __exchange_data_block(struct inode *src_inode, 1339 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1340 pgoff_t len, bool full) 1341 { 1342 block_t *src_blkaddr; 1343 int *do_replace; 1344 pgoff_t olen; 1345 int ret; 1346 1347 while (len) { 1348 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1349 1350 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1351 array_size(olen, sizeof(block_t)), 1352 GFP_NOFS); 1353 if (!src_blkaddr) 1354 return -ENOMEM; 1355 1356 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1357 array_size(olen, sizeof(int)), 1358 GFP_NOFS); 1359 if (!do_replace) { 1360 kvfree(src_blkaddr); 1361 return -ENOMEM; 1362 } 1363 1364 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1365 do_replace, src, olen); 1366 if (ret) 1367 goto roll_back; 1368 1369 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1370 do_replace, src, dst, olen, full); 1371 if (ret) 1372 goto roll_back; 1373 1374 src += olen; 1375 dst += olen; 1376 len -= olen; 1377 1378 kvfree(src_blkaddr); 1379 kvfree(do_replace); 1380 } 1381 return 0; 1382 1383 roll_back: 1384 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1385 kvfree(src_blkaddr); 1386 kvfree(do_replace); 1387 return ret; 1388 } 1389 1390 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1391 { 1392 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1393 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1394 pgoff_t start = offset >> PAGE_SHIFT; 1395 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1396 int ret; 1397 1398 f2fs_balance_fs(sbi, true); 1399 1400 /* avoid gc operation during block exchange */ 1401 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1402 filemap_invalidate_lock(inode->i_mapping); 1403 1404 f2fs_lock_op(sbi); 1405 f2fs_drop_extent_tree(inode); 1406 truncate_pagecache(inode, offset); 1407 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1408 f2fs_unlock_op(sbi); 1409 1410 filemap_invalidate_unlock(inode->i_mapping); 1411 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1412 return ret; 1413 } 1414 1415 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1416 { 1417 loff_t new_size; 1418 int ret; 1419 1420 if (offset + len >= i_size_read(inode)) 1421 return -EINVAL; 1422 1423 /* collapse range should be aligned to block size of f2fs. */ 1424 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1425 return -EINVAL; 1426 1427 ret = f2fs_convert_inline_inode(inode); 1428 if (ret) 1429 return ret; 1430 1431 /* write out all dirty pages from offset */ 1432 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1433 if (ret) 1434 return ret; 1435 1436 ret = f2fs_do_collapse(inode, offset, len); 1437 if (ret) 1438 return ret; 1439 1440 /* write out all moved pages, if possible */ 1441 filemap_invalidate_lock(inode->i_mapping); 1442 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1443 truncate_pagecache(inode, offset); 1444 1445 new_size = i_size_read(inode) - len; 1446 ret = f2fs_truncate_blocks(inode, new_size, true); 1447 filemap_invalidate_unlock(inode->i_mapping); 1448 if (!ret) 1449 f2fs_i_size_write(inode, new_size); 1450 return ret; 1451 } 1452 1453 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1454 pgoff_t end) 1455 { 1456 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1457 pgoff_t index = start; 1458 unsigned int ofs_in_node = dn->ofs_in_node; 1459 blkcnt_t count = 0; 1460 int ret; 1461 1462 for (; index < end; index++, dn->ofs_in_node++) { 1463 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1464 count++; 1465 } 1466 1467 dn->ofs_in_node = ofs_in_node; 1468 ret = f2fs_reserve_new_blocks(dn, count); 1469 if (ret) 1470 return ret; 1471 1472 dn->ofs_in_node = ofs_in_node; 1473 for (index = start; index < end; index++, dn->ofs_in_node++) { 1474 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1475 /* 1476 * f2fs_reserve_new_blocks will not guarantee entire block 1477 * allocation. 1478 */ 1479 if (dn->data_blkaddr == NULL_ADDR) { 1480 ret = -ENOSPC; 1481 break; 1482 } 1483 1484 if (dn->data_blkaddr == NEW_ADDR) 1485 continue; 1486 1487 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1488 DATA_GENERIC_ENHANCE)) { 1489 ret = -EFSCORRUPTED; 1490 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1491 break; 1492 } 1493 1494 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1495 dn->data_blkaddr = NEW_ADDR; 1496 f2fs_set_data_blkaddr(dn); 1497 } 1498 1499 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1500 1501 return ret; 1502 } 1503 1504 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1505 int mode) 1506 { 1507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1508 struct address_space *mapping = inode->i_mapping; 1509 pgoff_t index, pg_start, pg_end; 1510 loff_t new_size = i_size_read(inode); 1511 loff_t off_start, off_end; 1512 int ret = 0; 1513 1514 ret = inode_newsize_ok(inode, (len + offset)); 1515 if (ret) 1516 return ret; 1517 1518 ret = f2fs_convert_inline_inode(inode); 1519 if (ret) 1520 return ret; 1521 1522 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1523 if (ret) 1524 return ret; 1525 1526 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1527 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1528 1529 off_start = offset & (PAGE_SIZE - 1); 1530 off_end = (offset + len) & (PAGE_SIZE - 1); 1531 1532 if (pg_start == pg_end) { 1533 ret = fill_zero(inode, pg_start, off_start, 1534 off_end - off_start); 1535 if (ret) 1536 return ret; 1537 1538 new_size = max_t(loff_t, new_size, offset + len); 1539 } else { 1540 if (off_start) { 1541 ret = fill_zero(inode, pg_start++, off_start, 1542 PAGE_SIZE - off_start); 1543 if (ret) 1544 return ret; 1545 1546 new_size = max_t(loff_t, new_size, 1547 (loff_t)pg_start << PAGE_SHIFT); 1548 } 1549 1550 for (index = pg_start; index < pg_end;) { 1551 struct dnode_of_data dn; 1552 unsigned int end_offset; 1553 pgoff_t end; 1554 1555 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1556 filemap_invalidate_lock(mapping); 1557 1558 truncate_pagecache_range(inode, 1559 (loff_t)index << PAGE_SHIFT, 1560 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1561 1562 f2fs_lock_op(sbi); 1563 1564 set_new_dnode(&dn, inode, NULL, NULL, 0); 1565 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1566 if (ret) { 1567 f2fs_unlock_op(sbi); 1568 filemap_invalidate_unlock(mapping); 1569 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1570 goto out; 1571 } 1572 1573 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1574 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1575 1576 ret = f2fs_do_zero_range(&dn, index, end); 1577 f2fs_put_dnode(&dn); 1578 1579 f2fs_unlock_op(sbi); 1580 filemap_invalidate_unlock(mapping); 1581 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1582 1583 f2fs_balance_fs(sbi, dn.node_changed); 1584 1585 if (ret) 1586 goto out; 1587 1588 index = end; 1589 new_size = max_t(loff_t, new_size, 1590 (loff_t)index << PAGE_SHIFT); 1591 } 1592 1593 if (off_end) { 1594 ret = fill_zero(inode, pg_end, 0, off_end); 1595 if (ret) 1596 goto out; 1597 1598 new_size = max_t(loff_t, new_size, offset + len); 1599 } 1600 } 1601 1602 out: 1603 if (new_size > i_size_read(inode)) { 1604 if (mode & FALLOC_FL_KEEP_SIZE) 1605 file_set_keep_isize(inode); 1606 else 1607 f2fs_i_size_write(inode, new_size); 1608 } 1609 return ret; 1610 } 1611 1612 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1613 { 1614 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1615 struct address_space *mapping = inode->i_mapping; 1616 pgoff_t nr, pg_start, pg_end, delta, idx; 1617 loff_t new_size; 1618 int ret = 0; 1619 1620 new_size = i_size_read(inode) + len; 1621 ret = inode_newsize_ok(inode, new_size); 1622 if (ret) 1623 return ret; 1624 1625 if (offset >= i_size_read(inode)) 1626 return -EINVAL; 1627 1628 /* insert range should be aligned to block size of f2fs. */ 1629 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1630 return -EINVAL; 1631 1632 ret = f2fs_convert_inline_inode(inode); 1633 if (ret) 1634 return ret; 1635 1636 f2fs_balance_fs(sbi, true); 1637 1638 filemap_invalidate_lock(mapping); 1639 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1640 filemap_invalidate_unlock(mapping); 1641 if (ret) 1642 return ret; 1643 1644 /* write out all dirty pages from offset */ 1645 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1646 if (ret) 1647 return ret; 1648 1649 pg_start = offset >> PAGE_SHIFT; 1650 pg_end = (offset + len) >> PAGE_SHIFT; 1651 delta = pg_end - pg_start; 1652 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1653 1654 /* avoid gc operation during block exchange */ 1655 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1656 filemap_invalidate_lock(mapping); 1657 truncate_pagecache(inode, offset); 1658 1659 while (!ret && idx > pg_start) { 1660 nr = idx - pg_start; 1661 if (nr > delta) 1662 nr = delta; 1663 idx -= nr; 1664 1665 f2fs_lock_op(sbi); 1666 f2fs_drop_extent_tree(inode); 1667 1668 ret = __exchange_data_block(inode, inode, idx, 1669 idx + delta, nr, false); 1670 f2fs_unlock_op(sbi); 1671 } 1672 filemap_invalidate_unlock(mapping); 1673 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1674 1675 /* write out all moved pages, if possible */ 1676 filemap_invalidate_lock(mapping); 1677 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1678 truncate_pagecache(inode, offset); 1679 filemap_invalidate_unlock(mapping); 1680 1681 if (!ret) 1682 f2fs_i_size_write(inode, new_size); 1683 return ret; 1684 } 1685 1686 static int expand_inode_data(struct inode *inode, loff_t offset, 1687 loff_t len, int mode) 1688 { 1689 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1690 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1691 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1692 .m_may_create = true }; 1693 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1694 .init_gc_type = FG_GC, 1695 .should_migrate_blocks = false, 1696 .err_gc_skipped = true, 1697 .nr_free_secs = 0 }; 1698 pgoff_t pg_start, pg_end; 1699 loff_t new_size = i_size_read(inode); 1700 loff_t off_end; 1701 block_t expanded = 0; 1702 int err; 1703 1704 err = inode_newsize_ok(inode, (len + offset)); 1705 if (err) 1706 return err; 1707 1708 err = f2fs_convert_inline_inode(inode); 1709 if (err) 1710 return err; 1711 1712 f2fs_balance_fs(sbi, true); 1713 1714 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1715 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1716 off_end = (offset + len) & (PAGE_SIZE - 1); 1717 1718 map.m_lblk = pg_start; 1719 map.m_len = pg_end - pg_start; 1720 if (off_end) 1721 map.m_len++; 1722 1723 if (!map.m_len) 1724 return 0; 1725 1726 if (f2fs_is_pinned_file(inode)) { 1727 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1728 block_t sec_len = roundup(map.m_len, sec_blks); 1729 1730 map.m_len = sec_blks; 1731 next_alloc: 1732 if (has_not_enough_free_secs(sbi, 0, 1733 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1734 f2fs_down_write(&sbi->gc_lock); 1735 err = f2fs_gc(sbi, &gc_control); 1736 if (err && err != -ENODATA) 1737 goto out_err; 1738 } 1739 1740 f2fs_down_write(&sbi->pin_sem); 1741 1742 f2fs_lock_op(sbi); 1743 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1744 f2fs_unlock_op(sbi); 1745 1746 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1747 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1748 file_dont_truncate(inode); 1749 1750 f2fs_up_write(&sbi->pin_sem); 1751 1752 expanded += map.m_len; 1753 sec_len -= map.m_len; 1754 map.m_lblk += map.m_len; 1755 if (!err && sec_len) 1756 goto next_alloc; 1757 1758 map.m_len = expanded; 1759 } else { 1760 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1761 expanded = map.m_len; 1762 } 1763 out_err: 1764 if (err) { 1765 pgoff_t last_off; 1766 1767 if (!expanded) 1768 return err; 1769 1770 last_off = pg_start + expanded - 1; 1771 1772 /* update new size to the failed position */ 1773 new_size = (last_off == pg_end) ? offset + len : 1774 (loff_t)(last_off + 1) << PAGE_SHIFT; 1775 } else { 1776 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1777 } 1778 1779 if (new_size > i_size_read(inode)) { 1780 if (mode & FALLOC_FL_KEEP_SIZE) 1781 file_set_keep_isize(inode); 1782 else 1783 f2fs_i_size_write(inode, new_size); 1784 } 1785 1786 return err; 1787 } 1788 1789 static long f2fs_fallocate(struct file *file, int mode, 1790 loff_t offset, loff_t len) 1791 { 1792 struct inode *inode = file_inode(file); 1793 long ret = 0; 1794 1795 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1796 return -EIO; 1797 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1798 return -ENOSPC; 1799 if (!f2fs_is_compress_backend_ready(inode)) 1800 return -EOPNOTSUPP; 1801 1802 /* f2fs only support ->fallocate for regular file */ 1803 if (!S_ISREG(inode->i_mode)) 1804 return -EINVAL; 1805 1806 if (IS_ENCRYPTED(inode) && 1807 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1808 return -EOPNOTSUPP; 1809 1810 /* 1811 * Pinned file should not support partial trucation since the block 1812 * can be used by applications. 