1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "xattr.h" 28 #include "acl.h" 29 #include "gc.h" 30 #include "trace.h" 31 #include <trace/events/f2fs.h> 32 33 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 34 { 35 struct inode *inode = file_inode(vmf->vma->vm_file); 36 vm_fault_t ret; 37 38 down_read(&F2FS_I(inode)->i_mmap_sem); 39 ret = filemap_fault(vmf); 40 up_read(&F2FS_I(inode)->i_mmap_sem); 41 42 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 43 44 return ret; 45 } 46 47 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 48 { 49 struct page *page = vmf->page; 50 struct inode *inode = file_inode(vmf->vma->vm_file); 51 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 52 struct dnode_of_data dn = { .node_changed = false }; 53 int err; 54 55 if (unlikely(f2fs_cp_error(sbi))) { 56 err = -EIO; 57 goto err; 58 } 59 60 sb_start_pagefault(inode->i_sb); 61 62 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 63 64 file_update_time(vmf->vma->vm_file); 65 down_read(&F2FS_I(inode)->i_mmap_sem); 66 lock_page(page); 67 if (unlikely(page->mapping != inode->i_mapping || 68 page_offset(page) > i_size_read(inode) || 69 !PageUptodate(page))) { 70 unlock_page(page); 71 err = -EFAULT; 72 goto out_sem; 73 } 74 75 /* block allocation */ 76 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 77 set_new_dnode(&dn, inode, NULL, NULL, 0); 78 err = f2fs_get_block(&dn, page->index); 79 f2fs_put_dnode(&dn); 80 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 81 if (err) { 82 unlock_page(page); 83 goto out_sem; 84 } 85 86 /* fill the page */ 87 f2fs_wait_on_page_writeback(page, DATA, false, true); 88 89 /* wait for GCed page writeback via META_MAPPING */ 90 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 91 92 /* 93 * check to see if the page is mapped already (no holes) 94 */ 95 if (PageMappedToDisk(page)) 96 goto out_sem; 97 98 /* page is wholly or partially inside EOF */ 99 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 100 i_size_read(inode)) { 101 loff_t offset; 102 103 offset = i_size_read(inode) & ~PAGE_MASK; 104 zero_user_segment(page, offset, PAGE_SIZE); 105 } 106 set_page_dirty(page); 107 if (!PageUptodate(page)) 108 SetPageUptodate(page); 109 110 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 111 f2fs_update_time(sbi, REQ_TIME); 112 113 trace_f2fs_vm_page_mkwrite(page, DATA); 114 out_sem: 115 up_read(&F2FS_I(inode)->i_mmap_sem); 116 117 f2fs_balance_fs(sbi, dn.node_changed); 118 119 sb_end_pagefault(inode->i_sb); 120 err: 121 return block_page_mkwrite_return(err); 122 } 123 124 static const struct vm_operations_struct f2fs_file_vm_ops = { 125 .fault = f2fs_filemap_fault, 126 .map_pages = filemap_map_pages, 127 .page_mkwrite = f2fs_vm_page_mkwrite, 128 }; 129 130 static int get_parent_ino(struct inode *inode, nid_t *pino) 131 { 132 struct dentry *dentry; 133 134 inode = igrab(inode); 135 dentry = d_find_any_alias(inode); 136 iput(inode); 137 if (!dentry) 138 return 0; 139 140 *pino = parent_ino(dentry); 141 dput(dentry); 142 return 1; 143 } 144 145 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 146 { 147 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 148 enum cp_reason_type cp_reason = CP_NO_NEEDED; 149 150 if (!S_ISREG(inode->i_mode)) 151 cp_reason = CP_NON_REGULAR; 152 else if (inode->i_nlink != 1) 153 cp_reason = CP_HARDLINK; 154 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 155 cp_reason = CP_SB_NEED_CP; 156 else if (file_wrong_pino(inode)) 157 cp_reason = CP_WRONG_PINO; 158 else if (!f2fs_space_for_roll_forward(sbi)) 159 cp_reason = CP_NO_SPC_ROLL; 160 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 161 cp_reason = CP_NODE_NEED_CP; 162 else if (test_opt(sbi, FASTBOOT)) 163 cp_reason = CP_FASTBOOT_MODE; 164 else if (F2FS_OPTION(sbi).active_logs == 2) 165 cp_reason = CP_SPEC_LOG_NUM; 166 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 167 f2fs_need_dentry_mark(sbi, inode->i_ino) && 168 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 169 TRANS_DIR_INO)) 170 cp_reason = CP_RECOVER_DIR; 171 172 return cp_reason; 173 } 174 175 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 176 { 177 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 178 bool ret = false; 179 /* But we need to avoid that there are some inode updates */ 180 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 181 ret = true; 182 f2fs_put_page(i, 0); 183 return ret; 184 } 185 186 static void try_to_fix_pino(struct inode *inode) 187 { 188 struct f2fs_inode_info *fi = F2FS_I(inode); 189 nid_t pino; 190 191 down_write(&fi->i_sem); 192 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 193 get_parent_ino(inode, &pino)) { 194 f2fs_i_pino_write(inode, pino); 195 file_got_pino(inode); 196 } 197 up_write(&fi->i_sem); 198 } 199 200 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 201 int datasync, bool atomic) 202 { 203 struct inode *inode = file->f_mapping->host; 204 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 205 nid_t ino = inode->i_ino; 206 int ret = 0; 207 enum cp_reason_type cp_reason = 0; 208 struct writeback_control wbc = { 209 .sync_mode = WB_SYNC_ALL, 210 .nr_to_write = LONG_MAX, 211 .for_reclaim = 0, 212 }; 213 unsigned int seq_id = 0; 214 215 if (unlikely(f2fs_readonly(inode->i_sb) || 216 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 217 return 0; 218 219 trace_f2fs_sync_file_enter(inode); 220 221 if (S_ISDIR(inode->i_mode)) 222 goto go_write; 223 224 /* if fdatasync is triggered, let's do in-place-update */ 225 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 226 set_inode_flag(inode, FI_NEED_IPU); 227 ret = file_write_and_wait_range(file, start, end); 228 clear_inode_flag(inode, FI_NEED_IPU); 229 230 if (ret) { 231 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 232 return ret; 233 } 234 235 /* if the inode is dirty, let's recover all the time */ 236 if (!f2fs_skip_inode_update(inode, datasync)) { 237 f2fs_write_inode(inode, NULL); 238 goto go_write; 239 } 240 241 /* 242 * if there is no written data, don't waste time to write recovery info. 243 */ 244 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 245 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 246 247 /* it may call write_inode just prior to fsync */ 248 if (need_inode_page_update(sbi, ino)) 249 goto go_write; 250 251 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 252 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 253 goto flush_out; 254 goto out; 255 } 256 go_write: 257 /* 258 * Both of fdatasync() and fsync() are able to be recovered from 259 * sudden-power-off. 260 */ 261 down_read(&F2FS_I(inode)->i_sem); 262 cp_reason = need_do_checkpoint(inode); 263 up_read(&F2FS_I(inode)->i_sem); 264 265 if (cp_reason) { 266 /* all the dirty node pages should be flushed for POR */ 267 ret = f2fs_sync_fs(inode->i_sb, 1); 268 269 /* 270 * We've secured consistency through sync_fs. Following pino 271 * will be used only for fsynced inodes after checkpoint. 272 */ 273 try_to_fix_pino(inode); 274 clear_inode_flag(inode, FI_APPEND_WRITE); 275 clear_inode_flag(inode, FI_UPDATE_WRITE); 276 goto out; 277 } 278 sync_nodes: 279 atomic_inc(&sbi->wb_sync_req[NODE]); 280 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 281 atomic_dec(&sbi->wb_sync_req[NODE]); 282 if (ret) 283 goto out; 284 285 /* if cp_error was enabled, we should avoid infinite loop */ 286 if (unlikely(f2fs_cp_error(sbi))) { 287 ret = -EIO; 288 goto out; 289 } 290 291 if (f2fs_need_inode_block_update(sbi, ino)) { 292 f2fs_mark_inode_dirty_sync(inode, true); 293 f2fs_write_inode(inode, NULL); 294 goto sync_nodes; 295 } 296 297 /* 298 * If it's atomic_write, it's just fine to keep write ordering. So 299 * here we don't need to wait for node write completion, since we use 300 * node chain which serializes node blocks. If one of node writes are 301 * reordered, we can see simply broken chain, resulting in stopping 302 * roll-forward recovery. It means we'll recover all or none node blocks 303 * given fsync mark. 304 */ 305 if (!atomic) { 306 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 307 if (ret) 308 goto out; 309 } 310 311 /* once recovery info is written, don't need to tack this */ 312 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 313 clear_inode_flag(inode, FI_APPEND_WRITE); 314 flush_out: 315 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 316 ret = f2fs_issue_flush(sbi, inode->i_ino); 317 if (!ret) { 318 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 319 clear_inode_flag(inode, FI_UPDATE_WRITE); 320 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 321 } 322 f2fs_update_time(sbi, REQ_TIME); 323 out: 324 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 325 f2fs_trace_ios(NULL, 1); 326 return ret; 327 } 328 329 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 330 { 331 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 332 return -EIO; 333 return f2fs_do_sync_file(file, start, end, datasync, false); 334 } 335 336 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 337 pgoff_t pgofs, int whence) 338 { 339 struct page *page; 340 int nr_pages; 341 342 if (whence != SEEK_DATA) 343 return 0; 344 345 /* find first dirty page index */ 346 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 347 1, &page); 348 if (!nr_pages) 349 return ULONG_MAX; 350 pgofs = page->index; 351 put_page(page); 352 return pgofs; 353 } 354 355 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr, 356 pgoff_t dirty, pgoff_t pgofs, int whence) 357 { 358 switch (whence) { 359 case SEEK_DATA: 360 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 361 __is_valid_data_blkaddr(blkaddr)) 362 return true; 363 break; 364 case SEEK_HOLE: 365 if (blkaddr == NULL_ADDR) 366 return true; 367 break; 368 } 369 return false; 370 } 371 372 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 373 { 374 struct inode *inode = file->f_mapping->host; 375 loff_t maxbytes = inode->i_sb->s_maxbytes; 376 struct dnode_of_data dn; 377 pgoff_t pgofs, end_offset, dirty; 378 loff_t data_ofs = offset; 379 loff_t isize; 380 int err = 0; 381 382 inode_lock(inode); 383 384 isize = i_size_read(inode); 385 if (offset >= isize) 386 goto fail; 387 388 /* handle inline data case */ 389 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 390 if (whence == SEEK_HOLE) 391 data_ofs = isize; 392 goto found; 393 } 394 395 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 396 397 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 398 399 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 400 set_new_dnode(&dn, inode, NULL, NULL, 0); 401 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 402 if (err && err != -ENOENT) { 403 goto fail; 404 } else if (err == -ENOENT) { 405 /* direct node does not exists */ 406 if (whence == SEEK_DATA) { 407 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 408 continue; 409 } else { 410 goto found; 411 } 412 } 413 414 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 415 416 /* find data/hole in dnode block */ 417 for (; dn.ofs_in_node < end_offset; 418 dn.ofs_in_node++, pgofs++, 419 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 420 block_t blkaddr; 421 422 blkaddr = datablock_addr(dn.inode, 423 dn.node_page, dn.ofs_in_node); 424 425 if (__is_valid_data_blkaddr(blkaddr) && 426 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 427 blkaddr, DATA_GENERIC_ENHANCE)) { 428 f2fs_put_dnode(&dn); 429 goto fail; 430 } 431 432 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty, 433 pgofs, whence)) { 434 f2fs_put_dnode(&dn); 435 goto found; 436 } 437 } 438 f2fs_put_dnode(&dn); 439 } 440 441 if (whence == SEEK_DATA) 442 goto fail; 443 found: 444 if (whence == SEEK_HOLE && data_ofs > isize) 445 data_ofs = isize; 446 inode_unlock(inode); 447 return vfs_setpos(file, data_ofs, maxbytes); 448 fail: 449 inode_unlock(inode); 450 return -ENXIO; 451 } 452 453 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 454 { 455 struct inode *inode = file->f_mapping->host; 456 loff_t maxbytes = inode->i_sb->s_maxbytes; 457 458 switch (whence) { 459 case SEEK_SET: 460 case SEEK_CUR: 461 case SEEK_END: 462 return generic_file_llseek_size(file, offset, whence, 463 maxbytes, i_size_read(inode)); 464 case SEEK_DATA: 465 case SEEK_HOLE: 466 if (offset < 0) 467 return -ENXIO; 468 return f2fs_seek_block(file, offset, whence); 469 } 470 471 return -EINVAL; 472 } 473 474 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 475 { 476 struct inode *inode = file_inode(file); 477 int err; 478 479 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 480 return -EIO; 481 482 /* we don't need to use inline_data strictly */ 483 err = f2fs_convert_inline_inode(inode); 484 if (err) 485 return err; 486 487 file_accessed(file); 488 vma->vm_ops = &f2fs_file_vm_ops; 489 return 0; 490 } 491 492 static int f2fs_file_open(struct inode *inode, struct file *filp) 493 { 494 int err = fscrypt_file_open(inode, filp); 495 496 if (err) 497 return err; 498 499 filp->f_mode |= FMODE_NOWAIT; 500 501 return dquot_file_open(inode, filp); 502 } 503 504 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 505 { 506 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 507 struct f2fs_node *raw_node; 508 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 509 __le32 *addr; 510 int base = 0; 511 512 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 513 base = get_extra_isize(dn->inode); 514 515 raw_node = F2FS_NODE(dn->node_page); 516 addr = blkaddr_in_node(raw_node) + base + ofs; 517 518 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 519 block_t blkaddr = le32_to_cpu(*addr); 520 521 if (blkaddr == NULL_ADDR) 522 continue; 523 524 dn->data_blkaddr = NULL_ADDR; 525 f2fs_set_data_blkaddr(dn); 526 527 if (__is_valid_data_blkaddr(blkaddr) && 528 !f2fs_is_valid_blkaddr(sbi, blkaddr, 529 DATA_GENERIC_ENHANCE)) 530 continue; 531 532 f2fs_invalidate_blocks(sbi, blkaddr); 533 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 534 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 535 nr_free++; 536 } 537 538 if (nr_free) { 539 pgoff_t fofs; 540 /* 541 * once we invalidate valid blkaddr in range [ofs, ofs + count], 542 * we will invalidate all blkaddr in the whole range. 543 */ 544 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 545 dn->inode) + ofs; 546 f2fs_update_extent_cache_range(dn, fofs, 0, len); 547 dec_valid_block_count(sbi, dn->inode, nr_free); 548 } 549 dn->ofs_in_node = ofs; 550 551 f2fs_update_time(sbi, REQ_TIME); 552 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 553 dn->ofs_in_node, nr_free); 554 } 555 556 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 557 { 558 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 559 } 560 561 static int truncate_partial_data_page(struct inode *inode, u64 from, 562 bool cache_only) 563 { 564 loff_t offset = from & (PAGE_SIZE - 1); 565 pgoff_t index = from >> PAGE_SHIFT; 566 struct address_space *mapping = inode->i_mapping; 567 struct page *page; 568 569 if (!offset && !cache_only) 570 return 0; 571 572 if (cache_only) { 573 page = find_lock_page(mapping, index); 574 if (page && PageUptodate(page)) 575 goto truncate_out; 576 f2fs_put_page(page, 1); 577 return 0; 578 } 579 580 page = f2fs_get_lock_data_page(inode, index, true); 581 if (IS_ERR(page)) 582 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 583 truncate_out: 584 f2fs_wait_on_page_writeback(page, DATA, true, true); 585 zero_user(page, offset, PAGE_SIZE - offset); 586 587 /* An encrypted inode should have a key and truncate the last page. */ 588 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 589 if (!cache_only) 590 set_page_dirty(page); 591 f2fs_put_page(page, 1); 592 return 0; 593 } 594 595 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 596 { 597 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 598 struct dnode_of_data dn; 599 pgoff_t free_from; 600 int count = 0, err = 0; 601 struct page *ipage; 602 bool truncate_page = false; 603 604 trace_f2fs_truncate_blocks_enter(inode, from); 605 606 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 607 608 if (free_from >= sbi->max_file_blocks) 609 goto free_partial; 610 611 if (lock) 612 f2fs_lock_op(sbi); 613 614 ipage = f2fs_get_node_page(sbi, inode->i_ino); 615 if (IS_ERR(ipage)) { 616 err = PTR_ERR(ipage); 617 goto out; 618 } 619 620 if (f2fs_has_inline_data(inode)) { 621 f2fs_truncate_inline_inode(inode, ipage, from); 622 f2fs_put_page(ipage, 1); 623 truncate_page = true; 624 goto out; 625 } 626 627 set_new_dnode(&dn, inode, ipage, NULL, 0); 628 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 629 if (err) { 630 if (err == -ENOENT) 631 goto free_next; 632 goto out; 633 } 634 635 count = ADDRS_PER_PAGE(dn.node_page, inode); 636 637 count -= dn.ofs_in_node; 638 f2fs_bug_on(sbi, count < 0); 639 640 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 641 f2fs_truncate_data_blocks_range(&dn, count); 642 free_from += count; 643 } 644 645 f2fs_put_dnode(&dn); 646 free_next: 647 err = f2fs_truncate_inode_blocks(inode, free_from); 648 out: 649 if (lock) 650 f2fs_unlock_op(sbi); 651 free_partial: 652 /* lastly zero out the first data page */ 653 if (!err) 654 err = truncate_partial_data_page(inode, from, truncate_page); 655 656 trace_f2fs_truncate_blocks_exit(inode, err); 657 return err; 658 } 659 660 int f2fs_truncate(struct inode *inode) 661 { 662 int err; 663 664 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 665 return -EIO; 666 667 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 668 S_ISLNK(inode->i_mode))) 669 return 0; 670 671 trace_f2fs_truncate(inode); 672 673 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 674 f2fs_show_injection_info(FAULT_TRUNCATE); 675 return -EIO; 676 } 677 678 /* we should check inline_data size */ 679 if (!f2fs_may_inline_data(inode)) { 680 err = f2fs_convert_inline_inode(inode); 681 if (err) 682 return err; 683 } 684 685 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 686 if (err) 687 return err; 688 689 inode->i_mtime = inode->i_ctime = current_time(inode); 690 f2fs_mark_inode_dirty_sync(inode, false); 691 return 0; 692 } 693 694 int f2fs_getattr(const struct path *path, struct kstat *stat, 695 u32 request_mask, unsigned int query_flags) 696 { 697 struct inode *inode = d_inode(path->dentry); 698 struct f2fs_inode_info *fi = F2FS_I(inode); 699 struct f2fs_inode *ri; 700 unsigned int flags; 701 702 if (f2fs_has_extra_attr(inode) && 703 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 704 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 705 stat->result_mask |= STATX_BTIME; 706 stat->btime.tv_sec = fi->i_crtime.tv_sec; 707 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 708 } 709 710 flags = fi->i_flags; 711 if (flags & F2FS_APPEND_FL) 712 stat->attributes |= STATX_ATTR_APPEND; 713 if (IS_ENCRYPTED(inode)) 714 stat->attributes |= STATX_ATTR_ENCRYPTED; 715 if (flags & F2FS_IMMUTABLE_FL) 716 stat->attributes |= STATX_ATTR_IMMUTABLE; 717 if (flags & F2FS_NODUMP_FL) 718 stat->attributes |= STATX_ATTR_NODUMP; 719 720 stat->attributes_mask |= (STATX_ATTR_APPEND | 721 STATX_ATTR_ENCRYPTED | 722 STATX_ATTR_IMMUTABLE | 723 STATX_ATTR_NODUMP); 724 725 generic_fillattr(inode, stat); 726 727 /* we need to show initial sectors used for inline_data/dentries */ 728 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 729 f2fs_has_inline_dentry(inode)) 730 stat->blocks += (stat->size + 511) >> 9; 731 732 return 0; 733 } 734 735 #ifdef CONFIG_F2FS_FS_POSIX_ACL 736 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 737 { 738 unsigned int ia_valid = attr->ia_valid; 739 740 if (ia_valid & ATTR_UID) 741 inode->i_uid = attr->ia_uid; 742 if (ia_valid & ATTR_GID) 743 inode->i_gid = attr->ia_gid; 744 if (ia_valid & ATTR_ATIME) 745 inode->i_atime = timespec64_trunc(attr->ia_atime, 746 inode->i_sb->s_time_gran); 747 if (ia_valid & ATTR_MTIME) 748 inode->i_mtime = timespec64_trunc(attr->ia_mtime, 749 inode->i_sb->s_time_gran); 750 if (ia_valid & ATTR_CTIME) 751 inode->i_ctime = timespec64_trunc(attr->ia_ctime, 752 inode->i_sb->s_time_gran); 753 if (ia_valid & ATTR_MODE) { 754 umode_t mode = attr->ia_mode; 755 756 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 757 mode &= ~S_ISGID; 758 set_acl_inode(inode, mode); 759 } 760 } 761 #else 762 #define __setattr_copy setattr_copy 763 #endif 764 765 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 766 { 767 struct inode *inode = d_inode(dentry); 768 int err; 769 770 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 771 return -EIO; 772 773 err = setattr_prepare(dentry, attr); 774 if (err) 775 return err; 776 777 err = fscrypt_prepare_setattr(dentry, attr); 778 if (err) 779 return err; 780 781 if (is_quota_modification(inode, attr)) { 782 err = dquot_initialize(inode); 783 if (err) 784 return err; 785 } 786 if ((attr->ia_valid & ATTR_UID && 787 !uid_eq(attr->ia_uid, inode->i_uid)) || 788 (attr->ia_valid & ATTR_GID && 789 !gid_eq(attr->ia_gid, inode->i_gid))) { 790 f2fs_lock_op(F2FS_I_SB(inode)); 791 err = dquot_transfer(inode, attr); 792 if (err) { 793 set_sbi_flag(F2FS_I_SB(inode), 794 SBI_QUOTA_NEED_REPAIR); 795 f2fs_unlock_op(F2FS_I_SB(inode)); 796 return err; 797 } 798 /* 799 * update uid/gid under lock_op(), so that dquot and inode can 800 * be updated atomically. 