1813 */ 1814 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1815 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1816 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1817 return -EOPNOTSUPP; 1818 1819 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1820 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1821 FALLOC_FL_INSERT_RANGE)) 1822 return -EOPNOTSUPP; 1823 1824 inode_lock(inode); 1825 1826 ret = file_modified(file); 1827 if (ret) 1828 goto out; 1829 1830 if (mode & FALLOC_FL_PUNCH_HOLE) { 1831 if (offset >= inode->i_size) 1832 goto out; 1833 1834 ret = punch_hole(inode, offset, len); 1835 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1836 ret = f2fs_collapse_range(inode, offset, len); 1837 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1838 ret = f2fs_zero_range(inode, offset, len, mode); 1839 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1840 ret = f2fs_insert_range(inode, offset, len); 1841 } else { 1842 ret = expand_inode_data(inode, offset, len, mode); 1843 } 1844 1845 if (!ret) { 1846 inode->i_mtime = inode->i_ctime = current_time(inode); 1847 f2fs_mark_inode_dirty_sync(inode, false); 1848 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1849 } 1850 1851 out: 1852 inode_unlock(inode); 1853 1854 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1855 return ret; 1856 } 1857 1858 static int f2fs_release_file(struct inode *inode, struct file *filp) 1859 { 1860 /* 1861 * f2fs_relase_file is called at every close calls. So we should 1862 * not drop any inmemory pages by close called by other process. 1863 */ 1864 if (!(filp->f_mode & FMODE_WRITE) || 1865 atomic_read(&inode->i_writecount) != 1) 1866 return 0; 1867 1868 f2fs_abort_atomic_write(inode, true); 1869 return 0; 1870 } 1871 1872 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1873 { 1874 struct inode *inode = file_inode(file); 1875 1876 /* 1877 * If the process doing a transaction is crashed, we should do 1878 * roll-back. Otherwise, other reader/write can see corrupted database 1879 * until all the writers close its file. Since this should be done 1880 * before dropping file lock, it needs to do in ->flush. 1881 */ 1882 if (F2FS_I(inode)->atomic_write_task == current) 1883 f2fs_abort_atomic_write(inode, true); 1884 return 0; 1885 } 1886 1887 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1888 { 1889 struct f2fs_inode_info *fi = F2FS_I(inode); 1890 u32 masked_flags = fi->i_flags & mask; 1891 1892 /* mask can be shrunk by flags_valid selector */ 1893 iflags &= mask; 1894 1895 /* Is it quota file? Do not allow user to mess with it */ 1896 if (IS_NOQUOTA(inode)) 1897 return -EPERM; 1898 1899 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1900 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1901 return -EOPNOTSUPP; 1902 if (!f2fs_empty_dir(inode)) 1903 return -ENOTEMPTY; 1904 } 1905 1906 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1907 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1908 return -EOPNOTSUPP; 1909 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1910 return -EINVAL; 1911 } 1912 1913 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1914 if (masked_flags & F2FS_COMPR_FL) { 1915 if (!f2fs_disable_compressed_file(inode)) 1916 return -EINVAL; 1917 } else { 1918 /* try to convert inline_data to support compression */ 1919 int err = f2fs_convert_inline_inode(inode); 1920 if (err) 1921 return err; 1922 if (!f2fs_may_compress(inode)) 1923 return -EINVAL; 1924 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 1925 return -EINVAL; 1926 if (set_compress_context(inode)) 1927 return -EOPNOTSUPP; 1928 } 1929 } 1930 1931 fi->i_flags = iflags | (fi->i_flags & ~mask); 1932 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1933 (fi->i_flags & F2FS_NOCOMP_FL)); 1934 1935 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1936 set_inode_flag(inode, FI_PROJ_INHERIT); 1937 else 1938 clear_inode_flag(inode, FI_PROJ_INHERIT); 1939 1940 inode->i_ctime = current_time(inode); 1941 f2fs_set_inode_flags(inode); 1942 f2fs_mark_inode_dirty_sync(inode, true); 1943 return 0; 1944 } 1945 1946 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1947 1948 /* 1949 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1950 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1951 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1952 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1953 * 1954 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1955 * FS_IOC_FSSETXATTR is done by the VFS. 1956 */ 1957 1958 static const struct { 1959 u32 iflag; 1960 u32 fsflag; 1961 } f2fs_fsflags_map[] = { 1962 { F2FS_COMPR_FL, FS_COMPR_FL }, 1963 { F2FS_SYNC_FL, FS_SYNC_FL }, 1964 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1965 { F2FS_APPEND_FL, FS_APPEND_FL }, 1966 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1967 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1968 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1969 { F2FS_INDEX_FL, FS_INDEX_FL }, 1970 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1971 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1972 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1973 }; 1974 1975 #define F2FS_GETTABLE_FS_FL ( \ 1976 FS_COMPR_FL | \ 1977 FS_SYNC_FL | \ 1978 FS_IMMUTABLE_FL | \ 1979 FS_APPEND_FL | \ 1980 FS_NODUMP_FL | \ 1981 FS_NOATIME_FL | \ 1982 FS_NOCOMP_FL | \ 1983 FS_INDEX_FL | \ 1984 FS_DIRSYNC_FL | \ 1985 FS_PROJINHERIT_FL | \ 1986 FS_ENCRYPT_FL | \ 1987 FS_INLINE_DATA_FL | \ 1988 FS_NOCOW_FL | \ 1989 FS_VERITY_FL | \ 1990 FS_CASEFOLD_FL) 1991 1992 #define F2FS_SETTABLE_FS_FL ( \ 1993 FS_COMPR_FL | \ 1994 FS_SYNC_FL | \ 1995 FS_IMMUTABLE_FL | \ 1996 FS_APPEND_FL | \ 1997 FS_NODUMP_FL | \ 1998 FS_NOATIME_FL | \ 1999 FS_NOCOMP_FL | \ 2000 FS_DIRSYNC_FL | \ 2001 FS_PROJINHERIT_FL | \ 2002 FS_CASEFOLD_FL) 2003 2004 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2005 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2006 { 2007 u32 fsflags = 0; 2008 int i; 2009 2010 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2011 if (iflags & f2fs_fsflags_map[i].iflag) 2012 fsflags |= f2fs_fsflags_map[i].fsflag; 2013 2014 return fsflags; 2015 } 2016 2017 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2018 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2019 { 2020 u32 iflags = 0; 2021 int i; 2022 2023 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2024 if (fsflags & f2fs_fsflags_map[i].fsflag) 2025 iflags |= f2fs_fsflags_map[i].iflag; 2026 2027 return iflags; 2028 } 2029 2030 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2031 { 2032 struct inode *inode = file_inode(filp); 2033 2034 return put_user(inode->i_generation, (int __user *)arg); 2035 } 2036 2037 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2038 { 2039 struct inode *inode = file_inode(filp); 2040 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2041 struct f2fs_inode_info *fi = F2FS_I(inode); 2042 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2043 struct inode *pinode; 2044 loff_t isize; 2045 int ret; 2046 2047 if (!inode_owner_or_capable(mnt_userns, inode)) 2048 return -EACCES; 2049 2050 if (!S_ISREG(inode->i_mode)) 2051 return -EINVAL; 2052 2053 if (filp->f_flags & O_DIRECT) 2054 return -EINVAL; 2055 2056 ret = mnt_want_write_file(filp); 2057 if (ret) 2058 return ret; 2059 2060 inode_lock(inode); 2061 2062 if (!f2fs_disable_compressed_file(inode)) { 2063 ret = -EINVAL; 2064 goto out; 2065 } 2066 2067 if (f2fs_is_atomic_file(inode)) 2068 goto out; 2069 2070 ret = f2fs_convert_inline_inode(inode); 2071 if (ret) 2072 goto out; 2073 2074 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2075 2076 /* 2077 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2078 * f2fs_is_atomic_file. 2079 */ 2080 if (get_dirty_pages(inode)) 2081 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2082 inode->i_ino, get_dirty_pages(inode)); 2083 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2084 if (ret) { 2085 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2086 goto out; 2087 } 2088 2089 /* Create a COW inode for atomic write */ 2090 pinode = f2fs_iget(inode->i_sb, fi->i_pino); 2091 if (IS_ERR(pinode)) { 2092 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2093 ret = PTR_ERR(pinode); 2094 goto out; 2095 } 2096 2097 ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode); 2098 iput(pinode); 2099 if (ret) { 2100 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2101 goto out; 2102 } 2103 2104 f2fs_write_inode(inode, NULL); 2105 2106 stat_inc_atomic_inode(inode); 2107 2108 set_inode_flag(inode, FI_ATOMIC_FILE); 2109 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2110 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2111 2112 isize = i_size_read(inode); 2113 fi->original_i_size = isize; 2114 if (truncate) { 2115 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2116 truncate_inode_pages_final(inode->i_mapping); 2117 f2fs_i_size_write(inode, 0); 2118 isize = 0; 2119 } 2120 f2fs_i_size_write(fi->cow_inode, isize); 2121 2122 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2123 2124 f2fs_update_time(sbi, REQ_TIME); 2125 fi->atomic_write_task = current; 2126 stat_update_max_atomic_write(inode); 2127 fi->atomic_write_cnt = 0; 2128 out: 2129 inode_unlock(inode); 2130 mnt_drop_write_file(filp); 2131 return ret; 2132 } 2133 2134 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2135 { 2136 struct inode *inode = file_inode(filp); 2137 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2138 int ret; 2139 2140 if (!inode_owner_or_capable(mnt_userns, inode)) 2141 return -EACCES; 2142 2143 ret = mnt_want_write_file(filp); 2144 if (ret) 2145 return ret; 2146 2147 f2fs_balance_fs(F2FS_I_SB(inode), true); 2148 2149 inode_lock(inode); 2150 2151 if (f2fs_is_atomic_file(inode)) { 2152 ret = f2fs_commit_atomic_write(inode); 2153 if (!ret) 2154 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2155 2156 f2fs_abort_atomic_write(inode, ret); 2157 } else { 2158 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2159 } 2160 2161 inode_unlock(inode); 2162 mnt_drop_write_file(filp); 2163 return ret; 2164 } 2165 2166 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2167 { 2168 struct inode *inode = file_inode(filp); 2169 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2170 int ret; 2171 2172 if (!inode_owner_or_capable(mnt_userns, inode)) 2173 return -EACCES; 2174 2175 ret = mnt_want_write_file(filp); 2176 if (ret) 2177 return ret; 2178 2179 inode_lock(inode); 2180 2181 f2fs_abort_atomic_write(inode, true); 2182 2183 inode_unlock(inode); 2184 2185 mnt_drop_write_file(filp); 2186 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2187 return ret; 2188 } 2189 2190 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2191 { 2192 struct inode *inode = file_inode(filp); 2193 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2194 struct super_block *sb = sbi->sb; 2195 __u32 in; 2196 int ret = 0; 2197 2198 if (!capable(CAP_SYS_ADMIN)) 2199 return -EPERM; 2200 2201 if (get_user(in, (__u32 __user *)arg)) 2202 return -EFAULT; 2203 2204 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2205 ret = mnt_want_write_file(filp); 2206 if (ret) { 2207 if (ret == -EROFS) { 2208 ret = 0; 2209 f2fs_stop_checkpoint(sbi, false, 2210 STOP_CP_REASON_SHUTDOWN); 2211 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2212 trace_f2fs_shutdown(sbi, in, ret); 2213 } 2214 return ret; 2215 } 2216 } 2217 2218 switch (in) { 2219 case F2FS_GOING_DOWN_FULLSYNC: 2220 ret = freeze_bdev(sb->s_bdev); 2221 if (ret) 2222 goto out; 2223 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2224 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2225 thaw_bdev(sb->s_bdev); 2226 break; 2227 case F2FS_GOING_DOWN_METASYNC: 2228 /* do checkpoint only */ 2229 ret = f2fs_sync_fs(sb, 1); 2230 if (ret) 2231 goto out; 2232 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2233 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2234 break; 2235 case F2FS_GOING_DOWN_NOSYNC: 2236 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2237 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2238 break; 2239 case F2FS_GOING_DOWN_METAFLUSH: 2240 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2241 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2242 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2243 break; 2244 case F2FS_GOING_DOWN_NEED_FSCK: 2245 set_sbi_flag(sbi, SBI_NEED_FSCK); 2246 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2247 set_sbi_flag(sbi, SBI_IS_DIRTY); 2248 /* do checkpoint only */ 2249 ret = f2fs_sync_fs(sb, 1); 2250 goto out; 2251 default: 2252 ret = -EINVAL; 2253 goto out; 2254 } 2255 2256 f2fs_stop_gc_thread(sbi); 2257 f2fs_stop_discard_thread(sbi); 2258 2259 f2fs_drop_discard_cmd(sbi); 2260 clear_opt(sbi, DISCARD); 2261 2262 f2fs_update_time(sbi, REQ_TIME); 2263 out: 2264 if (in != F2FS_GOING_DOWN_FULLSYNC) 2265 mnt_drop_write_file(filp); 2266 2267 trace_f2fs_shutdown(sbi, in, ret); 2268 2269 return ret; 2270 } 2271 2272 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2273 { 2274 struct inode *inode = file_inode(filp); 2275 struct super_block *sb = inode->i_sb; 2276 struct fstrim_range range; 2277 int ret; 2278 2279 if (!capable(CAP_SYS_ADMIN)) 2280 return -EPERM; 2281 2282 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2283 return -EOPNOTSUPP; 2284 2285 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2286 sizeof(range))) 2287 return -EFAULT; 2288 2289 ret = mnt_want_write_file(filp); 2290 if (ret) 2291 return ret; 2292 2293 range.minlen = max((unsigned int)range.minlen, 2294 bdev_discard_granularity(sb->s_bdev)); 2295 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2296 mnt_drop_write_file(filp); 2297 if (ret < 0) 2298 return ret; 2299 2300 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2301 sizeof(range))) 2302 return -EFAULT; 2303 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2304 return 0; 2305 } 2306 2307 static bool uuid_is_nonzero(__u8 u[16]) 2308 { 2309 int i; 2310 2311 for (i = 0; i < 16; i++) 2312 if (u[i]) 2313 return true; 2314 return false; 2315 } 2316 2317 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2318 { 2319 struct inode *inode = file_inode(filp); 2320 2321 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2322 return -EOPNOTSUPP; 2323 2324 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2325 2326 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2327 } 2328 2329 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2330 { 2331 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2332 return -EOPNOTSUPP; 2333 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2334 } 2335 2336 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2337 { 2338 struct inode *inode = file_inode(filp); 2339 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2340 int err; 2341 2342 if (!f2fs_sb_has_encrypt(sbi)) 2343 return -EOPNOTSUPP; 2344 2345 err = mnt_want_write_file(filp); 2346 if (err) 2347 return err; 2348 2349 f2fs_down_write(&sbi->sb_lock); 2350 2351 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2352 goto got_it; 2353 2354 /* update superblock with uuid */ 2355 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2356 2357 err = f2fs_commit_super(sbi, false); 2358 if (err) { 2359 /* undo new data */ 2360 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2361 goto out_err; 2362 } 2363 got_it: 2364 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2365 16)) 2366 err = -EFAULT; 2367 out_err: 2368 f2fs_up_write(&sbi->sb_lock); 2369 mnt_drop_write_file(filp); 2370 return err; 2371 } 2372 2373 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2374 unsigned long arg) 2375 { 2376 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2377 return -EOPNOTSUPP; 2378 2379 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2380 } 2381 2382 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2383 { 2384 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2385 return -EOPNOTSUPP; 2386 2387 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2388 } 2389 2390 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2391 { 2392 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2393 return -EOPNOTSUPP; 2394 2395 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2396 } 2397 2398 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2399 unsigned long arg) 2400 { 2401 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2402 return -EOPNOTSUPP; 2403 2404 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2405 } 2406 2407 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2408 unsigned long arg) 2409 { 2410 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2411 return -EOPNOTSUPP; 2412 2413 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2414 } 2415 2416 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2417 { 2418 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2419 return -EOPNOTSUPP; 2420 2421 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2422 } 2423 2424 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2425 { 2426 struct inode *inode = file_inode(filp); 2427 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2428 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2429 .no_bg_gc = false, 2430 .should_migrate_blocks = false, 2431 .nr_free_secs = 0 }; 2432 __u32 sync; 2433 int ret; 2434 2435 if (!capable(CAP_SYS_ADMIN)) 2436 return -EPERM; 2437 2438 if (get_user(sync, (__u32 __user *)arg)) 2439 return -EFAULT; 2440 2441 if (f2fs_readonly(sbi->sb)) 2442 return -EROFS; 2443 2444 ret = mnt_want_write_file(filp); 2445 if (ret) 2446 return ret; 2447 2448 if (!sync) { 2449 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2450 ret = -EBUSY; 2451 goto out; 2452 } 2453 } else { 2454 f2fs_down_write(&sbi->gc_lock); 2455 } 2456 2457 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2458 gc_control.err_gc_skipped = sync; 2459 ret = f2fs_gc(sbi, &gc_control); 2460 out: 2461 mnt_drop_write_file(filp); 2462 return ret; 2463 } 2464 2465 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2466 { 2467 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2468 struct f2fs_gc_control gc_control = { 2469 .init_gc_type = range->sync ? FG_GC : BG_GC, 2470 .no_bg_gc = false, 2471 .should_migrate_blocks = false, 2472 .err_gc_skipped = range->sync, 2473 .nr_free_secs = 0 }; 2474 u64 end; 2475 int ret; 2476 2477 if (!capable(CAP_SYS_ADMIN)) 2478 return -EPERM; 2479 if (f2fs_readonly(sbi->sb)) 2480 return -EROFS; 2481 2482 end = range->start + range->len; 2483 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2484 end >= MAX_BLKADDR(sbi)) 2485 return -EINVAL; 2486 2487 ret = mnt_want_write_file(filp); 2488 if (ret) 2489 return ret; 2490 2491 do_more: 2492 if (!range->sync) { 2493 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2494 ret = -EBUSY; 2495 goto out; 2496 } 2497 } else { 2498 f2fs_down_write(&sbi->gc_lock); 2499 } 2500 2501 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2502 ret = f2fs_gc(sbi, &gc_control); 2503 if (ret) { 2504 if (ret == -EBUSY) 2505 ret = -EAGAIN; 2506 goto out; 2507 } 2508 range->start += CAP_BLKS_PER_SEC(sbi); 2509 if (range->start <= end) 2510 goto do_more; 2511 out: 2512 mnt_drop_write_file(filp); 2513 return ret; 2514 } 2515 2516 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2517 { 2518 struct f2fs_gc_range range; 2519 2520 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2521 sizeof(range))) 2522 return -EFAULT; 2523 return __f2fs_ioc_gc_range(filp, &range); 2524 } 2525 2526 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2527 { 2528 struct inode *inode = file_inode(filp); 2529 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2530 int ret; 2531 2532 if (!capable(CAP_SYS_ADMIN)) 2533 return -EPERM; 2534 2535 if (f2fs_readonly(sbi->sb)) 2536 return -EROFS; 2537 2538 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2539 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2540 return -EINVAL; 2541 } 2542 2543 ret = mnt_want_write_file(filp); 2544 if (ret) 2545 return ret; 2546 2547 ret = f2fs_sync_fs(sbi->sb, 1); 2548 2549 mnt_drop_write_file(filp); 2550 return ret; 2551 } 2552 2553 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2554 struct file *filp, 2555 struct f2fs_defragment *range) 2556 { 2557 struct inode *inode = file_inode(filp); 2558 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2559 .m_seg_type = NO_CHECK_TYPE, 2560 .m_may_create = false }; 2561 struct extent_info ei = {0, 0, 0}; 2562 pgoff_t pg_start, pg_end, next_pgofs; 2563 unsigned int blk_per_seg = sbi->blocks_per_seg; 2564 unsigned int total = 0, sec_num; 2565 block_t blk_end = 0; 2566 bool fragmented = false; 2567 int err; 2568 2569 pg_start = range->start >> PAGE_SHIFT; 2570 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2571 2572 f2fs_balance_fs(sbi, true); 2573 2574 inode_lock(inode); 2575 2576 /* if in-place-update policy is enabled, don't waste time here */ 2577 set_inode_flag(inode, FI_OPU_WRITE); 2578 if (f2fs_should_update_inplace(inode, NULL)) { 2579 err = -EINVAL; 2580 goto out; 2581 } 2582 2583 /* writeback all dirty pages in the range */ 2584 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2585 range->start + range->len - 1); 2586 if (err) 2587 goto out; 2588 2589 /* 2590 * lookup mapping info in extent cache, skip defragmenting if physical 2591 * block addresses are continuous. 2592 */ 2593 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2594 if (ei.fofs + ei.len >= pg_end) 2595 goto out; 2596 } 2597 2598 map.m_lblk = pg_start; 2599 map.m_next_pgofs = &next_pgofs; 2600 2601 /* 2602 * lookup mapping info in dnode page cache, skip defragmenting if all 2603 * physical block addresses are continuous even if there are hole(s) 2604 * in logical blocks. 2605 */ 2606 while (map.m_lblk < pg_end) { 2607 map.m_len = pg_end - map.m_lblk; 2608 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2609 if (err) 2610 goto out; 2611 2612 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2613 map.m_lblk = next_pgofs; 2614 continue; 2615 } 2616 2617 if (blk_end && blk_end != map.m_pblk) 2618 fragmented = true; 2619 2620 /* record total count of block that we're going to move */ 2621 total += map.m_len; 2622 2623 blk_end = map.m_pblk + map.m_len; 2624 2625 map.m_lblk += map.m_len; 2626 } 2627 2628 if (!fragmented) { 2629 total = 0; 2630 goto out; 2631 } 2632 2633 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2634 2635 /* 2636 * make sure there are enough free section for LFS allocation, this can 2637 * avoid defragment running in SSR mode when free section are allocated 2638 * intensively 2639 */ 2640 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2641 err = -EAGAIN; 2642 goto out; 2643 } 2644 2645 map.m_lblk = pg_start; 2646 map.m_len = pg_end - pg_start; 2647 total = 0; 2648 2649 while (map.m_lblk < pg_end) { 2650 pgoff_t idx; 2651 int cnt = 0; 2652 2653 do_map: 2654 map.m_len = pg_end - map.m_lblk; 2655 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2656 if (err) 2657 goto clear_out; 2658 2659 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2660 map.m_lblk = next_pgofs; 2661 goto check; 2662 } 2663 2664 set_inode_flag(inode, FI_SKIP_WRITES); 2665 2666 idx = map.m_lblk; 2667 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2668 struct page *page; 2669 2670 page = f2fs_get_lock_data_page(inode, idx, true); 2671 if (IS_ERR(page)) { 2672 err = PTR_ERR(page); 2673 goto clear_out; 2674 } 2675 2676 set_page_dirty(page); 2677 set_page_private_gcing(page); 2678 f2fs_put_page(page, 1); 2679 2680 idx++; 2681 cnt++; 2682 total++; 2683 } 2684 2685 map.m_lblk = idx; 2686 check: 2687 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2688 goto do_map; 2689 2690 clear_inode_flag(inode, FI_SKIP_WRITES); 2691 2692 err = filemap_fdatawrite(inode->i_mapping); 2693 if (err) 2694 goto out; 2695 } 2696 clear_out: 