801 */ 802 if (attr->ia_valid & ATTR_UID) 803 inode->i_uid = attr->ia_uid; 804 if (attr->ia_valid & ATTR_GID) 805 inode->i_gid = attr->ia_gid; 806 f2fs_mark_inode_dirty_sync(inode, true); 807 f2fs_unlock_op(F2FS_I_SB(inode)); 808 } 809 810 if (attr->ia_valid & ATTR_SIZE) { 811 bool to_smaller = (attr->ia_size <= i_size_read(inode)); 812 813 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 814 down_write(&F2FS_I(inode)->i_mmap_sem); 815 816 truncate_setsize(inode, attr->ia_size); 817 818 if (to_smaller) 819 err = f2fs_truncate(inode); 820 /* 821 * do not trim all blocks after i_size if target size is 822 * larger than i_size. 823 */ 824 up_write(&F2FS_I(inode)->i_mmap_sem); 825 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 826 827 if (err) 828 return err; 829 830 if (!to_smaller) { 831 /* should convert inline inode here */ 832 if (!f2fs_may_inline_data(inode)) { 833 err = f2fs_convert_inline_inode(inode); 834 if (err) 835 return err; 836 } 837 inode->i_mtime = inode->i_ctime = current_time(inode); 838 } 839 840 down_write(&F2FS_I(inode)->i_sem); 841 F2FS_I(inode)->last_disk_size = i_size_read(inode); 842 up_write(&F2FS_I(inode)->i_sem); 843 } 844 845 __setattr_copy(inode, attr); 846 847 if (attr->ia_valid & ATTR_MODE) { 848 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 849 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 850 inode->i_mode = F2FS_I(inode)->i_acl_mode; 851 clear_inode_flag(inode, FI_ACL_MODE); 852 } 853 } 854 855 /* file size may changed here */ 856 f2fs_mark_inode_dirty_sync(inode, true); 857 858 /* inode change will produce dirty node pages flushed by checkpoint */ 859 f2fs_balance_fs(F2FS_I_SB(inode), true); 860 861 return err; 862 } 863 864 const struct inode_operations f2fs_file_inode_operations = { 865 .getattr = f2fs_getattr, 866 .setattr = f2fs_setattr, 867 .get_acl = f2fs_get_acl, 868 .set_acl = f2fs_set_acl, 869 #ifdef CONFIG_F2FS_FS_XATTR 870 .listxattr = f2fs_listxattr, 871 #endif 872 .fiemap = f2fs_fiemap, 873 }; 874 875 static int fill_zero(struct inode *inode, pgoff_t index, 876 loff_t start, loff_t len) 877 { 878 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 879 struct page *page; 880 881 if (!len) 882 return 0; 883 884 f2fs_balance_fs(sbi, true); 885 886 f2fs_lock_op(sbi); 887 page = f2fs_get_new_data_page(inode, NULL, index, false); 888 f2fs_unlock_op(sbi); 889 890 if (IS_ERR(page)) 891 return PTR_ERR(page); 892 893 f2fs_wait_on_page_writeback(page, DATA, true, true); 894 zero_user(page, start, len); 895 set_page_dirty(page); 896 f2fs_put_page(page, 1); 897 return 0; 898 } 899 900 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 901 { 902 int err; 903 904 while (pg_start < pg_end) { 905 struct dnode_of_data dn; 906 pgoff_t end_offset, count; 907 908 set_new_dnode(&dn, inode, NULL, NULL, 0); 909 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 910 if (err) { 911 if (err == -ENOENT) { 912 pg_start = f2fs_get_next_page_offset(&dn, 913 pg_start); 914 continue; 915 } 916 return err; 917 } 918 919 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 920 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 921 922 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 923 924 f2fs_truncate_data_blocks_range(&dn, count); 925 f2fs_put_dnode(&dn); 926 927 pg_start += count; 928 } 929 return 0; 930 } 931 932 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 933 { 934 pgoff_t pg_start, pg_end; 935 loff_t off_start, off_end; 936 int ret; 937 938 ret = f2fs_convert_inline_inode(inode); 939 if (ret) 940 return ret; 941 942 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 943 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 944 945 off_start = offset & (PAGE_SIZE - 1); 946 off_end = (offset + len) & (PAGE_SIZE - 1); 947 948 if (pg_start == pg_end) { 949 ret = fill_zero(inode, pg_start, off_start, 950 off_end - off_start); 951 if (ret) 952 return ret; 953 } else { 954 if (off_start) { 955 ret = fill_zero(inode, pg_start++, off_start, 956 PAGE_SIZE - off_start); 957 if (ret) 958 return ret; 959 } 960 if (off_end) { 961 ret = fill_zero(inode, pg_end, 0, off_end); 962 if (ret) 963 return ret; 964 } 965 966 if (pg_start < pg_end) { 967 struct address_space *mapping = inode->i_mapping; 968 loff_t blk_start, blk_end; 969 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 970 971 f2fs_balance_fs(sbi, true); 972 973 blk_start = (loff_t)pg_start << PAGE_SHIFT; 974 blk_end = (loff_t)pg_end << PAGE_SHIFT; 975 976 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 977 down_write(&F2FS_I(inode)->i_mmap_sem); 978 979 truncate_inode_pages_range(mapping, blk_start, 980 blk_end - 1); 981 982 f2fs_lock_op(sbi); 983 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 984 f2fs_unlock_op(sbi); 985 986 up_write(&F2FS_I(inode)->i_mmap_sem); 987 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 988 } 989 } 990 991 return ret; 992 } 993 994 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 995 int *do_replace, pgoff_t off, pgoff_t len) 996 { 997 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 998 struct dnode_of_data dn; 999 int ret, done, i; 1000 1001 next_dnode: 1002 set_new_dnode(&dn, inode, NULL, NULL, 0); 1003 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1004 if (ret && ret != -ENOENT) { 1005 return ret; 1006 } else if (ret == -ENOENT) { 1007 if (dn.max_level == 0) 1008 return -ENOENT; 1009 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - dn.ofs_in_node, 1010 len); 1011 blkaddr += done; 1012 do_replace += done; 1013 goto next; 1014 } 1015 1016 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1017 dn.ofs_in_node, len); 1018 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1019 *blkaddr = datablock_addr(dn.inode, 1020 dn.node_page, dn.ofs_in_node); 1021 1022 if (__is_valid_data_blkaddr(*blkaddr) && 1023 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1024 DATA_GENERIC_ENHANCE)) { 1025 f2fs_put_dnode(&dn); 1026 return -EFAULT; 1027 } 1028 1029 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1030 1031 if (test_opt(sbi, LFS)) { 1032 f2fs_put_dnode(&dn); 1033 return -ENOTSUPP; 1034 } 1035 1036 /* do not invalidate this block address */ 1037 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1038 *do_replace = 1; 1039 } 1040 } 1041 f2fs_put_dnode(&dn); 1042 next: 1043 len -= done; 1044 off += done; 1045 if (len) 1046 goto next_dnode; 1047 return 0; 1048 } 1049 1050 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1051 int *do_replace, pgoff_t off, int len) 1052 { 1053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1054 struct dnode_of_data dn; 1055 int ret, i; 1056 1057 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1058 if (*do_replace == 0) 1059 continue; 1060 1061 set_new_dnode(&dn, inode, NULL, NULL, 0); 1062 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1063 if (ret) { 1064 dec_valid_block_count(sbi, inode, 1); 1065 f2fs_invalidate_blocks(sbi, *blkaddr); 1066 } else { 1067 f2fs_update_data_blkaddr(&dn, *blkaddr); 1068 } 1069 f2fs_put_dnode(&dn); 1070 } 1071 return 0; 1072 } 1073 1074 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1075 block_t *blkaddr, int *do_replace, 1076 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1077 { 1078 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1079 pgoff_t i = 0; 1080 int ret; 1081 1082 while (i < len) { 1083 if (blkaddr[i] == NULL_ADDR && !full) { 1084 i++; 1085 continue; 1086 } 1087 1088 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1089 struct dnode_of_data dn; 1090 struct node_info ni; 1091 size_t new_size; 1092 pgoff_t ilen; 1093 1094 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1095 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1096 if (ret) 1097 return ret; 1098 1099 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1100 if (ret) { 1101 f2fs_put_dnode(&dn); 1102 return ret; 1103 } 1104 1105 ilen = min((pgoff_t) 1106 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1107 dn.ofs_in_node, len - i); 1108 do { 1109 dn.data_blkaddr = datablock_addr(dn.inode, 1110 dn.node_page, dn.ofs_in_node); 1111 f2fs_truncate_data_blocks_range(&dn, 1); 1112 1113 if (do_replace[i]) { 1114 f2fs_i_blocks_write(src_inode, 1115 1, false, false); 1116 f2fs_i_blocks_write(dst_inode, 1117 1, true, false); 1118 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1119 blkaddr[i], ni.version, true, false); 1120 1121 do_replace[i] = 0; 1122 } 1123 dn.ofs_in_node++; 1124 i++; 1125 new_size = (dst + i) << PAGE_SHIFT; 1126 if (dst_inode->i_size < new_size) 1127 f2fs_i_size_write(dst_inode, new_size); 1128 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1129 1130 f2fs_put_dnode(&dn); 1131 } else { 1132 struct page *psrc, *pdst; 1133 1134 psrc = f2fs_get_lock_data_page(src_inode, 1135 src + i, true); 1136 if (IS_ERR(psrc)) 1137 return PTR_ERR(psrc); 1138 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1139 true); 1140 if (IS_ERR(pdst)) { 1141 f2fs_put_page(psrc, 1); 1142 return PTR_ERR(pdst); 1143 } 1144 f2fs_copy_page(psrc, pdst); 1145 set_page_dirty(pdst); 1146 f2fs_put_page(pdst, 1); 1147 f2fs_put_page(psrc, 1); 1148 1149 ret = f2fs_truncate_hole(src_inode, 1150 src + i, src + i + 1); 1151 if (ret) 1152 return ret; 1153 i++; 1154 } 1155 } 1156 return 0; 1157 } 1158 1159 static int __exchange_data_block(struct inode *src_inode, 1160 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1161 pgoff_t len, bool full) 1162 { 1163 block_t *src_blkaddr; 1164 int *do_replace; 1165 pgoff_t olen; 1166 int ret; 1167 1168 while (len) { 1169 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1170 1171 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1172 array_size(olen, sizeof(block_t)), 1173 GFP_KERNEL); 1174 if (!src_blkaddr) 1175 return -ENOMEM; 1176 1177 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1178 array_size(olen, sizeof(int)), 1179 GFP_KERNEL); 1180 if (!do_replace) { 1181 kvfree(src_blkaddr); 1182 return -ENOMEM; 1183 } 1184 1185 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1186 do_replace, src, olen); 1187 if (ret) 1188 goto roll_back; 1189 1190 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1191 do_replace, src, dst, olen, full); 1192 if (ret) 1193 goto roll_back; 1194 1195 src += olen; 1196 dst += olen; 1197 len -= olen; 1198 1199 kvfree(src_blkaddr); 1200 kvfree(do_replace); 1201 } 1202 return 0; 1203 1204 roll_back: 1205 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1206 kvfree(src_blkaddr); 1207 kvfree(do_replace); 1208 return ret; 1209 } 1210 1211 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1212 { 1213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1214 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1215 pgoff_t start = offset >> PAGE_SHIFT; 1216 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1217 int ret; 1218 1219 f2fs_balance_fs(sbi, true); 1220 1221 /* avoid gc operation during block exchange */ 1222 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1223 down_write(&F2FS_I(inode)->i_mmap_sem); 1224 1225 f2fs_lock_op(sbi); 1226 f2fs_drop_extent_tree(inode); 1227 truncate_pagecache(inode, offset); 1228 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1229 f2fs_unlock_op(sbi); 1230 1231 up_write(&F2FS_I(inode)->i_mmap_sem); 1232 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1233 return ret; 1234 } 1235 1236 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1237 { 1238 loff_t new_size; 1239 int ret; 1240 1241 if (offset + len >= i_size_read(inode)) 1242 return -EINVAL; 1243 1244 /* collapse range should be aligned to block size of f2fs. */ 1245 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1246 return -EINVAL; 1247 1248 ret = f2fs_convert_inline_inode(inode); 1249 if (ret) 1250 return ret; 1251 1252 /* write out all dirty pages from offset */ 1253 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1254 if (ret) 1255 return ret; 1256 1257 ret = f2fs_do_collapse(inode, offset, len); 1258 if (ret) 1259 return ret; 1260 1261 /* write out all moved pages, if possible */ 1262 down_write(&F2FS_I(inode)->i_mmap_sem); 1263 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1264 truncate_pagecache(inode, offset); 1265 1266 new_size = i_size_read(inode) - len; 1267 truncate_pagecache(inode, new_size); 1268 1269 ret = f2fs_truncate_blocks(inode, new_size, true); 1270 up_write(&F2FS_I(inode)->i_mmap_sem); 1271 if (!ret) 1272 f2fs_i_size_write(inode, new_size); 1273 return ret; 1274 } 1275 1276 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1277 pgoff_t end) 1278 { 1279 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1280 pgoff_t index = start; 1281 unsigned int ofs_in_node = dn->ofs_in_node; 1282 blkcnt_t count = 0; 1283 int ret; 1284 1285 for (; index < end; index++, dn->ofs_in_node++) { 1286 if (datablock_addr(dn->inode, dn->node_page, 1287 dn->ofs_in_node) == NULL_ADDR) 1288 count++; 1289 } 1290 1291 dn->ofs_in_node = ofs_in_node; 1292 ret = f2fs_reserve_new_blocks(dn, count); 1293 if (ret) 1294 return ret; 1295 1296 dn->ofs_in_node = ofs_in_node; 1297 for (index = start; index < end; index++, dn->ofs_in_node++) { 1298 dn->data_blkaddr = datablock_addr(dn->inode, 1299 dn->node_page, dn->ofs_in_node); 1300 /* 1301 * f2fs_reserve_new_blocks will not guarantee entire block 1302 * allocation. 