2697 clear_inode_flag(inode, FI_SKIP_WRITES); 2698 out: 2699 clear_inode_flag(inode, FI_OPU_WRITE); 2700 inode_unlock(inode); 2701 if (!err) 2702 range->len = (u64)total << PAGE_SHIFT; 2703 return err; 2704 } 2705 2706 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2707 { 2708 struct inode *inode = file_inode(filp); 2709 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2710 struct f2fs_defragment range; 2711 int err; 2712 2713 if (!capable(CAP_SYS_ADMIN)) 2714 return -EPERM; 2715 2716 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2717 return -EINVAL; 2718 2719 if (f2fs_readonly(sbi->sb)) 2720 return -EROFS; 2721 2722 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2723 sizeof(range))) 2724 return -EFAULT; 2725 2726 /* verify alignment of offset & size */ 2727 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2728 return -EINVAL; 2729 2730 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2731 max_file_blocks(inode))) 2732 return -EINVAL; 2733 2734 err = mnt_want_write_file(filp); 2735 if (err) 2736 return err; 2737 2738 err = f2fs_defragment_range(sbi, filp, &range); 2739 mnt_drop_write_file(filp); 2740 2741 f2fs_update_time(sbi, REQ_TIME); 2742 if (err < 0) 2743 return err; 2744 2745 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2746 sizeof(range))) 2747 return -EFAULT; 2748 2749 return 0; 2750 } 2751 2752 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2753 struct file *file_out, loff_t pos_out, size_t len) 2754 { 2755 struct inode *src = file_inode(file_in); 2756 struct inode *dst = file_inode(file_out); 2757 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2758 size_t olen = len, dst_max_i_size = 0; 2759 size_t dst_osize; 2760 int ret; 2761 2762 if (file_in->f_path.mnt != file_out->f_path.mnt || 2763 src->i_sb != dst->i_sb) 2764 return -EXDEV; 2765 2766 if (unlikely(f2fs_readonly(src->i_sb))) 2767 return -EROFS; 2768 2769 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2770 return -EINVAL; 2771 2772 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2773 return -EOPNOTSUPP; 2774 2775 if (pos_out < 0 || pos_in < 0) 2776 return -EINVAL; 2777 2778 if (src == dst) { 2779 if (pos_in == pos_out) 2780 return 0; 2781 if (pos_out > pos_in && pos_out < pos_in + len) 2782 return -EINVAL; 2783 } 2784 2785 inode_lock(src); 2786 if (src != dst) { 2787 ret = -EBUSY; 2788 if (!inode_trylock(dst)) 2789 goto out; 2790 } 2791 2792 ret = -EINVAL; 2793 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2794 goto out_unlock; 2795 if (len == 0) 2796 olen = len = src->i_size - pos_in; 2797 if (pos_in + len == src->i_size) 2798 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2799 if (len == 0) { 2800 ret = 0; 2801 goto out_unlock; 2802 } 2803 2804 dst_osize = dst->i_size; 2805 if (pos_out + olen > dst->i_size) 2806 dst_max_i_size = pos_out + olen; 2807 2808 /* verify the end result is block aligned */ 2809 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2810 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2811 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2812 goto out_unlock; 2813 2814 ret = f2fs_convert_inline_inode(src); 2815 if (ret) 2816 goto out_unlock; 2817 2818 ret = f2fs_convert_inline_inode(dst); 2819 if (ret) 2820 goto out_unlock; 2821 2822 /* write out all dirty pages from offset */ 2823 ret = filemap_write_and_wait_range(src->i_mapping, 2824 pos_in, pos_in + len); 2825 if (ret) 2826 goto out_unlock; 2827 2828 ret = filemap_write_and_wait_range(dst->i_mapping, 2829 pos_out, pos_out + len); 2830 if (ret) 2831 goto out_unlock; 2832 2833 f2fs_balance_fs(sbi, true); 2834 2835 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2836 if (src != dst) { 2837 ret = -EBUSY; 2838 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2839 goto out_src; 2840 } 2841 2842 f2fs_lock_op(sbi); 2843 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2844 pos_out >> F2FS_BLKSIZE_BITS, 2845 len >> F2FS_BLKSIZE_BITS, false); 2846 2847 if (!ret) { 2848 if (dst_max_i_size) 2849 f2fs_i_size_write(dst, dst_max_i_size); 2850 else if (dst_osize != dst->i_size) 2851 f2fs_i_size_write(dst, dst_osize); 2852 } 2853 f2fs_unlock_op(sbi); 2854 2855 if (src != dst) 2856 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2857 out_src: 2858 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2859 out_unlock: 2860 if (src != dst) 2861 inode_unlock(dst); 2862 out: 2863 inode_unlock(src); 2864 return ret; 2865 } 2866 2867 static int __f2fs_ioc_move_range(struct file *filp, 2868 struct f2fs_move_range *range) 2869 { 2870 struct fd dst; 2871 int err; 2872 2873 if (!(filp->f_mode & FMODE_READ) || 2874 !(filp->f_mode & FMODE_WRITE)) 2875 return -EBADF; 2876 2877 dst = fdget(range->dst_fd); 2878 if (!dst.file) 2879 return -EBADF; 2880 2881 if (!(dst.file->f_mode & FMODE_WRITE)) { 2882 err = -EBADF; 2883 goto err_out; 2884 } 2885 2886 err = mnt_want_write_file(filp); 2887 if (err) 2888 goto err_out; 2889 2890 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2891 range->pos_out, range->len); 2892 2893 mnt_drop_write_file(filp); 2894 err_out: 2895 fdput(dst); 2896 return err; 2897 } 2898 2899 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2900 { 2901 struct f2fs_move_range range; 2902 2903 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2904 sizeof(range))) 2905 return -EFAULT; 2906 return __f2fs_ioc_move_range(filp, &range); 2907 } 2908 2909 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2910 { 2911 struct inode *inode = file_inode(filp); 2912 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2913 struct sit_info *sm = SIT_I(sbi); 2914 unsigned int start_segno = 0, end_segno = 0; 2915 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2916 struct f2fs_flush_device range; 2917 struct f2fs_gc_control gc_control = { 2918 .init_gc_type = FG_GC, 2919 .should_migrate_blocks = true, 2920 .err_gc_skipped = true, 2921 .nr_free_secs = 0 }; 2922 int ret; 2923 2924 if (!capable(CAP_SYS_ADMIN)) 2925 return -EPERM; 2926 2927 if (f2fs_readonly(sbi->sb)) 2928 return -EROFS; 2929 2930 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2931 return -EINVAL; 2932 2933 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2934 sizeof(range))) 2935 return -EFAULT; 2936 2937 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2938 __is_large_section(sbi)) { 2939 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2940 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2941 return -EINVAL; 2942 } 2943 2944 ret = mnt_want_write_file(filp); 2945 if (ret) 2946 return ret; 2947 2948 if (range.dev_num != 0) 2949 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2950 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2951 2952 start_segno = sm->last_victim[FLUSH_DEVICE]; 2953 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2954 start_segno = dev_start_segno; 2955 end_segno = min(start_segno + range.segments, dev_end_segno); 2956 2957 while (start_segno < end_segno) { 2958 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2959 ret = -EBUSY; 2960 goto out; 2961 } 2962 sm->last_victim[GC_CB] = end_segno + 1; 2963 sm->last_victim[GC_GREEDY] = end_segno + 1; 2964 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2965 2966 gc_control.victim_segno = start_segno; 2967 ret = f2fs_gc(sbi, &gc_control); 2968 if (ret == -EAGAIN) 2969 ret = 0; 2970 else if (ret < 0) 2971 break; 2972 start_segno++; 2973 } 2974 out: 2975 mnt_drop_write_file(filp); 2976 return ret; 2977 } 2978 2979 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2980 { 2981 struct inode *inode = file_inode(filp); 2982 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2983 2984 /* Must validate to set it with SQLite behavior in Android. */ 2985 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2986 2987 return put_user(sb_feature, (u32 __user *)arg); 2988 } 2989 2990 #ifdef CONFIG_QUOTA 2991 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2992 { 2993 struct dquot *transfer_to[MAXQUOTAS] = {}; 2994 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2995 struct super_block *sb = sbi->sb; 2996 int err = 0; 2997 2998 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2999 if (!IS_ERR(transfer_to[PRJQUOTA])) { 3000 err = __dquot_transfer(inode, transfer_to); 3001 if (err) 3002 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3003 dqput(transfer_to[PRJQUOTA]); 3004 } 3005 return err; 3006 } 3007 3008 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3009 { 3010 struct f2fs_inode_info *fi = F2FS_I(inode); 3011 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3012 struct f2fs_inode *ri = NULL; 3013 kprojid_t kprojid; 3014 int err; 3015 3016 if (!f2fs_sb_has_project_quota(sbi)) { 3017 if (projid != F2FS_DEF_PROJID) 3018 return -EOPNOTSUPP; 3019 else 3020 return 0; 3021 } 3022 3023 if (!f2fs_has_extra_attr(inode)) 3024 return -EOPNOTSUPP; 3025 3026 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3027 3028 if (projid_eq(kprojid, fi->i_projid)) 3029 return 0; 3030 3031 err = -EPERM; 3032 /* Is it quota file? Do not allow user to mess with it */ 3033 if (IS_NOQUOTA(inode)) 3034 return err; 3035 3036 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3037 return -EOVERFLOW; 3038 3039 err = f2fs_dquot_initialize(inode); 3040 if (err) 3041 return err; 3042 3043 f2fs_lock_op(sbi); 3044 err = f2fs_transfer_project_quota(inode, kprojid); 3045 if (err) 3046 goto out_unlock; 3047 3048 fi->i_projid = kprojid; 3049 inode->i_ctime = current_time(inode); 3050 f2fs_mark_inode_dirty_sync(inode, true); 3051 out_unlock: 3052 f2fs_unlock_op(sbi); 3053 return err; 3054 } 3055 #else 3056 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3057 { 3058 return 0; 3059 } 3060 3061 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3062 { 3063 if (projid != F2FS_DEF_PROJID) 3064 return -EOPNOTSUPP; 3065 return 0; 3066 } 3067 #endif 3068 3069 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3070 { 3071 struct inode *inode = d_inode(dentry); 3072 struct f2fs_inode_info *fi = F2FS_I(inode); 3073 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3074 3075 if (IS_ENCRYPTED(inode)) 3076 fsflags |= FS_ENCRYPT_FL; 3077 if (IS_VERITY(inode)) 3078 fsflags |= FS_VERITY_FL; 3079 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3080 fsflags |= FS_INLINE_DATA_FL; 3081 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3082 fsflags |= FS_NOCOW_FL; 3083 3084 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3085 3086 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3087 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3088 3089 return 0; 3090 } 3091 3092 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3093 struct dentry *dentry, struct fileattr *fa) 3094 { 3095 struct inode *inode = d_inode(dentry); 3096 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3097 u32 iflags; 3098 int err; 3099 3100 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3101 return -EIO; 3102 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3103 return -ENOSPC; 3104 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3105 return -EOPNOTSUPP; 3106 fsflags &= F2FS_SETTABLE_FS_FL; 3107 if (!fa->flags_valid) 3108 mask &= FS_COMMON_FL; 3109 3110 iflags = f2fs_fsflags_to_iflags(fsflags); 3111 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3112 return -EOPNOTSUPP; 3113 3114 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3115 if (!err) 3116 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3117 3118 return err; 3119 } 3120 3121 int f2fs_pin_file_control(struct inode *inode, bool inc) 3122 { 3123 struct f2fs_inode_info *fi = F2FS_I(inode); 3124 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3125 3126 /* Use i_gc_failures for normal file as a risk signal. */ 3127 if (inc) 3128 f2fs_i_gc_failures_write(inode, 3129 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3130 3131 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3132 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3133 __func__, inode->i_ino, 3134 fi->i_gc_failures[GC_FAILURE_PIN]); 3135 clear_inode_flag(inode, FI_PIN_FILE); 3136 return -EAGAIN; 3137 } 3138 return 0; 3139 } 3140 3141 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3142 { 3143 struct inode *inode = file_inode(filp); 3144 __u32 pin; 3145 int ret = 0; 3146 3147 if (get_user(pin, (__u32 __user *)arg)) 