1303 */ 1304 if (dn->data_blkaddr == NULL_ADDR) { 1305 ret = -ENOSPC; 1306 break; 1307 } 1308 if (dn->data_blkaddr != NEW_ADDR) { 1309 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1310 dn->data_blkaddr = NEW_ADDR; 1311 f2fs_set_data_blkaddr(dn); 1312 } 1313 } 1314 1315 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1316 1317 return ret; 1318 } 1319 1320 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1321 int mode) 1322 { 1323 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1324 struct address_space *mapping = inode->i_mapping; 1325 pgoff_t index, pg_start, pg_end; 1326 loff_t new_size = i_size_read(inode); 1327 loff_t off_start, off_end; 1328 int ret = 0; 1329 1330 ret = inode_newsize_ok(inode, (len + offset)); 1331 if (ret) 1332 return ret; 1333 1334 ret = f2fs_convert_inline_inode(inode); 1335 if (ret) 1336 return ret; 1337 1338 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1339 if (ret) 1340 return ret; 1341 1342 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1343 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1344 1345 off_start = offset & (PAGE_SIZE - 1); 1346 off_end = (offset + len) & (PAGE_SIZE - 1); 1347 1348 if (pg_start == pg_end) { 1349 ret = fill_zero(inode, pg_start, off_start, 1350 off_end - off_start); 1351 if (ret) 1352 return ret; 1353 1354 new_size = max_t(loff_t, new_size, offset + len); 1355 } else { 1356 if (off_start) { 1357 ret = fill_zero(inode, pg_start++, off_start, 1358 PAGE_SIZE - off_start); 1359 if (ret) 1360 return ret; 1361 1362 new_size = max_t(loff_t, new_size, 1363 (loff_t)pg_start << PAGE_SHIFT); 1364 } 1365 1366 for (index = pg_start; index < pg_end;) { 1367 struct dnode_of_data dn; 1368 unsigned int end_offset; 1369 pgoff_t end; 1370 1371 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1372 down_write(&F2FS_I(inode)->i_mmap_sem); 1373 1374 truncate_pagecache_range(inode, 1375 (loff_t)index << PAGE_SHIFT, 1376 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1377 1378 f2fs_lock_op(sbi); 1379 1380 set_new_dnode(&dn, inode, NULL, NULL, 0); 1381 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1382 if (ret) { 1383 f2fs_unlock_op(sbi); 1384 up_write(&F2FS_I(inode)->i_mmap_sem); 1385 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1386 goto out; 1387 } 1388 1389 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1390 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1391 1392 ret = f2fs_do_zero_range(&dn, index, end); 1393 f2fs_put_dnode(&dn); 1394 1395 f2fs_unlock_op(sbi); 1396 up_write(&F2FS_I(inode)->i_mmap_sem); 1397 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1398 1399 f2fs_balance_fs(sbi, dn.node_changed); 1400 1401 if (ret) 1402 goto out; 1403 1404 index = end; 1405 new_size = max_t(loff_t, new_size, 1406 (loff_t)index << PAGE_SHIFT); 1407 } 1408 1409 if (off_end) { 1410 ret = fill_zero(inode, pg_end, 0, off_end); 1411 if (ret) 1412 goto out; 1413 1414 new_size = max_t(loff_t, new_size, offset + len); 1415 } 1416 } 1417 1418 out: 1419 if (new_size > i_size_read(inode)) { 1420 if (mode & FALLOC_FL_KEEP_SIZE) 1421 file_set_keep_isize(inode); 1422 else 1423 f2fs_i_size_write(inode, new_size); 1424 } 1425 return ret; 1426 } 1427 1428 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1429 { 1430 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1431 pgoff_t nr, pg_start, pg_end, delta, idx; 1432 loff_t new_size; 1433 int ret = 0; 1434 1435 new_size = i_size_read(inode) + len; 1436 ret = inode_newsize_ok(inode, new_size); 1437 if (ret) 1438 return ret; 1439 1440 if (offset >= i_size_read(inode)) 1441 return -EINVAL; 1442 1443 /* insert range should be aligned to block size of f2fs. */ 1444 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1445 return -EINVAL; 1446 1447 ret = f2fs_convert_inline_inode(inode); 1448 if (ret) 1449 return ret; 1450 1451 f2fs_balance_fs(sbi, true); 1452 1453 down_write(&F2FS_I(inode)->i_mmap_sem); 1454 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1455 up_write(&F2FS_I(inode)->i_mmap_sem); 1456 if (ret) 1457 return ret; 1458 1459 /* write out all dirty pages from offset */ 1460 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1461 if (ret) 1462 return ret; 1463 1464 pg_start = offset >> PAGE_SHIFT; 1465 pg_end = (offset + len) >> PAGE_SHIFT; 1466 delta = pg_end - pg_start; 1467 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1468 1469 /* avoid gc operation during block exchange */ 1470 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1471 down_write(&F2FS_I(inode)->i_mmap_sem); 1472 truncate_pagecache(inode, offset); 1473 1474 while (!ret && idx > pg_start) { 1475 nr = idx - pg_start; 1476 if (nr > delta) 1477 nr = delta; 1478 idx -= nr; 1479 1480 f2fs_lock_op(sbi); 1481 f2fs_drop_extent_tree(inode); 1482 1483 ret = __exchange_data_block(inode, inode, idx, 1484 idx + delta, nr, false); 1485 f2fs_unlock_op(sbi); 1486 } 1487 up_write(&F2FS_I(inode)->i_mmap_sem); 1488 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1489 1490 /* write out all moved pages, if possible */ 1491 down_write(&F2FS_I(inode)->i_mmap_sem); 1492 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1493 truncate_pagecache(inode, offset); 1494 up_write(&F2FS_I(inode)->i_mmap_sem); 1495 1496 if (!ret) 1497 f2fs_i_size_write(inode, new_size); 1498 return ret; 1499 } 1500 1501 static int expand_inode_data(struct inode *inode, loff_t offset, 1502 loff_t len, int mode) 1503 { 1504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1505 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1506 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1507 .m_may_create = true }; 1508 pgoff_t pg_end; 1509 loff_t new_size = i_size_read(inode); 1510 loff_t off_end; 1511 int err; 1512 1513 err = inode_newsize_ok(inode, (len + offset)); 1514 if (err) 1515 return err; 1516 1517 err = f2fs_convert_inline_inode(inode); 1518 if (err) 1519 return err; 1520 1521 f2fs_balance_fs(sbi, true); 1522 1523 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1524 off_end = (offset + len) & (PAGE_SIZE - 1); 1525 1526 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1527 map.m_len = pg_end - map.m_lblk; 1528 if (off_end) 1529 map.m_len++; 1530 1531 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1532 if (err) { 1533 pgoff_t last_off; 1534 1535 if (!map.m_len) 1536 return err; 1537 1538 last_off = map.m_lblk + map.m_len - 1; 1539 1540 /* update new size to the failed position */ 1541 new_size = (last_off == pg_end) ? offset + len : 1542 (loff_t)(last_off + 1) << PAGE_SHIFT; 1543 } else { 1544 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1545 } 1546 1547 if (new_size > i_size_read(inode)) { 1548 if (mode & FALLOC_FL_KEEP_SIZE) 1549 file_set_keep_isize(inode); 1550 else 1551 f2fs_i_size_write(inode, new_size); 1552 } 1553 1554 return err; 1555 } 1556 1557 static long f2fs_fallocate(struct file *file, int mode, 1558 loff_t offset, loff_t len) 1559 { 1560 struct inode *inode = file_inode(file); 1561 long ret = 0; 1562 1563 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1564 return -EIO; 1565 1566 /* f2fs only support ->fallocate for regular file */ 1567 if (!S_ISREG(inode->i_mode)) 1568 return -EINVAL; 1569 1570 if (IS_ENCRYPTED(inode) && 1571 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1572 return -EOPNOTSUPP; 1573 1574 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1575 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1576 FALLOC_FL_INSERT_RANGE)) 1577 return -EOPNOTSUPP; 1578 1579 inode_lock(inode); 1580 1581 if (mode & FALLOC_FL_PUNCH_HOLE) { 1582 if (offset >= inode->i_size) 1583 goto out; 1584 1585 ret = punch_hole(inode, offset, len); 1586 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1587 ret = f2fs_collapse_range(inode, offset, len); 1588 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1589 ret = f2fs_zero_range(inode, offset, len, mode); 1590 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1591 ret = f2fs_insert_range(inode, offset, len); 1592 } else { 1593 ret = expand_inode_data(inode, offset, len, mode); 1594 } 1595 1596 if (!ret) { 1597 inode->i_mtime = inode->i_ctime = current_time(inode); 1598 f2fs_mark_inode_dirty_sync(inode, false); 1599 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1600 } 1601 1602 out: 1603 inode_unlock(inode); 1604 1605 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1606 return ret; 1607 } 1608 1609 static int f2fs_release_file(struct inode *inode, struct file *filp) 1610 { 1611 /* 1612 * f2fs_relase_file is called at every close calls. So we should 1613 * not drop any inmemory pages by close called by other process. 1614 */ 1615 if (!(filp->f_mode & FMODE_WRITE) || 1616 atomic_read(&inode->i_writecount) != 1) 1617 return 0; 1618 1619 /* some remained atomic pages should discarded */ 1620 if (f2fs_is_atomic_file(inode)) 1621 f2fs_drop_inmem_pages(inode); 1622 if (f2fs_is_volatile_file(inode)) { 1623 set_inode_flag(inode, FI_DROP_CACHE); 1624 filemap_fdatawrite(inode->i_mapping); 1625 clear_inode_flag(inode, FI_DROP_CACHE); 1626 clear_inode_flag(inode, FI_VOLATILE_FILE); 1627 stat_dec_volatile_write(inode); 1628 } 1629 return 0; 1630 } 1631 1632 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1633 { 1634 struct inode *inode = file_inode(file); 1635 1636 /* 1637 * If the process doing a transaction is crashed, we should do 1638 * roll-back. Otherwise, other reader/write can see corrupted database 1639 * until all the writers close its file. Since this should be done 1640 * before dropping file lock, it needs to do in ->flush. 1641 */ 1642 if (f2fs_is_atomic_file(inode) && 1643 F2FS_I(inode)->inmem_task == current) 1644 f2fs_drop_inmem_pages(inode); 1645 return 0; 1646 } 1647 1648 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1649 { 1650 struct f2fs_inode_info *fi = F2FS_I(inode); 1651 u32 oldflags; 1652 1653 /* Is it quota file? Do not allow user to mess with it */ 1654 if (IS_NOQUOTA(inode)) 1655 return -EPERM; 1656 1657 oldflags = fi->i_flags; 1658 1659 if ((iflags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL)) 1660 if (!capable(CAP_LINUX_IMMUTABLE)) 1661 return -EPERM; 1662 1663 fi->i_flags = iflags | (oldflags & ~mask); 1664 1665 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1666 set_inode_flag(inode, FI_PROJ_INHERIT); 1667 else 1668 clear_inode_flag(inode, FI_PROJ_INHERIT); 1669 1670 inode->i_ctime = current_time(inode); 1671 f2fs_set_inode_flags(inode); 1672 f2fs_mark_inode_dirty_sync(inode, true); 1673 return 0; 1674 } 1675 1676 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ 1677 1678 /* 1679 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1680 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1681 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1682 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1683 */ 1684 1685 static const struct { 1686 u32 iflag; 1687 u32 fsflag; 1688 } f2fs_fsflags_map[] = { 1689 { F2FS_SYNC_FL, FS_SYNC_FL }, 1690 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1691 { F2FS_APPEND_FL, FS_APPEND_FL }, 1692 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1693 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1694 { F2FS_INDEX_FL, FS_INDEX_FL }, 1695 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1696 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1697 }; 1698 1699 #define F2FS_GETTABLE_FS_FL ( \ 1700 FS_SYNC_FL | \ 1701 FS_IMMUTABLE_FL | \ 1702 FS_APPEND_FL | \ 1703 FS_NODUMP_FL | \ 1704 FS_NOATIME_FL | \ 1705 FS_INDEX_FL | \ 1706 FS_DIRSYNC_FL | \ 1707 FS_PROJINHERIT_FL | \ 1708 FS_ENCRYPT_FL | \ 1709 FS_INLINE_DATA_FL | \ 1710 FS_NOCOW_FL) 1711 1712 #define F2FS_SETTABLE_FS_FL ( \ 1713 FS_SYNC_FL | \ 1714 FS_IMMUTABLE_FL | \ 1715 FS_APPEND_FL | \ 1716 FS_NODUMP_FL | \ 1717 FS_NOATIME_FL | \ 1718 FS_DIRSYNC_FL | \ 1719 FS_PROJINHERIT_FL) 1720 1721 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1722 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1723 { 1724 u32 fsflags = 0; 1725 int i; 1726 1727 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1728 if (iflags & f2fs_fsflags_map[i].iflag) 1729 fsflags |= f2fs_fsflags_map[i].fsflag; 1730 1731 return fsflags; 1732 } 1733 1734 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1735 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1736 { 1737 u32 iflags = 0; 1738 int i; 1739 1740 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1741 if (fsflags & f2fs_fsflags_map[i].fsflag) 1742 iflags |= f2fs_fsflags_map[i].iflag; 1743 1744 return iflags; 1745 } 1746 1747 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1748 { 1749 struct inode *inode = file_inode(filp); 1750 struct f2fs_inode_info *fi = F2FS_I(inode); 1751 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1752 1753 if (IS_ENCRYPTED(inode)) 1754 fsflags |= FS_ENCRYPT_FL; 1755 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1756 fsflags |= FS_INLINE_DATA_FL; 1757 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1758 fsflags |= FS_NOCOW_FL; 1759 1760 fsflags &= F2FS_GETTABLE_FS_FL; 1761 1762 return put_user(fsflags, (int __user *)arg); 1763 } 1764 1765 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1766 { 1767 struct inode *inode = file_inode(filp); 1768 u32 fsflags; 1769 u32 iflags; 1770 int ret; 1771 1772 if (!inode_owner_or_capable(inode)) 1773 return -EACCES; 1774 1775 if (get_user(fsflags, (int __user *)arg)) 1776 return -EFAULT; 1777 1778 if (fsflags & ~F2FS_GETTABLE_FS_FL) 1779 return -EOPNOTSUPP; 1780 fsflags &= F2FS_SETTABLE_FS_FL; 1781 1782 iflags = f2fs_fsflags_to_iflags(fsflags); 1783 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 1784 return -EOPNOTSUPP; 1785 1786 ret = mnt_want_write_file(filp); 1787 if (ret) 1788 return ret; 1789 1790 inode_lock(inode); 1791 1792 ret = f2fs_setflags_common(inode, iflags, 1793 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); 1794 inode_unlock(inode); 1795 mnt_drop_write_file(filp); 1796 return ret; 1797 } 1798 1799 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1800 { 1801 struct inode *inode = file_inode(filp); 1802 1803 return put_user(inode->i_generation, (int __user *)arg); 1804 } 1805 1806 static int f2fs_ioc_start_atomic_write(struct file *filp) 1807 { 1808 struct inode *inode = file_inode(filp); 1809 int ret; 1810 1811 if (!inode_owner_or_capable(inode)) 1812 return -EACCES; 1813 1814 if (!S_ISREG(inode->i_mode)) 1815 return -EINVAL; 1816 1817 ret = mnt_want_write_file(filp); 1818 if (ret) 1819 return ret; 1820 1821 inode_lock(inode); 1822 1823 if (f2fs_is_atomic_file(inode)) { 1824 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 1825 ret = -EINVAL; 1826 goto out; 1827 } 1828 1829 ret = f2fs_convert_inline_inode(inode); 1830 if (ret) 1831 goto out; 1832 1833 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1834 1835 /* 1836 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 1837 * f2fs_is_atomic_file. 1838 */ 1839 if (get_dirty_pages(inode)) 1840 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING, 1841 "Unexpected flush for atomic writes: ino=%lu, npages=%u", 1842 inode->i_ino, get_dirty_pages(inode)); 1843 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 1844 if (ret) { 1845 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1846 goto out; 1847 } 1848 1849 set_inode_flag(inode, FI_ATOMIC_FILE); 1850 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1851 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1852 1853 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1854 F2FS_I(inode)->inmem_task = current; 1855 stat_inc_atomic_write(inode); 1856 stat_update_max_atomic_write(inode); 1857 out: 1858 inode_unlock(inode); 1859 mnt_drop_write_file(filp); 1860 return ret; 1861 } 1862 1863 static int f2fs_ioc_commit_atomic_write(struct file *filp) 1864 { 1865 struct inode *inode = file_inode(filp); 1866 int ret; 1867 1868 if (!inode_owner_or_capable(inode)) 1869 return -EACCES; 1870 1871 ret = mnt_want_write_file(filp); 1872 if (ret) 1873 return ret; 1874 1875 f2fs_balance_fs(F2FS_I_SB(inode), true); 1876 1877 inode_lock(inode); 1878 1879 if (f2fs_is_volatile_file(inode)) { 1880 ret = -EINVAL; 1881 goto err_out; 1882 } 1883 1884 if (f2fs_is_atomic_file(inode)) { 1885 ret = f2fs_commit_inmem_pages(inode); 1886 if (ret) 1887 goto err_out; 1888 1889 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1890 if (!ret) { 1891 clear_inode_flag(inode, FI_ATOMIC_FILE); 1892 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 1893 stat_dec_atomic_write(inode); 1894 } 1895 } else { 1896 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 1897 } 1898 err_out: 1899 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 1900 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1901 ret = -EINVAL; 1902 } 1903 inode_unlock(inode); 1904 mnt_drop_write_file(filp); 1905 return ret; 1906 } 1907 1908 static int f2fs_ioc_start_volatile_write(struct file *filp) 1909 { 1910 struct inode *inode = file_inode(filp); 1911 int ret; 1912 1913 if (!inode_owner_or_capable(inode)) 1914 return -EACCES; 1915 1916 if (!S_ISREG(inode->i_mode)) 1917 return -EINVAL; 1918 1919 ret = mnt_want_write_file(filp); 1920 if (ret) 1921 return ret; 1922 1923 inode_lock(inode); 1924 1925 if (f2fs_is_volatile_file(inode)) 1926 goto out; 1927 1928 ret = f2fs_convert_inline_inode(inode); 1929 if (ret) 1930 goto out; 1931 1932 stat_inc_volatile_write(inode); 1933 stat_update_max_volatile_write(inode); 1934 1935 set_inode_flag(inode, FI_VOLATILE_FILE); 1936 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1937 out: 1938 inode_unlock(inode); 1939 mnt_drop_write_file(filp); 1940 return ret; 1941 } 1942 1943 static int f2fs_ioc_release_volatile_write(struct file *filp) 1944 { 1945 struct inode *inode = file_inode(filp); 1946 int ret; 1947 1948 if (!inode_owner_or_capable(inode)) 1949 return -EACCES; 1950 1951 ret = mnt_want_write_file(filp); 1952 if (ret) 1953 return ret; 1954 1955 inode_lock(inode); 1956 1957 if (!f2fs_is_volatile_file(inode)) 1958 goto out; 1959 1960 if (!f2fs_is_first_block_written(inode)) { 1961 ret = truncate_partial_data_page(inode, 0, true); 1962 goto out; 1963 } 1964 1965 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 1966 out: 1967 inode_unlock(inode); 1968 mnt_drop_write_file(filp); 1969 return ret; 1970 } 1971 1972 static int f2fs_ioc_abort_volatile_write(struct file *filp) 1973 { 1974 struct inode *inode = file_inode(filp); 1975 int ret; 1976 1977 if (!inode_owner_or_capable(inode)) 1978 return -EACCES; 1979 1980 ret = mnt_want_write_file(filp); 1981 if (ret) 1982 return ret; 1983 1984 inode_lock(inode); 1985 1986 if (f2fs_is_atomic_file(inode)) 1987 f2fs_drop_inmem_pages(inode); 1988 if (f2fs_is_volatile_file(inode)) { 1989 clear_inode_flag(inode, FI_VOLATILE_FILE); 1990 stat_dec_volatile_write(inode); 1991 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1992 } 1993 1994 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1995 1996 inode_unlock(inode); 1997 1998 mnt_drop_write_file(filp); 1999 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2000 return ret; 2001 } 2002 2003 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2004 { 2005 struct inode *inode = file_inode(filp); 2006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2007 struct super_block *sb = sbi->sb; 2008 __u32 in; 2009 int ret = 0; 2010 2011 if (!capable(CAP_SYS_ADMIN)) 2012 return -EPERM; 2013 2014 if (get_user(in, (__u32 __user *)arg)) 2015 return -EFAULT; 2016 2017 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2018 ret = mnt_want_write_file(filp); 2019 if (ret) 2020 return ret; 2021 } 2022 2023 switch (in) { 2024 case F2FS_GOING_DOWN_FULLSYNC: 2025 sb = freeze_bdev(sb->s_bdev); 2026 if (IS_ERR(sb)) { 2027 ret = PTR_ERR(sb); 2028 goto out; 2029 } 2030 if (sb) { 2031 f2fs_stop_checkpoint(sbi, false); 2032 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2033 thaw_bdev(sb->s_bdev, sb); 2034 } 2035 break; 2036 case F2FS_GOING_DOWN_METASYNC: 2037 /* do checkpoint only */ 2038 ret = f2fs_sync_fs(sb, 1); 2039 if (ret) 2040 goto out; 2041 f2fs_stop_checkpoint(sbi, false); 2042 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2043 break; 2044 case F2FS_GOING_DOWN_NOSYNC: 2045 f2fs_stop_checkpoint(sbi, false); 2046 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2047 break; 2048 case F2FS_GOING_DOWN_METAFLUSH: 2049 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2050 f2fs_stop_checkpoint(sbi, false); 2051 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2052 break; 2053 case F2FS_GOING_DOWN_NEED_FSCK: 2054 set_sbi_flag(sbi, SBI_NEED_FSCK); 2055 