3148 return -EFAULT; 3149 3150 if (!S_ISREG(inode->i_mode)) 3151 return -EINVAL; 3152 3153 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3154 return -EROFS; 3155 3156 ret = mnt_want_write_file(filp); 3157 if (ret) 3158 return ret; 3159 3160 inode_lock(inode); 3161 3162 if (!pin) { 3163 clear_inode_flag(inode, FI_PIN_FILE); 3164 f2fs_i_gc_failures_write(inode, 0); 3165 goto done; 3166 } 3167 3168 if (f2fs_should_update_outplace(inode, NULL)) { 3169 ret = -EINVAL; 3170 goto out; 3171 } 3172 3173 if (f2fs_pin_file_control(inode, false)) { 3174 ret = -EAGAIN; 3175 goto out; 3176 } 3177 3178 ret = f2fs_convert_inline_inode(inode); 3179 if (ret) 3180 goto out; 3181 3182 if (!f2fs_disable_compressed_file(inode)) { 3183 ret = -EOPNOTSUPP; 3184 goto out; 3185 } 3186 3187 set_inode_flag(inode, FI_PIN_FILE); 3188 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3189 done: 3190 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3191 out: 3192 inode_unlock(inode); 3193 mnt_drop_write_file(filp); 3194 return ret; 3195 } 3196 3197 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3198 { 3199 struct inode *inode = file_inode(filp); 3200 __u32 pin = 0; 3201 3202 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3203 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3204 return put_user(pin, (u32 __user *)arg); 3205 } 3206 3207 int f2fs_precache_extents(struct inode *inode) 3208 { 3209 struct f2fs_inode_info *fi = F2FS_I(inode); 3210 struct f2fs_map_blocks map; 3211 pgoff_t m_next_extent; 3212 loff_t end; 3213 int err; 3214 3215 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3216 return -EOPNOTSUPP; 3217 3218 map.m_lblk = 0; 3219 map.m_next_pgofs = NULL; 3220 map.m_next_extent = &m_next_extent; 3221 map.m_seg_type = NO_CHECK_TYPE; 3222 map.m_may_create = false; 3223 end = max_file_blocks(inode); 3224 3225 while (map.m_lblk < end) { 3226 map.m_len = end - map.m_lblk; 3227 3228 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3229 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3230 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3231 if (err) 3232 return err; 3233 3234 map.m_lblk = m_next_extent; 3235 } 3236 3237 return 0; 3238 } 3239 3240 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3241 { 3242 return f2fs_precache_extents(file_inode(filp)); 3243 } 3244 3245 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3246 { 3247 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3248 __u64 block_count; 3249 3250 if (!capable(CAP_SYS_ADMIN)) 3251 return -EPERM; 3252 3253 if (f2fs_readonly(sbi->sb)) 3254 return -EROFS; 3255 3256 if (copy_from_user(&block_count, (void __user *)arg, 3257 sizeof(block_count))) 3258 return -EFAULT; 3259 3260 return f2fs_resize_fs(sbi, block_count); 3261 } 3262 3263 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3264 { 3265 struct inode *inode = file_inode(filp); 3266 3267 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3268 3269 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3270 f2fs_warn(F2FS_I_SB(inode), 3271 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3272 inode->i_ino); 3273 return -EOPNOTSUPP; 3274 } 3275 3276 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3277 } 3278 3279 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3280 { 3281 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3282 return -EOPNOTSUPP; 3283 3284 return fsverity_ioctl_measure(filp, (void __user *)arg); 3285 } 3286 3287 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3288 { 3289 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3290 return -EOPNOTSUPP; 3291 3292 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3293 } 3294 3295 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3296 { 3297 struct inode *inode = file_inode(filp); 3298 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3299 char *vbuf; 3300 int count; 3301 int err = 0; 3302 3303 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3304 if (!vbuf) 3305 return -ENOMEM; 3306 3307 f2fs_down_read(&sbi->sb_lock); 3308 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3309 ARRAY_SIZE(sbi->raw_super->volume_name), 3310 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3311 f2fs_up_read(&sbi->sb_lock); 3312 3313 if (copy_to_user((char __user *)arg, vbuf, 3314 min(FSLABEL_MAX, count))) 3315 err = -EFAULT; 3316 3317 kfree(vbuf); 3318 return err; 3319 } 3320 3321 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3322 { 3323 struct inode *inode = file_inode(filp); 3324 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3325 char *vbuf; 3326 int err = 0; 3327 3328 if (!capable(CAP_SYS_ADMIN)) 3329 return -EPERM; 3330 3331 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3332 if (IS_ERR(vbuf)) 3333 return PTR_ERR(vbuf); 3334 3335 err = mnt_want_write_file(filp); 3336 if (err) 3337 goto out; 3338 3339 f2fs_down_write(&sbi->sb_lock); 3340 3341 memset(sbi->raw_super->volume_name, 0, 3342 sizeof(sbi->raw_super->volume_name)); 3343 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3344 sbi->raw_super->volume_name, 3345 ARRAY_SIZE(sbi->raw_super->volume_name)); 3346 3347 err = f2fs_commit_super(sbi, false); 3348 3349 f2fs_up_write(&sbi->sb_lock); 3350 3351 mnt_drop_write_file(filp); 3352 out: 3353 kfree(vbuf); 3354 return err; 3355 } 3356 3357 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3358 { 3359 struct inode *inode = file_inode(filp); 3360 __u64 blocks; 3361 3362 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3363 return -EOPNOTSUPP; 3364 3365 if (!f2fs_compressed_file(inode)) 3366 return -EINVAL; 3367 3368 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3369 return put_user(blocks, (u64 __user *)arg); 3370 } 3371 3372 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3373 { 3374 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3375 unsigned int released_blocks = 0; 3376 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3377 block_t blkaddr; 3378 int i; 3379 3380 for (i = 0; i < count; i++) { 3381 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3382 dn->ofs_in_node + i); 3383 3384 if (!__is_valid_data_blkaddr(blkaddr)) 3385 continue; 3386 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3387 DATA_GENERIC_ENHANCE))) { 3388 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3389 return -EFSCORRUPTED; 3390 } 3391 } 3392 3393 while (count) { 3394 int compr_blocks = 0; 3395 3396 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3397 blkaddr = f2fs_data_blkaddr(dn); 3398 3399 if (i == 0) { 3400 if (blkaddr == COMPRESS_ADDR) 3401 continue; 3402 dn->ofs_in_node += cluster_size; 3403 goto next; 3404 } 3405 3406 if (__is_valid_data_blkaddr(blkaddr)) 3407 compr_blocks++; 3408 3409 if (blkaddr != NEW_ADDR) 3410 continue; 3411 3412 dn->data_blkaddr = NULL_ADDR; 3413 f2fs_set_data_blkaddr(dn); 3414 } 3415 3416 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3417 dec_valid_block_count(sbi, dn->inode, 3418 cluster_size - compr_blocks); 3419 3420 released_blocks += cluster_size - compr_blocks; 3421 next: 3422 count -= cluster_size; 3423 } 3424 3425 return released_blocks; 3426 } 3427 3428 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3429 { 3430 struct inode *inode = file_inode(filp); 3431 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3432 pgoff_t page_idx = 0, last_idx; 3433 unsigned int released_blocks = 0; 3434 int ret; 3435 int writecount; 3436 3437 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3438 return -EOPNOTSUPP; 3439 3440 if (!f2fs_compressed_file(inode)) 3441 return -EINVAL; 3442 3443 if (f2fs_readonly(sbi->sb)) 3444 return -EROFS; 3445 3446 ret = mnt_want_write_file(filp); 3447 if (ret) 3448 return ret; 3449 3450 f2fs_balance_fs(F2FS_I_SB(inode), true); 3451 3452 inode_lock(inode); 3453 3454 writecount = atomic_read(&inode->i_writecount); 3455 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3456 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3457 ret = -EBUSY; 3458 goto out; 3459 } 3460 3461 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3462 ret = -EINVAL; 3463 goto out; 3464 } 3465 3466 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3467 if (ret) 3468 goto out; 3469 3470 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3471 inode->i_ctime = current_time(inode); 3472 f2fs_mark_inode_dirty_sync(inode, true); 3473 3474 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3475 goto out; 3476 3477 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3478 filemap_invalidate_lock(inode->i_mapping); 3479 3480 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3481 3482 while (page_idx < last_idx) { 3483 struct dnode_of_data dn; 3484 pgoff_t end_offset, count; 3485 3486 set_new_dnode(&dn, inode, NULL, NULL, 0); 3487 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3488 if (ret) { 3489 if (ret == -ENOENT) { 3490 page_idx = f2fs_get_next_page_offset(&dn, 3491 page_idx); 3492 ret = 0; 3493 continue; 3494 } 3495 break; 3496 } 3497 3498 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3499 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3500 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3501 3502 ret = release_compress_blocks(&dn, count); 3503 3504 f2fs_put_dnode(&dn); 3505 3506 if (ret < 0) 3507 break; 3508 3509 page_idx += count; 3510 released_blocks += ret; 3511 } 3512 3513 filemap_invalidate_unlock(inode->i_mapping); 3514 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3515 out: 3516 inode_unlock(inode); 3517 3518 mnt_drop_write_file(filp); 3519 3520 if (ret >= 0) { 3521 ret = put_user(released_blocks, (u64 __user *)arg); 3522 } else if (released_blocks && 3523 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3524 set_sbi_flag(sbi, SBI_NEED_FSCK); 3525 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3526 "iblocks=%llu, released=%u, compr_blocks=%u, " 3527 "run fsck to fix.", 3528 __func__, inode->i_ino, inode->i_blocks, 3529 released_blocks, 3530 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3531 } 3532 3533 return ret; 3534 } 3535 3536 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3537 { 3538 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3539 unsigned int reserved_blocks = 0; 3540 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3541 block_t blkaddr; 3542 int i; 3543 3544 for (i = 0; i < count; i++) { 3545 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3546 dn->ofs_in_node + i); 3547 3548 if (!__is_valid_data_blkaddr(blkaddr)) 3549 continue; 3550 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3551 DATA_GENERIC_ENHANCE))) { 3552 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3553 return -EFSCORRUPTED; 3554 } 3555 } 3556 3557 while (count) { 3558 int compr_blocks = 0; 3559 blkcnt_t reserved; 3560 int ret; 3561 3562 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3563 blkaddr = f2fs_data_blkaddr(dn); 3564 3565 if (i == 0) { 3566 if (blkaddr == COMPRESS_ADDR) 3567 continue; 3568 dn->ofs_in_node += cluster_size; 3569 goto next; 3570 } 3571 3572 if (__is_valid_data_blkaddr(blkaddr)) { 3573 compr_blocks++; 3574 continue; 3575 } 3576 3577 dn->data_blkaddr = NEW_ADDR; 3578 f2fs_set_data_blkaddr(dn); 3579 } 3580 3581 reserved = cluster_size - compr_blocks; 3582 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3583 if (ret) 3584 return ret; 3585 3586 if (reserved != cluster_size - compr_blocks) 3587 return -ENOSPC; 3588 3589 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3590 3591 reserved_blocks += reserved; 3592 next: 3593 count -= cluster_size; 3594 } 3595 3596 return reserved_blocks; 3597 } 3598 3599 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3600 { 3601 struct inode *inode = file_inode(filp); 3602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3603 pgoff_t page_idx = 0, last_idx; 3604 unsigned int reserved_blocks = 0; 3605 int ret; 3606 3607 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3608 return -EOPNOTSUPP; 3609 3610 if (!f2fs_compressed_file(inode)) 3611 return -EINVAL; 3612 3613 if (f2fs_readonly(sbi->sb)) 3614 return -EROFS; 3615 3616 ret = mnt_want_write_file(filp); 3617 if (ret) 3618 return ret; 3619 3620 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3621 goto out; 3622 3623 f2fs_balance_fs(F2FS_I_SB(inode), true); 3624 3625 inode_lock(inode); 3626 3627 