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2056 set_sbi_flag(sbi, SBI_IS_DIRTY); 2057 /* do checkpoint only */ 2058 ret = f2fs_sync_fs(sb, 1); 2059 goto out; 2060 default: 2061 ret = -EINVAL; 2062 goto out; 2063 } 2064 2065 f2fs_stop_gc_thread(sbi); 2066 f2fs_stop_discard_thread(sbi); 2067 2068 f2fs_drop_discard_cmd(sbi); 2069 clear_opt(sbi, DISCARD); 2070 2071 f2fs_update_time(sbi, REQ_TIME); 2072 out: 2073 if (in != F2FS_GOING_DOWN_FULLSYNC) 2074 mnt_drop_write_file(filp); 2075 2076 trace_f2fs_shutdown(sbi, in, ret); 2077 2078 return ret; 2079 } 2080 2081 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2082 { 2083 struct inode *inode = file_inode(filp); 2084 struct super_block *sb = inode->i_sb; 2085 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2086 struct fstrim_range range; 2087 int ret; 2088 2089 if (!capable(CAP_SYS_ADMIN)) 2090 return -EPERM; 2091 2092 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2093 return -EOPNOTSUPP; 2094 2095 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2096 sizeof(range))) 2097 return -EFAULT; 2098 2099 ret = mnt_want_write_file(filp); 2100 if (ret) 2101 return ret; 2102 2103 range.minlen = max((unsigned int)range.minlen, 2104 q->limits.discard_granularity); 2105 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2106 mnt_drop_write_file(filp); 2107 if (ret < 0) 2108 return ret; 2109 2110 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2111 sizeof(range))) 2112 return -EFAULT; 2113 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2114 return 0; 2115 } 2116 2117 static bool uuid_is_nonzero(__u8 u[16]) 2118 { 2119 int i; 2120 2121 for (i = 0; i < 16; i++) 2122 if (u[i]) 2123 return true; 2124 return false; 2125 } 2126 2127 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2128 { 2129 struct inode *inode = file_inode(filp); 2130 2131 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2132 return -EOPNOTSUPP; 2133 2134 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2135 2136 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2137 } 2138 2139 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2140 { 2141 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2142 return -EOPNOTSUPP; 2143 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2144 } 2145 2146 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2147 { 2148 struct inode *inode = file_inode(filp); 2149 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2150 int err; 2151 2152 if (!f2fs_sb_has_encrypt(sbi)) 2153 return -EOPNOTSUPP; 2154 2155 err = mnt_want_write_file(filp); 2156 if (err) 2157 return err; 2158 2159 down_write(&sbi->sb_lock); 2160 2161 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2162 goto got_it; 2163 2164 /* update superblock with uuid */ 2165 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2166 2167 err = f2fs_commit_super(sbi, false); 2168 if (err) { 2169 /* undo new data */ 2170 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2171 goto out_err; 2172 } 2173 got_it: 2174 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2175 16)) 2176 err = -EFAULT; 2177 out_err: 2178 up_write(&sbi->sb_lock); 2179 mnt_drop_write_file(filp); 2180 return err; 2181 } 2182 2183 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2184 { 2185 struct inode *inode = file_inode(filp); 2186 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2187 __u32 sync; 2188 int ret; 2189 2190 if (!capable(CAP_SYS_ADMIN)) 2191 return -EPERM; 2192 2193 if (get_user(sync, (__u32 __user *)arg)) 2194 return -EFAULT; 2195 2196 if (f2fs_readonly(sbi->sb)) 2197 return -EROFS; 2198 2199 ret = mnt_want_write_file(filp); 2200 if (ret) 2201 return ret; 2202 2203 if (!sync) { 2204 if (!mutex_trylock(&sbi->gc_mutex)) { 2205 ret = -EBUSY; 2206 goto out; 2207 } 2208 } else { 2209 mutex_lock(&sbi->gc_mutex); 2210 } 2211 2212 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2213 out: 2214 mnt_drop_write_file(filp); 2215 return ret; 2216 } 2217 2218 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2219 { 2220 struct inode *inode = file_inode(filp); 2221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2222 struct f2fs_gc_range range; 2223 u64 end; 2224 int ret; 2225 2226 if (!capable(CAP_SYS_ADMIN)) 2227 return -EPERM; 2228 2229 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2230 sizeof(range))) 2231 return -EFAULT; 2232 2233 if (f2fs_readonly(sbi->sb)) 2234 return -EROFS; 2235 2236 end = range.start + range.len; 2237 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) { 2238 return -EINVAL; 2239 } 2240 2241 ret = mnt_want_write_file(filp); 2242 if (ret) 2243 return ret; 2244 2245 do_more: 2246 if (!range.sync) { 2247 if (!mutex_trylock(&sbi->gc_mutex)) { 2248 ret = -EBUSY; 2249 goto out; 2250 } 2251 } else { 2252 mutex_lock(&sbi->gc_mutex); 2253 } 2254 2255 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); 2256 range.start += BLKS_PER_SEC(sbi); 2257 if (range.start <= end) 2258 goto do_more; 2259 out: 2260 mnt_drop_write_file(filp); 2261 return ret; 2262 } 2263 2264 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2265 { 2266 struct inode *inode = file_inode(filp); 2267 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2268 int ret; 2269 2270 if (!capable(CAP_SYS_ADMIN)) 2271 return -EPERM; 2272 2273 if (f2fs_readonly(sbi->sb)) 2274 return -EROFS; 2275 2276 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2277 f2fs_msg(sbi->sb, KERN_INFO, 2278 "Skipping Checkpoint. Checkpoints currently disabled."); 2279 return -EINVAL; 2280 } 2281 2282 ret = mnt_want_write_file(filp); 2283 if (ret) 2284 return ret; 2285 2286 ret = f2fs_sync_fs(sbi->sb, 1); 2287 2288 mnt_drop_write_file(filp); 2289 return ret; 2290 } 2291 2292 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2293 struct file *filp, 2294 struct f2fs_defragment *range) 2295 { 2296 struct inode *inode = file_inode(filp); 2297 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2298 .m_seg_type = NO_CHECK_TYPE , 2299 .m_may_create = false }; 2300 struct extent_info ei = {0, 0, 0}; 2301 pgoff_t pg_start, pg_end, next_pgofs; 2302 unsigned int blk_per_seg = sbi->blocks_per_seg; 2303 unsigned int total = 0, sec_num; 2304 block_t blk_end = 0; 2305 bool fragmented = false; 2306 int err; 2307 2308 /* if in-place-update policy is enabled, don't waste time here */ 2309 if (f2fs_should_update_inplace(inode, NULL)) 2310 return -EINVAL; 2311 2312 pg_start = range->start >> PAGE_SHIFT; 2313 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2314 2315 f2fs_balance_fs(sbi, true); 2316 2317 inode_lock(inode); 2318 2319 /* writeback all dirty pages in the range */ 2320 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2321 range->start + range->len - 1); 2322 if (err) 2323 goto out; 2324 2325 /* 2326 * lookup mapping info in extent cache, skip defragmenting if physical 2327 * block addresses are continuous. 2328 */ 2329 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2330 if (ei.fofs + ei.len >= pg_end) 2331 goto out; 2332 } 2333 2334 map.m_lblk = pg_start; 2335 map.m_next_pgofs = &next_pgofs; 2336 2337 /* 2338 * lookup mapping info in dnode page cache, skip defragmenting if all 2339 * physical block addresses are continuous even if there are hole(s) 2340 * in logical blocks. 2341 */ 2342 while (map.m_lblk < pg_end) { 2343 map.m_len = pg_end - map.m_lblk; 2344 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2345 if (err) 2346 goto out; 2347 2348 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2349 map.m_lblk = next_pgofs; 2350 continue; 2351 } 2352 2353 if (blk_end && blk_end != map.m_pblk) 2354 fragmented = true; 2355 2356 /* record total count of block that we're going to move */ 2357 total += map.m_len; 2358 2359 blk_end = map.m_pblk + map.m_len; 2360 2361 map.m_lblk += map.m_len; 2362 } 2363 2364 if (!fragmented) 2365 goto out; 2366 2367 sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi); 2368 2369 /* 2370 * make sure there are enough free section for LFS allocation, this can 2371 * avoid defragment running in SSR mode when free section are allocated 2372 * intensively 2373 */ 2374 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2375 err = -EAGAIN; 2376 goto out; 2377 } 2378 2379 map.m_lblk = pg_start; 2380 map.m_len = pg_end - pg_start; 2381 total = 0; 2382 2383 while (map.m_lblk < pg_end) { 2384 pgoff_t idx; 2385 int cnt = 0; 2386 2387 do_map: 2388 map.m_len = pg_end - map.m_lblk; 2389 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2390 if (err) 2391 goto clear_out; 2392 2393 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2394 map.m_lblk = next_pgofs; 2395 continue; 2396 } 2397 2398 set_inode_flag(inode, FI_DO_DEFRAG); 2399 2400 idx = map.m_lblk; 2401 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2402 struct page *page; 2403 2404 page = f2fs_get_lock_data_page(inode, idx, true); 2405 if (IS_ERR(page)) { 2406 err = PTR_ERR(page); 2407 goto clear_out; 2408 } 2409 2410 set_page_dirty(page); 2411 f2fs_put_page(page, 1); 2412 2413 idx++; 2414 cnt++; 2415 total++; 2416 } 2417 2418 map.m_lblk = idx; 2419 2420 if (idx < pg_end && cnt < blk_per_seg) 2421 goto do_map; 2422 2423 clear_inode_flag(inode, FI_DO_DEFRAG); 2424 2425 err = filemap_fdatawrite(inode->i_mapping); 2426 if (err) 2427 goto out; 2428 } 2429 clear_out: 2430 clear_inode_flag(inode, FI_DO_DEFRAG); 2431 out: 2432 inode_unlock(inode); 2433 if (!err) 2434 range->len = (u64)total << PAGE_SHIFT; 2435 return err; 2436 } 2437 2438 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2439 { 2440 struct inode *inode = file_inode(filp); 2441 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2442 struct f2fs_defragment range; 2443 int err; 2444 2445 if (!capable(CAP_SYS_ADMIN)) 2446 return -EPERM; 2447 2448 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2449 return -EINVAL; 2450 2451 if (f2fs_readonly(sbi->sb)) 2452 return -EROFS; 2453 2454 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2455 sizeof(range))) 2456 return -EFAULT; 2457 2458 /* verify alignment of offset & size */ 2459 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2460 return -EINVAL; 2461 2462 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2463 sbi->max_file_blocks)) 2464 return -EINVAL; 2465 2466 err = mnt_want_write_file(filp); 2467 if (err) 2468 return err; 2469 2470 err = f2fs_defragment_range(sbi, filp, &range); 2471 mnt_drop_write_file(filp); 2472 2473 f2fs_update_time(sbi, REQ_TIME); 2474 if (err < 0) 2475 return err; 2476 2477 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2478 sizeof(range))) 2479 return -EFAULT; 2480 2481 return 0; 2482 } 2483 2484 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2485 struct file *file_out, loff_t pos_out, size_t len) 2486 { 2487 struct inode *src = file_inode(file_in); 2488 struct inode *dst = file_inode(file_out); 2489 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2490 size_t olen = len, dst_max_i_size = 0; 2491 size_t dst_osize; 2492 int ret; 2493 2494 if (file_in->f_path.mnt != file_out->f_path.mnt || 2495 src->i_sb != dst->i_sb) 2496 return -EXDEV; 2497 2498 if (unlikely(f2fs_readonly(src->i_sb))) 2499 return -EROFS; 2500 2501 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2502 return -EINVAL; 2503 2504 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2505 return -EOPNOTSUPP; 2506 2507 if (src == dst) { 2508 if (pos_in == pos_out) 2509 return 0; 2510 if (pos_out > pos_in && pos_out < pos_in + len) 2511 return -EINVAL; 2512 } 2513 2514 inode_lock(src); 2515 if (src != dst) { 2516 ret = -EBUSY; 2517 if (!inode_trylock(dst)) 2518 goto out; 2519 } 2520 2521 ret = -EINVAL; 2522 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2523 goto out_unlock; 2524 if (len == 0) 2525 olen = len = src->i_size - pos_in; 2526 if (pos_in + len == src->i_size) 2527 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2528 if (len == 0) { 2529 ret = 0; 2530 goto out_unlock; 2531 } 2532 2533 dst_osize = dst->i_size; 2534 if (pos_out + olen > dst->i_size) 2535 dst_max_i_size = pos_out + olen; 2536 2537 /* verify the end result is block aligned */ 2538 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2539 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2540 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2541 goto out_unlock; 2542 2543 ret = f2fs_convert_inline_inode(src); 2544 if (ret) 2545 goto out_unlock; 2546 2547 ret = f2fs_convert_inline_inode(dst); 2548 if (ret) 2549 goto out_unlock; 2550 2551 /* write out all dirty pages from offset */ 2552 ret = filemap_write_and_wait_range(src->i_mapping, 2553 pos_in, pos_in + len); 2554 if (ret) 2555 goto out_unlock; 2556 2557 ret = filemap_write_and_wait_range(dst->i_mapping, 2558 pos_out, pos_out + len); 2559 if (ret) 2560 goto out_unlock; 2561 2562 f2fs_balance_fs(sbi, true); 2563 2564 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2565 if (src != dst) { 2566 ret = -EBUSY; 2567 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2568 goto out_src; 2569 } 2570 2571 f2fs_lock_op(sbi); 2572 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2573 pos_out >> F2FS_BLKSIZE_BITS, 2574 len >> F2FS_BLKSIZE_BITS, false); 2575 2576 if (!ret) { 2577 if (dst_max_i_size) 2578 f2fs_i_size_write(dst, dst_max_i_size); 2579 else if (dst_osize != dst->i_size) 2580 f2fs_i_size_write(dst, dst_osize); 2581 } 2582 f2fs_unlock_op(sbi); 2583 2584 if (src != dst) 2585 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2586 out_src: 2587 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2588 out_unlock: 2589 if (src != dst) 2590 inode_unlock(dst); 2591 out: 2592 inode_unlock(src); 2593 return ret; 2594 } 2595 2596 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2597 { 2598 struct f2fs_move_range range; 2599 struct fd dst; 2600 int err; 2601 2602 if (!(filp->f_mode & FMODE_READ) || 2603 !(filp->f_mode & FMODE_WRITE)) 2604 return -EBADF; 2605 2606 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2607 sizeof(range))) 2608 return -EFAULT; 2609 2610 dst = fdget(range.dst_fd); 2611 if (!dst.file) 2612 return -EBADF; 2613 2614 if (!(dst.file->f_mode & FMODE_WRITE)) { 2615 err = -EBADF; 2616 goto err_out; 2617 } 2618 2619 err = mnt_want_write_file(filp); 2620 if (err) 2621 goto err_out; 2622 2623 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2624 range.pos_out, range.len); 2625 2626 mnt_drop_write_file(filp); 2627 if (err) 2628 goto err_out; 2629 2630 if (copy_to_user((struct f2fs_move_range __user *)arg, 2631 &range, sizeof(range))) 2632 err = -EFAULT; 2633 err_out: 2634 fdput(dst); 2635 return err; 2636 } 2637 2638 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2639 { 2640 struct inode *inode = file_inode(filp); 2641 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2642 struct sit_info *sm = SIT_I(sbi); 2643 unsigned int start_segno = 0, end_segno = 0; 2644 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2645 struct f2fs_flush_device range; 2646 int ret; 2647 2648 if (!capable(CAP_SYS_ADMIN)) 2649 return -EPERM; 2650 2651 if (f2fs_readonly(sbi->sb)) 2652 return -EROFS; 2653 2654 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2655 return -EINVAL; 2656 2657 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2658 sizeof(range))) 2659 return -EFAULT; 2660 2661 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2662 __is_large_section(sbi)) { 2663 f2fs_msg(sbi->sb, KERN_WARNING, 2664 "Can't flush %u in %d for segs_per_sec %u != 1", 2665 range.dev_num, sbi->s_ndevs, 2666 sbi->segs_per_sec); 2667 return -EINVAL; 2668 } 2669 2670 ret = mnt_want_write_file(filp); 2671 if (ret) 2672 return ret; 2673 2674 if (range.dev_num != 0) 2675 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2676 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2677 2678 start_segno = sm->last_victim[FLUSH_DEVICE]; 2679 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2680 start_segno = dev_start_segno; 2681 end_segno = min(start_segno + range.segments, dev_end_segno); 2682 2683 while (start_segno < end_segno) { 2684 if (!mutex_trylock(&sbi->gc_mutex)) { 2685 ret = -EBUSY; 2686 goto out; 2687 } 2688 sm->last_victim[GC_CB] = end_segno + 1; 2689 sm->last_victim[GC_GREEDY] = end_segno + 1; 2690 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2691 ret = f2fs_gc(sbi, true, true, start_segno); 2692 if (ret == -EAGAIN) 2693 ret = 0; 2694 else if (ret < 0) 2695 break; 2696 start_segno++; 2697 } 2698 out: 2699 mnt_drop_write_file(filp); 2700 return ret; 2701 } 2702 2703 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2704 { 2705 struct inode *inode = file_inode(filp); 2706 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2707 2708 /* Must validate to set it with SQLite behavior in Android. */ 2709 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2710 2711 return put_user(sb_feature, (u32 __user *)arg); 2712 } 2713 2714 #ifdef CONFIG_QUOTA 2715 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2716 { 2717 struct dquot *transfer_to[MAXQUOTAS] = {}; 2718 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2719 struct super_block *sb = sbi->sb; 2720 int err = 0; 2721 2722 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2723 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2724 err = __dquot_transfer(inode, transfer_to); 2725 if (err) 2726 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2727 dqput(transfer_to[PRJQUOTA]); 2728 } 2729 return err; 2730 } 2731 2732 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2733 { 2734 struct inode *inode = file_inode(filp); 2735 struct f2fs_inode_info *fi = F2FS_I(inode); 2736 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2737 struct page *ipage; 2738 kprojid_t kprojid; 2739 int err; 2740 2741 if (!f2fs_sb_has_project_quota(sbi)) { 2742 if (projid != F2FS_DEF_PROJID) 2743 return -EOPNOTSUPP; 2744 else 2745 return 0; 2746 } 2747 2748 if (!f2fs_has_extra_attr(inode)) 2749 return -EOPNOTSUPP; 2750 2751 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 2752 2753 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 2754 return 0; 2755 2756 err = -EPERM; 2757 /* Is it quota file? Do not allow user to mess with it */ 2758 if (IS_NOQUOTA(inode)) 2759 return err; 2760 2761 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2762 if (IS_ERR(ipage)) 2763 return PTR_ERR(ipage); 2764 2765 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 2766 i_projid)) { 2767 err = -EOVERFLOW; 2768 f2fs_put_page(ipage, 1); 2769 return err; 2770 } 2771 f2fs_put_page(ipage, 1); 2772 2773 err = dquot_initialize(inode); 2774 if (err) 2775 return err; 2776 2777 f2fs_lock_op(sbi); 2778 err = f2fs_transfer_project_quota(inode, kprojid); 2779 if (err) 2780 goto out_unlock; 2781 2782 F2FS_I(inode)->i_projid = kprojid; 2783 inode->i_ctime = current_time(inode); 2784 f2fs_mark_inode_dirty_sync(inode, true); 2785 out_unlock: 2786 f2fs_unlock_op(sbi); 2787 return err; 2788 } 2789 #else 2790 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2791 { 2792 return 0; 2793 } 2794 2795 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2796 { 2797 if (projid != F2FS_DEF_PROJID) 2798 return -EOPNOTSUPP; 2799 return 0; 2800 } 2801 #endif 2802 2803 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ 2804 2805 /* 2806 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable 2807 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its 2808 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. 2809 */ 2810 2811 static const struct { 2812 u32 iflag; 2813 u32 xflag; 2814 } f2fs_xflags_map[] = { 2815 { F2FS_SYNC_FL, FS_XFLAG_SYNC }, 2816 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, 2817 { F2FS_APPEND_FL, FS_XFLAG_APPEND }, 2818 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, 2819 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, 2820 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, 2821 }; 2822 2823 #define F2FS_SUPPORTED_XFLAGS ( \ 2824 FS_XFLAG_SYNC | \ 2825 FS_XFLAG_IMMUTABLE | \ 2826 FS_XFLAG_APPEND | \ 2827 FS_XFLAG_NODUMP | \ 2828 FS_XFLAG_NOATIME | \ 2829 FS_XFLAG_PROJINHERIT) 2830 2831 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ 2832 static inline u32 f2fs_iflags_to_xflags(u32 iflags) 2833 { 2834 u32 xflags = 0; 2835 int i; 2836 2837 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 2838 if (iflags & f2fs_xflags_map[i].iflag) 2839 xflags |= f2fs_xflags_map[i].xflag; 2840 2841 return xflags; 2842 } 2843 2844 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ 2845 static inline u32 f2fs_xflags_to_iflags(u32 xflags) 2846 { 2847 u32 iflags = 0; 2848 int i; 2849 2850 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 2851 if (xflags & f2fs_xflags_map[i].xflag) 2852 iflags |= f2fs_xflags_map[i].iflag; 2853 2854 return iflags; 2855 } 2856 2857 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 2858 { 2859 struct inode *inode = file_inode(filp); 2860 struct f2fs_inode_info *fi = F2FS_I(inode); 2861 struct fsxattr fa; 2862 2863 memset(&fa, 0, sizeof(struct fsxattr)); 2864 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags); 2865 2866 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 2867 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns, 2868 fi->i_projid); 2869 2870 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 2871 return -EFAULT; 2872 return 0; 2873 } 2874 2875 static int f2fs_ioctl_check_project(struct inode *inode, struct fsxattr *fa) 2876 { 2877 /* 2878 * Project Quota ID state is only allowed to change from within the init 2879 * namespace. Enforce that restriction only if we are trying to change 2880 * the quota ID state. Everything else is allowed in user namespaces. 2881 */ 2882 if (current_user_ns() == &init_user_ns) 2883 return 0; 2884 2885 if (__kprojid_val(F2FS_I(inode)->i_projid) != fa->fsx_projid) 2886 return -EINVAL; 2887 2888 if (F2FS_I(inode)->i_flags & F2FS_PROJINHERIT_FL) { 2889 if (!