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3628 ret = -EINVAL; 3629 goto unlock_inode; 3630 } 3631 3632 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3633 filemap_invalidate_lock(inode->i_mapping); 3634 3635 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3636 3637 while (page_idx < last_idx) { 3638 struct dnode_of_data dn; 3639 pgoff_t end_offset, count; 3640 3641 set_new_dnode(&dn, inode, NULL, NULL, 0); 3642 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3643 if (ret) { 3644 if (ret == -ENOENT) { 3645 page_idx = f2fs_get_next_page_offset(&dn, 3646 page_idx); 3647 ret = 0; 3648 continue; 3649 } 3650 break; 3651 } 3652 3653 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3654 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3655 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3656 3657 ret = reserve_compress_blocks(&dn, count); 3658 3659 f2fs_put_dnode(&dn); 3660 3661 if (ret < 0) 3662 break; 3663 3664 page_idx += count; 3665 reserved_blocks += ret; 3666 } 3667 3668 filemap_invalidate_unlock(inode->i_mapping); 3669 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3670 3671 if (ret >= 0) { 3672 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3673 inode->i_ctime = current_time(inode); 3674 f2fs_mark_inode_dirty_sync(inode, true); 3675 } 3676 unlock_inode: 3677 inode_unlock(inode); 3678 out: 3679 mnt_drop_write_file(filp); 3680 3681 if (ret >= 0) { 3682 ret = put_user(reserved_blocks, (u64 __user *)arg); 3683 } else if (reserved_blocks && 3684 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3685 set_sbi_flag(sbi, SBI_NEED_FSCK); 3686 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3687 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3688 "run fsck to fix.", 3689 __func__, inode->i_ino, inode->i_blocks, 3690 reserved_blocks, 3691 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3692 } 3693 3694 return ret; 3695 } 3696 3697 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3698 pgoff_t off, block_t block, block_t len, u32 flags) 3699 { 3700 sector_t sector = SECTOR_FROM_BLOCK(block); 3701 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3702 int ret = 0; 3703 3704 if (flags & F2FS_TRIM_FILE_DISCARD) { 3705 if (bdev_max_secure_erase_sectors(bdev)) 3706 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3707 GFP_NOFS); 3708 else 3709 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3710 GFP_NOFS); 3711 } 3712 3713 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3714 if (IS_ENCRYPTED(inode)) 3715 ret = fscrypt_zeroout_range(inode, off, block, len); 3716 else 3717 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3718 GFP_NOFS, 0); 3719 } 3720 3721 return ret; 3722 } 3723 3724 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3725 { 3726 struct inode *inode = file_inode(filp); 3727 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3728 struct address_space *mapping = inode->i_mapping; 3729 struct block_device *prev_bdev = NULL; 3730 struct f2fs_sectrim_range range; 3731 pgoff_t index, pg_end, prev_index = 0; 3732 block_t prev_block = 0, len = 0; 3733 loff_t end_addr; 3734 bool to_end = false; 3735 int ret = 0; 3736 3737 if (!(filp->f_mode & FMODE_WRITE)) 3738 return -EBADF; 3739 3740 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3741 sizeof(range))) 3742 return -EFAULT; 3743 3744 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3745 !S_ISREG(inode->i_mode)) 3746 return -EINVAL; 3747 3748 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3749 !f2fs_hw_support_discard(sbi)) || 3750 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3751 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3752 return -EOPNOTSUPP; 3753 3754 file_start_write(filp); 3755 inode_lock(inode); 3756 3757 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3758 range.start >= inode->i_size) { 3759 ret = -EINVAL; 3760 goto err; 3761 } 3762 3763 if (range.len == 0) 3764 goto err; 3765 3766 if (inode->i_size - range.start > range.len) { 3767 end_addr = range.start + range.len; 3768 } else { 3769 end_addr = range.len == (u64)-1 ? 3770 sbi->sb->s_maxbytes : inode->i_size; 3771 to_end = true; 3772 } 3773 3774 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3775 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3776 ret = -EINVAL; 3777 goto err; 3778 } 3779 3780 index = F2FS_BYTES_TO_BLK(range.start); 3781 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3782 3783 ret = f2fs_convert_inline_inode(inode); 3784 if (ret) 3785 goto err; 3786 3787 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3788 filemap_invalidate_lock(mapping); 3789 3790 ret = filemap_write_and_wait_range(mapping, range.start, 3791 to_end ? LLONG_MAX : end_addr - 1); 3792 if (ret) 3793 goto out; 3794 3795 truncate_inode_pages_range(mapping, range.start, 3796 to_end ? -1 : end_addr - 1); 3797 3798 while (index < pg_end) { 3799 struct dnode_of_data dn; 3800 pgoff_t end_offset, count; 3801 int i; 3802 3803 set_new_dnode(&dn, inode, NULL, NULL, 0); 3804 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3805 if (ret) { 3806 if (ret == -ENOENT) { 3807 index = f2fs_get_next_page_offset(&dn, index); 3808 continue; 3809 } 3810 goto out; 3811 } 3812 3813 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3814 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3815 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3816 struct block_device *cur_bdev; 3817 block_t blkaddr = f2fs_data_blkaddr(&dn); 3818 3819 if (!__is_valid_data_blkaddr(blkaddr)) 3820 continue; 3821 3822 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3823 DATA_GENERIC_ENHANCE)) { 3824 ret = -EFSCORRUPTED; 3825 f2fs_put_dnode(&dn); 3826 f2fs_handle_error(sbi, 3827 ERROR_INVALID_BLKADDR); 3828 goto out; 3829 } 3830 3831 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3832 if (f2fs_is_multi_device(sbi)) { 3833 int di = f2fs_target_device_index(sbi, blkaddr); 3834 3835 blkaddr -= FDEV(di).start_blk; 3836 } 3837 3838 if (len) { 3839 if (prev_bdev == cur_bdev && 3840 index == prev_index + len && 3841 blkaddr == prev_block + len) { 3842 len++; 3843 } else { 3844 ret = f2fs_secure_erase(prev_bdev, 3845 inode, prev_index, prev_block, 3846 len, range.flags); 3847 if (ret) { 3848 f2fs_put_dnode(&dn); 3849 goto out; 3850 } 3851 3852 len = 0; 3853 } 3854 } 3855 3856 if (!len) { 3857 prev_bdev = cur_bdev; 3858 prev_index = index; 3859 prev_block = blkaddr; 3860 len = 1; 3861 } 3862 } 3863 3864 f2fs_put_dnode(&dn); 3865 3866 if (fatal_signal_pending(current)) { 3867 ret = -EINTR; 3868 goto out; 3869 } 3870 cond_resched(); 3871 } 3872 3873 if (len) 3874 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3875 prev_block, len, range.flags); 3876 out: 3877 filemap_invalidate_unlock(mapping); 3878 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3879 err: 3880 inode_unlock(inode); 3881 file_end_write(filp); 3882 3883 return ret; 3884 } 3885 3886 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3887 { 3888 struct inode *inode = file_inode(filp); 3889 struct f2fs_comp_option option; 3890 3891 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3892 return -EOPNOTSUPP; 3893 3894 inode_lock_shared(inode); 3895 3896 if (!f2fs_compressed_file(inode)) { 3897 inode_unlock_shared(inode); 3898 return -ENODATA; 3899 } 3900 3901 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3902 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3903 3904 inode_unlock_shared(inode); 3905 3906 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3907 sizeof(option))) 3908 return -EFAULT; 3909 3910 return 0; 3911 } 3912 3913 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3914 { 3915 struct inode *inode = file_inode(filp); 3916 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3917 struct f2fs_comp_option option; 3918 int ret = 0; 3919 3920 if (!f2fs_sb_has_compression(sbi)) 3921 return -EOPNOTSUPP; 3922 3923 if (!(filp->f_mode & FMODE_WRITE)) 3924 return -EBADF; 3925 3926 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3927 sizeof(option))) 3928 return -EFAULT; 3929 3930 if (!f2fs_compressed_file(inode) || 3931 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3932 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3933 option.algorithm >= COMPRESS_MAX) 3934 return -EINVAL; 3935 3936 file_start_write(filp); 3937 inode_lock(inode); 3938 3939 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3940 ret = -EBUSY; 3941 goto out; 3942 } 3943 3944 if (inode->i_size != 0) { 3945 ret = -EFBIG; 3946 goto out; 3947 } 3948 3949 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3950 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3951 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 3952 f2fs_mark_inode_dirty_sync(inode, true); 3953 3954 if (!f2fs_is_compress_backend_ready(inode)) 3955 f2fs_warn(sbi, "compression algorithm is successfully set, " 3956 "but current kernel doesn't support this algorithm."); 3957 out: 3958 inode_unlock(inode); 3959 file_end_write(filp); 3960 3961 return ret; 3962 } 3963 3964 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3965 { 3966 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3967 struct address_space *mapping = inode->i_mapping; 3968 struct page *page; 3969 pgoff_t redirty_idx = page_idx; 3970 int i, page_len = 0, ret = 0; 3971 3972 page_cache_ra_unbounded(&ractl, len, 0); 3973 3974 for (i = 0; i < len; i++, page_idx++) { 3975 page = read_cache_page(mapping, page_idx, NULL, NULL); 3976 if (IS_ERR(page)) { 3977 ret = PTR_ERR(page); 3978 break; 3979 } 3980 page_len++; 3981 } 3982 3983 for (i = 0; i < page_len; i++, redirty_idx++) { 3984 page = find_lock_page(mapping, redirty_idx); 3985 3986 /* It will never fail, when page has pinned above */ 3987 f2fs_bug_on(F2FS_I_SB(inode), !page); 3988 3989 set_page_dirty(page); 3990 f2fs_put_page(page, 1); 3991 f2fs_put_page(page, 0); 3992 } 3993 3994 return ret; 3995 } 3996 3997 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 3998 { 3999 struct inode *inode = file_inode(filp); 4000 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4001 struct f2fs_inode_info *fi = F2FS_I(inode); 4002 pgoff_t page_idx = 0, last_idx; 4003 unsigned int blk_per_seg = sbi->blocks_per_seg; 4004 int cluster_size = fi->i_cluster_size; 4005 int count, ret; 4006 4007 if (!f2fs_sb_has_compression(sbi) || 4008 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4009 return -EOPNOTSUPP; 4010 4011 if (!(filp->f_mode & FMODE_WRITE)) 4012 return -EBADF; 4013 4014 if (!f2fs_compressed_file(inode)) 4015 return -EINVAL; 4016 4017 f2fs_balance_fs(F2FS_I_SB(inode), true); 4018 4019 file_start_write(filp); 4020 inode_lock(inode); 4021 4022 if (!f2fs_is_compress_backend_ready(inode)) { 4023 ret = -EOPNOTSUPP; 4024 goto out; 4025 } 4026 4027 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4028 ret = -EINVAL; 4029 goto out; 4030 } 4031 4032 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4033 if (ret) 4034 goto out; 4035 4036 if (!atomic_read(&fi->i_compr_blocks)) 4037 goto out; 4038 4039 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4040 4041 count = last_idx - page_idx; 4042 while (count) { 4043 int len = min(cluster_size, count); 4044 4045 ret = redirty_blocks(inode, page_idx, len); 4046 if (ret < 0) 4047 break; 4048 4049 if (get_dirty_pages(inode) >= blk_per_seg) 4050 filemap_fdatawrite(inode->i_mapping); 4051 4052 count -= len; 4053 page_idx += len; 4054 } 4055 4056 if (!ret) 4057 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4058 LLONG_MAX); 4059 4060 if (ret) 4061 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4062 __func__, ret); 4063 out: 4064 inode_unlock(inode); 4065 file_end_write(filp); 4066 4067 return ret; 4068 } 4069 4070 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 4071 { 4072 struct inode *inode = file_inode(filp); 4073 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4074 pgoff_t page_idx = 0, last_idx; 4075 unsigned int blk_per_seg = sbi->blocks_per_seg; 4076 int cluster_size = F2FS_I(inode)->i_cluster_size; 4077 int count, ret; 4078 4079 if (!f2fs_sb_has_compression(sbi) || 4080 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4081 return -EOPNOTSUPP; 4082 4083 if (!