(fa->fsx_xflags & FS_XFLAG_PROJINHERIT)) 2890 return -EINVAL; 2891 } else { 2892 if (fa->fsx_xflags & FS_XFLAG_PROJINHERIT) 2893 return -EINVAL; 2894 } 2895 2896 return 0; 2897 } 2898 2899 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 2900 { 2901 struct inode *inode = file_inode(filp); 2902 struct fsxattr fa; 2903 u32 iflags; 2904 int err; 2905 2906 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 2907 return -EFAULT; 2908 2909 /* Make sure caller has proper permission */ 2910 if (!inode_owner_or_capable(inode)) 2911 return -EACCES; 2912 2913 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) 2914 return -EOPNOTSUPP; 2915 2916 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); 2917 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 2918 return -EOPNOTSUPP; 2919 2920 err = mnt_want_write_file(filp); 2921 if (err) 2922 return err; 2923 2924 inode_lock(inode); 2925 err = f2fs_ioctl_check_project(inode, &fa); 2926 if (err) 2927 goto out; 2928 err = f2fs_setflags_common(inode, iflags, 2929 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); 2930 if (err) 2931 goto out; 2932 2933 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 2934 out: 2935 inode_unlock(inode); 2936 mnt_drop_write_file(filp); 2937 return err; 2938 } 2939 2940 int f2fs_pin_file_control(struct inode *inode, bool inc) 2941 { 2942 struct f2fs_inode_info *fi = F2FS_I(inode); 2943 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2944 2945 /* Use i_gc_failures for normal file as a risk signal. */ 2946 if (inc) 2947 f2fs_i_gc_failures_write(inode, 2948 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 2949 2950 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 2951 f2fs_msg(sbi->sb, KERN_WARNING, 2952 "%s: Enable GC = ino %lx after %x GC trials", 2953 __func__, inode->i_ino, 2954 fi->i_gc_failures[GC_FAILURE_PIN]); 2955 clear_inode_flag(inode, FI_PIN_FILE); 2956 return -EAGAIN; 2957 } 2958 return 0; 2959 } 2960 2961 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 2962 { 2963 struct inode *inode = file_inode(filp); 2964 __u32 pin; 2965 int ret = 0; 2966 2967 if (!capable(CAP_SYS_ADMIN)) 2968 return -EPERM; 2969 2970 if (get_user(pin, (__u32 __user *)arg)) 2971 return -EFAULT; 2972 2973 if (!S_ISREG(inode->i_mode)) 2974 return -EINVAL; 2975 2976 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 2977 return -EROFS; 2978 2979 ret = mnt_want_write_file(filp); 2980 if (ret) 2981 return ret; 2982 2983 inode_lock(inode); 2984 2985 if (f2fs_should_update_outplace(inode, NULL)) { 2986 ret = -EINVAL; 2987 goto out; 2988 } 2989 2990 if (!pin) { 2991 clear_inode_flag(inode, FI_PIN_FILE); 2992 f2fs_i_gc_failures_write(inode, 0); 2993 goto done; 2994 } 2995 2996 if (f2fs_pin_file_control(inode, false)) { 2997 ret = -EAGAIN; 2998 goto out; 2999 } 3000 ret = f2fs_convert_inline_inode(inode); 3001 if (ret) 3002 goto out; 3003 3004 set_inode_flag(inode, FI_PIN_FILE); 3005 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3006 done: 3007 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3008 out: 3009 inode_unlock(inode); 3010 mnt_drop_write_file(filp); 3011 return ret; 3012 } 3013 3014 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3015 { 3016 struct inode *inode = file_inode(filp); 3017 __u32 pin = 0; 3018 3019 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3020 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3021 return put_user(pin, (u32 __user *)arg); 3022 } 3023 3024 int f2fs_precache_extents(struct inode *inode) 3025 { 3026 struct f2fs_inode_info *fi = F2FS_I(inode); 3027 struct f2fs_map_blocks map; 3028 pgoff_t m_next_extent; 3029 loff_t end; 3030 int err; 3031 3032 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3033 return -EOPNOTSUPP; 3034 3035 map.m_lblk = 0; 3036 map.m_next_pgofs = NULL; 3037 map.m_next_extent = &m_next_extent; 3038 map.m_seg_type = NO_CHECK_TYPE; 3039 map.m_may_create = false; 3040 end = F2FS_I_SB(inode)->max_file_blocks; 3041 3042 while (map.m_lblk < end) { 3043 map.m_len = end - map.m_lblk; 3044 3045 down_write(&fi->i_gc_rwsem[WRITE]); 3046 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3047 up_write(&fi->i_gc_rwsem[WRITE]); 3048 if (err) 3049 return err; 3050 3051 map.m_lblk = m_next_extent; 3052 } 3053 3054 return err; 3055 } 3056 3057 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3058 { 3059 return f2fs_precache_extents(file_inode(filp)); 3060 } 3061 3062 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3063 { 3064 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3065 __u64 block_count; 3066 int ret; 3067 3068 if (!capable(CAP_SYS_ADMIN)) 3069 return -EPERM; 3070 3071 if (f2fs_readonly(sbi->sb)) 3072 return -EROFS; 3073 3074 if (copy_from_user(&block_count, (void __user *)arg, 3075 sizeof(block_count))) 3076 return -EFAULT; 3077 3078 ret = f2fs_resize_fs(sbi, block_count); 3079 3080 return ret; 3081 } 3082 3083 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 3084 { 3085 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 3086 return -EIO; 3087 3088 switch (cmd) { 3089 case F2FS_IOC_GETFLAGS: 3090 return f2fs_ioc_getflags(filp, arg); 3091 case F2FS_IOC_SETFLAGS: 3092 return f2fs_ioc_setflags(filp, arg); 3093 case F2FS_IOC_GETVERSION: 3094 return f2fs_ioc_getversion(filp, arg); 3095 case F2FS_IOC_START_ATOMIC_WRITE: 3096 return f2fs_ioc_start_atomic_write(filp); 3097 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3098 return f2fs_ioc_commit_atomic_write(filp); 3099 case F2FS_IOC_START_VOLATILE_WRITE: 3100 return f2fs_ioc_start_volatile_write(filp); 3101 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3102 return f2fs_ioc_release_volatile_write(filp); 3103 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3104 return f2fs_ioc_abort_volatile_write(filp); 3105 case F2FS_IOC_SHUTDOWN: 3106 return f2fs_ioc_shutdown(filp, arg); 3107 case FITRIM: 3108 return f2fs_ioc_fitrim(filp, arg); 3109 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3110 return f2fs_ioc_set_encryption_policy(filp, arg); 3111 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3112 return f2fs_ioc_get_encryption_policy(filp, arg); 3113 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3114 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 3115 case F2FS_IOC_GARBAGE_COLLECT: 3116 return f2fs_ioc_gc(filp, arg); 3117 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3118 return f2fs_ioc_gc_range(filp, arg); 3119 case F2FS_IOC_WRITE_CHECKPOINT: 3120 return f2fs_ioc_write_checkpoint(filp, arg); 3121 case F2FS_IOC_DEFRAGMENT: 3122 return f2fs_ioc_defragment(filp, arg); 3123 case F2FS_IOC_MOVE_RANGE: 3124 return f2fs_ioc_move_range(filp, arg); 3125 case F2FS_IOC_FLUSH_DEVICE: 3126 return f2fs_ioc_flush_device(filp, arg); 3127 case F2FS_IOC_GET_FEATURES: 3128 return f2fs_ioc_get_features(filp, arg); 3129 case F2FS_IOC_FSGETXATTR: 3130 return f2fs_ioc_fsgetxattr(filp, arg); 3131 case F2FS_IOC_FSSETXATTR: 3132 return f2fs_ioc_fssetxattr(filp, arg); 3133 case F2FS_IOC_GET_PIN_FILE: 3134 return f2fs_ioc_get_pin_file(filp, arg); 3135 case F2FS_IOC_SET_PIN_FILE: 3136 return f2fs_ioc_set_pin_file(filp, arg); 3137 case F2FS_IOC_PRECACHE_EXTENTS: 3138 return f2fs_ioc_precache_extents(filp, arg); 3139 case F2FS_IOC_RESIZE_FS: 3140 return f2fs_ioc_resize_fs(filp, arg); 3141 default: 3142 return -ENOTTY; 3143 } 3144 } 3145 3146 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3147 { 3148 struct file *file = iocb->ki_filp; 3149 struct inode *inode = file_inode(file); 3150 ssize_t ret; 3151 3152 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 3153 ret = -EIO; 3154 goto out; 3155 } 3156 3157 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) { 3158 ret = -EINVAL; 3159 goto out; 3160 } 3161 3162 if (!inode_trylock(inode)) { 3163 if (iocb->ki_flags & IOCB_NOWAIT) { 3164 ret = -EAGAIN; 3165 goto out; 3166 } 3167 inode_lock(inode); 3168 } 3169 3170 ret = generic_write_checks(iocb, from); 3171 if (ret > 0) { 3172 bool preallocated = false; 3173 size_t target_size = 0; 3174 int err; 3175 3176 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 3177 set_inode_flag(inode, FI_NO_PREALLOC); 3178 3179 if ((iocb->ki_flags & IOCB_NOWAIT)) { 3180 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 3181 iov_iter_count(from)) || 3182 f2fs_has_inline_data(inode) || 3183 f2fs_force_buffered_io(inode, iocb, from)) { 3184 clear_inode_flag(inode, FI_NO_PREALLOC); 3185 inode_unlock(inode); 3186 ret = -EAGAIN; 3187 goto out; 3188 } 3189 } else { 3190 preallocated = true; 3191 target_size = iocb->ki_pos + iov_iter_count(from); 3192 3193 err = f2fs_preallocate_blocks(iocb, from); 3194 if (err) { 3195 clear_inode_flag(inode, FI_NO_PREALLOC); 3196 inode_unlock(inode); 3197 ret = err; 3198 goto out; 3199 } 3200 } 3201 ret = __generic_file_write_iter(iocb, from); 3202 clear_inode_flag(inode, FI_NO_PREALLOC); 3203 3204 /* if we couldn't write data, we should deallocate blocks. */ 3205 if (preallocated && i_size_read(inode) < target_size) 3206 f2fs_truncate(inode); 3207 3208 if (ret > 0) 3209 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 3210 } 3211 inode_unlock(inode); 3212 out: 3213 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 3214 iov_iter_count(from), ret); 3215 if (ret > 0) 3216 ret = generic_write_sync(iocb, ret); 3217 return ret; 3218 } 3219 3220 #ifdef CONFIG_COMPAT 3221 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3222 { 3223 switch (cmd) { 3224 case F2FS_IOC32_GETFLAGS: 3225 cmd = F2FS_IOC_GETFLAGS; 3226 break; 3227 case F2FS_IOC32_SETFLAGS: 3228 cmd = F2FS_IOC_SETFLAGS; 3229 break; 3230 case F2FS_IOC32_GETVERSION: 3231 cmd = F2FS_IOC_GETVERSION; 3232 break; 3233 case F2FS_IOC_START_ATOMIC_WRITE: 3234 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3235 case F2FS_IOC_START_VOLATILE_WRITE: 3236 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3237 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3238 case F2FS_IOC_SHUTDOWN: 3239 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3240 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3241 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3242 case F2FS_IOC_GARBAGE_COLLECT: 3243 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3244 case F2FS_IOC_WRITE_CHECKPOINT: 3245 case F2FS_IOC_DEFRAGMENT: 3246 case F2FS_IOC_MOVE_RANGE: 3247 case F2FS_IOC_FLUSH_DEVICE: 3248 case F2FS_IOC_GET_FEATURES: 3249 case F2FS_IOC_FSGETXATTR: 3250 case F2FS_IOC_FSSETXATTR: 3251 case F2FS_IOC_GET_PIN_FILE: 3252 case F2FS_IOC_SET_PIN_FILE: 3253 case F2FS_IOC_PRECACHE_EXTENTS: 3254 case F2FS_IOC_RESIZE_FS: 3255 break; 3256 default: 3257 return -ENOIOCTLCMD; 3258 } 3259 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 3260 } 3261 #endif 3262 3263 const struct file_operations f2fs_file_operations = { 3264 .llseek = f2fs_llseek, 3265 .read_iter = generic_file_read_iter, 3266 .write_iter = f2fs_file_write_iter, 3267 .open = f2fs_file_open, 3268 .release = f2fs_release_file, 3269 .mmap = f2fs_file_mmap, 3270 .flush = f2fs_file_flush, 3271 .fsync = f2fs_sync_file, 3272 .fallocate = f2fs_fallocate, 3273 .unlocked_ioctl = f2fs_ioctl, 3274 #ifdef CONFIG_COMPAT 3275 .compat_ioctl = f2fs_compat_ioctl, 3276 #endif 3277 .splice_read = generic_file_splice_read, 3278 .splice_write = iter_file_splice_write, 3279 }; 3280