(filp->f_mode & FMODE_WRITE)) 4084 return -EBADF; 4085 4086 if (!f2fs_compressed_file(inode)) 4087 return -EINVAL; 4088 4089 f2fs_balance_fs(F2FS_I_SB(inode), true); 4090 4091 file_start_write(filp); 4092 inode_lock(inode); 4093 4094 if (!f2fs_is_compress_backend_ready(inode)) { 4095 ret = -EOPNOTSUPP; 4096 goto out; 4097 } 4098 4099 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4100 ret = -EINVAL; 4101 goto out; 4102 } 4103 4104 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4105 if (ret) 4106 goto out; 4107 4108 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4109 4110 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4111 4112 count = last_idx - page_idx; 4113 while (count) { 4114 int len = min(cluster_size, count); 4115 4116 ret = redirty_blocks(inode, page_idx, len); 4117 if (ret < 0) 4118 break; 4119 4120 if (get_dirty_pages(inode) >= blk_per_seg) 4121 filemap_fdatawrite(inode->i_mapping); 4122 4123 count -= len; 4124 page_idx += len; 4125 } 4126 4127 if (!ret) 4128 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4129 LLONG_MAX); 4130 4131 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4132 4133 if (ret) 4134 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4135 __func__, ret); 4136 out: 4137 inode_unlock(inode); 4138 file_end_write(filp); 4139 4140 return ret; 4141 } 4142 4143 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4144 { 4145 switch (cmd) { 4146 case FS_IOC_GETVERSION: 4147 return f2fs_ioc_getversion(filp, arg); 4148 case F2FS_IOC_START_ATOMIC_WRITE: 4149 return f2fs_ioc_start_atomic_write(filp, false); 4150 case F2FS_IOC_START_ATOMIC_REPLACE: 4151 return f2fs_ioc_start_atomic_write(filp, true); 4152 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4153 return f2fs_ioc_commit_atomic_write(filp); 4154 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4155 return f2fs_ioc_abort_atomic_write(filp); 4156 case F2FS_IOC_START_VOLATILE_WRITE: 4157 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4158 return -EOPNOTSUPP; 4159 case F2FS_IOC_SHUTDOWN: 4160 return f2fs_ioc_shutdown(filp, arg); 4161 case FITRIM: 4162 return f2fs_ioc_fitrim(filp, arg); 4163 case FS_IOC_SET_ENCRYPTION_POLICY: 4164 return f2fs_ioc_set_encryption_policy(filp, arg); 4165 case FS_IOC_GET_ENCRYPTION_POLICY: 4166 return f2fs_ioc_get_encryption_policy(filp, arg); 4167 case FS_IOC_GET_ENCRYPTION_PWSALT: 4168 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4169 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4170 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4171 case FS_IOC_ADD_ENCRYPTION_KEY: 4172 return f2fs_ioc_add_encryption_key(filp, arg); 4173 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4174 return f2fs_ioc_remove_encryption_key(filp, arg); 4175 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4176 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4177 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4178 return f2fs_ioc_get_encryption_key_status(filp, arg); 4179 case FS_IOC_GET_ENCRYPTION_NONCE: 4180 return f2fs_ioc_get_encryption_nonce(filp, arg); 4181 case F2FS_IOC_GARBAGE_COLLECT: 4182 return f2fs_ioc_gc(filp, arg); 4183 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4184 return f2fs_ioc_gc_range(filp, arg); 4185 case F2FS_IOC_WRITE_CHECKPOINT: 4186 return f2fs_ioc_write_checkpoint(filp, arg); 4187 case F2FS_IOC_DEFRAGMENT: 4188 return f2fs_ioc_defragment(filp, arg); 4189 case F2FS_IOC_MOVE_RANGE: 4190 return f2fs_ioc_move_range(filp, arg); 4191 case F2FS_IOC_FLUSH_DEVICE: 4192 return f2fs_ioc_flush_device(filp, arg); 4193 case F2FS_IOC_GET_FEATURES: 4194 return f2fs_ioc_get_features(filp, arg); 4195 case F2FS_IOC_GET_PIN_FILE: 4196 return f2fs_ioc_get_pin_file(filp, arg); 4197 case F2FS_IOC_SET_PIN_FILE: 4198 return f2fs_ioc_set_pin_file(filp, arg); 4199 case F2FS_IOC_PRECACHE_EXTENTS: 4200 return f2fs_ioc_precache_extents(filp, arg); 4201 case F2FS_IOC_RESIZE_FS: 4202 return f2fs_ioc_resize_fs(filp, arg); 4203 case FS_IOC_ENABLE_VERITY: 4204 return f2fs_ioc_enable_verity(filp, arg); 4205 case FS_IOC_MEASURE_VERITY: 4206 return f2fs_ioc_measure_verity(filp, arg); 4207 case FS_IOC_READ_VERITY_METADATA: 4208 return f2fs_ioc_read_verity_metadata(filp, arg); 4209 case FS_IOC_GETFSLABEL: 4210 return f2fs_ioc_getfslabel(filp, arg); 4211 case FS_IOC_SETFSLABEL: 4212 return f2fs_ioc_setfslabel(filp, arg); 4213 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4214 return f2fs_get_compress_blocks(filp, arg); 4215 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4216 return f2fs_release_compress_blocks(filp, arg); 4217 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4218 return f2fs_reserve_compress_blocks(filp, arg); 4219 case F2FS_IOC_SEC_TRIM_FILE: 4220 return f2fs_sec_trim_file(filp, arg); 4221 case F2FS_IOC_GET_COMPRESS_OPTION: 4222 return f2fs_ioc_get_compress_option(filp, arg); 4223 case F2FS_IOC_SET_COMPRESS_OPTION: 4224 return f2fs_ioc_set_compress_option(filp, arg); 4225 case F2FS_IOC_DECOMPRESS_FILE: 4226 return f2fs_ioc_decompress_file(filp, arg); 4227 case F2FS_IOC_COMPRESS_FILE: 4228 return f2fs_ioc_compress_file(filp, arg); 4229 default: 4230 return -ENOTTY; 4231 } 4232 } 4233 4234 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4235 { 4236 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4237 return -EIO; 4238 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4239 return -ENOSPC; 4240 4241 return __f2fs_ioctl(filp, cmd, arg); 4242 } 4243 4244 /* 4245 * Return %true if the given read or write request should use direct I/O, or 4246 * %false if it should use buffered I/O. 4247 */ 4248 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4249 struct iov_iter *iter) 4250 { 4251 unsigned int align; 4252 4253 if (!(iocb->ki_flags & IOCB_DIRECT)) 4254 return false; 4255 4256 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4257 return false; 4258 4259 /* 4260 * Direct I/O not aligned to the disk's logical_block_size will be 4261 * attempted, but will fail with -EINVAL. 4262 * 4263 * f2fs additionally requires that direct I/O be aligned to the 4264 * filesystem block size, which is often a stricter requirement. 4265 * However, f2fs traditionally falls back to buffered I/O on requests 4266 * that are logical_block_size-aligned but not fs-block aligned. 4267 * 4268 * The below logic implements this behavior. 4269 */ 4270 align = iocb->ki_pos | iov_iter_alignment(iter); 4271 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4272 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4273 return false; 4274 4275 return true; 4276 } 4277 4278 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4279 unsigned int flags) 4280 { 4281 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4282 4283 dec_page_count(sbi, F2FS_DIO_READ); 4284 if (error) 4285 return error; 4286 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4287 return 0; 4288 } 4289 4290 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4291 .end_io = f2fs_dio_read_end_io, 4292 }; 4293 4294 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4295 { 4296 struct file *file = iocb->ki_filp; 4297 struct inode *inode = file_inode(file); 4298 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4299 struct f2fs_inode_info *fi = F2FS_I(inode); 4300 const loff_t pos = iocb->ki_pos; 4301 const size_t count = iov_iter_count(to); 4302 struct iomap_dio *dio; 4303 ssize_t ret; 4304 4305 if (count == 0) 4306 return 0; /* skip atime update */ 4307 4308 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4309 4310 if (iocb->ki_flags & IOCB_NOWAIT) { 4311 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4312 ret = -EAGAIN; 4313 goto out; 4314 } 4315 } else { 4316 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4317 } 4318 4319 /* 4320 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4321 * the higher-level function iomap_dio_rw() in order to ensure that the 4322 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4323 */ 4324 inc_page_count(sbi, F2FS_DIO_READ); 4325 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4326 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4327 if (IS_ERR_OR_NULL(dio)) { 4328 ret = PTR_ERR_OR_ZERO(dio); 4329 if (ret != -EIOCBQUEUED) 4330 dec_page_count(sbi, F2FS_DIO_READ); 4331 } else { 4332 ret = iomap_dio_complete(dio); 4333 } 4334 4335 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4336 4337 file_accessed(file); 4338 out: 4339 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4340 return ret; 4341 } 4342 4343 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4344 { 4345 struct inode *inode = file_inode(iocb->ki_filp); 4346 const loff_t pos = iocb->ki_pos; 4347 ssize_t ret; 4348 4349 if (!f2fs_is_compress_backend_ready(inode)) 4350 return -EOPNOTSUPP; 4351 4352 if (trace_f2fs_dataread_start_enabled()) { 4353 char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL); 4354 char *path; 4355 4356 if (!p) 4357 goto skip_read_trace; 4358 4359 path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX); 4360 if (IS_ERR(path)) { 4361 kfree(p); 4362 goto skip_read_trace; 4363 } 4364 4365 trace_f2fs_dataread_start(inode, pos, iov_iter_count(to), 4366 current->pid, path, current->comm); 4367 kfree(p); 4368 } 4369 skip_read_trace: 4370 if (f2fs_should_use_dio(inode, iocb, to)) { 4371 ret = f2fs_dio_read_iter(iocb, to); 4372 } else { 4373 ret = filemap_read(iocb, to, 0); 4374 if (ret > 0) 4375 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4376 APP_BUFFERED_READ_IO, ret); 4377 } 4378 if (trace_f2fs_dataread_end_enabled()) 4379 trace_f2fs_dataread_end(inode, pos, ret); 4380 return ret; 4381 } 4382 4383 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4384 { 4385 struct file *file = iocb->ki_filp; 4386 struct inode *inode = file_inode(file); 4387 ssize_t count; 4388 int err; 4389 4390 if (IS_IMMUTABLE(inode)) 4391 return -EPERM; 4392 4393 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4394 return -EPERM; 4395 4396 count = generic_write_checks(iocb, from); 4397 if (count <= 0) 4398 return count; 4399 4400 err = file_modified(file); 4401 if (err) 4402 return err; 4403 return count; 4404 } 4405 4406 /* 4407 * Preallocate blocks for a write request, if it is possible and helpful to do 4408 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4409 * blocks were preallocated, or a negative errno value if something went 4410 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4411 * requested blocks (not just some of them) have been allocated. 4412 */ 4413 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4414 bool dio) 4415 { 4416 struct inode *inode = file_inode(iocb->ki_filp); 4417 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4418 const loff_t pos = iocb->ki_pos; 4419 const size_t count = iov_iter_count(iter); 4420 struct f2fs_map_blocks map = {}; 4421 int flag; 4422 int ret; 4423 4424 /* If it will be an out-of-place direct write, don't bother. */ 4425 if (dio && f2fs_lfs_mode(sbi)) 4426 return 0; 4427 /* 4428 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4429 * buffered IO, if DIO meets any holes. 4430 */ 4431 if (dio && i_size_read(inode) && 4432 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4433 return 0; 4434 4435 /* No-wait I/O can't allocate blocks. */ 4436 if (iocb->ki_flags & IOCB_NOWAIT) 4437 return 0; 4438 4439 /* If it will be a short write, don't bother. */ 4440 if (fault_in_iov_iter_readable(iter, count)) 4441 return 0; 4442 4443 if (f2fs_has_inline_data(inode)) { 4444 /* If the data will fit inline, don't bother. */ 4445 if (pos + count <= MAX_INLINE_DATA(inode)) 4446 return 0; 4447 ret = f2fs_convert_inline_inode(inode); 4448 if (ret) 4449 return ret; 4450 } 4451 4452 /* Do not preallocate blocks that will be written partially in 4KB. */ 4453 map.m_lblk = F2FS_BLK_ALIGN(pos); 4454 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4455 if (map.m_len > map.m_lblk) 4456 map.m_len -= map.m_lblk; 4457 else 4458 map.m_len = 0; 4459 map.m_may_create = true; 4460 if (dio) { 4461 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4462 flag = F2FS_GET_BLOCK_PRE_DIO; 4463 } else { 4464 map.m_seg_type = NO_CHECK_TYPE; 4465 flag = F2FS_GET_BLOCK_PRE_AIO; 4466 } 4467 4468 ret = f2fs_map_blocks(inode, &map, 1, flag); 4469 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4470 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4471 return ret; 4472 if (ret == 0) 4473 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4474 return map.m_len; 4475 } 4476 4477 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4478 struct iov_iter *from) 4479 { 4480 struct file *file = iocb->ki_filp; 4481 struct inode *inode = file_inode(file); 4482 ssize_t ret; 4483 4484 if (iocb->ki_flags & IOCB_NOWAIT) 4485 return -EOPNOTSUPP; 4486 4487 current->backing_dev_info = inode_to_bdi(inode); 4488 ret = generic_perform_write(iocb, from); 4489 current->backing_dev_info = NULL; 4490 4491 if (ret > 0) { 4492 iocb->ki_pos += ret; 4493 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4494 APP_BUFFERED_IO, ret); 4495 } 4496 return ret; 4497 } 4498 4499 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4500 unsigned int flags) 4501 { 4502 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4503 4504 dec_page_count(sbi, F2FS_DIO_WRITE); 4505 if (error) 4506 return error; 4507 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4508 return 0; 4509 } 4510 4511 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4512 .end_io = f2fs_dio_write_end_io, 4513 }; 4514 4515 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4516 bool *may_need_sync) 4517 { 4518 struct file *file = iocb->ki_filp; 4519 struct inode *inode = file_inode(file); 4520 struct f2fs_inode_info *fi = F2FS_I(inode); 4521 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4522 const bool do_opu = f2fs_lfs_mode(sbi); 4523 const loff_t pos = iocb->ki_pos; 4524 const ssize_t count = iov_iter_count(from); 4525 unsigned int dio_flags; 4526 struct iomap_dio *dio; 4527 ssize_t ret; 4528 4529 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4530 4531 if (iocb->ki_flags & IOCB_NOWAIT) { 4532 /* f2fs_convert_inline_inode() and block allocation can block */ 4533 if (f2fs_has_inline_data(inode) || 4534 !f2fs_overwrite_io(inode, pos, count)) { 4535 ret = -EAGAIN; 4536 goto out; 4537 } 4538 4539 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4540 ret = -EAGAIN; 4541 goto out; 4542 } 4543 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4544 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4545 ret = -EAGAIN; 4546 goto out; 4547 } 4548 } else { 4549 ret = f2fs_convert_inline_inode(inode); 4550 if (ret) 4551 goto out; 4552 4553 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4554 if (do_opu) 4555 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4556 } 4557 4558 /* 4559 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4560 * the higher-level function iomap_dio_rw() in order to ensure that the 4561 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4562 */ 4563 inc_page_count(sbi, F2FS_DIO_WRITE); 4564 dio_flags = 0; 4565 if (pos + count > inode->i_size) 4566 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4567 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4568 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4569 if (IS_ERR_OR_NULL(dio)) { 4570 ret = PTR_ERR_OR_ZERO(dio); 4571 if (ret == -ENOTBLK) 4572 ret = 0; 4573 if (ret != -EIOCBQUEUED) 4574 dec_page_count(sbi, F2FS_DIO_WRITE); 4575 } else { 4576 ret = iomap_dio_complete(dio); 4577 } 4578 4579 if (do_opu) 4580 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4581 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4582 4583 if (ret < 0) 4584 goto out; 4585 if (pos + ret > inode->i_size) 4586 f2fs_i_size_write(inode, pos + ret); 4587 if (!do_opu) 4588 set_inode_flag(inode, FI_UPDATE_WRITE); 4589 4590 if (iov_iter_count(from)) { 4591 ssize_t ret2; 4592 loff_t bufio_start_pos = iocb->ki_pos; 4593 4594 /* 4595 * The direct write was partial, so we need to fall back to a 4596 * buffered write for the remainder. 4597 */ 4598 4599 ret2 = f2fs_buffered_write_iter(iocb, from); 4600 if (iov_iter_count(from)) 4601 f2fs_write_failed(inode, iocb->ki_pos); 4602 if (ret2 < 0) 4603 goto out; 4604 4605 /* 4606 * Ensure that the pagecache pages are written to disk and 4607 * invalidated to preserve the expected O_DIRECT semantics. 4608 */ 4609 if (ret2 > 0) { 4610 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4611 4612 ret += ret2; 4613 4614 ret2 = filemap_write_and_wait_range(file->f_mapping, 4615 bufio_start_pos, 4616 bufio_end_pos); 4617 if (ret2 < 0) 4618 goto out; 4619 invalidate_mapping_pages(file->f_mapping, 4620 bufio_start_pos >> PAGE_SHIFT, 4621 bufio_end_pos >> PAGE_SHIFT); 4622 } 4623 } else { 4624 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4625 *may_need_sync = false; 4626 } 4627 out: 4628 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4629 return ret; 4630 } 4631 4632 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4633 { 4634 struct inode *inode = file_inode(iocb->ki_filp); 4635 const loff_t orig_pos = iocb->ki_pos; 4636 const size_t orig_count = iov_iter_count(from); 4637 loff_t target_size; 4638 bool dio; 4639 bool may_need_sync = true; 4640 int preallocated; 4641 ssize_t ret; 4642 4643 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4644 ret = -EIO; 4645 goto out; 4646 } 4647 4648 if (!f2fs_is_compress_backend_ready(inode)) { 4649 ret = -EOPNOTSUPP; 4650 goto out; 4651 } 4652 4653 if (iocb->ki_flags & IOCB_NOWAIT) { 4654 if (!inode_trylock(inode)) { 4655 ret = -EAGAIN; 4656 goto out; 4657 } 4658 } else { 4659 inode_lock(inode); 4660 } 4661 4662 ret = f2fs_write_checks(iocb, from); 4663 if (ret <= 0) 4664 goto out_unlock; 4665 4666 /* Determine whether we will do a direct write or a buffered write. */ 4667 dio = f2fs_should_use_dio(inode, iocb, from); 4668 4669 /* Possibly preallocate the blocks for the write. */ 4670 target_size = iocb->ki_pos + iov_iter_count(from); 4671 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4672 if (preallocated < 0) { 4673 ret = preallocated; 4674 } else { 4675 if (trace_f2fs_datawrite_start_enabled()) { 4676 char *p = f2fs_kmalloc(F2FS_I_SB(inode), 4677 PATH_MAX, GFP_KERNEL); 4678 char *path; 4679 4680 if (!p) 4681 goto skip_write_trace; 4682 path = dentry_path_raw(file_dentry(iocb->ki_filp), 4683 p, PATH_MAX); 4684 if (IS_ERR(path)) { 4685 kfree(p); 4686 goto skip_write_trace; 4687 } 4688 trace_f2fs_datawrite_start(inode, orig_pos, orig_count, 4689 current->pid, path, current->comm); 4690 kfree(p); 4691 } 4692 skip_write_trace: 4693 /* Do the actual write. */ 4694 ret = dio ? 4695 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 4696 f2fs_buffered_write_iter(iocb, from); 4697 4698 if (trace_f2fs_datawrite_end_enabled()) 4699 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4700 } 4701 4702 /* Don't leave any preallocated blocks around past i_size. */ 4703 if (preallocated && i_size_read(inode) < target_size) { 4704 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4705 filemap_invalidate_lock(inode->i_mapping); 4706 if (!f2fs_truncate(inode)) 4707 file_dont_truncate(inode); 4708 filemap_invalidate_unlock(inode->i_mapping); 4709 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4710 } else { 4711 file_dont_truncate(inode); 4712 } 4713 4714 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4715 out_unlock: 4716 inode_unlock(inode); 4717 out: 4718 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4719 if (ret > 0 && may_need_sync) 4720 ret = generic_write_sync(iocb, ret); 4721 return ret; 4722 } 4723 4724 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4725 int advice) 4726 { 4727 struct address_space *mapping; 4728 struct backing_dev_info *bdi; 4729 struct inode *inode = file_inode(filp); 4730 int err; 4731 4732 if (advice == POSIX_FADV_SEQUENTIAL) { 4733 if (S_ISFIFO(inode->i_mode)) 4734 return -ESPIPE; 4735 4736 mapping = filp->f_mapping; 4737 if (!mapping || len < 0) 4738 return -EINVAL; 4739 4740 bdi = inode_to_bdi(mapping->host); 4741 filp->f_ra.ra_pages = bdi->ra_pages * 4742 F2FS_I_SB(inode)->seq_file_ra_mul; 4743 spin_lock(&filp->f_lock); 4744 filp->f_mode &= ~FMODE_RANDOM; 4745 spin_unlock(&filp->f_lock); 4746 return 0; 4747 } 4748 4749 err = generic_fadvise(filp, offset, len, advice); 4750 if (!err && advice == POSIX_FADV_DONTNEED && 4751 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4752 f2fs_compressed_file(inode)) 4753 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4754 4755 return err; 4756 } 4757 4758 #ifdef CONFIG_COMPAT 4759 struct compat_f2fs_gc_range { 4760 u32 sync; 4761 compat_u64 start; 4762 compat_u64 len; 4763 }; 4764 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4765 struct compat_f2fs_gc_range) 4766 4767 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4768 { 4769 struct compat_f2fs_gc_range __user *urange; 4770 struct f2fs_gc_range range; 4771 int err; 4772 4773 urange = compat_ptr(arg); 4774 err = get_user(range.sync, &urange->sync); 4775 err |= get_user(range.start, &urange->start); 4776 err |= get_user(range.len, &urange->len); 4777 if (err) 4778 return -EFAULT; 4779 4780 return __f2fs_ioc_gc_range(file, &range); 4781 } 4782 4783 struct compat_f2fs_move_range { 4784 u32 dst_fd; 4785 compat_u64 pos_in; 4786 compat_u64 pos_out; 4787 compat_u64 len; 4788 }; 4789 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4790 struct compat_f2fs_move_range) 4791 4792 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4793 { 4794 struct compat_f2fs_move_range __user *urange; 4795 struct f2fs_move_range range; 4796 int err; 4797 4798 urange = compat_ptr(arg); 4799 err = get_user(range.dst_fd, &urange->dst_fd); 4800 err |= get_user(range.pos_in, &urange->pos_in); 4801 err |= get_user(range.pos_out, &urange->pos_out); 4802 err |= get_user(range.len, &urange->len); 4803 if (err) 4804 return -EFAULT; 4805 4806 return __f2fs_ioc_move_range(file, &range); 4807 } 4808 4809 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4810 { 4811 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4812 return -EIO; 4813 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4814 return -ENOSPC; 4815 4816 switch (cmd) { 4817 case FS_IOC32_GETVERSION: 4818 cmd = FS_IOC_GETVERSION; 4819 break; 4820 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4821 return f2fs_compat_ioc_gc_range(file, arg); 4822 case F2FS_IOC32_MOVE_RANGE: 4823 return f2fs_compat_ioc_move_range(file, arg); 4824 case F2FS_IOC_START_ATOMIC_WRITE: 4825 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4826 case F2FS_IOC_START_VOLATILE_WRITE: 4827 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4828 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4829 case F2FS_IOC_SHUTDOWN: 4830 case FITRIM: 4831 case FS_IOC_SET_ENCRYPTION_POLICY: 4832 case FS_IOC_GET_ENCRYPTION_PWSALT: 4833 case FS_IOC_GET_ENCRYPTION_POLICY: 4834 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4835 case FS_IOC_ADD_ENCRYPTION_KEY: 4836 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4837 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4838 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4839 case FS_IOC_GET_ENCRYPTION_NONCE: 4840 case F2FS_IOC_GARBAGE_COLLECT: 4841 case F2FS_IOC_WRITE_CHECKPOINT: 4842 case F2FS_IOC_DEFRAGMENT: 4843 case F2FS_IOC_FLUSH_DEVICE: 4844 case F2FS_IOC_GET_FEATURES: 4845 case F2FS_IOC_GET_PIN_FILE: 4846 case F2FS_IOC_SET_PIN_FILE: 4847 case F2FS_IOC_PRECACHE_EXTENTS: 4848 case F2FS_IOC_RESIZE_FS: 4849 case FS_IOC_ENABLE_VERITY: 4850 case FS_IOC_MEASURE_VERITY: 4851 case FS_IOC_READ_VERITY_METADATA: 4852 case FS_IOC_GETFSLABEL: 4853 case FS_IOC_SETFSLABEL: 4854 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4855 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4856 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4857 case F2FS_IOC_SEC_TRIM_FILE: 4858 case F2FS_IOC_GET_COMPRESS_OPTION: 4859 case F2FS_IOC_SET_COMPRESS_OPTION: 4860 case F2FS_IOC_DECOMPRESS_FILE: 4861 case F2FS_IOC_COMPRESS_FILE: 4862 break; 4863 default: 4864 return -ENOIOCTLCMD; 4865 } 4866 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4867 } 4868 #endif 4869 4870 const struct file_operations f2fs_file_operations = { 4871 .llseek = f2fs_llseek, 4872 .read_iter = f2fs_file_read_iter, 4873 .write_iter = f2fs_file_write_iter, 4874 .open = f2fs_file_open, 4875 .release = f2fs_release_file, 4876 .mmap = f2fs_file_mmap, 4877 .flush = f2fs_file_flush, 4878 .fsync = f2fs_sync_file, 4879 .fallocate = f2fs_fallocate, 4880 .unlocked_ioctl = f2fs_ioctl, 4881 #ifdef CONFIG_COMPAT 4882 .compat_ioctl = f2fs_compat_ioctl, 4883 #endif 4884 .splice_read = generic_file_splice_read, 4885 .splice_write = iter_file_splice_write, 4886 .fadvise = f2fs_file_fadvise, 4887 }; 4888